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Simple Summary: Transposable elements (TEs) are DNA sequences that are, or were, able to move
(transpose) within the genome of a single cell. They were first discovered by Barbara McClintock
while working on maize, and they make up a large fraction of the genome. Transpositions can result
in mutations and they can alter the genome size. Cells regulate the activity of TEs using a variety of
mechanisms, such as chemical modifications of DNA and small RNAs. Machine learning (ML) is an
interdisciplinary subject that studies computer algorithms that can improve through experience and
by the use of data. ML has been successfully applied to a variety of problems in bioinformatics and
has exhibited favorable precision and speed. Here, we provide a systematic and guided review on
the ML and bioinformatic methods and tools that are used for the analysis of the regulation of TEs.

Abstract: Transposable elements (TEs, or mobile genetic elements, MGEs) are ubiquitous genetic
elements that make up a substantial proportion of the genome of many species. The recent growing
interest in understanding the evolution and function of TEs has revealed that TEs play a dual role in
genome evolution, development, disease, and drug resistance. Cells regulate TE expression against
uncontrolled activity that can lead to developmental defects and disease, using multiple strategies,
such as DNA chemical modification, small RNA (sRNA) silencing, chromatin modification, as well
as sequence-specific repressors. Advancements in bioinformatics and machine learning approaches
are increasingly contributing to the analysis of the regulation mechanisms. A plethora of tools
and machine learning approaches have been developed for prediction, annotation, and expression
profiling of sRNAs, for methylation analysis of TEs, as well as for genome-wide methylation analysis
through bisulfite sequencing data. In this review, we provide a guided overview of the bioinformatic
and machine learning state of the art of fields closely associated with TE regulation and function.

Keywords: transposable elements regulation; mobile genetic elements; machine learning; bioinfor-
matics methods; DNA methylation; small RNAs; PIWI-interacting RNAs; circular RNAs

1. Introduction

Among the several types of genomic repeated sequences in the human genome,
transposable elements comprise the largest fraction, estimated to approximately half, or
even much larger, TE fractions [1,2]. These TEs, often called transposons or jumping genes,
are DNA sequences that have, or once had, the ability to move within the genome, either
directly or through an RNA intermediate. TEs contribute to the large variety of the genome
size across species that cannot be attributed solely to the number of genes it contains
(C-value paradox). TEs are present, to largely varying degrees, in the genomes of all known
types of organisms, both prokaryotic and eukaryotic. Some species even show a larger
number of genomic transposons than host sequences [3–6]. Several publications have
discussed the numerous and diverse types and roles of TEs [7–16] and the mechanisms
responsible for their regulation [17–35], as well as the available bioinformatic tools for
the analysis of TEs [36]. In short, the top of the classification hierarchy categorizes TEs
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in two major types. Class I TEs, also called retrotransposons, transpose via an RNA
intermediate that is subsequently reverse transcribed to cDNA before inserting elsewhere
in the genome. Class II TEs, also called DNA transposons, directly excise themselves from
one location before reinsertion. Retrotransposons can be distinguished in long terminal
repeat (LTR) elements, which are more abundant in plants, and in non-LTR elements,
from which long interspersed nuclear elements (LINEs) enrich most animal genomes. A
considerable portion (close to 20%) of the human and mouse genomes are comprised of
LINE-1 [37,38]. The vast majority of TEs in the human genome have lost the ability to
fully mobilize [39–41]. The exception to that are 80–100 human-specific LINE-1 element
(L1HS) that are the only fully autonomous TE with the ability to generate new transposition
events in human to date [41]. However, most TEs have retained some level of functionality,
including the ability to direct their own transcription.

Thus, transcriptome-wide sequencing assays, like RNA-seq, frequently include
transposon-derived transcripts among the set of expressed sequences. Moreover, some
transposon transcripts have been co-opted to play a role in host function. Particularly
during early development, some expressed transposon transcripts have been shown to be
necessary for proper cell differentiation and maintenance of identity [42–46]. In addition
to their roles in general cellular function, several types of transposons have become intri-
cately entangled within gene regulatory networks, [47] contributing both to cis-regulatory
sequences [48–50] as well as general chromatin environments [51–53]. For this reason, it
is paramount that we consider the contribution of repetitive elements as we unravel the
genomic and epigenomic landscapes of gene expression regulation.

Even though most TEs affect the host only in a neutral fashion, certain transpositions
might have a deleterious effect. These transpositions can disrupt gene function or cause
compromising chromosomal rearrangements, as evident in the more than 120 diseases
connected to TE insertions in human [54–57]. Selective pressure on host organisms has
driven the development of diverse transcriptional and post-transcriptional mechanisms
to suppress and control TE activity. Within those mechanisms fall small RNAs, ATP-
dependent chromatin remodelers, DNA methylation, and Krüppel-associated box (KRAB)
zinc-finger proteins (ZFPs), the latter thought to have evolved along with TEs [49,58–62].

Machine learning (ML) is the development and application of computer algorithms
that are able to improve a performance criterion through experience and by the use of data
to build a model [63,64]. ML has been successfully applied to a variety of bioinformatics
problems in the fields of biology and medicine [65,66], with favorable results in terms
of precision and speed. Recent advancements in experimental techniques have led to
the exponential growth of the amount of biological data. That growth resulted in two
major issues: the storage and management of big data and their meaningful interpretation.
ML has already been extensively used for knowledge discovery via converting that bulk
of data into biological knowledge of the underlying mechanisms in the form of testable
models [67].

Machine learning (ML) is a multidomain interdisciplinary subject. There are many
different statistical, probabilistic, and optimization techniques that can be implemented
as the learning methods. Logistic regression, artificial neural networks (ANN), random
forest (RF), and Support Vector Machine (SVM) are frequently used learning methods.
Artificial neural network (ANN) models are powerful tools in ML. They can approximate
functions and dynamics by learning from examples and were originally meant to simulate
the functioning of a human brain [68]. A Convolutional Neural Network (CNN) is a type
of ANN inspired by biological processes in the sense that the connectivity pattern between
neurons resembles the organization of the animal visual cortex [69]. Random forest (RF) is
an ensemble method that constructs a multitude of decision trees serving for regression
and classification tasks [70]. For classification purposes, an RF can construct multiple
independent decision trees from the original features of the training data set and then
fuse all trees by voting to obtain an optimal model. Support Vector Machines (SVMs)
are supervised learning models that can perform (linear or non-linear) classification and
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regression analysis. SVMs are very powerful at recognizing subtle patterns in complex
datasets [71].

For the assessment of classification tasks, a set of useful metrics are used. Sensitivity or
recall (Sn, also called true positive rate, TRP) is the proportion of true positive observations.
Specificity (Sp) is the proportion of true negative observations. Accuracy (Acc) is the
ratio of true positive observations to the total observations. Precision (Pre) is the ratio
of true positive observations to the total predicted positive observations, and Matthew’s
Correlation Coefficient (MCC) is a measure of the quality of binary classification. In short,
the metrics are defined as such:

Sn =
TP

TP + FN
(1)

Sp =
TN

TN + FP
= 1− FPR (2)

Acc =
TN + TP

TN + TP + FP + FN
(3)

Pre =
TP

TP + FP
(4)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

TP and FP are the numbers of true positive and false positive assessments, respectively.
Additionally, TN and FN are the numbers of true negative and false negative assessments,
respectively, and FPR is the false positive rate.

Another widely used measure of performance is the Receiver Operator Characteristic
(ROC) curve. ROC is a probability plot of the TPR against the FPR for various discrim-
ination thresholds, and practically indicates the diagnostic ability of a binary classifier.
A summary of the ROC curve is the area under the curve (AUC). The higher the AUC,
the better the performance of the classifier at distinguishing the positive and negative
classes. Lastly, an important technique for the validation of ML models is the so-called
cross-validation (CV). CV is used to test the ability of the model to predict new data (data
not used when training and testing the model). In the case of the k-fold CV (abbrevi-
ated as k-CV, with 10-CV being commonly used), the original dataset is partitioned into
k subdatasets of equal size. One of the datasets is used as the validation dataset and the
remaining k-1 are used for the training of the model. This process is repeated k times.

Here we present a systematic review of the numerous bioinformatics and ML methods
and tools employed in the analysis of the mechanisms that regulate the expression of
TEs. We discuss the basic features of each method, potential comparative performance
among them, as well as data and code availability. For easier navigation through the
review, the various tools are grouped based on the primary analysis they perform: on
DNA methylation or small RNA data. In the latter case, the tools that serve for the
analysis of a single small RNA type (namely PIWI-interacting RNAs, circular RNAs) are
grouped separately.

2. Methods and Techniques
2.1. Analysis of DNA Methylation

A safeguard mechanism to suppress the activity of TEs is the methylation of cytosine
nucleotides to produce 5-methylcytosine (5mC), a modification that can induce transcrip-
tional silencing of the methylated locus. Cytosine DNA methylation is a stable epigenetic
mark that is critical for diverse biological processes, such as gene and transposon silencing,
imprinting, and X chromosome inactivation [72]. Bisulfite sequencing (BS) is a powerful
technique for the study of DNA cytosine methylation [73]. In tandem with next-generation
sequencing (NGS) technology, it can potentially detect the methylation status of every
cytosine in the genome. Bisulfite treatment of DNA does not affect the 5-methylcytosines;
however, non-methylated Cytosines are converted into Uracils, which are further converted
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into Thymines during the subsequent PCR amplification. This two-step process produces
four individual strands of DNA for any given genomic locus, all of which can potentially
appear in a sequencing experiment.

There are two distinct types of bisulfite libraries: in the first case (BS-seq), the sequenc-
ing library is generated in a directional manner, so that the actual sequencing reads corre-
spond to a bisulfite converted version of either the original forward or reverse strand [74],
whereas in the second case (MethylC-seq), the strand specificity is not preserved [75].
In the latter case, all four possible bisulfite DNA strands are sequenced at roughly the
same frequency.

The task of mapping the bisulfite-treated sequences to a reference genome is a signifi-
cant computational challenge due to a number of reasons: reduced complexity of the DNA
code, there are up to four DNA strands to be analyzed, and the fact that each read can theo-
retically exist in all possible methylation states. Ambiguous reads (reads that map to both
the converted and unconverted reference genomes) are a great challenge in BS sequencing
so that many relevant software packages avoid that issue by not including multimapped
reads, among them BSMAP [76], Bismark [77], MOABS [78], and BS-Seeker3 [79]. On the
other hand, tools like TEPID [80] and EpiTEome [81] include the analysis of split reads that
cross junctions between TEs and uniquely mappable genome regions.

BSMAP [76], published in 2009, is a general-purpose bisulfite reads mapping algorithm
for the analysis of whole-genome shotgun BS-seq data. BSMAP addressed the issues faced
when mapping high-throughput bisulfite reads to the reference genome. Those issues
include increased searching space, reduced complexity of bisulfite sequence, asymmetric
cytosine to thymine alignments, and multiple CpG heterogeneous methylation. The
algorithm aligns with a wildcard approach: it enumerates all possible combinations of C/T
conversion in the BS read to find the uniquely mapping position with the least mismatches
on the reference genome and it supports gapped/pair-end alignment, iterative trimming
of low-quality base pairs, and multi-thread parallel computing.

BS Seeker [82] converts the genome to a three-letter alphabet and aligns the bisulfite-
treated reads to a reference genome using the Bowtie aligner [83]. The algorithm is able
to work with data from both BS-seq [75] and MethylC-seq [84] protocols. Mapping ambi-
guity is reduced by accounting for tags that are generated by certain library construction
protocols [75]. Post-processing of the alignments removes non-unique and low-quality
mappings based on the (user-defined) allowed number of mismatches. The performance of
the method was compared with the previously published methods RMAP [85], Maq [86],
and BSMAP [76] on simulated 36-mer BS reads from human chromosome 21 that were
mapped using both BS-seq and MethylC-seq protocols. The results showed that when the
protocol used includes tags [75], BS Seeker has the highest accuracy and the shortest run
time (around 4 min for 1 million reads); otherwise its performance is very comparable
to RMAP.

Two updated versions followed in 2013 and 2018, respectively: BS-Seeker2 [87] and
BS-seeker3 [79]. The former improved the mappability by using local alignment and it
provides additional filtering out of reads with incomplete BS conversion, while the latter
offers ultra-fast aligning of the reads and better visualization of the methylation data.

Bismark [77] was the first published BS-Seq aligner to handle single- and paired-end
mapping of both directional and non-directional bisulfite libraries. The methylation output
discriminates between sequence context (CpG, CHG, or CHH, where H is any base but G)
and can be also obtained in an alignment strand-specific format, a very useful option to
study asymmetric methylation (hemi- or CHH methylation) in a strand-specific manner.
Bismark, like BS Seeker, adopts an “in silico bisulfite conversion” strategy, where all the Cs
in both the reads and the reference are converted to Ts prior to alignment, thus resulting in
a three-letter genome. A direct comparison of Bismark with BS Seeker [82] returned a very
similar number of alignments in a similar time scale and efficiency.

MOABS [78] is a pipeline written in C++ that detects differential methylation with
10-fold coverage at single-CpG resolution based on a Beta-Binomial hierarchical model
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and is capable of processing two billion reads in 24 CPU hours. The method captures both
sampling and biological variations, it corrects the depth bias that arises from the fact that
sequencing depth is normally higher (or lower) in high (or low) copy-number regions, and
it provides a single innovative metric that reports on the combined biological and statistical
significance of differential methylation. MOABS integrates a number of BS-seq procedures,
e.g., read mapping, methylation ratio calling, identification of hypo- or hyper- methylated
regions from one sample, and differential methylation from multiple samples.

MOABS outperforms other algorithms, such as Fisher’s exact test [74] and BSmooth
(the first program that accounted for biological variation using a modified t-test) [88] on
simulated and real BS-seq data, especially at low sequencing depth. MOABS also offers the
possibility to extend the analysis to differential 5-hydroxymethylcytosine (5hmC) analysis
using the Reduced Representation Bisulfite Sequencing (RRBS) [89] protocol and Oxidative
Bisulfite Sequencing (oxBS-seq) [90].

In Arabidopsis thaliana, DNA methylation occurs in three DNA sequence contexts:
mCG, mCHG, and mCHH. A great source of genetic differences between individuals is
the variation in TE content [91], which highlights the importance of the identification
of TE variants. In 2016, Stuart et al. introduced TEPID (Transposable Element Poly-
morphism IDentification) [80], an algorithm for accurately mapping the locations of TE
presence/absence variants with respect to a reference genome. The analysis of TE methyla-
tion levels is reinforced by including the analysis of split reads that cross junctions between
TEs and uniquely mappable genome regions. The authors applied the method on genome
resequencing data for 216 different Arabidopsis accessions [92]. The analysis discovered,
among other findings, that the majority of the TE variants were due to the de novo insertion
of TEs, while a smaller subset was possibly due to the deletion of ancestral TE copies,
mostly around the pericentromeric regions. Furthermore, it was found that a TE insertion
is connected with an increase in flanking DNA methylation levels, whereas the deletion of
an ancestral TE was often not associated with a corresponding decrease in flanking DNA
methylation levels.

The methylation analysis of non-reference and mobile TEs required both genome
resequencing and MethylC-seq datasets. EpiTEome [81] is the first pipeline that combines
the detection of new TE insertion sites, and the methylation states of the insertion and
the surrounding site from a single MethylC-seq dataset. The preprocessing step includes
trimming and filtering the reads and mapping them to the reference genome using Bis-
mark [77] or any other MethylC-seq mapping program. EpiTEome functions similarly to
TEPID [80] to identify new TE insertion sites. The novelty of epiTEome is the ability to
detect the DNA methylation status of the transposed element and the insertion site using
the exact split-reads that identified the transposition event. EpiTEome reports the DNA
methylation as single-insertion alignments, as well as a meta-analysis of all insertion sites
in a sample.

Bicycle [93] is a pipeline designed to analyze DNA methylation data from BS sequenc-
ing experiments. Comparison with an array of publicly available pipelines demonstrates
that Bicycle provides a number of features that most other tools lack, thus making it the
most complete bioinformatic pipeline for the analysis of bisulfite sequencing data. The
supplementary material of the above publication [93] provides a thorough comparison of
Bicycle with other pipelines used for the analysis of bisulfite sequencing data.

A number of additional improvements for methylation analysis have been proposed.
Among them, a method to assess the low mappability of young TEs, like L1-Ta, in the
human genome, was repurposed by Shukla et al. [94] so as to align BS reads to a consensus
sequence. Noshay et al. [95] described an interesting method that first rigorously deter-
mines the average genome-wide bisulfite conversion rates, and subsequently uses this as a
parameter to deal with mapping ambiguities from differences in conversion rates. DNA
methylation analysis, however, still remains a challenging bioinformatic task that requires
further study.
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2.2. Analysis of Small RNA Expression

Small RNAs (sRNAs) can act either transcriptionally by leading the epigenetic modifi-
cations at TE loci, or post-transcriptionally through targeted RNA degradation. sRNAs of
the PIWI-interacting RNA (piRNA) class are the most potent silencers of TEs in germline
cells [24]. In somatic tissues, two additional classes of small RNAs contribute to TE silenc-
ing: short interfering RNAs (siRNAs) derived from expressed transposon transcripts [81]
and the more recently described 30 tRNA-derived fragments (30 tRFs) [96]. Thus, it becomes
evident that considering sRNAs and accurately quantifying their production is pivotal to
the study of transposon biology. To this end, several packages have been released to inves-
tigate sRNA classes, which prove particularly challenging when derived from repetitive
loci in the genome as they are short in length, typically between 18–36 nucleotides. Some
methods have largely considered sRNA classes separately; however, several packages (e.g.,
unitas [97] and TEsmall [98]) consider sRNA classes comprehensively to facilitate proper
normalization of heterogeneous sRNA libraries, and to facilitate differential expression
analysis across classes while taking into consideration ambiguously mapped reads.

Even though microRNAs (miRNAs) are not considered to be largely involved in the
regulation of TEs, a non-negligible fraction of miRNAs appears in a large number of copies
in the genome [99–101], thus highlighting the significance of tools for the study of TEs that
provide multimapped reads. For more on the topic of miRNAs and TEs, there is a number
of relevant publications [102–106].

2.2.1. Tools for the Analysis of Multiple sRNA Types

In 2008, Moxon et al. presented a toolkit for analyzing large-scale plant small RNA
datasets [107], especially micro RNAs and trans-acting siRNAs (ta-siRNAs) that can both
induce post-transcriptional silencing of target genes. The web-based tools can identify
mature miRNAs and their precursors, compare sRNA expression profiles under varying
conditions or between mutants and wild-type, and predict ta-siRNA. The successor of the
toolkit is the UEA sRNA workbench [108], a downloadable suite of tools that provides a
user-friendly platform to create workflows for processing sRNA next-generation sequenc-
ing data. The workbench offers an enhanced version of the functions of its predecessor, as
well as complemented with easily accessible complementary visualization tools.

MiRanalyzer [109] is a web server tool that aimed to perform the analysis of the
upcoming large amount of sRNAs deep-sequencing data. Using a list of unique miRNA
reads and their expression levels, MiRanalyzer detects the known miRNAs, maps the
remaining reads against transcribed sequences, and predicts new microRNAs. The tool is
based on a random forest learning scheme that employs a selection of features (associated
with nucleotide sequence, structure, and energy) based on their information gain. The
prediction model was built on datasets from Human, rat, and C. elegans and reaches AUC
values of 97.9% and recall values of up to 75% on unseen data.

SeqBuster [110] is another web-based tool that analyzes large-scale sRNA datasets,
and the first to characterize isomiRs [111], miRNA variants, that usually arise as a result of
enzymatic 5′- or 3′-trimming, 3′ nucleotide addition or nucleotide substitution) [112–115].
The packages perform a variety of analyses, including identification of sRNAs, distribution
of their length and frequency, and comparative expression levels of different sRNA loci
between different samples. Application of SeqBuster to small-RNA datasets of human
embryonic stem cells revealed that most miRNAs present different types of isomiRs, some
of them being associated with stem cell differentiation. The authors also provide a stand-
alone version, which allows for annotation against any custom database.

DARIO [116] is a web service that allows the study of short read data from sRNA-
seq experiments. Using mapped reads as an input, DARIO performs quality control,
overlaps them with user-selected gene models, quantifies the RNA expression based on
annotated ncRNAs from different ncRNA databases, and predicts new ncRNAs via a
random forest classifier. DARIO supports the following assemblies as reference genomes:
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human (hg18 and hg19), mouse (mm9 and mm10), Rhesus monkey, Zebrafish, C. elegans,
and D. melanogaster.

miRDeep2 [117] is a user-friendly update and extension of miRDeep [118], an algo-
rithm that uses a probabilistic model of miRNA biogenesis to score the fit of sequenced
RNAs to the biological model of miRNA biogenesis. The improved algorithm identifies
canonical and non-canonical miRNAs such as those derived from TEs and informs on high-
confidence candidates that are detected in at least two independent samples. miRDeep2
was tested on high-throughput sequencing data from seven animal species representing
the major animal clades. In all clades tested, the algorithm identified miRNAs with high
accuracy (98.6–99.9%) and sensitivity (71–90%), and it reported hundreds of novel miRNAs.

miRTools [119] is a web service for the classification of sRNAs, annotation of known
miRNAs based on NGS data, prediction of novel miRNAs, and identification of differen-
tially expressed miRNAs. A few years later, its improved version, mirTools 2.0 [120] offered
a series of additional features: detection and profiling of more types of ncRNAs (such as
tRNAs, snRNAs, snoRNAs, rRNAs, and piRNAs), identification of miRNA-targeted genes,
detection of differentially expressed ncRNA, as well as a standalone version of the tools.
However, the webserver of mirTools is currently inaccessible.

ShortStack [121] is a stand-alone application that allows for the analysis of reference-
aligned sRNA-seq data and de novo annotation and quantification of the inferred sRNA
genes. It provides highly specific annotation of miRNA loci in all tested plant (Arabidop-
sis, tomato, rice, and maize) and animal (D. melanogaster, mouse, and human) species.
ShortStack reports on parameters relevant to sRNAgene annotation, such as size distribu-
tions, repetitiveness, strandedness, hairpin-association, miRNA annotation, and phasing.
ShortStack uses modest computational resources and has comparable performance with
previously published tools (e.g., UEA sRNA workbench) upon testing on sRNA-seq data
set from wild-type Arabidopsis leaves.

sRNAtoolbox [122] is a web-interfaced set of interconnected tools, including expres-
sion profiling from deep sequencing data via the sRNAbench tool [123]), consensus differ-
ential expression, consensus target prediction, blast search against several remote databases,
and visualization of sRNAs (differential) expression. All tools can be used independently
or for the exploration and downstream analysis of sRNAbench results. An updated ver-
sion of the sRNAtoolbox [124] features additions such as new reference genomes from
Ensembl, bacteria and virus collections from NCBI, and microRNA reference sequences
from MirGeneDB, as well as parallel launching of several jobs (batch mode).

Chimira [125] is a web-based system for fast analysis of miRNAs from small RNA-
seq data and identification of epi-transcriptomic modifications (5′- and 3′-modifications,
internal modifications, or variation), based on which it can identify global microRNA mod-
ification profiles. The input sequences are automatically cleaned, trimmed, size selected,
and mapped directly to miRNA hairpin sequences. Chimira offers a set of tools for the
interpretation and visualization of the results that facilitates the comparative analysis of the
input samples. The results from benchmarking show that Chimira offers faster execution
than Oasis [126].

The accurate annotation and analysis of short non-coding RNAs (sncRNAs) often
required the installation of multiple tools with possibly different technical limitations (e.g.,
dependencies, operating system). Gebert et al. [97] developed unitas, a software that
provides complete annotation in a manner suitable for non-expert users. By using a single
tool, one can overcome the issue of the normalization of multiple mapping sequences.
unitas supports the species with available ncRNA reference sequences in the Ensembl
databases and provides standalone precompiled for Linux, Mac, and Windows systems.

Published in 2018, TEsmall [98] is a novel software package that allows for simultane-
ous mapping, annotation, and relative quantification of a variety of sRNAs types including
structural RNAs, miRNAs, siRNAs, and piRNAs on a common scale. Thus, it enables
the study of the expression trends among different sRNA types and provides an insight
into the cross-talk between sRNA regulatory pathways. Given the appropriate annotation,
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TEsmall can provide the same functions for any novel type of sRNA. TEsmall can shed
light on the complex regulatory networks of different types of sRNAs that act cooperatively,
especially in the area of transposon silencing. It is known that siRNAs and piRNAs repress
TEs in somatic cells and the germline, respectively, but also piRNAs are found to act in
conjunction with siRNAs to perform this role, whereas in plants miRNAs might serve as
an intermediate to form siRNAs [127–129].

Oasis 2 [130] is a web application useful for detecting and classifying sRNAs, as well as
for analyzing their differential expression. Oasis 2 is a faster and more accurate version of
Oasis [126] (accuracy of around 87% for Oasis 2 versus 80% for the original application) that
also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected
samples and provides the option for interactively visualizing novel miRNAs and querying
them against 14 supported genomes or the Oasis database of miRNAs and miRNA families.

sRNAPipe [131] is a user-friendly pipeline that offers a range of analyses for small
RNA-seq data. The pipeline performs successive steps of mapping small RNA-seq reads to
chromosomes, TEs, gene transcripts, miRNAs, small nuclear RNAs, rRNAs, and tRNAs. It
also provides individual mapping, counting, and normalization for chromosomes, TEs, and
gene transcripts, and tests ping-pong amplification for putative piRNAs. sRNAPipe allows
for the rapid and precise analysis of high-throughput data and it generates publication-
quality figures and graphs. It is available in both the Galaxy Toolshed and via GitHub.

Also based on the Galaxy framework, RNA workbench 2.0 [132] is a comprehensive
set of analysis tools and consolidated workflows. It integrates an abundance (more than
100) tools useful in the field of RNA research, such as RNA alignment, annotation, target
prediction, and RNA-RNA interaction.

GeneTEflow [133] is a fully automated, reproducible, and platform-independent
workflow that allows the comprehensive analysis of both genes and locus-specific TEs
expression from RNA-Seq data employing different technologies (Nextflow [134] and
Docker [135]). The pipeline can be extended to include additional types of analysis such as
alternative splicing and fusion genes.

Manatee [136] is an algorithm for the quantification of sRNA classes. In contrast
to many available sRNA analysis pipelines, Manatee rescues highly multimapping and
unaligned reads based on available annotation and robust density information and is
capable of identifying and quantifying expression from isomiRs and unannotated loci
that could give rise to yet unknown sRNAs. Performance comparison on real and simu-
lated data shows that other state-of-the-art methods (among them ShortStack [121] and
sRNAbench [124]) tend to overestimate transcripts with zero abundance in the simulated
dataset and underestimate/assign zero reads to expressed and highly expressed transcripts.
On the other hand, Manatee estimates counts that are the closest to the simulated abun-
dances and achieves high accuracy across diverse sRNA classes. Moreover, Manatee can
be easily implemented in pipelines, and its output is suitable for downstream analyses and
functional studies.

Di Bella et al. [137] published an elaborate comparative analysis of eight pipelines
on RNA-seq data, including Oasis 2, sRNApipe, and sRNA workbench. Their system-
atic performance evaluation aims at establishing guidelines for the selection of the most
appropriate workflow for each ncRNA class.

2.2.2. Tools for the Analysis of PIWI-Interacting RNAs

PIWI-interacting RNAs (or piRNAs) are animal-specific RNAs that comprise the
largest and most heterogeneous class of the small ncRNA (sncRNA) family, with over
2 million distinct piRNA species in mouse [138]. They function as guides for PIWI proteins,
a subfamily of Argonaute proteins. Their length is 21–35 nucleotides and they are processed
from long single-stranded precursor transcripts that originate from genomic loci known as
piRNA clusters. piRNA clusters have been found to contain remnants of transposons in
arthropods, whereas in birds and mammals they encode for long non-coding RNAs that are
processed into piRNAs. In the majority of mammalian species, some RNAs are involved in
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the protection of the germline genome against transposon mobilization. piRNAs are mostly
not conserved among species [139]. PIWI-interacting RNAs (piRNAs) were first identified
as novel silencing RNAs in the Drosophila melanogaster testis two decades ago [140].

Active retrotransposition is more frequent in germ cells due to the epigenetic repro-
gramming that primes them for totipotency [141]. To maintain the integrity of the genome
passed on to the next generation, the metazoan germline exhibits the so-called piRNA
pathway, an additional retrotransposon control based on small RNA-mediated recognition
and endonucleolytic cleavage of the target TE transcripts [142,143]. piRNAs are loaded
into PIWI proteins and thus target the TE transcripts by sequence complementarity. The TE
transcripts are subsequently cleaved, producing secondary piRNAs, which constitutes the
so-called “ping-pong” cycle in fruit fly [59,144–147]. The presence and functions of piRNAs
in somatic cells are not as well characterized; however, it is known that some piRNAs are
common for the germline and the soma, some appear exclusively in the soma, whereas
others are exclusive for each tissue type [148]. piRNAs were found to exhibit a bias for
starting with a “U” in the 1st position and an “A” at the 10th position [149].

The first bioinformatics tool for piRNA prediction was a k-mer scheme (2011) [150]
which applied the Fisher discriminant algorithm to k-mer (k = 1 through 5) sequence
features using small RNA data. The study trained the algorithm on datasets from non-
piRNA and piRNA sequences of five model species (rat, mouse, human, fruit fly, and
nematode), and it reports precision and sensitivity of over 90% and over 60%, respectively.
The authors conclude that the method can be used to identify piRNAs of non-model
organisms without complete genome sequences; however, the web server is currently out
of order.

Pibomd (2014) [151] is an SVM algorithm for piRNA identification based on motif
discovery. Pibomd employed the computational biology tool Teiresias [152] to identify
motifs of variable length that appear frequently in mouse piRNA and non-piRNA se-
quences and developed an SVM classifier that uses those motifs as features. Training of
an imbalanced SVM classifier (Asym-Pibomd) on the same training and testing datasets
provided higher specificity but lower sensitivity than the balanced SVM classifier; however
still higher sensitivity and accuracy than the k-mer scheme [150] on identifying mouse
piRNAs. Analysis of the distribution of the motifs showed uniform distribution of motifs
in the non-piRNA sequences but significant motif enrichment on the 5′- and/or 3′-end of
the piRNA sequences. The web server allows users to upload multiple FASTA sequences
and select the model for classification (balanced or imbalanced SVM classifier). The perfor-
mance of the algorithm on datasets from five model species (rat, mouse, human, fruit fly,
and nematode) is comparable to the k-mer scheme [150] (see Table 1).

Table 1. Comparison of the performance of the imbalance and balanced SVM classifier of Pibomd
with the k-mer scheme.

Method Sp (%) Sn (%) Acc (%)

k-mer scheme [136] 98.4 52.04 75.22
Pibomd 89.76 91.48 90.62

Asym-Pibomd 96.2 72.68 84.44

Genomic alignment of small RNA-seq data is a critical methodology for the study of
small RNA. Butter (2014) [153] is a Perl wrapper for samtools and for the short read aligner
bowtie (ultrafast, memory-efficient short read aligner geared toward quickly aligning
large sets of short DNA sequences to large genomes) [83,154] to produce small RNA-seq
alignments where multimapped small RNAs tend to be placed near regions of confidently
high density.

PIANO (2014) [155] is a program for piRNA annotation that uses piRNA-transposon
interaction information predicted by RNAplex [156]. piRNAs are aligned to transposons
and a support vector machine (SVM) is applied on triplet elements that combine structure
and sequence information extracted from piRNA-transposon matching/pairing duplexes.
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The SVM classifier can predict human, mouse, and rat piRNAs, with overall accuracy
greater than 90%.

Luo et al. introduced a method for differentiating transposon-derived piRNAs
(2016) [157] based on six sequence-derived features. The datasets were derived from
NONCODE version 3.0 for 3 species, namely human, mouse, and Drosophila with a 1:1
ratio of positive to negative samples so that the results could be compared with those from
previous studies [155]. The study adopted two approaches: direct combination, which
merges different feature vectors, and ensemble learning, which uses the weighted average
scores of individual feature-based predictors; however, the weights are determined arbi-
trarily based on the AUC scores of the base predictors. The prediction models employ a
random forest as the main classifier engine 10-fold cross. Validation of both methods on
the human dataset achieved AUC and accuracy of at least 90% and 80% respectively on all
three datasets. Both methods yield higher AUC scores upon comparison with the k-mer
method [150] and PIANO [155].

Another study by the same researchers developed a genetic algorithm-based weighted
ensemble method named GA-WE (2016) [158] for predicting transposon-derived piRNAs
was trained on piRNA datasets from human, mouse, and D. melanogaster, shown in Table 2.
The GA-WE models, in contrast with the previously described work [157], determine
automatically the optimal weights on the validation set. The method achieves AUC of at
least 0.93 on both the balanced and unbalanced datasets by 10-fold cross-validation and
it produces lower scores for cross-species experiments, indicating that piRNAs derived
from different species may have different patterns. By adopting their previous work [157],
PIANO [155], and the k-mer scheme [150] as benchmark methods, 10-CV on the human
dataset showed that GA-WE achieves higher AUC scores on all datasets. Regarding cross-
species prediction, models constructed on the mouse dataset perform better on the human
dataset, possibly because of similar piRNA length distribution between the two mammals
but different length distribution between mouse and Drosophila.

Table 2. The datasets from three model organisms used for training the ensemble method.

Species Raw Real Pirnas Raw Non-Pirna Ncrnas No. of Transposons

Human 32.152 59.003 4679.772
Mouse 75.814 43.855 3660.356

Drosophila 12.903 102.655 37.326

piPipes (2015) [159] is a set of five pipelines for the analysis of piRNA/transposon
from different Next Generation Sequencing libraries (small RNA-seq, RNA-seq, Genome-
seq, ChIP-seq, CAGE/Degradome-Seq). piPipes allows for the analysis of a single library
and pair-wise comparison between two samples. It is implemented in Bash, C++, Python,
Perl, and R and provides a standardized set of tools to analyze these diverse data types.

Liu et al. (2017) introduced a two-layer ensemble classifier, 2L-piRNA [160], that
first addressed the double question: can we predict a piRNA based solely on sequence
information, and can we distinguish whether it is of the type that instructs DNA deadeny-
lation? In its first layer, 2L-piRNA identifies whether a query RNA molecule is a piRNA
or not, while in the second layer it identifies whether a piRNA has (or not) the function
of instructing target mRNA deadenylation. The authors constructed a benchmark dataset
consisting of 709 piRNA sequences that have the function of instructing target mRNA dead-
enylation, 709 piRNA sequences that do not have that function (extracted from piRBase),
and 1418 non-piRNA sequences. The sequences were represented using pseudo-K-tuple
nucleotide composition (PseKNC) [161] for K = 2, and six helical parameters (rise, roll,
shift, slide, tilt, and twist) for each possible RNA dinucleotide were taken into account.
Comparison of the performance of the method with the “Accurate piRNA prediction” by
Luo et al. [157] and GA-WE [158] showed that 2L-piRNA outperforms them on all metrics,
as seen in Table 3.
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Table 3. 2L-piRNA outperforms the previously published methods across all the metrics used.

Method Sn (%) Sp (%) Acc (%) MCC

1st layer

2L-piRNA 88.3 83.9 86.1 0.723
Accurate piRNA prediction [157] 83.1 82.1 82.6 0.651

GA-WE [158] 90.6 78.3 84.4 0.694
2nd layer

2L-piRNA 79.1 76.0 77.6 0.552
Accurate piRNA prediction N/A N/A N/A N/A

GA-WE N/A N/A N/A N/A

In 2014, Brayet et al. proposed piRPred [162], an extensible and adaptive classification
method for piRNA prediction that combines heterogeneous types of piRNA features and
allows for the implementation of newly discovered piRNA characteristics. piRPred fuses
support vector machines (SVMs) and multiple kernels that represent the following features:
frequency of certain k-mer motifs, the presence of a Uridine base as the first nucleotide of
the sequence, the distance to centromeres and telomeres, and the occurrence of piRNAs
in clusters in the genome. The algorithm was trained on human and Drosophila piRNAs
(positive datasets) and tRNAs, mature miRNAs, and exonic sequences (negative dataset).
Comparison with the k-mer method (see Table 4) proposed by Zhang et al. [150] shows that
piPRed performs better, especially on human piRNA data.

Table 4. piRPred outperforms the k-mer scheme, especially upon testing on the human
piRNA dataset.

Method Human Drosophila
Sn (%) Sp (%) Acc (%) Sn (%) Sp (%) Acc (%)

piRPred 0.88 0.84 0.86 0.83 0.95 0.89
k-mer scheme [150] 0.30 0.82 0.58 0.45 0.92 0.69

In 2015, Menor et al. [163] introduced a method for piRNA and mature miRNA classi-
fication based on the previously described Multiclass Relevance Units Machine classifier
(McRUM) [164], an empirical Bayesian kernel method. piRNA datasets were extracted
from NONCODE 3.0 and the sequences were represented using k-mers, for k = 1 through
5. The authors made use of correlation-based feature selection (CFS) to select a subset of
features on which to build classifier models and reduce the dimensionality. Comparison
with the k-mer scheme [150], both the original and the one retrained on the datasets of the
McRUM-based approach, reveals that the sensitivity of the latter is roughly 60% higher.

V-ELMpiRNApred (2017) [165] is based on an ensemble classifier called voting-based
extreme learning machine (V-ELM). It implements a hybrid feature vector of k-mer features
(k = 1 through 5) and short sequence motifs (SSM), a series of new features with 80 di-
mensions that allow the study of the relation between discontinuous sites of sequences.
Feature selection is then used to remove the k-mer features with redundant information.
V-ELMpiRNApred was trained on human piRNA and non-piRNA sequences from NON-
CODE 3.0 and its classification performance was compared with methods published earlier.
Table 5 shows that V-ELMpiRNApred outperforms previously published methods on
all metrics.
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Table 5. Comparison of the performance of V-ELMpiRNApred with earlier methods.

Method Sn (%) Sp (%) Acc (%) MCC (%)

V-ELMpiRNAPred 95.6 94.8 95.2 0.899
piRPred [162] 82.5 88.3 85.4 0.709

k-mer scheme [150] 86.7 52.1 69.4 0.414
Asym-Pibomd [151] 92.7 91.3 92.0 0.840

Piano [155] 93.8 91.6 92.7 0.854
McRUMs [164] 93.9 92.3 93.1 0.862

In the same year, Boucheham et al. introduced IpiRId [166], which allows for the
representation of different types of features by combining several kernels that can be tested
independently, thus enabling the study of feature conservation across species. The features
include genomic and epigenomic information; apart from the sequence, IpiRId takes
into consideration the positions on the chromatin, the positions regarding the sequence
and/or structural motifs that can occur at the 5′ and/or the 3′ ends, possible occurrence in
clusters, and interaction with specific target sequences. IpiRId, at its core, is based on the
Multiple Kernel Learning (MKL), which allows for combining heterogeneous features by
automatically tuning their weights in order to improve the prediction. Comparison of the
performance with previously published techniques on datasets consisting of piRNAs from
human, mouse, and Drosophila shows that IpiRId outperforms the rest of the techniques
scoring more than 90% accuracy in all species and similar values in all the other metrics
(see Table 6). To be noted is that Piano was originally trained on piRNA datasets from
Drosophila. Moreover, the study of the pertinence of the features best represented across
species reveals that the most conserved piRNA features are Uridine and Adenine in the
first and tenth position respectively, occurrence in clusters, and binding with transposons.

Table 6. Comparison of the performance of IpiRId with earlier methods.

Method/
Species Human Mouse Drosophila

Sn (%) Sp (%) Acc (%) Pre (%) Sn (%) Sp (%) Acc (%) Pre (%) Sn (%) Sp (%) Acc (%) Pre (%)

k-mer
scheme [150] 48.40 95.5 71.85 91.49 47.79 94.10 70.95 89.01 63.90 40.45 52.17 51.76

Piano [155] 0 100 50 0 0 100 50 0 78.90 96.90 87.90 96.22
Pibomd [151] 78.05 78.21 78.13 78.17 79.43 78.82 79.13 78.94 70.44 61.72 66.08 64.78
piRPred [162] 80.54 81.86 81.2 81.67 90.36 91.48 90.92 91.39 86 86.72 86.36 86.66

IpiRId 90.56 89.62 90.09 89.73 90.74 96.58 93.66 96.37 87.27 97.90 92.59 97.67

In 2018, Wang et al. introduced piRNN [167], the first deep learning program for
piRNA identification, which is based on convolutional neural networks (CNN) and adopts
a genome-independent approach that does not need genome and/or epigenomic data
for identifying piRNAs. piRNN constructs a feature vector from the input sequences in
two parts: first, it extracts the k-mer (k = 1, 2, 3, 4, 5) motif frequencies and second it updates
the feature vector with k-mers motifs around the 1st and 10th base if the sequence starts with
a T/U and/or has an A in the 10th position. Comparison of the performance with Piano,
2L-piRNA, and the k-mer scheme on human data (as representative of mammalian piRNAs)
and D. melanogaster piRNA data shows that piRNN outperforms the other methods on all
metrics used (see Table 7).

The authors provide four models trained on piRNA data for four species (human, rat,
C. elegans, and D. melanogaster); if desired, the users can retrain the models or train new
ones. All in all, piRNN is a useful tool for piRNA prediction in non-model organisms with
limited genomic resources.
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Table 7. piRNN outperforms the selected methods on piRNA datasets from both model organisms.

Method/
Species Human Drosophila

Sn Sp Acc Pre Sn Sp Acc Pre

k-mer scheme [150] 0.55 0.89 0.72 0.84 0.14 0.93 0.53 0.66
Piano [155] 0.92 0.32 0.62 0.58 0.87 0.50 0.68 0.63

2L-piRNA [160] 0.79 0.51 0.67 0.68 0.39 0.71 0.52 0.65
piRNN 0.97 0.97 0.95 0.94 0.97 0.97 0.95 0.93

piRNAPred [168] (2019) is an integrated framework for piRNA prediction that em-
ploys hybrid features like k-mer nucleotide composition (k-KNC, k = 1 to 5, which is a
sort of k-mer strings “normalized” for the sequence length), secondary structure (paired
or unpaired state), and thermodynamic and physicochemical properties of contiguous
dinucleotides, extracted from piRNA sequences of eight species. Comparison of the per-
formance of the best performing piRNAPred model with previously published methods
reveals that the former exhibits the highest accuracy and a Matthew’s Correlation Coeffi-
cient (MCC) of 0.97 (Table 8).

Table 8. Summary of the performance of piRNAPred and previously published methods on piRNA datasets from 8 species.

Model Species Sn (%) Sp (%) Acc (%) MCC

k-mer scheme [150] Homo sapiens, Mus musculus, Drosophila
melanogaster, Caenorhabditis elegans 72.47 95.5 NA NA

Piano [155] Drosophila melanogaster 95.89 94.6 95.27 NA
Pibomd [151] Mus musculus 91.48 89.8 90.62 NA

Accurate piRNA
prediction [157]

Homo sapiens, Mus musculus, Drosophila
melanogaster

83.10 82.10 82.6 0.651

GA-WE [158] 90.6 78.3 84.4 0.694

2L-piRNA [160] Mus musculus 88.3 83.9 86.1 0.723

piRNApred

Homo sapiens, Mus musculus, Drosophila
melanogaster, Caenorhabditis elegans, Danio

rerio, Gallus gallus domesticus, Xenopus
tropicalus, Bombyx mori

98.57 98.6 98.6 0.97

2.2.3. Tools for the Analysis of Circular RNAs

Thirty years ago, circular RNAs (circRNAs) were described as “abnormally spliced
transcripts” formed by scrambled exons [169], a phenomenon known as “exon shuffling”
or “non-co-linear splicing”. circRNAs produced by co- and posttranscriptional head-to-
tail “backsplicing”, where an exon’s 3′ splice site is ligated onto an upstream 5′ splice
site of an exon on the same RNA molecule, as well as circRNAs generated from intronic
lariats during colinear splicing, may exhibit physiologically relevant regulatory functions
in eukaryotes [170]. It has been demonstrated that circRNA production and canonical
pre-mRNA splicing compete with each other and some splicing factors like muscleblind
might interact with flanking introns to promote exon circularization [171]. CircRNAs are
abundant in eukaryotic cells; measurements in human fibroblast cells revealed that there are
over 25,000 circRNA isoforms per cell [172]. Up to 23% of the actively transcribed human
genes give rise to circRNAs whose expression is dynamically regulated between tissues,
cell types, and during differentiation [173]. Genome-wide studies revealed that half of the
circRNAs do not contain intervening introns, whereas in hematopoietic progenitor cells
introns are retained in 20% of the circRNAs [174]. Pseudogenes can be retrotranscribed from
circRNAs and they can also be inherited in mammalian genomes [175,176]. Bioinformatic
analysis has shown that the intronic flanks adjacent to circularized exons are enriched in
complementary ALU repeats [172], with ALUs being the most abundant TEs [177]. The
alternative formation of inverted repeated Alu pairs and the competition between them
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can mediate alternative circularization, which leads to multiple circRNA transcripts [178].
A recent study [176] has indicated that circRNAs and TEs possibly co-evolve in a species-
specific and dynamic manner. Their findings suggest a model according to which many
circRNAs emerged convergently during evolution, as a byproduct of splicing in orthologs
prone to insertion of TEs.

DeepCirCode [179] utilizes a 2-layer convolutional neural network (CNN) to predict
back-splicing for the formation of human circRNAs. The model takes as an input the
binary vector (one-hot encoding) of the intron and exon sequences flanking the potential
back-splicing sites and it predicts whether the two sites can be back-spliced. The kernels
in the first layer detect the motif sites related to back-splicing, whereas the kernels in
the second layer learn more complex motifs. The model was trained on human exonic
circRNAs from the publicly accessible databases circRNADb [180] and circBase [181]. The
performance of the model was compared with an SVM and an RF model [182] (see Table 9),
previously constructed by the authors, that use k-mer compositional features.

Table 9. Performance comparison of DeepCircCode with two models developed previously by
the authors.

Model Sn (%) Sp (%) Acc (%) MCC

DeepCirCode 92.14 76.84 85.24 70.38
SVM [182] 86.23 68.29 77.23 55.40
RF [182] 83.82 74.36 79.07 58.41

Relevant features learned by DeepCirCode are represented as sequence motifs, some of
which match human known motifs involved in RNA splicing, transcription, or translation.
Analysis of these motifs shows that their distribution in RNA sequences can be important
for back-splicing. Moreover, some of the human motifs appear to be conserved in mouse
and fruit fly.

Previously published bioinformatics and Machine Learning methods are suitable for
animal circRNAs. Plants are rich in splicing signals and transposable elements, and the
characteristics of their circRNAs are different from those in animals. Yin et al. [183] recently
presented PCirc, a method for extracting a variety of features (including open reading
frames, numbers of k-mers, and splicing junction sequence coding) from rice circRNAs and
trained a machine learning model based on a random forest algorithm. The classification
of PCirc was evaluated by accuracy, precision, and F1 score, all of which scored above
0.99 when using rice circRNAs and lncRNAs as positive and negative datasets respectively.
Testing the model on other plant datasets yielded accuracy scores larger than 0.8.

A summary of the methods discussed above, including the year of publication and
the web address in which the code/data (if any) are deposited, is provided in Table 10.

Table 10. Bioinformatics and ML tools for exploring the regulation of TEs and the repository for the relevant data/code.

Method Year Code Availability

DNA methylation analysis
1 Maq [86] 2008 http://maq.sourceforge.net/ (accessed on 29 June 2021)
2 RMAP [85] 2008 http://rulai.cshl.edu/rmap/ (accessed on 29 June 2021)
3 BSMAP [76] 2009 https://code.google.com/archive/p/bsmap/ (accessed on 29 June 2021)

4 BS Seeker [82] 2010 http://pellegrini-legacy.mcdb.ucla.edu/bs_seeker/BS_Seeker.html (accessed on
29 June 2021)

5 Bismark [77] 2011 https://github.com/FelixKrueger/Bismark (accessed on 29 June 2021)
6 BSmooth [88] 2012 http://rafalab.jhsph.edu/bsmooth (accessed on 29 June 2021)
7 BS-Seeker2 [87] 2013 http://pellegrini-legacy.mcdb.ucla.edu/bs_seeker2/ (accessed on 29 June 2021)
8 MOABS [78] 2014 https://code.google.com/archive/p/moabs/ (accessed on 29 June 2021)
9 TEPID [80] 2016 https://github.com/ListerLab/TEPID (accessed on 29 June 2021)
10 EpiTEome [81] 2017 https://github.com/jdaron/epiTEome (accessed on 29 June 2021)
11 BS-Seeker3 [69] 2018 https://github.com/khuang28jhu/bs3 (accessed on 29 June 2021)
12 Bicycle [93] 2018 http://www.sing-group.org/bicycle/ (accessed on 29 June 2021)
13 GeneTEFlow [133] 2020 https://github.com/zhongw2/GeneTEFlow (accessed on 29 June 2021)

http://maq.sourceforge.net/
http://rulai.cshl.edu/rmap/
https://code.google.com/archive/p/bsmap/
http://pellegrini-legacy.mcdb.ucla.edu/bs_seeker/BS_Seeker.html
https://github.com/FelixKrueger/Bismark
http://rafalab.jhsph.edu/bsmooth
http://pellegrini-legacy.mcdb.ucla.edu/bs_seeker2/
https://code.google.com/archive/p/moabs/
https://github.com/ListerLab/TEPID
https://github.com/jdaron/epiTEome
https://github.com/khuang28jhu/bs3
http://www.sing-group.org/bicycle/
https://github.com/zhongw2/GeneTEFlow
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Table 10. Cont.

Method Year Code Availability

sRNAs analysis
14 UEA sRNA toolkit

[107] 2008 http://srna-tools.cmp.uea.ac.uk (accessed on 29 June 2021)
15 miRDeep [118] 2008
16 miRanalyzer [109] 2009 https://bioinfo2.ugr.es/ceUGR/miranalyzer/ (accessed on 29 June 2021)
17 mirTools 1.0 [119] 2010 centre.bioinformatics.zj.cn/mirtools/ (accessed on 29 June 2021)
18 SeqBuster [110] 2010 https://github.com/lpantano/seqbuster (accessed on 29 June 2021)
19 DARIO [116] 2011 http://dario.bioinf.uni-leipzig.de/index.py (accessed on 29 June 2021)
20 miRDeep2 [117] 2012 https://github.com/rajewsky-lab/mirdeep2 (accessed on 29 June 2021)
21 UEA sRNA

workbench [108] 2012 http://srna-workbench.cmp.uea.ac.uk (accessed on 29 June 2021)
22 mirTools 2.0 [120] 2013 http://122.228.158.106/mr2_dev (accessed on 29 June 2021)
23 ShortStack [121] 2013 https://github.com/MikeAxtell/ShortStack (accessed on 29 June 2021)
24 sRNAbench [114] 2014 https://arn.ugr.es/srnatoolbox/srnabench/ (accessed on 29 June 2021)
25 Chimira [125] 2015 http://wwwdev.ebi.ac.uk/enright-dev/chimira/ (accessed on 29 June 2021)
26 sRNAtoolbox [122] 2015 https://arn.ugr.es/srnatoolbox/ (accessed on 29 June 2021)
27 Oasis [126] 2015 http://oasis.dzne.de (accessed on 29 June 2021)
28 Unitas [97] 2017 https://sourceforge.net/projects/unitas/ (accessed on 29 June 2021)

29 TEsmall [98] 2018 https://github.com/mhammell-laboratory/TEsmall (accessed on 29 June 2021)

30 Oasis 2 [130] 2018 https://oasis.dzne.de/ (accessed on 29 June 2021)

31 sRNAPipe [131] 2018 https://github.com/GReD-Clermont/sRNAPipe (accessed on 29 June 2021)

32 RNA workbench 2.0
[132] 2019 https://github.com/bgruening/galaxy-rna-workbench (accessed on 29 June 2021)

33 Manatee [136] 2020 https://github.com/jehandzlik/Manatee (accessed on 29 June 2021)

piRNAs analysis
34 k-mer scheme [150] 2011
35 Butter [153] 2014 https://github.com/MikeAxtell/butter (accessed on 29 June 2021)
36 PIANO [155] 2014 http://www.insect-genome.com/links/piano.php (accessed on 29 June 2021)
37 Pibomd [151] 2014 http://app.aporc.org/Pibomd/ (accessed on 29 June 2021)
38 piRPred [162] 2014 https://github.com/IshaMonga/piRNAPred (accessed on 29 June 2021)
39 piPipes [159] 2015 https://github.com/bowhan/piPipes (accessed on 29 June 2021)
40 McRUM-based [164] 2015 not found

41 Ensemble learning
[157] 2016

42 GA-WE [158] 2016 https://github.com/zw9977129/piRNAPredictor (accessed on 29 June 2021)
43 2L-piRNA [160] 2017 bioinformatics.hitsz.edu.cn/2L-piRNA/ (accessed on 29 June 2021)

44 V-ELMpiRNAPred
[165] 2017 http://mm20132014.wicp.net:38601/velmprepiRNA/Main.jsp (accessed on

29 June 2021)
45 IpiRId [166] 2017 https://evryrna.ibisc.univ-evry.fr/evryrna/ (accessed on 29 June 2021)
46 piRNN [167] 2018 https://github.com/bioinfolabmu/piRNN (accessed on 29 June 2021)
47 piRNApred [165] 2019 https://github.com/IshaMonga/piRNAPred (accessed on 29 June 2021)

circRNAs analysis
48 DeepCirCode [179] 2019 https://github.com/BioDataLearning/DeepCirCode (accessed on 29 June 2021)
49 PCirc [183] 2021 https://github.com/Lilab-SNNU/Pcirc (accessed on 29 June 2021)

3. Conclusions

TE are abundant across various organisms, and understanding the diverse roles and
the mechanisms of their regulation is a challenging and complex task. Advancements in
sequencing techniques provide better annotated reference genomes, and next-generation
sequencing offers ultra-high-throughput data. Even though several tools have been devel-
oped for the analysis of sequencing data, individual packages are not straightforward nor
easy to use for non-expert users. However, a number of pipelines have been published
that combine a set of tools in an efficient and user-friendly manner. Another challenge for
the analysis tools is the ambiguity of the reads that are produced by bisulfite sequencing.
Many tools deal with the issue by excluding those multimapping reads from their analysis,
whereas others employ various methods to reduce the mapping ambiguity.

At the same time, even though high-performing specialized tools for the analysis of a
specific sRNA type have been developed, methods that provide simultaneous mapping
and annotation of several types of sRNAs can shed light on the cross-talk between sRNA
regulatory pathways and uncover sRNAs that act in conjunction.

http://srna-tools.cmp.uea.ac.uk
https://bioinfo2.ugr.es/ceUGR/miranalyzer/
centre.bioinformatics.zj.cn/mirtools/
https://github.com/lpantano/seqbuster
http://dario.bioinf.uni-leipzig.de/index.py
https://github.com/rajewsky-lab/mirdeep2
http://srna-workbench.cmp.uea.ac.uk
http://122.228.158.106/mr2_dev
https://github.com/MikeAxtell/ShortStack
https://arn.ugr.es/srnatoolbox/srnabench/
http://wwwdev.ebi.ac.uk/enright-dev/chimira/
https://arn.ugr.es/srnatoolbox/
http://oasis.dzne.de
https://sourceforge.net/projects/unitas/
https://github.com/mhammell-laboratory/TEsmall
https://oasis.dzne.de/
https://github.com/GReD-Clermont/sRNAPipe
https://github.com/bgruening/galaxy-rna-workbench
https://github.com/jehandzlik/Manatee
https://github.com/MikeAxtell/butter
http://www.insect-genome.com/links/piano.php
http://app.aporc.org/Pibomd/
https://github.com/IshaMonga/piRNAPred
https://github.com/bowhan/piPipes
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To sum up, the development of bioinformatics and machine learning methods for
the analysis of the sequencing data can offer valuable qualitative and/or quantitative
insight into the mechanisms that regulate the expression of TEs. These methods include a
variety of individual tools, pipelines, and ML algorithms that focus on the major regulatory
mechanisms: DNA methylation and several types of small non-coding RNAs that act
separately or cooperatively for the silencing of TEs.
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