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Abstract

Adversarial robustness in Deep Neural Networks (DNNs) is a critical and emerging field of

research that addresses the vulnerability of DNNs to subtle, intentionally crafted perturbations

in their input data. These perturbations, often imperceptible to the human eye, can lead to

significant error increment in the network’s predictions, while they can be easily derived via

adversarial attacks in various data formats, such as image, text, and audio. This susceptibility

poses serious security and trustworthy concerns in real-world applications such as autonomous

driving, healthcare diagnostics, and cybersecurity. To enhance the trustworthiness of DNNs,

lots of research efforts have been put into developing techniques that aim to improve DNNs

ability to defend against such adversarial attacks, ensuring that trustworthy results can be

provided in real-world scenarios. The main stream of adversarial robustness lies in the

adversarial training strategies and regularizations. However, less attention has been paid to

the DNN itself. Little is known about the influence of different neural network architectures

or designs on adversarial robustness. To fulfill this knowledge gap, we propose to advance

adversarial robustness via investigating neural architecture search and design in this thesis.

Firstly, we propose to connect adversarial robustness and neural architecture search.

Through approximating Lipschitz constant of DNNs under NAS framework, we introduce

an effective and efficient searching algorithm as well as corresponding sampling strategy to

derive adversarially robust neural architecture. Secondly, we consider the basic operations

in DNNs, such as the similarity measurement between weight parameters and feature maps.

We show that the cross correlation in CNNs could be the important factor which amplifies

the perturbations in feature maps, which decreases adversarial robustness. Based on the

analysis, we introduce a robust inference strategy via the utilization of adder operation to

eliminate the perturbation automatically. Thirdly, we explore the randomized defense scheme

related to the CNN filters from a perspective of random projection. We extend the scope of

Johnson-Lindenstrauss Lemma to the partial scenarios in convolutional filters, where a better

vii
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trade-off between natural and robust accuracy can be achieved. Lastly, we study the influence

of normalization layers in DNNs on adversarial robustness. We establish the connection

between adversarial transferability and normalization layers, from which we introduce a

randomized defense scheme to fully utilize the potential of different normalization layers with

low adversarial transferability to defend against adversarial attacks.
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CHAPTER 1

Introduction

Deep neural networks (DNNs) have shown remarkable performance in various applications,

such as image classification (Krizhevsky et al. 2012; Simonyan and Zisserman 2014; He et al.

2016; Huang et al. 2017), object detection (Girshick 2015; Tian et al. 2019), and machine

translation (Bahdanau et al. 2014; Chen et al. 2020c). Given the remarkable performance of

DNNs on different data modalities, it becomes more critical to study the trustworthiness of

DNNs since it reflects the reliability and safety in real-world applications. However, recent

works have shown that DNNs are vulnerable to small perturbations on the input data, which

has caused trustworthy issues in DNNs (Nguyen et al. 2015; Moosavi-Dezfooli et al. 2016;

Moosavi-Dezfooli et al. 2017; Biggio et al. 2013; Xie et al. 2019).

Considering a model of image classification task, some perturbations which are imperceptible

to human beings but make the model misclassify the input image can always be found

(Goodfellow et al. 2014). The combination of original image and this kind of perturbation is

denoted as an adversarial example, and the techniques to discover these adversarial examples

are denoted as adversarial attacks. They could be generally categorized into two streams, the

white-box and black-box attacks. In black-box setting, the attackers have no knowledge of

victim models but can estimate the strong perturbation via surrogate models or huge number

of queries (Guo et al. 2019b; Ilyas et al. 2018). In white-box setting, the attackers have

full knowledge of victim model, including the model parameters, network architecture, and

inference strategy (Szegedy et al. 2014; Madry et al. 2018). Since the gradients of victim

models can be directly fetched, the crafted adversarial examples are more aggressive and the

performance under white-box attacks is one of the key criteria of robustness evaluation. Given

the increasing adversarial attacks under various settings (Madry et al. 2018; Andriushchenko

1
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et al. 2020; Croce and Hein 2020), their threats can be rather challenging since it is difficult for

existing popular backbone networks to show robustness when fed with adversarial examples.

Seeking adversarial robust networks becomes a key challenge to improve the trustworthiness

of DNNs and has attracted lots of research interests. One of the most popular and effective

techniques is adversarial training (Madry et al. 2018), which arguments the training data with

adversarial examples within a fixed perturbation size. With the involvement of adversarial

examples, DNNs are optimized to preserve their outputs for perturbed samples within the ℓp

ball of all training input data. However, due to the increasingly advanced attack techniques,

it is difficult for existing adversarially trained networks to achieve satisfactory robustness

against all potential attacks. Furthermore, the training on stronger adversarial examples could

hurt the natural generalization of models (Zhang et al. 2020), and there exists a trade-off

between robustness and accuracy (Zhang et al. 2019a).

Besides the traditional adversarial training, the utilization of randomization in adversarial

robustness has been proven effective. For example, Liu et al. (Liu et al. 2018b) propose to

inject noise which is sampled from Gaussian distribution to the inputs of convolution layers.

Some theoretical analyses have shown that randomized classifiers can easily outperform

deterministic ones in defending against adversarial attacks (Pinot et al. 2019; Pinot et al.

2020). We mainly attribute the improvement of randomization in adversarial robustness

evaluation to the fusion of features with noises, which prevents white-box attackers from

obtaining the precise gradients of loss with respect to the inputs. Although the involvement of

noise in the networks can be an effective defense mechanism, the design of noises, such as

the way of injection, the magnitude of noise, etc., can also significantly influence the natural

generalization of networks in practice. The trade-offs between the adversarial robustness and

optimization difficulty are always ignored in the randomized techniques, which limits their

superiority to deterministic models.

In addition to improving existing defense schemes, recent work has laid emphasis on the

architecture search and DNN components design. For example, the strong connection between

adversarial robustness and DNN components can be empirically found, such as normalization

layers (Benz et al. 2021; Galloway et al. 2019), activation functions (Xie et al. 2020b), etc..
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Although existing defense techniques show effectiveness against adversarial attacks, these

defense strategies suffer from different issues which are remained to be tackled and there

exist many unexplored potentials of DNNs in adversarial robustness. We mainly summarize

them in the following four aspects:

• Firstly, the influence of neural architecture design on adversarial robustness. Al-

though the adversarially trained networks show robustness on various attacks, the

architectures of these networks are fixed during optimization, which limits the ad-

versarial robustness potential of DNNs. The superior architectures designed by

human experts, such as AlexNet and ResNet (Krizhevsky et al. 2012; He et al. 2016),

suggest that the DNN performance is subject to the architecture of network. Boosting

NAS studies also emphasize the influence of architecture. Hence, we ask a simple

question: Can the network be initialized with robust architecture to further obtain

adversarial robustness?

• Secondly, the vulnerability of convolution neural networks (CNNs) without ad-

versarial training. The cross correlation is utilized in CNNs as the basic operation

to measure the similarity between the input feature and weight parameters. This

similarity measurement show superiority in various computer vision tasks, such

as image classification, object detection, etc., however, it is difficult for CNNs to

achieve adversarial robustness without adversarial training. We mainly attribute it to

the fact that the perturbation in features can be amplified by the CNN weights. This

observation motivates us to think about some more advanced similarity measurement

in DNNs which can naturally perform strong adversarial robustness against attacks.

• Thirdly, the trade-offs between natural and robust accuracy in randomized defense.

Different from conventional defense techniques, randomized defense aims at increas-

ing the attacking difficulty of in searching adversarial examples via the involvement

of randomness in the models, such as additive noises (Liu et al. 2018b; Li et al.

2019). The involvement of randomness in the models hinders adversaries from

deriving precise input gradients. However, despite its powerful defense ability, the

randomness leads to the increment of optimization difficulty and the decrease in
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natural accuracy. Thus, a careful design of randomness is expected to achieve better

trade-offs between natural and robust accuracy.

• Lastly, the potential of normalization layers in defense scheme. Existing works

have discussed the influence of Batch Normalization (BN) and empirically shown

that BN increases adversarial vulnerability and decreases adversarial transferability

(Benz et al. 2021; Galloway et al. 2019). However, the theoretical analysis of

this observation is insufficient, which can hardly provide insights to further robust

network designs. Furthermore, there is no feasible solution to tackle this pitfall of

BN layers in adversarial robustness given the wide usage of BN layers in CNNs.

Exploring the defense scheme with BN layers could fulfill this research gap.

Following these four aspects of existing issues or unexplored potentials, this thesis introduces

four algorithms to fulfill these gaps in the corresponding chapters, including Robust Neural

Architecture Search with Confidence Learning (RACL), Adaptive Weight Normalization with

Robust Inference (AWN-R), Random Projection Filters (RPF), and Random Normalization

Aggregation (RNA).

1.1 Thesis Contributions

In Chapter 3 – 6, we introduce four different algorithms for adversarial robustness via neural

architecture search and designs. An illustration of the covered algorithms in this thesis is

shown in Figure 1.1. Each algorithm explores and tackles one of the aforementioned concern

or potential. We mainly summarize the contributions of each algorithm in this section.

1.1.1 Contribution of RACL

To fulfill the research gap of superior adversarially robust neural architecture design, we aim

to improve the adversarial robustness of the network from the architecture perspective. We

explore the relationship among adversarial robustness, Lipschitz constant, and architecture

parameters and show that an appropriate constraint on architecture parameters could reduce the

Lipschitz constant to further improve the robustness. With optimized architecture parameters,
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an adversarially robust neural architecture can be sampled. However, the importance of

architecture parameters could vary from operation to operation or connection to connection,

which highlights the importance of confidence learning of architecture parameters in the

sampling strategy.

We approximate the Lipschitz constant of the entire network through a univariate log-normal

distribution, whose mean and variance are related to architecture parameters. The confidence

can be fulfilled through formulating a constraint on the distribution parameters based on

the cumulative function. Compared with adversarially trained neural architectures searched

by various NAS algorithms as well as efficient human-designed models, our algorithm

empirically achieves the best performance among all the models under various attacks on

different datasets.

1.1.2 Contribution of AWN-R

Based on the observation of the vulnerability of cross correlation in CNNs, we explore the

potential of the replacement cross correlation with ℓ1-norm in adder neural networks (ANNs)

when it comes to adversarial robustness. ANN replaces the original convolutions with massive

multiplications by cheap additions while achieving comparable performance thus yields a

series of energy-efficient neural networks. Compared with convolutional neural networks

(CNNs), the training of AdderNets is much more sophisticated including several techniques

for adjusting gradient and batch normalization. In addition, variances of both weights and

activations in resulting adder networks are very enormous which limits its performance and

the potential for applying to other tasks. However, given the ℓ1-norm similarity measurement.

we find the potential of natural adversarial robustness in ANNs.

To enhance the stability and activate the robustness of AdderNets, we first thoroughly analyze

the variance estimation of weight parameters and output features of an arbitrary adder layer.

Then, we develop a weight normalization scheme for adaptively optimizing the weight

distribution of AdderNets during the training procedure, which can reduce the perturbation on

running mean and variance in batch normalization layers. Meanwhile, the proposed weight

normalization can also be utilized to enhance the adversarial robustness of resulting networks.
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Experiments conducted on several benchmarks demonstrate the superiority of the proposed

approach for generating AdderNets with higher performance.

1.1.3 Contribution of RPF

Motivated by the delicate balance between robust and natural performance, we explore the

random defense solution which achieves better trade-offs between the defense capability

and representation preservation. Random projection is a classic dimensionality reduction

technique with randomness, which we find can be a potential solution to the delicate trade-offs

due to its distance preservation after the projection by the Johnson–Lindenstrauss lemma

(Vershynin 2018) since it preserves representation preservation while involves randomness.

We take initiatives to explore randomized defense techniques in CNNs via random projection.

To this end, we introduce Random Projection Filters (RPF), where part of filters in the CNN

layer is replaced by the random projection. Together with the proposed defense scheme, RPF

significantly increases the difficulties in discovering effective adversarial perturbations. To

clarify the relationship between the desired trade-offs and the involved random projection

in RPF, we first provide theoretical evidence that Johnson–Lindenstrauss lemma holds for

the CNN layers with partial random projection. Furthermore, we establish the connections

between the desired trade-offs and the Euclidean norm of trainable parameters in CNN layers

with random projection. Based on the analysis, a simple training strategy is introduced to

activate the superior adversarial robustness of RPF. Experimental results on CIFAR-10/100

and ImageNet show that RPF exhibits the best trade-offs between natural and robust accuracy

compared with other baselines.

1.1.4 Contribution of RNA

To explore the potential of normalization layers in adversarial defense, we focus on the

adversarial transferability instead of adversarial robustness. Adversarial Transfersability, i.e.

the capability of adversarial examples to fool other models, is one of the intriguing properties

in adversarial learning. Traditionally, this transferability is always regarded as a critical threat
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FIGURE 1.1. Algorithms for adversarial robustness via neural architectures.

to the defense against adversarial attacks, however, we argue that the network robustness can

be significantly boosted by utilizing adversarial transferability from a new perspective.

We first discuss the influence of different popular normalization layers on the adversarial

transferability, and then provide both empirical evidence and theoretical analysis to shed

light on the relationship between normalization types and transferability. Based on our

theoretical analysis, we propose a simple yet effective module named Random Normalization

Aggregation (RNA) which replaces the batch normalization layers in the networks and

aggregates different selected normalization types to form a huge random space.

Specifically, a random path is sampled during each inference procedure so that the network

itself can be treated as an ensemble of a wide range of different models. With different

normalization layers, we show that a desired random space can be built at a low cost. Since

the entire random space is designed with low adversarial transferability, it is difficult to

perform effective attacks even when the network parameters are accessible. We conduct

extensive experiments on various models and datasets, and demonstrate the strong superiority

of proposed algorithm.

1.2 Thesis Outline

As introduced above, this thesis delves into the solutions to existing issues and remaining

potentials from a perspective of DNN search and design. This thesis is organized as follows:
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In Chapter 1, we introduce the adversarial robustness and the existing concerns of different

defense algorithms. We also highlight the unexplored potential of adversarial robustness in

terms of DNN designs. Furthermore, we outline our main contributions of four algorithms

which are introduced in this thesis.

In Chapter 2, we summarize the literature review of relevant topics, including adversarial

attacks, adversarial defense, neural architecture search, basic operation design, normalization

layers, and random projection.

In Chapter 3, we explore the connections between adversarial robustness and neural archi-

tectures. We introduce an efficient algorithm to discover the adversarially robust neural

architectures, named Robust Neural Architecture Search with Confidence Learning (RACL).

In Chapter 4, we propose to replace the cross correlation in CNNs with the ℓ1-norm distance

in ANNs and investigate the potential of ANNs in natural adversarial robustness. Through the

variance study of ANNs, we introduce a simple algorithm with designed inference strategy,

named Adaptive Weight Normalization with Robust Inference (AWN-R).

In Chapter 5, we study the potential of random projection in randomized defense scheme

for a better trade-offs between natural and robust performance. Utilizing the distancing

preservation property, we propose to partially replace the CNN filters by random projection

ones, named Random Projection Filters (RPF).

In Chapter 6, we investigate the role of normalization layers in defense scheme. Through

empirical evidence and theoretical analysis, we introduce an effective defense algorithm via

different normalization layers, named Random Normalization Aggregation (RNA).

In Chapter 7, we conclude the thesis and discuss the future directions.



CHAPTER 2

Literature review

In this chapter, we review the relevant literature of adversarial robustness as well as the related

techniques introduced in the following chapters.

2.1 Adversarial Attack

The adversarial examples are first revealed by (Szegedy et al. 2014), in which Szegedy et

al. demonstrated the vulnerability of DNNs to the perturbed inputs within a ℓp ball. To further

explore the vulnerability of DNNs, various attacks have been developed under different

settings (Goodfellow et al. 2014; Madry et al. 2018; Carlini and Wagner 2017; Croce and

Hein 2020; Sun et al. 2022b). In general, adversarial attacks can be mainly categorized into

white-box attacks and black-box attacks.

In white-box setting, the attackers have access to all the information of victim models, such

as the model parameters and structure. Since the gradient information can be fetched, most

white-box attacks utilize gradients to obtain the perturbations on the inputs which maximize

the loss function. Goodfellow et al. introduce an efficient yet effective attack method via

the sign of gradients, named Fast Gradient Sign Method (FGSM) (Goodfellow et al. 2014).

Kurakin et al. proposed to adopt basic iterative method for FGSM, which achieves a higher

attack success rate (Kurakin et al. 2018). Projection Gradient Descent (PGD) proposed to

randomly initialize the adversarial examples within the ℓp ball (Madry et al. 2018). Carlini

and Wagner (CW) attack proposed to treat adversarial attack as a constrained optimization

problem (Carlini and Wagner 2017). Some feature-disruption-based attacks are introduced

(Inkawhich et al. 2020; Yu et al. 2021). Dong et al. explored various momentum-based
9
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iterative attack algorithm and proposed Momentum Iterative Fast Gradient Sign Method (MI-

FGSM), which showed that the momentum term in the iterations can stabilize the updating

direction and prevent local maxima (Dong et al. 2018).

In black-box setting, the attackers have no access to the information of victim models. One of

the sub-categories of black-box attack is query-based methods where the perturbations can be

approximated via huge number of queries (Cheng et al. 2018; Andriushchenko et al. 2020;

Guo et al. 2019a). However, massive queries can be easily detected in real scenarios, which

motivates some works to focus on efficiency (Sun et al. 2022a; Sun et al. 2022b). Another

sub-category lies in transfer-based methods where the attacks have full access to a surrogate

model and aims at generating adversarial examples with higher transferability (Papernot et al.

2016; Liu et al. 2016; Wang and He 2021). Although transfer-based methods dismiss the

massive queries, they can hardly achieve satisfactory attack success rate on robust models.

Recently, an ensemble of multiple attacks is introduced (Croce and Hein 2020; Liu et al.

2022b). In Auto Attack (Croce and Hein 2020), four different diverse attacks including both

white-box and black-box attacks are utilized in a specific order, which achieves state-of-the-art

attacking performance. Due to its superior performance, Auto Attack is currently one of the

most important criteria of network adversarial robustness evaluation.

2.2 Adversarial Defense

Defending adversarial attacks becomes a crucial problem which has attracted increasing

attention (Madry et al. 2018; Cohen et al. 2019). The main stream of defence mechanisms lies

in the adversarial training and it remains relatively resistant to most existing attacks. Vanilla

adversarial training strategy simply takes adversarial examples as training data to form a

min-max game during optimization (Madry et al. 2018). There exist a large number of variants

of adversarial training algorithms, which improve the adversarial robustness performance

(Rice et al. 2020; Shafahi et al. 2019; Xie et al. 2020b). Zhang et al. introduced friendly

adversarial training which adopts early-stopped PGD attack to improve natural generalization

of networks (Zhang et al. 2020). Rice et al. explored the importance of early-stopping
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strategy in adversarial training (Rice et al. 2020). TRADES was introduced to achieve better

trade-offs between adversarial robustness and natural accuracy (Zhang et al. 2019a).

Adversarial example detection is another stream which aims at discovering the adversarial

examples and rejects them (Hendrycks and Gimpel 2016; Grosse et al. 2017). Feinman et

al. proposed to randomize the classifier with Dropout to identify the adversarial examples

based on the prediction variance (Feinman et al. 2017). Some regularization methods have

been introduced to defend against attacks. (Cisse et al. 2017; Weng et al. 2018) proposed to

constrain the Lipschitz constant of network to improve the adversarial robustness. Mustafa et

al. introduced an effective constraint which forced the features for each class to lie inside a

convex polytope and separated from those of other classes (Mustafa et al. 2020).

Besides traditional adversarial training, there exist randomized techniques for adversarial

robustness (Pinot et al. 2020; He et al. 2019; Jeddi et al. 2020). Liu et al. proposed to

inject random noises before the convolutional layers, which forms a noisy model to defend

against adversarial examples (Liu et al. 2018b). Pinot et al. provided theoretical evidence that

deterministic classifier can hardly ensure optimal robustness against all potential adversarial

attacks and a mixture of classifiers can offer better robustness (Pinot et al. 2020). Fu et

al. proposed to utilize random bits for adversarial defense (Fu et al. 2021). Although the

methods of noise injection can be diverse, how the noise injection influence the natural

generalization as well as convergence of networks has not been well explored, which could

constrained the robustness.

2.3 Neural Architecture Search

Although vast approaches have been proposed to defend against adversarial samples, most

of them focused on optimizing the weights based on different strategies, and the impact of

architecture has been ignored. Recently, neural architecture search has received increasing

attention due to its superior performance. Early NAS approaches heavily relied on macro

searching which directly searches the entire network (Brock et al. 2017; Zoph and Le 2016).

For efficiency, more NAS approaches have applied micro search space where the cell is
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searched instead of the entire network, and the cells are stacked in series to compose the whole

network (Pham et al. 2018; Zoph et al. 2018). Yang et al. proposed an efficient continuous

evolutionary approach on the supernet where all the architectures share the parameters, which

boosted the searching efficiency (Yang et al. 2020). Recently, the differentiable searching

algorithm DARTS has been introduced to boost the searching speed through a relaxation on

search space to form a supernet with operation mixture to achieve differentiable architecture

searching (Liu et al. 2018a). Dong et al. introduced a differentiable sampler over the

supernet with Gumbel-Softmax which improved the searching efficiency (Dong and Yang

2019). Xu et al. proposed to apply channel sampling for searching acceleration and add

edge normalization to stabilize the searching phase (Xu et al. 2019). Recently, NAS has

been applied to different areas, including adversarial robustness. Guo et al. empirically

demonstrated that different architectures had different levels of robustness and proposed

feature flow guided search to discover the robust neural architectures (Guo et al. 2020). Chen

et al. proposed ABanditNAS with improved conventional bandit algorithm to search the

architectures under enlarged search space to better defend against adversarial attacks (Chen

et al. 2020a). One concern of NAS for adversarial robustness is the computational cost

since both adversarial training and supernet optimization can be time-consuming. Kotyan

et al. (Vargas et al. 2019) investigated the potential robust architecture in a broader search

space including the concatenation and connections between dense and convolution layers,

and demonstrated that there exist robust architectures which achieve inherent accuracy on

adversarial examples. Different from (Vargas et al. 2019), our objective aims at discovering

the robust architecture in the current popular search space benchmark (Liu et al. 2018a;

Dong and Yang 2019) without expensive adversarial training via investigating the connection

between Lipschitz constraint and adversarial robustness of architecture.

2.4 Basic Operation Design

In convolutional neural networks, the cross correlation is utilized for similarity measurement

between filters and activation. However, this measurement requires massive multiplication,

which has large energy consumption. For the actual deployment on resource-constrained
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devices, more attention has been paid to other basic operations which can replace the one

in CNNs to reduce energy consumption, such as quantization techniques which project full-

precision weights and activations to fixed-point numbers with low bit-width (Zhou et al.

2016; Rastegari et al. 2016; Howard et al. 2019). Zhou et al. (Zhou et al. 2016) introduce

DoReFa-Net which accelerates both training and inference phases via bit convolution kernels.

Li et al. (Li et al. 2021b) shed light on the reconstruction granularity through exploring the

second-order Taylor expansion and introduce block reconstruction to boost the performance of

post-training quantization. Liu (Liu et al. 2022a) introduce a piecewise quantization method to

tackle the gradient quantization noise. Besides quantization networks, the expensive multiplic-

ations in CNNs can be replaced by cheap additions. Chen et al. (Chen et al. 2020b) introduce

ANNs which uses ℓ1-norm for similarity measurement between filters and activations.

2.5 Normalization Layer

Normalization layer is a fundamental component in DNNs, which standardize features along

different dimensions. It is widely used in different DNNs since it stabilize the gradient descent

step, faster training, and provides better generalization. There exist various normalization

layers, including Layer Normalization (LN), Group Normalization (GN), Instance Normaliza-

tion (IN), Batch Normalization (BN), and Batch Group Normalization (BGN) (Ba et al. 2016;

Wu and He 2018; Ulyanov et al. 2016; Ioffe and Szegedy 2015; Zhou et al. 2020). In terms

of influence of BN on adversarial robustness, Xie et al. (Xie and Yuille 2019) explore the

robustness at different network scales and introduce a mixture of two BN layers which take

care of clean and adversarial examples separately to improve the trade-offs between clean

and adversarial accuracy. The mixture of BN can also improve the generalization of network

with adversarial training (Xie et al. 2020a). Benz et al. (Benz et al. 2021) provide empirical

evidence that BN increase the adversarial vulnerability.

2.6 Random Projection

Random projection is a classic technique in dimensionality reduction (Bingham and Mannila

2001). Through controlling the distribution and dimensionality of random projection matrices,
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the pairwise distances between any two data points can be preserved after the projection, which

is stated in Johnson-Lindenstrauss lemma (Vershynin 2018). Furthermore, the projection is

achieved by a simple linear transformation via random projection matrices, whose entities are

sampled from a predefined distribution, random projection is both efficient and effective in

practice. Due to its effectiveness, some work proposed to incorporate random projection into

DNNs (Nachum et al. 2022; Zhang et al. 2019b).



CHAPTER 3

Neural Architecture Search for Adversarial Robustness

3.1 Motivation

Recent works (Nguyen et al. 2015; Moosavi-Dezfooli et al. 2016; Moosavi-Dezfooli et al.

2017; Biggio et al. 2013; Xie et al. 2019) have shown that DNNs are vulnerable to adversarial

samples that can fool the networks to make wrong predictions with only perturbations of the

input data, which has caused security issues. To deal with the threat of adversarial samples,

the majority of existing works focus on robust training which optimizes the weights of robust

DNNs through feeding adversarial samples generated by attack approaches (e.g. FGSM,

PGD). However, less attention has been put into the architecture designs. A recent study

has shown that different architectures tend to have different levels of adversarial robustness

(Guo et al. 2020). Thus, the designing of robust neural architectures becomes essential for

robustness improvement. However, the problem remains since designing a robust neural

architecture can be rather expensive due to the substantial time cost and human effort, and the

direct relationship between adversarial robustness and architectures is still unexplored.

To reduce the cost of discovering superior robust neural architecture, we made use of NAS

algorithms which automatically discover the ideal architectures within a predefined search

space. Recently, remarkable progress has achieved in NAS, including RL-based approaches

(Zoph and Le 2016; Baker et al. 2016; Bello et al. 2017) and gradient-based approaches (Liu

et al. 2018a; Dong and Yang 2019; Xu et al. 2019; Tang et al. 2020). In particular, DARTS

(Liu et al. 2018a) introduced a differentiable method for architecture optimization through a

continuous relaxation on discrete search space through forming a weighted sum of operations

instead of discrete architecture selection, which significantly reduced the searching budget.
15
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Although the NAS framework provided an efficient way to automatically discover the superior

neural architectures with customized objective, the standard adversarial training required

massive cost in generating the adversarial examples, which significantly decreased the search

efficiency. Thus, we tried to dismiss the inner maximum of adversarial training to further

accelerate the optimization of architecture through involving the Lipschitz constraint by ex-

ploring the influence of Lipschitz constant on adversarial robustness and how the architecture

parameters impact the Lipschitz constant. In this thesis, we proposed to explore the relation-

ship between adversarial robustness and the architecture of network through establishing their

connections to Lipschitz constant under NAS framework.

Furthermore, the instability of differentiable NAS algorithm has been explored by previous

work (Zela et al. 2019). Existing differentiable NAS algorithms used to utilize architecture

parameters for sampling superior architectures, where all the elements of architecture paramet-

ers are “equally treated" for selection without exploring their discrepancies. For example, two

nodes in the same cell may have different levels of freedom of selecting operation, however,

they were only assigned with trainable parameters and applied with argmax for selection

after searching, which significantly reduced the reliability of sampled architecture and raises

a demand for confidence learning of architecture parameters. Thus, we proposed to sample

architecture parameters from trainable distributions instead of initializing them directly.

Our proposed algorithm Adversarially Robust Neural Architecture Search with Confidence

Learning (RACL) starts from the approximation of Lipschitz constant of entire neural network

under NAS framework, where we derive the relationship between Lipschitz constant and

architecture parameters. We further propose to sample architecture parameters from log-

normal distributions. With the usage of the properties of log-normal distribution, we show

that the Lipschitz constant of entire network can be approximated with another log-normal

distribution with mean and variance related to architecture parameters so that a constraint

can be formulated in a form of cumulative function to achieve Lipschitz constraint on the

architecture. Our algorithm achieves an efficient robust architecture search and RACL

empirically achieves superior adversarial robustness compared with other NAS algorithms as

well as state-of-the-art models through a series of experiments under different settings.
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3.2 Methodology

In this section, we introduce the proposed robust architecture search with confidence learning

(RACL) algorithm. Different from existing defence methods which only focus on weights op-

timization, we lay emphasis on the influence of architecture on adversarial robustness through

exploring the relationship among robustness, architecture, and Lipschitz constant. Confidence

learning is further involved to form a Lipschitz constraint on architecture parameters. With

the proposed algorithm, the searched architectures can have stronger defensive power against

adversarial examples.

3.2.1 Preliminary

Given the input x ∈ RD and annotated label vector y ∈ RM where M is the total number

of classes, the neural network H maps perturbed input x̃ = x + δ to a label vector ŷ =

H(x̃;W,A). The network architecture is represented by A, and its filter weight is denoted as

W . The objective of adversarial attacks is to find the perturbed input x̃ which leads to wrong

predictions through maximizing the classification loss as

x̃ = argmax
x̃:∥x̃−x∥p⩽ϵ

LCE(H(x̃;W,A), y), (3.1)

where LCE(ŷ, y) = −
∑M

i=1 y
(i)log(ŷ(i)), and the perturbation is constrained by its lp-norm.

Various powerful attacks have been proposed and shown high attack success rates, such as

Fast Gradient Sign Method (FGSM) (Szegedy et al. 2014) and Projected Gradient Descent

(PGD) (Madry et al. 2018). To defend against these attacks, regularizing the weight matrix of

each layer to form a Lipschitz-constrained network has been proven to be beneficial for the

adversarial robustness (Cisse et al. 2017; Weng et al. 2018).

Let F = L ◦ H be the mapping from the input to the classification loss, and the difference of

loss after an adversarial attack can be bounded as

∥F(x+ δ, y;W,A)−F(x, y;W,A)∥ ⩽ λF∥δ∥, (3.2)
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where λF is the Lipschitz constant of function F with respect to ∥.∥p. Together with ∥δ∥p ⩽ ϵ,

the generalization error with perturbed input can be bounded as

E
x∽D

[F(x̃)] ⩽ E
x∽D

[F(x)] + E
x∽D

[ max
∥x̃−x∥⩽ϵ

|F(x̃)−F(x)|]

⩽ E
x∽D

[F(x)] + λF · ϵ,
(3.3)

which suggests that neural networks can defend against adversarial examples with a smaller

Lipschitz constant. Although it is difficult to derive the precise Lipschitz constant λF

given a network, we can impose constraints on both the lower bound and upper bound

of Lipschitz constant, which are denoted as λF and λF respectively. Thus, an adversarial

robust formulation of neural architectures can be written as

min
A,W

E[F(x, y;W,A)] s.t. λ∗
F ⩽ λF ⩽ λ∗

F , (3.4)

where λ∗
F and λ∗

F are the optimal lower and upper bounds of Lipschitz constant. Existing

works often consider a fixed network architecture A in Eq. (3.4), and focus on optimizing

network weight for improved robustness, where the influence of architecture is ignored.

Recent studies highlight the importance of architecture. Liu et al. conducts thorough

experiments to empirically demonstrate that the better trade-offs of some pruning techniques

mainly come from the architecture itself (Liu et al. 2018c). Boosting NAS algorithms involve

optimization of architecture to obtain better performance with small model size (Liu et al.

2018a; Dong and Yang 2019). We are therefore motivated to investigate the influence of

neural architecture on adversarial robustness.

3.2.2 Lipschitz Constraints in Neural Architecture

The discrete architectureA is determined by both connections and operations, which creates a

huge search space. Differentiable Architecture Search algorithms provide an efficient solution

through the continuous relaxation of the architecture representation (Liu et al. 2018a; Dong

and Yang 2019; Xu et al. 2019). Within the differentiable NAS framework, we decompose

the entire neural network into cells. Each cell I is a directed acyclic graph (DAG) consisting

of an ordered sequence of n nodes, where each node denotes a latent representation that is
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FIGURE 3.1. An overview of proposed robust neural architecture search
with confidence learning algorithm. Each node in the cell is computed with
operations mixture under architecture parameters α for weighting operations
and β for weighting inputs where α and β are sampled from multivariate
log-normal distributions. Meanwhile, the Lipschitz constant of each edge and
cell induce to univariate log-normal distributions. The Lipschitz constraint is
formulated from cumulative distribution function.

transformed from two previous latent representations and each edge (i, j) denotes an operation

o from a pre-defined search space O which transforms I(i). Following (Xu et al. 2019), the

architecture parameters α which weighs operations, and β which weighs input flows are

introduced to form an operation mixture with weighted inputs. The intermediate node is

computed as

I(j) =
∑
i<j

β(i,j)
∑
o∈O

α(i,j)
o · o(I(i)), (3.5)

where I(0) and I(1) are fixed as inputs nodes during the searching phase and the last node is

formed by channel-wise concatenating of previous intermediate nodes I = ∪n−1
i=2 I

(i) as the

output of cell.

The entire neural network is constructed through two different types of cells including the

normal cell, where all the operations have strides of 1, and the reduction cell, where the

operations connected to the two inputs have strides of 2. With normal and reduction cells

stacked in series, the entire neural network can be formed as H = I1 ◦ I2 ◦ · · · ◦ IN ◦ C,

where N denotes the number of cells and C denotes the classifier. Following (Xu et al. 2019),

after the searching phase, the operation o with the maximum β(i,j)α
(i,j)
o for each edge (i, j)
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is selected and the connection of each node j to its two precedents i < j with maximum

β(i,j)α
(i,j)
o is selected so that a discrete superior architecture can be sampled from the supernet.

We now explore the relationship between architecture parameters α, β and Lipschitz constant

of the network. Since the entire neural network is constructed by stacking cells in series as

[I1, I2, ..., IN ], Eq. 3.2 can be further decomposed as as

∥F(x̃)−F(x)∥ ⩽ λl∥H(x̃)−H(x)∥

⩽ λlλC∥IN(x̃)− IN(x)∥

⩽ λlλCλ(IN)∥IN−1(x̃)− IN−1(x)∥,

(3.6)

where λl, λC and λ(IN) denote the Lipschitz constants of the loss function, classifier, and cell

IN respectively. By rewriting ∥IN−1(x̃)− IN−1(x)∥ in a format of its previous cells till the

input of cell becomes the image for I1 and considering ∥I1(x̃)− I1(x)∥ ⩽ λ(I1)∥x̃− x∥ =

λ(I1)∥δ∥, Eq. 3.6 can be unfolded recursively and rewritten as

∥F(x̃)−F(x)∥ ⩽ λF∥δ∥ ⩽ ∥δ∥λlλC

N∏
k

λ(Ik). (3.7)

It is obvious that the adversarial robustness can be bounded by the Lipschitz constants of cells.

Eq. 3.7 also suggests that the impact of perturbation grows exponentially with the number of

cells, which further highlights the influence of cell designing.

As λl and λC in Eq. 3.7 are not related to the architecture, we next focus on the discussion

on λ(Ik). Based on the operation mixture defined in Eq. 3.5, the variation of node I
(j)
k under

perturbation can be written in a format of that in previous node I(j)k . For simplicity of notation,

we omit the subscript k and for each node and we have

∥I(j)(x̃)− I(j)(x)∥ ⩽
∑
i<j

β(i,j)λ(i,j)∥I(i)(x̃)− I(i)(x)∥,

s.t. λ(i,j) ⩽
∑
o∈O

α(i,j)
o λo,

(3.8)

where λ(i,j) denotes the Lipschitz constant of transformation from node i to j and λo denotes

the Lipschitz constant of operation o. Similarly, we can unfold Eq. 3.8 recursively for entire
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cell by rewriting ∥I(i)(x̃)− I(i)(x)∥ in a format of its previous node, and have

λ(I(j)) ⩽
∑
i<j

β(i,j)
∑
o∈O

α(i,j)
o λo. (3.9)

Through substituting λ(Ik) in Eq. 3.7 by the one in Eq. 3.9 and taking λl and λC as a unified

constant C, the lipschitz constant λF is bounded by the product of the Lipschitz constant of

intermediate nodes as

λF ⩽ C
N∏
k

λ(Ik) ⩽ C
N∏
k

n∏
j

λ(I(j))

⩽ C
N∏
k

n∏
j

∑
i<j

β(i,j)
∑
o∈O

α(i,j)
o λo.

(3.10)

According to the definition, the Lipschitz constant of operations without convolutional layers

can be summarized as follows, (1). average pooling: S−0.5 where S denotes the stride of

pooling layer, (2). max pooling: 1, (3). identity connection: 1, (4). Zeroize: 0. For the

rest operations including depth-wise separate conv and dilated depth-wise separate conv,

we focus on the L2 bounded perturbations and according to the definition of spectral norm,

the Lipschitz constant of these operations is the spectral norm of its weight matrix where

λo2 = ∥W o∥2, which also is the maximum singular value of W , marked as Λ1. However,

directly computing Λ1 is not practical through gradient descent. To achieve a differentiable

optimization on Lipschitz constant, we make use of the power iteration method which can be

applied for an efficient approximation of Λ1 (Yoshida and Miyato 2017). Note that although

the perturbation is L2 bounded, the robustness against L∞ can be also achieved, as stated by

(Qian and Wegman 2018).

3.2.3 Confident Architecture Sampling

The architecture is determined by parameters α and β, which further influences the Lipschitz

constants of the network, as shown in Eq. 3.10. Existing NAS algorithms used to initialize

them as trainable parameters without in-depth analysis. However, these weightings on

operations or connections naturally could have different levels of importance and freedom.
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FIGURE 3.2. An illustration of the difference between previous differentiable
NAS and ours with confidence learning.

E.g., the connection of the first node and one of the intermediate nodes may have different

levels of freedom for the final selection, but they are simply assigned values with the same

confidence for optimization and sampled with the maximum value in NAS framework. Thus,

previous architecture parameters can hardly fulfill this requirement. Instead, we propose to

explore the confidence on the architecture parameters by regarding them as variables sampled

from distributions during architecture search. An illustration of the advantage of confidence

learning is shown in Fig 3.2. For each architecture parameters, previous differentiable NAS

algorithms made use of trained value with full confidence as shown in the left part, while our

algorithm enables parameters to exploit their confidence as shown in the right part. Intuitively,

the architecture optimization is highly uncertain due to the large search space. But existing

NAS absolutely trusts all architecture parameters without discriminating the confidence on

them. Taking α and β from the perspective of distributions, the variances will be optimized to

indicate confidence in the values. RACL tends to exploit the operations of higher confidence

and explore more potential good paths by investigating operations of lower confidence. The

overall searching space can thus be well explored and exploited.
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For distributions, a naive selection can be a multivariate normal distribution. However,

according to the Lipschitz constant form in Eq. 3.10, the sampled values from this distribution

need to be positive since λF is always positive and negative values from distribution will

make the constraint cease to be effective. Thus, we turn to log-normal distribution LN

since it guarantees positive sampled values. Note that a random variable is log-normally

distributed LN (µ,Σ) if the logarithm of it is normally distributed N (µ,Σ). For simplicity,

the following mean and variance denote those of the logarithm. Most importantly, there are

several nice properties, including the weighted sum of multiple independent LN 1,...,n can be

approximated with another LN and the product of multiple independent LN 1,...,n induces to

LN with parameters µ and Σ of the sum of those in LN 1,...,n. Thus we propose to sample α

from multivariate log-normal distributions, denoted as LN (µα,Σα), with mean µα ∈ Rd and

covariance matrix Σα ∈ Rd×d with diagonal standard deviation σα ∈ Rd where d denotes the

dimension of α. Similarly, we sample β from LN (µβ,Σβ).

Back to the Lipschitz constant, the multivariate log-normal distribution over α induces a

univariate log-normal distribution over the upper boundary of Lipschitz constant of edge

based on the operation mixture
∑

o∈O α
(i,j)
o λo since it can be treated as the weighted sum

of multiple log-normal distributed variables. Note that λo is treated as constant here since

the weights are fixed when optimizing architecture parameters. The is proposed Lipschitz

confidence constraint is shown in Fig. 3.1. Although there is no closed-form expression of

its probability density function, the distribution can be approximated using the properties of

log-normal distribution as:

Property 1. If a log-normal variable X ∽ LN (µ, σ2) is multiplied by a constant a, aX ∽

LN (µ+ ln(a), σ2).

Property 2. If multiple independent log-normal variables, denoted as X1, X2, ..., Xn, are

multiplied, X1 ·X2 · · ·Xn ∽ LN (
∑n

i=1 µi,
∑n

i=1 σ
2
i )

Following (Marlow 1967), the sum of log-normal distributions can be approximated by

another log-normal distribution as below:
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PROPOSITION 1. If multiple independent log-normal variables, denoted as X1, X2, ..., Xn,

are added, the sum Z =
∑n

i=1 Xi can be approximated by another log-normal distri-

bution LN (µZ , σ
2
Z) with variance σ2

Z = ln[
∑
e(2(µi)+σ2

i )(e(σi)
2−1)

(
∑
e(µ+σ2

i
/2))2

+ 1]) and mean µZ =

ln[
∑

e(µi+σ
2
i /2)]− σZ

2
.

Thus, in Eq. 3.8, the distribution of
∑

o∈O α
(i,j)
o λo can be treated as a weighted sum of

multiple independent log-normal distributions and can be approximated with these properties

and Proposition 1. Similarly, in Eq. 3.9,
∑

i<j β
(i,j)
∑

o∈O α
(i,j)
o λo can be treated as the

sum of multiple products of two independent log-normal distributions which can also be

approximated. Based on the properties of log-normal distribution, the upper boundary of

Lipschitz constant of entire network can be approximated accordingly,

λ(i,j) =
∑
o∈O

α(i,j)
o λo ∽ LN (ln[

∑
o

e(µ
α
o
′+(σα

o )
2/2)]−

σ2
I(i,j)

2
, σ2

I(i,j)),

σ2
I(i,j) = ln[

∑
o e

(2(µαo
′)+(σα

o )
2)(e(σ

α
o )

2 − 1)

(
∑

o e
(µαo

′)+(σα
o )

2/2))2
+ 1]),

µαo
′ = µαo + ln(λo),

(3.11)

where λ(i,j) denotes the upper boundary of λ(i,j). For simplicity, we denote the mean for

λ(i,j) as µI(i,j) and variance as σ2
I(i,j)

. Similarly, we sample β from a multivariate log-normal

distribution N (µβ,Σβ). For variable β(i,j)λ(i,j), it can be treated as the product of two log-

normal distributions, which also follows a log-normal distribution whose mean is the sum

of means of two distributions and variance as well. Thus, to generalize the distribution

over edge λ(i,j) to the one over intermediate node λ(j), we replace o with j, µαo + ln(λo)

with µβ(i,j) + µI(i,j) , and (σαo )
2 with (σβ(i,j))

2 + σ2
I(i,j)

in Eq 3.11 and obtain the log-normal

distribution of λ(j) =
∑

i<j β
(i,j)λ(i,j) as

λ(j) =
∑
i<j

β(i,j)λ(i,j) ∽ LN (ln[
∑
o

e(µ
β
(i,j)

'+[σβ
(i,j)

']/2)]−
σ2
I(j)

2
, σ2

I(j)),

σ2
I(j) = ln[

∑
j e

(2(µβ
(i,j)

')+[σβ
(i,j)

'])(e[σ
β
(i,j)

'] − 1)

(
∑

o e
(µβ

(i,j)
'+[(σβ

(i,j)
']/2))2

+ 1]),

µβ(i,j)' = µβ(i,j) + µI(i,j) , σ
β
(i,j)' = (σβ(i,j))

2 + σ2
I(i,j) ,

(3.12)
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with mean and variance which are denoted as µI(j) and σ2
I(j)

. According to Eq. 3.10, λF

is bounded by the product of λ(j). Thus, λF follows the log-normal distribution with mean

µ = In(C) +
∑N

k

∑n
j µI(j) and variance σ2 =

∑N
k

∑n
j σ

2
I(j)

. We introduce a confidence

hyperparameter η ∈ [0, 1] to enable confidence learning with such an constraint as

Prα,β[λF ⩽ λ∗
F ]

= Prα,β[C
N∏
k

n∏
j

∑
i<j

β(i,j)
∑
o∈O

α(i,j)
o λo ⩽ λ∗

F ] ⩾ η,
(3.13)

where λ∗
F is the desired Lipschitz constant upper bound of F , Note that in Eq. 3.13, the

variance of λF is reduced to satisfy the inequality, which strengths the confidence on the

approximation of Lipschitz constant of λF , compared with the one in Eq. 3.10 without

confidence learning. To obtain a convex constraint in µ and Σ, we reformulate Eq. 3.13

through the format of cumulative function as

Pr[λF ⩽ λ∗
F ] = Pr[

ln(λF)− µ

σ
⩽

ln(λ∗
F)− µ

σ
]

= Φ(
ln(λ∗

F)− µ

σ
),

(3.14)

where Φ denotes the cumulative function of the normal distribution since ln(λF )−µ
σ

is a random

variable following the normal distribution. Thus, we establish direct relationship among µ, σ

and η as

ln(λ∗
F)− µ

σ
⩾ Φ−1(η). (3.15)

Through omitting the square root on σ, we achieve a convex constraint. Besides the upper

bound of Lipschitz constant, we propose to minimize the lower bound λF together to better

control λF . Taking the advantage of the fact that ∥∇F(x, y;W,A)∥ ≤ λF , we simply take

λF = ∥∇F(x, y;W,A)∥. Together with the constraint in Eq. 3.15, we reformulate the

optimization objective in Eq. 3.4 as

min
µα,Σα,µβ ,Σβ ,W

LCE(F(x;W,A), y) + ∥∇F(x, y;W,A)∥,

s.t. ln(λ∗
F)− µ ⩾ Φ−1(η)σ2,A ∽ LN (µα,Σα),LN (µβ,Σβ).

(3.16)
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Algorithm 1 Robust Neural Architecture Search with High Confidence Algorithm
Input: The training set is split into DT and DV ; Batch size n; Hyperparameter λ∗, ρ, η;
Initialize multivariate log-normal distributions LN (µα,Σα) and LN (µβ,Σβ); InitializeH
with W ;
while not converge do

Sample α and β from LN (µα,Σα) and LN (µβ,Σβ) based on reparameterization trick
Sample batch of data {(xi, yi)}ni=1 from DT
Optimize W with

∑n
i=1 LCE(xi, yi;W,α, β) + λF

Sample batch of data {(xi, yi)}ni=1 from DV
Optimize µα,Σα, µβ,Σβ with ADMM framework
µt+1 ← µt − γ▽µ[LCE + λF + θ(c(µ,Σt)) +

ρ
2
∥c(µ,Σt)∥2F ]

σt+1 ← σt − γ▽σ[LCE + λF + θ(c(µt,Σ)) +
ρ
2
∥c(µt,Σ)∥2F ]

Optimize θ with θt+1 ← θt + ρ · c(µt,Σt)
end while
Sample the normal and reduction cell based on sampled α and β
Retrain the searched architecture from scratch on training set

Intuitively, the constraint in Eq. 3.16 reveals the influence of σ on sampling architecture

parameters. As σ increases, the value of µ decreases to satisfy the inequality where the

corresponding µα and µβ become 0 for relatively large σ, which implies that the operations or

connections are unlikely to be sampled when its corresponding confidence is low. Thus, the

architecture can be sampled based on its confidence in the Lipschitz constraint. We apply the

ADMM optimization framework to solve this constrained optimization through incorporating

the constraint to form a minimax problem so that Eq. 3.16 can be rewritten as

min
µα,Σα,µβ ,Σβ

max
θ
LCE + λF + θ(c(µ,Σ)) +

ρ

2
∥c(µ,Σ)∥2F ,

c(µ,Σ) = µ+ Φ−1(η)σ2 − ln(λ∗
F),

(3.17)

where θ is the dual variable and ρ is positive number predefined in ADMM. The first step is

to update µ while fixing other variables and the second step is to update σ while fixing other

variables as

µt+1 ← µt − γ▽µ[LCE + λF + θ(c(µ,Σt)) +
ρ

2
∥c(µ,Σt)∥2F ],

σt+1 ← σt − γ▽σ[LCE + λF + θ(c(µt,Σ)) +
ρ

2
∥c(µt,Σ)∥2F ],

(3.18)
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TABLE 3.1. Evaluation of RACL adversarial robustness on CIFAR-10,
CIFAR-100, and Tiny-ImageNet compared with various NAS algorithms
under white-box attacks. PGD20 denotes PGD attack with 20 iterations. Best
results in bold.

Dataset Model Params Natural FGSM MIM PGD20 PGD100 CW AA

CIFAR-10

AmoebaNet 3.2M 82.28% 59.12% 57.26% 53.69% 53.34% 78.63% 47.88%
NASNet 3.8M 84.37%61.38% 58.72% 53.35% 52.84% 80.69% 48.19%
DARTS 3.3M 80.65% 59.63% 57.55% 54.04% 53.73% 77.01% 48.13%

PC-DARTS 3.6M 84.32% 61.08% 58.10% 53.01% 52.36% 80.54% 47.95%
RACL(ours) 3.3M 84.04%62.55%60.00%55.68%55.32%80.90%50.07%

CIFAR-100

AmoebaNet 3.2M 56.51% 32.67% 31.44% 29.70% 29.66% 49.03% 25.26%
NASNet 3.8M 57.97% 31.54% 30.14% 28.58% 28.44% 49.64% 24.42%
DARTS 3.3M 58.67%32.71% 31.14% 29.21% 29.11% 50.32% 24.30%

PC-DARTS 3.6M 57.20% 31.85% 30.46% 28.62% 28.50% 49.40% 24.10%
RACL(ours) 3.3M 57.83%33.89%32.41%30.41%30.15%52.56%25.55%

Tiny-ImageNet

AmoebaNet 3.2M 47.84% 31.44% 30.57% 30.12% 30.09% 42.56% -
NASNet 3.8M 47.85% 30.76% 29.80% 29.47% 29.44% 41.93% -
DARTS 3.3M 48.20% 31.38% 30.71% 30.30% 30.25% 42.23% -

PC-DARTS 3.6M 47.24% 30.04% 29.18% 28.55% 28.53% 40.91% -
RACL(ours) 3.3M 48.86%31.98%31.12%30.63%30.63%42.99% -

where µα,Σα, µβ,Σβ are updated through back-propagation. The dual variable θ is updated

with learning rate of ρ as

θt+1 ← θt + ρ · c(µt,Σt) (3.19)

The entire robust neural architecture search with confidence learning algorithm, denoted as

RACL, is shown in Alg. 1. With proposed algorithm, we impose confidence learning on

the values of architecture parameters α and β, which strengthens the confidence of robust

architecture sampling.

3.3 Experiments

In this section, we conduct a series of experiments to empirically demonstrate the effectiveness

of proposed RACL algorithm. We retrain the searched neural architecture and compare it

with various neural architectures searched by NAS algorithms as well as state-of-the-art

network architectures. We show that under various adversarial attack settings, the robust
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(a). Normal Cell

(b). Reduction Cell

FIGURE 3.3. The visualization of normal and reduction cell searched by
RACL are shown in (a) and (b).

neural architectures searched by RACL always achieve better robustness than other baselines.

3.3.1 Experimental Setup

Neural Architecture Search Setup Following previous works (Liu et al. 2018a; Xu et al.

2019), we search the robust neural architectures on CIFAR-10 dataset which contains 50K

training images and 10K validation images over 10 classes. During the searching phase, the

training set is divided into two parts with equal sizes for architecture and weight optimization

respectively. The search space includes 8 candidates: 3× 3 and 5× 5 separable convolutions,

3×3 and 5×5 dilated separable convolutions, 3×3 max pooling, 3×3 average pooling, skip

connection, and zero, as suggested by previous works (Xu et al. 2019; Dong and Yang 2019).

The supernet is constructed by stacking 8 cells including 6 normal cells and 2 reduction cells,

each of which contains 6 nodes. For the training settings, we follow the setups of PC-DARTS
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(Xu et al. 2019). The searching phase takes 50 epochs with a batch size of 128. We use SGD

with momentum. The initial learning rate is 0.1 with a momentum of 0.9 and a weight decay

is 3× 10−4 to update the supernet weights. Architecture parameters were updated with Adam

with a learning rate of 6× 10−4 and a weight decay of 1× 10−3. The searching time of RACL

takes 0.5 GPU days.

Datasets and Retrain Details We extensively evaluate the proposed algorithm on three

datasets including CIFAR-10, CIFAR-100, and Tiny-ImageNet, which are widely compared

by other previous work. The searched superior neural architecture is sampled based on the

proposed sampling strategy. Following the setting in NAS (Xu et al. 2019; Liu et al. 2018a),

we stack searched cells to form a 20-layer network and retrained it with the entire training

set. For the evaluation stage, we adopt the popular adversarial training framework to retrain

all the baselines. We train the network from scratch for 100 epochs with a batch size of

128 on the entire training set. We use SGD optimizer with an initial learning rate of 0.1,

momentum of 0.9, and a weight decay of 2× 10−4. The norm gradient clipping is set to 5.

Following (Wang et al. 2019), the hyperparameter which balances the adversarial loss and KL

divergence is set to 6. Since we focus on the impact of architecture on adversarial robustness,

we train the searched architectures as well as state-of-the-art network architectures with the

same adversarial training setting. Through training these architectures in the same adversarial

manner, we conduct a fair comparison among different architectures and demonstrate how

they improve or constrain the adversarial robustness. For CIFAR-10 and CIFAR-100, we

use adversarial training with the total perturbation size ϵ = 8/255. The maximum number of

attack iterations is set to 10 with a step size of 2/255. For Tiny-ImageNet, we set ϵ = 4/255.

The maximum number of attack iterations is set to 6 with a step size of 2/255. An illustration

of the searched normal cell and reduction cell is shown in Figure 3.3, more analysis on

searched robust neural architectures will be covered in Sec. 3.3.5

3.3.2 Against White-box Attacks

To evaluate the superiority of proposed RACL, we compare the searched cells with SOTA

NAS algorithms, including DARTS (Liu et al. 2018a), PC-DARTS (Xu et al. 2019), NASNet
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TABLE 3.2. Evaluation of RACL adversarial robustness on CIFAR-10 com-
pared with other human-designed architectures and other robust NAS al-
gorithms under white-box attacks. Best results in bold.

Model Params Natural FGSM PGD20 PGD100 MIM
ResNet-18 11.17M 78.38% 49.81% 45.60% 45.10% 45.23%
ResNet-50 23.52M 79.15% 51.46% 45.84% 45.35% 45.53%

WRN-28-10 36.48M 86.43% 53.57% 47.10% 46.90% 47.04%
DenseNet-121 6.95M 82.72% 54.14% 47.93% 47.46% 48.19%
ABanditNAS 5.19M 90.64% - 50.51% - 54.19%

RobNet-S 4.41M 78.05% 53.93% 48.32% 48.07% 48.98%
RobNet-M 5.56M 78.33% 54.55% 49.13% 48.96% 49.34%
RobNet-L 6.89M 78.57% 54.98% 49.44% 49.24% 49.92%

RobNet-free 5.49M 82.79% 58.38% 52.74% 52.57% 52.95%
RACL(ours) 3.34M 84.04% 62.55% 55.68% 55.32% 60.00%

(Zoph et al. 2018), AmoebaNet (Real et al. 2019). We also compare RACL with SOTA

human-designed network architectures, such as ResNet and DenseNet (He et al. 2016; Huang

et al. 2017). Furthermore, some NAS algorithms targeting the adversarial robustness are

also included for comparison, including RobNet (Guo et al. 2020) and ABanditNAS (Chen

et al. 2020a). Moreover, we also compare our results with other defence mechanisms,

including Stochastic Weight Averaging (SWA) (Chen et al. 2021a) and Instance Adaptive

Adversarial training (IAAT) (Balaji et al. 2019). For robustness evaluation, we choose various

popular powerful attacks including Fast Gradient Sign Method (FGSM) (Szegedy et al. 2014),

Momentum Iterative Method (MIM) (Dong et al. 2017), Projected Gradient Descent (PGD)

(Madry et al. 2018), CW attack (Carlini and Wagner 2017), and Auto Attack (Croce and Hein

2020). Consistent with previous adversarial literature (Madry et al. 2018; Zhang et al. 2019a),

the perturbation is considered under l∞ norm with the total perturbation size of 8/255 on

CIFAR-10/100 and 4/255 on Tiny-ImageNet. For CW attack, the steps are set to 1000 with a

learning rate of 0.01.

Evaluation on CIFAR-10, CIFAR-100, and Tiny-ImageNet Although adversarial training

is a strong defence method, the impact of architecture is always ignored. In this experiment,

we demonstrate that constructing networks via the neural architectures searched by RACL can

further improve the robustness after adversarial training. For a fair comparison, we retrain the

searched cells using PGD adversarial training for all the models to evaluate the robustness of
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RACL on the main benchmark of defence mechanisms. The number of PGD attack iterations

is set to 20 and 100 with a step size of 2/255, as suggested by (Guo et al. 2020). The detailed

evaluation results are shown in Table 3.1. The best result for each column is highlighted in bold.

As shown in Table 3.1, RACL achieves better adversarial accuracy than other state-of-the-art

neural architectures on all the datasets. For example, compared with our baseline PC-DARTS

on CIFAR-10, though both RACL and PC-DARTS achieve similar clean accuracy and model

size, their performance with adversarial training varies differently. RACL achieves an accuracy

of 62.55% under FGSM attack, with 1.47% improvement (61.08%→ 62.55%) over that of

PC-DARTS, and 2.96% improvement (52.36% → 55.32%) over that of PC-DARTS under

PGD100 attack. Furthermore, RACL achieves the best robust accuracy than other baselines

under different attacks on CIFAR-100 and Tiny-ImageNet. For example, RACL achieves

an accuracy of 52.26% under Auto Attack, with 1.25% improvement (24.30% → 25.55%)

over that of DARTS on CIFAR-100. Similarly, RACL achieves an accuracy of 42.99% under

CW attack, with 1.06% improvement (41.93% → 42.99%) over that of NASNet on Tiny-

ImageNet. We empirically show that RACL consistently achieves the best robust performance

compared with other NAS algorithms with the same search space under various attacks, which

indicates that the adversarial robustness can be further improved through imposing Lipschitz

constraint on architecture parameters.

Comparison with Human-designed Architectures and Robust NAS Algorithms on

CIFAR-10 Besides the standard NAS algorithms, there exist some NAS algorithm tar-

geting adversarial robustness as well as some popular human-designed architectures which

are widely compared in adversarial robustness benchmarks. We include ResNet-18, ResNet-

50, WideResNet-28-10, and DenseNet-121 for comparison. The results are shown in Table

3.2. Compared with these human-designed architectures, RACL shows obvious superiority

of robust accuracy over all the baselines under various attacks with fewer parameters. In

terms of robust NAS algorithms, RobNet applies robust architecture search algorithm to

explore a RobNet family under different budgets (Guo et al. 2020). Compared with RobNet-S,

RobNet-M and RobNet-L, RACL consistently achieves the best performance with a large gap.

Compared with RobNet-free which relaxes the cell-based constraint, RACL still achieves

better results with fewer parameters. For example, RACL achieves an accuracy of 55.32%
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TABLE 3.3. Comparison with existing defence techniques under PGD attack
on different datasets.

Attack Defence CIFAR-10 CIFAR-100 Tiny-ImageNet

PGD20

FAT (Zhang et al. 2020) 45.31% 27.38% 17.50%
SWA (Chen et al. 2021a) 52.14% 28.28% 21.84%
NADAR (Li et al. 2021a) 53.43% 28.40% 21.14%

RACL(ours) 55.68% 30.41% 30.63%

PGD100

IAAT (Balaji et al. 2019) 46.50% 24.22% -
RobNet-L (Guo et al. 2020) 49.24% 23.19% 19.90%

RobNet-free (Guo et al. 2020) 52.57% 23.87% 20.87%
RACL(ours) 55.32% 30.15% 21.48%

under PGD100 attack, with 2.75% improvement (52.57% → 55.32%) over that of RobNet-

free. Compared with ABanditNAS which includes denoise operations in its search space,

RACL outperforms it in adversarial accuracy. For example, RACL achieves an accuracy of

55.32% under PGD100 attack, with 5.81% improvement (54.19% → 60.00%) over that of

ABanditNAS. Overall, RACL achieves superior trade-offs among parameters, clean accuracy,

and adversarial accuracy, which highlights the effectiveness and efficiency of proposed RACL

algorithm.

Comparison with existing defence mechanisms We argue that initializing a network with

robust neural architecture can be regarded as an efficient defence method against adversarial

samples. To illustrate how robust architecture improves the performance of adversarial

training, we compare RACL with previously proposed defence mechanisms on different

datasets, including CIFAR-10, CIFAR-100, and Tiny-ImageNet. The perturbation budget ϵ is

set to 8/255 for CIFAR-10 and CIFAR-100. For Tiny-ImageNet, we consider two perturbation

budgets. Following (Li et al. 2021a; Chen et al. 2021a), the perturbation budget of PGD

attack ϵ is set to 4/255 with 20 iterations as PGD20. We also consider another stronger

attacking setting in Tiny-ImageNet, which follows (Guo et al. 2020). The perturbation budget

of PGD attack ϵ is set to 8/255 with 100 iterations as PGD100. We include various defence

mechanisms for comparison. RACL was also compared with FAT (Zhang et al. 2020) which

aims at better trade-offs between natural accuracy and robustness, SWA (Chen et al. 2021a)

which introduces weight smoothing to tackle the overfitting issue in adversarial training,

IAAT (Balaji et al. 2019) which enforces sample-specific perturbation margins for a better
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TABLE 3.4. Evaluation of RACL adversarial robustness on CIFAR-10 under
transfer-based black-box attack setting.

Model FGSM MIM PGD20

AmoebaNet 81.92% 82.04% 82.61%
NasNet 82.32% 82.60% 83.21%
DARTS 78.76% 78.83% 79.29%

PC-DARTS 82.47% 82.65% 83.06%
RACL(ours) 82.78% 82.92% 83.45%

generalization, and NADAR (Li et al. 2021a) which proposes to search the dilation network

for adversarial robustness. The detailed results are shown in Table 3.3. Compared with all

the SOTA defence techniques, RACL consistently achieves the best performance in all the

scenarios, which demonstrates the superiority of RACL as defence mechanism. Note that

RACL can collaborate with other adversarial training algorithms to achieve potentially better

performance.

3.3.3 Against Black-box Attacks

Transfer-based Black-box Attack Evaluation We next evaluate the robustness of RACL

under black-box attacks. Following previous literature (Madry et al. 2018; Papernot et al.

2016), we apply transfer-based black-box attacks which generate adversarial samples using a

victim model and feed them to the target models. In this work, we take a ResNet-110 network

as the victim model. The transferred adversarial samples are generated through FGSM, MIM

and PGD attacks. The adversarial accuracy of different architectures is compared after they

are fed with these transferred adversarial samples, as shown in Table 3.4. Compared with other

standard NAS algorithms, RACL achieves the highest robust accuracy in all the scenarios

under these transfer-based attacks, which highlights the adversarial robustness of the proposed

algorithm against transfer-based black-box attacks.

Transferability Test on CIFAR-10 under PGD Attack Following (Guo et al. 2020), we

further conduct the transferability test on CIFAR-10. We use different NAS algorithms as

source models to generate adversarial samples through 10-iteration PGD attack and feed them

to other target models as cross black-box attacks. The results are shown in Table 3.5. Each
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TABLE 3.5. Transferability test on CIFAR-10 among differnet models using
PGD attack. The best results in each row are in bold. Underline denotes the
white-box robustness.

Source
Target AmoebaNet NasNet DARTS PC-DARTS ours

AmoebaNet 53.69 66.79 64.39 66.50 67.21
NasNet 64.77 53.35 64.31 65.62 66.22
DARTS 65.03 66.91 54.04 66.74 67.04

PC-DARTS 64.37 65.45 63.91 53.01 66.23
RACL(ours) 64.49 66.24 64.06 65.90 55.68

row denotes the robust accuracy of different target models under the black-box attack from the

same source model. Correspondingly, each column denotes the robustness of a target model

under attack from different source models. Comparing each row, RACL achieves the best

accuracy under the attacks from different source models, which indicates that although these

architectures are searched within the same search space, they show different robustness under

attacks. The large gap between RACL and other baselines also highlights the superiority

of RACL under black-box settings. Furthermore, through comparing the transferability

between each model pair, RACL tends to generate stronger adversarial samples. E.g., RACL

→ AmoebaNet achieves the successful attack success rate of 35.52% and AmoebaNet→

ours achieves the successful attack success rate of 29.59%. Taking NASNet, DARTS and

PC-DARTS as target models, RACL generates the adversarial samples which achieve the

highest attack success rate except for the white-box attack.

Transferability Test on CIFAR-10 under RFGSM Attack Furthermore, we provide

TABLE 3.6. Transferability Test on CIFAR-10 among different models under
RFGSM Attack. The best results in each row are in bold. Underline denotes
the white-box robustness.

Source
Target AmoebaNet NasNet DARTS PC-DARTS ours

AmoebaNet 76.68 80.97 77.13 80.93 81.22
NasNet 78.93 78.52 77.18 80.85 81.09
DARTS 78.81 80.92 75.26 80.82 81.16

PC-DARTS 78.70 80.68 77.02 78.43 81.16
RACL(ours) 78.78 80.73 77.18 80.83 78.83
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(a). Adversarial accuracy on CIFAR-10 
under different PGD iterations

(b). Adversarial accuracy on CIFAR-10 
under different PGD total perturbation size

(c). Adversarial accuracy on CIFAR-10 
under different FGSM total perturbation size

FIGURE 3.4. Robustness evaluation under different perturbation sizes and
attack iterations.

additional robustness evaluation of RACL through transferability test on CIFAR-10 under

RFGSM attack (Tramèr et al. 2017a). The detailed results are shown in Table 3.6. The

underline denotes the adversarial accuracy under white-box RFGSM attack where the total

perturbation is set to 8/255. Comparing the accuracy on diagonal, RACL achieves the best

white-box performance under RFGSM attack. Each row denotes the robustness of different

target models under the black-box attack from the same source model. Comparing each

column, RACL shows strong adversarial transferability as the source model. Comparing each

row, RACL achieves better black-box adversarial accuracy in all the scenarios as shown in

Table 3.6 with bold. E.g., as shown in the fourth row, PC-DARTS→ RACL achieves the

successful attack success rate of 18.84%, PC-DARTS→ AmoebaNet of 21.30%, PC-DARTS

→ NASNet of 19.32% and PC-DARTS→ DARTS of 22.98%. Similarly, RACL achieves

strong adversarial transferability with RFGSM attack. Thus, RACL shows superior adversarial

robustness against different transferred-based attacks, which demonstrates the effectiveness

of our algorithm.

3.3.4 Robustness under Various Perturbation Size and Attack Iterations

Robustness under Increasing Attack Iterations We further conduct experiments with

different white-box attack parameters, including the size of perturbation and the number of

iterations. Following (Guo et al. 2020), we strengthen the adversarial attack through boosting

the attack iterations to 100 for PGD attack with a step size of 2/255. The comparison with

other baselines is shown in Figure 3.4 (a) where RACL consistently achieves the best accuracy
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TABLE 3.7. Multiple runs of searched cells with adversarial training. The
mean of clean or adversarial accuracy is reported with its error bar.

Models Clean FGSM PGD20 MIM CW AA
AmoebaNet 81.86±0.22 59.19±0.32 53.43±0.45 57.07±0.49 78.33±0.63 47.64±0.37

NasNet 84.05±0.64 59.49±0.53 53.37±0.70 58.16±0.55 79.57±0.74 48.34±0.46
DARTS 80.84±0.88 59.49±0.53 53.82±0.59 57.32±0.45 77.34±0.99 48.31±0.38

PC-DARTS 84.01±0.68 60.85±0.26 53.30±0.51 58.17±0.46 79.93±0.56 47.56±0.50
RACL 83.98±0.22 62.48±0.10 55.50±0.38 60.01±0.39 80.11±0.39 50.14±0.33

for different PGD iterations. Furthermore, RACL shows relatively stronger defence capability

against PGD attacks with more iterations. For example, NasNet achieves 53.35% under

PGD20 and 52.83% under PGD100 with a gap of 0.52% while RACL achieves 55.68% under

PGD20 and 55.32% under PGD100 with a gap of 0.36%, which demonstrates that RACL can

better remain the robustness after more attack iterations. Compared to RobNet family with

the same search space on PGD100 (Guo et al. 2020), RACL achieved better performance with

fewer parameters than RobNet-small, RobNet-medium, RobNet-large, and RobNet-free but

7.25%, 6.36%, 6.08%, and 2.75% accuracy improvement respectively, which also shows the

efficiency of RACL.

Robustness under Increasing Perturbation Size Besides attack iterations, we evaluate

the adversarial robustness under different perturbation budgets. As shown in Figure 3.4 (b,

c), the total perturbation size ranges from 0.01 to 0.05 for both PGD and FGSM attacks.

Our proposed RACL algorithm always performs better than other baselines under different

perturbation budgets, which illustrates that RACL can provide a stronger defence against

various adversarial attacks. Similarly, our advantage becomes more obvious when the attack

was allowed with a larger total perturbation size. E.g., comparing NasNet with RACL on the

PGD0.01 and PGD0.05, the gap increases 0.71% when the attack size grew (75.33%→ 76.89%

on PGD0.01 and 33.57% → 35.84% on PGD0.05); comparing AmoebaNet with RACL on

the FGSM0.01 and FGSM0.05, the gap increases 1.65% (75.10% → 77.33% on FGSM0.01

and 47.55%→ 51.43% on FGSM0.05), which highlights the adversarial robustness of RACL

within a wider perturbation space for various attacks.
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(a). Normal Cell

(b). Reduction Cell

(c). Normal Cell

(d). Reduction Cell

FIGURE 3.5. The visualization of cells searched by RACL through multiple
runs.

TABLE 3.8. Ablation Analysis of RACL with respect to confidence learning,
ρ, and η.

Setting Clean FGSM PGD20 MIM CW AA
Random Search 81.55 58.73 51.36 55.72 76.63 46.82

w/o Gradient Norm 82.54 60.33 53.87 58.04 78.94 48.25
w/o CL 84.35 61.64 54.58 58.68 78.72 48.89

η = 0.9, ρ = 0.01 83.06 61.60 55.66 59.34 79.51 48.98
η = 0.7, ρ = 0.001 84.30 61.58 55.00 59.14 80.36 49.03
η = 0.9, ρ = 0.001 84.04 62.07 55.68 60.00 80.90 50.07

3.3.5 Potential Pattern and Variance of RACL

Visualization of Searched Cells Besides the cells visualized in Fig. 3.3, we run RACL

several times to explore the potential patterns RACL tended to discover and provided more

insights into the searched robust neural architectures. More searched architectures are given

in Fig. 3.5. Together with the searched cells in Fig. 3.3, we showed that there exist some

potential patterns which RACL prefers. There always exists a ResNet-like pattern in the

searched normal cells. For example, the input of each node tends to be a combination of skip

connection and another operation with trainable parameters, such as the Node 0, 1, 2 in Fig.

3.3 (a) and Fig . 3.5 (c). Besides the ResNet-like pattern in the normal cells, RACL tends to

select pooling layers such as 3× 3 max pooling instead of skip connection in the reduction
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cells, as shown in Figure 3.3 (b) and Figure 3.5 (b), (d). Overall, the searched cells of RACL

look like a tuned version of ResNet.

Robustness Stability of Searched Cells To further demonstrate the effectiveness of RACL,

we report the error bar of RACL as well as other baselines through multiple runs to evaluate

the robustness stability of searched cells. Following previous NAS work (Liu et al. 2018a), we

retrain all the baselines for multiple times and report the performance of neural architectures

searched by different NAS algorithms and RACL (out of 5 runs). The detailed results are

shown in Table 3.7. For each algorithm, we report the average clean and robust accuracy with

the standard error. Comparing each column, RACL consistently achieves the best average

robust accuracy under various attacks after multiple runs. For example, RACL achieves an

average accuracy of 50.14% under Auto Attack and 55.50% under PGD20, which is around

2% higher than other baselines. For the error bar, RACL has smaller fluctuation in almost all

the scenarios among different NAS algorithms, which demonstrates that RACL can discover

robust neural architectures with better robustness and stability.

3.3.6 Ablation Analysis

In this section, we conduct ablation studies on the hyperparameters of RACL algorithm as

well as confidence learning. The ablation study results are shown in Table 3.8. We first apply

the random search algorithm within the pre-defined search space to rule out the possibility

that the major improvement comes from the search space. We randomly sampled 10 models

and selected the best one for comparison. We then remove the confidence learning and apply

the constraint in Eq. 3.10 to evaluate the effectiveness of confidence learning. Similarly, we

remove the gradient norm constraint in Eq. 3.16 to evaluate the effectiveness of lower bound

constraint. Comparing the first and other rows, the random search algorithm cannot achieve

competitive results within a pre-defined search space, which demonstrates the necessity of

discovering robust neural architectures. Comparing the second and last row, the searched

architecture without confidence learning tends to have a relatively higher natural accuracy.

On the contrary, our proposed RACL achieves a relatively large increment in adversarial

accuracy with confidence learning, which highlighted the importance of proposed confident
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architecture sampling. We then investigated the influence of hyperparameter ρ and reported

the performance of searched robust cell on CIFAR-10 under different values of ρ. Through

comparison, ρ with a large value could hurt the classification performance on clean images.

On the contrary, ρ with a small value reduces the influence of Lipschitz constraint and

results in inferior adversarial accuracy. The influence of confidence hyperparameter η is

also investigated. From Eq. 3.16, η controls the balance between the mean and variance of

Lipschitz constant λF . Through cross-validation, η is set to 0.9 to obtain the best adversarial

accuracy.

3.4 Conclusion

In this chapter, we propose to tackle the vulnerability of neural networks by incorporating

NAS frameworks. Through sampling architecture parameters from trainable log-normal

distributions, we show that the approximated Lipschitz constant of the entire network can be

formulated as a univariate log-normal distribution, which enables the proposed algorithm,

Robust Architecture with Confidence Learning to form confidence learning of architecture

parameters on the robustness through a Lipschitz constraint. Thorough experiments demon-

strate the influence of architecture on adversarial robustness and the effectiveness of RACL

under various attacks on different datasets.



CHAPTER 4

Adder Filter Design for Adversarial Robustness

4.1 Motivation

Convolutional Neural Networks (CNNs) utilizes cross-correlation as the basic operation to

measure the similarity between weight parameters and activations, which has been widely

adopted in various computer vision tasks. However, this similarity measurement could limits

the performance of DNNs in adversarial robustness, which motivated us to look for some

robust basic operations which can naturally defend against adversarial perturbations. Recently,

Chen et al.(Chen et al. 2020b) advocate the use of ℓ1-distance for similarity measure instead

of cross-correlation in CNNs to replace multiplications with additions. Compared with

multiplications, addition operations are much cheap, which benefits the power-efficiency

(Wang et al. 2020a; Sze et al. 2017; You et al. 2020). Adder neural network (ANN) has

demonstrated extraordinary performance on several computer vision tasks with huge energy

reduction, which can be seen as a good complement to the classical CNNs. Different from

existing work, we delve into the theoretically understanding of ANNs and explore their

potential in adversarial robustness.

To investigate this potential, we first study the difference caused by the replacement from cross

correlation to ℓ1-distance. The performance achieved by ANNs on classification is impressive,

but some observations raise our concerns. E.g., the optimization of ANNs is not stable as

CNNs where the test accuracy curve has dramatic fluctuations during the optimization, as

shown in Figure 4.1 (a). The test accuracy of ANNs has a large variation until the end of

training while that of convolution networks is much more stable. Furthermore, weights of

ANNs have demonstrated a significantly different statistical property from those of CNN
40
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FIGURE 4.1. Observations of AdderNet. Training and testing loss curves of
ANN and CNN in (a). Histograms over the AdderNet features after batch
normalization layer follow Gaussian distribution in (b). Histograms over
the AdderNet weight follow Laplace distribution with a large variance while
Conv weight follows Gaussian distribution with small variance in (c) and (d)
respectively.

weights. The histograms over ANN and CNN weights are shown in Figure 4.1 (c) and (d)

respectively. The red curve in (c) denotes a Laplace distribution with a mean of 0.32 and a

variance of 88.47 and the one in (d) denotes a normal distribution with a mean of −0.002 and

a variance of 0.001. Although the means of these two distributions are similar, there exists a

serious discrepancy between their variances. Given this statistical property difference, those

sophisticated training strategies previously developed for CNN might not fulfill their potential

when straightforwardly applied to ANNs.

In this chapter, we provide a complete workflow of adversarial robustness via adder filters.

First, we provide an exhaustive analysis of the variance in ANNs. Taking a one-layer adder

forward as an example, we demonstrate the large variance of ANN weights can be the major

cause of the instability of running mean and variance in batch normalization layer which

vibrates the test accuracy. Weight normalization is therefore a natural idea to constrain the

variance of weights. To preserve the representation capability of the normalized weights,

trainable scaling and shift coefficients are further introduced to achieve an Adaptive Weight

Normalization (AWN). By doing so, the variance of ANN weights can be normalized to

acceptable levels which significantly stabilizes the batch normalization layers and makes

pretrained ANN easily applied to other tasks. Notably, we identify a natural advantage of

ANNs to be robust to adversarial perturbations, stemming from ℓ1-distance and the running

mean of batch normalization layer in ANNs. The reduction of weight variation across channels

further boosts the defense ability against attacks. Without adversarial training, AWN with
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ANN on ResNet-32 improves adversarial accuracy by 59.73% compared with CNN under

PGD attacks. AWN presents superior stability under a series of evaluations and outperforms

vanilla ANN in detection task on VOC benchmark with 2.7 mAP improvement.

4.2 Preliminary

Adder Neural Networks. To significantly reduce energy costs, Chen et al.(Chen et al.

2020b) proposed an Adder Neural Network to release the burden of multiplications in tra-

ditional convolution networks by replacing them with additions. Consider an intermediate

layer in deep convolution neural network with weight W ∈ Rd×d×cin×cout where d denotes the

kernel size and cin and cout are the number of input and output channel respectively. Given the

input feature map X ∈ RH×W×cin where H and W are the height and width of input feature,

the adder operation is defined as

Y (m,n, c) = −
d∑
i=1

d∑
j=1

cin∑
k=1

|X(m+ i, n+ j, k)−W (i, j, k, c)|. (4.1)

Although the adder operation enables ANNs to achieve similar performance in classification

tasks with energy efficiency, the observations in Figure 4.1 shadow ANNs. The unstable

test accuracy curve and large variance almost everywhere in ANNs arouse our interest in the

analysis of ANN variance.

Adversarial Attack. Given the input x ∈ RD and the annotated label y ∈ RC where D

is the dimension of input and C is the number of classes, the network N maps perturbed

input x̃ to ỹ = N (x̃;W ) where x̃ = x+ δ. The objective of adversarial attacks is to find the

perturbed input which maximizes the classification loss as

x̃ = argmax
x̃:∥x̃−x∥p⩽ϵ

ℓ(N (x̃,W ), y), (4.2)

where the perturbation is constrained by its lp-norm. Through variance study of ANNs and

ℓ1-distance analysis, we demonstrate the potential adversarial robustness of ANNs can be

activated through proposed inference strategy with AWN.
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4.3 Variance Study of AdderNet

To analyze the variance of ANNs, we first consider a one-layer adder forward with batch

normalization (Ioffe and Szegedy 2015) and ReLU as activation function. Given output

feature yl−1 from previous layer, the forwarding of layer l is formulated as

xl = max(0, yl−1), y
′
l = −

n∑
|xl −Wl|, yl = γ

y′l − µl
σl

+ β, (4.3)

where µl and σl denote the mean and standard deviation, respectively, Wl is the weight, n

represents the size of weight of one output channel n = d× d× cin, and γ and β stand for

the rescale and shift parameters.

Before we proceed to the weight variance analysis, we first make several assumptions that

are empirically plausible. After the batch normalization, yl−1 is supposed to follow a normal

distribution N (0, σ2). From empirically observation of a ResNet-18 with ANN on ImageNet,

as shown in Figure 4.1 (b) and (c), adder feature after BN layer follows a distribution with

mean of 0.02 and variance of 0.38 while the corresponding weight with mean of 0.32 and

variance of 88.47, the adder weights follow Laplace distributions with a large variance but

their mean is close to 0 after training. Thus, we assume Wl follows L(µ, b) with the mean as

µ and the variance as 2b2 where 2b2 ≫ σ2.

Now we compute the mean and variance of each variable. The activation xl follows the

Rectified Gaussian distribution. With the law of total expectation, the mean of xl forms the

one-side truncation of lower tail E[xl|xl > 0] which can be computed based on the property

of Truncated normal distribution as

E[xl] = E[xl|xl > 0] · P (xl > 0) + E[xl|xl ≤ 0] · P (xl ≤ 0)

= E[xl|xl > 0] · P (xl > 0) + 0 = [0 + σ
ϕ(0)

1− Φ(0)
] · 1

2
=

σ√
2π

,
(4.4)

where ϕ(·) denotes the probability of standard normal distribution and Φ(·) denotes the

cumulative distribution function. Similarly, with the law of total expectation, the variance

of xl is broken down into variants of expectation and the variance of one-side truncation of
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lower tail V ar(xl|xl > 0), which can be computed through Truncated normal distribution as

V ar[xl] = E[x2
l ]− (E[xl])

2 = −(E[xl])
2 + E[x2

l |xl > 0] · P (xl > 0)

= P (xl > 0)[V ar(xl|xl > 0) + (E[xl|xl > 0])2]− (E[xl])
2

= [σ2(1− (
ϕ(0)

1− Φ(0)
)2) +

4σ2

2π
] · 1

2
− σ2

2π
= σ2(

1

2
− 1

2π
).

(4.5)

Since we assume 2b2 ≫ σ2 and the variance is further reduced after activation, the distribution

of xl−Wl is overwhelmed by Wl to form a Laplace distribution asL( σ√
2π
−µ,

√
b2 + (π−1)σ2

4π
).

For simplicity, let τµ = σ√
2π
−µ and b+τσ =

√
b2 + (π−1)σ2

4π
. Note that the standard deviation

of output last layer σ and the mean of weight µ are both close to zero, which makes τµ and τσ

small values. Although it is difficult to directly derive the closed-form distribution expression

of y′l, it can be approximated based on variable xl −Wl − τµ. According to the properties

of Laplace distribution, the absolute function of L(0, b) follows an Exponential distribution,

with which y′l can be approximated as

y′l = −
n∑
|xl −Wl| ≥ −

n∑
[|xl −Wl − τµ|+ |τµ|],

where |xl −Wl − τµ| ∼ Exp([b+ τσ]
−1),

(4.6)

where Exp denotes Exponential distribution. Based on the property of Exponential distribution,

E[|xl −Wl|] = b+ τσ and V ar[|xl −Wl|] = (b+ τσ)
2. With Eq. 4.6, the lower boundary of

E[y′l] can be derived as

E|xl −Wl| ≤ E|xl −Wl − τµ|+ |τµ|, E[y′l] ≥ −n(b+ τσ + |τµ|). (4.7)

With inequality in Eq. 4.7, the lower boundary of V ar[y′l] can be derived by the law of the

unconscious statistician as

V ar[y′l] =
n∑
[E[|xl −Wl|2]− (E[|xl −Wl|])2]

=
n∑
[V ar(xl −Wl) + (E(xl −Wl))

2 − (E(|xl −Wl|))2]

≥ n[V ar(xl −Wl) + (E(xl −Wl))
2 − (E|xl −Wl − τµ|+ |τµ|)2]

= n[2(b+ τσ)
2 + τ 2µ − (b+ τσ + |τµ|)2] = n[(b+ τσ)

2 − 2|τµ|(b+ τσ)].

(4.8)
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Taking the lower boundary of mean and variance of y′l in Eq. 4.7, 4.8, the batch normalization

layer can be computed as

yl = γ
y′l + n(b+ τσ + |τµ|)√

n[(b+ τσ)2 − 2|τµ|(b+ τσ)]
+ β. (4.9)

Note that the batch normalization layers use running mean and variance of current batch in

training phase while moving averages in testing phase. Although precise E[y′l] and V ar[y′l]

can be computed in training phase, the moving averages vary dramatically since b in Eq. 4.9

grows from a small value to a large one during optimization, as shown in Figure 4.1 (c) where

the distribution of Wl with initial variance of 1.0 is optimized to the one with variance of

88.47. Thus, the large variation of batch statistics results in the instability of testing loss curve

while the training loss curve is similar to the one of CNNs, as shown in Figure 4.1 (a).

4.3.1 Adaptive Weight Normalization for AdderNet

Based on these observations and analysis, we propose to make some efficient modifications to

current ANN optimization. From Eq. 4.9, the running mean and variance mainly depend on

the standard deviation of adder weights so that large magnitude of weights could destabilize

the statistics in batch normalization, which indicates that adder weights need normalization to

prevent them from being updated to a distribution with large variance. A naive approach is

Weight Standardization proposed by Qiao et al.(Qiao et al. 2019) as

W ′
i,j =

Wi,j − µWi

σWi

, where µWi
=

1

n

n∑
j=1

Wi,j,

σWi
=

√√√√ 1

n

n∑
j=1

(Wi,j − µWi
)2 + ϵ,

(4.10)

where W ∈ Rcout×n denotes the permuted adder weight,
f

denotes concatenation operation

and ϵ is added for numerical stability. In Eq. 4.10, each output channel of adder weight is

normalized to a distribution with a mean of 0 and variance of 1, which stabilizes the running

mean and variance of batch normalization layer according to Eq. 4.9. However, with weight

standardization directly applied to ANNs, there exists a dramatic accuracy drop. For example,
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ANN with weight standardization achieves 90.62% in ResNet-20 on CIFAR-10 while original

ANN achieves 91.84%, which causes 1.22% accuracy drop. Although adder weights are

normalized to guarantee a stable test phase, rigorous mean and variance are strictly assigned

to adder weights, which constrains the representation power of ANNs. Since the similarity

between filter and input feature is measured by ℓ1-distance in ANNs, the magnitude of weight

values can be rather sensitive for network expression capability. Thus, directly applying

weight standardization to ANNs can be easily stunk in the local optimum without exploring

wider space of adder weights. Instead, we propose to normalize adder weights with trainable

variables for each output channel, which preserves the representation power. Eq. 4.10 can be

rewritten as

W ′
i,j = νi

Wi,j − µWi

σWi

+ υi, (4.11)

where νi and υi are trainable variables similar to β and γ in batch normalization layer. Thus,

the magnitude of weight values can be automatically adjusted to fit the potential levels of

freedom of adder weights. Furthermore, previous analysis demonstrates that the magnitude of

gradient w.r.t the input X and the filter W in ANNs is much smaller than that in CNNs (Chen

et al. 2020b). With the incorporation of these two parameters, the gradient w.r.t the filter W

can be automatically adjusted. The gradient of loss ℓ w.r.t the weight Wi,j is computed as

∂ℓ

∂Wi,j

=
n∑
c=1

νi
n2σWi

{ ∂ℓ

∂W ′
i,j

− ∂ℓ

∂W ′
i,c

[1 +
(Wi,j −Wi,c)(Wi,c − µWi

)

σWi

]
}
. (4.12)

In Eq. 4.12, the gradient of W is amplified by νi, which relieves the gradient reduction in

ANNs.
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4.4 Activate Potential Adversarial Robustness

Consider the intermediate layer forwarding of ANNs and CNNs with perturbation δl, the

disturbance of an element on the output feature map before BN layer can be computed as

ỹ′lCNN − y′lCNN =
n∑
i=1

[(xl,i − δl,i)×Wl,i − xl,i ×Wl,i] =
n∑
i=1

(−δl,i)×Wl,i,

ỹ′lANN − y′lANN =
n∑
i=1

[|xl,i −Wl,i| − |xl,i − δl,i −Wl,i|] ≈
n∑
i=1

±|δl,i|,
(4.13)

where ± denotes the choices of two possible signs including addition and subtraction. Note

that |xl,i −Wl,i| follows a distribution with large mean and variance in ANNs. We assume

that δl follows a Gaussian distribution with zero mean and smaller variance N (0, σ2
δ ) where

σ2
δ < V ar[Wl], with which the subtraction |xl,i − Wl,i| − |xl,i − δl,i − Wl,i| has a high

probability to be either δl or −δl. We show that it is difficult for ±|δl,i| to have large variance

in ANNs under adversarial attacks. In Eq. 4.13, if V ar[±|δl,i|] grows in ANNs, all the

elements in ±|δl,i| tend to select different signs, which automatically eliminate each other to

make ỹ′lANN−y
′
lANN ≈ 0. Thus, if attacks succeed, V ar[±|δl,i|] needs reduction to guarantee

larger perturbation on feature map. To ensure maximum disturbance, all the elements in

±|δl,i| have the same signs, which forms a sum of n half-normal distributions. On the contrary,

each δl,i in CNNs is transformed by different Wl,i in Eq. 4.13. The variance of disturbance

before BN layer can be computed as

V ar[ỹ′l − y′l]CNN = V ar[
n∑
i=1

(−δl,i)×Wl,i] = nσ2
δ (V ar[Wl] + (E[Wl])

2),

V ar[ỹ′l − y′l]ANN ≈ V ar[
n∑
i=1

|δl,i|] = nσ2
δ (1−

2

π
).

(4.14)

Eq. 4.14 indicates the output disturbance variation in CNNs depends on both the statistics of

W and δ, and could vary for different output channels while the one in ANNs only depends

on the statistics of δ for all the output channels. The major difference lies in BN layer where

both ANN and CNN disturbances are re-scaled and the variance of perturbation on next layer

can be computed as
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V ar[δl+1]CNN = nσ2
δ (V ar[Wl] + (E[Wl])

2)/[Std(ỹ′lCNN)]
2,

V ar[δl+1]ANN ≈ nσ2
δ (1−

2

π
)/[Std(ỹ′lANN)]

2.
(4.15)

Note that the variance of ỹ′lANN is much larger than ỹ′lCNN . Thus, ANNs have a much smaller

disturbance variance on l + 1 layer, which suggests that the perturbations of all the elements

on ỹ′l are similar and can be eliminated through subtraction of a scalar value while CNNs

cannot copy that success. To activate the adversarial robustness through utilizing this property

of ANNs, a simple yet effective method is utilizing the running mean in batch normalization

layer for automatic disturbance elimination. In Eq. 4.9, τµ becomes τµ − E[δ] while b+ τσ

nearly remains the same under attack settings since the disturbance has small variance. The

forwarding of BN layer can be computed as

ỹ = γ
ỹ′ + n(b+ τσ + |τµ − E[δ]|)√

n[(b+ τσ)2 − 2|τµ − E[δ]|(b+ τσ)]
+ β

≈ γ
y′ +

∑n
i ±|δi|+ n(b+ τσ + |τµ|)− n|E[δ]|√

n[(b+ τσ)2 − 2|τµ − E[δ]|(b+ τσ)]
+ β

≈ γ
y′ + n(b+ τσ + |τµ|)√

n[(b+ τσ)2 − 2|τµ − E[δ]|(b+ τσ)]
+ β.

(4.16)

The difference between Eq. 4.9 and Eq. 4.16 lies in the running variance, which demonstrates

that the disturbance can be significantly relieved through computing the running mean in BN

layer while the variance is expected to be constant to eliminate the difference brought by E[δ].

Thus, we propose ANN robust inference strategy as

y∗ = γ
ỹ − running mean
tracked variance

+ β. (4.17)

However, in some cases where |xl,i −Wl,i| and |xl,i − δl,i −Wl,i| have different signs, the

perturbations in feature space can be amplified by W in ANNs. It indicates the trade-offs

between the magnitude of W and variance of ANN features, where our proposed ANN-AWN

can successfully achieves better trade-offs. In addition, considering the actual case where

the signs of ±|δl,i| are not the same everywhere, the proposed ANN robust inference strategy

cannot work appropriately and results in residual perturbations which will be re-scaled by

tracked variance after BN layer. In Eq. 4.13, the perturbations of different output channels
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FIGURE 4.2. Histograms over the ANN and ANN-AWM features of an inter-
mediate layer are shown in (a) and (b).

TABLE 4.1. Adversarial robustness on CIFAR-10 under white-box attacks
without adversarial training. -R denotes robust inference strategy which uses
the running mean in batch normalization layer instead of tracked ones. BIM7

denotes iterative attack with 7 steps. The best results in bold and the second
best with underline.

Model Method #Mul. #Add. Clean FGSM BIM7 PGD7 MIM5 RFGSM5

ResNet-20

CNN 41.17M 41.17M 92.68 16.33 0.00 0.00 0.01 0.00
ANN 0.45M 81.89M 91.72 18.42 0.00 0.00 0.04 0.00

CNN-R 41.17M 41.17M 90.62 17.23 3.46 3.67 4.23 0.06
ANN-R 0.45M 81.89M 90.95 29.93 29.30 29.72 32.25 3.38

ANN-R-AWN 0.45M 81.89M 90.55 45.93 42.62 43.39 46.52 18.36

ResNet-32

CNN 69.12M 69.12M 92.78 23.55 0.00 0.01 0.10 0.00
ANN 0.45M 137.79M 92.48 35.85 0.03 0.11 1.04 0.02

CNN-R 69.12M 69.12M 91.32 20.41 5.15 5.27 6.09 0.07
ANN-R 0.45M 137.79M 91.68 19.74 15.96 16.08 17.48 0.07

ANN-R-AWN 0.45M 137.79M 91.25 61.30 59.41 59.74 61.54 39.79

are similar in ANNs, which indicates that the noise of feature map can hardly cross channels.

However, this property will be broken if tracked variances have enormous differences among

channels. Thus, our proposed ANN-AWN can successfully relieve the variation across

channels to further improve adversarial robustness. As shown in Figure 4.2, each peak in

ANN feature histogram denotes the features of one channel, which illustrates that different

channels of ANN feature map have tremendous variations while ANN-AWN has a much

smooth histogram.
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4.5 Experiments

In this section, we empirically evaluate the superiority of the proposed approach on different

tasks and datasets, including the adversarial robustness, object detection and optimization

stability.

4.5.1 Adversarial Robustness Evaluation

White-box Attacks Setup. To demonstrate how the proposed adaptive weight normalization

activates the potential adversarial robustness of AdderNet, we conduct a series of experiments.

Following (Chen et al. 2020b), we first train both CNNs and ANNs with ResNet20 and

ResNet32 on CIFAR-10 under the same settings. CIFAR-10 dataset contains 50K training

images and 10K validation images with size of 32×32 over 10 classes. We use SGD optimizer

with an initial learning rate of 0.1, momentum of 0.9 and a weight decay of 5× 10−4. The

model is trained on single V100, which takes 400 epochs with a batch size of 256 and a cosine

learning rate schedule. The learning rate of trainable parameter ν and υ in AWN is rescaled

by a hyper-parameter which we set to be 1× 10−5. For adversarial robustness evaluation, we

conduct white-box attacks on these models including Fast Gradient Sign Method (FGSM)

(Szegedy et al. 2014), Basic Iterative Method (BIM) (Kurakin et al. 2018), Projected Gradient

Descent (PGD) (Madry et al. 2018), Momentum Iterative Method (MIM) (Dong et al. 2018),

and RFGSM (Tramèr et al. 2017a) to generate adversarial examples. Following previous

adversarial literature (Madry et al. 2018; Zhang et al. 2019a), the adversarial perturbation

is considered under l∞ norm with the total perturbation size of 8/255. In iterative attack

settings, the step size is set to 2/255. The number of iterations is set to 7 for PGD and BIM

attacks, and 5 for MIM and RFGSM attacks. Note that different from traditional defense

algorithms which generate adversarial samples for adversarial training (Shafahi et al. 2019)

or search robust architectures (Dong et al. 2020; Li et al. 2021a), our proposed algorithm

utilizes the properties of ANNs to achieve adversarial robustness without any training tricks or

modifications of architecture. The experimental results are shown in Table 4.1. Note that all

the models are trained with clean images, which dismisses the expensive adversarial training.
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Against White-box Attacks. As shown in the first two rows in Table 4.1, these adversarial

attacks successfully mislead both CNN and ANN to provide wrong predictions. Although

ANN has slightly better adversarial accuracy compared to CNN, such as 0.01% → 0.04%

under MIM5 attack, the potential adversarial robustness shown in Eq. 4.13 cannot be activated

with normal settings. Thus, we replace the tracked mean in batch normalization layer with

the running mean of current batch based on Eq. 4.17 and compare ANN with CNN in

the third and fourth rows, which are denoted as -R. Comparing CNN-R and ANN-R, there

exists an enormous adversarial robustness improvement. For example, ANN-R achieves

26.05% accuracy increment from 3.67% → 29.72% under PGD7 compared with CNN-R,

and improves the accuracy by 32.21% from 0.04%→ 32.25% under MIM5 compared with

ANN. The comparison between ANN and ANN-R empirically demonstrates that appropriate

utilization of the running mean in batch normalization layer of ANNs can significantly

activate the adversarial robustness of ANNs. Furthermore, the comparison between CNN-R

and ANN-R shows strong evidence of the natural robustness difference between CNNs and

ANNs and indicates that the ℓ1 distance and the independence between perturbation and adder

weight provides much better defense than CNNs, which is consistent with the aforementioned

variance analysis. The evaluation of proposed AWN is shown in the fifth row. For all

the attacks, ANN-R-AWN achieves the best results, which demonstrates the effectiveness

of proposed AWN. Comparing ANN-R and ANN-R-AWN, AWN shows obvious superior

adversarial robustness. For example, AWN improves adversarial accuracy by 13.67% from

29.72%→ 43.39% under PGD7 and 14.98% from 3.38%→ 18.36% under RFGSM5, which

illustrates that adversarial robustness can be further boosted through narrowing the difference

among channels to relieve the perturbation transformation. On ResNet-32, ANN-R achieves

worse performance than the one with ResNet-18, which demonstrates that proposed robust

inference strategy is not sufficient for superior adversarial robustness. However, ANN-R-

AWN consistently achieves better performance, which outperforms other baselines in all the

adversarial scenarios, which indicates that the robustness of proposed AWN can generalize to

deeper models.

Against Gradually Enhanced Attacks. We highlight the superiority of proposed ANN-

R-AWN through enhancing the attacks from different aspects to evaluate the adversarial
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(a) (b) (c) (d)

FIGURE 4.3. The evaluation of adversarial robustness under different PGD
attack size is shown in (a) and different PGD attack steps in (b). The perform-
ance of intermediate weights sampled from ANN and ANN-AWN through
linear interpolation in (c). Test loss curves of CNN, ANN, ANN-WS and
ANN-AWN are shown in (d).

robustness under more powerful attacks. We use the naturally trained models with ResNet-20

on CIFAR-10 for evaluation. In the first scenario, the total perturbation size ϵ of PGD attack

increases from 0.01 to 0.1 with a step size of ϵ/7. In the second scenario, the iterations of

PGD attacks are enhanced from 1 to 50. The evaluation results are shown in Figure 4.3

(a) and (b). ANN-R-AWN obtains much better defense ability than ANN-R, CNN-R and

ANN-R-WS baselines when the attack size grows. For example, the adversarial accuracy of

CNN-R quickly dive to 2.96%, ANN-R to 27.67% and ANN-R-WS to 28.66 when the PGD

attack size reaches 0.06 while ANN-R-AWN maintains 32.67% when the PGD attack size

reaches 0.1. Similarly, ANN-R-AWN also achieves superior robustness over other baselines

with increasing steps of PGD attack. For example, the adversarial accuracy of ANN-R under

PGD50 becomes 26.48% while ANN-R-AWN maintains 36.52% with 10.04% increment,

which demonstrates the effectiveness of AWN. The enormous accuracy drop of ANN-R-

WS along with attack epoch and coherent robustness of our proposed AWN illustrate the

necessity of introduced adaptive rescale and shift parameters in weight normalization. Thus,

the advantage of AWN becomes more obvious under more powerful attacks, which highlights

the superiority of proposed AWN.

4.5.2 Robustness Comparison with Adversarial-trained CNN

We further provide the comparison with other advanced defense techniques on CNN, as

shown in Table 4.2. Adversarial training is one of the most effective approaches for defending
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TABLE 4.2. Robustness Comparison with CNN defense techniques. AT
denotes the usage of adversarial training.

Method AT Clean FGSM BIM7 PGD7 MIM40 CW30

PGD-AT ✓ 87.14 55.63 48.29 49.79 45.16 46.97
ALP ✓ 89.79 60.29 50.62 51.89 45.97 47.69
TLA ✓ 86.21 58.88 52.60 53.87 50.09 50.69

ANN-AWN-R ✗ 91.25 61.30 59.41 59.74 66.43 50.60

adversarial examples and different variants have been proposed, such as PGD-AT (Madry et al.

2018), ALP (Kurakin et al. 2018) and TLA (Mao et al. 2019). We evaluate these algorithms

under various attacks with the same settings, such as FGSM, BIM, PGD, MIM as well as CW.

Our proposed ANN-AWN-R achieves the best performance since the perturbation brought by

adversarial examples can be automatically eliminated by BN layers and attacking space across

channels is reduced by AWN. Note that our algorithm only needs a natural training without

feeding any adversarial examples, however, the adversarial robustness of ANN-AWN-R still

outperforms CNN with defense techniques, which demonstrates the effectiveness of proposed

algorithm on ANNs.

4.5.3 Stability of AdderNets

Stability Evaluation through Linear Interpolation. To conduct a quantitative evaluation

of AdderNet stability, we propose to evaluate the smoothness of optimization landscape

through tracking the performance of AdderNet parameters which are sampled between dif-

ferent training epochs. To highlight the stability of our proposed AWN, we select adjacent

epochs for ANN and ANN-AWN trained with ResNet-20 on CIFAR-10 and sample 9 inter-

mediate weights between two epochs through linear interpolation. The comparison is shown

in Figure 4.3 (c). To evaluate the stability of early training stage, we select epoch 160, 164

for ANN as the blue curve and select epoch 125, 135 for ANN-AWN as the green curve.

Although we set earlier epoch with larger intervals for ANN-AWN, our proposed algorithm

forms a much more smooth curve with a smaller variance 336.00 compared to the one of

ANN 587.28. In the later training stage, we select epoch 290, 294 for ANN as the orange

curve and select epoch 283− 294 for ANN-AWN as the red curve. Comparing with ANN,
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FIGURE 4.4. Distributions of features from different layers of ANN and
ANN-AWN on different epochs.

our proposed algorithm achieves variance reduction of 585.97 from 627.54 to 41.67. The

performance of parameters sampled from linear interpolation reflects the stability of models

and the smoothness of the optimization landscape. With the proposed AWN, the optimization

of AdderNet can be significantly stabilized, which could benefit the situations where adder

layers are difficult to optimize.

Trade-offs Between Stability and Accuracy. To further illustrate how AWN takes effect,

we keep track of the test loss during AdderNet optimization and the results of both CNN

and ANN with ResNet-20 on CIFAR-10 are shown in Figure 4.3 (d). The test loss curve of

AdderNet is quite unstable before 300 epochs while CNNs, ANN with weight standardization

and ANN with adaptive weight normalization all achieve relatively smoothed loss curve,

which indicates that the instability of AdderNet mainly comes from the large variance of adder

weights and the proposed AWN eliminate it successfully. The dotted area covers from 300 to

400 epochs. Although AdderNet cannot achieve stability due to the large variance of weights,

ANNs can still achieve similar performance as CNNs since the variation of adder weights

is reduced during the end of training. However, WS fails to achieve a similar classification

performance and is stuck at local optimum, which demonstrates that the normalization on

adder weights could hurt the expressive power. On the contrary, our proposed AWN achieves

relatively better performance through incorporating the adaptive trainable parameters for adder

weights, which enables them to shift and re-scale back to restore the original performance.

Feature Distribution Analysis. We visualize and track the feature distributions of AdderNet

with or without AWN during the training, as shown in Figure 4.4. We randomly sample

features before batch normalization layer at different epochs and compute histograms over
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TABLE 4.3. Comparison of proposed approach on ANNs with other settings
on PASCAL VOC 2012 benchmark. The [·] in backbone denotes the classific-
ation accuracy on ImageNet.

Model Backbone Neck mAP
CNN-FPN Res18-CNN CNN 69.3
ANN-FPN Res18-ANN [67.0] ANN 68.6

ANN-WS-FPN Res18-ANN-WS [64.1] ANN-WS 67.0
ANN-AWN-FPN Res18-ANN-AWN [67.1] ANN-AWN 69.4

them. Both ANN and ANN-AWN feature distributions in the 2nd and 19th layers are shown

in Figure 4.4 (a),(b),(c) and (d) respectively. ANN feature distributions vary dramatically

during the optimization, which enormously disturbs the tracking of mean and variance in

batch normalization layer. For example, the sampled feature on 21-th epoch in (c) has mean

of −2738.58 and standard deviation of 1042.44 while the one on 386-th epoch has mean

of −1476.52 and standard deviation of 266.97 with 1262.06 increment on mean and 775.47

reduction on standard deviation. However, those in ANN-AWN become much milder, which

stabilizes ANNs. For example, the sampled feature on 21-th epoch in (d) has mean of−940.89

and standard deviation of 269.39 and the one on 385-th epoch has mean of −564.59 and

standard deviation of 60.65 with 376.3 increment on mean and 208.74 reduction on standard

deviation. Furthermore, the difference among channels are effectively reduced by AWN to

constrain the perturbation space of adversarial examples, E.g., the standard deviation of ANN

features on the second layer after training becomes 87.41 while that of ANN-AWN becomes

31.13 with a massive reduction, which potentially provides better defense ability against more

powerful adversarial attacks.

4.5.4 Experiments on Object Detection

To further illustrate the advantage of imposing stability on AdderNets, we conduct experiments

on object detection with ANNs on PASCAL VOC (VOC) dataset. VOC contains 20 object

classes, the training set includes 10K images which are the union of VOC 2007 and VOC

2012, and the VOC 2007 test set with 4.9K images is used for evaluation. The mAP scores

using Iou at 0.5 are reported. All the models are trained with the same setting. Based on the
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variance study of ANNs, we unfreeze BatchNorm during the training. Following (Chen et al.

2021b), we insert more shortcuts in the neck part. We use an initial learning rate of 0.008

with a linear warmup for 500 iterations, momentum of 0.9, weight decay of 1× 10−4 and a

cosine learning rate strategy. All the models are trained on 4 V100 GPUs with SGD optimizer

for 12 epochs with a batch size of 4. For the detector baseline, we include both CNN and

vanilla ANN for comparison. ANN-FPN replaces the convolution layers with adder layers in

the pretrained ResNet-18 backbone and neck of Faster R-CNN (Ren et al. 2015). Through

applying different types of ANNs to detection, we conduct comparison among the CNN,

vanilla ANN (Chen et al. 2020b), ANN-WS and ANN-AWN. The detailed evaluation is shown

in Table 4.3. In Backbone column, the number in brackets denotes the classification accuracy

pretrained on ImageNet. Comparing ANN with our proposed AWN, although they achieve

similar classification performance, AWN improves the mAP score by 0.8 from 68.6→ 69.4.

Even comparing with CNN-FPN which has superior classification performance, our proposed

AWN still outperforms it, which demonstrates the necessity of stability. With a much more

smooth loss landscape, the optimization of AdderNet on other tasks can be easier and more

stable. However, ANN-WS is not competitive with other baselines, with 2.4 mAP reduction

compared with AWN, which empirically verifies that directly normalizing adder weights

could limit the ability of feature extraction and performance for other tasks. Note that there

exists an enormous accuracy drop of pretrained ANN-WS, which significantly constrains its

detection performance. Thus, besides stability, the representation power of ANNs can be

rather important in terms of applying ANNs to other tasks. On the contrary, our proposed

AWN achieves better trade-offs between classification performance and stability through an

adaptive scheme, which together achieves the superior mAP score in detection task.

4.5.5 Ablation Studies

We conduct ablation studies on proposed ANN-R-AWN to illustrate the effectiveness of

adaptive training parameters and proposed robust inference strategy. We have already shown

that weight standardization can easily be stuck at a local optimum in Figure 4.3 (d). Although

the analysis in Sec 4.4 works for both WS and AWN, we empirically verifies that the gaps
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TABLE 4.4. Adversarial robustness comparison of WS and AWN under dif-
ferent inference strategy with ResNet-20 on CIFAR-10 with natural training.
-R denotes using running mean of current batch in BN layer. -r denotes using
both running mean and variance.

Model Clean FGSM BIM7 PGD7 MIM5 RFGSM5

ANN-r-WS 88.10 49.24 21.46 22.96 32.26 7.31
ANN-r-AWN 89.81 49.85 22.54 24.27 32.54 8.26
ANN-R-WS 89.38 40.65 31.35 36.08 42.3 7.78

ANN-R-AWN 90.55 45.93 42.62 43.39 46.52 18.36

TABLE 4.5. Adversarial robustness evaluation of AWN on CNN and ANN
with ResNet-32 on CIFAR-10.

Model Clean FGSM BIM7 PGD7 MIM5 RFGSM5

CNN-R 91.32 20.41 5.15 5.27 6.09 0.07
ANN-R 91.68 19.74 15.98 16.08 17.48 0.07

CNN-R-AWN 92.33 21.71 5.74 5.94 7.16 0.05
ANN-R-AWN 91.25 61.30 59.41 59.74 61.54 39.79

of clean accuracy between WS and AWN still exist in adversarial accuracy. The results are

shown in Table 4.4 where WS and AWN are further attacked and evaluated to demonstrate the

influence of performance drop on clean and adversarial accuracy. Comparing WS and AWN,

our proposed AWN consistently outperforms WS in both adversarial and clean accuracy, which

indicates that directly normalizing adder weights could hurt the representation power of ANNs

and restrict the adversarial accuracy of ANNs. With proposed parameters ν and υ in Eq. 4.11,

AWN successfully relieves this problem through exploring the balance between expressive

power and weight magnitude reduction, which achieves better classification performance

and adversarial robustness. We further evaluate the effectiveness of proposed ANN robust

inference strategy as in Eq. 4.17. We denote the strategy which replaces both tracked

mean and variance with running ones as -r and our proposed one as -R. Comparing two

inference methods, our proposed strategy consistently outperforms -r, which verifies that the

activated robustness mainly comes from the running mean which automatically eliminates the

perturbations.
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TABLE 4.6. Adversarial robustness evaluation of different inference strategy
of ANN-AWN with ResNet-32 on CIFAR-10.

Running Mean Running Variance Clean FGSM BIM7 PGD7 MIM5 RFGSM5

✗ ✗ 92.26 29.70 0.05 0.08 0.84 0.01
✗ ✓ 88.95 17.23 10.49 11.69 16.74 8.63
✓ ✗ 91.25 61.30 59.41 59.74 61.54 39.79
✓ ✓ 90.38 54.69 25.65 26.55 38.56 14.03

4.5.6 Adaptive Weight Normalization on CNN

Our proposed Adaptive Weight Normalization is based on the analysis of the variance of

ANN features and specifically designed for ANNs. We further evaluate the performance of

AWN on CNNs. As shown in Table 4.5, with the involvement of AWN, CNN obtains slight

better adversarial robustness. However, comparing with ANN, the improvement robustness of

CNN with AWN is marginal, which demonstrates that the superior collaboration of proposed

AWN with ANNs and shows strong evidence of potential robustness of ANNs.

4.5.7 Variants of Inference Strategy

Our proposed ANN robust inference strategy is derived from the analysis of variance in ANNs.

To illustrate the effectiveness of proposed inference strategy, we evaluate several variants of

them with ResNet-32 on CIFAR-10. Our proposed robust inference strategy makes use of

running mean of current batch and the tracked variance in batch normalization layer, which

denotes the third row in Table 4.6. Comparing with other variants of inference strategy, our

proposed one achieves the best robustness with a large margin. The evaluation shows strong

evidence that the perturbations can be eliminated by the subtraction of a single scalar value

on feature map, which is consistent with our analysis.
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TABLE 4.7. Robustness stability of proposed ANN-R-AWN with ResNet-20
on CIFAR-10 under different inference settings.

Batch size Shuffle Clean FGSM BIM7 PGD7 MIM5 RFGSM5

96 ✗ 90.55 45.93 42.62 43.39 46.52 18.36
96 ✓ 90.59 46.81 42.26 43.42 46.65 18.19
64 ✗ 90.56 45.58 41.53 42.42 46.03 18.15

256 ✗ 90.78 46.93 42.62 43.28 46.51 20.31

4.5.8 Stability of Robustness

Different from traditional defense methods which are mainly based on adversarial training,

our proposed robust inference strategy works during testing phase. Since our proposed ANN-

R-AWN makes use of the running mean of current batch, the performance could vary due to

different inference settings. Here we provide stability test of robustness under different batch

size and shuffle settings to eliminate the concerns that the superior adversarial robustness

comes from other aspects.

As shown in Table 4.7, the stability of adversarial robustness is evaluated under different

inference settings. We first show whether the shuffle of test set influences the performance.

Comparing the first two rows, ANN-R-AWN achieves similar performance with or without

shuffle. Furthermore, we forward test set with different batch size as shown in the last

two rows. It is obvious that both clean and adversarial accuracy has slight increment with

increasing batch size, which matches the well-known observation that networks with batch

normalization layer gets better performance with larger batch size. For adversarial robustness,

ANN-R-AWN still outperforms CNN and ANN with a large margin when a smaller batch

size of 64 is selected, which illustrates that the superior adversarial robustness mainly comes

from proposed ANN robust inference strategy and adaptive weight normalization. For a fair

comparison, all the empirical experiments of adversarial robustness are conducted with the

same inference setting of a batch size of 96 without shuffle.
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4.5.9 Classification Performance

To illustrate the effectiveness of adaptive weight normalization, we evaluate the classification

performance of ANN, ANN-WS and ANN-AWN on CIFAR-10 and ImageNet. Note that

our main contribution lies on the stability and robustness of AdderNets. The evaluation of

classification are included here for the completeness.

TABLE 4.8. Classification performance evaluation.

Method Model Dataset Accuracy
ANN ResNet-20 CIFAR-10 91.84

ANN-WS ResNet-20 CIFAR-10 90.62
ANN-AWN ResNet-20 CIFAR-10 91.42

ANN ResNet-18 ImageNet 67.00
ANN-WS ResNet-18 ImageNet 64.17

ANN-AWN ResNet-18 ImageNet 67.11

The comparison is shown in table 4.8. The exists a trade-offs between ANN classification

performance and stability, as discussed in Section 4.2. As shown in the first three rows,

both ANN-WS and ANN-AWN have accuracy drop, however, ANN-WS has relatively larger

drop from 91.84%→ 90.62% and ANN-AWN has acceptable drop from 91.84%→ 91.42%.

The gap becomes more obvious when methods are evaluated on ImageNet. Our proposed

ANN-AWN achieves slightly better performance than ANN while ANN-WS has a dramatic

accuracy drop, which empirically verified our analysis in Sec 3.2 that the performance could

be largely constrained without incorporating the shift and scale parameters.

4.6 Conclusion

In this chapter, we investigate the major concerns of AdderNets through approximating

the mean and variance of output features of an arbitrary adder layer. With a derived lower

boundary, we show that the instability of AdderNets mainly comes from drastic fluctuations

of running mean and variance in batch normalization layer whose computation is dominated

by the variance of weights. Our proposed adaptive weight normalization (AWN) works with

AdderNets to optimize adder weight distributions adaptively, which significantly improves
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the stability and leads to smooth landscape. Our analysis of the adder layer forwarding

reveals the potential superior defense ability of AdderNets against perturbations and proposed

robust inference strategy together with AWN successfully activate the adversarial robustness.

Experiments conducted on stability and robustness demonstrate the superior performance of

the proposed ANN-AWN.



CHAPTER 5

Random Filter Design for Adversarial Robustness

5.1 Motivation

Although Deep Neural Networks (DNNs) have become a popular technique in various sci-

entific fields (He et al. 2016; Zhang et al. 2019b; Yang et al. 2022), the vulnerability of

DNNs reveals the high risk of deployment in real scenarios, especially under the attack of

adversarial examples (Goodfellow et al. 2014; Madry et al. 2018). Some tiny and imper-

ceptible perturbations to network inputs could result in the major changes of outputs, which

can be easily crafted through various adversarial attack strategies (Andriushchenko et al.

2020; Croce and Hein 2020; Goodfellow et al. 2014). Adversarial attacks could be generally

categorized into two streams, the white-box and black-box attacks. In black-box setting, the

attackers have no knowledge of victim models but can estimate the strong perturbation via

surrogate models or huge number of queries (Guo et al. 2019b; Ilyas et al. 2018). In white-box

setting, the attackers have full knowledge of victim model, including the model parameters,

network architecture, and inference strategy (Szegedy et al. 2014; Madry et al. 2018). Since

the gradients of victim models can be directly fetched, the crafted adversarial examples are

more aggressive and the performance under white-box attacks is one of the key criteria of

robustness evaluation.

Seeking adversarial robust networks becomes a key challenge when it comes to the deployment

of DNNs. One of the most popular and effective techniques is adversarial training (Madry et al.

2018), which arguments the training data with adversarial examples within a fixed perturbation

size. With the involvement of adversarial examples, DNNs are optimized to preserve their

outputs for perturbed samples within the ℓp ball of all training input data. However, due to
62
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the increasingly advanced attack techniques, it is difficult for existing adversarially trained

networks to achieve satisfactory robustness against all potential attacks. Furthermore, the

training on stronger adversarial examples could hurt the natural generalization of models

(Zhang et al. 2020), and there exists a trade-off between robustness and accuracy (Zhang et al.

2019a).

Besides the traditional adversarial training, the utilization of randomization in adversarial

robustness has been proven effective. For example, Liu et al. (Liu et al. 2018b) propose to

inject noise which is sampled from Gaussian distribution to the inputs of convolution layers.

Some theoretical analyses have shown that randomized classifiers can easily outperform

deterministic ones in defending against adversarial attacks (Pinot et al. 2019; Pinot et al.

2020). We mainly attribute the improvement of randomization in adversarial robustness

evaluation to the fusion of features with noises, which prevents white-box attackers from

obtaining the precise gradients of loss with respect to the inputs. Although the involvement of

noise in the networks can be an effective defense mechanism, the design of noises, such as

the way of injection, the magnitude of noise, etc., can also significantly influence the natural

generalization of networks in practice. The trade-offs between the adversarial robustness and

optimization difficulty are always ignored in the randomized techniques, which limits their

superiority to deterministic models.

In this work, we introduce randomness into deep neural networks with the help of random

projection filters. Random projection is a simple yet effective technique for dimension

reduction, which can approximately preserve the pairwise distance between any two data

points from a higher-dimensional space in the projected lower-dimensional space under certain

conditions. The theoretical and empirical advantages offered by random projection thus inspire

a new way to explore the potential of noise injection with better trade-offs in Convolutional

Neural Networks (CNNs). We propose to partially replace the convolutional filters with

the random projection filters. Theoretically, we extend the scope of Johnson-Lindenstrauss

Lemma (Vershynin 2018) to cover the convolutions, where partial convolutional filters are

randomly sampled from a zero-mean Gaussian distribution. Pairwise example distance can

also be approximately preserved under the new convolutions defined by random projection
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filters, if the number of random projection filters is lower bounded in terms of the weight

norm of the remaining convolutional filters. Motivated by these observations, we introduce

a simple and efficient defense scheme via the proposed Random Projection Filters (RPF).

As parameters of random projection filters are randomly sampled during forwarding, the

attackers have no knowledge of upcoming sampled parameters even if in white-box attack

settings. The effectiveness of proposed RPF is verified via extensive empirical evaluations in

our experiments.

5.2 Methodology

5.2.1 Preliminaries

Adversarial Training Given a classifier f with parameters θ which maps the input image

X ∈ RD to the logits fθ(X ) ∈ RC where D and C denote the dimension of original image

and number of classes respectively, the adversarial example X adv = X + δ is defined as

max
Xadv
L(fθ(X adv), y), s.t. ∥X adv −X∥p ≤ ϵ, (5.1)

where L(, ) denotes the loss function (e.g.cross-entropy loss), ϵ denotes the maximum perturb-

ation size and y denotes the ground truth label. In adversarial training strategy, the adversarial

examples are generated and fed to the classifier to form a min-max optimization as

min
θ

max
Xadv
L(fθ(X adv), y), s.t. ∥X adv −X∥p ≤ ϵ. (5.2)

Random Projection The random projection is a linear transformation from D dimensions

to D′ dimensions via a random matrix R ∈ RD×D′ where each entry is drawn from an

independent identically distributed (i.i.d.) Gaussian distribution N (0, 1) and the columns are

normalized to have unit lengths. Given data point x ∈ RD, the random projected data point

x′ ∈ RD′ can be derived as x′ = xR. In CNNs, we can simply replace the filter parameters

with the i.i.d. zero-mean Gaussian weights.
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FIGURE 5.1. An overview of proposed with Random Projection Filters with
defense scheme. Part of the filters in convolutional layers are replaced by
random projection, whose weight is randomly sampled from a Gaussian dis-
tribution. RP[A] and RP[I] denote the sampled Gaussian matrix of random
projection filters during attack and infer phase respectively.

5.2.2 Random Projection Filters

White-box attacks have full access to network including the parameters and architecture

and it is difficult for networks to defend against various white-box attacks since adversarial

perturbations can be easily found via gradient ascent. Thus, to prevent attackers from deriving

precise gradient on input image, we propose to involve some noises during the network

inference. However, the magnitude of noise and the manner of the noise involvement can

significantly influence the optimization, which implies that a careful design of noise is

necessary to achieve a better trade-offs between adversarial robustness and optimization

difficulty.

Motivated by the distance preservation of random projection, we propose to incorporate

random projection into CNNs to achieve a better trade-offs. The core idea of random

projection mainly lies in the Johnson-Lindenstrauss lemma which states that a projection of

data points of high dimension to an appropriate lower dimensional space can preserve the

distances among the data points. By definition, given a linear mapping F : RD → RD′ and a

set of data points X with size of m, for D′ > 8(ln m)/ϵ2

(1− ϵ)∥xi − xj∥2 ≤ ∥F (xi)− F (xj)∥2 ≤ (1 + ϵ)∥xi − xj∥2, (5.3)
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for all xi, xj in X. Since convolution is a linear mapping, Johnson-Lindenstrauss lemma holds

for CNNs. According to Eq. 5.3, the dimension of projected space plays an important role in

random projection. Intuitively, a higher ratio of random projection in CNNs could make it

difficult for white-box attackers to obtain adversarial perturbations, however, it also brings

huge noise to network optimization. Thus, to balance these trade-offs, we propose to replace

a bunch of the convolutional filters in CNN layers with random projection, as shown in Figure

5.1 (a). Formally, given the input feature x ∈ Rn×n×d where n and d denote the size and

dimension of feature respectively, and a single filter of CNN F ∈ Rr×r×d where r denotes

the kernel size, the output z is given by

z(p, q) = F ∗ [x]rp,q =
r∑
i=0

r∑
j=0

d∑
k=0

F (i, j, k) · x(p+ i, q + j, k), (5.4)

where [x]rp,q denotes the subarea of x for convolutional operation with row from p to p+ r− 1

and column from q to q+r−1. For a convolutional layer which contains N filters F1, . . . , FN ,

we divide these filters into two parts. We denote F1, . . . , FNr as the random projection filters

with parameters randomly sampled from a zero-mean Gaussian distribution, and denote

FNr+1, . . . , FN as the traditional convolutional filters with trainable parameters. The output z

can be formulated as

z(p, q) =
[
F1,...,Nr ∗ [x]rp,q, FNr+1,...,N ∗ [x]rp,q

]
,

where F1, . . . , FNr ∼ N (0, σ2),
(5.5)

where
[
,
]

denotes the concatenation and σ2 denotes the variance of random projection filters.

With Eq. 5.5, the trade-offs between adversarial defense capability and network optimization

difficulty can be explored via adjusting Nr. The Johnson-Lindenstrauss lemma in CNN

layers has been studied in (Nachum et al. 2022). In this work, under mild assumptions, we

further generalize it to the random projection scenario where only Nr output features are

derived via random projection while the others via optimized convolutional filters. Since

batch normalization layers with affine transformation are widely adopted in CNNs, we assume

that the inputs to the filters follows Gaussian distribution with mean of β and variance of γ2

where β and γ are the affine parameters of batch normalization layers. We also assume that



5.2 METHODOLOGY 67

the variance of trainable filters FNr+1 , . . . , FN is same as the one of random projection filters

F1, . . . , FNr .

THEOREM 1. Let x, y ∈ Rn×n×d be the input to the filters, which follow Gaussian distribution

x, y ∼ N (β, γ2). Consider we have N filters F1, . . . , FN ∈ Rr×r×d, in which F1, . . . , FNr

denote the random projection matrices where all the entries are drawn from i.i.d. N (0, 1
r2
)

while FNr+1 , . . . , FN denote the trainable parameters of convolutional layer with mean of µ

and variance of 1
r2

where r denotes the kernel size. We assume that

max
i,j
∥[x]rij∥ ≤ R, max

i,j
∥[y]rij∥ ≤ R, max

i
∥Fi∥ ≤ W, (5.6)

and we denote K = n2max{C
2
0R

2

r2
, (r2dβµ + C0Wγ)2} and D = µ2β2n2r4d2. Then the

probability that the distance between x, y cannot be preserved after convolutional operation

F can be upper bounded as

P

(∣∣∣∣∣ 1N
N∑
l=1

⟨Fl ∗ x, Fl ∗ y⟩ − ⟨x, y⟩

∣∣∣∣∣ ≥ ϵ

)
≤ δ, for δ > 0 and

Nr >


(D−ϵ)N+Klog 2Cn2

δ

D
, if ϵ−

N−Nr
N

D

K
≤ (ϵ−N−Nr

N
D)2

K2

(D−ϵ)N+NK

√
log 2CNn2

δ

D
, otherwise

(5.7)

where C and C0 are absolute constants.

In Theorem 1, we define the distance between two data points x, y as ⟨x, y⟩ and the geometric

representation preservation as the scenario where the sum of absolute differences between

⟨Fl ∗ x, Fl ∗ y⟩ and ⟨x, y⟩ can be bounded by ϵ. The proof mainly utilizes the Bernstein’s

inequality (Vershynin 2018) and the detailed proof is provided in the supplementary material.

In Eq. 5.7, we can see that the probability of breaking geometric representation preservation

can be upper bounded by δ if an appropriate Nr is selected for this convolutional layer. It

indicates a lower bound of the number of random projection filters. Since our objective is the

better trade-offs between network optimization difficulty and defense capability, we propose

to reduce the number of random projection filters Nr while meeting the constraint in Eq. 5.7

so that geometric representation preservation holds and the noises introduced by random

projection filters do not damage the convergence and performance of networks. Besides the
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Algorithm 2 Adversarial Training with Random Projection
Input: Network with random projection filters fθ; Number of random projection filters Nr;
Weight decay of random projection filters α; Perturbation size ϵ; Attack step size η; Attack
iterations t; Training set {X , Y};
while not converge do

Sample a batch of data {x, y}ni=1 from {X , Y};
for F with random projection filters do

F1, . . . , FNr ∼ N (0, 1
r2
)

end for
Random initialize adversarial perturbation δ;
for i← 1 to t do

δ = δ + η · sign(∇xL(fθ(xadv), y);
Clip xadv = Clipϵx{x+ δ};

end for
for F with random projection filters do

F1, . . . , FNr ∼ N (0, 1
r2
);

end for
θ = θ −∇θ

(
L(fθ(xadv), y) + α∥FNr+1, . . . , FN∥

)
;

end while

constants, the lower bound of Nr is dominated by K = n2max{C
2
0R

2

r2
, (r2dβµ+ C0Wγ)2}.

In practice, the maximum Euclidean norm of input subareas R can be well-controlled due

to batch normalization layers while the weight norm of trainable parameters FNr+1 , . . . , FN

cannot. Thus, to reduce the burden of Nr, we propose to impose a larger weight decay to the

FNr+1 , . . . , FN , which minimizes W to relieve the constraint in Eq. 5.7. Thus, the objective

in Eq. 5.2 can be reformulated as

min
θ

max
Xadv
L(fθ(X adv), y) + α∥FNr+1, . . . , FN∥,

s.t. ∥X adv −X∥p ≤ ϵ,
(5.8)

where α denotes the hyperparameter of weight decay.

5.2.3 Adversarial Training with Random Projection

Existing white-box attacks can easily discover an aggressive perturbation δ for a fixed

network f via gradient ascent, however, it is difficult for the generated adversarial example
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x′ = x+δ to attack another network f ′ successfully (Wang and He 2021; Tramèr et al. 2017b).

Since the parameters of random projection filters F1, . . . , FNr are randomly sampled from

N (0, 1
r2
), we individually sample parameters for random projection filters during attacking

and inference phase, which is denoted as F1:Nr [A] and F1:Nr [I] respectively. Considering the

partial derivative of output feature z with respect to the input adversarial feature xadv

∂z(p, q, 1 : Nr)

∂xadv(p+ i, q + j, k)
= F1:Nr [A](i, j, k)

̸= F1:Nr [I](i, j, k),

(5.9)

which indicates that the difference between F1:Nr [A] and F1:Nr [I] can significantly influence

the gradient of adversarial examples. fθ[A] denotes the parameters to be optimized in a

network with the random projection filters F1:Nr [A], while fθ[I] corresponds to the parameters

to be optimized in one network with F1:Nr [I]. The mix-max optimization in Eq. 5.2 can be

reformulated as

min
θ[I]

max
Xadv
L(fθ[A](X adv), y) + α∥FNr+1, . . . , FN∥,

s.t. ∥X adv −X∥p ≤ ϵ,

(5.10)

where adversarial examples have been produced from a network with random projection

filters F1:Nr [A] and then the adversarial examples are used to train a network with random

projection filters F1:Nr [I]. The details of adversarial training with random projection is shown

in Algorithm 2.

With the involvement of random projection in convolutional filters and corresponding ad-

versarial training strategy in Algorithm 2, CNNs can perform a strong defense during inference

phase, which is illustrated in Figure 5.1 (b). Considering a white-box attack which has access

to the current sampled random projection parameters F1:Nr [A] and generates adversarial

example X adv of fθ[A] successfully, F1:Nr [A] is re-sampled and becomes F1:Nr [I] during

evaluation so that X adv can hardly be generalized to fθ[I]. Together with the fact that Theorem

1 holds for random Gaussian matrix sampling strategy, RPF achieves better trade-offs between

clean accuracy and adversarial robustness.
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TABLE 5.1. The comparison with noise injection techniques with ResNet-18
on CIFAR-10 and CIFAR-100.

Dataset Method Clean FGSM PGD20 CW MIFGSM DeepFool AA

CIFAR-10

AT 81.84 56.70 52.16 78.46 54.96 0.35 47.69
Additive 81.24 59.19 57.61 80.84 57.83 73.44 62.25

Multiplicative 83.16 61.92 59.49 82.80 59.48 78.28 63.78
RPF(Ours) 83.79 62.71 61.27 83.60 60.72 79.43 64.38

CIFAR-100

AT 55.81 31.33 28.71 50.94 30.26 0.79 24.48
Additive 53.34 31.72 31.13 52.50 31.16 46.76 36.37

Multiplicative 54.52 34.09 32.58 54.61 32.45 50.90 38.13
RPF (Ours) 56.88 37.67 37.37 56.59 35.31 54.39 42.88

5.3 Experiments

5.3.1 Experimental Setup

Datasets Following previous work (Rice et al. 2020; Madry et al. 2018), we include

multiple datasets in our evaluation, including CIFAR-10/100 and ImageNet. CIFAR-10 and

CIFAR-100 datasets (Krizhevsky, Hinton et al. 2009) have 10 and 100 categories respectively.

Each of them contains 60K color images with size of 32×32, including 50K training images

and 10K validation images. ImageNet dataset (He et al. 2016) contains 1.2M training images

and 50k testing images with size of 224× 224 from 1000 categories.

Models Note that our proposed RPF can be easily applied to any CNN-based models

via partially replacing CNN filters with random projection ones. Thus, we evaluate the

performance of RPF on several widely compared models in the field of adversarial robustness,

including ResNet-18 (Krizhevsky, Hinton et al. 2009) and WideResnet-34-10 (Zagoruyko and

Komodakis 2016) on CIFAR-10/100 as well as ResNet-50 (Krizhevsky, Hinton et al. 2009)

on ImageNet.

Training Strategy We follow the protocol of state-of-the-art adversarial training strategy

(Rice et al. 2020) to setup our experiments on CIFAR-10/100. We train the network for 200

epochs with a batch size of 128 via SGD with momentum of 0.9. The learning rate is set to

0.1 and the weight decay is set to 5× 10−4. We use a piecewise decay learning rate scheduler
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(a) CIFAR-10 PGD Steps (b) CIFAR-10 PGD Sizes (c) CIFAR-100 PGD Steps (d) CIFAR-100 PGD Sizes

FIGURE 5.2. The evaluation of stronger PGD attacks with ResNet-18 on
CIFAR-10 and CIFAR-100.

with a decay factor of 0.1 at 100 and 150 epoch. For adversarial example generation, PGD-10

is used with the a maximum perturbation size ϵ = 8/255. The step size of PGD is set to

2/255. On ImageNet, we train the network for 90 epochs with a batch size of 1024 via SGD

with momentum of 0.9. The learning rate is set to 0.02 and the weight decay is set to 1×10−4.

We use a cosine learning rate scheduler. For adversarial example generation, PGD-2 is used

with the a maximum perturbation size ϵ = 4/255.

Attacks For the adversarial robustness evaluation of proposed RPF, we conduct extensive

experiments on various attacks, including Fast Gradient Sign Method (FGSM) (Szegedy

et al. 2014), Projected Gradient Descent (PGD) (Madry et al. 2018), CW attack (Carlini and

Wagner 2017), Momentum-based Iterative Fast Gradient Sign Method (MIFGSM) (Dong et al.

2018), DeepFool (Moosavi-Dezfooli et al. 2016) and Auto Attack (Croce and Hein 2020).

We follow the standard protocol (Kim 2020) to setup the attacks. The maximum perturbation

size ϵ is set to 8/255 for FGSM, PGD, MIGFSM, and Auto Attack. The step size is set to

2/255 for PGD and MIGFSM, and the steps are 20 and 5 for PGD and MIGFSM respectively.

For CW attack, the learning rate is set to 0.01 with 1000 steps. For DeepFool, the steps are

set to 50 with an overshoot of 0.02. On ImageNet, ϵ is set to 4/255 with steps of 10 and 50.

Baselines We include extensive baselines for comparison. We compare RPF with some

randomize techniques, such as additive noise (Liu et al. 2018b) and random bits (Fu et al.

2021). We also include another strong baseline for comparison which replaces the additive

noise with the multiplicative noise. In addition, some other defense techniques are also

involved in our comparison, including RobustWRN (Huang et al. 2021), AWP (Wu et al.

2020), SAT (Xie et al. 2020b), LLR (Qin et al. 2019), and RobNet (Guo et al. 2020).
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TABLE 5.2. Adversarial robustness evaluation of randomized techniques with
WideResNet on CIFAR-10.

Method FGSM PGD20 MIFGSM AA
AT (Rice et al. 2020) 60.65 55.06 58.47 52.24

Random Bit (Fu et al. 2021) 57.95 53.96 56.32 53.30
Additive (Liu et al. 2018b) 62.36 58.47 60.58 60.55

Multiplicative 62.01 57.48 59.79 57.99
RPF (Ours) 63.95 63.71 60.77 68.71

5.3.2 Results on CIFAR

To demonstrate the effectiveness of proposed RPF, we first perform six different attacks.

Besides the deterministic classifier with adversarial training denoted as AT, we include the

additive noise injection. We follow the setting of (Liu et al. 2018b) to conduct noise injection

where some sampled noises are added to the input of convolution layers. Furthermore, we also

construct another stronger baseline, namely multiplicative noise injection, which simply fuses

the feature maps via multiplying noises. Additive noises are sampled from a standard Gaus-

sian distribution N (0, 1) while multiplicative noises are sampled from N (1, 1). Although

these baselines are simple, they can achieve satisfactory adversarial robustness in our defense

scheme. The comparison results are shown in Table 5.1. All the baselines are adversarially

trained with the same setting. On CIFAR-10, the additive noise injection can achieve 57.61%

robust accuracy under PGD20 attack and 59.19% under FGSM attack. Compared with determ-

inistic AT baseline, additive noise injection improves the baseline by 5.45% under PGD20

attack and 2.49% under FGSM attack, which demonstrates that the randomized techniques

can improve the adversarial robustness against current popular white-box attacks. Besides

additive noise injection, the multiplicative noise injection baseline also shows superiority to

AT baseline. Comparing additive and multiplicative noise injections, the multiplicative one

has better performance. For example, multiplicative noise achieves 82.80% robust accuracy

under CW attack with a gap of 1.96% an 63.78% under Auto Attack with a gap of 1.53%,

which indicates that the noise injected to CNNs as well as the method of injection play im-

portant roles in the adversarial robustness. The natural accuracy decrement of additive noise

injection also implies that there exists a trade-offs between natural generalization of network

and adversarial robustness if randomized techniques are utilized. Thus, RPF is introduced
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TABLE 5.3. Comparison with SOTA defense algorithms on CIFAR-10 and
ImageNet.

Method CIFAR-10 ImageNet
PGD20 AA PGD10 PGD50

Overfit (Rice et al. 2020) 55.06 52.24 39.85 39.19
RobustWRN (Huang et al. 2021) 59.13 52.48 31.14 -

AWP (Wu et al. 2020) 58.14 54.04 - -
RobNet (Guo et al. 2020) 52.74 - 37.16 37.15

Random Bit (Fu et al. 2021) 53.96 53.30 42.88 42.72
SAT (Xie et al. 2020b) 56.01 51.83 - 42.30
LLR (Qin et al. 2019) 54.24 - - 47.00

RPF (Ours) 63.71 68.71 56.56 55.41

to tackle this problem via the involvement of random projection. With the assistance of the

geometric representation preservation property, our algorithm can achieve better trade-offs

than these baselines. To illustrate, on ResNet-18, our proposed RPF achieves 83.79% natural

accuracy, 61.27% robust accuracy under PGD20 attack, 79.43% under DeepFool attack, and

64.38% under Auto Attack, with a obvious gap between RPF and all the baselines. Under

6 different attacks, our proposed RPF achieves the best performance in all the scenarios as

well as the highest clean accuracy. This superiority can also be generalized to CIFAR-100.

RPF improves the robust accuracy of AT baseline by 18.40% under Auto Attack, 8.66%

under PGD20 attack, and 5.05% under MIFGSM attack. Furthermore, RPF achieves a clean

accuracy of 56.88%, which improves all the noise injection techniques by a considerable gap.

On the contrary, the superiority of both additive and multiplicative noises to AT baseline

becomes much slighter, which highlights the necessity of proposed RPF as a more advanced

noise injection techniques for adversarial robustness.

We also provide adversarial robustness evaluation with WideResNet-34-10 on CIFAR-10, and

compare the results with other randomized baselines. The comparison is presented in Table 5.2.

Similar to the results on ResNet-18, our proposed RPF achieves strong adversarial robustness.

Under powerful Auto Attack, RPF remains a accuracy of 68.71% with a gap of 16.47 to

deterministic AT classifier and a gap of 8.16% to the additive noise injection. Compared to

other randomized techniques, such as random bit, RPF also show clear advantage, with a

robust accuracy of 63.71% under PGD20 compared to 53.93% in random bits. The extensive
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experimental results under various attacks with multiple models on different datasets show

strong empirical evidence that our proposed RPF can achieve superior adversarial robustness.

5.3.3 Evaluate with Stronger Attacks

Besides the standard evaluation of adversarial robustness under various attacks in Table 5.1,

we also provide the performance of AT baseline, noise injection baselines, and our algorithm

under stronger attacks. The evaluation is conducted on CIFAR-10 and CIFAR-100, as shown

in Figure 5.2. We mainly consider two scenarios, including the PGD attacks with more steps

and the PGD attacks with larger maximum perturbation size ϵ. Specifically, we consider

the attacking scenario of PGD10, . . . , PGD100, and ϵ ∈ [2/255, 20/255]. The randomized

techniques are insensitive to the increasing PGD steps, as illustrated in Figure 5.2 (a) and (c).

Different from the deterministic AT classifier whose robust accuracy is inversely proportional

to the number of steps, all the noise injection based method still have chance to achieve a

relatively higher robust accuracy even under PGD100. Among all the techniques, RPF achieves

the best performance under different PGD steps. Taking PGD size into consideration, all the

robust methods have a large drop with the increment of perturbation size since the search

space of adversarial perturbations becomes much larger. The results are illustrated in Figure

5.2 (b) and (d). Compared with baselines, RPF shows more robust performance under larger

perturbation sizes. On CIFAR-10, RPF achieves 78.73% accuracy under PGD with ϵ = 2/255

and 24.53% under PGD with ϵ = 20/255, where the drop is 54.31%. Additive noise injection

has a drop of 60.29%(76.37% → 16.08%) and multiplicative noise injection has a drop of

56.92%(77.80%→ 20.88%). Similarly, on CIFAR-100, the drop of RPF is 36.22%, 39.63%

for additive noise injection, and 39.16% for multiplicative noise injection, where RPF has a

much smaller accuracy drop. Thus, among all the noise injection techniques, RPF performs

better resistance against stronger PGD attacks. In all the scenarios including PGD steps

and sizes, RPF consistently achieves the best robust accuracy, which highlights the superior

defense capability of RPF.
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(a) Location of RPF (b) Ratio of RPF (c) Weight Decay of Conv

FIGURE 5.3. Ablation studies of Random Projection Filters on location, ratio,
and weight decay.

5.3.4 State-of-the-art Comparison

We further provide the comparison with state-of-the-art defense techniques to demonstrate

the effectiveness of proposed RPF. We consider two popular benchmarks which are widely

compared, including WideResNet-34-10 (WRN-34-10) on CIFAR-10 and ResNet-50 on

ImageNet. For evaluation, we select PGD20 and Auto Attack on CIFAR. On ImageNet, we

report the robust accuracy under PGD10 and PGD50 attacks. For baselines Overfit (Rice

et al. 2020) and Random bit(Fu et al. 2021), we reproduce the results with the official

implementation. For the rest results, we cite them from the original paper. Compared with

these baselines, RPF performs much stronger defense. RPF achieves 5.57% higher than AWP

with PGD20 and 15.41% higher than Random Bits with Auto Attack on CIFAR-10. Similarly,

RPF achieves 19.4% higher than RobNet with PGD10 and 8.41% higher than LLR with PGD50

on ImageNet. We mainly attribute the success of RPF to the theoretical-guided design of

randomized techniques. Note that RPF can be easily integrated into other state-of-the-art

defense techniques to further improve the performance since RPF is orthogonal to other

baselines and there is no extra parameters involved.

5.3.5 Evaluation of Black-box Attacks

We evaluate RPF under black-box attacks Square (Andriushchenko et al. 2020) and Pixle

(Pomponi et al. 2022) with ResNet-18 on CIFAR-10 and CIFAR-100. Query number is set to

5000 in Square and the maximum patch size is 10× 10 in Pixle. The advantage of RPF over

AT can be found in Table 5.4 where RPF achieves better robust accuracy in all the scenarios.
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TABLE 5.4. Evaluation of black-box attacks.

C-10 C-100 C-10 C-100
Attack AT RPF AT RPF Attack AT RPF AT RPF
Square 53.64 76.56 29.57 48.21 Pixle 8.21 44.84 1.16 23.39

TABLE 5.5. Comparison with other noise injection techniques.

Method R20 R32 R44 R56
FGSM PGD FGSM PGD FGSM PGD FGSM PGD

PNI 54.40 45.90 51.50 43.50 55.80 48.50 53.90 46.30
Learn2Perturb 58.41 51.13 59.94 54.62 61.32 54.62 61.53 54.62

RPF 63.27 60.94 62.52 60.78 63.39 62.47 62.30 60.97

5.3.6 Comparisons with Noise Injection Techniques

Different from (He et al. 2019; Jeddi et al. 2020) which utilize additive noises, RPF replaces

partial filters with random projection to form concatenate noise. Following the same setting

in (Jeddi et al. 2020), we apply RPF on ResNet-20/32/44/56. RPF performs better than PNI

(He et al. 2019) and Learn2Perturb (Jeddi et al. 2020) with relatively large margins, as shown

in Table 5.5.

5.3.7 Ablation Study

During the setup of random projection filters, multiple components could influence the

performance, including the location of random projection filters in the network, the ratio of

random projection, and the weight decay of the other convolution filters. We further provide

more empirical evidence to verify the observations in Theorem 1.

Random Projection Filters Location We first replace a specific convolution layer with

the one with random projection filters in different locations of network. Taking ResNet-18 as

an example, we propose to apply random projection in different layers or entire block and

the number of random projection filters is set to 48. The natural accuracy and adversarial

robustness under different scenarios are shown in Figure 5.3 (a). Considering the replace-

ment of an entire block, the injected noise could be redundant and overwhelm the natural
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generalization, which makes both natural and robust accuracy drop to some extent. RPF on

the first layer achieves a natural accuracy of 83.79% and robust accuracy of 61.27% under

PGD attack while the natural accuracy drops to 73.76% and robust accuracy to 53.80% with

RPF on the first block. Thus, we propose to apply random projection to a specific layer in

the network. There exist a clear tendency that the robust accuracy decreases if we deploy

random projection filters in the deeper layers. For example, the robust accuracy is 63.57%

under Auto Attack with RPF on the 2nd layer while 53.39% on the 6th layer and 48.06% on

the 14th layer. According to Eq. 5.7, the geometric representation preservation holds if the

number of random projection filters Nr is large than the term which is proportional to the total

number of filters N . When it goes deeper in ResNet-18, N keeps increasing, which requires

larger Nr to guarantee the bound in the deeper layers where the redundant random projection

filters could hurt the trade-offs between robustness and natural generalization. Thus, we apply

random projection filters to the first layer in our experiments to achieve better trade-offs.

Ratio of Random Projection Filters We then explore how the ratio of random projection

filters in the first layer of ResNet-18 influence the adversarial robustness. The results are

shown in Figure 5.3 (b). According to Eq. 5.7, the number of random projection filters Nr is

required to be sufficient, however, directly setting Nr ≈ N could involves redundant noise

to the network. For illustration, applying RPF with a ratio of 0.75 can achieve the natural

accuracy of 83.79% and robust accuracy of 61.27% under PGD attack. On the contrary,

the natural accuracy becomes 73.60 with a RPF ratio of 1.0 due to the redundant random

projection filters, and the robust accuracy becomes 58.26% under PGD attack with a RPF

ratio of 0.1 due to the insufficient random projection filters. Thus, the empirical observations

of the RPF ratio is consistent with the analysis of Theorem 1.

Weight Norm Study According to Eq. 5.7, the requirement of Nr can be further relieved

via the reduction of weight norm of convolution filters of that layer besides the random

projection, which motivates us to adjust the weight decay of these convolution filters via

α in Eq. 5.8. We further provide empirical evidence that the weight norm could play an

important role in the our defense scheme through setting different weight decays for the

trainable parameters in the first layer of ResNet-18, as shown in Figure 5.3 (c). The traditional
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TABLE 5.6. The evaluation results of 5 runs.

Method Clean FGSM PGD20 CW MIFGSM DeepFool AutoAttack

Add

81.09 59.51 57.46 80.83 57.64 73.56 62.23
81.02 59.24 57.84 80.77 57.49 73.61 62.02
81.49 59.88 57.25 80.90 57.83 73.65 62.10
80.94 59.23 57.83 81.36 57.86 73.57 62.11
81.24 59.19 57.61 80.84 57.83 73.44 62.25

Add Avg 81.16 59.41 57.60 80.94 57.73 73.57 62.14

Multi

82.91 61.89 59.77 82.70 59.96 78.49 63.96
82.76 61.89 59.43 82.77 59.54 78.98 64.03
83.08 61.77 59.05 82.73 59.36 78.52 63.94
82.74 61.98 59.34 82.27 59.37 78.70 64.04
83.16 61.92 59.49 82.80 59.48 78.28 63.78

Multi Avg 82.93 61.89 59.42 82.65 59.54 78.59 63.95

RPF

83.75 62.87 60.75 83.62 60.59 78.96 64.71
83.48 63.19 60.88 83.63 60.39 79.74 64.72
83.73 62.87 60.89 83.62 61.94 79.71 64.29
83.80 61.95 62.12 83.34 61.57 79.31 65.06
83.79 62.71 61.27 83.60 60.72 79.43 64.38

RPF(Ours) Avg 83.72 62.72 61.19 83.56 61.04 79.43 64.63

weight decay is set to 5 × 10−4 for ResNet-18 on CIFAR-10, however, it cannot achieve

satisfactory performance, with 60.04% robust accuracy under Auto Attack. On the contrary,

the variants with larger weight decays, such as 1× 10−2 or 1× 10−1, can achieve 64.38% and

63.12% respectively, which empirically verify the effectiveness of Eq. 5.8 and the correctness

of Theorem 1.

5.3.8 Multiple Runs

Since, the proposed RPF is a randomized defense techniques, we further provide the results of

multiple runs of proposed random projection filters as well as additive and multiplicative noise

injection with ResNet-18 on CIFAR-10. The results are shown in Table 5.6. For each scenario,

we conduct evaluation with 5 times under different seeds. Our proposed RPF consistently

achieves the best performance.
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TABLE 5.7. Results with ResNet-18 on CIFAR-10.

Setting Method Clean FGSM PGD MIFGSM AA

DenseNet AT 82.94 59.36 55.32 57.67 51.83
RPF 85.19 60.90 57.00 58.92 59.91

SqueezeNet AT 76.71 51.95 47.29 49.91 42.06
RPF 82.66 64.59 62.99 60.83 69.06

Vgg16 BN AT 79.30 53.87 48.40 51.62 44.17
RPF 82.41 61.92 61.09 61.40 64.41

IN AT 81.05 52.13 42.96 48.50 39.82
RPF 84.00 56.67 49.46 52.36 52.46

LN AT 78.07 52.91 45.57 50.30 41.35
RPF 82.38 57.42 50.73 53.80 54.12

Defense MART 77.35 56.04 52.22 54.65 45.55
RPF 82.11 62.65 60.40 60.97 64.46

5.3.9 Evaluation on More Models, Norms, and Defense Techniques.

We apply RPF on different models including densenet121, squeezenet, and vgg. We also

include evaluation on different normalizations including instance norm and layer norm (Ba

et al. 2016; Ulyanov et al. 2016). Furthermore, we include MART+RPF in our evaluation

(Wang et al. 2020b). Our proposed RPF shows consistent improvements in all the scenarios,

as shown in Table 5.7.

5.4 Conclusion

In this chapter, we propose to utilize random projection as the noise injection to perform a

randomized defense technique against adversarial examples. Through the generalization of

Johnson-Lindenstrauss lemma to the scenario where partial convolution filters can replaced by

random projection, we theoretically show the correlations between weight norm, the number

of random projection filters, and the total number of filters. Based on these observations,

we introduce Random Projection Filters as a strong defense scheme. Through sufficient

evaluation with various models and datasets, we present the superiority of proposed algorithm

to other baselines.



CHAPTER 6

Low-Transferability Normalization Search for Adversarial Robustness

6.1 Motivation

Deep Neural Networks (DNNs) have achieved impressive performance in various tasks

(Krizhevsky et al. 2012; Ren et al. 2015; Ronneberger et al. 2015). However, it is well known

that DNNs are susceptible to maliciously generated adversarial examples (Szegedy et al. 2014;

Goodfellow et al. 2014). Through imperceptible perturbations on the model inputs during

inference stage, the model is misled to wrong predictions at a high rate. Since then, a wide

range of attack techniques have been proposed under different settings and show strong attack

capability. For example, attackers have full access to the model architecture and parameters,

which forms white-box attacks (Goodfellow et al. 2014; Madry et al. 2018), and attackers

have limited query access to the model, which forms black-box attacks (Ilyas et al. 2018;

Brendel et al. 2017). Since the high attack success rates of these techniques reveal the high

risk of DNNs, defenses against adversarial examples have received increasing attention and

adversarial robustness becomes one of the key criteria.

To mitigate this risk, adversarial training is proposed to yield robust models through training

on generated adversarial examples (Goodfellow et al. 2014; Madry et al. 2018). Besides

training procedure, some regularization and image preprocessing techniques are introduced to

improve adversarial robustness (Zhang et al. 2019a; Xie et al. 2017). Recent work note that

the architecture and module designs could play important roles in the robustness (Guo et al.

2020; Xie et al. 2019). Hence, we pay more attention to the basic modules in the network

which are seldom considered for improving robustness, such as normalization layers. Existing

works have discussed the influence of Batch Normalization (BN) and empirically shown
80
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FIGURE 6.1. (a) denotes the normalized dimensions of LN, GN, and IN, while
(b) denotes BGN and BN. (c) and (d) denote the adversarial transferability
among different types of normalizations.

that BN increases adversarial vulnerability and decreases adversarial transferability (Benz

et al. 2021; Galloway et al. 2019). However, the theoretical analysis of this observation is

insufficient and how to tackle this pitfall or even utilize this property to defend attacks is

unexplored.

In this chapter, we provide the workflow to search normalization layers for adversarial robust-

ness. We first take numerous normalizations into consideration, including Layer Normaliza-

tion (LN), Group Normalization (GN), Instance Normalization (IN), Batch Normalization

(BN), and Batch Group Normalization (BGN) (Ba et al. 2016; Wu and He 2018; Ulyanov

et al. 2016; Ioffe and Szegedy 2015; Zhou et al. 2020), as shown in Figure 6.1 (a) and (b). To

evaluate the influence of different normalizations on the robustness, we conduct PGD-7 attack

(Madry et al. 2018) to both natural and adversarial trained networks with different normaliz-

ations on CIFAR-10, as shown in the diagonals of Figure 6.1 (c) and (d). Not surprisingly,

BN obtains the best robustness compared to other variants. However, we have an intriguing

observation after the transferability evaluations among different normalizations. As illustrated

in the heatmaps, the adversarial accuracies in most scenarios are around 70% when fed with

transferred adversarial examples, while those under white-box attack are around 50%. This

huge gap mainly comes from the adversarial transferability among normalizations. Motivated

by this observation, we first explore the relationship between adversarial transferability and

normalizations, and show that the gradient similarity and loss smoothness are the key factors

of the discrepancy in transferability among different normalizations. Based on the theoretical

evidence, we propose to aggregate different types of normalizations to form random space in
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the inference phase where the adversarial transferability can be significantly reduced. With

designed random space, the inference phase naturally forms the black-box setting for those

attackers who have access to model parameters due to the colossal random space. Together

with the proposed black-box adversarial training framework, the adversarial robustness is

substantially improved with less reduction of natural accuracy. For example, with the same

adversarial training setting, the proposed algorithm improves the natural accuracy by 2.45%

and the adversarial accuracy by 8.53% with ResNet-18 on CIFAR-10 under PGD20 attack.

Our contributions can be summarized as:

1) We provide both empirical and theoretical evidence that the upper bound of ad-

versarial transferability is influenced by the types and parameters of normalization

layers.

2) We propose a novel Random Normalization Aggregation (RNA) module which

replaces the normalization layers to create huge random space with weak adversarial

transferability. Together with a natural black-box adversarial training, RNA boosts

the defense ability.

3) We conduct extensive experiments to demonstrate the superiority of RNA on different

benchmark datasets and networks. Different variants and components are also

studied.

6.2 Adversarial Transferability with Different

Normalization

In this section, we reveal the connections between adversarial transferability and normalization

layers. We first consider a network which is identified with an hypothesis h from a spaceH.

The network h is optimized with the loss function L on input X and labels Y . The objective

is formulated as

h∗ = argmin
h∈H

E
x,y∼X ,Y

[L(h(x), y)]. (6.1)
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(a). BN smoothness (b). IN smoothness (c). Smoothness of different normalization on 3D and 2D

FIGURE 6.2. (a) and (b) denote the smoothness of loss w.r.t. input with BN
and IN respectively. (c) denotes the smoothness of BN, BGN, LN, GN, and
IN with both 3D and 2D plots.

Given a target network h and inputs {x, y}, the adversarial examples are defined as perturbed

input x̃ = x+δ, which makes the network h misclassify through maximizing the classification

loss as

x̃ = argmax
x̃:∥x̃−x∥p⩽ϵ

L(h(x̃), y), (6.2)

where the perturbation δ is constrained by its lp-norm. Adversarial transferability denotes

an inherent property of X̃ that these adversarial examples can also boost the classification

loss L(h′(x̃), y) of other networks as well, where h′ ∈ H. We empirically demonstrate that

transferability is influenced by the normalization layers in the network h, as shown in Figure

6.1 (d). For example, taking BN and IN as source models to generate adversarial examples,

the adversarial accuracies of LN are 71.29% and 74.34% respectively. We further provide

more theoretical analysis of their relationships.

6.2.1 Definition of Normalization Layers

Batch Normalization is known as important basic module in DNNs, which improves the

network performance, and a wide variety of variants are introduced where the activations are

normalized with different dimensions as well as sizes. To cover most types of normalization,

we divide them into two categories. An illustration is shown in Figure 6.1 (a) and (b), where

LN, GN, and IN compute the mean and variance for each example with different group sizes

during inference, while BN and BGN adopt the pre-calculated mini batch statistics which are
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computed by moving average in the training phase. Note that LN and IN are special cases of

GN, which takes the minimum or maximum group number. Likewise, BN is a special case of

BGN. For simplicity, we use GN and BGN to cover all these normalizations. Considering the

activations y ∈ Rd×N where N denotes the batch size and d denotes the number of features,

the normalized outputs after BGN with group number of s(BGN) and those of GN with group

number of s(GN) during inference stage are formulated as

(ŷ
(k)
(BGN))i =

(y(k))i − (µ(BGN))i
(σ(BGN))i

, (z
(k)
(BGN))i = γ(BGN) ∗ (ŷ(k)(BGN))i + β(BGN), for 1 ≤ k ≤ N,

(ŷ
(k)
(GN))i = γ(GN)

(y(k))i − (µ
(k)
(GN))i

(σ
(k)
(GN))i

+ β(GN), (z
(k)
(GN))i = γ(GN) ∗ (ŷ(k)(GN))i + β(GN), for 1 ≤ k ≤ N,

where (µ
(k)
(GN))i =

1

G

G∑
j=1

(y(k))G⌊ i
G
⌋+j, (σ

(k)
(GN))i =

√√√√ 1

G

G∑
j=1

((y(k))G⌊ i
G
⌋+j − (µ

(k)
(GN))i)

2,

(6.3)

where G = ⌊ d
s(GN)
⌋ denotes the group size of GN, (µ(BGN))i and (σ(BGN))i denote the tracked

mean and standard deviation of group ⌊ i·s(BGN)

d
⌋.

6.2.2 Variation of Loss Function Smoothness

Existing work on adversarial transferability reveals that the adversarial transferability is mainly

influenced by the dimensionality of the space of adversarial examples, since the adversarial

subspaces of two networks are more likely to intersect with the growth of this dimensionality.

(Goodfellow et al. 2014; Tramèr et al. 2017b). The size of space of adversarial examples

can be estimated by the maximum number of orthogonal vectors ri which are aligned with

the gradient g = ∇XL(h(X ),Y). In (Tramèr et al. 2017b), a tight bound is derived as

g⊤ri ≥ ϵ∥g∥2√
k

where k denotes the maximum number of ri, which implies that the smoothness

of loss function is inversely proportional to the adversarial transferability. Thus, we analyze

the influence of different normalization layers on the smoothness of loss function, including

GN and BGN.

For simplicity, we dismiss the usage of k in the following equations since the computation of

both GN and BGN during inference is independent of batch size. We denote the loss with GN
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(a). BN and BGN (b). BN and IN (c). BGN and GN (d). LN and IN

FIGURE 6.3. The histograms over the gradient cosine similarity of different
normalization layers.

as L̂gn and the loss with BGN as L̂bgn. Since the mean and variance are computed based on

current group for both GN and BGN, we compute the partial derivative of loss w.r.t. a group

Yj instead of yi where Yj = y[G⌊ i
G
⌋:G⌊ i

G
⌋+G]. Similarly, Zj denotes the activations of a group

after normalization layers. Based on Eq. 6.3, the partial derivative of L̂gn and L̂bgn w.r.t. Yj

can be given as

∂L̂gn
∂Yj

=
γgn

G · σgnj
(G · ∂L̂gn

∂Zj
− 1⟨1, ∂L̂gn

∂Zj
⟩ − Ŷj⟨

∂L̂gn
∂Zj

, Ŷj⟩),

∂L̂bgn
∂Yj

=
γbgn

σbgnj

∂L̂bgn
∂Zj

,

(6.4)

where ⟨, ⟩ denotes the inner product, σgnj denotes the standard deviation of Yj , and σbgnj

denotes the tracked standard deviation of Yj . For simplicity, we denote ĝ = ∂L̂
∂Yj

and g = ∂L̂
∂Zj

.

Taking the advantage of the fact that the mean of Yj is zero and its norm is
√
G, the squared

norm of the partial derivative of GN and BGN can be derived as

∥ĝgn∥2 =
γ2
gn

(σgnj )2
(∥ggn∥2 −

1

G
⟨1, ggn⟩2 −

1

G
⟨ggn, Ŷj⟩2), ∥ĝbgn∥2 =

γ2
bgn

(σbgnj )2
∥gbgn∥2. (6.5)

Besides the smoothness of the loss, we further consider the smoothness of the gradients

of the loss for GN and BGN. Following (Santurkar et al. 2018), we compute the “effective”

β-smoothness through the quadratic form of Hessian of the loss w.r.t. the group activations in

the normalized gradient direction, which measures the change of gradients with perturbations

in the gradient direction. For simplicity, we denote the hessian w.r.t. the layer output as

Ĥ = ∂L̂
∂Yj∂Yj

, the hessian w.r.t. the normalization output as H = ∂L̂
∂Zj∂Zj

, the normalized
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gradient as ĝ′ = ĝ
∥ĝ∥ and g′ = g

∥g∥ . For GN and BGN, we have

ĝ′⊤gnĤgnĝ
′
gn ≤

γ2
gn

(σgnj )2

[
g′⊤gnHgng

′
gn −

1

G · γgn
⟨ggn, Ŷj⟩

]
, ĝ′⊤bgnĤbgnĝ

′
bgn ≤

γ2
bgn

(σbgnj )2

[
g′⊤bgnHbgng

′
bgn

]
.

(6.6)

6.2.3 Normalization Layers and Adversarial Transferability

The sufficient conditions and the bounds of adversarial transferability between two networks

have been discussed in (Yang et al. 2021). We extend this result to the networks with different

normalization layers. Since we focus on the influence of different normalization layers, we

assume that these networks share the same loss function and weight parameters W , which

makes ∂L̂gn

∂Zj
=

∂L̂bgn

∂Zj
and ∂L̂gn

∂Zj∂Zj
=

∂L̂bgn

∂Zj∂Zj
. Meanwhile, Eq. 6.5 and Eq. 6.6 can be easily

generalized to the input x since ∂L̂
∂x

= ∂L̂
∂Y

W . With this assumption, the connections between

normalization layers and adversarial transferability can be established via bounded gradient

norm and β-smoothness in Eq. 6.5 and Eq. 6.6 as

THEOREM 2. Given two networks ha and hb with different normalization layers, the ad-

versarial perturbation under white-box attack is δ on x with attack target label yA and true

label yT . Assume ha and hb are “effective” βa and βb-smooth respectively, the level of ad-

versarial transferability T between networks ha and hb within the perturbation ball ∥δ∥2 ≤ ϵ

can be upper bounded by

T ≤ Ra +Rb

min(L(x, yA))−max(∥∇xL∥)ϵ(
√

1+S̄
2

+ 1)−max(βa, βb)ϵ2
, (6.7)

where T denotes the attack successful rate, min(L(x, yA)) = minx∼X (La(x, yA),Lb(x, y′)),

Ra andRb denotes the empirical risks of network ha and hb, S̄ denotes the upper loss gradient

similarity, and max(∥∇xL∥) = maxx∼X ,y∼{yT ,yA}(∥∇xLa(x, y)∥, ∥∇xLb(x, y)∥). Since the

networks share the same loss function and weight parameters, we denote the influence of

weight parameters as some constant Cg on gradient norm and CH on gradient smoothness.

The partial derivative and Hessian of loss w.r.t. the normalization output are the same for

different normalization, denoted as g and H respectively. The gradient norm, βa, and βb in
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FIGURE 6.4. An illustration of Random Normalization Aggregation and
Black-box Adversarial Training.

Eq. 6.7 can be bounded as

∥∇xL∥ ≤ Cg ·max

(
|γgn|
σgnj

√
∥g∥2 − 1

G
⟨1, g⟩2 − 1

G
⟨g, Ŷj⟩2,

|γbgn|
σbgnj

∥g∥
)
,

βa,b ≤ CH ·max

(
γ2
gn

(σgnj )2

[
g′⊤Hg′ − 1

G · γgn
⟨g, Ŷj⟩

]
,

γ2
bgn

(σbgnj )2

[
g′⊤Hg′

])
.

(6.8)

Combining Eq. 6.7 and 6.8, we observe that the upper bound of adversarial transferability

is controlled by the gradient magnitude and gradient smoothness, which is further bounded

according to the type and parameters of normalization layers. Specifically, given the same γ

and σ for GN and BGN, GN achieves a smaller gradient norm and better gradient smoothness

than BGN, which decreases the upper bound of adversarial transferability. Furthermore, the

group size G in GN plays an important role in smoothness. With smaller G, the smoothness

of GN increases, and thus the upper bound of adversarial transferability decreases. Similar

observations can be found in empirical evidence. As shown in Figure 6.2, the loss land-

scapes of different normalization layers w.r.t. input are visualized, which demonstrates that

different normalization layers have different smoothness. Furthermore, IN achieves the best

performance in smoothness, which corresponds to the observation in Eq. 6.8, since IN has the

minimum group size. The attack success rate is relatively low when the source model is IN,

as shown in Figure 6.1 (c) and (d), which corresponds to the observation in Theorem 2 that

the adversarial transferability decreases when the network is smoother.
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6.3 Random Normalization Aggregation

Since the adversarial transferability is strongly correlated with the type of normalization

layers, we ask a simple question: Can we utilize the bounded adversarial transferability

among normalization layers to defense against white-box attacks? In this work, we propose

a Random Normalization Aggregation (RNA) module, which replaces the BN layer in the

network. As shown in Figure 6.4 (a), the normalization layers becomes a combination of

different normalization sampled from GNs and BGNs, where the underline denotes the group

number. Specifically, the network maintains different normalization layers while only one

normalization is randomly selected for each layer during forwarding, as shown in Figure

6.4 (b). Through incorporating randomization in normalization layers, the network with

RNA module can be treated as a “supernet” with multiple paths. Back to white-box defense

setting, we assume that the attackers have access to the network parameters. The adversarial

examples are generated through backward on a randomly sampled path, and then fed to

another randomly sampled path due to RNA module, which makes the entire white-box

attack become a “black-box” attack, as illustrated in Figure 6.4 (c). Thus, together with the

adversarial transferability study in Section 6.2, it is natural to create a network with random

space in normalization layers where the adversarial transferability is significantly constrained.

To achieve a strong defense against adversarial attacks, some concerns still remain: (1). The

number of paths are required to be extremely large to reduce the probability of sampling the

same path with random sampling strategy; (2). The collaboration with traditional adversarial

training; (3). The normalization types need to be carefully selected to enforce low adversarial

transferability. We discussion these concerns as follows.

Path Increment in Random Space The adversarial transferability among different normal-

ization has been discussed in Figure 6.1 (c) and (d). However, the size of random space also

matters for effective defense against attacks. If the attackers can sample the same path during

attack and inference phases with a high probability, the adversarial accuracy will decrease

tremendously. To tackle this issue, we introduce layer-wise randomization of RNA module,

which randomly samples the normalization for each layer in the network. As shown in Figure

6.4 (b), different normalization types are sampled for different layers, which exponentially
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Algorithm 3 Random Normalization Aggregation with Black-box Adversarial Training
Input: The training tuple {X , Y}; Path set P; Attack step size η; Attack iterations t;
Perturbation size ϵ; Network h with parameters W ;
Replace BN layers with RNA modules, and initialize the network.
while not converge do

Sample a batch of data {x, y} from {X , Y};
Randomly sample a path pa from P;
Initialize adversarial perturbation δ;
for i← 1 to t do

δ = clipϵ[δ + η · sign(∇xL(h(x; pa), y)];
end for
Randomly sample a path p from P;
W = W −∇WL(h(x+ δ; p), y);

end while

increases the number of paths. Given the n normalization types in RNA and L layers in the

network, the size of random space becomes nL, which reduces the probability of sampling

the same path during attack and inference phase to 1
nL << 1

n
.

Black-box Adversarial Training It is natural to incorporate RNA module into adversarial

training. Consistent with inference phase, we randomly sample a path pa and conduct white-

box attack to generate adversarial examples X̃pa . Different from traditional adversarial training

which optimizes pa through feeding X̃pa , we feed X̃pa to another randomly sampled path p,

which forms a “black-box” adversarial training, as illustrated in Figure 6.4 (c). Eq. 6.1 and

Eq. 6.2 can be reformulated as

h∗ = argmin
h∈H

E
x,y∼X ,Y;p∼P

[L(h(x̃pa ; p), y)], where x̃pa = argmax
x̃pa :∥x̃pa−x∥p⩽ϵ

L(h(x̃pa ; pa), y), (6.9)

where P denotes the space of paths. The training procedure is shown in Algorithm 3.

Normalization Types Selection In RNA module, multiple normalization types are main-

tained to form random space. According to Theorem 2, the adversarial transferability is

bounded by different components, including gradient similarity, empirical risks, gradient

magnitude, and gradient smoothness. We first provide empirical evidence that normalization

layers from the same category defined in Section 6.2.1 tend to have higher gradient similarity.

As shown in Figure 6.3, we visualize the histograms over the cosine similarity of two networks
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with different normalization layers. For example, BN and BGN belong to the same category,

and their gradient similarity is much higher than that between BN and IN, comparing Figure

6.3 (a) and (b). Since the gradient similarity is proportional to the upper bounds of adversarial

transferability in Eq. 6.7, we propose to select normalization from different categories. Thus,

RNA module samples the normalization types from both GN and BGN with small group sizes

in our experiments, while the evaluation of other combinations is also included.

6.4 Experiments

In this section, we provide sufficient evaluation of RNA module on various models and

datasets compared with different normalization layers as well as defense algorithms.

6.4.1 Evaluation Setup

CIFAR-10/100 We first conduct experiments on CIFAR-10/100 (Krizhevsky, Hinton et al.

2009) datasets, which contain 50K training images and 10K testing images with size of 32×32

from 10/100 categories. The networks we use are ResNet-18 (Krizhevsky, Hinton et al. 2009)

and WideResNet-32 (WRN) (Zagoruyko and Komodakis 2016). The SGD optimizer with a

momentum of 0.9 is used. The weight decay is set to 5× 10−4. The initial learning rate is

set to 0.1 with a piecewise decay learning rate scheduler. All the baselines are trained with

200 epochs with a batch size of 128. The PGD-10 with ϵ = 8/255 and step size of 2/255 is

adopted in the adversarial training setting. For the RNA module, we utilize BN and IN to

form the random space in normalization layers. The experiments are performed on one V100

GPU using Pytorch (Paszke et al. 2019) and Mindspore (Huawei 2020).

ImageNet The effectiveness of proposed RNA is also evaluated on ImageNet (He et al.

2016), which contains 1.2M training images and 50K testing images with size of 224 ×

224 from 1000 categories. The networks we use are ResNet-50 (Krizhevsky, Hinton et al.

2009). The SGD optimizer with a momentum of 0.9 is used. The weight decay is set to

1× 10−4. The initial learning rate is set to 0.02 with a cosine learning rate scheduler. We load

a pretrained ResNet-50 and then adversarailly train the network for 60 epochs with a batch
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TABLE 6.1. The adversarial robustness evaluation of adversarial-trained net-
works on CIFAR-10.

Model Method Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack

ResNet-18

BN 81.84 56.70 52.16 78.46 54.96 0.35 47.69
BGN32 77.28 54.60 50.71 73.57 53.05 0.39 46.12

IN 77.07 50.07 42.76 72.51 47.63 2.27 38.30
GN32 76.69 52.60 45.66 72.92 50.26 0.72 41.83

LN 79.81 53.88 45.44 75.51 50.72 1.13 41.48
RNA(Ours) 84.29 63.10 60.69 84.45 60.70 76.73 65.61

WideResNet

BN 85.27 60.65 55.06 82.24 58.47 0.40 52.24
BGN32 83.70 59.66 54.96 80.25 57.85 0.37 51.38

IN 84.11 58.14 50.37 80.13 55.37 1.62 46.81
GN32 83.45 58.95 51.94 79.55 56.70 1.37 47.99

LN 83.24 57.80 49.74 79.39 54.68 0.95 46.44
RNA(Ours) 86.46 65.73 63.34 85.68 62.84 78.18 67.88

size of 512. The PGD-2 with ϵ = 4/255 is adopted in the adversarial training setting. For the

RNA module, we utilize BGNs and GNs with group size of 1 and 2 to form the random space.

The experiments are performed on eight V100 GPUs.

Baselines and Attacks Our proposed RNA modules replace the normalization layers in the

network. Thus, various normalization layers are involved for comparison, including BN, IN,

LN, GN, and BGN (Ba et al. 2016; Wu and He 2018; Ulyanov et al. 2016; Ioffe and Szegedy

2015; Zhou et al. 2020). On CIFAR-10/100, we evaluate the robustness of all the baselines

under different strong attacks from TorchAttacks (Kim 2020). For Fast Gradient Sign Method

(FGSM) (Szegedy et al. 2014), the perturbation size ϵ is set to 8/255. For Projected Gradient

Descent (PGD) (Madry et al. 2018), ϵ is set to 8/255 with step size of 2/255, and the steps are

set to 20. For CW attack (Carlini and Wagner 2017), the steps are set to 1000 with learning

rate of 0.01. For Momentum variant of Iterative Fast Gradient Sign Method (MIFGSM) (Dong

et al. 2017), ϵ is set to 8/255 with a step size of 2/255, and the steps are set to 5 with decay

of 1.0. For DeepFool (Moosavi-Dezfooli et al. 2016), the steps are set to 50 with overshoot of

0.02. For Auto Attack (Croce and Hein 2020), ϵ is set to 8/255. On ImageNet, we evaluate

the robustness of under PGD attacks with ϵ of 4/255 and steps of 50.
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TABLE 6.2. The adversarial robustness evaluation of adversarial-trained net-
works on CIFAR-100.

Model Method Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack

ResNet-18

BN 55.81 31.33 28.71 50.94 30.26 0.79 24.48
BGN32 53.16 30.11 27.75 48.74 29.11 0.54 23.29

IN 52.92 27.56 23.16 47.70 25.91 2.86 19.33
GN32 51.00 28.32 25.10 45.82 27.10 0.79 21.00

LN 48.82 27.05 23.83 44.07 26.93 0.80 19.97
RNA(Ours) 56.79 36.76 35.55 56.86 34.00 51.77 42.12

WideResNet

BN 60.11 35.40 31.69 57.11 34.14 0.23 28.36
BGN32 58.54 34.13 30.97 54.08 33.01 0.46 26.92

IN 56.71 31.96 28.09 51.98 30.33 1.83 24.25
GN32 59.08 33.56 29.94 53.89 32.30 1.12 25.78

LN 57.09 32.92 29.75 52.19 31.73 0.79 25.71
RNA(Ours) 60.57 37.87 36.04 60.21 35.58 55.16 42.43

6.4.2 Results for Robustness

Main Results We first evaluate the performance of RNA on CIFAR-10 and CIFAR-100

under different types of attacks. The detailed results are shown in Table 6.1 and 6.2. Popular

normalization layers show similar performance on robustness. However, with a random

space of different normalization layers, the robustness is significantly improved. Comparing

RNA with other baselines, RNA consistently achieves the best performance under all attacks,

and show strong superiority. For example, RNA with ResNet-18 achieves 65.61% under

Auto Attack on CIFAR-10, which is 17.92% higher than BN. Similarly, RNA with WRN

achieves 55.16% under DeepFool attacks on CIFAR-100, which is 53.33% higher than IN. The

boosted adversarial accuracy shows strong empirical evidence that the constrained adversarial

transferability in random space can provide satisfactory defense capability. Furthermore, with

proposed black-box adversarial training, RNA achieves better natural accuracy. For example,

RNA with WRN achieves 86.46% on CIFAR-10, which improves BN by 1.19%. We mainly

attribute this improvement to the fact that the generated adversarial examples can be treated

as a “weaker” attack example to other paths during optimization, which naturally achieves

better trade-offs between natural and adversarial accuracy.
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Stronger PGD Attacks We further evaluate the defense capability of RNA under stronger

PGD attacks, which enhance the number of iterations and enlarge the perturbation size. The

comparison with other baselines are shown in Figure 6.5 (a) and (b). Comparing RNA with

other baselines, RNA achieves stable robustness under different attack iterations, such as

60.70% on PGD10 and 59.94% on PGD100. Meanwhile, the PGD accuracy of RNA is much

higher than all other baselines. For example, RNA improves BN baselines by a margin of

7.93%. In terms of larger perturbation size, RNA achieves the best robustness in all the

scenarios, and the lowest decrement among all the methods. Specifically, RNA achieves

80.06% with ϵ of 2/255 and 24.90% with ϵ of 20/255, whose gap is 55.16%. For comparison,

the gap of BN is 64.68% and GN is 58.40%.

Comparison with SOTA Defense Methods To demonstrate the superiority of RNA, we

include several SOTA defense algorithms for comparison. RobustWRN (Huang et al. 2021)

explores the importance of network width and depth on robustness. AWP (Wu et al. 2020)

proposes to regularize the flatness of weight loss landscape to achieve robustness. RobNet

(Guo et al. 2020) introduce a NAS framework for robustness. RPI+RPT (Fu et al. 2021)

utilizes randomized precision for adversarial defense. SAT (Xie et al. 2020b) proposes

to replace ReLU with its smooth approximations, which exhibits robustness. The results

are shown in Table 6.3. We use WRN on CIFAR-10 and ResNet-50 on ImageNet. All

the baselines are evaluated under the attack of PGD20 and AutoAttack (AA) on CIFAR-10

and PGD50 on ImageNet. Our proposed RNA module achieves the best performance in

all the scenarios. On CIFAR-10, RNA achieves 67.88% under AutoAttack, with 13.84%

improvement compared with AWP. On ImageNet, RNA achieves 54.61% under PGD50, with

12.31% improvement compared with SAT. Note that RNA replaces the normalization layer,

which is orthogonal to other defense techniques. Similarly, the adversarial training in our

setting can be replaced by other advanced training strategies to achieve potentially better

performance.

Adversarial Transferability in Random Space For a better illustration of the adversarial

transferability in the random space built from RNA, we conduct the adversarial transferability

study of ResNet-18 applied with RNA on CIFAR-10. We first define the path difference as the



94 6 LOW-TRANSFERABILITY NORMALIZATION SEARCH FOR ADVERSARIAL ROBUSTNESS

(a). Larger Attack Steps (b). Larger Perturbation Sizes (c). Adversarial Transferability in Random Space

FIGURE 6.5. The evaluation of robustness under PGD attacks settings. (a)
denotes larger attack iterations, and (b) denotes larger perturbation sizes. The
adversarial transferability in random space is evaluated through sampling paths
with different levels of diversity in (c).

TABLE 6.3. Comparison with defense algorithms.

Method CIFAR-10 ImageNet
PGD20 AA PGD50

RobustWRN (Huang et al. 2021) 59.13 52.48 31.14
AWP (Wu et al. 2020) 58.14 54.04 -

RobNet (Guo et al. 2020) 52.74 - 37.15
RPI+RPT (Fu et al. 2021) 53.96 53.30 42.72

SAT (Xie et al. 2020b) 56.01 51.83 42.30
RNA(Ours) 63.34 67.88 54.61

TABLE 6.4. Robustness evaluation of random space built from different nor-
malization combinations under different attacks.

Normalization PGD20 DeepFool AutoAttack
BN 52.16 0.35 47.69

GN+BGN 55.40 70.26 58.90
GN+LN 46.67 62.85 47.96
LN+BN 55.67 68.14 58.73
IN+BN 60.69 76.73 65.61

number of different normalization layers between attack and inference paths. For example,

a path difference of 7 denotes two paths selecting different normalization layers in 7 layers

during forwarding. For each path difference, we then randomly sample 10 path pairs for

transferability evaluation. We also include different normalization combinations in RNA for

comparison. The results are shown in Figure 6.5 (c), which illustrates the PGD accuracy

under transferred attacks between path pairs along increasing path differences. The filled
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areas denote the maximum and minimum PGD accuracy. It is obvious that the combination

of BN and IN achieves the best performance, which also corresponds to the analysis in

Theorem 2. With random sampling strategy, the path difference is always around 10 since the

number of normalization layers is 20 in this network. For example, the combination of BN

and IN achieves an average PGD accuracy of 61.09% when the path difference becomes 10.

Compared with the baseline BN which achieves 52.16% PGD accuracy, this lower adversarial

transferability in our random space brings a strong defense capability against adversarial

attacks.

6.4.3 Comparison with RPI+RPT

To demonstrate the necessity of reducing the adversarial transferability in random space

and the superiority of proposed black-box adversarial training, we provide more detailed

comparison with RPI+RPT (Fu et al. 2021). Note that we strictly follow the same training

recipe of RPI+RPT (Fu et al. 2021) in this section. We train all the models for 160 epochs

with PGD-7 adversarial training, which is different from the one introduced in Section 5.1.

For a fair comparison, we consider two different attack settings.

We first consider the normal attack setting where the number of attack iterations are fixed for

different examples. Specifically, PGD20 denotes that the number of steps for PGD is 20 for

all the examples. We take ResNet-18 and WideResNet32 as the models for evaluation. For

the results of RPI+RPT, we use the official implementation to train the ResNet-18, and we

load the pretrained models from official implementation for WideResNet32. Similar to main

results in the work, we consider a wide range of attacks to evaluate the robustness, including

FGSM, PGD20, CW, MIFGSM, DeepFool and AutoAttack. The detailed results are shown in

Table 6.5 and 6.6. Our proposed RNA achieves better performance under different attacks

with large margins compared to RPI+RPT.

Besides the normal attack setting, we also consider a relatively weak attack setting evaluated

in (Fu et al. 2021) where the attackers stop the iteration of attacks when the network mis-

classifies the perturbed example. Thus, the number of attack iterations can be different for
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TABLE 6.5. The adversarial robustness evaluation with normal attacks settings
on CIFAR-10.

Model Method Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack

ResNet-18 RPI+RPT 82.84 58.31 52.18 80.02 56.09 27.81 49.70
RNA(Ours) 85.33 63.88 59.79 84.42 61.05 76.83 66.35

WideResNet RPI+RPT 81.59 57.95 53.96 79.05 56.32 27.61 53.30
RNA(Ours) 86.22 64.85 60.49 85.87 61.21 57.21 62.91

TABLE 6.6. The adversarial robustness evaluation with normal attacks settings
on CIFAR-100.

Model Method Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack

ResNet-18 RPI+RPT 56.72 33.04 29.98 52.87 31.76 20.07 28.14
RNA(Ours) 57.62 36.62 35.51 57.14 35.84 53.12 42.41

WideResNet RPI+RPT 60.04 35.78 32.46 56.74 34.29 21.74 31.17
RNA(Ours) 61.36 37.76 35.98 60.80 35.63 54.48 41.23

TABLE 6.7. The adversarial robustness evaluation under adaptive attack set-
ting on CIFAR-10/100.

Model Method CIFAR-10 CIFAR-100
Natural PGD20 Natural PGD20

ResNet-18 RPI+RPT 82.64 65.77 56.97 41.75
RNA(Ours) 85.33 78.58 57.62 51.62

WideResNet RPI+RPT 81.52 66.75 58.41 40.45
RNA(Ours) 86.22 78.33 61.36 53.55

different examples. Specifically, PGD20 here denotes the maximum attack iterations for all

the examples while the actual attack iterations are always smaller than 20. Under this attack,

the adversarial accuracy is much higher due to the adversarial transferability. The comparison

under this adaptive attack setting is provided in Table 6.7. Similarly, we include ResNet-18

and WideResNet32 for comparison on CIFAR-10/100. Our proposed RNA achieves better

performance with large margins under a relatively weak adaptive PGD20 attack.

6.4.4 Ablation Study

Different Normalization Combinations We first provide more quantitative results of

different combinations of normalization layers in RNA module. We conduct comparison with

ResNet-18 on CIFAR-10. As shown in Table 6.4, we evaluate the performance under PGD20,
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TABLE 6.8. Ablation studies of RNA with ResNet-18 on CIFAR-10, including
random space designing, adversarial training, and layer-based constraint.

Random Space ADV Train Layer-free Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack
BN+IN+GN+LN WhiteBox ✗ 10.45 - - - - - -

GN[1-64] WhiteBox ✗ 75.50 53.62 49.57 74.63 51.81 47.20 50.57
GN[1-64] BlackBox ✗ 77.54 55.06 51.32 76.55 52.44 58.72 52.59

BGN+GN[1-64] BlackBox ✗ 73.81 53.98 52.98 73.19 53.07 63.78 56.86
BGN+GN[1-64] BlackBox ✓ 61.72 46.73 46.42 61.89 45.69 56.82 51.26
BGN+GN[1-16] BlackBox ✓ 70.99 51.66 49.74 70.48 51.58 63.63 55.98
BGN+GN[1-4] BlackBox ✓ 78.26 58.91 56.29 77.74 56.31 70.83 61.08
BGN+GN[1-1] BlackBox ✓ 84.29 63.10 60.69 84.45 60.70 76.73 65.61

DeepFool and Auto Attack, and the combination of IN and BN achieves the best robustness in

all the scenarios. Consistent with the observation in Theorem 2, the combination of LN and BN

has slightly worse performance than that of IN and BN, since IN is a smoother normalization

than LN. Similarly, the combination of GN and LN achieves the worst performance, since

LN is a special case of GN so that they have high gradient similarity in our empirical

observation, as discussed in Figure 6.3. Thus, utilizing different normalization layers with

smaller group size from GN and BGN, RNA module can form random space with low

adversarial transferability to better improve the defense ability.

Effectiveness of Different Components We next demonstrate the effectiveness of each

component introduced in RNA module. The detailed results are shown in Table 6.8 where [.]

denotes the range of group size. Besides the normalization combinations, we include more

discussion of the random space designing. To form a random space in normalization layers,

it is natural to consider a combination of BN, IN, GN, and LN, however, it is difficult to

optimize, as shown in the first row of Table 6.8. With the normalization layers selected from

GNs, the optimization becomes stable, however, the robustness is not competitive, as shown

in the second row. The involvement of black-box adversarial training significantly improves

the robustness, as shown in the third row. Through expanding the random space with BGNs,

the defense capability is slightly improved due to the doubled number of paths. However, the

size of random space is still limited. After removing the layer-based constraint, the number

of paths exponentially increases, the size of random space for each layer can be reduced for

better trade-offs, as shown in the last 4 rows. Comparing BGN+GN[1-1] with GN[1-64], a

better random space designing with an appropriate adversarial training strategy can achieve
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TABLE 6.9. Stability evaluation of adversarial robustness with RNA.

Method Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
RNA(Ours) 59.79 60.10 59.98 59.97 60.46 59.15 59.86 59.66 59.66 60.72

an improvement of 15.04% under Auto Attack, which demonstrates the necessity of these

components.

6.4.5 Stability of Robustness

During the inference phase, we randomly sample paths from the random space we build so

that the adversarial robustness could vary according to the sampled paths. To evaluate the

stability of robustness with RNA module, we rerun the evaluation for 10 times with ResNet-18

on CIFAR-10. The results are shown in Table 6.9. The maximum accuracy is 60.72% and the

minimum accuracy is 59.15%. The average accuracy of 10 runs is 59.94% and the variance is

0.19. Thus, although the performance depends on the randomly sampled paths, the stability

of robustness is verified in empirical evaluations since the entire random space is built with

weak adversarial transferability.

6.5 Conclusions

In this chapter, we explore the importance of normalization layers in adversarial robustness

where the transferability among different normalization layers can be utilized to boost the

defense capability. A Random Normalization Aggregation (RNA) module is proposed to

form random space with low adversarial transferability for defense against adversarial attacks.

We provide sufficient empirical evidence and theoretical analysis to reveal the connections

between adversarial transferability and normalization types, which guides the random space

designing. With the involvement of black-box adversarial training strategy and the relax-

ation of layer-based constraint, the robustness provided by RNA module is significantly

strengthened. We demonstrate the superiority of RNA module via comprehensive experiments

across different network architectures, attack settings, and benchmark datasets. Our work can

provide valuable insights into the network module design for robustness.



CHAPTER 7

Conclusion and Future Work

Adversarial robustness is one of the essential components to guarantee the trustworthiness of

DNNs in real-world applications. To tackle adversarial robustness, the majority of existing

work focus on the adversarial training strategies, which involve adversarial examples into

training phase to improve the adversarial robustness under white-box attacks. Although

adversarial training is regarded as one of the most effective defense techniques against attacks,

it suffers from different concerns and the potentials of DNN defense capability have not been

fully explored in terms of various DNN designs. These research gaps are summarized as

follows: (1) influence of neural architecture on adversarial robustness; (2) vulnerability of

CNNs without adversarial training; (3) trade-offs between natural and robust accuracy in

randomized defense; (4) potential of normalization layers in defense scheme. In this thesis, we

introduce four different algorithms to tackle the aforementioned issues respectively from the

perspective of DNN designs. For the first potential, we propose to establish the connections

between adversarial robustness and neural architecture. Through formulating the Lipschitz

constant in NAS framework, we introduce a novel searching algorithm called Robust Neural

Architecture Search with Confidence Learning (RACL) to discover optimal architectures

against attacks. For the second issue, we investigate the vulnerability from the perspective of

basic operations in DNNs. Instead of utilizing cross correlation as similarity measurement

in CNNs, we propose to utilize ℓ1-norm distance to constrain the perturbation magnitude

in feature space. We introduce a novel strategy called Adaptive Weight Normalization

with Robust Inference (AWN-R) to automatically eliminate perturbation without adversarial

training. For the third issue, we explore the trade-offs between natural and robust performance

via random projection. Motivated by the distance preservation property of random projection,

we further extend the correctness of distance preservation to the scenario where partial CNN

99



100 7 CONCLUSION AND FUTURE WORK

filters are replaced by random projection filters. From which, we introduce a novel algorithm

called Random Projection Filters (RPF), which achieves better trade-offs between natural

and robust accuracy. For the last potential, we provide theoretical evidence that different

normalization layers influence the adversarial transferability. Based on these observations, we

introduce a simple yet efficient defense scheme, called Random Normalization Aggregation

(RNA), which aggregates different types of normalization layers to construct random space

with low adversarial transferability to perform strong defense capability. For all the introduced

algorithm, we provide sufficient empirical or theoretical analysis, and conduct extensive

experiments on popular benchmarks.

Despite the promising results in this thesis, the level of adversarial robustness remains to be

far away from the requirements for actual deployment and the potential of DNN search and

design in adversarial robustness has not been fully explored yet. Firstly, it is difficult for the

studied adversarial robustness to be generalized to all potential attacks, such as different attack

types (ℓ1-norm, ℓ2-norm, etc.), different perturbation sizes, and different settings (white-box,

data poisoning, etc.). Thus, the universal adversarial robustness against all potential attacks

can be valuable and challenging. Secondly, there exist strong connections among different

components in trustworthiness, such as adversarial robustness, calibration, uncertainty, etc.,

however, there is no clear definition or benchmark to unify and evaluate the trustworthiness

of DNNs. Thus, a one-for-all benchmark of trustworthiness could be essential in this field.

Lastly, the trade-offs among basic requirements of real-world applications could be important

in exploring adversarial robustness, such as natural performance, network efficiency, etc..

I believe that all the algorithms and results introduced in this thesis can provide insights

to motivate further research of adversarial robustness via DNN search and design to fulfill

aforementioned research gaps.



APPENDIX A

Appendix for Chapter 5

A1 Proof of Theorem 1

In Section 5.2.2, we explore the trade-offs between natural and robust performance via

investigating the distance preservation property in the proposed RPF. We show that the

distance preservation property can be achieved with a control on the weight norm. We provide

the proof of Theorem 1 as follows:

PROOF. We consider a single filter in convolution layer F ∈ Rr×r×d with mean of

µ and variance of σ2 = 1
r2

and the input x, y ∼ N (β, γ2). For simplicity. We denote

k = r× r× d and Zn as the set of {0, . . . , n− 1}. We first prove the following simple results:

Let u, v ∈ Rr×r×d and Z1 = uTF,Z2 = vTF , then we have

E[FF T ] = cov(F ) + E[F ]E[F ]T = σ2I + µ2,

E[Z1 · Z2] = uTE[FF T ]v = µ2 ·
∑

u ·
∑

v + σ2⟨u, v⟩,
(A.1)

where I denotes identity matrix. Now we replace u and v with [x]ri,j and [y]ri,j respectively.

Given the fact that ⟨x, y⟩ = 1
r2

∑
i,j∈Zn

⟨[x]ri,j, [y]ri,j⟩, the expectation of the dot product of two

filter output can be written as

E[⟨F ∗ x, F ∗ y⟩] =
∑
i,j∈Zn

E[⟨F, [x]ri,j⟩ · ⟨F, [y]ri,j⟩]

=
∑
i,j∈Zn

µ2

k∑
[x]ri,j ·

k∑
[y]ri,j + σ2⟨[x]ri,j, [y]ri,j⟩

= ⟨x, y⟩+
∑
i,j∈Zn

µ2 · k2 · β2

(A.2)
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Similarly, we consider a single random projection filter F ∈ Rr×r×d with zero mean and

variance of 1
r2

.

E[⟨F ∗ x, F ∗ y⟩] =
∑
i,j∈Zn

E[⟨F, [x]ri,j⟩ · ⟨F, [y]ri,j⟩] =
∑
i,j∈Zn

1

r2
⟨[x]ri,j, [y]ri,j⟩ = ⟨x, y⟩ (A.3)

For simplicity, we denote Xijl = ⟨Fl, [x]rij⟩ and Yijl = ⟨Fl, [y]rij⟩. Now we consider all the

filters including random projection filters F1, . . . , FNr and convolutional filters FNr+1 , . . . , FN .

The probability that the absolute difference between the inputs and outputs is large than ϵ can

be derived as

P

(∣∣∣∣∣ 1N
N∑
l=1

⟨Fl ∗ x, Fl ∗ y⟩ − ⟨x, y⟩

∣∣∣∣∣ ≥ ϵ

)

=P

(∣∣∣∣∣ 1N
( N∑
l=1

(⟨Fl ∗ x, Fl ∗ y⟩ − E[⟨Fl ∗ x, Fl ∗ y⟩]) + (
N−Nr∑
l=1

∑
i,j∈Zn

µ2
l k

2β2)

)∣∣∣∣∣ ≥ ϵ

)

≤P

(∣∣∣∣∣ 1N
N∑
l=1

(⟨Fl ∗ x, Fl ∗ y⟩ − E[⟨Fl ∗ x, Fl ∗ y⟩])

∣∣∣∣∣+
∣∣∣∣∣ 1N

N−Nr∑
l=1

∑
i,j∈Zn

µ2
l k

2β2

∣∣∣∣∣ ≥ ϵ

)

=P

(∣∣∣∣∣ 1N ∑
l∈[N ];i,j∈Zn

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

≤P

(
1

N

∑
i,j∈Zn

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

≤P

(
n2

N
max
i,j∈Zn

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

≤
∑
i,j∈Zn

P

(
n2

N

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)
(A.4)

For the convolutional filters, Xijl = ⟨Fl, [x]rij⟩ and Yijl = ⟨Fl, [y]rij⟩ are linear combination of

i.i.d. Gaussian RVs since x, y ∼ N (β, γ2). Thus, Xijl and Yijl are sub-Gaussian RVs with

mean of βkµ and variance of γ2∥Fl∥2. The sub-gaussian norm of ⟨Fl, [x]rij⟩ can be computed
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as∥∥∥⟨Fl, [x]rij⟩∥∥∥
ψ2

=
∥∥∥Xijl

∥∥∥
ψ2

=
∥∥∥βkµ+ γ2∥Fl∥2z

∥∥∥
ψ2

≤
∥∥∥βkµ∥∥∥

ψ2

+
∥∥∥γ∥Fl∥z∥∥∥

ψ2

≤ kβµ+ C0Wγ

(A.5)

and ∥⟨Fl, [y]rij⟩∥ψ2 = ∥Yijl∥ψ2 ≤ kβµ + C0Wγ where C0 denotes an absolute constant.

According to the product of sub-Gaussians property and centering property (Vershynin 2018),

we have ∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2 and ∥X − E[X]∥ψ1 ≤ C∥X∥ψ1 . Thus, we have

∥XijlYijl − E[XijlYijl]∥ψ1 ≤ (kβµ+ C0Wγ)2. (A.6)

Similarly, for the random projection filters, we have ∥⟨Fl, [x]rij⟩∥ψ2 = ∥Xijl∥ψ2 ≤ C0R
r

and

∥⟨Fl, [y]rij⟩∥ψ2 = ∥Yijl∥ψ2 ≤ C0R
r

. According to the product of sub-Gaussians property and

centering property, we have

∥XijlYijl − E[XijlYijl]∥ψ1 ≤ C2
0ν

2R2, (A.7)

According to Bernstein’s inequality for sub-exponentials, let X1, . . . , XN be independent

zero-mean sub-exponential RVs. Then, for all t ≥ 0

P

(∣∣∣∣∣ 1N
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2exp

{
−min

{ t2

K2
,
t

K

}
· c ·N

}
, (A.8)

where K = maxi ∥Xi∥ψ1 and c > 0 is an absolute constant.

Together with results in Eq. A.6 and Eq. A.7, the probability in Eq. A.4 can be bounded as

∑
i,j∈Zn

P

(
n2

N

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2r4d2

)

≤ 2n2exp
{
−min

{ (ϵ− N−Nr

N
µ2β2n2r4d2)2

n4max{C4
0ν

4R4, (kβµ+ C0Wγ)4}
,

ϵ− N−Nr

N
µ2β2n2r4d2

n2max{C2
0ν

2R2, (kβµ+ C0Wγ)2}

}
· c ·N

}
(A.9)



104 A APPENDIX FOR CHAPTER 5

We denote K = n2max{C2
0ν

2R2, (kβµ + C0Wγ)2} and D = µ2β2n2r4d2. If ϵ−N−Nr
N

D

K
≤

(ϵ−N−Nr
N

D)2

K2 , we have

δ > 2cn2exp
{
− ϵN −D(N −Nr)

K

}
log

δ

2cn2
> −(ϵ−D)N +DNr

K

Klog
2cn2

δ
< (ϵ−D)N +DNr

Nr >
(D − ϵ)N +Klog 2cn2

δ

D

(A.10)

Similarly, if ϵ−N−Nr
N

D

K
>

(ϵ−N−Nr
N

D)2

K2 , we have

Nr >
(D − ϵ)N +NK

√
log 2cNn2

δ

D
(A.11)

□
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Appendix for Chapter 6

B1 Proof of Theorem 2

In section 6.2.3, we provide theoretical analysis of the connections between adversarial trans-

ferability and normalization layers. We show that the adversarial transferability is controlled

by the smoothness and the group size of normalization layers controls the smoothness. In this

section, we provide the proof of Theorem 2 as follows:

PROOF. Following (Yang et al. 2021), we further extend the upper bound of adversarial

transferability to the network with different normalization layers. To establish the connections

between normalization types and adversarial transferability, we first provide some useful

simple but useful facts of different normalization layers, including Group Norm (GN) and

Batch Group Norm (BGN).

During the inference stage, the computation of both GN and BGN are independent of batch

size. Thus, we dismiss the discussion of batch. We first consider the network with GN. Given

the activations y ∈ Rd where d denotes the number of features, the normalized outputs after

GN with group number of g and during inference stage are formulated as

ŷi = γ
yi − µ(i)

σ(i)
+ β, zi = γ ∗ ŷi + β,

where µ(i) =
1

⌊d
g
⌋

⌊ d
g
⌋−1∑
i=0

y⌊ i·g
d
⌋+i, σ(i) =

√√√√√ 1

⌊d
g
⌋

⌊ d
g
⌋−1∑
i=0

(y⌊ i·g
d
⌋+i − µ(i))2,

(B.1)
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For simplicity, we denote the group size G = ⌊d
g
⌋ and a group of activations Yj = y[⌊ i·g

d
⌋:⌊ i·g

d
⌋+G].

The partial derivative of the loss L̂ w.r.t. y for GN is given as

∂L̂
∂Yj

=
∂L̂
∂Ŷj

∂Ŷj
∂Yj

+
∂L̂
∂µj

∂µj
∂Yj

+
∂L̂
∂σj

∂σj
∂Yj

= (
∂L̂
∂Ŷj

∂Ŷj
∂Yj

) + (
∂L̂
∂Ŷj

∂Ŷj
∂µj

+
∂L̂
∂σj

∂σj
∂µj

)
∂µi
∂Yj

+ (
∂L̂
∂Ŷj

∂Ŷj
∂σj

)
∂σj
∂Yj

=
1

σj

∂L̂
∂Ŷj

+
1

G
((

G∑
i=1

−1
σj

∂L̂
∂ŷi

) +
∂L̂
∂σj

(
(σj)

−1

2G

G∑
i=1

−2(yi − µj))) + (−1
G∑
i=1

∂L̂
∂ŷi

(σj)
−2(yi − µj))

∂σj
∂Yi

=
1

σj

∂L̂
∂Ŷj

+
1

G
(
G∑
i=1

−1
σj

∂L̂
∂ŷi

) +
−(σj)−1

2

2(Yj − µj)

G
(
G∑
i=1

∂L̂
∂ŷi

(σj)
−2(yi − µj))

=
1

Gσj
(G

∂L̂
∂Ŷj
−

G∑
i=1

∂L̂
∂ŷi
− (Yj − µj)

σj

G∑
i=1

∂L̂
∂ŷi

(yi − µj)

σj
)

=
γj
Gσj

(G
∂L̂
∂Zj
−

G∑
i=1

∂L̂
∂zi
− Ŷj

G∑
i=1

∂L̂
∂zi

(yi − µj)

σj
).

(B.2)

Eq. B.2 can be vectorized as

∂L̂
∂Yj

=
γj
Gσj

(G
∂L̂
∂Zj
− 1⟨1, ∂L̂

∂Zj
⟩ − Ŷj⟨

∂L̂
∂Zj

, Ŷj⟩). (B.3)

Let µg = 1
G
⟨1, ∂L̂

∂Zj
⟩. Note that ∥Ŷj∥ =

√
G. Eq. B.3 can be written as

∂L̂
∂Yj

=
γj
σj

((
∂L̂
∂Zj
− 1µg)−

Ŷj

∥Ŷj∥
⟨ ∂L̂
∂Zj
− 1µg,

Ŷj

∥Ŷj∥
⟩) (B.4)

The squared norm of the partial derivative can be derived as

∥ ∂L̂
∂Yj
∥2 =

γ2
j

(σj)2
(∥( ∂L̂

∂zj
− 1µg)∥2 − ⟨

∂L̂
∂zj
− 1µg,

ŷj
∥ŷj∥
⟩2)

=
γ2
j

(σi)2
(∥ ∂L̂
∂Zj
∥2 − 1

G
⟨1, ∂L̂

∂Zj
⟩2 − 1

G
⟨ ∂L̂
∂Zj

, Ŷj⟩2)
(B.5)

Similarly, we consider the network with BGN. Given the activations y ∈ Rd where d denotes

the number of features, the normalized outputs after BGN with group number of g and during
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inference stage are formulated as

ŷi = γ
yi − µ(i)

σ(i)
+ β, zi = γ ∗ ŷi + β, (B.6)

where µ(i) and σ(i) here denote the tracked mean and standard deviation which are fixed

during inference stage. Similarly, we denote the group size G = ⌊d
g
⌋ and a group of activations

Yj = y[⌊ i·g
d
⌋:⌊ i·g

d
⌋+G]. The partial derivative of the loss L̂ w.r.t. y for BGN is given as

∂L̂
∂Yj

=
∂L̂
∂Zj

∂Zj

∂Ŷj

∂Ŷj
∂Yj

=
γj
σj

∂L̂
∂Zj

, (B.7)

The squared norm of the partial derivative can be derived as

∥ ∂L̂
∂Yj
∥2 =

γ2
j

σ2
j

∥ ∂L̂
∂Zj
∥2, (B.8)

Note that Eq. 6.5 in the chapter 6 is a combination of Eq. B.5 and Eq. B.8. We denote the

influence of weight parameters as some constant Cg on gradient norm since we assume the

networks are identical except for the normalization layers. And the partial derivative of the

loss w.r.t. the output of normalization g = ∂L̂
∂Zj

is identical for networks due to the same loss

function and weight parameters. Combining the assumptions with Eq. B.5 and Eq. B.8, we

can derive the upper bound of the gradient norm through Yj of networks with GN and GBN as

∥∇xL̂gn∥ ≤ Cg ·
|γgn|
σgnj

√
∥g∥2 − 1

G
⟨1, g⟩2 − 1

G
⟨g, Ŷj⟩2,

∥∇xL̂bgn∥ ≤ Cg ·
|γbgn|
σbgnj

∥g∥,
(B.9)

Following (Santurkar et al. 2018), we can generalize the results of loss smoothness to the

gradient smoothness via Hessian. Note that the partial derivative of GN during inference in

Eq. B.5 has the same format of the partial derivative of BN during training which is studied

in (Santurkar et al. 2018) as

∥ ∂L̂
∂yj
∥2 = γ2

σ2
(∥ ∂L̂
∂zj
∥2 − 1

m
⟨1, ∂L̂

∂zj
⟩2 − 1

m
⟨ ∂L̂
∂zj

, ŷj⟩2) (B.10)

The differences are that Yj denotes a group of activations in GN while yj denotes a batch of

activations in BN, and G denotes the size of group while m denotes the batch size. Thus,
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we can easily generalize the smoothness of gradient in BN during training phase which is

discussed in (Santurkar et al. 2018) to the one in GN during inference phase. In (Santurkar

et al. 2018), the “effective” β-smoothness is defined as the changes of gradients as we move

in the direction of gradients, which corresponds to ĝT Ĥĝ where Ĥ denotes the hessian w.r.t.

the output of activations. We slightly modify ĝ to ĝ′ = ĝ
∥ĝ∥ so that ĝ′T Ĥĝ′ corresponds to the

β smoothness in the direction of gradients. Through replacing a batch of activation yj to a

group of activation Yj , batch size m to group size G, and g to normalized one g′, the upper

bound of gradient smoothness of BN in (Santurkar et al. 2018) can be reformulated for GN as

ĝ′T Ĥĝ′ ≤ γ2

σ2

[
g′⊤Hg′ − 1

Gγ
⟨g, Ŷj⟩

]
(B.11)

Since BGN uses fixed mean and variance during inference, Tthe upper bound of gradient

smoothness of BGN during inference can be derived as

ĝ′T Ĥĝ′ ≤ γ2

σ2
[g′⊤Hg′] (B.12)

Similarly, we denote the influence of weight parameters as some constant CH on gradient

smoothness since we assume the networks are identical except for the normalization layers.

And the partial derivative of the loss w.r.t. the output of normalization H = ∂L̂
∂Zj∂Zj

is identical

for networks due to the same loss function and weight parameters. The β-smoothness of GN

and BGN in the direction of gradients can be upper bounded as

βgn ≤ CH ·
γ2
gn

(σgnj )2

[
g′⊤Hg′ − 1

Gγgn
⟨g, Ŷj⟩

]
,

βbgn ≤ CH ·
γ2
bgn

(σbgnj )2

[
g′⊤Hg′

]
,

(B.13)

With the results in Eq. B.9 and Eq. B.13, we can easily extend the upper bound of adversarial

transferability in (Yang et al. 2021) to the networks with GN and BGN through replacing

the assumption of ∥∇xL∥ ≤ B with the upper bound in Eq. B.9 and the assumption of

β-smoothness to those in Eq.B.13 since the usage of β-smoothness in the upper bound of

adversarial transferability in (Yang et al. 2021) lies in

L(x, y) + δ · ∇xL(x, y) +
β

2
∥δ∥2 ≥ L(x+ δ, y), (B.14)
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where the perturbation δ is generated by adversarial attack via gradient ascent. Thus, the

assumption of β-smoothness in (Yang et al. 2021) is equivalent to the β-smoothness in the

direction of gradients in Eq. B.13. Finally, combining the upper bound of transferability in

(Yang et al. 2021) with Eq. B.9 and Eq. B.13 via max function gives the desired results. □
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