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Abstract We propose a method, named optical spin-

ning rheometry (OSR), to acquire kinematic viscosity

curves of Newtonian and non-Newtonian fluids in the

same framework. The OSR is independent of torque mea-

surements and utilizes velocity information measured

by particle tracking velocimetry. This optical approach

enables flexibility in velocity resolution, and benefits

exploring the low shear rate region. In addition, the

kinematic viscosity of less viscous fluids like water or

dilute polymer solutions can be assessed as being free

from the mechanical limitations of torque sensors. The

applicable range of the OSR is discussed in detail and its

performance is verified in Newtonian fluids. Demonstra-

tions in dilute xanthan gum solutions, concentrations

of O(10 ppm), show the capability of measuring their

shear-thinning behaviors and the kinematic viscosity
curves even in the first Newtonian regime.

1 Introduction

Rheological behaviors of non-Newtonian fluids are rel-

evant for a broad range of fields, including polymer,

biology, food processing, and of course, fluid mechanics

(e.g., Barnes et al. 1989). For instance, in the field of

fluid mechanics, it is well-known that tiny additives of
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high molecular-weight polymers or surfactants to New-

tonian fluids significantly reduce turbulent frictional

drag, even at concentrations on the order of a few ppm

(Sureshkumar et al. 1997; Den Toonder et al. 1997; Dim-

itropoulos et al. 2001; Min et al. 2003; Escudier et al.

2009). Thanks to the recent development of computa-

tional power, complex fluid motions of non-Newtonian

fluids have been examined via numerical approaches

(Alves et al. 2021). In numerical simulations, rheological

behaviors of non-Newtonian fluids need to be repre-

sented by constitutive equations, such as power law

model, Cross model, Carreau–Yasuda model, and so on

(Abbasian et al. 2020), in order to couple the rheological

properties with the momentum conservation equation.

The constitutive equations have to be based on direct

measurements of the material properties using rheome-
ters when considering non-Newtonian fluids that truly

exist in nature.

A rheometer is, in general, efficient to measure rhe-

ological properties of non-Newtonian fluids, such as

viscosity and elasticity. The primary measure of stan-

dard rheometers is, however, not stress and strain. In-

stead, torque or angle displacement (angular velocity)

is measured via mechanical sensors and these are con-

verted to rheological properties through various assump-

tions of the measurement systems. Apparently, it is not

straightforward to directly measure stress or strain of

non-Newtonian fluids using rheometers, as flow fields are

not self-evident. In some cases, discrepancies between

the assumptions held for rheometer and actual flow fields

within the interrogation domain cause large deviations

or errors in the measurements of rheological proper-

ties (Hyun et al. 2011; Ewoldt et al. 2015). For such a

case, a proper correction method like the Weissenberg–

Rabinowitsch–Mooney correction is applied to prevent

false rheological properties (Macosko 1994). However,
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this kind of correction is empirical and not universally

applied to unknown fluid properties. There are different

approaches to overcome this issue with the help of ve-

locity field measured by supplemental velocimetry such

as particle image velocimetry (PIV), and it is known as

Rheo-PIV (e.g., Dimitriou et al. 2011; Serrano-Aguilera

et al. 2016; Medina-Bañuelos et al. 2019). The actual

flow field of the measurement domain has to be moni-

tored to prevent misinterpretation of the obtained data.

Otherwise, virtual rheological properties can be pro-

duced by non-ideal flows like slip, shear-banding, and
so on.

A requirement from numerical and analytical stud-

ies is to obtain viscosity (or flow) curves across a wide

range of shear rate γ̇, from zero to infinite shear, be-

cause of the necessity to build constitutive equations for

representing the rheological properties of interest. It is

a must to pay attention to the measurable range of the

rheometer based on both the mechanical limitations of

torque sensors and the flow fields to avoid spurious data

(Ewoldt et al. 2015). For the lower shear rate region,

the mechanical limitation of the installed torque sensor

can be a bottleneck, as the measurable range needs to

satisfy the following relation

τ = µγ̇ ≥ FτMmin, (1)

where τ , µ, and γ̇ are the shear stress, the dynamic

viscosity, and the shear rate, respectively. Whereas Fτ

is the geometrical parameter and Mmin is the minimum

torque that can be measured by the sensor, and these

two are unique to each rheometer. Since the torque limit

Mmin is prescribed for each rheometer, the lower limit

of the shear rate is sometimes hard to adjust especially

for less viscous fluids. In addition to the lower limit,

the upper limit of the shear rate is also constrained by

the emergence of secondary flows such as the Taylor

vortices. This is not due to mechanical limitation, but

is determined by a physical phenomenon itself, and

might be hard to control especially for less viscous fluids.

Therefore, it is challenging to measure less viscous fluids,

whose viscosity is close to that of water. Hence, a novel

rheometry that is independent of torque sensors is highly

required to expand the viscosity curves of less viscous

fluids into low shear rate regions.

Under these circumstances, Tasaka et al. (2015) pro-

posed a novel concept of rheometry based on velocity

information measured using ultrasonic velocity profiling

(UVP). The methodology, termed ultrasonic spinning

rheometry (USR), is a kinematic rheometry and solves

the equation of motion by substituting the velocity in-

formation measured in an oscillatory shear flow, and as

a result, shear-rate-dependent viscosity is possible to

be obtained from a single measurement. The concept

of the USR is on the basis of a dynamical approach,

which differs from a kinematic approach used in the stan-

dard rheometers. Thus, the USR can quantify ongoing

physical properties caused by the flow itself. The USR

was originally proposed as a viscometry for a bubbly

fluid in Tasaka et al. (2015), and it allows expanding

its functionalities to measure more complicated rheolog-

ical properties (Yoshida et al. 2017, 2018, 2019; Ohie

et al. 2022). The USR, however, has one limitation, it

cannot access the low shear rate region due to the small

dynamic range of the velocity of the UVP as discussed
briefly in Yoshida et al. (2022).

In this paper, we present a novel method of kinematic

rheometry which measures the shear-rate-dependent

viscosity of fluids throughout an optical approach. The

proposed method couples the idea of the USR with

the particle tracking velocimetry (PTV) to widen the

dynamic range of velocity to expand the shear rate

range of the viscosity curves. Following the introduction,

Sec. 1, the concept and its implementation are described

in Sec. 2. The efficacy of the proposed methodology is

verified using Newtonian fluids in Sec. 3. Application of

the methodology to polymer solutions is presented in

Sec. 4. A summary of the main outcomes of this study
is provided in Sec. 5.

2 Optical spinning rheometry (OSR)

2.1 Theoretical basis of spinning rheometry

Building on UVP measurements, Tasaka et al. (2015)

introduced the fundamentals for USR to characterize
the effective viscosity of bubble suspensions. Extensions

of the USR have been explored in non-Newtonian fluids

using UVP to enable velocity field measurements even

in opaque liquids. The efficacy of the USR has been

already proved by comparing it with a standard rheome-

ter (Yoshida et al. 2019). Thus only key features are

described here.

Consider a cylinder of radius R that oscillates sinu-

soidally along the azimuth. The temporal change of the

azimuthal velocity at the cylindrical wall can be written

as uwall(t) = Uwall sin(2πfot), where Uwall and fo are

the maximum wall velocity and the oscillation frequency.

As long as the flow remains laminar, the flow field inside

the oscillating cylinder can be assumed as axisymmetric

and unidirectional in the azimuthal direction. Under

the above assumption, the azimuthal component of the

equation of motion for Newtonian fluid in a cylindrical

system reduces to

∂uθ
∂t

= ν

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
uθ, (2)
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where ν is the kinematic viscosity of the fluid. Con-

sideration of separation of variable on t and r, the

radial component of Eq. 2 admits exact Bessel solu-

tions for a given ν (e.g., Tasaka et al. 2015, 2018; Song

and Rau 2020). Imposing two boundary conditions at

the wall, uθ(r = R, t) = uwall(t), and at the center,

uθ(r = 0, t) = 0, the solution of Eq. 2 is derived for a

fixed kinematic viscosity ν as

uθ(r, t; ν) = U(r; ν) sin [2πfot+ ϕ(r; ν)] , (3)

where U(r; ν) and ϕ(r; ν) are respectively radial distri-

butions of the velocity amplitude and the phase lag

with U(r = R) = Uwall. The azimuthal momentum is

transported from the forced cylindrical wall toward the

center accompanied by phase lag ϕ(r). The phase lag

distribution in experiments ϕe(r) is then acquired by

measurement, and its slope (radial gradient) ϕ′e(r) is

computed. The phase lag ϕ can also be analytically

derived for a given ν as

ϕ(r; ν) = tan−1

[
Φ(R)Ψ(r)− Φ(r)Ψ(R)

Φ(R)Φ(r) + Ψ(R)Ψ(r)

]
, (4)

where Φ(r) and Ψ(r) are series and their detailed deriva-

tions are described in Tasaka et al. (2015). By matching
the local phase lag gradient ϕ′e(r) and those obtained

from the analytic solutions ϕ′(r; ν) for a given ν range,

the effective viscosity νeff is found as ν must satisfy

ϕ′e(r) = ϕ′(r; ν) at each radial position. It is thus pos-

sible to obtain the radial distribution of the effective

viscosity νeff(r) by computing analytically ϕ′(r; ν). In
addition, shear rate distributes in the radial direction

according to the effective local fluid deformation caused

by the sinusoidal forcing. A standard torque rheometer

assumes a constant shear rate in its narrow measurement

section and evaluates shear-rate-dependent viscosity by

a shear rate sweep test. In contrast, the OSR enables

a rapid characterization with only one set of control

parameters as it allows spatial variations of shear rate

and viscosity in the cylinder.

2.2 Experimental design

A drawback of the USR is its dynamic range in shear

rate, as the velocity and spatial resolutions rely on

the specification of the UVP, and they are typically in

O(1 mm/s) and O(1 mm). In the case of a less viscous

fluid like water, the Reynolds number Re = UwallR/ν

easily exceeds laminar conditions, even with a maxi-

mum velocity Uwall = O(1 mm/s) and a thickness of

the viscous layer δν = O(0.1 mm) for this oscillation

condition. These device-dependent limitations do not

allow measuring small kinematic viscosities which may
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Fig. 1 Schematics of the experimental apparatus for the
optical spinning rheometry (OSR): a top view and b side
view.

be achieved at low shear rates γ̇ ≤ O(10−1 s−1). To

overcome this constraint, this study puts forth utilizing

PTV to reconstruct the velocity field. In principle, the

velocity resolution of PTV has no limitations as long as

seeding particles can trace the flow field between con-

secutive time intervals. The spatial resolution of PTV

is considered as the size of seeding particles, i.e., O(101-

102 µm), which surpasses the spatial resolution of the

UVP. In addition to this, PTV can define arbitrary time

intervals between consecutive images, and decades of

velocity magnitude can be quantified in a single experi-

ment. This optical approach, hereafter optical spinning

rheometry (OSR), thus can surpass the limitation of the

USR even though the test fluids need to be transparent

enough for visualization. Since the spinning rheometry

is based only on the velocity information, it is possible

to apply the same analytic procedure for the OSR.

We specifically designed an experimental apparatus

to fulfill the assumptions of the spinning rheometry,
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which allows any optical approaches such as PTV and

PIV, detailed in Sec. 2.1. The apparatus has a triple-wall

construction comprised of a rectangular tank, a cylindri-

cal tank, and an oscillating cylinder. All the walls are

made of transparent acrylic materials. A schematic view

of the experimental system is illustrated in Fig. 1; top

and side views are shown in Fig. 1a and b, respectively.

The outer rectangular tank enables the circulation of

temperature-controlled water supplied from a thermo-

static bath. As well as it allows keeping the temperature

constant, minimizes optical deflections arising from the
curvatures of the cylindrical wall and uniform lighting

is possible even in the cylindrical geometries. The cylin-

drical tank, which is composed of a 3-mm-thick annulus

and a flat bottom plate, contains the test fluid, and it is

placed at the center of the rectangular tank. The oscil-

lating cylinder is comprised of a cylindrical annulus with

an internal radius of R = 75 mm, a height of 120 mm,

and a thickness of 5 mm, and a transparent top plate.

The center of the top plate is supported by a stainless

rod connected to a stepper motor mounted above, and

the rotational axis coincides with the center of the cylin-

drical tank. Note that there is a 5-mm gap between

the rim of the oscillating cylinder and the bottom of

the cylindrical tank, and this reduces the influence of

Ekman pumping leading to meridional flows. Levels of

the temperature-controlled water and the test fluid were

set to 105 mm, and thus the measurement section, i.e.,

the internal region of the oscillating cylinder at which

the assumption of axisymmetric and unidirectional flow

holds, was a column with a diameter of 2R = 150 mm

and height of 100 mm.

Oscillation of the cylinder was controlled by the mo-

tor to have a sinusoidal azimuthal velocity uwall(t) =

Uwall sin(2πfot), where fo is the oscillation frequency.
Controlling an oscillation angle ±Θ from the original

position, the maximum wall velocity becomes Uwall =

2πfoRΘ. The surfaces of the fluids were opened to

air at room temperature meaning free-slip boundaries,

while the others are no-slip. Thanks to the temperature-

controlled water circulating around, the temperature

of the test fluid during measurements can be kept ar-

bitrarily constant, typically from T ∼ 5◦C to 50◦C

with an accuracy of ±0.3◦C. The temperature of the

test fluid was directly measured before and after each

measurement using a thermometer.

Spherical resin particles of mean diameter dp ∼
100 µm were seeded into the test fluid for the tracer of

PTV. The specific gravity of the particles is close to

unity in each test fluid, and this minimized the buoy-

ancy effect. A 500-mW continuous blue laser sheet with

a thickness of 1 mm illuminated the horizontal (r-θ)

plane at 50 mm beneath the surface. Velocity fields of

the oscillatory flows were measured using an in-house

PTV code based on the nearest neighbor method, whose

robustness was demonstrated in Noto et al. (2021a,b). It

is worth emphasizing that PTV is preferable over PIV

for the following reasons. One is that the addition of

dense seeding particles for allowing PIV may change the

physical properties of the test fluids (e.g., Mader et al.

2013). Since the present method aims to measure less

viscous fluids like water or dilute polymer solutions with

a concentration in the order of ppm, the seeding density

of particles needs to be negligible. The other is that PTV
has a better spatial resolution and avoids the spatial

smoothing effect of PIV arising in setting interrogation

windows. This effect blurs fluid deformation leading to

an underestimation of the shear rate. PTV is therefore

employed to measure velocity distribution; the seeding

density of the particles was kept less than 1 ppm for

all the measurements. To focus on the viscous bound-

ary layer formed on the oscillatory internal cylindrical

boundary, the field of view is fairly closed up to the wall,

i.e., the camera does not capture the whole cylindrical

region. The effective survey window covers typically the

area of 0.3 ≤ r/R ≤ 1.0 and −π/4 ≤ θ ≤ π/4. This

is because the viscous layer of less viscous fluids can

become extremely thin, as shown by the Stokes’ first

(Rayleigh) problem,

δν =

√
ν

πfo
. (5)

It is worth noting that the fo is not a fully arbitrary

parameter, and needs to be set carefully so as to let δν
be in the range of dp < δν < R as a rough estimate.

The lower limit is the spatial resolution of the PTV.
The upper limit ensures the emergence of the phase

lag; otherwise, the viscosity information appeared as

the phase lag will be hidden due to the immediate

development of rigid-body rotation. For water at room

temperature, the δν values are estimated as 1–10 mm

with fo = 0.01–1 Hz. Besides this limitation, there

are other factors to be considered in advance of the

measurements, and these are summarized in Sec. 2.4.

2.3 Analytic procedures

The process chart in Fig. 2 summarizes the analytical

and experimental procedures proposed to characterize

effective viscosity. The two main streams are done sep-

arately and merged at the end of the procedures to

compute kinematic viscosity of test fluids.

First azimuthal velocity fields as a function of radius

and time, uθ(r, t), need to be acquired using PTV. As

the field of view does not contain the central position of
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Particle images

Least-squares fit

Comparison

PTV

Analytic solutions
for a given    range

Differentiation

Input paramters:     ,     ,

Experiment

Interpolation

Viscosity curve:

Fig. 2 Process chart of the OSR to obtain viscosity curves.

the oscillating cylinder (Fig. 1a), the center and the wall

positions are identified from the wall location estimated

from the particle images adhered or close (reflected)

to the cylindrical wall. The central position is possible

to find through the least-squares fit for the identified

wall location; a similar approach was done earlier by

Song and Rau (2020). Figure. 3 illustrates an example

of the identified cylindrical wall and its center positions

on a particle pathline image. The pathline image is

inverted for better visibility, and an enlarged view of

the region enclosed by a blue square is shown in the

inset. From the pathline image, it is easy to recognize

the adhered particles on the cylindrical wall as these

appear as a mirror image on the wall. The measurement

domain thus can be determined as an internal region

of the identified wall. Hence, azimuthal velocities of the

seeding particles with their radial positions upθ(r, θ; t)

are obtained at each particle position. Please note that

the lens aberration is not corrected in the present study

as a lens with a long focal length was employed and

its effect may be negligible. It is, however, possible

to directly calibrate the image positions to the real

positions throughout a standard calibration process,

and this process is necessary when a larger cylinder,

which can lead to a strong lens aberration, is employed.

To obtain a radial distribution of azimuthal velocity

at a specific moment uθ(r; t), the Shepard interpolation

(Shepard 1968) is applied to the randomly distributed

velocity information measured by PTV building on the

������

����

Fig. 3 Identified cylindrical wall and its center positions
superposed on an inverted pathline image. An enlarged view
of the region surrounded by the blue square is shown in the
inset.

radial positions of the particles ri as

⟨uθ(r; t)⟩θ =

Np∑
i

|r − ri|−2upθ(ri; t)

Np∑
i

|r − ri|−2

, (6)

where Np is the number of particles existing in a concen-

tric region |r−ri| ≤ ∆r with ∆r as a grid interval of the

interpolation. Notice that ⟨uθ(r; t)⟩θ is an azimuthally
averaged azimuthal velocity at a specific moment t, and

this is written uθ(r; t) hereafter for readability. Thanks

to this interpolation that uses the squares of the inverse

distance as the weight, measurement noise is minimized

while suppressing undesired smoothing in the radial di-

rection, and derivatives can be obtained using standard

differential schemes. In Fig. 4, an example of uθ(r, t)

acquisition based on PTV is shown for the case of an

85-wt.% glycerol solution (GS) at T = 25◦C. This mea-

surement was done with parameters of fo = 0.1 Hz

and Θ = π/3. The original scattered velocity vectors

of tracer particles shown in Fig. 4a are interpolated

using Eq. 6, and time series of uθ(r; t) can be mapped

into a spatiotemporal map uθ(r, t) (Fig. 4b). Here, the
thickness of the concentric region for the interpolation is

∆r = 1 mm (Eq. 6), and the uθ(r, t) map is interpolated

at every 0.5 mm in the radial direction. Examples of

sinusoidal signals uθ(t; r) extracted from Fig. 4b are

shown in Fig. 4c. The amplitude imposed at the side-

wall gradually decays as going to the internal region and

propagates with a phase lag ϕe(r).

Once uθ(r, t) is obtained, the amplitude and the

phase lag distributions, Ue(r) and ϕe(r), can be derived
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Fig. 4 An example of uθ(r, t) acquisition for 85-wt.% GS at T = 25◦C measured with fo = 0.1 Hz and Θ = π/3: a an
instantaneous velocity vector field measured by PTV at a moment uwall(t) ≈ Uwall (tfo ≈ 0.25), b a spatiotemporal map of
the azimuthally averaged azimuthal velocity uθ(r, t), and c sinusoidal temporal signals of uθ(r, t) at different radial positions
extracted from b. All the data points are reduced from the original number of data points for better visibility.
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Fig. 5 Radial distributions of physical quantities obtained throughout the spinning rheometry for the case of 85-wt.% GS at
T = 25◦C measured with fo = 0.1 Hz and Θ = π/3: a Velocity amplitude Ue, b phase lag gradient ϕ′

e, c effective kinematic
viscosity νeff , and d shear rate γ̇eff . Dashed lines are the analytic solution for ν = 58 mm2/s, corresponding to the mean
kinematic viscosity of this fluid. Gray highlighted regions, r < 0.3R, is the region not used for the later analysis due to lack of
velocity information.

through the least-squares fit using a sinusoidal signal

uθ(t; r) = Ue(r) sin [2πfot+ ϕe(r)] (7)

at each radial position. After deriving the phase lag at

all the radial positions, it is differentiated using the cen-

tral difference scheme to obtain the ϕ′e(r) = dϕe(r)/dr.

Examples of the amplitude and the phase lag gradient

distributions, Ue(r) and ϕ
′
e(r), are shown in Fig. 5a and

b. It is possible to identify an exponential decay of the

Ue(r) in Fig. 5a. The ϕ′e(r) is almost constant along the

radius in Fig. 5b, meaning the phase lag propagates at

a constant rate, typical for a Newtonian fluid.

The phase lag gradient, ϕ′e(r), is then compared with

those of the sets of the analytic solutions for Newtonian

fluids with varying ν. The effective kinematic viscosity

νeff(r) is obtained as ν satisfying ϕ′e(r) = ϕ′(r; ν) at each

radial position. In Fig. 5c, the νeff(r) is plotted. While

a slight change in the radial direction is recognizable,

the distribution of νeff(r) is almost flat across the whole

region.
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To obtain viscosity curves, it is a must to acquire

shear rate γ̇(r, t) corresponding to the viscosity deter-

mined locally. The simple shear rate γ̇(r) in the axisym-

metric and unidirectional flow is written as

γ̇(r, t) =

(
∂

∂r
− 1

r

)
uθ(r, t). (8)

Substituting Eq. 7 into Eq. 8, a periodic change of shear

stress at r is derived as

γ̇(r, t) =

(
∂

∂r
− 1

r

)
Ue(r) sin [2πfot+ ϕe(r)]

= γ̇max(r) sin [2πfot+ ϕe(r) + ψe(r)] , (9)

where γ̇max(r) is the maximum shear rate achieved at

the radial position,

γ̇max(r) =

√[(
d

dr
− 1

r

)
Ue(r)

]2
+

[
Ue(r)

d

dr
ϕe(r)

]2
,

(10)

and an additional phase lag for the shear rate ψe(r) is

obtained as

ψe(r) = tan−1

 Ue(r)
d

dr
ϕe(r)(

d

dr
− 1

r

)
Ue(r)

 . (11)

Since γ̇(r, t) is a sinusoidal signal at each radial position,

the effective shear rate γ̇eff(r) is computed as

γ̇eff(r) =

√
fo

∫ 1/fo

0

γ̇2(r, t)dt =
1√
2
γ̇max(r). (12)

A practical example of the effective shear rate distribu-

tion γ̇eff(r) is shown in Fig. 5d, and it becomes smaller

as it departs from the cylindrical wall.

Consequently, the radial distributions of νeff(r) and

γ̇eff(r) are obtained from the experimentally measured

uθ(r, t) as shown in Fig. 5c and d. Associating these two

values at each radial position, the shear-rate-dependent

viscosity curves νeff(γ̇eff) can be acquired.

2.4 Assessment of measurement limitations and

measurable ranges

To implement the OSR, one needs to pay attention to

the limitations and applicable ranges. Since the OSR

and other kinematic rheometry rely on specific assump-

tions, there are several requirements to fulfill, and the

dynamic ranges of the kinematic viscosity and the shear

rate which can be measured by the OSR must be known

before the application in order to acquire proper vis-

cosity curves. Similar discussions about the limitations

and measurable ranges of the USR and those of an in-

line pipe rheometry system can be found respectively

in Yoshida et al. (2022) and Tasaka et al. (2021). While

the OSR can measure shear-rate-dependent kinematic

viscosity of both Newtonian and non-Newtonian fluids,

it may be hard to discuss limitations for non-Newtonian

fluids, which have a variety of material properties. Hence,

the limitations and applicable ranges of the OSR are

discussed in the following section by assuming a fluid of

representative kinematic viscosity ν.

2.4.1 Limitations in kinematic viscosity ν

The applicable range of the OSR in terms of the kine-

matic viscosity ν is the primary interest to be explained

in detail for a proper selection of the test fluid. The

thickness of the viscous layer δν controlled by the oscil-

lation frequency fo (Eq. 5) plays an important role in

this measurement, and it must fulfill the requirements

arising from the measurement system. First, the viscous

layer should be thicker than the spatial resolution of

the system, i.e., δν > dp. This condition determines

the lower limit of the measurable kinematic viscosity

as the spatiotemporal map of the azimuthal velocity

uθ(r, t) needs to resolve the viscous layer. Otherwise,

the phase lag gradient ϕ′e(r) cannot be obtained from
the measurements based on PTV. Second, the upper

limit of the viscous layer thickness is determined to

ensure the system contains viscosity information in the

velocity field. Since the viscosity information appears

as the phase lag and its gradient, it is impossible to

derive viscosity from a rigid-body rotation. Accordingly,
the viscous layer needs to be thinner than the radius,

i.e., δν < R; otherwise, the rigid-body rotation develops

immediately during the oscillation cycle. In addition,

the particle diameters dp need to be paid attention to,

especially when measuring non-Newtonian fluids. Since

dp is the minimum measurement volume in PTV, it

should be sufficiently larger than the length scale of the

molecular structures of the non-Newtonian fluids λ, that

is dp ≫ λ. For the cases of polymer solutions, the size of

the molecular structures is in the order of nanometers,

and small particles with dp ∼ λ cannot be utilized as

seeding particles. This is because such tiny particles do

not provide intense enough light for the wavelength of

the laser illumination λL due to the limitation of the
Mie scattering, dp ≫ λL (Tropea et al. 2007). Thus, the

limit for dp does not matter in a standard PTV configu-

ration. Summarizing above, the viscous layer thickness

δν needs to satisfy the relationship

λ≪ dp < δν < R. (13)
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In terms of ν, Eq. 13 is rewritten as

πd2pfo < ν < πR2fo (14)

from Eq. 5. In Fig. 6a, the measurable ranges of ν are
plotted as a function of fo for different cylinder radii

R and particle diameters dp. The solid lines are the

limitations in the present study, and the measurable

range is colored gray. The dashed lines represent the

limitations arising when different geometries are used

for the OSR. For a less viscous fluid, it is necessary to

apply a small oscillation frequency fo. For a viscous

fluid, fo needs to be set higher or the cylindrical system

needs to be larger to satisfy Eq. 13. It is noteworthy that

the measurable range of ν is independent of shear stress

τ imposed on the test domain and is only determined

by the geometrical parameters R and dp, as the OSR is

independent of torque sensors.

2.4.2 Limitations in wall velocity Uwall

Since the wall velocity Uwall is the maximum velocity

in the system, Uwall needs to be set carefully within a

certain range. The two control parameters, fo and Θ,

sets the wall velocity Uwall, and an axisymmetric and

unidirectional flow should be ensured with the Uwall.

This requirement determines the upper limit of Uwall,

as the method assumes laminar flows without any sec-

ondary flows, such as Görtler vortices (Saric 1994). The

Görtler numberG, a product of boundary layer Reynolds

number and wall curvature, is often defined as

G =
Uwallδν
ν

√
δν
R
. (15)

Considering the critical Görtler number Gc for the onset

of Görtler vortices, the upper limit for the selection of

the Uwall, as well as fo and Θ is found, i.e., G < Gc. In

practice, Gc = 10 is taken for the critical value, and the

maximum velocity Umax can be varied before the onset.

Please note that this upper limit for Uwall overestimates

the onset of the secondary flow. The oscillatory forcing

may suppress the growth of instability continuously,

i.e., the secondary flow may not emerge at the limit,

as Gc is originally derived for steady rotation. In the

present study, we did not observe secondary flows at

higher Uwall specified here and confirmed that all the

conditions satisfy the assumptions.

Meanwhile, the lower limit Umin might be constrained

due to the necessity of seeding particles. Even if ideal

flow conditions are met by satisfying Eq. 13 withG < Gc,
it is not possible to avoid the density difference between

the seeding particles and the test fluids. In practice, the

tracer particles are not neutrally buoyant and definitely

settle or float at the Stokes (terminal) velocity Ut. As-

suming the Stokes law is held, Ut for a spherical particle

is estimated as

Ut =
gd2p|ρ− ρp|

18ρν
, (16)

where g and ρ are the gravity acceleration and the den-

sity of the fluid, respectively (Clift et al. 2005). In the

present experiments, the terminal velocity orients the

z-axis (gravitational axis), and the sedimentation and

the flotation of the particles may cause pseudo-axial

velocity and azimuthal velocity components can be no

longer significant. Thus Uwall needs to be sufficiently
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larger than the pseudo-axial flow, i.e., Uwall ≫ Ut. Al-

though Eq. 16 provides an estimate of the terminal

velocity, it is strongly recommended to directly assure

the Ut in the actual setup as it reflects characteristics

of each seeding particle, such as actual diameter and

density. In the present study, Ut was in O(10−3 mm/s)

for the worst case (water), which was small enough to

obtain meaningful velocity information induced by the

oscillating wall.

In addition to the discussion on Ut, it is worth noting

the time resolution of the system, which is another
factor determining the velocity limitation. The minimum

velocity that can be measured by PTV, i.e., the velocity

resolution, is

Ures =
α∆Pmin

∆tmax
(17)

where α is the spatial resolution of the digital image

in units of mm/pixel, and ∆Pmin is the minimum im-
age displacement detectable by PTV. Typically, α =

0.1 mm/pixel in the present configuration, and ∆Pmin =

0.1 pixel, meaning subpixel. The remaining ∆tmax is the

maximum time interval between the two consecutive

images. Please note that ∆tmax cannot be infinity to
capture almost zero velocity, and it is strictly deter-

mined from the Nyquist frequency fN of the oscillatory

system because the present method imposes a sinusoidal

signal at the wall. To sample the velocity signal as a

proper sinusoidal form, the two consecutive images used

for PTV analysis needs to be sampled at a higher frame

rate than fN = fo/2; otherwise, the sinusoidal signals

will collapse due to the aliasing effect. The maximum

time interval is thus ∆tmax = 2/fo, and namely, the

detectable minimum velocity (velocity resolution) is

uniquely determined as

Ures =
α∆Pminfo

2
. (18)

Depending on the parameter setting for the OSR and

the kinematic viscosity, the minimum velocity Umin can

be either Ut or Ures, and Uwall must exceed both of

them.

Incorporating the discussion above, the wall veloc-

ity Uwall needs to be set while satisfying the following

relation,

Umin < Uwall < π3/4GcR
1/2ν1/4f3/4o , (19)

where

Umin = max(Ut, Ures). (20)

In Fig. 6b, the limitations of Uwall for the present ge-

ometry are drawn as functions of fo for different ν. The

lines at the top are Umax and those at the bottom are

Umin. The inclined line at the bottom corresponds to

Ures and the horizontal dotted lines are Ut. The range

is smaller for smaller kinematic viscosity.

As Uwall is defined using the two independent pa-

rameters fo and Θ, the maximum amplitude Θmax is

also found as

Θmax =
Gcν

1/4

2π1/4R1/2f
1/4
o

(21)

for a given ν and fo. An advantage of the OSR is that

the derivations of local viscosity and shear rate described

in Sec. 2.3 can be done independently at each radial

position. Thanks to this, the whole domain needs not to

be analyzed with the same PTV parameters, and this

allows adjusting the time interval of PTV ∆t at each

radial position in order to set an optimal dynamic range

of velocity at the position. Thus, the full range of the

velocity (Eq. 19) is accessible using an identical optical

system.

2.4.3 Limitations in shear rate γ̇

The discussions above consider the application of the

proposed method by keeping proper assumptions arising

both in terms of theoretical and experimental basis.

The range of the shear rate γ̇ is then automatically

determined using the maximum and minimum values of

the velocities, Umax and Umin, and those of the length

scales, ℓmin and ℓmax, in the measurement system. Hence,

the shear rate range of the OSR is written as

Umin

ℓmax
≲ γ̇ ≲

Umax

ℓmin
. (22)

The Umax is identical to Uwall set in the range described

in Eq. 19. As specified in Eq. 20, the Umin can be either

Ut (Eq. 16) or Ures (Eq. 18), and it depends on the

system configuration. The length scales are estimated

as ℓmax = R and ℓmin = δν . As such, the range of the

shear rate Eq. 22 can be rewritten using Eq. 5 and 19

as

Umin

R
≲ γ̇eff ≲

Umax

δν
=
π5/4GcR

1/2f
5/4
o

ν1/4
. (23)

Note that the maximum shear rate can be underes-

timated due to the underestimation of the maximum

velocity as discussed in Sec. 2.4.2.

In Fig. 6c, the measurable range of the shear rate in

the present study (R = 75 mm) is shown for different

kinematic viscosity cases. By varying fo, the shear rate

can be measured up to O(101–102 s−1) depending on ν.

For the lower limits, it lies roughly in O(10−7–10−5 s−1).

It is, however, not practical, as the density of the tracer

particles cannot exactly match the fluids as stated above,
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especially when a less viscous fluid is tested. The termi-

nal velocity Ut for the case of water (ν ≈ 1×10−6 m2/s)

is O(10−5 m/s) if the density contrast of the fluid and

the particles is 1%, and the system must measure ve-

locity one or two order of magnitude higher than Ut.

Hence, the minimum shear rate is practically in O(10−3–

10−2 s−1) with the present configuration. Even though

the lower limits need to be estimated as higher than

Eq. 23, this practical limit is incredibly low and can

surpass that of the conventional torque-type rheometer

(Nishinari et al. 2019).

3 Verification in Newtonian fluids

The performance of the OSR proposed in Sec. 2 is veri-
fied utilizing Newtonian fluids, as rich literature on their

physical properties is available, and the results of the

OSR can be directly compared with them. Here, three
different Newtonian fluids, water, 85-wt.%, and 99-wt.%

GSs, are employed as test fluids for verification. These

three test fluids were selected to cover a wide range of

kinematic viscosity, ν = O(100–103 mm2/s) in a tem-

perature range of 10◦C ≤ T ≤ 40◦C, in order to show

the capability of the present method. The temperature-

dependent kinematic viscosity ν(T ) was investigated

by changing the temperatures of the circulating water

in the rectangular tank in this range every 15◦C, i.e.

T = 10, 25, and 40◦C.

In Fig. 7, kinematic viscosity curves of the three

Newtonian fluids measured at T = 25◦C are shown.

The analytic procedures for the case of 85-wt.% GS are

already shown above in Fig. 4 and 5. Please note that

the number of plots is reduced for the sake of visibility.
Entirely, the measured values lie in the range of γ̇eff =

O(10−2–101 mm2/s) and νeff = O(100–103 mm2/s). The

plots for the three cases seem to be slightly inclined,

yet, they are effectively flat. In general, the kinematic

viscosity of Newtonian fluids is independent of the shear

rate, and thus this can be identified using a power law

model described as

ν(γ̇) =
µ(γ̇)

ρ
=
K

ρ
γ̇n−1, (24)

where K and n are constants, and n approaches to

unity for a Newtonian fluid. Please note that the power

law model (Eq. 24) is defined for kinematic viscosity

unlike that defined for dynamic viscosity. Solid lines

shown in Fig. 7 represent the power law fitting obtained

from the experimental results, and these constants are

noted above each line with standard deviations. In this

measurement, n values are almost unity for all three

cases. The deviations from unity are expected due to

inhomogeneity of the fluids, such as concentration and
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Fig. 7 Kinematic viscosity curves of Newtonian fluids, 99-
wt.% GS (fo = 0.8 Hz and Θ = π/3), 85-wt.% GS (fo = 0.1 Hz
and Θ = π/3), and water (fo = 0.04 Hz and Θ = π/9), at
T = 25◦C. Solid lines are the power-law fitting (Eq. 24), and
the coefficients for the fitting are noted above each line. The
number of plots is reduced from the originals for the sake of
clarity.

temperature. Considering this, the three test fluids can

be regarded as Newtonian.

To show the validity of the present method, the

kinematic viscosity of the three Newtonian fluids is

compared with literature values. In Fig. 8, the kine-

matic viscosity measured at different temperatures is

plotted. Here, the plotted values are the kinematic vis-

cosity averaged over the whole shear rate range, and

each error bar represents the standard deviation for

it. The kinematic viscosity becomes smaller according

to the increase in temperature for all the test fluids.

The solid lines are the literature values for the three

test fluids shown for comparison. Here, the temperature-

dependent values of density ρ(T ) and dynamic viscosity

µ(T ) of the fluids are taken from the tables provided

by Bosart and Snoddy (1927) and Segur and Oberstar

(1951), respectively, to compute temperature-dependent

kinematic viscosity ν(T ) = µ(T )/ρ(T ). The measured

kinematic viscosity shows good agreement with the lit-

erature values. It is noteworthy that the OSR provides

stable performance irrespective of the magnitude of the

kinematic viscosity. This is one of the benefits of the

OSR that only utilizes velocity information measured

by PTV. As above, the dynamic range of the velocity

is easily tuned into an optimal range for the test fluids,

and this enables measurement of kinematic viscosity at
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Fig. 8 Kinematic viscosity of Newtonian fluids, 99-wt.% GS,
85-wt.% GS, and water measured at different temperatures.
Literature values drawn as solid lines are computed using den-
sity values by Bosart and Snoddy (1927) and viscosity values
by Segur and Oberstar (1951). Error bars for the obtained
data represent standard deviations in shear rate.

the same degree of relative errors in a wide range of

kinematic viscosity.

4 Application to dilute polymer solutions

As an application, we demonstrate viscosity measure-

ments of dilute polymer solutions to emphasize the capa-

bility of OSR in measuring less viscous non-Newtonian

fluids. As the test fluids, we employed xanthan-gum so-

lutions (XGS), which are the well-known shear-thinning

fluids (e.g., Whitcomb and Macosko 1978). The con-

centrations of the XGSs were set c = 0.04, 0.02, and

0.01 wt.%, which are remarkably dilute. In general, the

XGSs are opaque liquids and are hard to apply opti-

cal methods like PIV/PTV. In this study, the dilute

solutions enabled us to visualize tracer particles being

brighter than the flare due to the opaqueness. Thus, PTV

measurements were possible even at the highest concen-

tration case, c = 0.04 wt.%. The kinematic viscosity

curves of the XGSs measured at different temperatures,

T = 10◦C, 25◦C, and 40◦C are shown respectively in

Fig. 9a, b, and c. For all the temperature conditions, the

denser solution has higher kinematic viscosity over the

whole shear rate range measured in the experiments. The

kinematic viscosity values gradually decrease with the

increase in temperature. The plots show both plateau

and inclined regions, especially for the higher concen-

tration cases. Since the upper range of the shear rate is

not wide enough, it is not possible to construct constitu-

tive equations like the cross model or Carreau–Yasuda

model from these kinematic viscosity curves. To widen

the upper limit of the shear rate, a larger cylinder needs

to be employed according to Eq. 23, or the higher shear

rate range can be measured by a standard torque-type

rheometer complementarily. It is remarkable that the

plots show the presence of plateau regions, meaning the

first Newtonian regime, at the low shear rate region
γ̇eff < 1 s−1. The first Newtonian regimes are shifted

as the increase of concentration c for each temperature

condition. Due to the increase of c, the relaxation time

of the fluid increases, and the shear rate at which the

Weissenberg number (the ratio of elastic force to viscous

force) is equal to unity decreases. This is in good agree-

ment with the general explanation of shear-thinning

fluids (Wagner et al. 2017). Thanks to the well-defined

first Newtonian regime, we can easily estimate the zero

shear kinematic viscosity ν0 of the XGSs as shown by the

horizontal dashed lines in Fig. 9. These values might be

hard to measure using the conventional torque rheome-

ter. Let’s suppose that a cone-plate rheometer with

a radius of 30 mm is employed. The required torque

resolution is O(1 nN ·m) to measure ν = 10 mm2/s

(equivalent to µ = 10−2 Pa · s) at γ̇ = 10−2 s−1 from

Eq. 1. Considering that the lower limit of the torque

measured by the rheometer is practically larger than its

resolution (Ewoldt et al. 2015), the estimated torque

resolution is too precise to measure with a torque sensor.

In Fig. 10, the zero shear viscosity µ0 is plotted

against the concentration c. Here, the zero shear dy-

namic viscosity of XGSs is obtained from the density

and the estimated zero shear kinematic viscosity as

µ0 = ρν0. Please note that the dynamic viscosity plot-

ted at c = 0.00 wt.% is the viscosity of the solvent

(water) µs. The zero shear viscosity of XGSs increases

monotonically according to c for each temperature condi-

tion. For dilute polymer solutions, the specific viscosity

(µ0 − µs)/µs should follow the Huggins equation (Hug-

gins 1942)

µ0 − µs

µsc
= [µ] + kH[µ]

2c, (25)

where [µ] is the intrinsic viscosity and kH is the Huggins

constant (Macosko 1994), and kH ranges from 0.3 to 0.4

for good solutions. The least-squares fit using Eq. 25

are also shown in Fig. 10 as dashed lines. The plots

regress well with the lines of Eq. 25, meaning that the

estimated µ0 represents proper material properties of

dilute polymer solutions. Here, the two parameters are

obtained as [µ] ≈ 1.2× 102 ml/g and kH ≈ 0.36 for all



12 Daisuke Noto et al.

���	 ���� ��� ���
γ̇eff��s−1�

����

���

���

��	

ν e
ff
��m

m
2
/s
�

T=10 ◦C

�a�

�����
������

���	�
������

�����
������


���	 ���� ��� ���
γ̇eff��s−1�

T=25 ◦C

�b�

���	 ���� ��� ���
γ̇eff��s−1�

T=40 ◦C

�c�
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Fig. 10 Zero shear viscosity of XGSs µ0 plotted against the
concentration c. Dashed lines are the fittings by Eq. 25. The
plots at c = 0.00 wt.% are the viscosity of water.

the temperature conditions, and these are reasonable

results compared with the literature (Whitcomb and

Macosko 1978; Huggins 1942). Incorporating all the

results shown above, the established method, OSR, is

capable to measure material properties of dilute polymer

solutions like zero shear viscosity and shear-thinning

effects, even if the concentration is extremely low in

O(10 ppm) without installing a precise torque sensor.

5 Summary and outlook

To expand the dynamic range of shear rate arising from

the mechanical limitation of the conventional torque-

type rheometer, a novel approach has been proposed

building on the spinning rheometry introduced earlier by

Tasaka et al. (2015). The method, termed optical spin-

ning rheometry (OSR) is fully independent of torque

measurements and utilizes velocity information mea-

sured by particle tracking velocimetry (PTV). The use

of PTV and oscillating system increases the velocity res-

olution, and it benefits the exploration of low shear rate

regions O(≤ 10−1 s−1) of the kinematic viscosity curves.

Details of analytic procedures and limitations arising

in measuring material properties are discussed carefully

considering measurement characteristics of PTV and

those of flow fields. The performance of the OSR is

validated in Newtonian fluids, and the outcomes show a

good agreement with the literature values. The OSR is

also applied to dilute polymer solutions of O(10 ppm),

and kinematic viscosity curves at low values ν = O(100–

102 mm2/s) at low shear rate region, γ̇ ≤ O(10−1 s−1)

are successfully obtained.

The optical approach surpasses the limitation of

conventional USR proposed earlier, and it enables mea-

surements of rheological properties like pseudo-plastic of

less viscous fluids at low shear rate regions. By altering

the geometry of the experimental device, the measur-

able range of the shear rate and the kinematic viscosity

can be further expanded as mentioned in Sec. 2.4. This

allows us to construct constitutive equations of dilute

or semi-dilute polymer solutions from the experimen-

tal data covering both the zero shear viscosity and the

infinite shear viscosity. In addition, the rapid evalua-
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tion allows for measuring time-dependent rheological

properties of test fluids, and the wide domain expands

measurable fluids. Thus complex fluids containing time-

dependency and large length scales like bubbly liquids

can also be measured as long as they are optically accessi-

ble. The constitutive equations built by actual materials

will facilitate understanding of the non-Newtonian fluid

dynamics from experimental as well as from analytical

and numerical approaches.
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Saric WS (1994) Görtler vortices. Annual Re-
view of Fluid Mechanics. 26(1):379–409,
doi:10.1146/annurev.fl.26.010194.002115

Segur JB, Oberstar HE (1951) Viscosity of glycerol and its
aqueous solutions. Industrial & Engineering Chemistry.

https://doi.org/10.1016/j.cmpb.2019.105185
https://doi.org/10.1146/annurev-fluid-010719-060107
https://doi.org/10.1021/ie50208a030
https://doi.org/10.1017/S0022112097004850
https://doi.org/10.1021/ef2002348
https://doi.org/10.1063/1.1345882
https://doi.org/10.1016/j.jnnfm.2009.01.002
https://doi.org/10.1007/978-1-4939-2065-5_6
https://doi.org/10.1016/j.progpolymsci.2011.02.002
https://doi.org/10.1016/j.jvolgeores.2013.02.014
https://doi.org/10.1122/1.5118900
https://doi.org/10.1017/S0022112003004610
https://doi.org/10.1038/s41538-019-0038-8
https://doi.org/10.1007/s00348-021-03220-9
https://doi.org/10.1103/PhysRevFluids.6.083501
https://doi.org/10.1007/s00348-022-03382-0
https://doi.org/10.1146/annurev.fl.26.010194.002115


14 Daisuke Noto et al.

43(9):2117–2120, doi:10.1021/ie50501a040
Serrano-Aguilera J, Parras L, del Pino C, Rubio-Hernandez F

(2016) Rheo-PIV of Aerosil® R816/polypropylene glycol
suspensions. Journal of Non-Newtonian Fluid Mechanics.
232:22–32, doi:10.1016/j.jnnfm.2016.03.015

Shepard D (1968) A two-dimensional interpolation function
for irregularly-spaced data. In: Proceedings of the 1968
23rd ACM National Conference, Association for Com-
puting Machinery, New York, NY, USA, pp 517–524,
doi:10.1145/800186.810616

Song Y, Rau MJ (2020) Viscous fluid flow inside an oscillat-
ing cylinder and its extension to Stokes’ second problem.
Physics of Fluids. 32(4):043601, doi:10.1063/1.5144415

Sureshkumar R, Beris AN, Handler RA (1997) Direct nu-
merical simulation of the turbulent channel flow of
a polymer solution. Physics of Fluids. 9(3):743–755,
doi:10.1063/1.869229

Tasaka Y, Kimura T, Murai Y (2015) Estimating the effective
viscosity of bubble suspensions in oscillatory shear flows
by means of ultrasonic spinning rheometry. Exp Fluids.
56(1):1–13, doi:10.1007/s00348-014-1867-5

Tasaka Y, Yoshida T, Rapberger R, Murai Y (2018) Linear
viscoelastic analysis using frequency-domain algorithm
on oscillating circular shear flows for bubble suspensions.
Rheologica Acta. 57(3):229–240, doi:10.1007/s00397-018-
1074-z

Tasaka Y, Yoshida T, Murai Y (2021) Nonintrusive in-line
rheometry using ultrasonic velocity profiling. Industrial
& Engineering Chemistry Research. 60(30):11535–11543,
doi:10.1021/acs.iecr.1c01795

Tropea C, Yarin AL, Foss JF, et al. (2007) Springer handbook
of experimental fluid mechanics, vol 1. Springer

Wagner CE, Barbati AC, Engmann J, Burbidge AS, McKinley
GH (2017) Quantifying the consistency and rheology of
liquid foods using fractional calculus. Food Hydrocolloids.
69:242–254

Whitcomb PJ, Macosko C (1978) Rheology of xanthan gum.
Journal of Rheology. 22(5):493–505, doi:10.1122/1.549485

Yoshida T, Tasaka Y, Murai Y (2017) Rheological evaluation
of complex fluids using ultrasonic spinning rheometry in
an open container. Journal of Rheology. 61(3):537–549,
doi:10.1122/1.4980852

Yoshida T, Tasaka Y, Tanaka S, Park H, Murai Y (2018)
Rheological properties of montmorillonite dispersions
in dilute NaCl concentration investigated by ultrasonic
spinning rheometry. Applied Clay Science. 161:513–523,
doi:10.1016/j.clay.2018.05.017

Yoshida T, Tasaka Y, Murai Y (2019) Efficacy assessments in
ultrasonic spinning rheometry: Linear viscoelastic analysis
on non-Newtonian fluids. Journal of Rheology. 63(4):503–
517, doi:10.1122/1.5086986

Yoshida T, Ohie K, Tasaka Y (2022) In situ measure-
ment of instantaneous viscosity curve of fluids in a re-
serve tank. Ind Eng Chem Res. 61(31):11579–11588,
doi:10.1021/acs.iecr.2c01792

https://doi.org/10.1021/ie50501a040
https://doi.org/10.1016/j.jnnfm.2016.03.015
https://doi.org/10.1145/800186.810616
https://doi.org/10.1063/1.5144415
https://doi.org/10.1063/1.869229
https://doi.org/10.1007/s00348-014-1867-5
https://doi.org/10.1007/s00397-018-1074-z
https://doi.org/10.1007/s00397-018-1074-z
https://doi.org/10.1021/acs.iecr.1c01795
https://doi.org/10.1122/1.549485
https://doi.org/10.1122/1.4980852
https://doi.org/10.1016/j.clay.2018.05.017
https://doi.org/10.1122/1.5086986
https://doi.org/10.1021/acs.iecr.2c01792

	Introduction
	Optical spinning rheometry (OSR)
	Verification in Newtonian fluids
	Application to dilute polymer solutions
	Summary and outlook

