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Abstract

Quantum computers are expected to have advantages over classical computers in solving a range
of high impact problems, but they are highly susceptible to errors due to environmental noise.
The Pauli Stabiliser formalism generalises classical error-correction methods and makes use of
quantum error correction codes to protect quantum information. In this thesis, we introduce
the XP stabiliser formalism, which is a generalisation of the Pauli stabiliser formalism with a
number of useful applications.

Quantum algorithms are typically written in terms of quantum circuits which involve a
series of unitary gates followed by measurements which form the output of the computation.
To implement quantum algorithms reliably, we need to perform unitary gates fault-tolerantly
so that errors do not propagate in an uncontrolled way.

Transversal logical operators are one way of applying unitary gates fault-tolerantly on Pauli
stabiliser codes. Identifying transversal logical operators for a given Pauli stabiliser code is
challenging, and existing methods have exponential complexity in one or more of the parameters
of the code. Making use of the XP formalism, we present efficient algorithms which identify
all transversal logical operators that are diagonal in the computational basis for any Pauli
stabiliser code. We also show how to construct codes with a transversal implementation of any
desired diagonal logical operator.

The Pauli stabiliser formalism can also be used to efficiently represent certain quantum
states, but many states of interest lie outside the formalism. In the XP formalism, a wider
range of states can be represented than in the Pauli stabiliser formalism, including hypergraph
states which have interesting non-local properties. The braiding of non-Abelian anyons is a
proposed pathway to universal fault-tolerant quantum computation. Certain XP stabiliser
codes are known to harbour non-Abelian anyons, and can be studied within the new formalism.
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1 | Introduction

1.1 Overview

This thesis introduces the XP stabiliser formalism, which generalises the widely used Pauli
stabiliser formalism [1]. This Chapter gives the motivating context behind the new formalism
and explains the impact of the work.

Quantum computers are expected to have advantages over classical computers in solving
certain problems, including Hamiltonian simulation (which has important applications in
quantum chemistry [2]), unstructured search [3], integer factorisation [4], linear algebra [5] and
machine learning [6]. These algorithms have the potential to help solve a range of high impact
problems which are intractable using currently available computation methods, and these are
likely to have benefits across a range of industry sectors [7, 8].

Quantum computers are highly susceptible to errors due to environmental noise, and this
needs to be addressed to reliably implement quantum algorithms. In classical digital computers,
error correction codes are used to detect and correct errors. The Pauli Stabiliser formalism
is a generalisation of classical methods and makes use of stabiliser codes to protect quantum
information [1]. Recent experimental work has validated the use of Pauli stabiliser codes to
protect quantum information against errors, creating quantum memories ([9–11]).

Quantum algorithms are often written in terms of quantum circuits [12]. The main
components of a quantum circuit are state preparation, a set of unitary gates, and measurements
in the computational basis. To implement the circuits used by quantum algorithms we also need
to be able to perform unitary gates fault-tolerantly. This means that errors in the application
of the unitary gate do not propagate in an uncontrolled way and can be corrected, provided the
physical error rate is below a certain threshold [13]. Transversal logical operators are one way
of performing unitary operations on the information stored in stabiliser codes in a fault-tolerant
way. They have a depth-one circuit structure that ensures that the spread of errors is restricted.
Identifying transversal logical operators for a given stabiliser code is challenging, and existing
methods have exponential complexity in one or more of the parameters of the stabiliser code
([14, 15]). In this work, we present algorithms that identify all transversal logical operators that
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are diagonal in the computational basis for any stabiliser code. The algorithms make use of the
XP formalism and are, with one exception, of polynomial complexity in code parameters. We
also show how to construct stabiliser codes with a transversal implementation of any desired
diagonal logical operator.

The Pauli stabiliser formalism can also be used to efficiently represent certain quantum
states and facilitates the study of quantum phenomena such as entanglement and superposition.
The range of states which can be represented within the Pauli stabiliser formalism is somewhat
limited, and there are many states of interest which are outside the formalism. In the XP
formalism, a wider range of states can be represented than in the Pauli stabiliser formalism.
Examples include hypergraph states which have non-local properties not shared by Pauli
stabiliser states [16]. The XP formalism can also be used to represent codespaces which harbour
non-Abelian anyons, which is an alternative pathway to fault-tolerant quantum computation
[17].

The structure of this Chapter is as follows. In Section 1.2, we describe a high-impact
application of quantum computing - modelling reaction pathways for carbon capture. Section 1.3
introduces quantum information and explains why quantum computers are susceptible to errors
due to environmental noise. Section 1.4 covers the basics of classical error correction codes,
including check matrices, calculation of syndromes and the distance of such codes. The
Pauli stabiliser formalism extends classical methods to quantum information and Section 1.5
introduces Pauli operators, stabiliser codes, and logical operators. The Pauli stabiliser formalism
can be used to represent quantum states efficiently and we discuss this application in Section 1.6.
Section 1.7 covers the application of the Pauli stabiliser formalism in the architecture of fault-
tolerant universal quantum computers, and discusses the stabiliser-code architecture of [18].
The surface-code architecture can potentially be improved by using alternative quantum error
correction codes which make more efficient use of physical qubits and which have a wider range
of transversal logical operators. In Section 1.8 the contribution of this work is discussed. The
XP stabiliser formalism is described, as well as its ability to represent a wider range of states
than in the Pauli stabiliser formalism and its use in determining the logical operator structure
of stabiliser codes.

1.2 Potential Applications of Quantum Computing

Large-scale fault-tolerant quantum computers might be able to address high-value problems
that are beyond the capabilities of classical computers. An example of such a problem is the
modelling of reaction pathways for carbon capture [19].

Global warming is one of the greatest challenges facing humanity, and large-scale carbon
capture will be required to keep global temperature increases within 1.5 degrees Celsius [20].
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One proposed method for carbon capture is to use amine family molecules to bind with carbon
dioxide in the air. The challenge is to select amine molecules which result in an efficient
reaction pathway where the amount of atmospheric carbon captured is greater than the amount
emitted for the entire process. Understanding the reaction pathways of even small molecules is
intractable using classical computers.

In [19], the authors demonstrate a quantum algorithm for modelling carbon capture using
ammonia (NH3). If reliable quantum computers become available, the algorithm could be used
to screen a large number of different amine molecules and select those that have the greatest
efficiency for carbon capture. The potential to speed up the development of carbon capture
technology would clearly be of immense benefit.

1.3 Quantum Information and Environmental Noise

Classical computers use digital information stored in strings of bits which can have values of 0
or 1. Quantum computers use quantum information which is typically stored in quantum bits
or qubits which have values of a |0⟩ + b |1⟩ where a and b are complex numbers and |0⟩ and |1⟩
represent two distinguishable energy states of a quantum system.

Physical implementations of qubits involve controlling matter at nanometre scales and so
are highly susceptible to environmental noise. Handling errors caused by environmental noise is
one of the main challenges in producing practical quantum computers. For instance in [21] a
qubit is created by injecting a single phosphorous atom into the surface of a silicon substrate.
Quantum information is encoded into the spin states of a single electron. The difference in
energy from the spin down state |0⟩ and spin up state |1⟩ is around 10−24 Joules. Given that
one Joule represents the food energy in half a crystal of sugar, even a tiny electric or magnetic
field from the environment could affect the system.

Quantum error correction is one of the main solutions which has been proposed to address the
issue of environmental noise [22]. This approach, based on classical error correction techniques,
is likely to be a key factor in realising the potential of quantum computers.

1.4 Classical Error Correction Codes

Classical error correction codes encode logical bits into a larger number of physical bits to
protect against errors. Errors are bit flips where a bit with value 0 is changed to 1 and vice
versa.

Example 1.4.1 (4-Bit Repetition Code)
In the 4-bit repetition code, a logical 0 is represented by the codeword 0L := 0000 and a
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logical 1 by the codeword 1L := 1111. To transmit information, we encode it into a series of
codewords. On receipt of the information, we examine each block of 4 bits. If a single bit is
flipped in a block, this error can be detected and corrected. For example, if we receive 0100,
most likely there is a bit flip error on the second bit and we correct this to the codeword 0000.
On the other hand, if we receive 1100, it is not obvious how to correct back to a codeword.
Either 0L has been sent and there are bit flips on the first two bits, or 1L has been sent and
there are bit flips on the last two bits. Assuming that the probability of a bit flip is equal at
any position of the bit string, both possibilities have equal likelihood.

The repetition code is an example of a binary linear code [23]. Linear codes are defined
by specifying a binary k × n generator matrix G whose rows are independent under addition
modulo 2. The codewords or logical states are the span of G modulo 2 and can be labelled
with binary vectors v of length k:

vL := vGmod 2. (1.1)

Linear codes can also be defined by specifying a check matrix H which is a basis of the kernel
of G modulo 2. Let r be the rank of G then H is an (n − r) × n binary matrix such that
GHT mod 2 = 0. The check matrix can be used to detect and correct errors by calculating the
syndrome vector on the received data block u defined as s := uHT mod 2. The syndrome is
zero if and only if u is a codeword and for a given set of bit flip errors is independent of the
logical state transmitted.

The distance d of a linear code is the minimum weight of the nonzero codewords, where
the weight of a binary vector is the number of non-zero entries. The distance of a classical
code represents the minimum weight of an error that maps one codeword to another. Providing
there are at most ⌊d−1

2 ⌋ bit flip errors, there is a unique closest codeword vL = u + c mod 2
such that the weight of c is minimised. In Example 1.4.1, the distance of the code is 4 because
the weight of 1L is 4. We have already noted that we can correct ⌊4−1

2 ⌋ = ⌊3
2⌋ = 1 error but

not more than this.

Errors can be corrected using classical codes by determining the minimum weight correction
c based on the syndrome s. A logical error may occur if there are more than ⌊d−1

2 ⌋ bit flip
errors - in this case, we may correct into a different logical state to the one transmitted. The
parameters of a classical code are written [n, k, d] where n is the number of physical bits, k
the logical bits and d the distance of the code.

The distance of the n-bit repetition code is d = n so we can correct up to ⌊n−1
2 ⌋ bit flip

errors. If we increase the number of bits in the repetition code, the distance also grows, but
the number of logical bits does not change. The repetition code is not often used in practice
and instead codes with a higher encoding rate k/n are employed. Low density parity check
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(LDPC) code families are known in which distance and number of logical bits both increase
with the number of bits. These are widely used in wireless communications and data storage
[24].

1.5 Quantum Error Correction Codes and the Pauli Stabiliser
Formalism

Quantum error correction codes generalise classical codes and protect quantum information
against errors. In the Pauli Stabiliser Formalism, the check matrix of classical linear codes is
replaced by a set of Pauli operators. This Section is structured as follows. In Section 1.5.1,
we introduce single-qubit Pauli operators and in Section 1.5.2 we show how these can be
represented on the unit Bloch sphere. In Section 1.5.3 we introduce multi-qubit Pauli operators
and in Section 1.5.4 we show how these can be represented as binary vectors. We introduce
Pauli stabiliser codes in Section 1.5.5 and show how to calculate the codewords for a CSS
code, an important subtype of stabiliser codes, in Section 1.5.6. We define logical operators of
stabiliser codes in Section 1.5.7. Finally, we introduce the Clifford hierarchy which describes
operators outside the Pauli group in Section 1.5.8.

1.5.1 Single-Qubit Pauli Operators

The Pauli operators on one qubit are the operators:

X :=
(

0 1
1 0

)
;Z :=

(
1 0
0 −1

)
;Y := iXZ =

(
0 −i
i 0

)
. (1.2)

The group generated by the Pauli operators on one qubit can be written ⟨X,Y, Z⟩ = ⟨iI,X, Z⟩.

The X operator generalises the bit flip of classical codes because if we write a |0⟩ + b |1⟩ :=
(
a

b

)
,

we have:

X(a |0⟩ + b |1⟩) =
(

0 1
1 0

)(
a

b

)
=
(
b

a

)
= b |0⟩ + a |1⟩ . (1.3)

The Z operator can be thought of as a phase flip because it flips the sign of b:

Z(a |0⟩ + b |1⟩) =
(

1 0
0 −1

)(
a

b

)
=
(
a

−b

)
= a |0⟩ − b |1⟩ . (1.4)

Phase flip errors are just as serious as bit flip errors, and this can be seen by writing our
quantum state in an alternative basis. We call the basis |0⟩ and |1⟩ the Z-basis because
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these states are the +1 and −1 eigenstates of the Z operator. In the X-basis, the basis
states corresponding to the ±1 eigenstates of the X operator are |+⟩ := 1√

2(|0⟩ + |1⟩) and
|−⟩ := 1√

2(|0⟩ − |1⟩). We can instead write a |0⟩ + b |1⟩ = a+b√
2 |+⟩ + a−b√

2 |−⟩ := a′ |+⟩ + b′ |−⟩.
In this basis, Z(a′ |+⟩ + b′ |−⟩) = b′ |+⟩ + a′ |−⟩ so it has a similar action to an X operator in
the Z-basis. The same applies to the Y -basis and Y errors.

1.5.2 The Bloch Sphere

Single-qubit states can be represented on the unit Bloch sphere by setting a := cos(θ/2), b :=
eiϕ sin(θ/2) for θ ∈ [0, π) and ϕ ∈ [0, 2π). This allows us to plot single-qubit quantum states
with coordinates (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ). The three coordinate axes are labelled
by the eigenstates of the X,Y and Z operators. The Z operator corresponds to a half rotation
around the Z-axis of the Bloch sphere and sends the +1 eigenstates of the X and Y operators
to the −1 eigenstates. Similarly, the X operator represents a half rotation around the X axis
of the Bloch sphere and this is illustrated in Fig. 1.1.

(a) States on Bloch Sphere:
Single-qubit quantum states can
be represented on the unit Bloch
sphere.

(b) Pauli Z Operator: the
Pauli Z operator is a half-
rotation of the Bloch sphere
around the Z axis.

(c) Pauli X Operator: the
Pauli X operator is a half-
rotation of the Bloch sphere
around the X axis.

Figure 1.1 Representation of single-qubit states and Pauli operators on the Bloch sphere.

1.5.3 Multi-Qubit Pauli Operators

The Pauli operators on n qubits are tensor products of single-qubit Pauli operators. These
can be written ⟨iI,X, Z⟩⊗n and act on multi-qubit states which are written in terms of the
computational basis as follows:

|ψ⟩ =
∑

e∈Zn
2

ce |e⟩ . (1.5)
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In Eq. (1.5), e ranges over all binary vectors of length n and the ce are complex numbers.

1.5.4 Vector Representation of Pauli Operators

Multi-qubit Pauli operators have a vector representation using 2n+ 2 bits and this allows
us to do algebraic operations efficiently. Any n-qubit Pauli operator can be written in the
canonical form ipX(x)Z(z) where x and z are binary vectors of length n and p is an integer
modulo 4 (which can be represented using 2 bits). In the above representation, x[i] is the ith
component of x and X(x) := ∏

iX
x[i]
i where Xi is a Pauli X operator on qubit i. By multiplying

the matrix representations of the single qubit Pauli X and Z operators of Section 1.5.1, we
find the commutation relation:

ZX = −XZ. (1.6)

Algebraic operations can be performed on multi-qubit Pauli operators by generalising the
commutation relation of Eq. (1.6) as follows:

Z(z)X(x) = (−1)x·zX(x)Z(z). (1.7)

Hence the operators X(x) and Z(z) commute if and only if x · z mod 2 = 0. The action of
Pauli operators on computational basis elements is as follows:

X(x) |e⟩ = |e + x mod 2⟩ ; (1.8)
Z(z) |e⟩ = Z(z)X(e) |0⟩ = (−1)e·zX(e)Z(z) |0⟩ = (−1)e·z |e⟩ . (1.9)

In Eq. (1.9), the notation 0 means the all-zero binary string of length n.

1.5.5 Pauli Stabiliser Codes

A Pauli stabiliser code is defined by specifying a set of n-qubit Pauli operators S which
are referred to as the stabiliser generators. The codespace of a stabiliser code is the
set of n-qubits quantum states |ψ⟩ which are fixed by each of the stabiliser generators (i.e.
A |ψ⟩ = |ψ⟩ for all A ∈ S). If a state is fixed by each of the operators in S, then it is fixed
by each of the elements of the stabiliser group ⟨S⟩ generated by S. This is because for
A,B ∈ S, AB |ψ⟩ = A |ψ⟩ = |ψ⟩. Providing −I is not in the stabiliser group, the codespace
is non-trivial. This condition also implies that elements of the stabiliser group ⟨S⟩ commute
(otherwise ABA−1B−1 = −I for some A,B ∈ ⟨S⟩) and square to identity (otherwise A2 = −I
for some A ∈ ⟨S⟩).
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The stabiliser generators fill the role of the check matrix for classical codes, and the syndrome
is the vector s whose ith component corresponds to the measurement outcome (−1)s[i] of the
ith stabiliser generator. Quantum error correction involves determining a Pauli operator from
the syndrome which corrects back into the codespace.

1.5.6 Canonical Codewords of CSS Codes

Writing an expression for the codewords of a Pauli stabiliser code is more complex than in the
case of classical codes. In this Section, we show how to find the codewords for Calderbank-
Shor-Steane (CSS) codes [25]. CSS codes are a widely used subclass of stabiliser codes with a
simpler structure than general stabiliser codes.

To define a CSS code, we specify two classical linear codes with check matrices SX and
SZ . The stabiliser generators of the code are X-checks of form X(x) where x is a row of SX

and Z-checks of form Z(z) where z is a row of SZ . For the codespace to be nontrivial, the
X-checks must commute with the Z-checks and from Eq. (1.7) this requires:

Z(z)X(x) = (−1)x·zX(x)Z(z) = X(x)Z(z). (1.10)

As a result, x · z mod 2 = 0 and so we require the rows of SX to be in the kernel of SZ modulo

2. Using linear algebra techniques, we can find a binary matrix LX such that
(
SX

LX

)
is a basis

of the kernel of SZ . Without loss of generality, assume SX , SZ and LX are in reduced row
echelon form with r, s and k rows respectively. We say there are k logical qubits and we have
the relation k = n− r− s. The codespace of the CSS code is the complex span of 2k canonical
codewords labelled by binary vectors v of length k as follows:

|v⟩L := 1√
2r

∑
u∈Zr

2

|uSX + vLX mod 2⟩ . (1.11)

It is easy to show that for X- and Z-checks X(x) |v⟩L = Z(z) |v⟩L = |v⟩L. We define the
encoding map for binary vectors v of length k as C : |v⟩ 7→ |v⟩L. For any Pauli stabiliser
code, we can find a CSS code with the same codespace dimension that has the same encoding
map up to diagonal unitary operators and signs of the stabiliser generators (see Appendix B.3
and [26]). Accordingly, results for CSS codes can often be extended to all stabiliser codes.

1.5.7 Logical Operators and the Distance of a Stabiliser Code

Logical operators transform quantum information stored in stabiliser codes and facilitate the
implementation of quantum circuits. We say that a unitary B on n qubits is a logical B
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operator if there is a unitary B on k qubits such that CB = BC where C is the encoding map
of Section 1.5.6). A general method for finding logical X and Z operators is described for any
stabiliser code in Chapter 10 of [27]. In the example below, we describe a method which works
for the CSS codes of Section 1.5.6.

Example 1.5.1 (Logical Pauli Operators of CSS Codes)
Let xi be the ith row of LX as described in Section 1.5.6 and let Xi := X(xi). The operator Xi

is a logical X operator on logical qubit i because the action of Xi on the canonical codewords
of Eq. (1.11) is equivalent to applying Xi to a k qubit state then encoding the result. Let v be
a binary vector of length k and let x ⊕ v := x + v mod 2. Let i be the binary vector of length k
which is all zero apart from component i which is 1 so that iLX = xi. Then for computational
basis vectors |v⟩ on k qubits:

CXi |v⟩ = C |v ⊕ i⟩ =
∑

u∈Zr
2

|uSX ⊕ vLX ⊕ xi⟩ = X(xi)
∑

u∈Zr
2

|uSX ⊕ vLX⟩ = XiC |v⟩ . (1.12)

Using the symplectic Gram-Schmidt orthogonalisation procedure (see [28]), we can find a binary

matrix LZ with k independent rows such that
(
SZ

LZ

)
is a basis of the kernel modulo 2 of SX

and xi · zj mod 2 = δij where xi, zj are the corresponding rows of LX , LZ respectively. This
ensures that Zj := Z(zj) respects the commutation relations of Eq. (1.7) and so acts as a
logical Z operator on logical qubit j.

By changing Pauli basis, logical Pauli operators map one codeword to another (see Sec-
tion 1.5.1). Accordingly we define the distance d of a Pauli stabiliser code as the minimum
weight of the operators in the logical Pauli group. The weight of a Pauli operator is the
number of qubits acted upon by a non-identity Pauli gate. As for classical codes, we can detect
and correct errors on up to ⌊d−1

2 ⌋ qubits. Errors which can be corrected can take any form,
including erasure of the qubit, and are not limited to just bit and phase flips. The parameters
of a quantum code are written [[n, k, d]] where n is the number of physical qubits, k is the
number of logical qubits and d is the distance of the code.

1.5.8 The Clifford Hierarchy

Stabiliser codes may also have logical operators outside the Pauli group, and these are useful
when implementing quantum circuits. The Clifford hierarchy [29] is commonly used to classify
operators outside the Pauli group and is defined recursively. The Pauli operators on n qubits
form the first level of the Clifford hierarchy CH1. The operators at level t > 1 are unitary
operators U on n qubits such that UAU−1 ∈ CHt−1 for all Pauli operators A.
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The level 2 Clifford hierarchy operators that map Pauli operators to Pauli operators via
conjugation are called the Clifford group. The Clifford group is generated by the single-qubit
Hadamard matrix Had := 1√

2(X + Z) and the following operators, which are diagonal in the
computational basis:

S :=
√
Z =

(
1 0
0 i

)
, CZ :=

(
I2 0
0 Z

)
. (1.13)

Diagonal Clifford hierarchy operators are of particular interest in this thesis. These diagonal
Clifford hierarchy operators at level t form a group generated by square roots and controlled
versions of the diagonal operators at level t− 1. For instance, the diagonal operators at level 3
of the Clifford hierarchy are generated by the following:

T :=
√
S =

(
1 0
0 eiπ/4

)
, CS :=

(
I2 0
0 S

)
, CCZ :=

(
I4 0
0 CZ

)
. (1.14)

1.6 Representation of Quantum States in the Pauli Stabiliser
Formalism

The Pauli Stabiliser formalism can be used to efficiently represent certain quantum states.
Instead of working with a computational basis representation, we instead use a set of stabiliser
generators that identify the state. We can simulate operations on quantum states by updating
the stabiliser generators.

Stabiliser states are quantum states which can be represented as the codespace of a Pauli
stabiliser code spanned by a single codeword. To specify a general quantum state on n qubits
requires 2n complex variables (one for each of the computational basis states - see Eq. (1.5))
so quickly becomes intractable as n increases. On the other hand, we require n independent
stabiliser generators to represent a stabiliser state (this results in k = n− n = 0 logical qubits
and 2k = 20 = 1 codeword). Using the vector representation of Pauli operators of Section 1.5.3,
we require only n× (2n+ 2) bits, and this scales as a degree 2 polynomial in n.

The action of a Clifford unitary operator U on a stabiliser state |ψ⟩ can be modelled by
conjugating the stabiliser generators by U . For a stabiliser generator A in the initial codespace
we have:

(UAU−1)U |ψ⟩ = UA |ψ⟩ = U |ψ⟩ . (1.15)

Hence, UAU−1 stabilises the transformed state U |ψ⟩. By the definition of Clifford operators in
Section 1.5.8, UAU−1 is a Pauli operator.
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Measurements of any Pauli operator C can also be simulated on the codespace within
the Pauli stabiliser formalism. We can give the probability of obtaining measurement outcomes
+1 and −1 and also write an update rule for the stabiliser generators of the resulting codespace.
There are two possible cases. Firstly, if C or −C is in the stabiliser group, there is no change to
the stabiliser generators. In this case, (−1)sC ∈ ⟨S⟩ for some s ∈ {0, 1} and the measurement
outcome is (−1)s with probability 1. On the other hand, if ±C is not in the stabiliser group,
the probability of obtaining either outcome is 1

2 . We choose an outcome (−1)s at random and
add (−1)sC to the stabiliser group. If there is a stabiliser generator A which anticommutes
with C, we remove it from the stabiliser group. If there are any other stabiliser generators B
which also anti-commute with C, we replace them with AB. The new stabiliser AB commutes
with C because using BC = −CB and AC = −CA we have:

(AB)C = −ACB = (−1)2CAB = C(AB). (1.16)

Clifford circuits are quantum circuits composed of Clifford gates and measurements in the
computational basis. Stabiliser states can be thought of as the result of applying a Clifford
circuit to an initial state |ψ⟩ = |0⟩ stabilised by the operators S := {Zi : 0 ≤ i < n}. The
update rules described above can be generalised to Pauli codespaces (i.e. ones with codespace
dimension greater than 1 - see [30]). By implication, any Clifford circuit can be efficiently
simulated on a classical computer - this is referred to as the Gottesman-Knill Theorem.

Whilst Pauli stabiliser states exhibit some quantum properties - such as superposition
and entanglement - the states which can be represented within the Pauli stabiliser formalism
are quite limited. Many states of interest, for instance hypergraph [16] and weighted graph
states [31], are outside the Pauli stabiliser formalism. Due to the Gottesman-Knill Theorem,
key operations on Pauli stabiliser states are classically simulable and we do not capture the
advantage quantum computers are expected to enjoy.

1.7 Surface-Code Architecture of Universal Fault-Tolerant Quan-
tum Computation

The Pauli Stabiliser Formalism is also employed in the architecture of universal quantum
computers. In this Section, we discuss the architecture in [18] which uses the surface code to
encode quantum information, and a multi-level strategy for performing logical operations. We
then consider ways of improving the efficiency of the architecture.
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1.7.1 The Surface Code

The surface code, illustrated in the image on the left of Fig. 1.2, is a CSS code that employs
qubits arranged on the vertices of a d × d square grid and encodes one logical qubit. The
squares of the lattice are of two types - dark or light. Each square is associated with a weight-4
stabiliser generator. The stabiliser associated with a dark square has X operators on each
vertex and the one associated with a light square has Z operators on each vertex. Weight-2
stabiliser generators are located on the boundaries of the lattice. The low weight and locality
of the stabiliser generators make error correction comparatively easy to implement on current
quantum devices (see [9], [11]).

In the surface code, the logical X operator is a string of X gates joining the top and bottom
edges of the grid and so is of weight d. Similarly, the logical Z operator is a string of Z gates
that join the left and right boundaries. Hence, a distance d surface code requires n = d2 physical
qubits, and by increasing the size of the lattice, we can increase the code distance. The number
of encoded qubits is always k = 1 regardless of the lattice size, and we say that the surface
code family has a zero rate because the encoding rate k/n goes to zero as we increase the
number of data qubits n. The surface code can be thought of as the quantum analogue of the
repetition code of Example 3.3.5 and, in fact, it can be constructed by taking the hypergraph
product of two classical repetition codes [32].

1.7.2 Fault-Tolerant Logical Operations on the Surface Code

In order to implement quantum circuits associated with algorithms, we need the ability to
reliably perform unitary operations on the quantum information in the presence of errors.
Fault-tolerant logical operators are those where the application of the logical operator does
not result in an uncontrolled spread of errors throughout the system. Any such errors should
be correctable, providing the physical error rate is below a certain threshold [13].

One family of fault-tolerant logical operators are the transversal logical operators.
These are logical operators that can be written as a tensor product of single or multi-qubit
gates which act on distinct sets of qubits. Transversal logical operators are considered fault
tolerant because an error in applying a gate can only spread to other qubits involved in the
gate. If there is an error in applying a gate, this can be corrected, provided that the number of
qubits involved in the gate is at most ⌊d−1

2 ⌋. The logical Pauli operators for the surface code
as described above are transversal as they are a tensor product of single-qubit gates.

Another way of implementing fault-tolerant logical operators is via lattice surgery. For
the surface code, we can implement logical operations in the Clifford group via this technique.
In the surface-code architecture, lattice surgery involves moving logical qubits encoded in
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Figure 1.2 Surface-code Architecture of Universal Quantum Computation: in Ref [18],
logical qubits are encoded using surface code patches which have transversal logical Pauli
operators. Zooming out to the second image, multi-qubit logical Clifford operations are
performed via lattice surgery on the surface code patches. Zooming out again, logical operators
outside the Clifford group are performed via magic state injection. High-fidelity magic states are
distilled using quantum codes which have transversal non-Clifford logical operators (highlighted
in red). As discussed in the text, alternative quantum codes could be employed to improve the
efficiency of the architecture.

surface code patches, modifying the stabiliser generators of the code, and then performing
measurements of logical Pauli operators.

Due to the Gottesman-Knill theorem, circuits involving only Clifford operations are classically
simulable [30], and we need to add at least one logical operator outside the Clifford group to
have a universal gate set capable of implementing arbitrary quantum circuits [33]. On the other
hand, due to the Eastin-Knill theorem it is not possible for a single stabiliser code to have a
universal set of transversal logical operators [34].

In the surface-code architecture, non-Clifford logical operators are implemented via magic
state injection [35]. High-fidelity magic states are distilled using quantum error correction
codes which are known to have transversal logical operators outside the Clifford group. Often,
this will be a diagonal logical operator at the third level of the Clifford hierarchy of Section 1.5.8.
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For example, the 15-qubit quantum Reed-Muller code [36] is known to have a transversal logical
T operator and can be used for magic state injection.

1.7.3 Improving on the Surface-Code Architecture

The surface-code architecture could be improved by using a quantum error correction code
which has a higher encoding rate instead of the surface code. Ideally, the code would have a
range of transversal logical Clifford operators, as this minimises the use of the more complex
lattice surgery method. Current estimates indicate that a large proportion of physical qubits
will need to be dedicated to magic state injection [37], so use of more efficient quantum error
correction codes could make a significant impact for this process as well. Such codes would
need transversal logical operators outside the Clifford group with a good trade-off between
distance and encoding rate.

Quantum LDPC (Low Density Parity Check [38]) codes could be used for either encoding
logical information or magic state injection protocols. Families of quantum LDPC codes are
known where the number of logical qubits k and the distance d both increase with the number
of data qubits n, resulting in a rate n/k >> 0 as n increases [38]. Although high-rate quantum
LDPC codes may appear more difficult to implement due to the long-range interactions required
to measure stabiliser generators, recent work suggests that their error correction properties may
be competitive with surface codes [39, 40]. On the other hand, the number of physical qubits
in high-rate LDPC codes grows quickly, particularly those with transversal non-Clifford logical
operators. As a result, studying the logical operator structure of such codes using existing
methods is difficult.

1.8 Contribution of this Work

This thesis focuses on the XP formalism - a generalisation of the XS stabiliser formalism of [41]
which is in turn a generalisation of the Pauli formalism [1]. In the XP formalism, we fix an
integer N ≥ 2 and consider operators of form ⟨ωI,X, P ⟩⊗n where ω := e

iπ
N is a 2Nth root of

unity and P :=
(

1 0
0 ω2

)
is a 1/N rotation around the Z axis of the Bloch sphere (see Fig. 1.3a).

Each choice of N results in a new formalism and setting N = 2 yields the Pauli group.

In Chapter 2, we present a paper published in Quantum Volume 6, Page 815 that introduces
the XP stabiliser formalism. In this paper, we introduce a vector representation of XP operators
in which algebraic operations can be carried out efficiently via addition and multiplication of
vectors by generalising Eq. (1.7). We consider quantum codes whose stabiliser generators are
XP operators, and seek to replicate the algorithms for the Pauli stabiliser formalism outlined

https://quantum-journal.org/papers/q-2022-09-22-815/
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in Sections 1.5.5 and 1.6. We present algorithms for calculating the codewords and logical
Pauli operators of an XP code which generalise the method in Section 1.5.6. We consider
measurements of XP operators on XP codes and seek to generalise the methods of Section 1.6
to XP codes. We show that such measurements cannot be simulated efficiently within the XP
formalism.

We show that a wider range of quantum states can be represented in the XP formalism than
in the Pauli stabiliser formalism. Single-qubit states in the Pauli stabiliser formalism and the
XP formalism are compared in Figs. 1.3b and 1.3c. In the Pauli stabiliser formalism, multi-qubit
states correspond to graph states up to local unitary operators ([42]). Multi-qubit XP stabiliser
states correspond to weighted hypergraph states up to an embedding operation and this
is illustrated in Fig. 1.4. Weighted hypergraph states generalise both weighted graph states
[31] and hypergraph states [16]. Hypergraph states are of particular interest because they
demonstrate non-local properties which are not present in Pauli stabiliser states [43].

We classify XP codes and show that they can either be XP-regular or non-XP-regular.
As is the case for Pauli stabiliser codes, XP-regular codes have codespaces of dimension 2k

for some integer k and can be mapped to a CSS code via a diagonal unitary operator (see
Section 1.5.6). Non-XP-regular codes may have codespaces of arbitrary dimension and have a
more complex logical operator structure than XP-regular codes. One of the most intriguing
results of Ref [41] is that codespaces which have non-Abelian anyons can be represented as XS
codes, and these are generally non-XP-regular codes. Ref [17] proposes the use of non-Abelian
anyons as an alternative architecture for universal fault-tolerant quantum computation and the
machinery of the XP formalism could be used to better understand such codespaces.

(a) Phase Operator: the P op-
erator is a 1/N rotation around
the Z axis.

(b) Single-Qubit Pauli
States: the 6 single-qubit Pauli
stabiliser states (N = 2) corre-
sponding to the eigenvectors of
±X,±Y,±Z.

(c) Single-Qubit XS States:
there are 4 additional single-
qubit XS stabiliser states (N =
4) corresponding to the eigenvec-
tors of ±ωXS,±ω3XS3 where
ω = eiπ/4.

Figure 1.3 Single-Qubit XP Stabiliser States.
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(a) Graph States: multi-qubit states in the Pauli
stabiliser formalism correspond to graph states
up to local unitaries. Qubits are associated with
the n vertices of a graph. Each qubit is initialised
in the state |+⟩ := (|0⟩ + |1⟩)/

√
2. For any two

vertices joined by an edge of the graph, we apply
a CZ operator to the corresponding qubits.

(b) Weighted Hypergraph States: multi-qubit
states in the XP stabiliser formalism correspond
to weighted hypergraph states up to an embedding
operation. Edges of a weighted hypergraph state
have weights that indicate the phase to be applied
and can have more than 2 vertices (hyperedges).
For precision N = 8, the figure illustrates an edge
with 2 vertices and weight 6 that corresponds
to a CS3 operator. Shaded is an edge with 3
vertices and weight 4 which corresponds to a CCZ
operator.

Figure 1.4 Multi-Qubit XP Stabiliser States.

In Chapter 3, we present a paper accepted for publication in the New Journal of Physics,
Volume 25, Page 103018, October 2023 which looks at diagonal transversal logical operators
of stabiliser codes. We show that operators composed of single-qubit diagonal gates can
be represented as XP operators and present algorithms for determining the diagonal logical
operators of this form. These methods are of polynomial complexity, whereas previous methods
are of exponential complexity in one or more of the code parameters [14]. The algorithms allow
us to analyse large codes outside the reach of previous methods.

We also consider logical operators composed of multi-qubit diagonal Clifford hierarchy gates
(see Section 1.5.8) and show that these can also be represented within the XP formalism via
an embedding operation. We present a method for determining all such operators which have
transversal implementations and demonstrate a method for constructing CSS codes which have
a desired diagonal logical operator implemented transversally using single-qubit diagonal gates.
These techniques may prove useful in designing stabiliser codes with better rates and desired
logical operator structures as outlined in Section 1.7. They may also prove useful in simulating
circuits where the gates are diagonal Clifford hierarchy operators.

The algorithms in these papers have been implemented in GitHub repositories, and these
include multiple examples presented as Jupyter notebooks.

https://iopscience.iop.org/article/10.1088/1367-2630/acfc5f
https://iopscience.iop.org/article/10.1088/1367-2630/acfc5f
https://github.com/m-webster


2 | The XP Stabiliser Formalism: a
Generalisation of the Pauli Sta-
biliser Formalism

Abstract
We propose an extension to the Pauli stabiliser formalism that includes fractional 2π/N
rotations around the Z axis for some integer N . The resulting generalised stabiliser
formalism – denoted the XP stabiliser formalism – allows for a wider range of states and
codespaces to be represented. We describe the states which arise in the formalism, and
demonstrate an equivalence between XP stabiliser states and ‘weighted hypergraph states’
- a generalisation of both hypergraph and weighted graph states. Given an arbitrary
set of XP operators, we present algorithms for determining the codespace and logical
operators for an XP code. Finally, we consider whether measurements of XP operators
on XP codes can be classically simulated.

2.1 Introduction

Representing general quantum states of n qubits requires an amount of information that is
exponential in n. For tractable theoretical study of quantum systems, we require more compact
representations of quantum states of interest. Some examples of such representations include
tensor network states e.g. Matrix Product States and Projected Entangled Pair States [44] and
states created by low-depth quantum circuits [45].

The Pauli stabiliser formalism allows for the efficient description and manipulation of an
important subset of quantum states, known as Pauli stabiliser states [1]. Pauli stabiliser states
and codes can be efficiently described using a set of stabiliser generators, which are elements of
the Pauli group ⟨iI,X, Z⟩⊗n, with only n such generators needed to describe a Pauli stabiliser
state. Many key quantum features such as entanglement and superposition can be captured
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using stabiliser states. Given the stabiliser generators, efficient algorithms exist for determining
the codespace, logical operators and simulating measurements of Pauli operators. On the other
hand, the states which can be represented within the Pauli stabiliser formalism are quite limited.
The fact that we can simulate the behaviour of Pauli stabiliser states suggests that we are
missing some important aspects of quantum advantage.

Given the ubiquity and the utility of the Pauli stabiliser formalism in quantum information
theory, it is no surprise that there have been several studies into generalising this formalism
in order to broaden the classes of stabiliser states. One such approach is the qudit stabiliser
formalism, where we fix a dimension D and stabiliser generators are from the generalised Pauli
group on D-level systems. The algorithms from the Pauli stabiliser formalism can be extended
to qudit codes [46], and measurement of any generalised Pauli group operator is known to be
classically simulable [47].

Another generalisation is the XS stabiliser formalism [41], wherein stabiliser codes are defined
using elements of ⟨αI,X, S⟩⊗n which act on qubits and where α := eiπ/4 and S := diag(1, i) is
the phase gate. In Ref. [41], the authors demonstrate that states outside the Pauli stabiliser
formalism can be represented as XS stabiliser states. In particular, they demonstrate that
Quantum Twisted Double models which harbour non-Abelian anyons can be represented in the
XS formalism. The authors present polynomial-time algorithms for determining the codespace,
expectation values and logical operators for such codes, but these are limited to certain ‘regular’
codes.

In this Chapter, we introduce the XP stabiliser formalism which generalises the concept
of the XS formalism. In the XP formalism, we fix an integer N and define XP codes using
elements of ⟨ωI,X, P ⟩⊗n where ω := eiπ/N , P := diag(1, ω2). We prove that hypergraph and
weighted graph states can be represented as XP stabiliser states. These are useful classes of
states which cannot be represented as Pauli stabiliser states. We present XP versions of many
of the algorithms available in the Pauli stabiliser formalism, which apply to any XP code. This
includes algorithms to determine the codespace, logical operators and simulate the measurement
of diagonal Pauli operators on an XP codespace. The computational complexity of these tasks
increases with the precision N of the code (see for example Section 2.6.6). We demonstrate
that measurement of XP operators on a codespace is not always efficiently simulable. Hence,
the XP formalism lies on the boundary between what is classically simulable and what is not,
suggesting that we may be able to capture some aspects of quantum advantage.

The XP stabiliser formalism has a number of potential applications. For instance, the logical
operator structure of XP codes is much richer than is the case for Pauli stabiliser codes. We
could potentially use the XP formalism to describe codes with transversal logical non-Clifford
operations (for instance T or CCZ gates) that could be used for fault-tolerant preparation of
magic states. As the stabiliser generators of XP codes do not commute, certain no-go theorems
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may not apply, for instance, in the area of quantum memories [48]. Compared to the Pauli
stabiliser formalism, a wider range of topological phases can be represented, which makes
studying them more straightforward using the techniques presented in this Chapter.

This Chapter is structured to present the framework and tools necessary to start exploration
of the XP formalism, with examples used throughout the Chapter. Where possible, examples
are linked to interactive Jupyter notebooks that allow for further exploration and modification
of these examples by the reader.

In Section 2.2, we review the Pauli stabiliser formalism and the XS Formalism introduced in
Ref. [41]. We then introduce the XP formalism and summarise the main results of this Chapter.
In Section 2.3, we set out definitions for XP operators and give a full description of their algebra.
In Section 2.4, we show how to identify the codespace of an arbitrary set of XP operators and
calculate a set of codewords which form a basis of the codespace. In Section 2.5, we classify the
states which arise in the XP formalism and show that two important classes of states can be
represented as XP stabiliser states: hypergraph [16] and weighted graph states [31, 49].

In Section 2.6, we address the logical operator structure of XP codes. We show how to
find XP operators which generate the logical operator group for a given codespace. We can
allocate quantum numbers to the codewords of Section 2.4, and this leads to a classification of
XP codes into XP-regular and non-XP-regular codes. We show that any XP-regular code can
be mapped to a CSS code with similar logical operator structure. We show how to determine
all possible logical actions which can be applied by diagonal operators and demonstrate that
non-XP-regular codes give rise to logical operators with complex actions.

In Section 2.7, we look at measurements in the XP formalism. We demonstrate an efficient
algorithm for simulation of measurement of diagonal Pauli operators on any XP code. Beyond
this special case, XP operators cannot in general be measured within the XP formalism.
Estimating measurement outcome probabilities for XP operators is in general an NP-hard
problem.

We conclude in Section 2.8 with a discussion and list of outstanding questions for the XP
formalism.

2.2 The XP Stabiliser Formalism

The Pauli stabiliser formalism (PSF) has been very valuable for describing the quantum error-
correcting codes we need to overcome the decohering effects of the environment on quantum
systems. Moreover, its structure is such that we can prove powerful results on the simulability
of Clifford circuits.

https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
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Nevertheless, this formalism is limited in the types of quantum states it can describe.
Extending the stabiliser formalism gives us new tools to describe more general quantum
systems, and to explore their potential applications.

In this Section, we first review the PSF and discuss the desirable features that we would like
to carry over into an extension to the formalism. We next discuss the XS Formalism introduced
in Ref. [41], which is an extension of the PSF. We then introduce our new formalism, the XP
formalism, which generalises the concept of the XS Formalism. Finally, we outline the main
properties of the XP formalism and summarise the results presented in this Chapter.

2.2.1 Review of the Pauli Stabiliser Formalism

Pauli stabiliser codes are amongst the most commonly studied quantum error correction codes.
A stabiliser code is specified by a list of stabiliser generators. The stabiliser generators are
tensor products of operators in the single-qubit Pauli group P = ⟨iI,X, Z⟩. The stabiliser
group is the group generated by the stabiliser generators. The codespace is the simultaneous
+1 eigenspace of the stabiliser group. The codewords are a basis of the codespace (i.e. spanning
and independent).

The power of the Pauli stabiliser formalism is that stabiliser codes can be analysed and
simulated by operations on the stabiliser generators rather the codewords. In Chapter 10
of Ref. [27], efficient algorithms involving operations on the stabiliser generators are set out for
the following tasks:

1. Check if a set of Pauli operators identifies a non-trivial codespace: equivalent
to checking whether −I is in the stabiliser group.

2. Find codewords and logical operators: represent the stabiliser generators as binary
vectors which form the rows of a check matrix, then apply linear algebra techniques.

3. Simulate action of Clifford Unitary Operator U : the updated code generators are
obtained by conjugating each of the generators by U .

4. Simulate measurement of Pauli Operator A: update the stabiliser generators by
determining if they commute or anticommute with A.

The above properties allow us to detect and correct errors in Pauli stabiliser codes by measuring
the stabiliser generators.
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2.2.2 Extending the Pauli Stabiliser Formalism - Existing Work

The Pauli stabiliser formalism (PSF) is capable of describing only a limited subset of all possible
quantum states. One way to extend the PSF is to consider qudit stabiliser codes using the
Generalised Pauli Group [46], and there is a fairly substantial literature on this generalisation.

Another way is to work with qubits, but to admit operators with finer rotations around the
Z axis in stabiliser groups. In the XS stabiliser formalism, introduced in Ref. [41], stabiliser
generators are tensor products of operators in ⟨αI,X, S⟩ where S := diag(1, i) so that S4 = I

and α := exp(iπ/4) so that α8 = 1. The XS stabiliser formalism can describe a wider range of
states compared to the PSF, meaning there are XS code states that cannot be expressed within
the PSF. Examples of such XS code states are the twisted quantum double models [50]. XS
codes fall within the monomial matrix formalism [51], a very broad formalism which includes
states such as the AKLT model [52], Dicke states [53] and locally maximally entanglable states
[54].

A set of XS stabiliser generators does not need to commute to form a valid code. As a result,
we cannot in general perform simultaneous measurements of the generators, as is commonly
done in PSF codes for error correction. Even so, commuting parent Hamiltonians for XS codes
exist, and so error correction is possible with XS codes.

In the XS stabiliser formalism, regular codes are a special case, defined as those where the
diagonal generators are tensor products of ⟨−I, Z⟩. For these regular codes, Ref. [41] presents
polynomial-time algorithms to: calculate the codewords from a list of stabiliser generators;
calculate the stabiliser generators for a given codeword; calculate logical Z and X operators for
a codespace; construct a circuit to find expectation values for measurements of Pauli operators
on the code.

In summary, Ref. [41] provides a useful generalisation of the PSF, as well as generalising a
number of algorithms for analysing and simulating codes. One of the main limitations of the
XS stabiliser formalism is that many algorithms only work for regular codes, which are a
subset of possible XS codes.

2.2.3 The XP Stabiliser Formalism

In our work, we introduce a formalism that generalises the XS stabiliser formalism concept,
allowing us to represent an even wider set of states. We demonstrate algorithms for most of the
operations we have under the PSF, with a corresponding increase in computational complexity.
The algorithms work on any XP code and are not restricted to regular codes as in Ref. [41].
The XP formalism is at a similar level of generality as that presented for qudits in Ref. [46],



22 The XP Stabiliser Formalism: a Generalisation of the Pauli Stabiliser Formalism

Qudit Codes Ref. [46] XP Codes
Parameters Qudit Dimension D,

Number of qudits n
Precision N , Number of
qubits n

Phases ω = exp(2πi/D) ω = exp(πi/N)
Generalised X X = ∑

0≤j≤D−1 |j⟩⟨j + 1| Pauli X
Generalised Z Z = ∑

0≤j≤D−1 ω
j |j⟩⟨j| P = diag(1, ω2)

Vector form of
operators

ωpXxZz where
p ∈ ZD,x, z ∈ Zn

D

ωpXxP z where
p ∈ Z2N ,x ∈ Zn

2 , z ∈ Zn
N

Commutators Operators commute, up
to phase

Operators commute, up
to a diagonal operator

Clifford (Normaliser)
Group

Known - Table III of
Ref. [46]

Unknown - most likely
restricted to tensors of
single-qubit XP operators
and Controlled Z
operators

Generalised
Hadamard

Quantum Fourier
Transform

None

Code Stabilisers ⟨G⟩
Commute

Yes No

Code Stabilisers
Uniquely defined by
Codespace

Yes No - but Logical Identity
Group is Unique
(Section 2.6.2)

Standard form of
Stabiliser Groups

Yes - Using Smith
Normal Form

Yes - Using Howell
Matrix Form

Codespace Dimension dim(C) = Dn/|⟨G⟩| Arbitrary
Classical Simulation
of Measurements

Yes - any generalised
Pauli Ref. [47]

Not possible for arbitrary
XP operators

Table 2.1 Qudit Stabiliser Codes Compared to XP Codes

and we prove many analogous results. The properties of XP and qudit stabiliser codes are
compared in Table 2.1.

To define an XP stabiliser code, we first fix an integer N ≥ 2 which we refer to as the
precision of the code. We then specify a set of stabiliser generators which are from ⟨ωI,X, P ⟩⊗n

where

ω := exp
(πi
N

)
= exp

( 1
2N 2πi

)
so ω2N = 1 (2.1)

P := diag(1, ω2) so PN = I . (2.2)

Each choice of precision N leads to a different stabiliser formalism. For example, N = 2
corresponds to the standard Pauli stabiliser formalism, with ω = i and Z2 = I. The XS
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stabiliser formalism of Ref. [41] corresponds to N = 4, with ω =
√
i and S4 = I. Note that N

does not need to be a power of 2 - e.g., N = 6 or N = 7 are valid choices.

Unlike the Pauli stabiliser formalism, the XPF is not closed under conjugation by Hadamard
operators. In particular, if N = 2M then:

HPH−1 = M
√
X . (2.3)

One could consider expanding the formalism to allow fractional X operators of this type, but
this does not lead to a finite set of operators that is closed under group operations. Many
of the results in this Chapter rely on there being a unique vector representation of operators
(see Section 2.3.1). If we introduce fractional X operators, we no longer have a unique vector
representation.

There are a number of open questions from Ref. [41] which we also address for both XS
codes and the general XP case:

• How do we find all transversal logical operators for a given code?

• Which sets of operators stabilise the same codespace?

• Can we simulate measurements efficiently?

• Which classes of states can be described within a generalisation of the stabiliser formalism?

2.2.4 Summary of Results

We present algorithms within the XPF for many of the operations that are possible within the
Pauli stabiliser formalism (PSF). Our formalism is broader than the XS formalism and answers
a number of open questions from Ref. [41]. Table 2.2 compares the XS stabiliser formalism
with the XPF and summaries the results we demonstrate in this Chapter.

We start by setting out the algebra of XP operators in Section 2.3. We show how to represent
XP operators as vectors of integers. By generalising the symplectic product of the PSF, we write
elegant closed form expressions for the main algebraic operations on XP operators - including
multiplication, inverses, powers, conjugation and commutation. We also show efficient ways to
calculate the eigenvalues and the action of projectors of XP operators.

We specify XP codes by giving a list of XP operators which have a non-trivial simultaneous
+1 eigenspace. In Section 2.4, we show how to identify the codespace for an arbitrary set of XP
operators. In Ref. [41], a polynomial-time algorithm is presented for doing this, but only for
‘regular’ codes where the diagonal stabiliser generators are from ⟨−I, Z⟩⊗n. We demonstrate
an algorithm which works for any XP code, whether regular or not.
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XS Formalism [41] XP Formalism
Form of Stabiliser
Generators

⟨αI,X, S⟩⊗n : S4 =
I, α8 = 1

⟨ωI,X, P ⟩⊗n : PN =
I, ω2N = 1

Determine Codewords
from Stabiliser
Generators

Regular codes only All XP codes

Which stabiliser
groups have the same
codespace?

Open question Same logical identity
group ⇔ same codespace

Determine Logical
Operators for a Code

Regular codes only: Z
and X

All XP codes: Generators
for XP logical operator
group, which may include
non-Clifford logical
operators

Simulate
Measurements on a
Code

Regular codes: circuit
method to calculate
expectation value when
measuring Paulis

All XP codes: Stabiliser
algorithm to measure
diagonal Paulis;
Codeword algorithm to
calculate outcome
probabilities when
measuring any XP
operator.

Table 2.2 Summary of Results and Comparison with XS Formalism

Having introduced some of the basic techniques for working with XP codes, in Section 2.5
we determine which states arise under the XP formalism. We identify the form of the phase
function of XP stabiliser states and show an equivalence between ‘weighted hypergraph states’
and XP stabiliser states. In particular, two important classes of states - hypergraph and
weighted graph states - can be represented as XP stabiliser states. We give examples which
have uses in measurement-based quantum computation.

Understanding which logical operators arise for a given XP code has important implications
for which error-protected operations are possible. In Section 2.6 we show how to calculate
generators for the entire group of logical operators of XP form. The algorithm works for all XP
codes, and yields any non-Clifford logical operators (e.g., logical T, CCZ etc) of XP form which
act on the codespace.

The stabiliser group of a codespace is not unique in the XPF, but the group of XP operators
which act as logical identities on the codespace is unique. We show how to efficiently calculate
generators for the logical identity group for a given XP group, resulting in a test for whether
two XP groups stabilise the same codespace.
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In Section 2.6.5 we introduce a classification of XP codes into XP-regular and non-XP-regular
codes. XP-regular codes include all ‘regular’ codes as defined in Ref. [41], but is a broader
class. We show that, as in the PSF, the codespace dimension of XP-regular codes is a power
of 2. For non-XP-regular codes, the codespace dimension is arbitrary. Non-XP-regular codes
are non-additive and have a structure similar to that of codeword stabilised (CWS) quantum
codes [55]. Each XP-regular code can be mapped to a CSS code which has a similar logical
operator structure. We demonstrate that for non-XP-regular codes, more complex diagonal
operators can arise compared to the PSF. A summary of the differences between XP-regular
and non XP-regular codes is in Table 2.3.

Property XP-Regular Non-XP-Regular
Codespace Dimension 2k for some k Arbitrary
Additive Yes No
Related CSS Code Maps to a CSS code with

similar logical operator
structure

No related CSS code

Diagonal Logicals Same as related CSS code Exotic
Non-diagonal Logicals Similar to related CSS

code
Transversal logical X may
not exist

Table 2.3 XP-Regular vs Non XP-Regular Codes

Determining the extent to which computations on a quantum computer can be classically
simulated is one of the central questions in the field of quantum information. In the Pauli
stabiliser formalism, we can classically simulate the measurement of any Pauli operator on
any stabiliser code. A similar result holds for the qudit stabiliser formalism for generalised
Pauli group operators. Section 2.7 covers measurement in the XP formalism. Measurement
of diagonal Pauli operators can be efficiently simulated on any XP code, and we present an
efficient stabiliser method for calculating the outcome probabilities and updated XP code. We
then consider extending the algorithm to precision 4 operators. We show that finding the
outcome probabilities when measuring collections of diagonal precision 4 operators is NP-hard.
We also give examples where the measurement of precision 4 operators cannot be done within
the XP formalism.

Finally in Section 2.8, we summarise what is known about the XP formalism, discuss
implications, and lay out possible future research directions.

2.2.5 XPF Software Package

We have produced a Python software package implementing all algorithms discussed in this
Chapter. The Github repository is made available subject to GPL licensing. Interactive Jupyter

https://github.com/m-webster/XPFpackage
https://www.gnu.org/licenses/gpl-3.0.en.html
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
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notebooks for all examples in this Chapter are included and can be modified to run different
scenarios.

2.3 Algebra of XP Operators

In this Section, we lay out fundamental results for the algebra of XP operators, including
closed form expressions for algebraic operations which support efficient simulation on a classical
computer. We show how to write a unique vector representation for XP operators. We generalise
the symplectic product of the Pauli stabiliser formalism and show how to express algebraic
operations in terms of the vector representation and the generalised symplectic product. We
also introduce the concepts of the degree and fundamental phase of XP operators. These
concepts allow us to determine the eigenvalues and actions of the projectors of XP operators.

2.3.1 Vector Representation of XP Operators

In this Subection, we show that there is a natural identification of XP operators on n qubits
with vectors of integers. Let u = (p|x|z) ∈ Z × Zn × Zn be an integer vector of length 2n+ 1.
Define the XP operator of precision N corresponding to u as:

XPN (u) := ωp
⊗

0≤i<n

Xx[i]P z[i] , (2.4)

where ω and P are as defined in Eqs. (2.1) and (2.2). Each component is periodic in that we
can write:

XPN (p|x|z) = XPN (pmod 2N |x mod 2|z modN) . (2.5)

Accordingly, we can write a unique vector representation (p|x|z) ∈ Z2N × Zn
2 × Zn

N for
each XP operator. We call p the phase component, x the X component and z the Z
component.

Here we list some properties of this notation:

1. The identity XP operator is XPN (0|0|0) where 0 is the length n vector with all entries 0.

2. Because ωN = −1, we have XPN (N |0|0) = −I.

3. The single qubit X operator is XPN (0|1|0).

4. Diagonal operators are of form XPN (p|0|z), i.e. the X component is the zero vector.

https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
https://mybinder.org/v2/gh/m-webster/XPFpackage/HEAD?urlpath=tree/Examples
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5. If N is even, the single qubit Z operator is XPN (0|0|N
2 ). For N odd, Z operators cannot

be represented as XP operators. Note that one may rescale the code to be of precision
2N by doubling the phase and Z components of stabiliser generators, in which case the
rescaled code has the same codespace and accommodates Z operators.

Example 2.3.1 (Using XP operator notation)
Consider the following example of an XP operator:

A = XP8(12|1110000|0040000) . (2.6)

The precision is specified by the subscript 8, in this case N = 8. This means that ω =
exp( 1

162πi) and P 8 = I so P = T where T is the operator diag(1,
√
i). In other words, this is

an XT operator. Most of the examples we consider in this Chapter are precision N = 8 codes.

The components of A are as follows. The phase component is a value p ∈ Z16. In this
case p = 12 means the overall phase of the operator is ω12 = exp(12

162πi) = exp(3
42πi) = −i.

The X component is a binary vector of length n so that x ∈ Zn
2 . In this case, x = 1110000,

representing X1X2X3, where Xi represents the operator which applies X to the ith qubit and
I elsewhere. The Z component is a value z ∈ Zn

8 . In this case z = 0040000 representing T 4
3 .

In terms of X and T operators, we can write:

XP8(12|1110000|0040000) = exp(12
162πi)X1X2X3T

4
3 (2.7)

= −iX1X2X3Z3 . (2.8)

As the phase and Z components are divisible by 4, we can rescale A and write it as a precision
2 operator by dividing the phase and Z components by 4:

XP8(12|1110000|0040000) = XP2(3|1110000|0010000) . (2.9)

2.3.2 Multiplication Rule and Generalised Symplectic Product

In the Pauli stabiliser formalism, we represent operators as binary vectors and understand
commutation relations in terms of the symplectic product. In this Subsection, we generalise
the symplectic product to the XP formalism, and this allows us to write a simple rule for
multiplying XP operators.

Let z ∈ Zn be an integer vector of length n with ith component denoted z[i]. The
antisymmetric operator of precision N corresponding to z is:

DN (z) := XPN (
∑

i

z[i]|0|−z) . (2.10)
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In this Chapter, arithmetic operations on vectors are component-wise in Z i.e.:

(a + b)[i] := a[i] + b[i] (2.11)
(ab)[i] := a[i]b[i] . (2.12)

We can then express the multiplication of two XP operators as the sum of their vector
representations, adjusted by an antisymmetric operator:

Proposition 2.3.1 (Multiplication of XP Operators)
The product of two XP operators given in vector format is:

XPN (u1)XPN (u2) = XPN (u1 + u2)DN (2x2z1) . (2.13)

Proof. For n = 1, looking at matrix representations of X and P we see that:

PX = ω2XP−1 = (XP )(ω2P−2) = (XP )DN (2) . (2.14)

From this, we can show that the multiplication rule applies for all single qubit XP operators in
⟨ωI,X, P ⟩ and in turn to the tensor products of such operators.

Example 2.3.2 (Multiplication of XP Operators)
Let N = 4, n = 3 so that unique vector representations of XP operators are XPN (p|x|z) where
(p|x|z) ∈ Z8 × Z3

2 × Z3
4. Consider two example XP operators A1 and A2 defined as

A1 = XP4(2|111|330) , with u1 = (2|111|330) ,
A2 = XP4(6|010|020) , with u2 = (6|010|020) .

Then
A1A2 = XP4(u1 + u2)D4(2x2z1) = XP4(6|101|330) . (2.15)

This example is worked out in detail in the linked Jupyter notebook. You can also explore how
multiplication works for random XP operators of arbitrary precision and length.

2.3.3 Other Algebraic Identities

We can write simple closed form identities for various algebraic operations in terms of antisym-
metric operators, and these are summarised in Table 2.4. These identities allow us to efficiently
implement algebraic operations in the XPF software package.

Example 2.3.3 (Algebraic Identities)
The following are some consequences of algebraic identities in Table 2.4:

https://github.com/m-webster/XPFpackage/blob/main/Examples/3.2_multiplication.ipynb
https://github.com/m-webster/XPFpackage


2.3 Algebra of XP Operators 29

Name Rule
MUL Multiplication of two XP operators

XPN (u1)XPN (u2) = XPN (u1 + u2)DN (2x2z1)
SQ Square of an XP operator

A2 = XPN (2p|0|2z)DN (2xz)
POW XP operator raised to a power

Am = XPN (mp|ax|mz)DN ((m− a)xz), where a = mmod 2
INV Inverse of an XP operator

A−1 = XPN (−p|x| − z)DN (−2xz)
CONJ Conjugation of XP operators

A1A2A
−1
1 = A2DN (2x1z2 + 2x2z1 − 4x1x2z1)

COMM Commutator of XP operators
A1A2A

−1
1 A−1

2 = DN (2x1z2 − 2x2z1 + 4x1x2z1 − 4x1x2z2)
OP Action of an XP operator on a computational basis vector

XPN (p|x|z)|e⟩ = ωp+2e·z|e ⊕ x⟩
Table 2.4 Algebraic Identities for XP Operators

1. The MUL and INV rules imply that products and inverses of diagonal operators are
diagonal.

2. The SQ and COMM rules imply that squares and commutators of XP operators A,B are
always diagonal.

3. The CONJ rule implies that conjugating an operator A by an operator B results in A

times a diagonal operator.

2.3.4 Group Structure of XP Operators

Because we have rules for products and inverses of XP operators, the XP operators of precision
N on n qubits form a group, denoted X PN,n.

For any set of XP operators G, we can determine the group generated by the operators which
we denote G = ⟨G⟩. The subset of diagonal XP operators GZ forms an Abelian subgroup.
This is because diagonal operators commute and GZ is closed under multiplication (and so
includes all inverses and the identity operator).

There is a natural group homomorphism Zp between GZ over multiplication and Zn+1
2N

over addition modulo 2N . For diagonal operators, the action of Zp is:

Zp(XPN (p|0|z)) = (2z|p) mod 2N . (2.16)
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The Zp map is well defined and is a group homomorphism because:

A1A2 = XPN ((p1 + p2) mod 2N |0|(z1 + z2) modN) ; (2.17)

and so:

Zp(A1A2) = (2(z1 + z2) mod 2N |(p1 + p2) mod 2N) (2.18)
= (Zp(A1) + Zp(A2)) mod 2N . (2.19)

The inverse map Zp−1(z|p) = XPN (p|0|z/2) is well defined providing each component of z
is divisible by 2 in Z2N (even Z components). Addition over Zn+1

2N takes vectors with even
Z components to vectors with even Z components. Hence, we can find the generators of GZ

by finding a set of vectors B ⊂ Zn+1
2N which span Zp(GZ). Using the Howell matrix form of

Appendix A.1, we set B = HowZN
(Zp(G)). The set Zp−1(B) generates GZ . This method is

used to determine a unique set of canonical generators for an XP group (see Section 2.4.1).

2.3.5 Eigenvalues and Projectors of XP Operators

Identifying the eigenvalues and eigenvectors of XP operators will be important when considering
measurements. We first show how to determine the action of an XP operator on computational
basis elements. The degree and fundamental phase of an XP operator, defined in this Subsection,
allow us to determine the eigenvalues of XP operators efficiently. These results are used in the
chapters on identifying the codespace and measurements in the XP formalism (Sections 2.4
and 2.7).

The action of an XP operator on a computational basis element |e⟩ of Hn
2 where e ∈ Zn

2 is:

XPN (p|x|z)|e⟩ = XPN (p|x|z)XPN (0|e|0)|0⟩ = ωp+2e·z|e ⊕ x⟩ . (2.20)

When calculating the action on computational basis elements, we apply the diagonal part of the
operator first, then the X component. The notation e · z = ∑

i e[i]z[i] is the usual dot product
for vectors in Z. The notation e ⊕ x = (e + x) mod 2 denotes component-wise addition modulo
2 which is equivalent to XOR for binary vectors e and x.

For a given XP operator A,A2N = I so there must be a minimal deg(A) ∈ Z2N such that
for some q ∈ Z2N :

Adeg(A) = ωqI . (2.21)

We call deg(A) the degree of A and q the fundamental phase of A. The degree can be
calculated efficiently via the method below:
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Proposition 2.3.2 (Calculating the Degree of an XP Operator)
We calculate the degree of XP operator A = XPN (p|x|z) as follows:

1. If A is diagonal: deg(A) = LCM{N/GCD(N, z[i]) : 0 ≤ i < n}.

2. If A is non-diagonal: deg(A) = 2 deg(A2), noting that A2 is diagonal.

Proof. To show 1, note that where A is diagonal, Am = XPN (mp|0|mz). We need to solve for
mz = 0 modN . To show 2, note that odd powers of A are non-diagonal, so the degree must be
even. Apply 1 to A2 which is diagonal.

Once we have the degree of an operator, the fundamental phase is the phase component
of Adeg(A). Determining the fundamental phase and degree of an XP operator allows us to
identify its eigenvalues, as follows:

Proposition 2.3.3 (Eigenvalues of Operator)
If A has degree d and fundamental phase q, the only possible eigenvalues of A are ωm : m =
(q + 2Nj)/d for j ∈ [0 . . . d− 1].

Proof. Let |ψ⟩ be an eigenvector with A|ψ⟩ = ωp|ψ⟩. By the definition of degree and fundamental
phase, Ad = ωqI so Ad|ψ⟩ = ωdp|ψ⟩ = ωq|ψ⟩. Hence dp = qmod 2N and the result follows.

The following proposition allows us to calculate the action of projectors of XP operators on
a computational basis element:

Proposition 2.3.4 (Action of XP Projectors on computational basis elements)
Consider the projectors Aλ of A onto the λ-eigenspace of A. If A is diagonal, the action of Aλ

on the basis element |e⟩ is:

Aλ|e⟩ =

|e⟩ : if A|e⟩ = λ|e⟩

0 : if A|e⟩ ≠ λ|e⟩
. (2.22)

If A is non-diagonal, the action of Aλ is:

Aλ|e⟩ =


1
2(I + λ−1A)|e⟩ : if A2|e⟩ = λ2|e⟩

0 : if A2|e⟩ ≠ λ2|e⟩
. (2.23)

Proof. To verify Eq. (2.23), notice that if A2|e⟩ = λ2|e⟩ then:

A
(1

2(I + λ−1A)|e⟩
)

= 1
2(A+ λ−1A2)|e⟩ = 1

2(A+ λ−1λ2I)|e⟩ = λ
(1

2(I + λ−1A)|e⟩
)
. (2.24)
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2.4 Calculating Codewords from Stabiliser Generators

In this Section, we show how to identify the codespace stabilised by a given set of XP operators.
In the Pauli stabiliser formalism, there is a very simple relationship between the number of
stabiliser generators and the dimension of the codespace the stabiliser group defines. Given
a stabiliser group on n qubits with k independent commuting generators, the codespace has
dimension 2(n−k).

In the XP formalism, this relationship is much more complex. For example, the eigenspace
dimensions of XP operators vary widely and are not in general powers of 2. As an illustration
of this complexity, the +1 eigenspace dimensions which arise for various 7-qubit diagonal XP
operators of precision 8 are listed in Table 2.5. Readers can explore eigenspaces of diagonal XP
operators in the linked Jupyter notebook.

Operator Dim Operator Dim Operator Dim
XP8(0|0|3333333) 1 XP8(0|0|1333355) 15 XP8(0|0|2222266) 28
XP8(0|0|2555555) 2 XP8(0|0|6133555) 16 XP8(0|0|6111177) 30
XP8(0|0|0133333) 4 XP8(0|0|1173335) 17 XP8(0|0|4222666) 32
XP8(0|0|2355555) 6 XP8(0|0|6111735) 18 XP8(0|0|3333555) 35
XP8(0|0|3333335) 7 XP8(0|0|1173355) 19 XP8(0|0|2222666) 36
XP8(0|0|2223555) 8 XP8(0|0|6135555) 20 XP8(0|0|0333555) 40
XP8(0|0|6133335) 10 XP8(0|0|3333355) 21 XP8(0|0|0003355) 48
XP8(0|0|6133355) 12 XP8(0|0|6155555) 22 XP8(0|0|4444444) 64
XP8(0|0|1733333) 13 XP8(0|0|2661117) 24 XP8(0|0|0000000) 128
XP8(0|0|6113555) 14 XP8(0|0|6111117) 26

Table 2.5 Example: Eigenspace dimensions for selected diagonal XP operators with n = 7,
N = 8.

Here we present an algorithm to identify the codespace of a set of XP operators. The input
for our algorithm is an arbitrary list of XP operators G of precision N on n qubits. The output
is a list of codewords {|κi⟩ : 0 ≤ i < dim(C)} that form a basis for the codespace C stabilised
by the group G = ⟨G⟩, or an empty set if there is no codespace. The algorithm operates in two
steps:

1. Convert the set of XP operators into a canonical form. This is a set of generators S in
a particular form which generate the stabiliser group ⟨S⟩ = ⟨G⟩. We split the canonical
generators into diagonal SZ and non-diagonal generators SX , where the diagonal canonical
generators SZ generate the diagonal subgroup of the stabiliser group.

https://github.com/m-webster/XPFpackage/blob/main/Examples/4.1_eigenspaces.ipynb
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2. Calculate an independent set of codewords |κi⟩ that span the codespace. We do this by
applying the orbit operator (defined below in terms of the SX) to particular computational
basis elements |mi⟩ in the simultaneous +1 eigenspace of the SZ .

We will describe these steps in detail in the following Sections.

2.4.1 Canonical Generators of XP Groups

For any set of XP operators G, we can calculate a set of operators in canonical form that
generate the same XP group as G. Specifically, we calculate an independent set of diagonal
(SZ) and non-diagonal (SX) operators that generate ⟨G⟩. The diagonal subgroup of ⟨G⟩ is
generated by SZ .

Proposition 2.4.1 sets out the form and properties of the canonical generators. The
proposition uses the concept of a generator product which is defined as follows. The generator
product of an ordered set of XP operators S = {S0, . . . , Sm−1} specified by a vector of integers
a ∈ Zm is:

Sa =
∏

0≤i<m

S
a[i]
i . (2.25)

Proposition 2.4.1 (Canonical Generators of an XP Group)
For any set of XP operators G = {Gi : 0 ≤ i < m}, there exists a unique set of diagonal
operators SZ := {Bj : 0 ≤ j < s} and non-diagonal operators SX := {Ai : 0 ≤ i < r} with the
following form:

1. Let SX be the r×n binary matrix formed from the X-components of the SX . The matrix
SX is in Reduced Row Echelon Form (RREF).

2. Let SZp be the s× (n+ 1) matrix with rows taken from the image of SZ under the Zp
map of Section 2.3.4 (i.e. Zp(XPN (p|0|z)) = (2z|p)). The matrix SZp is in Howell Form
(see Appendix A.1).

3. For XPN (p|x|z) ∈ SX , the matrix
(

1 (2z|p)
0 SZp

)
is in Howell Form (see Section A.1.2).

The following properties hold for the canonical generators:

Property 1: All group elements G ∈ ⟨G⟩ can be expressed as G = Sa
XSb

Z where a ∈ Z|SX |
2 ,

b ∈ Z|SZ |
N
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Property 2: Two sets of XP operators of precision N generate the same group if and only if
they have the same canonical generators.

Conditions 1-3 ensure the canonical generators are unique for a given set of operators, and
so can form the basis of the test in Property 2. The entries of SZp are from Z2N which is
in general a ring. The Howell matrix form is a generalisation of the RREF which gives us a
canonical basis for the row span of a matrix over a ring. See Appendix A.1 for a full description
of the Howell matrix form and linear algebra over rings.

We briefly consider the implications of Properties 1 and 2. Let ⟨G⟩ be an XP stabiliser
group. If there is an operator of form ωqI, q ≠ 0 in ⟨G⟩, the codespace is empty. Due to
the Howell Property (see Section A.1.2), we can determine if this is the case by checking if
ωqI ∈ SZ for some q ≠ 0. This is a generalisation of the requirement that −I /∈ ⟨G⟩ in the
Pauli stabiliser formalism and the concept of admissible generating sets in the XS stabiliser
formalism (see Ref. [41] on page 7). Going forward, we assume that XP codes are specified in
terms of their canonical generators SZ ,SX and that there is no element ωqI, q ̸= 0 in SZ .

Because the matrices SX , SZp are in echelon form, this imposes a natural ordering on SX ,SZ .
Property 1 states that we can write any G ∈ ⟨G⟩ as a product of the canonical generators where
operators are applied in this order. It implies that SZ generates the diagonal subgroup of ⟨G⟩
because the diagonal subgroup is the set of operators where a = 0. Recalling Example 2.3.3,
all commutators and squares of elements in ⟨G⟩ are diagonal and so are in ⟨SZ⟩. Applying the
results in Section 3 of Ref. [56], we can also determine the size of the group ⟨G⟩ once we have
the canonical generator form.

In Appendix A.2, we demonstrate an algorithm for calculating the canonical generators
which is based on a method presented in [41] and prove Proposition 2.4.1.

2.4.2 Finding a Basis of the Codespace

In this Subsection, we will show how to find a basis of the codespace stabilised by the canonical
generators SZ ,SX of Section 2.4.1. The result is a set of independent codewords that span the
codespace.

The codespace is the intersection of the simultaneous +1 eigenspace of the diagonal generators
and the +1 eigenspace of the non-diagonal generators:

C = CZ ∩ CX . (2.26)

The diagonal generators determine the Z-support of the codewords. We define the Z-
support of a state |ψ⟩ in Hn

2 as the set of length n binary vectors e such that the coefficient of
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the corresponding computational basis vector |e⟩ in |ψ⟩ is non-zero. That is:

ZSupp(|ψ⟩) = {e ∈ Zn
2 : ⟨e|ψ⟩ ≠ 0} . (2.27)

Because all elements in SZ are diagonal, we can write a basis of CZ as a set of computational
basis vectors:

CZ = SpanC{|e⟩ : e ∈ Zn
2 , B|e⟩ = |e⟩,∀B ∈ SZ} . (2.28)

Let E := ZSupp(CZ) be the binary vectors corresponding to the computational basis vectors in
CZ . Any codeword expressed in terms of the computational basis must be a linear combination
over C of |e⟩, e ∈ E.

The non-diagonal generators determine the relative phases of the computational basis
vectors in the codewords. The relative phase information is captured by the orbit operator.
Let SX be the non-diagonal canonical generators {Ai : 0 ≤ i < r} ordered as in Section 2.4.1.
Using the generator product notation of Eq. (2.25), the orbit operator is defined as:

OSX :=
∑

v∈Zr
2

Sv
X . (2.29)

Where e ∈ E, the image of |e⟩ under the orbit operator, OSX |e⟩, is fixed by all elements of
the stabiliser group ⟨SZ ,SX⟩ (see Proposition A.3.1). This is a special case of the method
for determining codewords in Ref. [51], but with some notation changes. In the next Section,
we demonstrate how to find an independent set of codewords of this form which span the
codespace.

Coset Structure of E and Orbit Representatives

In this Subsection, we assume we are given E, the Z-support of CZ as in Eq. (2.28), and show
how to identify a subset Em of E such that the image of Em under the orbit operator is a
basis of the codespace (i.e. an independent spanning set). The resulting basis is a set of
un-normalised codewords |κi⟩ such that:

|κi⟩ := OSX |mi⟩ : mi ∈ Em . (2.30)

The normalisation constant is 1√
2r where r is the number of non-diagonal canonical generators,

and is omitted for clarity. Once we have Em, we know the dimension of the codespace:

dim(C) = |Em| . (2.31)
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We identify the subset Em by looking at the coset structure of E. First, we show that
the Z-support of a codeword in the form of Eq. (2.30) can be viewed as a coset in the group
Zn

2 under component-wise addition modulo 2. Let SX be the binary matrix formed from the
X-components of the SX which is in RREF by construction (See Proposition 2.4.1). Then
SpanZ2(SX) = ⟨SX⟩ is a subgroup of Zn

2 of size 2r where r = |SX |. The Z-support of OSX |e⟩
can be identified with a coset in the group of binary vectors Zn

2 :

ZSupp(OSX |e⟩) = e + ⟨SX⟩ := {(e + uSX) mod 2 : u ∈ Zr
2} . (2.32)

Next, we introduce the residue function which tells us whether two vectors are in the
same coset, and hence occur in the Z-support of the same codeword. Let m = ResZ2(SX , e) be
defined as: (

1 m
0 SX

)
:= RREFZ2

(
1 e
0 SX

)
. (2.33)

Two vectors e1, e2 ∈ E are in the same coset if and only if ResZ2(SX , e1) = ResZ2(SX , e2). The
residue of e is zero if and only if e ∈ ⟨SX⟩.

We use the residue function to identify a subset of E of minimal size whose image under
the orbit operator yields a basis of the codespace. The set of orbit representatives Em is
defined as the image of E under the residue function:

Em := {ResZ2(SX , e) : e ∈ E} . (2.34)

The cosets of Em partition E (see Proposition A.3.3). Accordingly, the image of Em under the
orbit operator is a basis of the codespace (see Proposition A.3.4).

Codewords Notation

The following notation for codewords is used throughout this Chapter. Let SX be the matrix
formed from the X-components of the non-diagonal canonical generators SX . As SX is in
echelon form, rows have a natural ordering and we interchangeably consider SX to be a set of
binary vectors. Let SX have r non-zero rows or |SX | = r. The set of codewords generated from
the orbit representatives is uniquely determined. When written in terms of the computational
basis, we refer to the following as the orbit form of the codewords:

|κi⟩ = OSX |mi⟩ :=
∑

0≤j<2r

ωpij |eij⟩ : mi ∈ Em,∃pij ∈ Z2N , eij ∈ Zn
2 . (2.35)
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The Z-support of the codewords is the same as the Z-support of CZ , the simultaneous +1
eigenspace of the SZ , and is denoted E:

E = ZSupp(CZ) =
⋃
i

ZSupp(|κi⟩) . (2.36)

We can write a coset decomposition of E in terms of Em as follows:

E = Em + ⟨SX⟩ = {(mi + uSX) mod 2 : mi ∈ Em,u ∈ Zr
2} . (2.37)

There is a direct relationship with the Z-support of each codeword as follows:

Ei := ZSupp(|κi⟩) = mi + ⟨SX⟩ . (2.38)

In addition, there is a unique coset decomposition of Em so that Em = Eq + ⟨LX⟩ for sets of
binary vectors Eq and LX so that E = Eq + ⟨LX⟩ + ⟨SX⟩. We demonstrate how to find this
decomposition in Section 2.6.3. The full coset decomposition is useful for the following reasons:

• The X-components of logical operators must be in ⟨LX⟩ + ⟨SX⟩, and we can calculate a
generating set of non-diagonal logical operators with X components in LX (Section 2.6.3).

• The size of Eq gives rise to a natural classification of XP codes (Section 2.6.5).

• We assign quantum numbers to each codeword (Section 2.6.4) based on the coset decompo-
sition of Em which then allows us to analyse the logical action of operators (Section 2.6.7).

2.4.3 Calculating Orbit Representatives from the Canonical Generators

We have demonstrated that the image of the orbit representatives under the orbit operator
is a basis of the codespace, and that the dimension of the codespace is given by the number
of orbit representatives. In previous Sections we have assumed that we have been given E,
the Z-support of the simultaneous +1 eigenspace of the SZ , as a starting point. In practice,
we generally start with the stabiliser generators of a code, and calculating E from them is an
NP-hard problem for XP codes (see Ref. [41] Section VII).

In this Subsection, we show how to calculate the orbit representatives from the canonical
generators. Orbit representatives have a specific form which reduces the search space significantly
compared to searching for the whole of E. We use a graph search algorithm to make finding
the orbit representatives tractable for ‘reasonable’ codes.
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Exhaustive Algorithm to find E

We first show how to find E using an exhaustive inefficient algorithm. Let
SZ = {Bi = XPN (pi|0|zi) : 0 ≤ i < s}. Calculating the +1 eigenspace of SZ is equiva-
lent to solving the following equation in binary vectors e:

Bi|e⟩ = ωpi+2e·zi |e⟩ = ω0|e⟩,∀Bi ∈ SZ . (2.39)

For this equation to have solutions in e, pi must be divisible by 2 in Z2N . Let SZp be the matrix
with rows (zi|pi/2). Let (e|1) represent the column vector e with an entry of 1 appended.
Eq. (2.39) can be written in matrix form as:

ST
Zp(e|1) modN = 0 . (2.40)

Solutions are of form:

(e|1) = aK modN , (2.41)

where K is the Howell basis of KerZN
(SZp) (see Section A.1.2). To find solutions for binary

vectors e, we seek a ∈ Zn
N such that (e|1) = aK modN is a vector of zeros and ones. Linear

algebra techniques cannot be used to find the vectors a. We would in principle need to search
through all possible values of a to find valid solutions. Given that there are N |K| possible
values of a, this is of exponential complexity.

Graph Search Algorithm for Orbit Representatives

Rather than searching through all possible values of a in Eq. (2.41) to find E, we employ a
more efficient graph search algorithm which uses the special form of the orbit representatives
to speed up the search.

The special form of the orbit representatives is as follows. Let xj be the jth row of SX and
let lj be the leading index of xj - i.e. xj [lj ] = 1 and xj [k] = 0,∀k < lj . In Proposition A.3.5,
we show that for any orbit representative mi ∈ Em,mi[lj ] = 0 for all leading indices lj ,
0 ≤ j < |SX |. In each coset of SX , mi is the unique vector with this property. As SX is in
RREF, there are exactly r = |SX | leading indices lj where mi[lj ] is guaranteed to be zero.

We modify the exhaustive search algorithm presented in Section 2.4.3 to take into account
the special form of the orbit representatives:

1. Find the Howell basis K of KerZN
(SZp) (see Section A.1.2).

2. Search for solutions (e|1) = aK modN where e is a binary vector.
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3. As we only need a orbit representative mi for each codeword, we can restrict e[l] = 0
where the l are the indices of the leading entries in SX .

The search is made more efficient by storing and re-using partial solutions (dynamic program-
ming) and results in a graph object from which the solutions can be generated. The main
advantage over the exhaustive algorithm is due to the reduction of the search space by a factor
of 2r by using the special form of the orbit representatives. Where all stabiliser generators are
diagonal and r = |SX | = 0, the advantage over the exhaustive algorithm is not as significant.
However, for ‘reasonable’ codes which have both diagonal and non-diagonal generators, and
which encode a relatively low number of logical qubits, the graph search algorithm is efficient
in practice.

It is possible that the search algorithm returns an empty set. In this case, the simultaneous
+1 eigenspace of the SZ is empty and there is no codespace. In this case, the XP stabiliser
group does not define a code.

2.4.4 Summary of Codewords Algorithm

In summary, the algorithm for identifying the codespace stabilised by an arbitrary set of XP
operators G is:

1. Calculate the canonical generators SZ and SX such that ⟨G⟩ = ⟨SZ ,SX⟩ using the
algorithm in Section 2.4.1. If ωqI ∈ SZ for q ̸= 0, the codespace is empty.

2. Find the orbit representatives Em = {mi} using the graph search algorithm in Section 2.4.3.
The dimension of the codespace is dim(C) = |Em|. If Em = ∅, the codespace is empty as
the simultaneous +1 eigenspace of the SZ is of dimension zero.

3. A basis of the codespace is given by {|κi⟩ = OSX |mi⟩ : mi ∈ Em} using the orbit operator
of Eq. (2.29).

2.4.5 Example: Calculating Codewords - Code 1

We illustrate our algorithm to find the codewords with an example. We will use this same
example throughout this Chapter to illustrate various concepts. The detailed calculations for
this example are set out in the linked Jupyter notebook. We start with the following stabiliser
generators of precision N = 8 on n = 7 qubits:

G =


XP8(8|0000000|6554444)
XP8(7|1111111|1241234)
XP8(1|1110000|3134444)

 . (2.42)

https://github.com/m-webster/XPFpackage/blob/main/Examples/4.5_code_words.ipynb
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Step 1: Canonical Generators Using the algorithm in Appendix A.2, the canonical
generators for this code are:

SZ =
{
XP8(8|0000000|2334444)
XP8(0|0000000|0440000)

}
(2.43)

SX =
{
XP8(9|1110000|1240000)
XP8(14|0001111|0001234)

}
. (2.44)

Note that a single diagonal generator yields multiple diagonal canonical generators. This
behaviour is typical of XP groups.

Step 2: Orbit Representatives The graph search algorithm in Section 2.4.3 yields the
following orbit representatives:

Em =


0000001
0000010
0000100
0000111

 . (2.45)

The dimension of the codespace is dim(C) = |Em| = 4.

Step 3: Image of orbit representatives under orbit operator is a basis Finally, we
form an independent set of codewords {κi} by applying the orbit operator OSX of Eq. (2.29) to
the computational basis elements corresponding to the Em:

|κ0⟩ = OSX |0000001⟩ = |0000001⟩ +ω6|0001110⟩ +ω9|1110001⟩ +ω15|1111110⟩
|κ1⟩ = OSX |0000010⟩ = |0000010⟩ +ω4|0001101⟩ +ω9|1110010⟩ +ω13|1111101⟩
|κ2⟩ = OSX |0000100⟩ = |0000100⟩ +ω2|0001011⟩ +ω9|1110100⟩ +ω11|1111011⟩
|κ3⟩ = OSX |0000111⟩ = |0000111⟩ +|0001000⟩ +ω9|1110111⟩ +ω9|1111000⟩

. (2.46)

2.4.6 Calculating Codewords - Discussion and Summary of Results

Given a set of XP operators G, we can determine a basis for the codespace stabilised by
⟨G⟩. We first determine a set of canonical generators using linear algebra techniques over
rings (Section 2.4.1). The method uses the unique vector representation of XP operators of
Section 2.3.1 and can be done efficiently. This mirrors the result for generalised Pauli groups in
Ref. [46].
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Once we have the generators in canonical form, we find the orbit representatives Em using
a graph search algorithm (Section 2.4.3). The codespace dimension corresponds to the number
of orbit representatives, and applying the orbit operator defined in Eq. (2.29) to the orbit
representatives results in a basis of the codespace. The graph search algorithm works for any
XP code, but its efficiency depends on the precision of the code and the number of non-diagonal
stabiliser generators. In the worst case, where we have only diagonal stabilisers, finding the
orbit representatives reduces to an NP-hard problem.

2.5 Classification of XP Stabiliser States

Now that we have some familiarity with the XP stabiliser formalism, it is natural to ask which
quantum states can be represented within the formalism. In this chapter, we demonstrate an
equivalence between XP stabiliser states and ‘weighted hypergraph states’ - a generalisation of
both hypergraph [16] and weighted graph states [31].

In the Pauli stabiliser formalism, any stabiliser state can be mapped via local Clifford
operators to a graph state [42]. In the XS Formalism [41], the authors show that the phases of
an XS stabiliser state are described by a phase function which is a polynomial of maximum
degree 3. In this chapter, we generalise these results to the XP formalism.

In Section 2.5.1, we introduce definitions for weighted hypergraph states. In Section 2.5.2,
we describe the phases which are possible for XP stabiliser states. In Section 2.5.3, we show how
to represent any XP stabiliser state as a weighted hypergraph state. Finally, in Section 2.5.4
we show how to represent any weighted hypergraph state as an XP stabiliser state. In general,
this requires us to embed the weighted hypergraph state into a larger Hilbert space.

2.5.1 Weighted Hypergraph State Definitions

In this Subsection, we introduce the concept of weighted hypergraph states - a class of states
which includes graph, hypergraph and weighted graph states. A generalised controlled
phase operator CP (p/q,v) is specified by a rational number p/q and a binary vector v of
length r. The action of the operator on a computational basis state |e⟩, e ∈ Zr

2 is:

CP (p/q,v)|e⟩ :=

exp(i2πp/q)|e⟩ : ev = v

|e⟩ : Otherwise
. (2.47)

Multiplication of vectors in the above equation is component wise. We construct a weighted
hypergraph state by applying a series of generalised controlled phase operators to the |+⟩⊗r

state.
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In the Pauli stabiliser formalism, all stabiliser states can be mapped to graph states by
applying a set of local Clifford unitaries. A graph state on r vertices is specified by a set of
edges E = {(i, j) : i < j ∈ [0 . . . r − 1]}. The graph state is formed by applying controlled Z

operators corresponding to the edges to |+⟩⊗r i.e. |ϕ⟩ = (∏(i,j)∈E CZij)|+⟩⊗r.

We now show how graph states generalise to weighted hypergraph states. For a binary
vector v, the support of v defines an edge (i.e. supp(v) := {i ∈ [0 . . . r − 1] : v[i] = 1}). Graph
states have edges composed of 2 vertices only so wt(v) = |supp(v)| = 2. Generalised controlled
phase operators can have edges involving between 1 and r vertices. The condition ev = v
means that we apply the phase when supp(v) ⊂ supp(e).

For graph states, only phases of ±1 are possible as we apply controlled Z operators.
Generalised controlled phase operators, on the other hand, can apply any phase of form
exp(i2πp/q). Where p/q = 1/2, the operator acts as a generalised controlled Z operator
because it applies a phase of exp(iπ) = −1 if ev = v.

2.5.2 Phase Functions of XP Stabiliser States

In this Subsection, we describe which relative phases are possible for XP stabiliser states. The
phase function of an XP stabiliser state |ϕ⟩ of precision N is an integer valued function f on
vectors e ∈ ZSupp(|ϕ⟩) such that:

|ϕ⟩ :=
∑

e∈ZSupp(|ϕ⟩)
ωf(e)|e⟩ =

∑
e∈ZSupp(|ϕ⟩)

ωf(e0...en−1)|e⟩ . (2.48)

We generally consider f to be a function of the binary variables ei := e[i], 0 ≤ i < n. In this
chapter, phase functions are defined by a vector q ∈ Z2n and are polynomials of form:

f(e0 . . . en−1) =
∑

s⊂[0...n−1]
q[s]

∏
j∈s

ej . (2.49)

For phase functions of this form, we can identify each term of the polynomial with a generalised
controlled phase operator. The term q[s]∏j∈s ej corresponds to the controlled phase operator
CP (q[s]/2N,v) where v[j] = 1 if j ∈ s or 0 otherwise. It is known that for Pauli stabiliser
states (N = 2 = 21), the phase function is a polynomial of the form in Eq. (2.49) of degree at
most 2 in the variables ei, whilst for XS codes (N = 4 = 22), the maximum degree is 3. Our
aim is to generalise these results to XP codes.

We first show how to express the Z-support of any XP stabiliser state in terms of a set
of binary variables {ui}, which are a subset of the {ei} variables defined above. We will then
express the form of the phase function of an XP stabiliser state in terms of the {ui}. Due to the
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results of Section 2.4.4, any XP stabiliser state can be written in the following canonical form:

|ϕ⟩ = OSX |m⟩ =
∑

u∈Zr
2

Su
X |m⟩ . (2.50)

for non-diagonal canonical generators SX , r = |SX | and where m is the single orbit representative.
The orbit operator OSX is defined in Eq. (2.29) and the generator product Su

X is defined in
Eq. (2.25). Let SX = {XPN (pi|xi|zi) : 0 ≤ i < r}. We can write |ϕ⟩ in terms of the binary
variables ui := u[i], 0 ≤ i < r as follows:

|ϕ⟩ =
∑

ui∈Z2

∏
0≤i<r

XPN (uipi|uixi|uizi)|m⟩ . (2.51)

The sum in the above equation ranges over all possible values of ui ∈ Z2, for 0 ≤ i < r. The
Z-support of |ϕ⟩ can be expressed in terms of the {ui} as follows:

ZSupp(|ϕ⟩) = {m ⊕
⊕

0≤i<r

uixi : ui ∈ Z2} . (2.52)

We now show that the binary variable ui can be identified with the value of a particular
component e[li] of the vectors e ∈ ZSupp(|ϕ⟩). Let li be the leading index of xi (see Section 2.4.3).
Because SX is in canonical form and m is an orbit representative, we have xj [li] = δij ,m[li] = 0.
Hence for e := m ⊕

⊕
0≤i<r uixi ∈ ZSupp(|ϕ⟩), e[li] = ui.

In the following Proposition, we express the phase function for an XP stabiliser state in
terms of the {ui} and describe its form:

Proposition 2.5.1 (Phase Functions of XP States)
Let |ϕ⟩ = OSX |m⟩ = ∑

u∈Zr
2

Su
X |m⟩ be an XP stabiliser state in the canonical form of Eq. (2.50)

with r := |SX |. Let ui, 0 ≤ i < r be binary variables such that ui := u[i]. Then:

(a) The phase function is of the following form for some vector q ∈ Z2r indexed by the subsets
s of [0 . . . r − 1]:

f(u0, u1, . . . , ur−1) =
∑

s⊂[0...r−1]
q[s]2|s|−1 ∏

j∈s

uj . (2.53)

(b) For N = 2t, the maximum degree of the phase function is t+ 1.

Proof of Proposition 2.5.1 is in Appendix A.4.
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2.5.3 Representation of XP States as Weighted Hypergraph States

We now demonstrate a method for determining the phase function for a given XP state. This
allows us to represent XP stabiliser states as weighted hypergraph states.

Algorithm: Weighted Hypergraph Representation of a Given XP State

Input: An XP state |ϕ⟩ = OSX |m⟩ of precision N . Let SX = {XPN (pi|xi|zi) : 0 ≤ i < r}.

Output: A set of generalised controlled phase operators {CP (pi/2N,vi)} such that |ϕ⟩ =(∏
iCP (pi/2N,vi)

)∑
e∈ZSupp(|ϕ⟩) |e⟩.

Method

1. Let li be the leading index of xi and define the r × n binary matrix L by setting Lij = 1
if j = li and 0 otherwise.

2. Let p be a vector whose entries are indexed by rows u ∈ Zr
2 such that p[u] is the phase

component of Su
X |m⟩.

3. For u in Zr
2, ordered by weight then lexicographic order:

(a) If p[u] ̸= 0, add the operator CP (p[u]/2N,uL) to the list of operators.

(b) For all v ∈ Zr
2 such that vu = u, set p[v] = (p[v] − p[u]) mod 2N .

If the precision N = 2t is a power of 2, we only need to consider rows of weight at most
t+ 1 due to Proposition 2.5.1. By multiplying the 1 × r vector u by the r × n matrix L in step
3(a), we create a 1 × n vector v such that v[li] = ui.

Example 2.5.1 (Weighted Hypergraph Representation of XP State - Union Jack State)
The following example illustrates the operation of the algorithm to determine the phase function
of an XP stabiliser state and hence the weighted hypergraph representation. For precision
N = 4, let |ϕ⟩ = OSX |m⟩ with:

m = 0 (2.54)

SX =


XP4(0|1000111000|0112000033)
XP4(0|0100100110|1001003000)
XP4(0|0010010101|1001003000)
XP4(0|0001001011|2110330000)


. (2.55)
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Calculating the phase component of Su
X |m⟩ for all values of u ∈ Zr

2, we find that the phase is
zero for all values of u, apart from u = 1011 and 1101 where the phase is −1. For precision
N = 4, ω = exp(iπ/4) so ω4 = −1. Hence, the phase function of |ϕ⟩ is f(u0, u1, u2, u3) =
4u0u2u3 + 4u0u1u3. The degree of f is 3, which is the maximum degree for states of precision
N = 4 = 22. We can write |ϕ⟩ as a weighted hypergraph state by applying CP (1/2, 1011000000)
and CP (1/2, 1101000000) to ∑e∈ZSupp(|ϕ⟩) |e⟩. Note that these operators apply phases which
only depend on the state of the first four qubits.

The state |ϕ⟩ is closely related to the unit cell of the ‘Union Jack’ state introduced in
Ref. [57]. The Union Jack state is a hypergraph state [16] produced by applying two CCZ
operators, namely CP (1/2, 1011) and CP (1/2, 1101), to the state |+⟩⊗4 - see Fig. 2.1. These
are the same as the controlled phase operators calculated above for |ϕ⟩, but restricted to the
first four qubits. The Union Jack state is of interest because it has 2-dimensional Symmetry
Protected Topological Order (SPTO) and is a universal resource for quantum computation
using only single qubit measurements in the X, Y, and Z basis. Detailed working for this
example is available in the linked Jupyter notebook.

0 1

2 3

(a) Unit Cell of the Union Jack State of Ref. [57]
which is a hypergraph state. Qubits on the corners
of each of the shaded triangles represent the edge
size 3 operators CP (1/2, 1101) and CP (1/2, 1011)
which act on |+⟩⊗4.

0 1

2 3

(b) Unit Cell of the weighted graph state in
Ref. [49]. Qubits connected by bold lines
are acted on by controlled Z operators and
those by dashed lines by controlled S operators.
The weighted graph state is formed by the operator
CP (1/2, 1100)CP (1/2, 0011)CP (1/4, 1001)CP (1/4, 0110)
acting on |+⟩⊗4 and can be represented as a
precision 4 XP stabiliser state.

Figure 2.1 Examples of Weighted Hypergraph States which can be represented as XP stabiliser
states.

2.5.4 Representation of Weighted Hypergraph States as XP Stabiliser States

In this Subsection, we show how to represent any weighted hypergraph state |ψ⟩ on n qubits
as an XP stabiliser state. This involves adding auxiliary qubits and employing an embedding
operator to produce an XP state |ϕ⟩ with a phase function which depends only on the original

https://github.com/m-webster/XPFpackage/blob/main/Examples/5.1_xp_to_whg.ipynb
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n qubits, and which is the same as the phase function for |ψ⟩. We describe how to determine
an appropriate embedding operator and how to determine the XP operators which act as
stabiliser generators for the embedded state |ϕ⟩. We first demonstrate the technique for a single
generalised controlled phase operator i.e. |ϕ⟩ = CP (p/q,v)|+⟩⊗r. There are two possible cases
depending on the weight of the vector v.

Case 1 wt(v) = 1: Let wt(v) = 1 and let i be the single non-zero component of v. For a
given precision N , we can identify CP (1/2N,v) with the operator

√
P = diag(1, ω) acting on

qubit i because for a computational basis vector |e⟩,
√
P i|e⟩ = ω|e⟩ if e[i] = 1 and |e⟩ otherwise.

Hence, to create a phase of exp(p
q 2πi), we can let 2N = q. We also need N to be an integer

≥ 2 so we set N as follows:

N =

q/2 : if q > 2 and qmod 2 = 0

q : Otherwise
. (2.56)

The state |+⟩⊗r is stabilised by {Xj : j ∈ [0 . . . r − 1]} where Xj is the Pauli X operator
acting on qubit j. We can also write Xj = XPN (0|xj |0) where xj is the jth row of Ir. The
result of conjugating Xj by

√
P i is ωXjPi if i = j and Xj otherwise. This can also be written√

P iXj

√
P

−1
i = XjDN (xjv) as is a generalisation of the identity SXS−1 = X(iZ) = Y for

Pauli operators. Hence the state |ϕ⟩ is stabilised by SX = {XPN (0|xj |0)DN (p
q 2Nxjv)}.

Case 2 wt(v) ≥ 2: For m := wt(v) ≥ 2, we in general need to embed the weighted graph
state |ϕ⟩ into a larger Hilbert space to represent it as an XP stabiliser state. The embedding
operator is defined in terms of M r

m, the binary matrix whose columns are the bit strings of
length r of weight between 1 and m inclusive. We order the columns of M r

m first by weight
then by lexicographic order. The embedding operator Er

m acts on computational basis vectors
as follows:

Er
m|e⟩ = |eM r

m mod 2⟩ . (2.57)

Our aim is to find a precision N and a set of stabiliser generators SX ,SZ which stabilise the
embedded state |ψ⟩ := Er

m|ϕ⟩.

We set the precision N = q2m−2 - this is because phase function terms of degree m include
a factor of 2m−1 modulo 2N (see Proposition 2.5.1) and we need to allow for phases of form
exp(2πi/q). If N is odd, we multiply it by 2 so that we can form the diagonal stabiliser
generators (see Eq. (2.62) below).
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The non-diagonal stabiliser generators SX determine the phase function and are defined as
follows. The X-components of the SX are the rows xj of M r

m. The Z-components are obtained
by multiplying the xj by an ‘alternating vector’ a and an ‘inclusion vector’ w. The vector a is
indexed by the columns u of M r

m and is 1 if the weight of u is even, and −1 otherwise:

a[u] := (−1)wt(u) . (2.58)

The inclusion vector w with respect to v is:

w[u] :=

1 : uv = u

0 : Otherwise
. (2.59)

Multiplying the rows xj of M r
m by the inclusion vector w ensures that we only consider columns

of M r
m whose support is a subset of the support of v. As a result of Proposition A.4.3, the

following operators generate the required phase function:

SX =
{
XPN

(
0
∣∣∣xj

∣∣∣p
q

2N
2m−1 axjw

)
: 0 ≤ j < r

}
. (2.60)

We now show how to construct the diagonal stabiliser generators SZ . We calculate a basis of
KerZ2(M r

m) as follows. Because the columns of weight 1 occur first, M r
m is of form M r

m =
(
I|A

)
for some binary matrix A. Hence the kernel of M r

m over Z2 is spanned by:

Kr
m :=

(
AT |I

)
. (2.61)

It is easy to see that Kr
m(M r

m)T mod 2 = 0. Let zj be the jth row of Kr
m so that xi ·zj mod 2 = 0.

The following operators commute with the elements of SX :

SZ := {XP2(0|0|zj)} = {XPN (0|0|Nzj/2)} . (2.62)

This can be seen by using the COMM rule of Table 2.4 and noting that Nxj · zj mod 2N = 0:

[XPN (0|xj |wj), XPN (0|0|Nzj/2)] = DN (Nxjzj) = XPN (Nxj · zj |0|0) = I . (2.63)

We are now in a position to state the algorithm for weighted hypergraph states with multiple
generalised controlled phase operators.

Algorithm: Representation of Weighted Hypergraph States as XP Stabiliser States

Input: A weighted hypergraph state |ϕ⟩ =
(∏

iCP (pi/qi,vi)
)
|+⟩⊗r with pi, qi mutually prime

and vi of weight mi ≥ 0.
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Output: A precision N , an embedding operator Er
m and stabiliser generators SX ,SZ of an

XP code whose codespace is spanned by |ψ⟩ := Er
m|ϕ⟩, a state with the same phase function as

|ϕ⟩.

Method:

1. Let m = max({mi}) - we use the embedding operator Er
m. Note that when m = 1, the

embedding operator is trivial as M r
1 = Ir.

2. We set the precision of the code as N := LCM(2, {Ni}) where we define the Ni as follows:

• If mi ≥ 2: set Ni = qi2m1−2.

• If mi = 1: if qi > 2 and qi mod 2 = 0 set Ni = qi/2; otherwise set Ni = qi.

3. If m = 1, Ker(Ir) = ∅ so we do not require any diagonal stabiliser generators. For m > 1,
the diagonal stabiliser generators are SZ := {XPN (0|0|N/2zj)} where zj is the jth row
of Kr

m as in Eq. (2.61).

4. The non-diagonal stabiliser generators SX := {Aj} are determined as follows:

(a) Set Aj = XPN (0|xj |0) for j ∈ [0 . . . r − 1] and xj the jth row of M r
m.

(b) Update the Aj for each of the operators CP (pi/qi,vi):

• For mi = 1, Aj := AjDN (pi
qi

2Nxjwi).
• For mi ≥ 2, Aj := AjXPN (0|0|pi

qi

2N
2mi−1 axjwi) where a is the alternating vector

of Eq. (2.58) and wi is the inclusion vector of Eq. (2.59) with respect to vi.

The algorithm can be optimised by only including qubits which for some operator Aj has
a non-trivial Z-component. In Proposition A.4.4, we show that we can further optimise for
generalised controlled Z operators with pi/qi = 1/2 by replacing the factor axj in step (b) by
vi[j]a(xj − 1). This has the effect of clearing the Z-component of Aj indexed by column vi of
M r

m. This implies, for instance, that we can represent graph states, which are created using CZ
operators, with a trivial embedding.

Example 2.5.2 (Representing Weighted Hypergraph States as XP Stabiliser States)
In Ref. [49], an example of a weighted graph state is given which is a universal resource for
measurement-based quantum computation; see Fig. 2.1. The unit cell of this state is

|ϕ⟩ = CP (1/2, 1100)CP (1/2, 0011)CP (1/4, 1001)CP (1/4, 0110)|+⟩⊗4 . (2.64)
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The weighted graph state |ϕ⟩ can be represented as an embedded state |ψ⟩ = E4
2 |ϕ⟩ stabilised

by the following XP code of precision N = 4 on 10 qubits:

SX =


XP4(0|1000111000|1000201000)
XP4(0|0100100110|0100200100)
XP4(0|0010010101|0010000102)
XP4(0|0001001011|0001001002)


SZ =



XP4(0|0|2200200000)
XP4(0|0|2020020000)
XP4(0|0|2002002000)
XP4(0|0|0220000200)
XP4(0|0|0202000020)
XP4(0|0|0022000002)


. (2.65)

Using the optimised method of Proposition A.4.4 and deleting redundant qubits, we find a
more compact representation on 6 qubits as follows:

SX =


XP4(0|100010|320010)
XP4(0|010001|230001)
XP4(0|001001|003201)
XP4(0|000110|002310)


SZ =

{
XP4(0|0|200220)
XP4(0|0|022002)

}
. (2.66)

Detailed working for this example is available in the linked Jupyter notebook.

2.5.5 Discussion and Summary of Results

In this chapter we have shown an equivalence between XP stabiliser states and weighted
hypergraph states. For any XP stabiliser state, we can write a weighted hypergraph representa-
tion and vice-versa. A very wide range of states can be represented within the XP stabiliser
formalism, including all weighted graph states and hypergraph states. Such states can be
represented as XP stabiliser states, up to an embedding operation, but have essentially the same
phase functions and their properties can be studied using the machinery of the XP stabiliser
formalism.

These results may prove useful in implementing fault-tolerant versions of quantum algorithms.
The Grover and Deutsch-Jozsa algorithms both employ real equally weighted (REW) pure
states. In Ref. [16], the authors showed that each REW state has an associated hypergraph
state. As we can represent any hypergraph state within the XP formalism, this could be an
interesting application.

https://github.com/m-webster/XPFpackage/blob/main/Examples/5.2_whg_to_xp.ipynb
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2.6 Logical Operators and the Classification of XP Codes

The objective of this Section is to understand the logical operator structure of a given XP
code. Our aim is to determine all XP operators that act as logical operators on the codespace
(“logical XP operators”), and classify the logical actions that arise.

We start by setting out definitions for logical XP operators and introduce the notion of a
phase vector which allows us to describe the logical action of diagonal operators (Section 2.6.1).

In the Pauli stabiliser formalism, the stabiliser group ⟨G⟩ is unique for a given codespace
and a Pauli operator acts as a trivial logical operator if and only if it is an element of ⟨G⟩. In
the XP formalism, there may be many different stabiliser groups for a given codespace. In
Section 2.6.2, we show how to find a set of XP operators M in the canonical form of Section 2.4.1
that generates the set of trivial logical XP operators and which uniquely defines the codespace.

In Section 2.6.3, we show how to find a set of non-trivial logical XP operators L which
together with M generates all logical XP operators. Using the example of Reed-Muller codes,
we show that in some cases Pauli stabiliser codes can be viewed more naturally as XP codes
and that we can systematically determine all possible logical XP operators for such codes using
our techniques. Fig. 2.2 explains how the various groups described above relate to each other.

In Section 2.6.4, we show how to assign quantum numbers to the codewords of Section 2.4.4
based on the logical operator structure of the code. This in turn leads to a natural classification
of XP codes into XP-regular and non-XP-regular codes, which we discuss in Section 2.6.5. We
show that each XP-regular code can be mapped to a CSS code which has the same diagonal
logical operators and similar non-diagonal logical operators.

The algorithms for determining the generators for the logical XP group require the codewords
of Section 2.4.4 as input. In Section 2.6.6, we demonstrate modified algorithms which take the
canonical generators and orbit representatives of Section 2.4.2 rather than the codewords as
input. These methods are more efficient than using the codewords as a starting point.

In Section 2.6.7, we describe a framework for analysing the action of diagonal logical XP
operators based on the codeword quantum numbers. We show how to determine all possible
diagonal logical actions for a given code and how to calculate an operator with a desired logical
action. In Section 2.6.8, we use this framework to classify diagonal logical XP operators into core
and regular operators and demonstrate that complex logical operators arise in non-XP-regular
codes.
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X PN,n

LXP = ⟨ωI,M,L⟩

IXP = ⟨M⟩

G = ⟨G⟩

Figure 2.2 Relationship between XP Operator Groups: Here, X PN,n is the group of all
XP operators of precision N on n qubits. The stabiliser group G = ⟨G⟩ is the same as the
group generated by the canonical generators SX ,SZ . The logical identity group IXP = ⟨M⟩
fixes all elements of the codespace C. It contains but is in general not equal to G. The logical
operator group LXP = ⟨ωI,M,L⟩ is the set of XP operators that preserve the codespace.

2.6.1 Definitions: Logical XP Operators

The logical XP identity group, denoted IXP, is the group of XP operators that fixes all
elements in the codespace C. The codewords {|κi⟩} of Section 2.4.4 are a basis of the codespace,
so we use the following definition:

IXP := {A ∈ X PN,n : A|κi⟩ = |κi⟩, ∀i} . (2.67)

In the Pauli stabiliser formalism, the logical identity group for a stabiliser code is the same as
the stabiliser group for the code. In the XP formalism, this is not necessarily the case and we
show an example of this in Example 2.6.1. Determining the logical identity group is non-trivial,
so we present an algorithm to determine a set of generators for it which takes the canonical
codewords of Section 2.4.4 as input.

The logical XP group, denoted LXP, is the group of XP operators that preserves the
codespace - that is, the set of XP operators A ∈ X PN,n such that A(C) = C. In the Pauli
stabiliser formalism, an operator A is a logical operator if and only if it commutes with all
the stabiliser generators. In the XP formalism, A is a logical operator if and only if the
group commutator of A with any logical identity operator is in the logical identity group (see
Proposition A.5.2).
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The action of a logical XP operator A on the codewords {|κi⟩} can be described in terms of
a vector f and a permutation π of the codewords as follows:

A|κi⟩ = ωf [i]|κπ(i)⟩ . (2.68)

The vector f ∈ Zdim C
2N is referred to as the phase vector and tells us which phase is applied by

A to each codeword. The permutation π describes the non-diagonal action and π2 = 1 (see
Proposition A.5.1). We call a logical operator non-trivial if it is not a logical identity (i.e.
A ∈ LXP \ IXP). If the phase vector for a diagonal operator A is constant, say c, then the
logical action of A is ωcI. A diagonal operator is trivial iff its phase vector is zero.

2.6.2 Determining the Logical Identity Group

We present an algorithm to construct the generators of the logical identity group for an XP code.
This algorithm takes the codewords of the XP code, as in Section 2.4.4, as input. The result is
a list of XP operators M in the canonical form of Proposition 2.4.1 that generate the logical
identity group . Detailed proofs of the results in this Subsection are found in Appendix A.5.

We first demonstrate how to find generators for the diagonal logical identity group, then
turn to the non-diagonal generators.

Diagonal Logical Identity Group Generators MZ

Our algorithm for finding the diagonal logical identity group is as follows:

1. Let E be the Z-support of the codewords (as defined in Section 2.4.2) and let EM be the
matrix formed by taking {(e|1) : e ∈ E} ⊂ Zn

2 × Z2 as rows.

2. Determine the Howell basis KM of KerZN
(EM ) (see Section A.1.2).

3. Let (zk|qk) denote the rows of KM and let MZ = {XPN (2qk|0|zk)}.

We show that this algorithm produces a generating set of diagonal logical identity operators in
Proposition A.5.3.

Non-diagonal Logical Identity Group Generators MX

We now set out the algorithm to find the non-diagonal generators, which consists of two steps:
first, we find the X components of the generators; second, we find the phase and Z components
that are consistent with the relative phases between the computational basis elements in the
codewords.
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Step 1: Identifying the X-Components. Let Ei be the Z-support of the codeword |κi⟩ as
defined in Section 2.4.2. Take any element ei ∈ Ei and let T be the binary matrix with rows
formed from {ei ⊕ e : e ∈ Ei}. Let SX = RREFZ2(T ) and let mi = ResZ2(T, ei) using the
residue function defined in Eq. (A.13). Verify that Ei = mi + ⟨SX⟩ for each codeword. If not,
return FALSE.

Step 2: Determining the Phase and Z-Components. We use linear algebra modulo N
(see Section A.1.3) to find valid phase and Z-components for the generators identified in Step 1.
Assume that the codewords |κi⟩ are written in orbit form as in Eq. (2.35). For each x in SX we
complete the following steps:

1. Let e′
ij = eij ⊕ x, and let p′

ij be the phase of e′
ij in the codewords.

2. Let p′′
ij = (p′

ij − pij) mod 2N . For there to be a valid solution, the p′′
ij are all either even

(i.e. divisible by 2 in Z2N ) or odd. Let a = p′′
00 mod 2 be an adjustment factor. Let

p′′′
ij = (p′′

ij − a)/2 so that p′′′
ij ∈ ZN . Let p′′′ be the vector formed from the p′′′

ij .

3. Find a solution (z|q) ∈ Zn
N × ZN such that ET

M (z|q) = p′′′ using linear algebra modulo N
(see Section A.1.3).

4. If there is no such solution, return FALSE.

5. Otherwise, let KM be the Howell basis (see Section A.1.2) of KerZN
(EM ). Let (z′|p′) =

ResZN
(KM , (z|q)) and add the operator XPN (a+ 2p′|x|z′) to MX .

We show that this algorithm produces a non-diagonal logical identity operator in Corollary A.5.6.

Properties of the Canonical Logical Identity Generators

The algorithm to find the logical identity generators take the codewords as input and results in
a set of generators M in canonical form. Hence, the set M uniquely identifies the codespace.
Any XP group stabilising the codewords is composed of operators that act as logical identities
on the codespace and so is a subgroup of ⟨M⟩. In Proposition A.5.14, we demonstrate an
algorithm for determining M that does not require the codewords as input, and so results in a
test for whether two sets of XP operators stabilise the same codespace. An interesting area for
further research would be to determine which subgroups of M stabilise the codespace.

We illustrate the algorithm for the logical identity generators using our main example:

Example 2.6.1 (Logical Identity Group - Code 1)
Taking the codewords calculated for the code in Section 2.4.5 as input, we find that the canonical
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generators of the logical identity group are:

MX =
{
XP8(9|1110000|0070000)
XP8(14|0001111|0001234)

}
, MZ =


XP8(0|0000000|1070000)
XP8(0|0000000|0170000)
XP8(8|0000000|0004444)

 . (2.69)

Compare these to the canonical generators:

SX =
{
XP8(9|1110000|1240000)
XP8(14|0001111|0001234)

}
, SZ =

{
XP8(8|0000000|2334444)
XP8(0|0000000|0440000)

}
. (2.70)

By definition, any stabiliser of the codespace is a logical identity so ⟨SX ,SZ⟩ ⊂ ⟨MX ,MZ⟩. In
this example, the diagonal generators SZ are not the same as MZ , but they have the same
simultaneous +1 eigenspace. In all cases, ⟨SZ⟩ ⊂ ⟨MZ⟩. For this example, we observe that none
of the operators in MZ are in ⟨SZ⟩, but all of the operators in SZ are in ⟨MZ⟩. For example:

XP8(8|0|2334444) = XP8(0|0|1070000)2XP8(0|0|0170000)3XP8(8|0|0004444) . (2.71)

The non-diagonal generators SX are the same as MX , up to a product of elements of ⟨MZ⟩.
Full working for this example is in the linked Jupyter notebook.

2.6.3 Determining the Logical Operator Group

We now present an algorithm that will identify the logical XP operator group of an XP code.
This algorithm again takes as input the codewords of Section 2.4.4, and is similar to the
algorithm for the logical identity group. The result is a list of XP operators L that generate
the logical XP operator group together with M and ωI. Detailed proofs of these results are in
Appendix A.5.

We first demonstrate how to find generators for the diagonal logical operator group, then
turn to the non-diagonal generators.

Diagonal Logical Operator Algorithm

The following algorithm gives a list of operators LZ which together with ωI and MZ generate
all diagonal logical XP operators. We assume we have the codewords {|κi⟩} in orbit form as in
Eq. (2.35) expressed as a linear combination of computational basis elements |eij⟩. The key to
finding the diagonal logical operators is to form a matrix from the binary vectors corresponding
to the basis vectors for each codeword, and an index which indicates which codeword the vector
is from:

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.1_logical_identity_generators.ipynb
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1. For each eij , let i be a binary vector of length dim(C) which is all zeros apart from the
ith component which is 1.

2. Let EL be the matrix formed by taking (eij |i) ∈ Zn
2 × Zdim(C)

2 as rows.

3. Determine the Howell basis KL of KerZN
(EL) modulo N (see Section A.1.2).

4. Let (zk|qk) ∈ Zn
N × Zdim(C)

N be a row of KL and let MZ be the matrix formed from the
Z-components of the diagonal logical identity operators MZ of Section 2.6.2. Let K be
the Howell basis of the matrix formed from the residue of each row of the zk over ZN

with respect to MZ .

5. Let zk be a row of K and let Bk = XPN (0|0|zk). Then the set LZ = {Bk} is a set
of non-trivial diagonal logical operators which together with MZ and ωI generate all
diagonal logical XP operators.

Note that the operator XP (1|0|0) = ωI is always a logical operator for any XP code - it has
the effect of applying a phase ω to all codewords. By convention, we do not include it in LZ .
We show that the algorithm produces a generating set of diagonal logical XP operators in
Proposition A.5.4.

Non-diagonal Logical Operators

In this Subsection, we demonstrate how to find a generating set of non-diagonal logical XP
operators. We first show how to find the X-components of a generating set of non-diagonal
logical operators. We then demonstrate how to find valid phase and Z-components for a logical
operator with a given X component.

Step 1: Identifying the X-Components. Here, we identify the valid X-components for all
non-diagonal logical operators by calculating a coset decomposition of the orbit representatives
Em. In Section 2.4.2, we showed that we can write the Z-support of the codewords, E, in
coset form E = Em + ⟨SX⟩. We can decompose the orbit representatives themselves into cosets
Em = Eq + ⟨LX⟩. To find the matrix LX and set of vectors Eq, we use the following result:

Proposition 2.6.1 (Coset Decomposition of Em)
Given a set of binary vectors Em ⊂ Zn

2 there exists a unique binary matrix LX in RREF such
that:

Em = Eq + ⟨LX⟩;
Eq := {ResZ2(LX , e) : e ∈ Em}; (2.72)

x ∈ ⟨LX⟩ ⇐⇒ x ⊕ Em = Em .
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Proof. Let T = {x ∈ Zn
2 : x ⊕ e ∈ Em, ∀e ∈ Em}. Choose an arbitrary e0 ∈ Em. Then T is

a subset of E′
m = {e ⊕ e0 : e ∈ Em}. We can check whether x ∈ E′

m is in T by checking if
x ⊕ e ∈ Em,∀e ∈ Em. If x ∈ T then it permutes the elements of Em so x ⊕ Em = Em.

T is a group under component-wise addition modulo 2 because x1,x2 ∈ T =⇒ x1 ⊕ x2 ∈ T ,
so LX = RREFZ2(T ) generates T under component wise addition modulo 2.

Finally, the residue function is an equivalence relation partitioning Em into cosets of
⟨LX⟩.

We can think of T = ⟨LX⟩ as the group of all vectors x such that x ⊕ Em = Em. The
X-component of any logical XP operator must be in ⟨LX⟩ + ⟨SX⟩ because logical operators
preserve the codespace. In Proposition A.5.8, we show that logical operators with X-components
in LX together with LZ , SX , SZ and ωI generate the full set of logical XP operators.

Step 2: Valid Phase and Z-components. Assume that the codewords |κi⟩ are written
in orbit form as in Eq. (2.35). The algorithm for finding the phase and Z-components of the
operators for a given x ∈ LX is as follows:

1. Let e′
ij = eij ⊕ x, and let p′

ij be the phase of e′
ij in the codewords.

2. Let p′′
ij = (p′

ij − pij) mod 2N . For there to be a valid solution, for fixed i the p′′
ij are all

either even or odd. Let ai = p′′
i0 mod 2 be an adjustment factor.

3. Let p′′′
ij = (p′′

ij − ai)/2 so that p′′′
ij ∈ ZN , and let p′′′ be the binary vector with the p′′′

ij as
components.

4. Find a solution (z|q) ∈ Zn
N × Zdim(C)

N such that ET
L (z|q) modN = p′′′ using linear algebra

modulo N (see Section A.1.3). Then A = XPN (0|x|z) is a logical operator.

In Proposition A.5.5, we show that the above algorithm generates a valid logical operator
with X-component x, or returns FALSE if this is not possible. The resulting operator is
non-diagonal, but is not necessarily a logical X operator. For A to be a logical X operator, then
A2 should be a logical identity operator. Applying the SQ rule of Section 2.3.3, A2 is diagonal.
Hence we require A2 ∈ ⟨MZ⟩. We show how to adjust the phase and Z component to ensure
this in Proposition A.5.8.

Examples: Logical Operators

We now illustrate this algorithm for the logical XP operator group for two example XP codes:
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Example 2.6.2 (Logical Operators - Code 1)
The orbit representatives for Code 1 of Section 2.4.5 are given by Eq. (2.45). We calculate
the coset decomposition of Em which gives us the X-components of the non-diagonal logical
generators. Using the technique in Proposition 2.6.1, we find that LX has 2 rows and Eq is of
size 1:

LX =
(

0000101
0000011

)
(2.73)

Eq =
(
0000001

)
. (2.74)

By adding elements of ⟨LX⟩ to any orbit representative mi, we can reach any other orbit
representative mj . The logical operator group generators are:

LX =
{
XP8(2|0000101|0000204)
XP8(1|0000011|0000034)

}
, LZ =


XP8(0|0000000|0002226)
XP8(0|0000000|0000404)
XP8(0|0000000|0000044)

 . (2.75)

Full working for this example is in the linked Jupyter notebook. We look at the logical action
of these logical operators in Example 2.6.9.

Example 2.6.3 (Logical Operators - Code 2)
We now introduce our second main example, which is the code given by the following canonical
stabiliser generators:

S =
{
XP8(0|0000000|1322224)
XP8(12|1111111|1234567)

}
. (2.76)

Using the graph search algorithm of Section 2.4.3, the orbit representatives for Code 2 are:

Em =



0000000
0000111
0001011
0001101
0011110
0011001
0010101
0010011


. (2.77)

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.2_logical_operator_generators.ipynb
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The algorithm in Section 2.4.4 yields the following codewords:

|κ0⟩ = |0000000⟩ +ω12|1111111⟩
|κ1⟩ = |0000111⟩ +|1111000⟩
|κ2⟩ = |0001011⟩ +ω14|1110100⟩
|κ3⟩ = |0001101⟩ +ω12|1110010⟩
|κ4⟩ = |0011110⟩ +|1100001⟩
|κ5⟩ = |0011001⟩ +ω8|1100110⟩
|κ6⟩ = |0010101⟩ +ω10|1101010⟩
|κ7⟩ = |0010011⟩ +ω12|1101100⟩

. (2.78)

Calculating the coset decomposition of Em = Eq + ⟨LX⟩ using Proposition 2.6.1 we find that
LX contains only one row but Eq has 4 elements:

LX =
(
0011110

)
(2.79)

Eq =


0000000
0000111
0001011
0001101

 . (2.80)

From the starting point mi, we can only reach orbit representatives mj = mi ⊕ 0011110 by
adding elements of ⟨LX⟩ modulo 2. We could, however, apply a unitary U which permutes
codewords as follows.

|κ0⟩ → |κ1⟩ → |κ2⟩ → |κ3⟩ → |κ0⟩ (2.81)
|κ4⟩ → |κ5⟩ → |κ6⟩ → |κ7⟩ → |κ4⟩ . (2.82)

Let the codewords in orbit form be |κi⟩ = ∑
0≤j<2r ωpij |eij⟩. Let k = (i+ 1) mod 4 then U is

the operator given by:

U =
∑

eij∈E

|ekj⟩⟨eij | +
∑

e∈Zn
2 \E

|e⟩⟨e| . (2.83)

U cannot, however, be written as an XP operator.
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Applying the algorithms in Section 2.6.3 we find the following generators for the logical XP
group:

LX =
{
XP8(2|0011110|0012304)

}
, LZ =



XP8(0|0000000|0211112)
XP8(0|0000000|0022220)
XP8(0|0000000|0004004)
XP8(0|0000000|0000404)
XP8(0|0000000|0000044)


. (2.84)

Full working for this example is in the linked Jupyter notebook.

Example 2.6.4 (Reed Muller Codes)
In this example, we look at Reed Muller codes. These can be viewed as XP codes, and the
algorithms of this chapter make it straightforward to determine their full logical operator
structure. By varying the parameters of these codes, we show that they give rise to transversal
logical operators at any level of the Clifford hierarchy.

We can write the 15-qubit Reed Muller code as a precision 2 code (i.e. using Pauli group
operators) in terms of diagonal (SZ) and non-diagonal (SX) stabiliser generators:

SZ =



XP2(0|0|100011100011101)
XP2(0|0|010010011011011)
XP2(0|0|001001010110111)
XP2(0|0|000100101101111)
XP2(0|0|000010000011001)
XP2(0|0|000001000010101)
XP2(0|0|000000100001101)
XP2(0|0|000000010010011)
XP2(0|0|000000001001011)
XP2(0|0|000000000100111)



, SX =


XP2(0|100011100011101|0)
XP2(0|010010011011011|0)
XP2(0|001001010110111|0)
XP2(0|000100101101111|0)


. (2.85)

The logical operators for precision N = 2 are:

X̄ = XP2(0|000011111100001|0), Z̄ = XP2(0|0|000000000011111) . (2.86)

We can rescale this code to be of precision N = 8 by multiplying the Z-components of the
generators by 4. Applying the algorithm in Section 2.6.3, we find additional diagonal operators
as follows:

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.2_logical_operator_generators.ipynb
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S̄† = XP8(0|0|000022222200002), T̄ † = XP8(0|0|111111111111111) . (2.87)

Note that S̄† has an S operator on same qubits as X̄, whilst T̄ † has a T operator on all 15 qubits.
If we again rescale to precision N = 16, we do not obtain any additional logical operators. This
suggests that the code has a ‘natural precision’ of 8.

In the XPF, the stabiliser group for a given codespace is not unique. We can write a more
compact generating set of precision 4 operators that stabilise the same codespace. The operators
are symmetrical in X and S and generate a different stabiliser group to those in Eq. (2.85):

SZ =


XP4(0|0|100011100011101)
XP4(0|0|010010011011011)
XP4(0|0|001001010110111)
XP4(0|0|000100101101111)


, SX =


XP4(0|100011100011101|0)
XP4(0|010010011011011|0)
XP4(0|001001010110111|0)
XP4(0|000100101101111|0)


. (2.88)

Note here that the X-components of the non-diagonal generators and the Z-components of the
diagonal generators are the rows of the binary matrix M4

4 as defined in Section 2.5.4.

In Proposition A.5.9, we generalise this example and show the Reed-Muller code on 2r − 1
qubits can be written as the codespace of a precision N = 2r−2 code whose stabiliser generators
are symmetric in X and P with X and Z-components the rows of the matrix M r

r respectively.
This generalises the known result for the Steane code, where r = 3 and N = 2. Furthermore,
to stabilise the code space of n = 2r − 1 qubits, we require only 2r stabilisers, a logarithmic
scaling. The code has natural precision of 2r−1 and a transversal logical diag(1, exp(2πi/2r−1))
operator.

You can explore which logical operators arise in codes with different parameters for Reed
Muller codes in the linked Jupyter notebook.

2.6.4 Assigning Quantum Numbers to the Codewords

In this Subsection, we demonstrate a natural way of assigning quantum numbers to the
codewords of Section 2.4.4. This view of the codewords gives rise to a classification of XP codes
(Section 2.6.5). It also allows us to develop more efficient algorithms to determine the logical
operator group (Section 2.6.6) and to analyse the logical action of operators (Sections 2.6.7
and 2.6.8).

The assignment of quantum numbers is based on the coset structure of the Z-support of the
codewords E (see Section 2.4.2). Recall from Section 2.6.3 that LX is a set of binary vectors

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.4_reed_muller.ipynb
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such that Em = Eq + ⟨LX⟩. Hence, we can write E in coset form as:

E = Eq + ⟨SX⟩ + ⟨LX⟩ (2.89)
= {(ql + uSX + vLX) mod 2 : ql ∈ Eq,u ∈ Zr

2,v ∈ Zk
2} . (2.90)

We refer to Eq as the core of the code. We can index elements of E by writing:

el,u,v := (ql + uSX + vLX) mod 2 . (2.91)

We can assign quantum numbers to the orbit representatives m ∈ Em of Section 2.4.2 as follows:

ml,v := (ql + vLX) mod 2 . (2.92)

and these also apply to the codewords of Section 2.4.4:

|κl,v⟩ := OSX |ml,v⟩ . (2.93)

We refer to l as the Core Index, u as the Stabiliser Index and v as the Logical Index.
The orbit distance is used to develop more efficient versions the logical identity and logical
operator algorithms (see Section 2.6.6), and is defined as:

dist(e) := wt(u) + wt(v) . (2.94)

Example 2.6.5 (Quantum Numbers - Code 1)
For Code 1 of Section 2.4.5, the orbit representatives can be written Em = Eq + ⟨LX⟩ where
Eq = {0000001}, LX = {0000100, 0000010}. The full decomposition of Eq + ⟨SX⟩ + ⟨LX⟩ and
associated quantum numbers as per Section 2.6.4 is:

Stabiliser Index
Logical Index Core Index 00 10 01 11

00 0 0000001 1110001 0001110 1111110
10 0 0000100 1110100 0001011 1111011
01 0 0000010 1110010 0001101 1111101
11 0 0000111 1110111 0001000 1111000

The vectors in the first column of the table with Stabiliser Index u = 0 correspond to the orbit
representatives Em. The vectors in row i of the table are the Z-support of the ith codeword
|κi⟩ as in Eq. (2.30). Each codeword can be identified by the quantum numbers (l,v) where v
is the Logical Index and l is the Core Index. In this case, the size of the core is 1, so the core
index is the same for all codewords. The dashed lines group together vectors with the same
orbit distance.



62 The XP Stabiliser Formalism: a Generalisation of the Pauli Stabiliser Formalism

Example 2.6.6 (Quantum Numbers - Code 2)
For code 2 of Example 2.6.3, the full decomposition of Eq +⟨SX⟩+⟨LX⟩ and associated indexing
as per Section 2.6.4 is:

Stabiliser Index
Logical Index Core Index 0 1

0 0 0000000 1111111
0 1 0000111 1111000
0 2 0001011 1110100
0 3 0001101 1110010
1 0 0011110 1100001
1 1 0011001 1100110
1 2 0010101 1101010
1 3 0010011 1101100

The vectors with orbit distance 0, i.e. u = 0 and v = 0 correspond to the core Eq. In this case,
the size of the core is 4, so we need both the Logical Index and the core index to specify the
codewords. These examples are illustrated in the linked Jupyter notebook.

2.6.5 Classification of XP Codes

In this Subsection, we present a way of classifying XP codes into XP-regular and non-XP-regular
codes. The main result is that each XP-regular code can be mapped via a diagonal unitary
operator to a CSS code that has a very similar logical operator structure. We will see in
Section 2.6.8 that non-XP-regular codes have a much richer logical operator structure that is
distinct from PSF codes and so offer the possibility for interesting new classes of codes.

In Section 2.6.5, we introduce the concept of XP-regular codes and give some examples
and elementary properties. In Section 2.6.5, we demonstrate that each XP-regular code can
be mapped to a CSS code with identical diagonal logical operators, and similar non-diagonal
logical operators.

Definition of XP-Regular and Non-XP-Regular Codes

Consider an XP code, and let Eq be the core of a code as defined in Section 2.6.4. If |Eq| = 1,
the code is XP-regular. Otherwise, the code is non-XP-regular.

One major difference between XP-regular and non-XP-regular codes is the codespace
dimension. The codespace dimension for an XP code is dim(C) = |Eq|2k where k = |LX | (see
Section 2.6.4). For an XP-regular code, |Eq| = 1 so the codespace dimension is a power of 2

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.5_quantum_numbers.ipynb
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and it encodes k logical qubits. The codespace dimension of non-XP-regular codes may or
may not be a power of 2. Non-XP-regular codes are not additive, and their structure resembles
that of the codeword stabilised (CWS) quantum codes of Ref. [55]. The CWS class is very
broad and includes all Pauli stabiliser and qudit stabiliser codes. There are examples of CWS
codes which have better error correction properties than any known additive code with the
same number of physical qubits. [58].

In Ref. [41], a ‘regular code’ is defined as one where the diagonal stabiliser generators of
the code are elements of ⟨−I, Z⟩⊗n. All regular codes are XP-regular and in Section 2.6.5 we
will show a link between the two definitions. The examples below illustrate our definition of
XP-regular codes:

Example 2.6.7 (XP-Regular and Non-XP-Regular Codes)
Examples of XP-Regular and Non-XP-Regular codes include:

1. All XP stabiliser states (i.e. XP codes with one-dimensional codespaces) are XP-regular;

2. All Pauli stabiliser codes (i.e. XP codes with precision N = 2) are XP-regular;

3. Code 1 of Section 2.4.5 is XP-regular as |Eq| = 1, though it is not regular according to
the definition in Ref. [41];

4. Code 2 of Example 2.6.3 is non-XP-regular, as |Eq| = 4.

Mapping XP-Regular Codes to CSS Codes

In this Subsection, we show that each XP-regular code can be mapped via a diagonal unitary
operator to a CSS code with a very similar logical operator structure. This is significant because
it shows that the logical operator structure of an XP-regular code is no more complex than the
corresponding CSS code.

The algorithm for mapping a regular code whose canonical generators are SX ,SZ is:

1. Determine a set of diagonal Pauli operators RZ with the same simultaneous +1 eigenspace
as the SZ .

2. If SX = {(pi|xi|zi)} then let RX = {(0|xi|0)}.

3. The mapped CSS code has stabiliser generators RX ,RZ .

We first show how to calculate a set of diagonal Pauli operators RZ which have the same
simultaneous +1 eigenspace as SZ . This links to the definition of ‘regular code’ in Ref. [41],
where regular codes were defined as those in which all diagonal generators are diagonal Paulis
and implies that all ‘regular codes’ are XP-regular.
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Lemma 2.6.2 (Regular Diagonal Generators)
If a code is XP-regular with diagonal canonical stabilisers SZ , then there exist diagonal Pauli
operators whose simultaneous +1 eigenspace is the same as SZ .

Proof. If the code is XP-regular, it has core size 1. Let q be the sole element in the core. The
Z-support of the simultaneous +1 eigenspace of the SZ can be written as:

E = q + ⟨SX⟩ + ⟨LX⟩ . (2.95)

Let GX be the matrix formed from the rows of LX and SX . The rows of GX are independent.
Find the Howell basis K of KerZ2(GX) (see Section A.1.2). Because there are |SX |+|LX | = r+k
independent rows in GX , there are n− r − k independent rows in K.

Let RZ = {XP2(−2q · z,0, z) : z ∈ K} and let the Z-support of the simultaneous +1
eigenspace of the RZ be E′. Operators in RZ stabilise all elements e ∈ E so E ⊂ E′.

Because RZ has n− k − r independent diagonal Pauli operators, |E′| = 2r+k = |E|. Hence
the simultaneous +1 eigenspaces of SZ ,RZ are the same.

We are now in a position to prove the main result of this Subsection:

Proposition 2.6.3 (Mapping XP-Regular Codes to CSS Codes)
Given a XP-regular code C with canonical generators SX ,SZ , there is a mapping to a CSS
code C′ with generators RX ,RZ such that:

1. If |κi⟩ = ∑
0≤j<2r ωpij |eij⟩ is codeword of C then |κi⟩′ = ∑

0≤j<2r |eij⟩ is a codeword of
C′;

2. C′ has the same diagonal logical operators as C;

3. If XPN (p|x|z) is a non-diagonal logical operator of C, then XPN (0|x|0) is a logical
operator of C′.

Proof. Let SX and SZ be the canonical generators for C. Because C is XP-regular, by
Lemma 2.6.2 we can find a decomposition E = q + ⟨SX⟩ + ⟨LX⟩ and RZ which from ⟨−I, Z⟩⊗n

and which have the same simultaneous +1 eigenspace as the SZ . Let RX = {XPN (0|x|0) : x ∈
LX} and let C′ be the code defined by the stabiliser generators RX ,RZ .

By construction, the simultaneous +1 eigenspaces of the diagonal generators are the
same (and so are the respective Z-supports i.e. E = E′). The matrices formed from the X-
components of the non-diagonal canonical generators are the same (i.e. SX = RX). Hence, the
orbit representatives are the same (i.e. E′

m = Em = {mi}), and so |κi⟩′ = ORX |mi⟩ = ∑
j |eij⟩

form a basis for the codespace of C ′.
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The algorithm for computing the diagonal logical operators in Section 2.6.3 depends only
on the Z-support of the codewords. As E′ = E, the diagonal logical operators are the same.

In Section 2.6.3, we showed that the X components of the logical operators depend only
on E = E′, so for any logical operator XPN (p|x|z) of C, XPN (0|x|0) is a logical operator of
C′.

We can transform the codespaces C′ to C by applying the diagonal unitary U specified by:

U =
∑

eij∈E

ωpij |eij⟩⟨eij | +
∑

e∈Zn
2 \E

|e⟩⟨e| . (2.96)

Example 2.6.8 (Map XP-Regular Code to CSS - Code 1)
Code 1 of Section 2.4.5 is an XP-regular code. Applying Proposition 2.6.3 regular generators
are given by:

RZ =
XP2(0|0000000|1010000)
XP2(0|0000000|0110000)
XP2(2|0000000|0001111)

RX = XP2(0|1110000|0000000)
XP2(0|0001111|0000000)

. (2.97)

Full working for this example is in the linked Jupyter notebook.

Error Correction for XP-Regular Codes

We now briefly consider error correction for XP codes. One of the complexities associated
with this problem is that the stabiliser generators of XP codes are not guaranteed to commute,
so simultaneous measurements may not be possible. A possible error-correction routine for
XP-regular codes is as follows. In this case, we calculate the regular diagonal generators RZ

which are diagonal Pauli operators. By measuring the RZ first and correcting for errors, we
guarantee that we are in a subspace where all stabiliser generators commute and can complete
the error-correction process by measuring the non-diagonal generators SX . A similar process is
outlined in Section V of Ref. [41].

Non-XP-regular codes have a similar structure to the codeword stabilised (CWS) quantum
codes presented in Ref. [55], so it may be possible to adapt error-correction techniques for CWS
codes to XP codes. In CWS codes, the codewords are translations of a graph state |S⟩ by
tensors of Pauli Z operators XP2(0|0|wi). The vectors wi are called word operators and
form a classical code over Zn

2 . The orbit representatives Em of XP codes play a similar role
to the word operators of CWS codes, and we have seen in Section 2.5 that XP states can be
represented as weighted hypergraph states. Exploring the connection between CWS and XP
codes further may well be a fruitful research direction.

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.8_mapping_XP-regular_code.ipynb
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2.6.6 Modified Logical Operator Algorithms

The logical identity and logical operator algorithms presented in Sections 2.6.2 and 2.6.3 require
as input the codewords in the orbit form of Eq. (2.35). In the Pauli stabiliser formalism, there
are algorithms for determining the logical Z and X operators that do not require us to first
calculate the codewords. Can we find such algorithms in the XP formalism?

In this Subsection, we demonstrate modified algorithms for determining the logical operator
group which do not require the codewords as input. Instead, we take the canonical generators
and orbit representatives of Section 2.4 as a starting point. We show that the modified logical
identity algorithm is significantly more efficient than the original version. As a result, the
modified algorithm can be used to determine if two different XP groups have the same codespace.

Modified Logical Identity Algorithm

The modified algorithm for determining the logical XP identity group generators can be used
where the precision of the code is a power of 2. The logical identity algorithm uses the Z-support
E of the codewords (see Section 2.4.2). If N = 2t, we only need to consider elements of E at
most orbit distance t from the core (see Section 2.6.4, Proposition A.5.14).

The main steps of the modified algorithm are as follows.

1. Given a set of generators G for the stabiliser group, we calculate the canonical generators
S and orbit representatives Em (see Section 2.4).

2. From S, Em, we can efficiently calculate Eq, SX and LX without calculating E in full.

3. The elements of E at most orbit distance t from the core are Et = {(q+uSX +vLX) mod 2 :
q ∈ Eq,u ∈ Zr

2,v ∈ Zk
2; wt(u)+wt(v) ≤ t}. We can then use Et instead of E to determine

M in the algorithm set out in Section 2.6.2.

Next, we look at the computational complexity of the modified logical identity algorithm
versus that of the original version. Let the coset decomposition of E = Eq + ⟨SX⟩ + ⟨LX⟩ as in
Eq. (2.89). The number of elements in E is |E| = q2k+r where q = |Eq|, r = |SX |, k = |LX |.
Hence, the complexity of the original logical identity algorithm, which requires us to perform
row operations on a matrix of size |E|, is O(q2k+r).

We now consider the computational complexity of the modified logical identity algorithm for
codes of various precisions. For PSF codes, N = 2 = 21 and we only need to consider elements
of E1 which are at most orbit distance 1 from the core to find the logical identity group. The
total number of elements to consider is q+ q(k+ r). Because q = 1 for all Pauli stabiliser codes,
the run time of the modified algorithm is O(k + r) in this case.
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For XS stabiliser codes, N = 4 = 22. We need to consider elements of E2 which are up to
orbit distance 2 from the core. Hence, the logical identity algorithm is O(q+q(k+r)+q

(k+r
2
)
) =

O(q(k + r)2)

In general, we see that for precision N = 2t, the modified logical identity algorithm is
O(q(k + r)t). For small N and large r or k, this can result in significantly faster run time
compared to the original version which is O(q2k+r). Topological codes tend to have a small
number of logical qubits but a large number of stabiliser generators, so this is an important
improvement. We can also express the complexity in terms of the number of qubits n as O(nt)
because 2n ≥ |E| = q2k+r.

Modified Logical Operator Algorithm

Similarly, we can use a modified version of the logical operator algorithm where the precision of
the XP code is a power of 2 (say N = 2t). Instead of calculating the codewords, we only need
to consider the elements of E up orbit distance t from the orbit representatives Em. Proof of
this claim is in Section A.5.4.

2.6.7 Diagonal Logical Actions Arising in an XP Code

In the Pauli stabiliser formalism, methods exist to find the logical Z operators for a code. In the
XP formalism, a code may have logical operators with a wider range of actions - for instance,
logical S, T or

√
T operators, as well as logical controlled phase operators - for example logical

CZ,CCZ and CT operators. In this Subsection, we show how to describe all possible logical
actions a diagonal logical operator can apply for a given code. We show how to determine
whether a particular logical action is possible, and if so how to calculate a logical operator with
this action.

We first show how to describe all possible actions which can be applied by the diagonal
logical operators of a code. We use the phase vectors of Section 2.6.1 to describe the logical
action of a diagonal operator. Let L′

Z be the set of diagonal logical operators plus ωI - the
logical operator that applies a phase of ω to each codeword. Let FZ be the matrix whose rows
are the phase vectors of L′

Z . We can calculate the Howell basis FD = HowZ2N
(FZ) by using the

techniques in Appendix A.1 so that FD = UFZ for some matrix U . The phase vectors which
can be applied by a diagonal logical operator of the code are given by SpanZ2N

(FD).

We next show how to find a logical operator whose action is given by a phase vector in
SpanZ2N

(FD). Let fi,ui be rows of FD, U respectively. Then the operator Li = L′ui
Z has the

logical action given by fi, using the generator product notation of Eq. (2.25). The operators
LD = {Li : 0 ≤ i < |FD|} generate diagonal logical operators with all possible phase vectors.
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Let the required phase vector be f ∈ SpanZ2N
(FD) so that f = uFD mod 2N for some u ∈ Z|FZ |

2N ,
then the XP operator L′u

D has phase vector f .

Example 2.6.9 (Logical Action - Code 1 and Code 2)
For Code 1 of Section 2.4.5, the phase vectors for each logical operator in L are:

LZ =
XP8(0|0000000|0002226) f : 12 4 4 4
XP8(0|0000000|0000404) f : 8 8 0 0
XP8(0|0000000|0000044) f : 8 0 8 0

, (2.98)

LX = XP8(10|0000101|0000600) f : 0 0 0 0
XP8(9|0000011|0004434) f : 0 0 0 0

. (2.99)

Hence operator XP8(0|0|0002226) applies a phase of ω12 on the first codeword and ω4 on the
other codewords. Calculating FZ and FD we find:

FZ =


1 1 1 1
12 4 4 4
8 8 0 0
8 0 8 0

 , FD = HowZ8(FZ) =


1 1 1 1
0 8 0 0
0 0 8 0
0 0 0 8

 . (2.100)

The following diagonal operators generate diagonal logical operators with all possible phase
vectors:

LD =

XP8(1|0000000|0000000) f : 1 1 1 1
XP8(4|0000000|0006266) f : 0 8 0 0
XP8(12|0000000|0002262) f : 0 0 8 0
XP8(4|0000000|0002666) f : 0 0 0 8

. (2.101)

The action of operator XP8(4|0|0006266) is to apply ω8 = −1 to the second codeword only. As
we have two logical qubits, this is a logical CZ operation.

In fact, the logical effects we can obtain are generated by ωI, and CZ on logical indices
01, 10 and 11. We can make combinations of these operators to generate the Z operators on the
first and second logical qubit:

Z̄10 = XP8(8|0000000|0000044) f : 0 8 0 8
Z̄01 = XP8(0|0000000|0004040) f : 0 0 8 8

. (2.102)
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For Code 2 of Example 2.6.3, we have the following logical operators and corresponding
phase vectors:

LZ =

XP8(0|0000000|0211112) f : 0 8 8 8 8 8 8 8
XP8(0|0000000|0022220) f : 0 8 8 8 0 8 8 8
XP8(0|0000000|0004004) f : 0 8 0 0 8 0 8 8
XP8(0|0000000|0000404) f : 0 0 8 0 8 8 0 8
XP8(0|0000000|0000044) f : 0 0 0 8 8 8 8 0

, (2.103)

LX = XP8(14|0011110|0074160) f : 0 0 0 0 0 0 0 0 . (2.104)

Note that the bar in the phase vector groups together codewords with the same logical index,
but with different core indices. Calculating the Howell basis of FZ , we obtain the generators:

LD =

XP8(1|0000000|0000000) f : 1 1 1 1 1 1 1 1
XP8(0|0000000|0237336) f : 0 8 0 0 0 0 8 8
XP8(0|0000000|0026260) f : 0 0 8 0 0 0 8 0
XP8(0|0000000|0026620) f : 0 0 0 8 0 0 0 8
XP8(0|0000000|0277772) f : 0 0 0 0 8 0 0 0
XP8(0|0000000|0673332) f : 0 0 0 0 0 8 8 8

. (2.105)

The logical Z operator on the single logical qubit is:

Z̄1 = XP8(0|0000000|0062224) f : 0 0 0 0 8 8 8 8 . (2.106)

Full working for these examples is in the linked Jupyter notebook.

Example 2.6.10 (Logical Action - Hypercube Codes)
In Example 2.6.4, we saw that the Reed Muller code on 2r − 1 qubits has a transversal logical
diag(1, exp(i2π/2r−1) operator. In this example, we view the Hypercube code of dimension D

as an XP code of precision N = 2D. We show that it has transversal generalised controlled Z
logical operators at the (D − 1)st level of the Clifford hierarchy. This result has been discussed
previously in Refs. [59], [60] and [61], but is easily verified using the techniques of this Section
and we calculate the corresponding XP operators in the linked Jupyter Notebook.

2.6.8 Classification of Logical Operators

We now introduce a classification scheme for diagonal logical operators based on the quantum
numbers assigned to the codewords in Section 2.6.4. A regular XP logical operator is an
XP operator that applies the same phase to codewords with the same logical index. A core
logical XP operator is an XP operator that applies the same phase to codewords with the
same core index.

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.9_logical_action.ipynb
https://github.com/m-webster/XPFpackage/blob/main/Examples/6.10_hypercube_codes.ipynb
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To determine if an operator is regular or core, we reshape the phase vector for the operator
so that rows correspond to codewords with the same logical index and columns to codewords
with the same core index.

Example 2.6.11 (Regular and Core Operators - Code 2)
For Code 2 of Example 2.6.3, which is a non-XP-regular code, consider the operator
A = XP8(0|0|0062224). The phase vector for A is:

Core Index
Logical Index 0 1 2 3
0
1

0 0 0 0
8 8 8 8

The operator A applies a phase of ω8 = −1 for logical index 1, so it is a regular operator. Now
consider operator B = XP8(0|0|0026620). The phase vector for B is:

Core Index
Logical Index 0 1 2 3
0
1

0 0 0 8
0 0 0 8

The operator B applies a phase of −1 to codewords with core index 3, so it is a core operator.
Now consider C = XP8(0|0|0277772) which has phase vector:

Core Index
Logical Index 0 1 2 3
0
1

0 0 0 0
8 0 0 0

One might think that all logical operators are either core operators, regular operators, or
products of core and regular operators. However, the operator C is a counterexample to this
hypothesis and demonstrates that more complex logical operators arise in non-XP-regular codes.
The operator C applies a phase of −1 when the core index is 0 and the Logical Index is 1.
Because it applies a phase of −1 to one of the 8 codewords, the operator can be thought of as a
CCZ gate. Full working for these examples is in the linked Jupyter notebook.

2.6.9 Logical Operators - Summary and Discussion

In this chapter, we have shown how to determine the logical operator structure for any XP
code. We have presented algorithms to calculate generators for the logical operator and logical
identity groups using linear algebra techniques (Sections 2.6.2 and 2.6.3). In contrast to the

https://github.com/m-webster/XPFpackage/blob/main/Examples/6.11_logical_operator_classification.ipynb
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Pauli and qudit stabiliser formalism, XP codespaces are not uniquely identified by the stabiliser
group. Two XP codes have the same codespace if and only if they have the same logical identity
generators. The efficiency of these algorithms depends on the precision N of the XP code.
Where N = 2t, the algorithms are of O(nt) complexity where n is the number of qubits (see
Section 2.6.6). In the worst case, we need to determine the codewords in full to determine the
logical operator group.

By allocating quantum numbers to the codewords, we can analyse the logical action of
diagonal XP operators and fully classify which logical actions arise. We can determine all
possible logical actions applied by operators of XP form, which can include logical operators at
various levels of the Clifford hierarchy. These techniques give a more complete picture of the
logical operator structure than previous methods, even when looking at Pauli stabiliser codes.

The coset decomposition of the orbit representatives Em yields the core Eq of the code
(Section 2.4.2), and allows us to determine the non-diagonal logical operators. The size of the
core Eq leads to a classification of XP codes into XP-regular and non-XP-regular codes. Any
XP regular code can be mapped to a CSS code which has a similar logical operator structure
via a unitary transformation. Non-XP regular codes have a more complex logical operator
structure. Though not fully developed in this Chapter, there appear to be several possible
approaches for error-correction of XP codes, despite the fact that stabiliser generators do not
commute in general.

The main limitation of the above algorithms is that we consider only logical operators of
XP form. An area for further investigation would be to develop algorithms to find the non-XP
unitary operators which act as logical operators.

2.7 Measurements in the XP Formalism

Determining the extent to which computations on a quantum computer can be classically
simulated is one of the central questions in the field of quantum information. In the Pauli
stabiliser formalism, the Gottesman-Knill theorem states that stabiliser circuits can be classically
simulated efficiently. In particular, given a Pauli stabiliser code, we can efficiently simulate
the measurement of any Pauli operator on the codespace, including both exact calculation of
the Born rule probabilities for such measurements as well as the update rule to determine the
post-measurement state. In this chapter, we look at whether a similar result holds in the XPF -
i.e. can the measurement of XP operators be simulated efficiently in the XPF?

In Section 2.7.1, we set out our assumptions and criteria for an XP operator to be ‘XP-
measurable’ on an XP code. In Section 2.7.2, we show how to determine the outcome probabilities
for measurement of arbitrary XP operators on an XP codespace. In Section 2.7.3, we present an
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efficient stabiliser algorithm for measuring diagonal Pauli operators on XP codes. We consider
whether we can do the same for precision 4 diagonal XP operators in Section 2.7.4 and show
that estimating outcome probabilities is not tractable for these. We also give examples showing
that the measurement of some XP operators takes us outside the XP formalism.

2.7.1 Measurement Definitions

We first define what we mean by an operator being measurable within the XP formalism.

Let C be an XP code with canonical stabiliser generators S. Assume the system is described
by the density operator ρ which is proportional to the projector onto the codespace defined
by S. We can write ρ in terms of the codewords and the Z-support E of the codewords of
Section 2.4.2 as follows:

ρ := 1
|E|

∑
i

|κi⟩⟨κi| . (2.107)

Let A be an XP operator, and Aλ the projector onto the λ eigenspace of A. The operator A is
XP-measurable on C if for each eigenvalue λ of A:

1. We can calculate the probability of obtaining outcome λ which is given by
Pr(λ) = Tr(AλρAλ); and

2. We can find a set of XP operators Sλ such that the projector onto the codespace defined
by Sλ is proportional to AλρAλ.

Note that in the above definition, we are only concerned with whether the above tasks can be
done in principle, not whether they can be done efficiently.

2.7.2 Outcome Probabilities for Measurements of XP Operators

In this Subsection, we demonstrate how to calculate the outcome probabilities for measurement
of arbitrary XP operators on an XP code. We assume that we are given the codewords in orbit
format as input (as in Eq. (2.35)).

For diagonal operators, we can calculate the outcome probabilities by looking at the Z-
support of the codewords E (see Section 2.4.2). Let A be the diagonal XP operator we wish
to measure and assume it has +1 as an eigenvalue. Let E+ be the set of binary vectors
E+ = {e ∈ E : A|e⟩ = |e⟩}. We show in Proposition A.6.1 that the probability of obtaining
outcome +1 when measuring A is Pr(+1) = |E+|

|E| .
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We can also calculate outcome probabilities for non-diagonal operators if given the codewords.
The method is set out in Proposition A.6.2 and is somewhat more complex than for diagonal
XP operators.

Hence, given the codewords, we can in principle determine the outcome probabilities when
measuring any XP operator. This does not necessarily mean that the probabilities can be
estimated efficiently or that we can express the resulting state of the system as an XP code as
we see in Section 2.7.4

2.7.3 Stabiliser Method for Measurement of Diagonal Pauli Operators

We now consider the measurement of diagonal Pauli operators - i.e. elements of ⟨−I, Z⟩⊗n.
In this special case, we can estimate the outcome probabilities efficiently and we can always
express the resulting state as an XP code.

In this Subsection, we demonstrate an efficient, stabiliser-based update algorithm to simulate
measurements of diagonal Pauli operators. The algorithm provides update rules for the core
form of an XP code after measurement. We first describe the core form of an XP code. We
then state the algorithm for measuring diagonal Pauli operators and give some examples which
illustrate the algorithm.

Core Form of an XP Code

In Ref. [30], measurements are simulated by determining update rules for the stabiliser generators,
logical Z operators, logical X operators and anti-commutators.

Our algorithm gives update rules for XP codes in core form. The core form of an XP code
consists of the following data: the core Eq, which was introduced in Section 2.6.4 and is a set
of binary vectors; the non-diagonal canonical generators SX of Section 2.4.1; and the logical X
operators LX - of Section 2.6.3.

The core form encapsulates the key properties of the code in a compact way. From Eq, SX

and LX we can generate the orbit representatives and the codewords (see Section 2.6.4). If
necessary, we can efficiently calculate the diagonal logical operators and logical identities using
the algorithms in Sections 2.6.2 and 2.6.3.

Algorithm for Measuring Diagonal Paulis

Assume we have an XP code in core form (i.e. the non-diagonal stabiliser generators SX

generating non-diagonal logical operators LX and core Eq as in Section 2.7.3). As per our
discussion in Section 2.3.1, if the precision of the code N is not a multiple of 2, then Z operators
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do not exist. We can if necessary re-scale the code to be of precision 2N by doubling the phase
and Z components of all stabiliser generators. Assume we wish to measure the diagonal Pauli
operator A = XP2(0|0|z). Note that A has zero phase component but the algorithm can be
generalised to operators with non-trivial phase components very easily. Our aim is to determine
an XP code in core format representing the post-measurement system, as well as the probability
of measuring each eigenvalue of A (in this case, ±1).

The algorithm uses the parity function of a binary vector x with respect to the binary
vector z which is defined as:

Parz(x) := x · z mod 2 . (2.108)

Step 1: Determine if there exists B ∈ SX or failing that, B ∈ LX with X-component x such
that Parz(x) = 1. If B does not exist, go to Step 2. If B exists, we update SX ∪ LX and Eq

via the following steps:

• Remove B from SX ∪ LX .

• For any C ∈ SX ∪ LX with X-component y such that Parz(y) = 1, replace C with BC.

• Update Eq by setting Eq = Eq ∪ {ql ⊕ x : ql ∈ Eq}.

Step 2: Split Eq into two sets:

E+
q := {q ∈ Eq : Parz(q) = 0} , (2.109)

E−
q := {q ∈ Eq : Parz(q) = 1} . (2.110)

The probability of obtaining the outcome +1 is Pr(+1) = |E+
q |

|Eq | and the post-measurement core

is E+
q . The probability of obtaining −1 is Pr(−1) = |E−

q |
|Eq | and the updated core is E−

q .

In Appendix A.6, we explain in detail why the algorithm works. Essentially this is because
the parity function of Eq. (2.108) commutes with the addition of vectors modulo 2. Once we
have the code in core format, the above algorithm simulates measurement of diagonal Paulis in
O(|Eq| + |SX | + |LX |) time complexity.

The algorithm generalises the method of simulating measurements in the Pauli stabiliser
formalism (e.g. in Ref. [30]). When simulating measurements in the Pauli stabiliser formalism,
we look for stabiliser generators which do not commute with the operator being measured. The
parity function serves a similar purpose in our algorithm. Any operator B with X-component x
commutes with A if Parz(x) = 0 and anticommutes otherwise. Any computational basis vector
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|e⟩ with Pare(x) = q is in the (−1)q eigenspace of A. In Step 1, we need to remove at most 1
non-diagonal operator from SX ∪ LX , which is also the case for the Pauli stabiliser formalism.

One significant difference between the XPF and the Pauli stabiliser formalism is the possible
outcome probabilities which arise. In the Pauli stabiliser formalism, outcome probabilities
are always a multiple of 1

2 when measuring a single operator. This is not the case in the
XPF because for non XP-regular codes, the sizes of Eq, E

+
q and E−

q may not be powers of 2.
Outcome probabilities in the XPF may be irrational numbers - in particular when measuring
non-diagonal operators (see Proposition A.6.2).

Examples - Measurement of Diagonal Paulis

Below are examples of the measurement of diagonal Paulis for Code 2 of Example 2.6.3 to
illustrate the operation of the algorithm. Full working for these examples is in the linked
Jupyter notebook.

Example 2.7.1 (No update to SX ∪ LX - Code 2, Non-XP-Regular Code)
Code 2 expressed in core form is:

Eq ={0000000, 0000111, 0001011, 0001101} , (2.111)
SX =XP8(12|1111111|0334567) , (2.112)
LX =XP8(14|0011110|0012340) . (2.113)

In this example, we measure A = XP2(0|0000000|0111111). Looking at elements of SX ∪ LX ,
the parity of all operators is 0, so we do not need to update them in Step 1 of the algorithm.

Moving to Step 2, we calculate E+
q , E

−
q as follows:

E+
q ={0000000} , (2.114)

E−
q ={0000111, 0001011, 0001101} . (2.115)

The probability of measuring +1 is Pr(+1) = |E+
q |/|Eq| = 1/4, whilst the probability of

measuring −1 is Pr(−1) = |E−
q |/|Eq| = 3/4. These probabilities do not arise when measuring a

single operator in the Pauli stabiliser formalism.

Example 2.7.2 (Update SX ∪ LX - Code 2, Non-XP-Regular Code)
In this example, we measure A = XP2(0|0000000|0000100) on Code 2.

For Step 1, we find for B = XP8(12|1111111|0334567) the X-component x = 1111111 has
parity +1. We remove B from SX . In LX , we also find C = XP8(14|0011110|0012340) with
X-component y = 0011110 has parity 1. Replace C with BC = XP8(14|1100001|0700003).

https://github.com/m-webster/XPFpackage/blob/main/Examples/7.1_measure_diagonal_Pauli.ipynb
https://github.com/m-webster/XPFpackage/blob/main/Examples/7.1_measure_diagonal_Pauli.ipynb
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Update Eq by adding x ⊕ q for q ∈ Eq to Eq so the updated code in core format is:

Eq = {0000000, 0000111, 0001011, 0001101,
1111111, 1111000, 1110100, 1110010} , (2.116)

SX =∅ , (2.117)
LX =XP8(14|1100001|0700003) . (2.118)

For Step 2, we calculate E+
q , E

−
q :

E+
q ={0000000, 0001011, 0010011, 0011001} , (2.119)

E−
q ={0000111, 0001101, 1111111, 1110100} . (2.120)

We obtain measurement outcomes +1 or −1 with equal probability of 1
2 . This is always

the case when we update SX ∪ LX in Step 1 because for the binary vector q, exactly one of
q,q ⊕ x has parity +1.

2.7.4 Measuring Precision 4 XP Operators

In the previous Section, we showed that diagonal Paulis are XP-measurable on any XP code.
In this Subsection, we look at the measurement of precision 4 XP operators, which can be
considered the next most complex case. We show that determining the outcome probabilities for
diagonal precision 4 operators is in general computationally complex. We look at two examples
which illustrate that precision 4 XP operators are not in general XP-measurable because the
post-measurement states cannot be expressed as an XP codespace.

Estimating Outcome Probabilities of Diagonal Precision 4 Operators is Intractable

Consider measuring a diagonal precision 4 XP operator A = XP4(0|0|z). The probability
of obtaining outcome +1 when measuring A is |E+|

|E| where E is the Z-support of the pre-
measurement codewords and E+ = {e ∈ E : A|e⟩ = |e⟩} (see Proposition A.6.1). Hence,
determining probability outcomes reduces to the problem of finding the simultaneous +1
eigenspace of the XP operators SZ ∪ {A}.

Now consider simulating measurements on an XP code stabilising |+⟩⊗m for some large
value of m. Assume we have a series of diagonal XP operators Ai of precision 4 which all
share +1 as an eigenvalue. Proposition A.6.1 states that the probability of obtaining the result
+1 after measuring the series of operators depends on the dimension of the simultaneous +1
eigenspace of the Ai. Determining E+ is known to be an NP-hard problem [41]. No matter
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which algorithm we use, we must calculate |E+| so this complexity seems unavoidable in the
general case.

XP Formalism is not Closed under Measurement of XP Operators

The following examples illustrate that when measuring precision 4 operators, it is not always
possible to represent the post-measurement system as the codespace of an XP code. Full
working for these examples is in the linked Jupyter notebook:

Example 2.7.3 (Measurement of Diagonal Precision 4 Operator)
Let us measure the diagonal operator A = S1S

3
2S

3
3 on the code defined by the stabiliser

generators SX = {X1, X2, X3},SZ = ∅ where Xi denotes the Pauli X operator applied to the
ith qubit. The codespace is one dimensional and spanned by |κ⟩ = |+⟩⊗3.

The operator A has 4 eigenvalues, with Z-supports of the corresponding eigenspaces as
follows:

E+1 = {000, 101, 110} E+i = {100} (2.121)
E−1 = {011} E−i = {001, 010, 111} . (2.122)

The probability of obtaining each measurement result is:

Pr(+1) = 3/8 Pr(+i) = 1/8 (2.123)
Pr(−1) = 1/8 Pr(−i) = 3/8 . (2.124)

In the case of outcome +1, the post-measurement state is

|κ+⟩ = |000⟩ + |010⟩ + |111⟩ . (2.125)

In Section 2.4.2, we demonstrated that the codewords of XP codes have Z-support of size 2r for
some integer r so this state cannot be written as the codespace of any XP code.

Similarly, for non-diagonal precision 4 operators, we can easily find examples of operators
where the post-measurement system cannot be represented as the codespace of an XP code:

Example 2.7.4 (Measurement of Non-diagonal Precision 4 Operator)
Now let us measure the non-diagonal operator B = XP4(2|111|123) on an XP code stabilising
|κ⟩ = |+⟩⊗3. The square of B is B2 = I, so the eigenvalues are ±1.

Let ω = exp(iπ/4) and note that 1+ω2

2 = 1+i
2 = ω√

2 and 1+ω6

2 = 1−i
2 = ω7

√
2 .

https://github.com/m-webster/XPFpackage/blob/main/Examples/7.3_measure_precision_4.ipynb
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Applying the projector B+ to |κ⟩ using Proposition 2.3.4, we obtain:

|κ+⟩ = 1
2(|κ⟩ +B|κ⟩) (2.126)

= 1
2
(
|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩

+ ω6|000⟩ + |001⟩ + ω2|010⟩ − |011⟩ − |100⟩ + ω6|101⟩ + |110⟩ + ω2|111⟩
)

(2.127)

= 1√
2

(
ω7|000⟩ +

√
2|001⟩ + ω|010⟩ + ω7|101⟩ +

√
2|110⟩ + ω|111⟩

)
. (2.128)

Calculating the probability of obtaining outcome +1:

Pr(+1) = ⟨κ+|κ+⟩
⟨κ|κ⟩

(2.129)

= 1 + 2 + 1 + 1 + 2 + 1
2 · 8 = 1

2 . (2.130)

Similarly

|κ−⟩ = 1
2(|κ⟩ −B|κ⟩) (2.131)

= 1√
2

(
ω|000⟩ + ω7|010⟩ +

√
2|011⟩ +

√
2|100⟩ + ω|101⟩ + ω7|111⟩

)
(2.132)

Pr(−1) = 1 + 1 + 2 + 2 + 1 + 1
2 · 8 = 1

2 . (2.133)

The state |κ+⟩ cannot be represented as the codespace of an XP code because:

• The size of the Z-support ZSupp(|κ+⟩) is not a power of 2,

• The coefficients of the computational basis elements have different moduli,

• It is not possible to find a set of diagonal XP operators S+
Z where the Z-support of the

simultaneous +1 eigenspace of the S+
Z is equal to ZSupp(|κ+⟩).

2.7.5 Measurement in the XP Formalism - Summary of Results

We have demonstrated that it is not in general possible to efficiently simulate measurement of
XP operators in the XP formalism, apart from the special case of measuring diagonal Pauli
operators. Firstly, measurement of an XP operator on an XP code may result in a state which
cannot be described as an XP codespace. We have seen two examples which illustrate this.
Secondly, calculating outcome probabilities when measuring a series of diagonal operators
requires us to determine the simultaneous +1 eigenspace of these operators. This is known to
be an NP-hard problem when the operators are of precision 4.
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Hence, there appears to be no obvious generalisation of the Gottesman-Knill theorem to XP
codes. This suggests that XP codes can describe states which display computationally complex,
non-classically simulable behaviour.

2.8 Discussion and Open Questions

In this Chapter, we have set out the foundations for the XP formalism. We have formulated
XP versions of many of the algorithms available in the Pauli stabiliser formalism - for instance
determining a basis for the codespace, generators for the logical operator group and simulating
the measurement of diagonal Pauli operators. The computational complexity of these algorithms
depends on the precision N of the XP code, and certain edge cases have exponential complexity.
We have given examples of XP operators which cannot be measured within the formalism or
where estimating outcome probabilities is NP-hard. Hence, there appears to be no obvious
generalisation of the Gottesman-Knill theorem to XP codes. XP codes are on the boundary of
what is classically simulable, and so there are good reasons to believe that XP codes allow us
to engineer states which exhibit useful, non-classically simulable behaviour.

The rich logical operator structure of XP codes may make them useful for applications such
as magic state distillation, which requires codes with non-Clifford logical operators. In Ref. [62],
the authors showed that triorthogonal CSS codes have optimal error correction parameters
for Pauli stabiliser codes with a transversal logical T operator. We note that this result only
applies to XP codes of precision 2, and in particular does not apply to non-XP-regular codes.
XP codes with transversal logical non-Clifford operations (for instance T or CCZ gates) could
be used for fault-tolerant preparation of magic states. We have focused so far on XP codes
where the precision is a power of 2. Where the precision is not a power of 2, XP codes may
have logical operators which are outside the Clifford hierarchy.

We have described the states and phase functions which arise within the XP formalism. As
part of this, we have shown that two important classes of states, hypergraph and weighted
graph states, can be represented as XP stabiliser states. Hence, we can use the algorithms
presented in this Chapter to analyse these. One of the main benefits of looking at them as XP
stabiliser codes is that we can very easily determine the symmetries of the states as these are
just the elements of the logical identity group. In Fig. 2.3 and the linked Jupyter notebook, we
illustrate how the algorithms in this Chapter make it easy to determine the Z2 symmetries of
the Union Jack state of Ref. [57].

In the Pauli and qudit stabiliser formalisms, operators commute up to a phase. In the
XP stabiliser formalism, operators commute up to a diagonal operator. This suggests that
non-Abelian anyon models arise naturally in the XP formalism, and the existence of such codes
in the XS stabiliser formalism had already been established in Ref. [41]. Such models may be

https://github.com/m-webster/XPFpackage/blob/main/Examples/8.1_union_jack_symmetries.ipynb
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(a) Stabiliser Generators for Union Jack
State: Using the techniques in this Chapter, we
can represent the Union Jack State as an XP code.
This makes it easier to study the Z2 symmetries
of the state. In this figure, we illustrate a sample
set of stabiliser generators for the XP code. There
are qubits on each vertex and each edge of the
cellulation. The different coloured dots represent
the application of operators for the stabiliser gen-
erator as follows. Grey: X; yellow Z; red S; blue:
S3.

(b) Onsite Symmetry for Union Jack State:
By multiplying together all non-diagonal stabiliser
generators, we find an onsite symmetry which
is preserved apart from a phase component on
certain qubits on the boundary. This is indicative
of symmetry protected topological order. In the
linked Jupyter notebook, we show that there are
3 onsite symmetries for the Union Jack state on
a square plane with open boundary, two of which
are preserved on the lattice and one which is not.

Figure 2.3 Finding Z2 Symmetries of the Union Jack state by representing it as an XP code.

useful in achieving fault-tolerant quantum computation [17] as well as understanding physical
phenomena such as the fractional Quantum Hall Effect [63]. In Ref. [64], the authors showed
that all twisted quantum doubles (TQDs) with Abelian anyons can be represented as qudit
stabiliser codes. It would be interesting to see if there is a similar result for non-Abelian TQDs
represented as XP codes. You can explore the logical operator structure of various topological
codes, including Twisted Quantum Doubles, in the linked Jupyter notebook.

One of the most exciting implications of this work is that no-go theorems which apply to
Pauli stabiliser codes and commuting stabiliser codes do not necessarily apply to XP codes.
Such results exist, for instance, in the area of self-correcting quantum memories (Ref. [48] on
page 23). Rather than rely on active error correction, a self-correcting quantum memory is
a system where large scale errors would be suppressed by a macroscopic energy barrier. As
XP codes involve stabilisers which are not Paulis and which may not commute, they are worth
investigating for potential use as self-correcting memories. An important open question in this
context is to look at whether we can write commuting parent Hamiltonians for XP codes, as
was demonstrated in Ref. [41].

https://github.com/m-webster/XPFpackage/blob/main/Examples/8.1_union_jack_symmetries.ipynb
https://github.com/m-webster/XPFpackage/blob/main/Examples/8.2_topological_codes.ipynb
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3 | Transversal Diagonal Logical Op-
erators of Stabiliser Codes

abstract
Storing quantum information in a quantum error correction code can protect it from
errors, but the ability to transform the stored quantum information in a fault tolerant way
is equally important. Logical Pauli group operators can be implemented on Calderbank-
Shor-Steane (CSS) codes, a commonly-studied category of codes, by applying a series of
physical Pauli X and Z gates. Logical operators of this form are fault-tolerant because
each qubit is acted upon by at most one gate, limiting the spread of errors, and are referred
to as transversal logical operators. Identifying transversal logical operators outside the
Pauli group is less well understood. Pauli operators are the first level of the Clifford
hierarchy which is deeply connected to fault-tolerance and universality. In this work, we
study transversal logical operators composed of single- and multi-qubit diagonal Clifford
hierarchy gates. We demonstrate algorithms for identifying all transversal diagonal
logical operators on a CSS code that are more general or have lower computational
complexity than previous methods. We also show a method for constructing CSS codes
that have a desired diagonal logical Clifford hierarchy operator implemented using single
qubit phase gates. Our methods rely on representing operators composed of diagonal
Clifford hierarchy gates as diagonal XP operators and this technique may have broader
applications.

3.1 Overview

Quantum error correction has become a very active area of research because of its potential
to mitigate noise in complex quantum devices. Recent experimental results have validated
the storage of quantum information in the codespace of a quantum error correction code
as a practical way of protecting it from noise (see [9], [10] and [11]). Many of these initial
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demonstrations have made use of CSS codes [25], a well-studied class of quantum error correction
codes that are relatively simple to analyse and implement.

To implement algorithms on quantum computers, we also need to transform the stored
quantum information in a fault-tolerant way. One method of implementing fault-tolerant
logical operations on CSS codes is to use transversal logical operators. Transversal logical
operators have depth-one circuit implementations involving single or multi-qubit gates. Such
implementations are considered fault-tolerant because an error on one physical qubit can only
spread to a limited number of other qubits when applying the logical operator. Whilst the
Eastin-Knill theorem rules out the existence of a quantum error correcting code with a set of
transversal operators that is universal [34], determining the transversal gates of a quantum
error correction code is key to designing a fault-tolerant architecture.

Deeply connected to fault tolerance and universality is the Clifford hierarchy [29] of unitary
operators. The first level of the Clifford hierarchy is the Pauli group CH1 := ⟨iI,X, Z⟩.
Conjugation of Paulis by operators at level t + 1 results in an operator at level t. The level
t+ 1 operators A ∈ CHt+1 are then defined recursively as those for which ABA−1 ∈ CHt for
all B ∈ CH1. Level 2 Clifford hierarchy gates include the single-qubit Hadamard and S :=

√
Z

gates, as well as the 2-qubit controlled-Z (CZ) gates. Level 3 gates include the single-qubit
T :=

√
S gate as well as the multi-qubit controlled-S (CS) and controlled-controlled-Z (CCZ)

gates. A set of gates that includes all level-2 gates and at least one level-3 gate is universal [33].

Logical Pauli group operators can be implemented transversally on CSS codes and identifying
these is relatively straightforward. Identifying transversal logical operators at higher levels of
the Clifford hierarchy is more challenging and existing methods are of exponential complexity
in either the number of physical or logical qubits in the code. Some classes of CSS codes with
high degrees of symmetry are known to have non-Pauli transversal logical operators. Examples
using single-qubit diagonal gates include the 7-qubit Steane code [65], two-dimensional color
codes [66] and triorthogonal codes [67]. Examples of CSS codes which have logical operators
made from single and multi-qubit gates include the two-dimensional toric code [68], codes with
ZX-symmetries [69] and symmetric hypergraph product codes [70].

In this Chapter, we present a suite of algorithms for identifying diagonal transversal logical
operators on any CSS code, without any knowledge of any symmetries of the code. The building
blocks of our logical operators are physical single- or multi-qubit diagonal gates, at a given
level t of the Clifford hierarchy. Our methods scale as a polynomial in the number of physical
and/or logical qubits in the code, with one exception. We also give a method for constructing a
CSS code that has a transversal implementation of a desired diagonal logical Clifford hierarchy
operator using single-qubit gates. Our new algorithms use the XP formalism, introduced in
Chapter 2, which is a powerful tool for representing the logical operator structure of a stabiliser
code.
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3.1.1 Existing Work on Transversal Logical Operators

We briefly review previous methods for identifying diagonal logical operators of arbitrary CSS
codes, and methods for constructing CSS codes with a desired transversal logical operator. In
Ref. [14], a method is given to find all logical operators at level 2 of the Clifford hierarchy for a
CSS code by mapping it to a classical code over GF (4). This method involves calculating the
automorphism group of the classical code, which has exponential complexity in the number of
qubits in the stabiliser code [71].

There has also been a significant amount of work on logical operators constructed from
single- and multi-qubit diagonal Clifford hierarchy gates. In Ref. [72], operators composed
of diagonal Clifford hierarchy gates on one or two qubits are shown to be representable as
symmetric matrices over ZN , referred to as Quadratic Form Diagonal (QFD) gates. Necessary
and sufficient conditions for a QFD gate to act as a logical operator on a CSS code are then
presented. In Ref. [73], a method of generating circuits using multi-qubit gates which implement
arbitrary logical operators at level 2 of the Clifford hierarchy is presented. A method for
generating CSS codes with transversal diagonal logical operators at increasing levels of the
Clifford hierarchy is presented in Ref. [74], along with a method to increase the Z-distance
of such codes. In Section 2.6.3, we demonstrated an algorithm for finding all diagonal logical
operators composed of single-qubit phase gates which, for CSS codes, involves taking the kernel
modulo N of a matrix with n + 2k columns where n and k are the number of physical and
logical qubits respectively.

3.1.2 Contribution of this Work

In this work, we present efficient methods to identify and test diagonal logical operators on
CSS codes using both single and multi-qubit diagonal Clifford hierarchy gates as building
blocks. These methods generalise to non-CSS stabiliser codes. We also present a technique for
generating CSS codes with implementations of any desired diagonal Clifford hierarchy logical
operator using single-qubit phase gates.

We first consider operators composed of single-qubit phase gates at level t of the Clifford
hierarchy. We show that these can be represented as diagonal XP operators of precision N = 2t.
For logical operators of this form, we demonstrate the following algorithms that apply to any
CSS code and at any desired level of the Clifford hierarchy:

1. Finding a generating set of diagonal logical identity operators for the code:
An XP operator may act as a logical identity, but may not be an element of the stabiliser
group of a CSS code. The logical identities are used as inputs to several other algorithms
(Section 3.3.1)
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2. Searching for an implementation of a desired logical controlled-phase operator
on the code: useful for checking if a given CSS code has a transversal implementation of a
particular logical operator and for checking the results of other algorithms (Section 3.3.2);

3. Determining if a given diagonal operator acts as a logical operator on the code:
This method is of linear complexity in the number of independent X-checks whereas
existing methods are of exponential complexity (Section 3.3.3);

4. Finding a generating set of diagonal logical operators on the code: The generating
set gives us a complete understanding of the diagonal logical operator structure of a CSS
code, and can be used on CSS codes with a large number of physical and logical qubits at
any desired level of the Clifford hierarchy (Section 3.3.4);

5. Expressing the action of a diagonal logical operator as a product of logical
controlled-phase gates: The action of a logical operator can be difficult to interpret,
particularly for codes with a large number of logical qubits. This method greatly simplifies
the interpretation of logical actions (Section 3.3.5).

We then show that multi-qubit diagonal Clifford hierarchy gates acting on a codespace can
be represented as diagonal XP operators acting on a larger Hilbert space via an embedding
operator (Section 3.4.3). We demonstrate algorithms for:

6. Finding depth-one implementations of logical operators composed of diagonal
Clifford hierarchy gates: on small CSS codes, this allows us to identify and verify the
depth-one logical operators of [68–70] with no knowledge of the symmetry of the code
(Section 3.4.4);

7. Canonical implementations of a desired logical controlled-phase operator
composed of multi-qubit controlled-phase gates: this allows us to write closed-form
expressions for arbitrary diagonal Clifford hierarchy logical operators Section 3.5.1;

8. Construction of CSS codes which have an implementation of a desired logical
controlled-phase operator composed of single qubit phase gates: the canonical
logical operator implementation allows us to construct families of CSS codes which have
transversal implementations of a desired diagonal Clifford hierarchy logical operator
Section 3.5.4.

Apart from the depth-one search algorithm, the eight algorithms have complexity that is
polynomial in the parameters n, k, r of the CSS code (see below). As a result, they can be
applied to ‘large’ codes that have so far been out of reach of existing methods. There are no
restrictions on the level of the Clifford hierarchy or maximum support size of the physical gates
used in the methods.
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A summary of the characteristics and computational complexity of search and test algorithms
is presented in Table 3.1. Complexity is expressed in terms of the following variables:

• Required level of the Clifford hierarchy t;

• Number of physical qubits n in the CSS code;

• Number of logical qubits k in the CSS code;

• Number of independent X-checks r in the CSS code;

The space complexity of the algorithm is expressed in terms of the dimensions of the key
matrices used. The time complexity is based on the number of times we calculate a Howell
matrix form (see Section A.1.2) - these dominate the complexity of the algorithms. We calculate
the number of matrix operations and multiply this by a time complexity of O(mn2) for finding
the Howell form of an m× n matrix.

The algorithms have been implemented in a Python GitHub repository accessible under
the GNU General Public License. A range of sample codes are also available for testing in
this repository, including Reed-Muller codes, hyperbolic surface codes, triorthogonal codes and
symmetric hypergraph product codes.

3.2 Background

This Section reviews the necessary background material for this work. We first introduce the
Clifford hierarchy of diagonal operators and introduce a vector representation of these. We
then outline notation and fundamental properties of CSS codes. Next, we define what we
mean by a diagonal logical operator on a CSS code. We then present an example illustrating
the types of diagonal logical operators we consider in this work for the well-known [[4, 2, 2]]
code. We then review the XP stabiliser formalism and some fundamental properties of the
XP operators, which we will use to represent logical operators composed of diagonal Clifford
hierarchy gates. We explain the logical operator group structure in the XP formalism, which is
somewhat different than in the Pauli stabiliser formalism.

3.2.1 Diagonal Clifford Hierarchy Operators

Here we review the properties of operators in the diagonal Clifford hierarchy. We will use
diagonal gates at level t of the Clifford hierarchy on n qubits as the building blocks for logical
operators. The diagonal Clifford hierarchy operators at each level form a group generated by
the following operators [75]:

https://github.com/m-webster/CSSLO


88 Transversal Diagonal Logical Operators of Stabiliser Codes

Algorithm Matrix
Dimensions

Matrix
Operations

Time
Complexity

1. Diagonal Logical
Identity Group
Generators

O((k + r)t × n) O(1) O((k + r)tn2)

2. Search by Logical
Action

O((k + r)t × n) O(1) O((k + r)tn2)

3. Logical Operator Test* O(n× n) O(r) O(rn3)
4. Diagonal Logical
Operator Group
Generators*

O(n× n) O(r) O(rn3)

5. Determine Action of
Diagonal Logical
Operator

O(kt × n) O(1) O(ktn2)

6. Depth-One Logical
Operators**

O(nt × nt) O(2n) O(2nn3t)

Table 3.1 Comparison of Search and Test Algorithms for Diagonal Logical Operators. The space
complexity of the algorithm is expressed in terms of the dimensions of the key matrices used.
The time complexity is based on the number of times we calculate a Howell matrix form - these
dominate the complexity of the algorithms. We calculate the number of matrix operations and
multiply this by a time complexity of O(mn2) for finding the Howell form of an m× n matrix.
Note that entries annotated with * require the diagonal logical identities of algorithm 1 as
input. Entries annotated with ** require the diagonal logical operators of algorithm 4 as input.

• Level 1: Pauli Z gate on qubit i : 0 ≤ i < n denoted Zi;

• Level 2: Controlled-Z (CZij) and Si :=
√
Zi;

• Level 3: CCZijk, CSij and Ti :=
√
Si;

• Level t+ 1: Square roots and controlled versions of operators from level t.

At each level, we refer to the generators as level-t controlled-phase gates. Where an
operator is an element of the diagonal Clifford hierarchy group at level t, we say that it is
composed of level-t controlled-phase gates.

The single-qubit phase gate at level t is of form diag(1, exp(2πi/N)) where N := 2t. If an
operator is an element of the group generated by single-qubit phase gates at level t, we say it is
composed of level-t phase gates.

The matrix form of any diagonal transversal logical operator of a CSS code must have
entries of form exp(qπi/2t) for integers q, t, as shown in Ref. [76]. Such matrices are elements
of the diagonal Clifford hierarchy group at some level, and so considering logical operators



3.2 Background 89

composed of controlled-phase gates yields all possible diagonal transversal logical operators on
a CSS code.

3.2.2 Vector Representation of Controlled-Phase Operators

We now introduce a vector representation of controlled-phase operators that underpins our
analytical methods. Fix a level t of the Clifford hierarchy (Section 3.2.1) and let N := 2t. Let
ω := eπi/N be a (2N)-th root of unity. The operator CPN (q,v), where q ∈ Z2N and v is a
binary vector of length n, is defined as follows by its action on a computational basis vectors
|e⟩ for e ∈ Zn

2 :

CPN (q,v)|e⟩ :=

ω
q|e⟩ if v ≼ e;

|e⟩ otherwise.
(3.1)

The relation ≼ is a partial order for binary vectors based on their support (the set of indices
where the vector is non-zero). The expression v ≼ e indicates supp(v) ⊆ supp(e) ⇐⇒ ev = v
where vector multiplication is componentwise. For an integer 0 ≤ i < n, we will also write
i ≼ v if v[i] = 1. The phase applied can be expressed more concisely as follows:

CPN (q,v)|e⟩ = ωq·pv(e)|e⟩ where pv(e) :=
∏
i≼v

e[i]. (3.2)

Each generator of the diagonal Clifford hierarchy can be written in vector form. To see this,
we note that the phase gate at level t can be written as P := diag(1, ω2). The phase operator
acting on qubit i can be written in vector form as Pi = CPN (2,bn

i ) where bn
i is the length n

binary vector, which is all zero apart from component i which is one. Similarly, the operator
CPij = CPN (2,bn

ij) where bn
ij is zero apart from components i and j. The operators of form

CPN (2wt(v),v) with 1 ≤ wt(v) ≤ t are the generators of the level-t controlled-phase operators
presented in Section 3.2.1.

Example 3.2.1 (Vector Representation of Level 3 Controlled-Phase Operators)
This example illustrates the vector representation of level 3 diagonal Clifford hierarchy operators.
At level t = 3 the generators have vector representations as follows:

Ti = CP8(2,bn
i ) (3.3)

CSij = CP8(4,bn
ij) (3.4)

CCZijk = CP8(8,bn
ijk). (3.5)
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We also include ωI = CP8(1,0) as a generator at the third level of the hierarchy as phases of
this form occur in the commutation relation for controlled-phase operators - see Eqs. (3.30)
and (3.31).

3.2.3 CSS Codes

Here we introduce some key notation and results for CSS codes. Our notation for CSS codes
is somewhat different to that in the literature and is used because it simplifies the statement
of our results. Although we focus on CSS codes in this work, the methods are applicable to
any stabiliser code as set out in Appendix B.3. For our purposes, a CSS code on n qubits is
specified by an r × n binary matrix SX the rows of which we refer to as the X-checks and a
k×n binary matrix LX whose rows are referred to as the X-logicals. We assume that the rows
of SX and LX are independent binary vectors - otherwise we can use linear algebra modulo 2
to ensure this. The Z-checks can be calculated by taking the kernel modulo 2 of the X-checks
and X-logicals, i.e.,

SZ := Ker Z2

(
SX

LX

)
. (3.6)

In Eq. (3.6), the notation Ker Z2 refers to the basis in reduced row echelon form of the kernel
modulo 2 of a binary matrix. We form stabiliser generators SX ,SZ from the rows of SX

and SZ in the obvious way - if x is a row of SX then the corresponding stabiliser generator
is ∏0≤i<nX

x[i]
i . The codespace is the simultaneous +1 eigenspace of the stabiliser group

⟨SX ,SZ⟩ and is a subspace of Hn
2 . The codespace is spanned by 2k canonical codewords

which are indexed by binary vectors v of length k and are defined as follows:

|v⟩L :=
∑

u∈Zr
2

|euv⟩ :=
∑

u∈Zr
2

|uSX + vLX⟩. (3.7)

In the above expression, matrix operations are modulo 2. For simplicity, we are not concerned
with normalising codeword states. It may be possible to make a different choice of basis for
the span ⟨LX⟩ over Z2. The choice of basis affects the labelling of the canonical codewords by
binary vectors v of length k, but does not otherwise change the set of canonical codewords.

3.2.4 Logical Operators of CSS Codes

We now describe what we mean by a logical operator on a CSS code. Let C : Hk
2 → Hn

2 be
the encoding operator which takes computational basis vectors to canonical codewords of
Eq. (3.7) i.e. C |v⟩ = |v⟩L for v ∈ Zk

2. Now let B be a unitary operator acting on k qubits. We
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say that an operator B acting on n qubits is a logical B operator if

BC = CB. (3.8)

A unitary operator B is diagonal if we can write B := diag(c) for some complex-valued
vector c of length 2k representing the phase applied to each computational basis vector, i.e.
B |v⟩ = cv |v⟩ for v ∈ Zk

2 and cv ∈ C. If B is a diagonal logical operator, then B is diagonal as
well, though the converse is not necessarily true. From Eq. (3.8) and Eq. (3.7), we have:

BC |v⟩ = B |v⟩L = B
∑

u∈Zr
2

|euv⟩ =
∑

u∈Zr
2

B|euv⟩ (3.9)

= CB |v⟩ = cv |v⟩L =
∑

u∈Zr
2

cv|euv⟩. (3.10)

As a result, we can check if B is a logical B operator by doing the following:

1. For each v ∈ Zk
2, calculate cv ∈ C such that B |v⟩ = cv |v⟩;

2. For each u ∈ Zr
2, check that B |euv⟩ = cv |euv⟩.

This method of checking whether a diagonal unitary is a logical operator involves O(2r+k) steps;
we present a method in Section 3.3.3 with linear complexity in r.

We say that an operator B is a logical identity if B |v⟩L = |v⟩L for all v ∈ Zk
2 - that is,

it fixes each canonical codeword and hence each element of the codespace. If B is diagonal,
as a consequence of Eq. (3.10), it is a logical identity if and only if B |euv⟩ = |euv⟩ for all
u ∈ Zr

2,v ∈ Zk
2.

Whether a diagonal operator is a logical identity or a logical operator is independent of
the choice of basis for the span ⟨LX⟩ (see Section 3.2.3). However, the logical action of the
operator depends on the labelling the canonical codewords and so is dependent on the choice of
basis for ⟨LX⟩.

Example 3.2.2 (Transversal Logical Operators of [[4,2,2]] Code)
We use the [[4,2,2]] code to illustrate the types of transversal logical operators we consider in
this work. Using the notation introduced in Section 3.2.3, the X-checks and X-logicals of the
code are:

SX :=
(
1111

)
(3.11)

LX :=
(

0101
0011

)
(3.12)
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In this case, there are r = 1 X-checks and k = 2 X-logicals. There are 2k = 4 canonical
codewords which we calculate using Eq. (3.7):

|00⟩L := |0000⟩ + |1111⟩
|01⟩L := |0011⟩ + |1100⟩
|10⟩L := |0101⟩ + |1010⟩
|11⟩L := |0110⟩ + |1001⟩

(3.13)

We can calculate the single Z-check as follows:

SZ := Ker Z2

(
SX

LX

)
=
(
1111

)
. (3.14)

Readers can verify that Z⊗4 acts as a logical identity by checking that Z⊗4 |v⟩L = |v⟩L for
each of the canonical codewords.

The following are examples of transversal diagonal logical operators composed of controlled-
phase gates at level 2 whose actions can be verified by applying the method of Section 3.2.4:

1. Single-qubit phase gates Controlled-Z: CZ01 = S3
0S1S2S

3
3

2. Multi-qubit controlled-phase gates S operator on both logical qubits: S0S1 =
S1S2CZ03

3.2.5 The XP Formalism

The XP formalism is a generalisation of the Pauli stabiliser formalism, and we will show that
diagonal Clifford hierarchy operators can be represented as diagonal XP operators. In the XP
formalism, we fix an integer precision N ≥ 2 and let ω = exp(πi/N) be a (2N)-th root of
unity. We define a diagonal phase operator P = diag(1, ω2) which is a 1/N rotation around the
Z axis and consider the group of XP operators X Pn

N that is generated by ωI,Xi, Pi where Pi

is a P operator applied to qubit i. By setting N := 2t, it is easy to see that the Pi correspond
to the level t phase gates of Section 3.2.1, and so any operator composed of single-qubit phase
gates can be represented as a diagonal XP operator. For example, setting t = 1 results in
N = 2, ω = i and P = Z so X Pn

2 is the Pauli group on n qubits.

The XP formalism has a fundamental commutation relation that allows us to move P
operators to the right of X operators:

PX = ω2XP−1. (3.15)
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All XP operators have a unique vector representation with a phase component p ∈ Z2N ,
an X-component x ∈ Zn

2 and a Z-component z ∈ Zn
N . The Z-component is modulo N , for

instance, because PN = I. The XP operator formed from these components is:

XPN (p|x|z) := ωp
∏

0≤i<n

X
x[i]
i P

z[i]
i . (3.16)

Diagonal XP operators are those with a zero X-component. The vector form of XP
operators allows us to perform algebraic operations efficiently via componentwise addition and
multiplication of vectors - examples are given in Table 2.4. In particular, the action of an
XP operator on a computational basis element |e⟩ where e ∈ Zn

2 is determined as follows:

XPN (p|x|z)|e⟩ = ωp+2e·z|e ⊕ x⟩. (3.17)

Where N = 2t, we can determine the lowest level of the Clifford hierarchy at which a diagonal
operator B := XPN (0|0|z) occurs. Let g := GCD(N, z) be the GCD of N and each component
of z. As N = 2t, g is a power of 2 and B = XPN/g(p/g|0|z/g). Accordingly, B occurs at level
t− log2(g) of the diagonal Clifford hierarchy.

Example 3.2.3 (Determining Clifford Hierarchy Level of XP operators)
Let t = 3 and B = XP8(0|0|4444), so that g = GCD(8, 4) = 4. Hence B = XP2(0|0|1111) =
Z⊗4 and occurs at level t− log2(4) = 3 − 2 = 1 of the Clifford hierarchy.

3.2.6 Logical Identity and Logical Operator Groups in the XP Formalism

We now look at the logical group structure of a CSS code in the XP formalism with reference to
the definitions of logical operators in Section 3.2.4. In the stabiliser formalism, a Pauli operator
acts as a logical identity if and only if it is in the stabiliser group ⟨SX ,SZ⟩. In the XP stabiliser
formalism, an XP operator may act as a logical identity but not be in the stabiliser group - we
will see an instance of this in Example 3.3.1. The logical XP identity group, IXP, are the
XP operators of precision N which fix each element of the codespace. The stabiliser group is a
subgroup of IXP but may not be equal to it.

The logical XP operator group, LXP, are the XP operators of precision N that are
logical B operators for some unitary B acting on k qubits. Logical XP operators may have
actions outside the Pauli group, and the logical CZ01 operator of Example 3.2.2 is an instance
of such an operator. Logical identities are elements of LXP that have a trivial action. The
logical groups in the XP formalism are summarised in Fig. 3.1.
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X Pn
N

LXPIXP⟨SX ,SZ⟩

Figure 3.1 Relationship between XP Operator Groups: Here, X Pn
N is the group of all

XP operators of precision N on n qubits. The stabiliser group ⟨SX ,SZ⟩ of a CSS code is a
subgroup of the logical XP identity group IXP which fixes all elements of the codespace which,
in turn, is a subgroup of the logical operators of XP form LXP.

3.3 Logical Operators Composed of Single-Qubit Phase Gates

In this Section, we present methods for identifying and testing logical operators composed of
single-qubit phase gates at a given level t of the Clifford hierarchy. Operators of this form can
be identified with diagonal XP operators of precision N = 2t. The algorithms in this Section
are of polynomial complexity in the code parameters n, k, r (Section 3.2.3), so they can be used
on CSS codes with a large number of physical or logical qubits.

This Section is structured as follows. We first show how to calculate generators for the
diagonal logical identity XP group. This is an important first step for a number of our algorithms.
We then demonstrate an algorithm that searches for a diagonal XP operator with a desired
logical action. Next, we set out an efficient method for testing if a given diagonal XP operator
is a logical operator on a CSS code. We then show how to use this test to find all diagonal
logical operators of XP form. Finally, we show how to express the action of a diagonal logical
XP operator in terms of a product of logical controlled phase operators. We use the Hypercube
code of [59, 61] which has a rich logical operator structure an example throughout this Section.
We also demonstrate the use of the algorithms on larger codes such as hyperbolic color codes
[77], poset codes [78] and triorthogonal codes [67].

3.3.1 Diagonal Logical XP Identity Group Generators

Calculating generators for the logical identity group of a CSS code is an important first step for
several of the algorithms discussed in this Chapter. An algorithm for determining the logical
identity group is set out in Section 2.6.2. Here, we present a simplified version for CSS codes.
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Due to the discussion in Section 3.2.4, a diagonal logical identity operator fixes all |euv⟩
in the canonical codewords of Eq. (3.7). Now let N := 2t and let B := XPN (2p|0|z) be a
diagonal XP operator. Using Eq. (3.17), the action of B on the computational basis vector
|euv⟩ is B|euv⟩ = ω2p+2euv·z|euv⟩. Considering the action of B on |e00⟩ = |0⟩, we see that
p = 0 mod 2N . As ω2N = 1, B applies a trivial phase to |euv⟩ if and only if euv · z = 0 modN .
We can find all such solutions by taking the kernel of a suitably constructed matrix modulo N .
This is done via the Howell matrix form [56] which is a generalisation of the reduced row
echelon form for modules over rings such as ZN . The notation Ker ZN

(EM ) means the Howell
basis of the kernel of the matrix EM modulo N .

Algorithm 1: Logical Identity Group Generators

Input:

1. The X-checks SX and X-logicals LX of a CSS code (Section 3.2.3);

2. The desired level of the Clifford hierarchy t (Section 3.2.1).

Output: A matrix KM whose rows are the Z-components of a set of generators for the
diagonal logical identity XP group of precision N = 2t (Section 3.2.6).

Method:

1. Let EM be the binary matrix whose rows are the euv := uSX + vLX of Eq. (3.7);

2. Let N := 2t and calculate KM := Ker ZN
(EM ) in Howell matrix form;

3. Return KM

Because EM has 2r+k rows, the complexity of the logical identity algorithm is highly sensitive
to the number of X-checks r and logical qubits k. However, due to Proposition A.5.14, we
only need to consider euv where wt(u) + wt(v) ≤ t to determine the logical identity group
up to level t of the Clifford hierarchy. Hence, we only require [r+k

t ] := ∑
0≤j≤t (r+k

j ) rows from
EM . Hence, the dimensions of the key matrix EM scale as O((k + r)t × n). As we require
only a single kernel calculation for the algorithm the time complexity as defined in Table 3.1 is
O((k + r)tn2).
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Figure 3.2 Hypercube Code of Dimension 3: qubits reside on the vertices of a cube. The
blue-coloured X-logicals are associated with the 2D faces, whilst the X-check is associated with
the single 3D volume. The red-coloured Z-checks are associated with the 2D faces.

Example 3.3.1 (Logical Identity Algorithm - Hypercube Code)
In this example, based on Refs [59] and [61], qubits reside on the eight vertices of a cube. The
single X-check is the all-ones vector indicating an X operator on all vertices of the cube:

SX =
(
11111111

)
. (3.18)

The three X-logicals are weight 4 vectors associated with three faces meeting at a point which
we write in the notation of Section 3.2.3 as follows:

LX =


01010101
00110011
00001111

 . (3.19)

We calculate the Z-checks by applying Eq. (3.6) and find that the Z-checks also correspond to
faces:

SZ := Ker Z2

(
SX

LX

)
=


10010110
01010101
00110011
00001111

 . (3.20)

This process is exactly the same as finding the diagonal logical identities at level t = 1 as
outlined in Section 3.3.1. In this case, EM has r + k = 1 + 3 = 4 rows and the logical identities
are the kernel of EM modulo 2. Now applying the logical identity algorithm at level t = 3,
EM has 15 rows representing the sum modulo 2 of up to 3 rows from SX and LX . Taking the
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kernel of EM modulo N = 23 = 8, we find:

KM := Ker Z8(EM ) =


22222222
04040404
00440044
00004444

 (3.21)

The rows of KM are the Z-components of diagonal XP operators which act as logical identities,
and form a generating set of all such operators of precision N . For instance, the operator
XP8(0|0|22222222) = S⊗8 acts as a logical identity, but is not in the stabiliser group ⟨SX ,SZ⟩.
An interactive version of this example is in the linked Jupyter notebook.

3.3.2 Algorithm 2: Search for Diagonal XP Operator by Logical Action

We now demonstrate a method that searches for diagonal logical operators of XP form with
a desired action. Aside from verifying if a CSS code has a transversal implementation of a
particular logical operator, this is a useful method for cross-checking other algorithms.

Algorithm 2: Search for Diagonal XP Operator by Logical Action

Input:

1. The X-checks SX and X-logicals LX of a CSS code (Section 3.2.3);

2. A level-t controlled-phase operator B on k qubits (Section 3.2.1) such that B |0⟩ = |0⟩.

Output: A diagonal XP operator of precision N = 2t which acts as a logical B operator
or FALSE if this is not possible.

Method:

1. For v ∈ Zk
2 calculate the phase qv ∈ ZN such that B |v⟩ = ω2qv |v⟩;

2. Form the matrix EB that has rows of form (−qv|euv) where euv := uSX + vLX ;

3. Calculate the kernel KB := Ker ZN
(EB);

https://github.com/m-webster/CSSLO/blob/main/notebooks/01.0_logical_identity.ipynb
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4. If there is an element (1|z) ∈ KB then z is the Z-component of a logical B operator
B := XPN (0|0|z). This is because (1|z) · (−qv|euv) = 0 modN ⇐⇒ euv · z =
qv modN for all euv, which corresponds to the action of a logical B operator on the
codewords |v⟩L.

The above algorithm requires that B|0⟩ = |0⟩. If this is not the case, let B|0⟩ = ωp|0⟩,
run the algorithm using B′ := ω−pB and adjust for phase on the result. The results of the
algorithm are dependent on the choice of basis for the span ⟨LX⟩ (see Section 3.2.3).

The logical action search algorithm involves finding the kernel of a matrix EB of dimension
2r+k × (n + 1). Hence the complexity of the algorithm is sensitive to the number of logical
qubits k and independent X-checks r, but can be reduced as follows. Due to Proposition B.2.1,
where N = 2t the dot product euv · z can always be written as a ZN linear combination of
terms of form eu′v′ · z where wt(u′) + wt(u′) ≤ t. Hence, we only need to consider euv where
wt(u)+wt(v) ≤ t and qv where wt(v) ≤ t. The number of rows required in EB is therefore [k+r

t ]
where [r

t] := ∑
0≤j≤t (r

j). Hence, the dimensions of the key matrix EB scale as O((k + r)t × n)
and as we require only a single kernel calculation for the algorithm the time complexity as
defined in Table 3.1 is O((k + r)tn2).

Example 3.3.2 (Search for Diagonal XP Operator by Logical Action)
The linked Jupyter notebook illustrates the operation of the search algorithm on the hypercube
code of Example 3.3.1. Users can enter the desired logical operator to search for in text form -
for example CZ[1,2], S[1] or CCZ[0,1,2]. The script either returns a diagonal XP operator
with the desired logical action, or FALSE if there is no such operator. We find logical operators
CZ12 = XP8(0|0|02060602) and CCZ012 = XP8(0|0|13313113) but no solutions for transversal
logical S operators.

3.3.3 Logical Operator Test for Diagonal XP Operators

We now present an efficient method for determining whether a given diagonal XP operator acts
as a logical operator on a CSS code, which relies on a commutator property of logical operators.
This is used to find a generating set of all diagonal logical XP operators of a given precision
and to check the results of other algorithms.

Due to Proposition A.5.2, an XP operator B acts as a logical operator on the codespace if
and only if the group commutator with any logical identity A is again an element of the logical
identity group IXP (see 3.2.6). That is:

[[A,B]] := ABA−1B−1 ∈ IXP,∀A ∈ IXP. (3.22)

https://github.com/m-webster/CSSLO/blob/main/notebooks/01.2_kernel_search.ipynb
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When B := XPN (0|0|z) is diagonal and A := XPN (0|x|0) is non-diagonal, by applying the
COMM rule of Table 2.4 we have:

[[A,B]] = XPN (2x · z|0| − 2xz). (3.23)

As B is a diagonal operator, we only need to consider commutators with non-diagonal elements
of the logical identity group. In Proposition B.2.2 we show that this reduces to finding z ∈ Zn

N

such that for all X-checks x, both x ·z = 0 modN and 2xz ∈ ⟨KM ⟩ZN
where KM is a generating

set of Z-components of the diagonal logical identities as defined in Section 3.3.1 and ⟨KM ⟩ZN

the row span of KM over ZN .

As 2xz and N are both divisible by 2, we apply the method of Section 3.2.5 and see that
the group commutator must be at most a level t− 1 Clifford hierarchy operator. For instance,
for t = 2, N = 4 logical operators must commute up to level t = 1, N = 2 logical identities
which are the Z-checks (see Example 3.3.1). This observation either eliminates the need to
calculate the logical identities (for t ≤ 2) or reduces the complexity of calculating them (the
number of rows in the matrix EM of Section 3.3.1 is a polynomial of degree t).

The dimensions of the matrix KM scale as O(n×n) and checking whether a vector is in the
span of ⟨KM ⟩ involves the calculation of a Howell normal form. We require O(r) characteristic
matrix operations for the algorithm where r is the number of independent X-checks, so the
time complexity is O(rn3). We may need to first run the diagonal logical identity algorithm of
Section 3.3.1 at level t− 1.

Algorithm 3: Logical Operator Test for Diagonal XP Operators

Input:

1. The X-checks SX of a CSS code (Section 3.2.3);

2. The matrix KM corresponding to the Z-components of the level t− 1 diagonal logical
identity generators (Section 3.3.1;

3. A diagonal XP operator B = XPN (0|0|z) on n qubits of precision N = 2t (Sec-
tion 3.2.5).

Output: TRUE if B acts as a logical operator on the code or FALSE otherwise.
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Method:

1. For each row x of SX :

(a) Check if x · z = 0 modN ; and

(b) Check if 2xz is in the rowspan of KM over ZN ;

(c) If either is not the case, return FALSE.

2. Return TRUE.

Example 3.3.3 (Logical Operator Test)
In this example, we apply the logical operator test to the logical CZ12 found for the hypercube
code in Example 3.3.2. As CZ12 := XP8(0|0|02060602), we let z = 02060602. Let x = 11111111
corresponding to the single X-check. We calculate the group commutator C := (2x · z|0| − 2xz).
We find that x · z = 16 = 0 mod 8 and −2xz = 04040404 mod 8. Referring to Example 3.3.1,
we see that this vector is a row of KM . As both x · z = 0 mod 8 and −2xz ∈ ⟨KM ⟩ZN

, C is a
logical identity. Accordingly, we have verified that CZ12 is a diagonal logical operator on the
code. Applying the method of Section 3.2.5, we note that CZ12 is at level 2 of the Clifford
hierarchy and the group commutator C is at level 1.

3.3.4 Diagonal Logical XP Operator Group Generators

We now show how to apply the test for diagonal logical XP operators of Section 3.3.3 to find
all diagonal logical operators of XP form for a CSS code.

Algorithm 4: Diagonal Logical XP Operator Group Generators

Input:

1. The X-checks SX of a CSS code (Section 3.2.3);

2. The desired level of the Clifford hierarchy t (Section 3.2.1);

3. The matrix KM corresponding to the Z-components of the level t− 1 diagonal logical
identity generators (Section 3.3.1).
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Output: A matrix KL over ZN representing the Z-components of a generating set of
diagonal logical operators of XP form (Section 3.2.6).

Method:

1. For each X-check x ∈ SX , find solutions z ∈ Zn
N such that both x · z = 0 and

2xz ∈ ⟨KM ⟩ZN
. Details of solving within these constraints are set out in Section B.2.3.

Denote the solutions CommN (KM ,x);

2. Find the intersection of all such solution sets KL := ⋂
x∈SX

CommN (KM ,x). The
method for determining intersections of spans over ZN is covered in Section A.1.4;

3. Return KL.

The rows of KL correspond to the Z-components of a generating set of the logical XP group
(Section 3.2.6), which includes the logical identity XP group. Determining the logical action of
the operators is discussed in Section 3.3.5.

The dimensions of the key matrices CommN (KM ,x) scale as O(n × n) and determining
intersections of spans involves the calculation of a matrix kernel. We require O(r) characteristic
matrix operations for the algorithm where r is the number of independent X-checks giving a
time complexity of O(rn3).

3.3.5 Determine Action of Diagonal Logical XP Operator

Here we demonstrate an algorithm expressing the action of a diagonal logical XP operator
in terms of logical controlled-phase operators. This is important because the algorithm in
Section 3.3.4 does not yield any information on the action of the resulting diagonal logical
operators.

Algorithm 5: Determine Action of Diagonal Logical XP Operator

Input:

1. The X-logicals LX of a CSS code (Section 3.2.3) with k logical qubits;
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2. A diagonal XP operator B of precision N := 2t that acts as a logical operator on the
code (Section 3.2.4).

Output: A diagonal Clifford hierarchy operator B on k qubits representing the logical
action of B.

Method:

1. Let V := {v ∈ Zn
2 : wt(v) ≤ t};

2. For each v ∈ V , calculate qv such that B |vLX⟩ = ωqv |vLX⟩;

3. Loop over each v ∈ V ordered by weight. For any v ≼ u ∈ V \ {v}, update
qu := (qu − qv) mod 2N ;

4. Return B := ∏
v∈V CPN (qv,v) in terms of the vector form of controlled-phase

operators of Section 3.2.2.

The above algorithm involves calculating O(kt) phase components qv, and this is sufficient
due to Proposition B.2.1. Hence the size of the matrix required to calculate the phase components
is O(kt × n). The algorithm involves a single pass through the list of phases, so we require
O(1) matrix operations for the algorithm giving time complexity of O(ktn2). A naive approach
which calculates the phase applied to each codeword would involve calculating O(2k) such phase
components, and would be impractical for CSS codes with a large number of logical qubits.

The results of the algorithm are dependent on the choice of basis for the span ⟨LX⟩ (see
Section 3.2.3).

Example 3.3.4 (Action of Diagonal Logical XP Operators - Hypercube Codes)
In this example, we apply the method of Section 3.3.4 to the Hypercube code of Example 3.3.1
at level t = 3. The output of the method of Section 3.3.4 is a set of length 8 vectors over
Z8 corresponding to Z-components of diagonal logical XP operators. Using the method of
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Section 3.3.5, we obtain the following list of logical actions corresponding to the Z-components:

z Logical Action Clifford level
00000044 Z0 1
00000404 Z1 1
00040004 Z2 1
00002662 CZ01 2
00260062 CZ02 2
02060602 CZ12 2
13313113 CCZ012 3

In Fig. 3.3 we display the resulting logical operators on the cube and notice that that the
Clifford hierarchy level of the logical operator corresponds to the dimension of the support of
the operator. An interactive version of this example is available in the linked Jupyter notebook.

Figure 3.3 Diagonal Logical Operators of Hypercube Code of Dimension 3: Logical
XP operators returned by the method of Section 3.3.4 are plotted on the cube. We note that
Clifford hierarchy level 1 logical Z operators have support on 1D edges, level 2 CZ operators
have support on 2D faces and level 3 CCZ operators have support on the entire 3D cube.

Example 3.3.5 (Hyperbolic Quantum Color Codes and Poset Codes)
In the linked Jupyter notebook, we illustrate the application of the method of Section 3.3.4
to codes that have a large number of logical qubits. We choose examples of self-orthogonal
codes that are known to have transversal implementations of diagonal level 2 Clifford hierarchy
logical operators.

Hyperbolic quantum color codes [77] involve constructing codes from tesselations of the 2D
hyperbolic plane. The tesselations are formed from polygons with an even number of edges, and

https://github.com/m-webster/CSSLO/blob/main/notebooks/02.1_commutator_small.ipynb
https://github.com/m-webster/CSSLO/blob/main/notebooks/02.2_commutator_large.ipynb
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each vertex is shared by 3 such polygons. We place a qubit on each vertex of the tesselation.
For each polygonal face, we have an X-check corresponding to the adjacent vertices. The
Z-checks are the same as the X-checks. Applying the method of Section 3.3.4, we find that
the codes have a transversal level 2 logical operator with action which can be expressed as a
product of controlled-Z operators.

(a) [[56,14,6]] Code (b) [[64,20,4]] Code

Figure 3.4 {8,3} Hyperbolic Color Codes: above are tesselations corresponding to two hyperbolic
color codes from Example 3.3.5. The [[56,14,6]] code is not globally 3-colourable as there is no
valid colour assignment for faces 2 and 4 in the diagram above. Each code has a transversal
level 2 diagonal logical operator whose action is a product of logical CZ operators.

There are various methods in the literature for constructing classical self-orthogonal codes
and these can also be used to make quantum codes with Z-checks which are the same as
the X-checks which we expect to have transversal level 2 diagonal logical operators. In [78],
self-orthogonal codes are constructed from partially ordered sets (posets). Analysing poset
codes using our methods, we see that they have transversal level 2 logical operators with actions
which can be expressed as products of S and CZ operators.

Example 3.3.6 (Triorthogonal Codes)
For triorthogonal codes [67], there is always a logical operator of form T⊗k := UT⊗n where
U is a product of CZ and S operators and k is the number of logical qubits of the code. In
the linked Jupyter notebook, we apply the method of Section 3.3.4 to find generating sets of
diagonal logical operators for the 38 triorthogonal code classes in Table II of Ref. [79]. In this
example, we consider codes with k = 3 logical qubits (this choice can be modified by the user).

Applying our method, we see that the logical operator structure of triorthogonal codes
varies widely. In some cases, the code has a transversal logical Ti operator for each logical qubit
0 ≤ i < k. For most of the codes, we find a logical T⊗k operator of XP form. The exceptions

https://github.com/m-webster/CSSLO/blob/main/notebooks/02.3_commutator_triorthogonal.ipynb
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are codes which require the application of CZ operators to form T⊗k, and so would not be
identified by our method. We do not see any instances of logical CCZ or CS operators.

3.4 Transversal Logical Operators Composed of Multi-Qubit
Controlled-Phase Gates

In the previous Section, we have shown how to find a generating set of all logical operators of a
CSS code that can be constructed from single-qubit phase gates at any level of the Clifford
hierarchy. This relied on representing operators composed of single-qubit phase gates as diagonal
XP operators. In this Section, we show how to find all transversal (depth-one) logical operators
of a CSS code composed of multi-qubit controlled-phase gates up to a desired level of the
Clifford hierarchy. The method relies on representing controlled-phase operators acting on a
codespace as diagonal XP operators acting on a larger Hilbert space via an embedding operator.

The structure of this Section is as follows. We first introduce phase-rotation gates and
discuss some of their elementary properties. We then prove a duality result that transforms
controlled-phase operators to phase-rotation operators and vice versa. Hence phase-rotation
gates are an alternative generating set for diagonal Clifford hierarchy gates. We then describe
an embedding operator from the codespace into a larger Hilbert space such that phase-rotation
operators in the codespace correspond to diagonal XP operators in the embedded codespace. As
a result, any diagonal Clifford hierarchy operator can be represented as a diagonal XP operator
in the embedded codespace.

Finally, we demonstrate an algorithm that searches for transversal logical operators composed
of single- and multi-qubit controlled-phase gates for a given CSS code. Such implementations
are depth one and use operators with bounded support size and so have fault-tolerant properties.
Logical operators of this type have recently been studied in Refs. [69], [70] and [60] and we
provide examples of the application of the algorithm to codes in these papers.

3.4.1 Phase-Rotation Operators

Phase-rotation operators are single or multi-qubit diagonal gates that form an alternative
generating set for the diagonal Clifford hierarchy operators of Section 3.2.1. Phase-rotation
operators are defined as follows. Let A := XP2(0|0|v) be a tensor product of Z operators and
let ω := exp(πi/N). Let A±1 := (I ±A)/2 be the projectors onto the ±1 eigenspaces of A and
let q ∈ Z2N . The phase-rotation operator is:

RPN (q,v) = exp(qπi
N
A−1). (3.24)
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This form is similar to the Pauli product rotations of Ref. [18] and operators of this type arise
as fundamental gates in NMR [80] and quantum dot systems [81]. In Proposition B.1.4, we
show that the action of RPN (q,v) on the computational basis element |e⟩ for e ∈ Zn

2 is:

RPN (q,v)|e⟩ =

ω
q|e⟩ if e · v mod 2 = 1

|e⟩ otherwise.
(3.25)

We can express the phase applied more concisely as follows:

RPN (q,v)|e⟩ = ωq·sv(e)|e⟩ where sv(e) :=
⊕
i≼v

e[i]. (3.26)

Single qubit phase gates of precision N in this notation are of form Pi = RPN (2,bn
i ) where bn

i

is the length n binary vector which is all zero, apart from component i which is one.

Where the precision and number of qubits are fixed, we use a more concise notation
for phase-rotation operators analogous to the notation for controlled-phase operators. For
example, on n = 3 qubits, the following are examples of precision N = 8 operators: RRZ012 :=
RP8(8, 111), RS01 := RP8(4, 110), T0 = RP8(2, 100).

3.4.2 Duality of Controlled-Phase and Phase-Rotation Operators

In Proposition B.1.5, we prove a duality result that allows us to convert vector form controlled-
phase operators to products of phase-rotation operators and vice versa:

CPN (2wt(v),v) =
∏

0 ̸=u≼v
RPN (2 · (−1)wt(u)−1,u); (3.27)

RPN (2,v) =
∏

0̸=u≼v
CPN (2 · (−2)wt(u)−1,u). (3.28)

In Section 3.2.2, we saw that operators of form CPN (2wt(v),v) with wt(v) ≤ t and N := 2t

generate the level t diagonal Clifford hierarchy operators. As a consequence of the duality result,
phase-rotation operators of form RPN (2,v) where wt(v) ≤ t are an alternative generating
set. In the linked Jupyter notebook we show that RS01 = CZ01S1S2 = RS3

01Z1Z2 by applying
the duality result twice - hence phase-rotation operators may have more than one vector
representation.

3.4.3 Embedded Code Method

The embedded code method involves constructing an embedding operator on the codespace of
a CSS code such that phase-rotation operators in the original codespace correspond to diagonal

https://github.com/m-webster/CSSLO/blob/main/notebooks/10.1_CP_RP_duality.ipynb
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XP operators in the embedded codespace. The embedding technique is similar to the one
used to represent weighted hypergraph states in Section 2.5.4. We first define the embedding
operator in terms of its action on computational basis states, then show how to extend it to
phase rotation operators and strings of Pauli X operators. As an example, we show how the
embedding operator transforms repetition codes.

Action of Embedding Operator on Computational Basis States and CSS Codespaces

Let Mn
t be the matrix whose rows are the binary vectors of length n of weight between 1 and t.

Let V be a matrix whose rows are a subset of the rows of Mn
t . We define the embedding operator

EV : Hn
2 → H|V |

2 that has the following action on computational basis vectors |e⟩ , e ∈ Zn
2 :

EV |e⟩ = |eV T mod 2⟩. (3.29)

Now let SX , LX be the X-checks and X-logicals of a CSS code C on n qubits (see Section 3.2.3).
The image of the codespace of C under EV is the codespace of the embedded code CV defined
as follows:

• X-checks SV
X := SXV

T

• X-logicals LV
X := LXV

T

• Z-checks SV
Z := Ker Z2

(
SV

X

LV
X

)

Providing V is full rank, the X-checks and X-logicals of the embedded code are independent
(for instance if V includes all rows of In). We will show that phase-rotation operators acting
on the codespace correspond to diagonal XP operators in the embedded codespace. Because
operators of form RPN (2,v) for v ∈ Mn

t and N = 2t generate all controlled-phase operators
of level t on n qubits (see Section 3.4.2), choosing V = Mn

t allows any such operator to be
represented. By limiting V to a subset of Mn

t , we can place restrictions on the phase-rotation
operators we wish to work with in the embedded codespace. For instance, we can allow only
nearest neighbour interactions for a lattice-based code or cater for ZX symmetries and qubit
partitions as discussed in Refs. [69] and [70].

Action of Embedding Operator on Phase-Rotation and Pauli X Operators

We now demonstrate an extension of the embedding operator EV to phase-rotation and Pauli
X operators which acts as a group homomorphism. A group homomorphism must respect
commutation relations, and this is much simpler to achieve for phase-rotation operators than for
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controlled-phase operators. In Proposition B.1.7, we prove the following commutation relation
for controlled-phase and Pauli X operators:

CPN (q,v)Xi =

XiCPN (−q,v)CPN (q,v ⊕ bn
i ) if v[i] = 1

XiCPN (q,v) otherwise.
(3.30)

In Eq. (3.30), bn
i is the binary vector of length n which is zero apart from entry i which is one.

Extending this to arbitrary strings of X operators we obtain the following:

CPN (q,v)XP2(0|x|0) = XP2(0|x|0)
∏

0≼u≼xv
CPN (q · (−1)wt(xv)+wt(u),v ⊕ u). (3.31)

In Proposition B.1.6, we prove the much simpler commutation relation for phase-rotation
operators which corresponds closely to the commutation relation for XP operators in Eq. (3.15):

RPN (q,v)Xi =

ω
qXiRPN (−q,v) if v[i] = 1

XiRPN (q,v) otherwise
(3.32)

The relation in Eq. (3.32) also implies that for any V ⊂ Mn
t , we have closure under conjugation

with any Pauli X string, which is not the case for controlled-phase operators.

Now consider the group X RPV
N generated by operators of form ωI, Xi and RPN (2,v) for

v a row of V . Elements of X RPV
N can be written in terms of components p ∈ Z2N , x ∈ Zn

2 and
the vector q ∈ Z|V |

N indexed by rows of V such that:

XRPV
N (p|x|q) := ωp

∏
0≤i<n

X
x[i]
i

∏
v∈V

RPN (2q[v],v). (3.33)

We define an embedding map for XRP operators with respect to V as follows:

EV (XRPV
N (p|x|q)) := XPN (p|xV T |q) (3.34)

In Proposition B.2.4, we show that the embedding operator EV respects group operations and
so acts as a group homomorphism. As a result, we can use the diagonal logical identity and
logical operator algorithm in Section 3.3.1 and Section 3.3.4 to find logical operators in the
embedded codespace. The results can be interpreted as phase-rotation operators in the original
codespace. One application of this method is to better understand what kinds of coherent
noise a CSS code is inherently protected against as in [82]. The logical identity group of the
embedded code represents the correlated noise that the code protects against up to configurable
constraints (for example connectivity and the level of Clifford hierarchy).

Example 3.4.1 (Embedding the Repetition Code)
In this example we show how to construct an embedded code based on the repetition code. For
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example, let SX be the check matrix of the classical repetition code on 3 bits and let LX be a
weight one vector. This forms a CSS code C with:

SX :=
(

110
011

)
, (3.35)

LX :=
(
001

)
. (3.36)

Let V := M3
2 be the matrix whose rows are binary vectors of length 3 and weight 1 or weight 2.

The embedded code CV is defined by setting SV
X := SXV

T and LV
X := LXV

T so that:

V T :=


100110
010101
001011

 , (3.37)

SV
X := SXV

T =
(

101101
011110

)
, (3.38)

LV
X := LXV

T =
(
001011

)
. (3.39)

Applying the method of Section 3.3.4, we find that the embedded code has a logical S operator
given by SV := XP4(0|0|113133) = S0S1S

3
2S3S

3
4S

3
5 . In the original codespace, this corresponds

to the following product of phase-rotation gates (Section 3.4.1):

S := RP4(2, 100)RP4(2, 010)RP4(6, 001)RP4(2, 110)RP4(6, 101)RP4(6, 011). (3.40)

In the linked Jupyter notebook, users can verify that using a repetition code on d bits and
V = Md

t the matrix whose rows are binary vectors of length d of weight between 1 and t, the
embedded code has a transversal logical phase gate at level t of the Clifford hierarchy.

3.4.4 Algorithm 6: Depth-One Logical Operators

We now show how to find the transversal logical operators composed of single and multi-
qubit diagonal Clifford hierarchy gates (i.e., depth-one circuit implementations where each
physical qubit is involved in at most one gate) for a CSS code. It relies on the method of
representing phase-rotation operators on a codespace as XP operators in an embedded codespace
of Section 3.4.3.

Algorithm 6: Depth-One Logical Operators

https://github.com/m-webster/CSSLO/blob/main/notebooks/03.1_embedded_repetition.ipynb
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Input:

1. The X-checks SX and X-logicals LX of a CSS code (Section 3.2.3);

2. The desired level t of the Clifford hierarchy (Section 3.2.1).

Output: A depth-one implementation of a logical controlled-phase operator at level t, or
FALSE if there is no such implementation.

Method:

1. Use the embedding V = Mn
t – all binary vectors of length n of weight between 1 and

t;

2. For the embedded code CV (Section 3.4.3), calculate KL the rows of which are
the Z-components of a generating set of the diagonal logical XP operator group
(Section 3.3.4);

3. For each row of KL, determine the logical action and the level of the Clifford hierarchy
(Section 3.3.5);

4. From the rows of KL, choose a vector z corresponding to a logical operator at level
t of the Clifford hierarchy. If there is no such operator, return FALSE. Otherwise,
perform the following steps:

(a) Remove z from KL;

(b) For each element q of the rowspan of KL over ZN , check if z′ := (q + z) modN
represents a depth-one operator at level t of the Clifford hierarchy. If so, return
z′;

(c) If no depth-one operator is found, go to Step 4.

When the CSS code has a known symmetry, we can search for depth-one logical operators
more efficiently by modifying the embedding operator. The depth-one algorithm can take as
input a permutation of the physical qubits in cycle form such that the cycles partition the n
physical qubits. Let c = (c1, c2, . . . , cl) be a cycle in the permutation and let bn

c be the length
n binary vector which is zero apart from the components i ∈ c that are one. The rows of the
embedding matrix V are the vectors bn

c for the cycles c in the permutation.
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The algorithm as outlined above yields logical operators composed of physical phase-rotation
gates. To search for logical operators composed of controlled-phase gates, transform the matrix
KL by using the duality result of Section 3.4.2. In this case, due to the commutation relation
in Eq. (3.31), we need to ensure that for all v ∈ V any length n binary vector whose support is
a subset of the support of v is also in V – that is if v ∈ V and u ≼ v then u ∈ V .

Note that Mn
t has [n

t] := ∑
1≤j≤t (n

j) rows. Hence, the dimensions of the key matrix KL are
O(nt × nt). Where there are no depth-one logical operators at level t, the algorithm checks all
possible linear combinations of KL. Hence, the worst-case time complexity of the algorithm is
exponential in the number of rows of KL and we would generally apply the algorithm only to
small codes of around 30 physical qubits. As an illustration, for t = 2 and n = 30,Mn

t has 465
rows, but for n = 100,Mn

t has 5, 050 rows. In Section B.2.4 we describe a method for more
efficiently exploring the search space.

Example 3.4.2 (Depth-One Algorithm)
In the linked Jupyter notebook, we illustrate the depth-one search algorithm for small codes.
For a given code and a desired level of the Clifford hierarchy t, the output is a logical operator
with a depth-one circuit implementation whose logical action is at level t of the diagonal Clifford
hierarchy, or FALSE if no such operator exists. This is done with no knowledge of the logical
action of the operator or symmetries of the code. For example, we identify the depth-one
implementation of the logical S0S

3
1 of the 2D toric code as discussed in Refs. [68], [69] and [70].

Users can also apply the algorithm to Bring’s code which is a 30-qubit LDPC code discussed in
Ref. [69] and various examples of morphed codes which are discussed in Ref. [60]. Users can
also choose to use a known symmetry of the code to speed up the search – this can be used for
instance to verify the partitioned logical operators of the symmetric hypergraph product codes
of Ref. [70].

3.5 Other Applications of Embedded Codes

In this Section, we discuss other applications of the embedded code method of Section 3.4.3.
We first show that for any CSS code with k logical qubits and any diagonal Clifford hierarchy
operator B on k qubits, we can write a closed-form expression for a logical B operator on
the codespace composed of phase-rotation gates (see Section 3.4.1). As a consequence, the
embedded code has a logical B operator composed of single-qubit phase gates. This leads to a
method of generating CSS codes that have transversal implementations of any desired diagonal
logical Clifford hierarchy operator.

https://github.com/m-webster/CSSLO/blob/main/notebooks/03.2_depth_one_search.ipynb
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3.5.1 Canonical Implementations of Logical Controlled-Phase Operators

Here, we show how to implement a desired logical controlled-phase operator on an arbitrary
CSS code via a canonical form composed of the phase-rotation gates of Section 3.4.1. We
demonstrate implementations of logical S, T, CZ and CS operators using the 2D toric code as
an example. As the canonical implementation is in terms of phase-rotation operators, we can
apply the embedded code method of Section 3.4.3 and implement the logical operator in the
embedded codespace using single qubit phase gates. We use this fact to generate families of
CSS codes that have transversal implementations of a desired logical controlled-phase operator
using single-qubit phase gates. The methodology is illustrated in Fig. 3.5.

Hk
2

C−−−−→ Hn
2

EV−−−−→ H|V |
2

B

y B

y BV

y
Hk

2
C−−−−→ Hn

2
EV−−−−→ H|V |

2

Figure 3.5 Logical Operators of CSS Codes and Embedded Codes: A CSS encoding
maps k logical qubits into n physical qubits via C : Hk

2 → Hn
2 , which takes computational basis

elements |v⟩ to codewords |v⟩L. Consider a level-t controlled-phase operator B acting on Hk
2 .

An operator B acting on Hn
2 is a logical B operator if BC = CB. We show how to construct a

canonical logical B operator B from level-t phase-rotation gates. Let V be the matrix whose
rows are length n binary vectors representing the support of the controlled-phase operators
making up B. The embedded codespace is formed by applying the embedding EV : Hn

2 → H|V |
2

which takes the computational basis element |e⟩ to
∣∣∣eV T mod 2

〉
. This enables us to construct

a logical B operator BV on the embedded codespace from single qubit phase gates.

3.5.2 Canonical Form for Logical Phase Operators

In the proposition below, we show that logical phase operators have a particularly simple form
in terms of the phase-rotation gates of Section 3.4.1.

Proposition 3.5.1 (Canonical Logical P Operator)
Let zi ∈ Zn

2 be the Z-component of a logical Zi operator Zi := XP2(0|0|zi). The operator
Pi := RPN (2, zi) is a logical Pi operator.

Proof. The action of a Pi operator on a computational basis element |v⟩ where v ∈ Zk
2 can be

written Pi |v⟩ = ω2v[i] |v⟩. Let C : Hk
2 → Hn

2 be the encoding operator C |v⟩ = |v⟩L for v ∈ Zk
2.
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From Eq. (3.8), Pi is a logical Pi operator if PiC = CPi. Hence:

CPi |v⟩ = ω2v[i] |v⟩L =
∑

u∈Zr
2

ω2v[i] |euv⟩ (3.41)

= Pi |v⟩L =
∑

u∈Zr
2

Pi |euv⟩ . (3.42)

Hence, we require Pi |euv⟩ = ω2v[i] |euv⟩. Set the precision N = 2, and we have Zi |euv⟩ =
(−1)v[i] |euv⟩. Applying Eq. (3.17), we have Zi |euv⟩ = XP2(0|0|zi) |euv⟩ = (−1)euv·zi |euv⟩.
Therefore, euv · zi mod 2 = v[i]. Now consider the action of Pi := RPN (2, zi) on |euv⟩ using
Proposition B.1.4:

RPN (2, zi) |euv⟩ = ω2(euv·zi mod 2) |euv⟩ = ω2v[i] |euv⟩ , (3.43)

as required for Pi to act as a logical P operator.

Using the duality of RP and CP operators of Section 3.4.2, we can write P i as a product of
CP gates:

P i := RPN (2, zi) =
∏

0 ̸=u≼zi

CPN (2 · (−2)wt(u)−1,u). (3.44)

As N = 2t, any terms with wt(u) > t disappear. Hence the support of the CP gates in the
implementation are of maximum size t. The implementation may not be transversal, as a qubit
may be acted upon by more than one gate.

Example 3.5.1 (Logical Phase Operators of the 2D Toric Code)
We illustrate the canonical form of logical controlled-phase operators by considering the 2D toric
code. Using the XP operator notation of Eq. (3.16), let Z0 := XP2(0|0|z0), Z1 := XP2(0|0|z1)
be logical Z operators on logical qubit 0 and 1 respectively with d := wt(z0) = wt(z1) ≥ 3.
Applying Eq. (3.44) and using the notation of Eq. (3.1) for controlled-phase operators, the
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canonical forms for the logical S and T operators on qubit 0 are as follows:

S0 := RP4(2, z0) =
∏

0 ̸=u≼z0

CP4(2 · (−2)wt(u)−1,u) (3.45)

=
∏

u≼z0
wt(u)=2

CP4(−4,u)
∏

u≼z0
wt(u)=1

CP4(2,u) (3.46)

=
∏

i<j≼z0

CZij

∏
i≼z0

Si (3.47)

T 0 := RP8(2, z0) =
∏

0 ̸=u≼z0

CP8(2 · (−2)wt(u)−1,u) (3.48)

=
∏

u≼z0
wt(u)=3

CP8(8,u)
∏

u≼z0
wt(u)=2

CP8(−4,u)
∏

u≼z0
wt(u)=1

CP8(2,u) (3.49)

=
∏

i<j<k≼z0

CCZijk

∏
i<j≼z0

CS−1
ij

∏
i≼z0

Ti (3.50)

These results hold for any CSS code with wt(z0) ≥ 3, as no other special properties of the toric
code have been used.

3.5.3 Canonical Form of Logical Phase-Rotation and Controlled-Phase Op-
erators

We now generalise the method in Section 3.5.2 and show how to implement logical phase-rotation
operators for CSS codes using physical phase-rotation gates. Let LZ be the k×n binary matrix
representing logical Z operators such that LZL

T
X mod 2 = Ik where k = |LX |. This means that

XP2(0|0|zi) anti-commutes with XP2(0|xj |0) if and only if i = j. Let u be a binary vector of
length k. In Proposition B.2.5 we show that the following is a logical phase-rotation operator:

RPN (2,u) := RPN (2,uLZ) (3.51)

By the duality result of Section 3.4.2, we can write logical phase-rotation operators as follows:

CPN (2wt(v),v) :=
∏

0̸=u≼v
RPN (2 · (−1)wt(u)−1,u) (3.52)

=
∏

0 ̸=u≼v
RPN (2 · (−1)wt(u)−1,uLZ) (3.53)

This in turn can be converted into products of physical controlled-phase gates by applying the
duality result a second time.
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Algorithm 7: Canonical Logical Controlled-Phase Operators

Input:

1. The Z-logicals LZ of a CSS code (see above);

2. A level-t diagonal Clifford hierarchy operator B on k qubits (Section 3.2.1).

Output: A logical B operator (Section 3.2.4) on the code composed of physical phase
rotation gates (Section 3.4.1) with maximum support size t.

Method:

1. Express B = ∏
uRPN (qu,u) as a product of phase rotation gates using the duality

result of Section 3.4.2 where N = 2t and u ∈ Zk
2;

2. The operator B = ∏
uRPN (qu,uLZ) is a logical B operator;

3. Apply the duality result of Section 3.4.2 twice to express B as a product of phase-
rotation gates of maximum support size t.

Example 3.5.2 (Logical Controlled-Phase Operators of Toric Code)
We now demonstrate a canonical implementation of a logical CZ operator on the 2D toric code
of Example 3.5.1 composed of physical controlled-phase gates. Using Eq. (3.53) and the fact
that RP4(2, z0) = ∏

i<j≼z0 CZij
∏

i≼z0 Si from Example 3.5.1:

CZ01 := CP4(4, 11) (3.54)
=

∏
0 ̸=u≼11

RP4(2 · (−1)wt(u)−1,uLZ) (3.55)

= RP4(−2, z0 ⊕ z1)RP4(2, z0)RP4(2, z1) (3.56)

=
( ∏

i<j≼z0⊕z1

CZij

∏
i≼z0⊕z1

Si

)−1( ∏
i<j≼z0

CZij

∏
i≼z0

Si

)( ∏
i<j≼z1

CZij

∏
i≼z1

Si

)
(3.57)

We can choose logical Z operators for the 2D toric code such that supp(z0) ∩ supp(z1) = ∅. In
this case, all S operators in Eq. (3.57) cancel, as do any CZ operators which lie entirely on the
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support of either z0 or z1, and so we have:

CZ01 :=
∏

i≼z0,j≼z1

CZij (3.58)

This is an instance of Claim 2 in [83] for logical multi-controlled-Z operators. Our method
applies to arbitrary diagonal Clifford hierarchy logical operators and we can also show:

CS01 := CP8(4, 11) (3.59)
=

∏
0 ̸=u≼11

RP8(2 · (−1)wt(u)−1,uLZ) (3.60)

=
∏

i≼z0,j≼z1

CSij

∏
i≼z0,j<k≼z1

CCZijk

∏
i<j≼z0,k≼z1

CCZijk (3.61)

Note that the number of physical gates used in the implementation is O(dt). As we are not
guaranteed that supp(z0) ∩ supp(z1) = ∅ for arbitrary CSS codes, the above identities are not
completely general. In the linked Jupyter notebook, users can calculate identities of this kind
for any desired CSS code for any diagonal Clifford hierarchy logical operator.

3.5.4 Constructing a CSS Code with a Desired Diagonal Logical Clifford
Hierarchy Operator

In this Section, we apply the canonical logical operator form of Section 3.5.3 to generate a CSS
code with a transversal implementation of a desired logical controlled-phase operator using
single-qubit phase gates.

Algorithm 8: Constructing CSS Codes with a Desired Diagonal Logical Clifford
Hierarchy Operator

Input: A controlled-phase operator B on k qubits (Section 3.2.1) and a target distance d.

Output: A CSS code with a logical B operator (Section 3.2.4) composed of single-qubit
phase gates.

Method:

1. Let C be a k-dimensional toric code of distance d. We construct the stabiliser
generators of C using the total complex of the tensor product of k classical repetition

https://github.com/m-webster/CSSLO/blob/main/notebooks/04.1_canonical_LO.ipynb
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codes on d bits (see Section II.D of [84]). The resulting CSS code has k non-overlapping
logical Z operators of weight d;

2. Find the canonical implementation of B = ∏
v∈V RPN (qv,v) composed of phase-

rotation gates of maximum support size t using Algorithm 7;

3. Remove any elements of V where qv = 0 and apply the embedding EV to find the
X-checks and X-logicals of the embedded code CV as in Section 3.4.3;

4. The resulting code has a logical B operator BV composed of level-t phase gates acting
on the embedded codespace.

Example 3.5.3 (Constructing CSS Codes with Transversal Logical Controlled Phase Operators)
In Table 3.2, we list the parameters of CSS codes with transversal implementations of various
target logical controlled phase operators using the method in Section 3.5.4. The CSS codes are
generated from toric codes as follows. For a target operator acting on k logical qubits, we use a
k-dimensional toric code. We generate a series of codes by increasing the distance d of the toric
code. Looking at the CZ column we have a family of [[4m2, 2, 2m]] codes with a transversal
CZ operator, the first member of which is the [[4, 2, 2]] code of Example 3.2.2. Looking at the
CCZ column, we have a family of [[8m3, 3, 2m]] codes which have a transversal CCZ operator,
the first member of which is the hypercube code of Example 3.3.1. The 6-qubit code in the S
column is the 6-qubit code discussed in Example 3.4.1. The 15-qubit code in the T column is
the 15-qubit Reed-Muller code. The first entry in the CS column is the [[12, 2, 2]] code with the
following X-checks and X-logicals:

SX :=
(

111100001111
000011111111

)
; LX :=

(
010101010101
001100110011

)
. (3.62)

An interactive version is available in the linked Jupyter notebook.

3.6 Conclusion and Open Questions

We have presented efficient new methods to identify and test diagonal logical operators on CSS
codes using both single- and multi-qubit diagonal Clifford hierarchy gates as building blocks.
In addition, we provided a technique for generating CSS codes with implementations of any
desired diagonal Clifford hierarchy logical operator using single-qubit phase gates. The methods
generalise to non-CSS stabiliser codes as demonstrated in Appendix B.3. The algorithms are

https://github.com/m-webster/CSSLO/blob/main/notebooks/04.2_code_search.ipynb
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d Logical S Logical CZ Logical T Logical CS Logical CCZ
n dX dZ n dX dZ n dX dZ n dX dZ n dX dZ

2 1 1 1 4 2 2 1 1 1 12 6 2 8 4 2
3 6 3 2 15 4 3 1 1 1 33 14 2 63 16 3
4 6 3 2 16 4 4 14 7 2 64 22 2 64 16 4
5 15 5 3 35 6 5 15 7 3 155 40 3 215 36 5
6 15 5 3 36 6 6 35 15 2 228 52 4 216 36 6
7 28 7 4 63 8 7 36 15 3 385 76 4 511 64 7
8 28 7 4 64 8 8 92 29 3 512 92 5 512 64 8
9 45 9 5 99 10 9 93 29 3 819 126 5 999 100 9

10 45 9 5 100 10 10 165 45 4 1020 146 6 1000 100 10
Table 3.2 Parameters of CSS codes generated by the embedded code method when searching
for implementations of logical operators based on the toric code of distance d. For a logical
operator acting on k qubits, we use a k-dimensional toric code.

Figure 3.6 CSS Code with Transversal Logical Controlled-S Operator: the [[12, 2, 2]]
code of Example 3.5.3 is formed from two [[8, 3, 2]] hypercube codes of Example 3.3.1 joined at a
common face, with additional 3-body Z-checks. Similarly, the [[14, 1, 2]] code with a transversal
logical T operator is formed from three [[8, 3, 2]] codes joined pairwise at faces and sharing a
common edge.

available in a GitHub repository and are intended to be of benefit to researchers in understanding
the logical operator structure of stabiliser codes.

Our methods rely on representing diagonal Clifford hierarchy operators as diagonal XP
operators. Our algorithms use the vector representation of XP operators and linear algebra
modulo N , and so have reduced computational complexity compared to existing work in this
area.

The ability to represent diagonal Clifford hierarchy operators as XP operators may have
a number of other possible applications. Custom design of CSS codes for devices that have
known coherent noise models is one possibility. If the noise can be represented as a series of

https://github.com/m-webster/CSSLO
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multi-qubit diagonal operators, we could design a CSS code where these operators are in the
logical identity group and so mitigate coherent noise. The simulation of quantum circuits could
be another application. A circuit composed of multi-qubit diagonal operators, such as those
used for measuring the stabiliser generators of a CSS code, could be amenable to simulation
using XP representations of the gates used. As any diagonal Clifford hierarchy operator can
be represented as a diagonal XP operator, there could also be implications for computational
complexity theory.
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4 | Summary and Outlook

This Chapter summarises open questions in the field of fault-tolerant quantum architecture at
a high level. We then review the results presented in this thesis and look at open questions and
possible research directions that arise from the work.

4.1 Fault Tolerant Quantum Architecture - Open Questions

Which architecture to use for universal fault-tolerant quantum computation is a far from settled
question and is highly dependent on the quantum device used. Replacing the surface code in
the architecture of Section 1.7 with a high rate low density parity check (LDPC) code could
result in significant gains as the scale of quantum devices increases. In [85], Gottesman showed
that by using constant rate LDPC codes, the overhead associated with quantum computation
can be reduced to a constant. The recent discovery of good LDPC code families (where both
the number of logical qubits and the distance both scale with the number of physical qubits)
has given further impetus to this research direction [84, 86]. In this Section, we outline the
main open questions in developing fault-tolerant quantum architectures, and review current
progress in the use of high-rate LDPC codes for quantum error correction.

The noise characteristics of the quantum device have a significant impact on the choice
of quantum error correction code and noise characterisation is an important area of research
[87]. Where the single qubit noise is biased - for instance where a Pauli X error is more likely
to occur than a Pauli Z error - the quantum error correction code may be tailored to better
handle this [88] and this concept has been extended to LDPC codes [89].

The geometric configuration of qubits also varies by device. In current Google quantum
devices [9], qubits are arranged in a two-dimensional lattice. The surface code lends itself well
to this geometry, as its checks require only nearest-neighbour interactions and are of maximum
weight 4. LDPC code families require a high level of connectivity for favourable encoding rates
and distance [90], and in general cannot be embedded into a 2D lattice. There are a number of
proposals for implementing LDPC codes either by arranging them into multiple planar sections
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[39, 91] or reducing the measurement frequency of checks requiring long-range interactions [92].
There are also proposals to implement LDPC codes on devices that support a higher degree of
connectivity and long-range interactions - examples include ion traps [10] and neutral-atom
devices [40].

To fully specify a fault-tolerant architecture, we must also design circuits for measuring
the stabiliser generators of the code and extracting the syndrome. Errors may occur in the
components of syndrome extraction circuits, so the design must be tolerant to circuit-level noise.
This is more difficult to achieve where the stabiliser generators are of high weight, and high-rate
LDPC codes often have generators of weight greater than 4. In Floquet [93] and subsystem
codes [94], stabiliser generators have lower weight, making fault-tolerant syndrome extraction
more straightforward. Developing Floquet and subsystem LDPC codes is a promising area of
research [95, 96].

Errors can also occur in the measurements associated with syndrome extraction. In the
surface-code architecture, this is typically addressed by doing measurements repeatedly. In [97],
the authors show that dealing with measurement errors in this scenario reduces to correcting
errors in a ‘spacetime’ stabiliser code derived from the original code, yielding a general method
for dealing with measurement errors. On the other hand, certain code families have a single-
shot error correction property, which means repeated measurements are not required. The
three-dimensional colour code is known to have this property [98], and this is also known to be
the case for certain high-rate LDPC codes [99, 100].

A large volume of syndrome information is generated by error correction, making error
correction in real time challenging. There are a number of proposals to address this, for example
local pre-decoders that correct simple errors before passing to a global decoder [101], partial
measurement of stabiliser generators [92], and buffered error correction [102]. Another proposal
is to create dedicated hardware to handle error correction using, for example, field-programmable
gate array (FPGA) integrated circuits [103].

Finding accurate and efficient decoders for stabiliser codes is in general a hard problem. A
rudimentary approach is to use a lookup table that associates a Pauli correction operator for
each possible syndrome. The number of syndrome strings grows exponentially with the number
of physical qubits in a code so this approach quickly becomes intractable. The surface code
has a well-studied minimum weight perfect matching decoder [104, 105]. A general method for
finding matching decoders would be very useful, and there are some indications that this may
be possible for a wider range of code families [106]. Classical LDPC codes are known to have
efficient belief propagation decoders, but these do not translate directly to the quantum case.
There are, however, a number of promising decoders for quantum LDPC codes which combine
belief propagation with other methods [107, 108].
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Another major open question is how to implement fault-tolerant logical operations on
quantum error correction codes. The various classes of fault-tolerant logical operators are set
out in [109]. Transversal logical operators are arguably the simplest option, in terms of both
time complexity and fault tolerance. Another approach is code deformation/lattice surgery,
and this method can be applied to LDPC codes yielding fault-tolerant Clifford operations [110].
Non-Clifford logical operators can be implemented by state injection [35] or code switching
[111], and these both require stabiliser codes with transversal non-Clifford logical operators.
The large number of physical qubits in quantum LDPC code families makes it difficult to
analyse their logical operator structure. One of the main contributions of this work is a set of
efficient algorithms for determining the diagonal transversal logical operators of any stabiliser
code. A quite different pathway is to implement logical operations via braiding of non-Abelian
anyons [17]. Certain non-Abelian anyon systems can be represented as XS codes [41], and the
XP formalism set out in this work can be used to better understand these systems.

4.2 The XP Stabiliser Formalism

In Chapter 2 we define the XP stabiliser formalism and extend many of the algorithms available
in the Pauli stabiliser formalism to the new formalism. We show how to represent XP operators
as vectors of integers and present closed-form expressions for the main algebraic operations
on XP operators in terms of addition and multiplication of vectors. We consider XP codes
that are specified by a list of stabiliser generators of XP form. In Section 2.4, we show how
to identify the codespace for an arbitrary set of XP operators. This includes determining the
dimension of the codespace and a set of codewords which span the codespace.

In Section 2.5 we classify XP stabiliser states. We show an equivalence between ‘weighted
hypergraph states’ and XP stabiliser states. In particular, two important classes of states -
hypergraph and weighted graph states - can be represented as XP stabiliser states up to an
embedding operation. We give examples which have uses in measurement-based quantum
computation.

In Section 2.6.5 we introduce a classification of XP codes into XP-regular and non-XP-
regular codes. We show that, as in the Pauli stabiliser formalism, the codespace dimension of
XP-regular codes is a power of 2 and they can be mapped to a CSS codes with similar logical
operator structure. We demonstrate that for non-XP-regular codes, more complex diagonal
operators can arise compared to the Pauli stabiliser formalism.

Section 2.7 covers measurement in the XP formalism. The measurement of diagonal Pauli
operators can be efficiently simulated on any XP code, and we present an efficient stabiliser
method to calculate the outcome probabilities and the stabiliser generators for the updated XP
code. We show that finding the outcome probabilities when measuring collections of diagonal
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precision 4 operators is NP-hard, and that measurement on non-diagonal XP operators can
result in a state which is outside the XP formalism. This is in contrast to the situation for the
Pauli stabiliser formalism where measurements of Pauli operators can be simulated efficiently.

4.3 Logical Operators of Stabiliser Codes

In Chapter 3 we present efficient methods for identifying and testing diagonal logical operators
on stabiliser codes using both single- and multi-qubit diagonal Clifford hierarchy gates as
building blocks. We also present a technique for generating CSS codes with implementations of
any desired diagonal Clifford hierarchy logical operator using single-qubit phase gates.

We first consider operators composed of single-qubit phase gates at level t of the Clifford
hierarchy. We show that these can be represented as diagonal XP operators of precision N = 2t.
For logical operators of this form, we demonstrate the following algorithms that apply to any
CSS code and at any desired level of the Clifford hierarchy:

1. Finding a generating set of diagonal logical identity operators for the code:
An XP operator may act as a logical identity, but may not be an element of the stabiliser
group of a CSS code. The logical identities are used as inputs to several other algorithms
(Section 3.3.1)

2. Searching for an implementation of a desired logical controlled-phase operator
on the code: useful for checking if a given CSS code has a transversal implementation of a
particular logical operator and for checking the results of other algorithms (Section 3.3.2);

3. Determining if a given diagonal operator acts as a logical operator on the code:
This method is of linear complexity in the number of independent X-checks whereas
existing methods are of exponential complexity (Section 3.3.3);

4. Finding a generating set of diagonal logical operators on the code: The generating
set gives us a complete understanding of the diagonal logical operator structure of a CSS
code, and can be used on CSS codes with a large number of physical and logical qubits at
any desired level of the Clifford hierarchy (Section 3.3.4);

5. Expressing the action of a diagonal logical operator as a product of logical
controlled-phase gates: The action of a logical operator can be difficult to interpret,
particularly for codes with a large number of logical qubits. This method greatly simplifies
the interpretation of logical actions (Section 3.3.5).

These algorithms have complexity that is polynomial in the parameters n, k, r of the CSS code
where n is the number of physical qubits, k is the number of logical qubits and r is the number
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of independent X-checks. As a result, they can be applied to ‘large’ codes that have so far been
out of reach of existing methods.

We then show that multi-qubit diagonal Clifford hierarchy gates acting on a codespace can
be represented as diagonal XP operators acting on a larger Hilbert space via an embedding
operator (Section 3.4.3). We demonstrate algorithms for:

6. Finding depth-one implementations of logical operators composed of diagonal
Clifford hierarchy gates: on small CSS codes, this allows us to identify and verify the
depth-one logical operators of [68–70] with no knowledge of the symmetry of the code
(Section 3.4.4);

7. Canonical implementations of a desired logical controlled-phase operator
composed of multi-qubit controlled-phase gates: this allows us to write closed-form
expressions for arbitrary diagonal Clifford hierarchy logical operators (Section 3.5.1);

8. Construction of CSS codes which have an implementation of a desired logical
controlled-phase operator composed of single qubit phase gates: the canonical
logical operator implementation allows us to construct families of CSS codes which have
transversal implementations of a desired diagonal Clifford hierarchy logical operator
(Section 3.5.4).

Unlike previous work, there are no restrictions on the level of the Clifford hierarchy or the
maximum support size of the physical gates used in these methods.

4.4 Open Questions and Research Directions

In this Section we outline open questions arising from this work and possible research directions.

4.4.1 Design of High-Rate Code Families with Desired Logical Operator
Structure

In Chapter 3, we showed how to construct a CSS code with a transversal implementation of
a desired logical operator. This research direction would expand on this technique to design
families of high-rate CSS codes with a desired logical operator structure. In particular, it would
be useful to have high-rate code families with transversal implementations of the Clifford group
to replace the surface code in the architecture of [18]. It would also be useful to search for
high-rate codes with transversal implementations of diagonal logical operators at the third level
of the Clifford hierarchy for use in magic state distillation protocols. It is also possible that we
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could look at using XP codes which have precision N which is not a power of 2 for use in magic
state distillation as these may have logical operators which are outside the Clifford hierarchy.

4.4.2 Fault Tolerant Implementation of Diagonal Gates

The method of Sections 3.4.3 and 3.5.1 allows for transversal implementations of arbitrary
diagonal Clifford hierarchy logical operations, but does not preserve code distance or stabiliser
weights and so is not fault-tolerant. In contrast, the method in [112] uses lattice surgery to
implement Clifford logical operations on LDPC codes and does preserve code distance and
stabiliser weight. This research direction would look at modifying the approach of Sections 3.4.3
and 3.5.1 to create a fault-tolerant method of applying arbitrary diagonal logical operators.

4.4.3 Non-Diagonal Logical Operators

The material in Chapter 3 deals exclusively with logical operators composed of diagonal
gates from the Clifford hierarchy, and we present algorithms for determining transversal
logical operators of this form for any stabiliser code. This research direction would look at
algorithms which identify logical operators composed of a wider range of gates, for example,
qubit permutations and Hadamard gates. Although it may not be possible to find efficient
methods for arbitrary stabiliser codes, it may be possible to do so for topological codes and
local unitary logical operators (Ref [113]). This work may also assist in better understanding
the link between fault-tolerant logical operators and Symmetry Protected Topological Phases
at the microscopic level.

4.4.4 Topological Phases

An alternative pathway to universal quantum computation is via braiding of non-Abelian
anyons [17]. In [41], the authors show that certain topological phases with non-Abelian anyon
can be represented as XS codes and in [64] the authors show that all Abelian anyon models can
be represented using qudit stabiliser codes. This research direction would look at classifying
the topological phases which can be represented using the XP formalism. The techniques from
the XP formalism may then prove useful in studying the logical operations, string operators,
boundaries and degeneracy of such systems.

4.4.5 Circuit Simulation

We demonstrate that multi-qubit diagonal Clifford hierarchy operators can be represented
as XP operators up to an embedding operation. As a result, quantum circuits which largely
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involve diagonal gates such as IQP circuits and syndrome extraction circuits for CSS codes can
be modelled using XP stabiliser codes (Fig. 4.1). Note that IQP circuits have gates of form
exp(iθX(x)) for some choice of binary vector x and angle θ, but these correspond to phase
rotation operators up to conjugation by Hadamard operators and some choice of precision N

for the denominator of θ (see Section 3.4.1). This research direction would look at fault-tolerant
implementation and simulation of such circuits.

(a) Representation of IQP Circuits in the
XP Formalism: sampling from random IQP
circuits is thought to be difficult to simulate
classically. Labelling of the gates in the dia-
gram above is in terms of the phase rotation
operators of Section 3.4.1 where, for instance,
RS := exp(iπ(I − ZZ)/8). Via the embedding
operation described in Section 3.4.3, these cir-
cuits can be represented as measurement of XP
codes in the X-basis [114].

(b) Syndrome Extraction Circuit: syndrome
extraction circuits for CSS codes can also be
represented as XP codes - we illustrate a 4-body
operator check for use in the surface code. This
is equivalent to a circuit with an auxiliary qubit
initialised in |+⟩, four CZ gates, and measure-
ment of the auxiliary qubit in the X basis.

Figure 4.1 Circuit classes which can be represented as measurements on XP codes.
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A | Supplementary Material on the
XP Stabiliser Formalism

A.1 Linear Algebra over Rings

Most readers will be familiar with linear algebra techniques for vector spaces over a field - for
instance, solving linear equations or finding a basis of a subspace. In this paper, we work with
vectors over ZN , which is a ring in general rather than a field. Linear algebra over rings is
not covered in standard linear algebra textbooks, so we give an introduction here (for more
background, see Refs. [115] and [116]).

We start with basic concepts from ring theory in Section A.1.1. We then consider the row
span of a matrix over a ring. For vector spaces, we can calculate the Reduced Row Echelon
Form (RREF) of a matrix and this gives us a basis for the subspace spanned by the rows of the
matrix. In Section A.1.2, we introduce the Howell matrix form which is a generalisation of the
RREF for rings. Calculation of the Howell basis is central to many of the algorithms in this
paper.

We show how to solve linear equations modulo N in Section A.1.3 and how to find the
intersection of spans in Section A.1.4. These techniques are used when calculating the logical
operators of XP codes.

A.1.1 Ring Concepts

A ring R is a set of elements with addition and multiplication binary operations. Elements of a
ring are not guaranteed to have multiplicative inverses. Elements which do have inverses are
called units. In contrast, a zero divisor is an element a ̸= 0 where ab = 0 for some b ̸= 0.

We define an equivalence relation such that a ∼ b ⇐⇒ a = ub for some unit u (or a
is an associate of b ). For each element a of ZN , we can calculate a minimal associate
ma := GCD(N, a). We can show that a ∼ b ⇐⇒ ma = mb.
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Example A.1.1 (Ring Definitions for Z8)
Using the ring Z8 as an example:

1. The units are: {1, 3, 5, 7}.

2. The zero divisors are: {2, 4, 6}.

3. The minimal associates are:

a 0 1 2 3 4 5 6 7
ma 0 1 2 1 4 1 2 1

. (A.1)

Notice that ma = 1 if and only if a is a unit.

A.1.2 Spans of Matrices and the Howell Matrix Form

We define the span of a matrix B ∈ Rm×n with rows bi over a ring R as:

SpanR(B) := {
∑

i

aibi : ai ∈ R} = {aB : a ∈ Rm} ⊆ Rn . (A.2)

Spans over rings can be considered subgroups of Rn under component-wise addition over R (i.e.
SpanR(B) = ⟨B⟩(R,+) ≤ Rn = ⟨I⟩(R,+)).

Where R is a field (e.g. R = Zq where q is prime), the RREF gives us a basis of the span
and two matrices have the same span if and only if they have the same RREF. The Howell
form plays an analogous role for spans over rings.

The Howell matrix form or Howell basis of B ∈ Rm×n over a ring R, denoted HowR(B), is
the unique matrix over ZN with the following form:

HowR(B) =


a ∗ · ∗ ·

b ∗ ·
c

 (A.3)

that meets the following conditions:

H1. Leading entries in each row (i.e. first non-zero entries marked a, b, c above) are minimal
associates in ZN .

H2. Entries below the leading entries are zero.

H3. Entries above the leading entries are strictly less than the leading entry (marked · above).
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H4. The span of the rows of HowR(B) that have the first i entries zero equals the set of
elements of SpanR(B) that have the first i entries zero (this is referred to as the Howell
property).

Two matrices have the same span over R if and only if they have the same Howell matrix
form. Where R is a field, HowR(B) = RREFR(B). In the special case of binary matrices
(i.e. where R = Z2), the RREF has a particular form. In particular, for any leading index l

the entries in column l are strictly less than 1 and hence are zero. This fact is useful when
determining the special form of orbit representatives (see Section 2.4.3).

Row Operations for Calculating Howell Matrix Form

Methods for determining the Howell matrix form are set out in [56, 115, 116] and here we
present a simplified approach. We use the following span-preserving row operations to determine
the Howell matrix form - these extend the row operations for Gaussian elimination with which
many readers will be familiar:

R1. Multiply a row by a unit: B[i] := uB[i] where u is a unit. This operation is used to
ensure that leading entries are minimal associates (Howell condition H1).

R2. Replace two rows with an invertible linear transformation U of the rows over
Z2×2

N : A transformation U is invertible over ZN iff det(U) is a unit. The following are
useful examples of such transformations:

R2a. Swap rows: This can be done via the following transformation:(
B[i]
B[j]

)
:=
(

0 1
1 0

)(
B[i]
B[j]

)
=
(
B[j]
B[i]

)
(A.4)

R2b. Eliminate via Extended GCD Function: For values a, b ∈ ZN , the GCDex

function yields g := GCD(a, b) and U :=
(
s t

u v

)
such that:

U

(
a

b

)
=
(
as+ bt

au+ bv

)
=
(
g

0

)
; and (A.5)

det(U) = sv − ut is a unit (A.6)

This operation allows us to eliminate entries below leading entries, producing an
upper triangular form (condition H2). We let a be a leading entry and b an entry in
the same column below it.
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R2c. Add rows: A row can be replaced with the sum of itself with another row. By
repeated application of this rule, we can replace the row with the sum of itself with
a scalar multiple t ∈ ZN of a different row as follows:(

B[i]
B[j]

)
:=
(

1 t

0 1

)(
B[i]
B[j]

)
=
(
B[i] + tB[j]

B[j]

)
(A.7)

This operation allows us to ensure that entries above leading entries are strictly less
than the leading entry (condition H3) by setting t := ⌊b/a⌋ where a is a leading
entry and b is an entry in the same column above it.

R3. Append a Multiple of a row to the Matrix: Appending the row tB[i] to the matrix
for t ∈ ZN is also span-preserving. If the leading entry a is a zero divisor, we let t be an
annihilator of a such that atmodN = 0. This operation eliminates the leading entry,
satisfying condition H2, and is used to ensure the Howell property H3.

Algorithm for Howell Matrix Form

We now outline the algorithm to determine the Howell matrix form:

Input: an m× n matrix B over ZN

Output: the Howell matrix form of B.

Method:

1. Let r := c := 0.

2. For c ∈ [0..n− 1]:

3. If there are non-zero entries B[i][c] for i ≥ r:

(a) Eliminate entries below B[r][c] by using swap operation R2a and GCDex operation
R2b.

(b) Ensure that B[r][c] is a minimal associate using operation R1.
(c) Ensure that all entries B[i][c] < B[r][c] for i < r by using row operation R2c.
(d) If B[r][c] is a zero divisor, append the row tB[r] for t an annihilator of B[r][c] using

operation R3.
(e) Increment r.

You can view examples of calculating the Howell matrix form in the linked Jupyter notebook.

https://github.com/m-webster/XPFpackage/blob/main/Examples/A.1_howell_matrix.ipynb
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A.1.3 Solving Linear Equations over Rings

In this section, we show how to solve linear equations over rings using the Howell matrix form.
Given the matrix A ∈ Rm×n and a constant vector c ∈ Rm, we wish to solve for the vector
x ∈ Rn in the linear equation:

xAT + c = 0 . (A.8)

We calculate the Howell form of the transpose AT so that:

T := HowR(AT ) = SAT . (A.9)

where T ∈ Rm×m and S ∈ Rm×n. As part of this calculation, we also obtain the Howell basis
K for KerR(A) such that KAT = 0. We can solve Eq. (A.8) if c ∈ SpanR(T ) so that for some
vector v ∈ R1×m:

c = vT . (A.10)

In this case, the solutions for x are given by:

x = −vS + aK . (A.11)

where a ranges over all values of Rn. That x is a solution to Eq. (A.8) can easily be verified by
substitution. We can also write the solution set as an affine span x ∈ −vS + SpanR(K) (see
Eq. (A.12) below).

A.1.4 Intersections of Spans and Affine Spans

When calculating the codewords (Chapter 2.4) and logical operators (Chapter 2.6) of an XP
code, we work with affine spans which can be identified with cosets of row spans. To find the
logical X operators, we need to determine the intersection of affine spans (see Section A.5.2).
In this section, we explain how to compute the intersection of two affine spans and introduce
the residue function which identifies which coset a vector belongs to.

Affine Span Definition

Given an offset a ∈ Rn and a matrix B ∈ Rr×n, the affine span is defined as:

a + SpanR(B) := {a + b : b ∈ SpanR(B)} . (A.12)
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Because SpanR(B) is a subgroup of Rn, we can also consider affine spans to be cosets (i.e.
a + SpanR(B) = a + ⟨B⟩(R,+)). The residue function identifies the coset of a vector and can
be used to determine if two vectors are in the same affine span. The residue function is defined
as:

m = ResR(B,a), where:
(

1 m
0 B

)
= HowR

(
1 a
0 B

)
. (A.13)

A vector is in a span if and only if its residue is zero - i.e. a ∈ SpanR(B) ⇐⇒ ResR(B, a) = 0.
Vectors are in the same coset if and only their residues are the same - i.e. a + SpanR(B) =
b + SpanR(B) ⇐⇒ ResR(B,a) = ResR(B,b).

Algorithm for Intersection of Spans

Given two matrices A ∈ Rr×n and B ∈ Rs×n, we can find the intersection of the respective
spans (SpanR(A) ∩ SpanR(B)) as follows:

1. Form the (r + s) × n matrix C =
(
A

B

)
.

2. Calculate the Howell basis
(
KA KB

)
of Ker(CT ) where KA is (r + s) × r and KB is

(r + s) × s so that KAA+KBB = 0.

3. Let D = KAA = −KBB.

4. The intersection is SpanR(A) ∩ SpanR(B) = SpanR(HowR(D)).

Algorithm for Intersection of Affine Spans

The intersection of two affine spans is either empty or an affine span. Assume we are given two
affine spans a + SpanR(A) and b + SpanR(B) where both A and B are in Howell form. The
intersection is non-empty if and only if we can find vectors u ∈ Rr and v ∈ Rs such that:

a + uA = b + vB . (A.14)

This is possible only when a − b ∈ SpanR(A) ∪ SpanR(B) which is true if and only if:

HowR


1 a − b
0 A

0 B

 =


1 0
0 A

0 B

 . (A.15)
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In this case, the calculation of the Howell form above yields row vectors u,v such that
a − b + uA− vB = 0 ⇐⇒ a + uA = b + vB. The intersection is given by:

(a + SpanR(A) ∩ (b + SpanR(B)) = a + uA+ SpanR(A) ∩ SpanR(B) . (A.16)

A.2 Canonical Generator Algorithm - Proof of Result

In this appendix, we provide a proof of Proposition 2.4.1. This is an important result which
states that we can calculate a set of canonical generators of unique form for any XP group.
This allows us to determine whether two sets of XP operators generate the same group and
also identify a set of generators for the diagonal subgroup. The proof of the proposition is
constructive and relies on the following algorithm:

Canonical Generator Algorithm
The algorithm for producing the canonical generators from an arbitrary set of XP operators G
is:

1. Simplify X Components: letGX be the binary matrix whose rows are the X components
of the operators in G. We can put GX into RREF by using row operations over Z2. These
row operations correspond to group operations between elements of G and we update G
accordingly.

2. Split G into diagonal and non-diagonal operators: let SX be the non-diagonal
operators and SZ be the diagonal operators.

3. Add squares and commutators of SX : squares and commutators of operators in SX

are diagonal - add these to SZ .

4. Add commutators between SZ and SX : add to SZ all possible commutators between
elements of SZ and elements of SX . Where N = 2t is a power of 2, we do this step t− 1
times.

5. Simplify SZ : Let SZp be matrix whose rows are the image of SZ under the Zp map of
Section 2.3.4 - i.e. Zp(XPN (p|0|z)) = (2z|p) . The final set of diagonal generators are the
XP operators corresponding to the rows of HZp := HowZ2N

(SZp) i.e. SZ = Zp−1(HZp).

6. Simplify Z Components of SX : Let A = XPN (p|x|z) ∈ SX and let
(2z′|p′) = ResZ2N

(HZp, (2z|p)) (see Eq. (A.13)). Replace A with A′ = XP (p′|x|z′).

We restate Proposition 2.4.1 here for clarity:
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Proposition 2.4.1 (Canonical Generators of an XP Group)
For any set of XP operators G = {G1, . . . , Gm}, there exists a unique set of diagonal operators
SZ := {Bj : 0 ≤ j < s} and non-diagonal operators SX := {Ai : 0 ≤ i < r} with the following
form:

1. Let SX be the binary matrix formed from the X-components of the SX . SX is in Reduced
Row Echelon Form (RREF).

2. Let SZp be matrix whose rows are the image of SZ under the Zp map of Section 2.3.4 (i.e.
Zp(XPN (p|0|z)) = (2z|p)). The matrix SZp is in Howell Matrix Form (see Appendix A.1).

3. For XPN (p|x|z) ∈ SX ,
(

1 (2z|p)
0 SZp

)
is in Howell Matrix Form.

The following properties hold for the canonical generators:

Property 1: All group elements G ∈ ⟨G⟩ can be expressed in the generator product form
of Eq. (2.25) G = Sa

XSb
Z where a ∈ Z|SX |

2 , b ∈ Z|SZ |
N , Sa

X = ∏
0≤i<|SX |A

a[i]
i and Sb

Z =∏
0≤j<|SZ |B

b[j]
j

Property 2: Two sets of XP operators of precision N generate the same group if and only if
they have the same canonical generators.

Proof. Steps 1-2 of the algorithm create a list of non-diagonal operators SX whose X-components
are in RREF, plus diagonal operators SZ . We claim that after these operations, ⟨SX ,SZ⟩ = ⟨G⟩.
Over Z2, the row operations to convert the matrix GX into RREF involve either:

1. Swapping the order of rows; or

2. Adding rows i.e. r′
i = (ri + rj) mod 2.

The row operations can be translated into group operations on G as follows:

1. Swapping the order of generators; or

2. Replacing a generator by a product of generators i.e. G′
i = GiGj .

For case 2, we need to check if Gi is still in the group after the row operations. Because Gj is
unchanged, G−1

j remains in the group so we have Gi = (GiGj)G−1
j = G′

iG
−1
j .
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Steps 3-4 of the algorithm ensure that all possible squares and commutators of the generators
are added to the list of diagonal operators SZ . Now we show that where N = 2t, that t − 1
rounds of adding commutators is sufficient. When we calculate the commutator of operators
A1, A2, the resulting degree (see Section 2.3.5) is at most half the degrees of A1, A2: recall the
COMM rule of Section 2.3.3:

A1A2A
−1
1 A−1

2 = DN (2x1z2 − 2x2z1 + 4x1x2z1 − 4x1x2z2) . (A.17)

As X2 = PN = I, the maximum degree of a precision N operator is N = 2t. Hence, after t− 1
rounds of taking commutators, a further round of commutators yields operators of degree 1
(i.e. phase multiples of I). Note that all of the operators added to SZ are in ⟨G⟩ so there is no
change to ⟨SX ,SZ⟩ in this step.

Step 5 ensures that SZp, the matrix formed from the phase and Z-components of SZ under
the Zp map is in Howell matrix form. In Section 2.3.4, we showed that the Zp map is a group
homomorphism so group generators in Zn+1

2N , i.e. the rows of the Howell matrix, correspond to
diagonal group generators in X PN,n, i.e. SZ so there is no change to the group generated by
SZ in this step.

In Step 6, the residue function of Eq. (A.13) ensures that the Z-components of the non-
diagonal canonical generators are of the correct form. The adjustment corresponds to multipli-
cation of elements in ⟨SZ⟩ so we are assured that the final set of generators meets the invariant
⟨G⟩ = ⟨SX ,SZ⟩.

To prove Property 1, we need to show that any element G ∈ ⟨G⟩ can be expressed n the
generator product form of Eq. (2.25) G = Sa

XSb
Z . We have already shown that ⟨G⟩ = ⟨SX ,SZ⟩.

Hence, we can write G as a string of operators from SX ,SZ . Now assume we have a diagonal
operator B ∈ SZ which occurs immediately before a non-diagonal operator A ∈ SX . We can
write:

BA = AB(B−1A−1BA) . (A.18)

The commutator B−1A−1BA ∈ ⟨SZ⟩, so we can always move diagonal operators to the right of
non-diagonal operators.

Now assume we have two non-diagonal operators Aj , Ai ∈ SX which occur immediately
next to each other in the string, but out of order (i.e. i < j). We can move Aj to the right of
Ai by using commutators as follows:

AjAi = AiAj(A−1
j A−1

i AjAi) . (A.19)
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The commutator (A−1
j A−1

i AjAi) ∈ ⟨SZ⟩, so we can ensure Ai, Aj occur in the correct order
with a diagonal operator to the right.

Reordering the non-diagonal operators may result in squares or higher powers of non-
diagonal operators arising in the string. As A2 ∈ ⟨SZ⟩ for any A ∈ SX , any power of A can be
written as Aq = AB for q odd or Aq = B for some B ∈ ⟨SZ⟩. Hence, G can be written with
powers of A in Z2. Accordingly, any G ∈ ⟨G⟩ can be written as a string of the form in Property
1.

To establish Property 2, note that the Howell matrix form and RREF are unique. Thus, for
any operators which generate the same group, the canonical form will be the same.

A.3 Coset and Orbit Structure of Codewords

In Chapter 2.4, we gave an algorithm for generating the codewords by applying the orbit
operator to the orbit representatives. In this appendix, we provide proofs underlying the
algorithm. The results in this appendix assume we have the canonical generators SX and SZ

(see Section 2.4.1) and the set of binary vectors E, which is the Z-support of the simultaneous
+1 eigenspace of SZ (see Section 2.4.2). Our aim is to calculate a basis of the codespace
stabilised by SX ,SZ .

In Proposition A.3.1, we show that the image under the orbit operator of any |e⟩ where
e ∈ E is stabilised by SX ,SZ . Let SX be the binary matrix formed from the X-components of
the SX and Em = {ResZ2(SX , e) : e ∈ E} be the orbit representatives. In Proposition A.3.2,
we show that E is closed under addition by elements of the span ⟨SX⟩. In Proposition A.3.3,
we show that the cosets mi + ⟨SX⟩,mi ∈ Em partition E. In Proposition A.3.4, we show that
the image of Em under the orbit operator forms a basis of the codespace. Finally, we show that
the orbit representatives have a unique form, which is used in the graph search algorithm of
Section 2.4.3.

Proposition A.3.1 (Codewords as Orbits)
Given canonical generators for a code SX and SZ , let E = {e : e ∈ Zn

2 , B|e⟩ = |e⟩,∀B ∈ ⟨SZ⟩}
be the Z-support of the simultaneous +1 eigenspace of SZ .

Then OSX |e⟩ is stabilised by all elements of ⟨SX ,SZ⟩, for any |e⟩ ∈ E.
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Proof. It is sufficient to prove this for the generators Ai ∈ SX and Bj ∈ SZ . Let Bj ∈ SZ be a
diagonal generator. Then we have:

BjOSX |e⟩ =
∑

v∈Zr
2

BjSv
X |e⟩ (A.20)

=
∑

v∈Zr
2

Sv
XDv|e⟩ for Dv = (Sv

X)−1BjSv
X (A.21)

=
∑

v∈Zr
2

Sv
X |e⟩ because Dv is diagonal, Dv ∈ ⟨SZ⟩ and so Dv|e⟩ = |e⟩ (A.22)

= OSX |e⟩ . (A.23)

Let Ai ∈ SX be a non-diagonal operator.

AiOSX |e⟩ =
∑

v∈Zr
2

AiSv
X |e⟩ (A.24)

We can move Ai to the right by applying commutators. We can then move the commutators to
the right. Let i be the length r binary vector which is all zero, apart from component i which
is 1 and let v′ = v ⊕ i. As all commutators are diagonal and so are in ⟨SZ⟩, we can write:

AiOSX |e⟩ =
∑

v∈Zr
2

Sv′
XDv|e⟩, ∃Dv ∈ ⟨SZ⟩ (A.25)

=
∑

v′∈Zr
2

Sv′
X |e⟩ since Dv|e⟩ = |e⟩ (A.26)

= OSX |e⟩ . (A.27)

Proposition A.3.2 (E closed under addition by ⟨SX⟩)
If e ∈ E, then e ⊕ x ∈ E for all x ∈ ⟨SX⟩.

Proof. Let x := uSX mod 2 ∈ ⟨SX⟩ and C := Su
X . Then C|e⟩ = ωp|e ⊕ x⟩ for some p ∈ Z2N .

Let B ∈ SZ and D = B−1C−1BC ∈ ⟨SZ⟩. Then because B,D ∈ ⟨SZ⟩, BD|e⟩ = |e⟩ and so:

B(C|e⟩) = CBD|e⟩ = C|e⟩ . (A.28)

Hence, C|e⟩ = ωp|e⊕x⟩ is in the simultaneous +1 eigenspace of the SZ and so e⊕x ∈ E.
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Proposition A.3.3 (Cosets of Em partition E)
The cosets mi + ⟨SX⟩ partition E i.e.:

E =
⋃
i

(mi + ⟨SX⟩) . (A.29)

(mi + ⟨SX⟩) ∩ (mj + ⟨SX⟩) = ∅, ∀j ̸= i . (A.30)

Proof. By Proposition A.3.2, for all mi ∈ Em,mi + ⟨SX⟩ ⊂ E hence ⋃i(mi + ⟨SX⟩) ⊂ E. But
by the definition of orbit representatives for any e ∈ E we can calculate ResZ2(SX , e) ∈ Em

hence e ∈ mi + ⟨SX⟩ for some mi ∈ Em.

The fact that cosets of a subgroup partition the group is a well-known result from group
theory. Hence if (mi + ⟨SX⟩) ∩ (mj + ⟨SX⟩) ̸= ∅ then mi ∈ mj + ⟨SX⟩. But then because the
RREF is unique mi = Res(SX ,mi) = mj so i = j.

Proposition A.3.4 (The |κi⟩ are a basis of C)
Let |κi⟩ = OSX |mi⟩,mi ∈ Em. The |κi⟩ are a basis of the codespace C stabilised by the
canonical generators SX ,SZ .

Proof. First, we show that the |κi⟩ are independent. The Z-support of the codeword |κi⟩ is the
coset ZSupp(|κi⟩) = mi + ⟨SX⟩ and so by Proposition A.3.3 the Z-support of the codewords
partition E. Hence |κi⟩ are independent.

Next, we show that the |κi⟩ span the codespace C. Let |ψ⟩ ∈ C. Then |ψ⟩ is stabilised by
all elements B ∈ SZ . Let e ∈ ZSupp(|ψ⟩) then because B is diagonal, B|e⟩ = ωp|e⟩,∃p ∈ Z2N

and this implies B|e⟩ = |e⟩, ∀e ∈ ZSupp(|ψ⟩). Hence ZSupp(|ψ⟩) ⊂ E.

Now let λi be the coefficients of |mi⟩ in |ψ⟩ so that:

λi = ⟨mi|ψ⟩ ∈ C,mi ∈ Em . (A.31)

For e ∈ ZSupp(|ψ⟩), we now show that the coefficient ⟨e|ψ⟩ is determined by the λi. Because
e ∈ E, there exists unique i,u ∈ Zr

2 such that e = (mi + uSX). The operator Su
X ∈ ⟨SX⟩ and

so Su
X |ψ⟩ = |ψ⟩. The action of Su

X on |mi⟩ is given by Su
X |mi⟩ = ωp|e⟩,∃p ∈ Z2N . Hence the

coefficient of |e⟩ in |ψ⟩ is given by ⟨e|ψ⟩ = λiω
p = λi⟨e|κi⟩. Hence:

|ψ⟩ =
∑

i

λi|κi⟩ . (A.32)

Hence any |ψ⟩ ∈ C can be written as a linear combination of the |κi⟩ and the result follows.

The orbit representatives have a form which is unique for each coset, which proves useful in
the graph search algorithm of Section 2.4.3.
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Proposition A.3.5
Let SX be an r × n binary matrix in RREF. Let e be a binary vector of length n and let
m = ResZ2(SX , e). Then m is the unique element of the coset e + ⟨SX⟩ for which m[l] = 0 for
all leading indices l of SX .

Proof. We first show that m[l] = 0 for all leading indices l of SX . By the definition in Eq. (A.13),

the matrix
(

1 m
0 SX

)
is a binary matrix in Howell form. Hence, the entries above the leading

indices are strictly less than 1 and so are zero. Therefore m[l] = 0 for all leading indices l.

Now we show the uniqueness of the property. Assume there exists some binary vector a in
the coset with a[l] = 0 for all leading indices l. Then b = a ⊕ m is a vector in ⟨SX⟩ such that
b[l] = 0 for all leading indices l of SX . The only member of ⟨SX⟩ with this property is 0 hence
a = m.

A.4 Proof of Results: Classification of XP Stabiliser States

In this appendix, we provide detailed proofs of the results in Chapter 2.5. In Section A.4.1,
we set out some basic results which are useful for working with integer and binary vectors. In
Section A.4.2, we prove Proposition 2.5.1 regarding the form of the phase function of an XP
stabiliser state. Finally in Section A.4.3, prove that the algorithm for representing weighted
hypergraph states as XP stabiliser states gives the correct result.

A.4.1 Operations on Binary and Integer Vectors

The results in Chapter 2.5 involve operations on binary and integer vectors. This section
sets out some basic results for these types of vectors. We use component wise addition and
multiplication of vectors and a dot product of vectors over the integers. Given two vectors
a,b ∈ Zn the dot product is defined as:

a · b =
∑

0≤i<n

a[i]b[i] =
∑

0≤i<n

(ab)[i] . (A.33)

Hence, the dot product is the sum of the entries of the component wise product of two vectors.
Accordingly, we can write the following rule for dot product over the component wise product:

a · bc =
∑

0≤i<n

(a(bc))[i] =
∑

0≤i<n

((ab)c)[i] = ab · c . (A.34)
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We also have a distributive rule for dot product over component wise addition:

a · (b + c) = a · b + a · c . (A.35)

The usual rule for scalar products also applies - for u ∈ Z:

a · (ub) = u(a · b) = (ua) · b . (A.36)

The weight of a binary vector can also be thought of as a dot product. Let 1 be the all 1
vector of length n. Considering the binary vector a, a vector of zeros and ones in Zn:

wt(a) = 1 · a . (A.37)

We can look at component wise multiplication and addition modulo 2 of binary vectors in
terms of the effect on the support of the vectors. The support of the component wise product
of binary vectors is the intersection of the supports:

supp(ab) = supp(a) ∩ supp(b) . (A.38)

The support of the addition of binary vectors modulo 2 is the symmetric difference of the
supports:

supp(a ⊕ b) = (supp(a) ∪ supp(b)) \ (supp(a) ∩ supp(b)) . (A.39)

We often apply the following identity for binary vectors:

a ⊕ b = a + b − 2ab . (A.40)

where operations on the RHS are over the integers. This generalises to the following identity
for binary vectors xj , j ∈ [0 . . . r − 1] of length n:

⊕
0≤i<r

xi =
∑

s⊂[0...r−1]
(−2)|s|−1 ∏

j∈s

xj . (A.41)

A.4.2 Phase Functions of XP Stabiliser States

In this section, we prove Proposition 2.5.1 which classifies the form of the phase functions of
XP stabiliser states.



A.4 Proof of Results: Classification of XP Stabiliser States 151

Proposition 2.5.1 [Phase Functions of XP States] Let |ϕ⟩ = OSX |m⟩ = ∑
u∈Zr

2
Su

X |m⟩ be
an XP stabiliser state in the canonical form of Eq. (2.50) with r := |SX |. Let ui, 0 ≤ i < r be
binary variables such that ui := u[i]. Then:

(a) The phase function is of the following form for some vector q ∈ Z2r indexed by the subsets
s of [0 . . . r − 1]:

f(u0, u1, . . . , ur−1) =
∑

s⊂[0...r−1]
q[s]2|s|−1 ∏

j∈s

uj . (A.42)

(b) For N = 2t, the maximum degree of the phase function is t+ 1.

Proof. Let SX = {XPN (pi|xi|zi)} and let si := ⊕
i<j<r ujxj . Using Eq. (A.41) and the dot

product results of Section A.4.1, the phase component of Su
X |m⟩ can be written as follows:

q =
∑

0≤i<r

[
uipi + 2uizi · (m ⊕ si)

]
(A.43)

=
∑

0≤i<r

[
uipi + 2uizi · (m + si − 2msi)

]
(A.44)

=
∑

0≤i<r

[
ui(pi + 2zi · m) + 2uizi(1 − 2m) · si

]
(A.45)

=
∑

0≤i<r

(pi + 2zi · m)ui +
∑

0≤i<r
c⊂[i+1···r−1]

2uizi(1 − 2m) · (−2)|c|−1 ∏
j∈c

ujxj (A.46)

=
∑

0≤i<r

(pi + 2zi · m)ui +
∑

0≤i<r
c⊂[i+1···r−1]

[
(−1)|c|−1zi(1 − 2m) ·

∏
j∈c

xj

]
2|c|ui

∏
j∈c

uj . (A.47)

The first term in the above equation is linear in ui and setting s := c ∪ {i}, the second term is
also of the required form so part (a) follows.

Now let N be a power of 2 such that N = 2t. As ω2N = ω2t+1 = 1, any terms in the phase
function with degree d− 1 ≥ t+ 1 or d > t+ 1 have coefficients which are multiples of 2N and
hence generate trivial phases. Hence, the maximum degree of the phase function is t+ 1 and
part (b) follows.

A.4.3 Representing Weighted Hypergraph States as XP Stabiliser States

In this section, we show that the algorithm of Section 2.5.4 for representing weighted hypergraph
states as XP stabiliser states produces the required results. The embedding operator of Eq. (2.57)
is defined in terms of M r

m, which is the binary matrix whose columns are the bit strings of
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length r of weight between 1 and m inclusive. This construction is similar to that used in
classical simplex codes and Reed-Muller codes [23].

In the following proposition, we break M r
r into blocks W r

k where the columns all have weight
k and calculate the weight of the product of t rows of W r

k .

Proposition A.4.1 (Weight of Vector Products)
Let W r

k be a matrix whose columns are the bit strings of length r with weight k. Let
pt = ∏

0≤i<t xi be the product of the first t rows of W r
k where t ≤ r. Then:

wt(pt) =

0 : t > k(r−t
k−t

)
: t ≤ k

. (A.48)

Proof. We can think of wt(∏0≤i<t xi) as the number of columns u of W r
k such that ∏0≤i<t u[i] =

1. If t > k then ∏0≤i<t u[i] = 0 for all columns because wt(u) = k < t and the product includes
at least one zero.

If t ≤ k then the first t entries in u must all be one, implying that the last r − t entries of
u must include k − t values of 1. There are

(r−t
k−t

)
ways of constructing bit strings of weight k

which have the first t entries equal to 1.

We now consider dot products with the alternating vector a of Eq. (2.58) which is 1
when the weight of the corresponding column of M r

r is even and −1 when the weight is odd.
The vector a will be used to construct the Z-component of the non-diagonal stabilisers of the
XP code.

Proposition A.4.2 (Dot Product with Alternating Vector)
Let xi be the ith row of M r

r and let pt = ∏
0≤j<t xi for 1 ≤ t ≤ r. Let a be the vector such

that a[j] = (−1)wt(uj) where uj is the jth column of M r
r . Then a · pt = (−1)r if t = r and 0

otherwise.

Proof. From Proposition A.4.1:

a · pi =
∑

t≤k≤r

(−1)k

(
r − t

k − t

)
(A.49)

=
∑

0≤j≤r−t

(−1)t+j

(
r − t

j

)
. (A.50)

If t = r then a · pi = (−1)r. If t < r then a · pi = (−1)t(1 − 1)r−t = 0.

We now show that the alternating vector a allows us to construct an XP stabiliser state
which has a phase function corresponding to a generalised controlled phase operator.
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Proposition A.4.3 (Weighted Hypergraph States)
Let xi be the ith row of M r

r and let Ai = XPN (0|xi|axi) for N > 2r and SX = {Ai : 0 ≤ i < r}
and a as defined in Eq. (2.58). Let ui be the variable representing the value of u[i] for the
binary vector u of length r. Then:

(a) The operators Ai, Aj commute; and

(b) The phase component of Su
X |0⟩ is p = 2r−1∏

0≤i<r ui.

Proof. (a) Using the COMM rule of Table 2.4, the group commutator of Ai and Aj is:

AiAjA
−1
i A−1

j = D(2xizj − 2xjzi + 4xixjzi − 4xixjzj) (A.51)
= D(2xiaxj − 2xjaxi + 4xixjaxi − 4xixjaxj) (A.52)
= D(2axixj − 2axixj + 4axixj − 4axixj) (A.53)
= D(0) = I . (A.54)

(b) Applying Eq. (A.47) and noting that the phase components of the Ai are all trivial, the
phase component of Su

X |0⟩ is:

p =
∑

0≤i<r−1
s⊂[i+1...r−1]

2|s|(−1)|s|+1
(
axi · (

∏
j∈s

xj)
)
ui

∏
j∈s

uj (A.55)

=
∑

s⊂[0...r−1]
2|s|−1(−1)|s|a · (

∏
j∈s

xj)
∏
j∈s

uj . (A.56)

Applying Proposition A.4.2, a · (∏j∈s xj) = 0 if |s| < r and (−1)r otherwise. Hence, p =
2r−1∏

0≤j<r uj as required.

We now show how to optimise the embedding operator to reduce the number of qubits
required to represent the action of generalised controlled phase operators CP (p/q,v) where
p/q = 1/2:

Proposition A.4.4 (Weighted Hypergraph States - Optimised Version)
Let the state |ψ⟩, the precision N , the variables ui and the operators Ai be as defined in
Proposition A.4.3. Let C := XPN (0|0|a) where a is the alternating vector as defined in
Eq. (2.58). Let Bi = AiC

−1 and SX = {Bi : 0 ≤ i < r}. Then:

(a) The group commutator of the operators Bi, Bj fixes elements of the Z-support of |ψ⟩; and

(b) The phase component of Su
X |0⟩ is p = 2r−1∏

0≤i<r ui.
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Proof. Calculating the group commutator between two of the elements of SX :

BiBjB
−1
i B−1

j = DN (2xizj − 2xjzi + 4xixjzi − 4xixjzj) (A.57)
= DN (2a(xi(xj − 1) − xj(xi − 1) + 2xixj(xi − 1) − 2xixj(xj − 1)) (A.58)
= DN (2a(xixj − xi − xixj + xj + 2xixj − 2xixj − 2xixj + 2xixj)) (A.59)
= DN (2a(xj − xi)) = XPN (2a · (xj − xi)|0|2a(xi − xj)) . (A.60)

We now show that D(2a(xj − xi)) fixes all elements of the Z-support of |ψ⟩. Let eu :=
uSX + m ∈ ZSupp(|ψ⟩). Then using the notation of Proposition 2.5.1 and Eq. (A.41), the
phase applied by DN (2a(xj − xi)) to |eu⟩ can be written

q = 2a · (xj − xi) + 4a(xi − xj) ·
[ ⊕

0≤k<r

ukxk

]
(A.61)

= 2a · (xj − xi) + 4a(xi − xj) ·
[ ∑

s⊂[0...r−1]
(−2)|s|−1 ∏

k∈s

ukxk

]
(A.62)

= 2a · (xj − xi) + a ·
[ ∑

s⊂[0...r−1]
(−2)|s|+1(xi − xj)

∏
k∈s

ukxk

]
. (A.63)

By Proposition A.4.2, if r > 1 then a · xj = a · xj = 0. Similarly, if |s ∪ {i}| < r then
a · xi

∏
k∈s xk = 0. If |s ∪ {i}| = r, then a factor of 2r = 0 mod 2N always occurs - hence the

operator applies a trivial phase and part (a) follows.

Due to Proposition A.4.2, we can multiply the generators Ai by powers of C without
changing the phase function of the state |ψ⟩, so part (b) follows.

We now show how to apply Proposition A.4.4 to reduce the number of qubits required
to represent |ϕ⟩ = CP (1/2,1)|+⟩⊗r as an XP stabiliser state. We set N = 2r−1 and let xi

be the ith row of M r
r . We define the non-diagonal stabiliser generators SX = {Bi} where

Bi = XPN (0|xi|a(xi − 1)) - these are the same operators as in Proposition A.4.4. The phase
function of |ψ⟩ = OSX |0⟩ is f(u0, . . . , ur−1) = 2r−1∏

0≤i<r ui. This imparts a phase of −1 = ωN

when u = 1. Define the SZ as in Eq. (2.62). By part (a) of Proposition A.4.4, the elements
of SX commute up to a diagonal operator which fixes elements of the Z-support of |ψ⟩ hence
SX ,SZ stabilises |ψ⟩.

To extend this method to generalised controlled Z operators of form CP (1/2,v), we need
to ensure that uv ̸= v for any other operator CP (p/q,u) involved in the weighted hypergraph
state. Otherwise, we cannot guarantee that the commutators of the operators in SX act trivially
on the Z-support of the embedded state.



A.5 Logical Operators - Proof of Results 155

A.5 Logical Operators - Proof of Results

In this appendix, we provide proofs for the main results in Chapter 2.6. We first prove two
results about the properties of logical XP operators. We next show that the algorithms of
Sections 2.6.2 and 2.6.3 produce valid logical operators, and that they produce all possible
operators of XP form. We then show how to find valid phase and Z components for logical
X operators. We then prove the observations of Example 2.6.4 regarding Reed-Muller codes.
Finally, we prove that the more efficient algorithms of Section 2.6.6 work correctly.

A.5.1 Properties of Logical XP Operators

In this section, we prove two results on the properties of logical XP operators. Given the
codewords |κi⟩ of Section 2.4.4, the first result states that an XP operator is a logical operator
if and only if its action on the codewords can be described in terms of:

• A permutation of the codewords; and

• A phase applied to each codeword.

This result is used to prove that the logical operator and logical identity algorithms work
correctly.

The second result states that an XP operator is a logical operator if and only if its
commutators with logical identities are logical identities. It is an efficient way in practice to
verify if an XP operator is a logical operator on the codespace.

Proposition A.5.1 (Action of Logical Operators)
An XP operator A is a logical operator if and only if its action can be described by a permutation
π of the codewords such that π2 = 1 and a vector f ∈ Zdim(C)

2N specifying the phase applied to
each codeword.

Proof. Let A = XPN (p|x|z) be an XP operator. Applying the rule in Eq. (2.20), A acts on
computational basis elements as follows:

A|e⟩ = ωp+2e·z|e ⊕ x⟩ . (A.64)

Hence, the image of a computational basis element under an XP operator cannot be a superpo-
sition of computational basis elements.

Now consider how A acts on the codewords {|κi⟩} of Section 2.4.4. Let Ei be the Z-support
of the codeword |κi⟩ and let r be the number of non-diagonal canonical generators (i.e. r = |SX |).
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Then |Ei| = 2r and Ei ∩ Ej = ∅ for i ̸= j. Hence, the image of a codeword under an XP
operator cannot be a superposition of codewords.

Now assume A is a logical operator and so preserves the codespace C. As A|κi⟩ ∈ C for
each codeword and A cannot create superpositions of codewords, then A|κi⟩ = ωqi |κj⟩ for some
codeword |κj⟩ and qi ∈ Z2N . Because the image of the codewords under A must span the
codespace, A must permute the codewords. The square of any XP operator is diagonal (see
Section 2.3.3) so the square of the permutation must be 1 and the action of A is as claimed.

In the PSF, any logical operator L on the codespace must commute with the stabiliser
generators. In the XPF, we instead work with the generators M of the logical identity group.
The group commutator of a logical operator L with each element of M must be in the diagonal
subgroup ⟨MZ⟩. In practice, this gives an efficient test for determining if a given operator is a
logical operator on the codespace.

Proposition A.5.2 (Commutators Logical Operators and Logical Identities)
Let M be the logical identity generators as in Section 2.6.2. L is a logical XP operator if and
only if A−1L−1AL ∈ ⟨MZ⟩,∀A ∈ M.

Proof. Assume A ∈ M, L is a logical XP operator and {|κi⟩} are the codewords of Section 2.4.4.
By Proposition A.5.1, there exists a phase vector f and a permutation π such that for all i:

AL|κi⟩ = Aωf [i]|κπ(i)⟩ = ωf [i]|κπ(i)⟩ = ωf [i]A|κπ(i)⟩ = LA|κi⟩

Hence A−1L−1AL|κi⟩ = |κi⟩ so A−1L−1AL ∈ IXP. From Section 2.3.3, we know that group
commutators are always diagonal operators, hence A−1L−1AL ∈ ⟨MZ⟩.

Conversely, assume that A−1L−1AL ∈ ⟨MZ⟩, ∀A ∈ M. This is also true for any A ∈ ⟨M⟩.
Then for each codeword |κi⟩:

A−1L−1AL|κi⟩ = |κi⟩,∀A ∈ ⟨M⟩ (A.65)
A(L|κi⟩) = LA|κi⟩ = L|κi⟩ . (A.66)

Hence L|κi⟩ is in the codespace for all |κi⟩. Because L is an XP operator L|κi⟩ cannot be a
superposition of codewords and so L|κi⟩ = ωpi |κj⟩ for some pi ∈ Z2N and |κj⟩. Because L2 is
diagonal the map π : i 7→ j squares to 1 and hence is a permutation. Therefore we can describe
the action of L as L|κi⟩ = ωpi |κπ(i)⟩ and so L is a logical XP operator by Proposition A.5.1.
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A.5.2 Logical Identity and Logical Operator Algorithms

In this section, we prove that the logical identity algorithm of Section 2.6.2 and the logical
operator algorithm of Section 2.6.3 yield generating sets of operators. We first consider the
algorithms for diagonal operators, then those for non-diagonal operators. We then show how to
find logical X operators by using the intersection of affine spans algorithm of Section A.1.4.

Diagonal Operator Algorithms

In this section, we show that the algorithms of Sections 2.6.3 and 2.6.2 produce sets of diagonal
logical generators and diagonal logical identity generators respectively.

Assume we have the codewords in the orbit form of Eq. (2.35) - i.e. |κi⟩ = ∑
0≤j<2r ωpij |eij⟩.

Let E be the Z-support of the codewords (see Section 2.4.2). We first look at diagonal logical
identity operators and prove the following proposition:

Proposition A.5.3 (Diagonal Logical Identity Group)
The algorithm in Section 2.6.2 produces a list of diagonal XP operators MZ which generate
the diagonal logical identity XP operators for the codespace.

Proof. The binary matrix EM is the matrix formed by taking (e|1) as rows, where e ∈ E. If
(zk|pk) is a row of the Howell basis KM of Ker(EM ), then (zk|pk) · (eij |1) modN = 0. Let
Ak := XPN (2pk|0|zk) then Ak|e⟩ = ω2pk+2e·zk |e⟩ = ω2(zk|pk)·(e|1)|e⟩ = |e⟩. Hence, Ak applies
a trivial phase on each element of E and hence on each codeword. Because KerZN

(EM ) =
SpanZN

(KM ), the Ak generate all diagonal logical identity operators and so MZ := {Ak}.

We next look at the diagonal logical operators and show the following:

Proposition A.5.4 (Diagonal Logical Operators)
The algorithm in Section 2.6.3 produces a list of diagonal XP operators LZ which together
with ωI and MZ generate the diagonal logical XP operators for the codespace.

Proof. We define the binary matrix EL used in the logical operator algorithm as follows. For
each eij in Eq. (2.35), let i be a binary vector of length dim(C) which is all zeros apart from
the ith component which is 1. The vector i is a “codeword index” that tells us which codeword
the row belongs to. Let EL be the matrix formed by taking (eij |i) as rows. Let KL be the
Howell basis of KerZN

(EL) and let (zk|pk) be a row of KL. Then for all values of i and j,
(zk|pk) · (eij |i) modN = 0 and so zk · eij modN = −pk[i] modN .
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Now consider how the diagonal XP operator Bk := XPN (0|0|zk) acts on the Z-support of
the codewords:

Bk|eij⟩ = ω2eij ·zk |eij⟩ = ω−2pk[i]|eij⟩ . (A.67)

In other words, the action of Bk is constant on the Z-support of each codeword and so is a
logical operator with phase vector fk = −2pk. The Bk, together with the operator ωI, generate
all possible diagonal logical operators because KerZN

(EL) = SpanZN
(KL).

We now show how to find non-trivial diagonal operators LZ which together with ωI and MZ

generate the same group as the BZ := {Bk} and ωI, reflecting steps 4 and 5 of the algorithm in
Section 2.6.3. Because we include ωI as a generator, we can just consider the space spanned by
the Z components of the operators over ZN . Let MZ and BZ be the matrices whose rows are the
Z-components of the MZ and BZ respectively. For each row zk of BZ we let rk = ResZN (MZ)
so that zk = (rk + uMZ) modN for some vector u ∈ Z|MZ |

N . Let LZ be the Howell basis of the
matrix with the rk as rows. Then clearly SpanZN

(BZ) = SpanZN
(MZ) + SpanZN

(LZ). Letting
LZ = {XPN (0|0|z) : z ∈ LZ} then we have that ⟨ωI,MZ ,LZ⟩ = ⟨ωI,BZ⟩.

Non-diagonal Operator Algorithms

In this section, we show that the algorithms for non-diagonal operators yield valid logical
operators and logical identities respectively. We then show that the operators produced are
generating sets for the respective groups. Assume we have the coset decomposition of the
Z-support of the codewords as in Eq. (2.89) i.e. E = Eq + ⟨SX⟩ + ⟨LX⟩. Recall that the rows of
SX are the X-components of the non-diagonal canonical generators and that the binary vector
x ∈ ⟨LX⟩ if and only if Em ⊕ x = Em (see Section 2.6.3).

Proposition A.5.5 (Non-diagonal Logical Operators)
Given a binary vector x ∈ LX , the algorithm in Section 2.6.3 yields a non-diagonal logical
operator with X-component equal to x or FALSE if no such operator exists.

Proof. Given x ∈ LX and applying Proposition A.5.1, we wish to find A = XPN (0|x|z) for
which A|κi⟩ = ωf [i]|κπ(i)⟩ for some phase vector f and some permutation π.

Because x ∈ LX , we know that mi ⊕ x = mj for orbit representatives mi,mj . Define
π : i 7→ j if mi ⊕ x = mj . Then π is a map which squares to 1 and so is a permutation.

Now assume we have the codewords in the orbit format of Eq. (2.35). Let e′
ij = eij ⊕ x and

let p′
ij be the phase of e′

ij in the codewords. We require that Aωpij |eij⟩ = ωf [i]+p′
ij |e′

ij⟩,∀i, j.
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Calculating the action of A on ωpij |eij⟩:

Aωpij |eij⟩ = ωpijω2eij ·z|e′
ij⟩ . (A.68)

The phase of |e′
ij⟩ is ωf [i]+p′

ij when:

(pij − p′
ij − f [i] + 2eij · z) mod 2N = 0 . (A.69)

As the phase f [i] is fixed for each codeword |κi⟩, for there to be a valid solution pij − p′
ij to be

either even or odd for all j. Let ai = (pij − p′
ij) mod 2 and p′′

ij = (pij − p′
ij − ai)/2. Define the

vector q := (ai − f)/2. Hence:

(p′′
ij + q[i] + eij · z) modN = 0 . (A.70)

Letting p′′ be the vector corresponding to the p′′
ij , we can write this in matrix form:

(p′′ + (z|q)ET
L ) modN = 0 . (A.71)

Solutions to this equation are members of the affine span (see Eq. (A.12)):

(z|q) ∈ b + SpanZN
(KL) . (A.72)

where KL is the Howell basis of KerZN
(EL) and b ∈ Zn

N × Zdim(C)
N is a constant. We can either

find b or show that no solution exists by using linear algebra modulo N (see Section A.1.3). If
no such solution exists, return FALSE. Otherwise, the operator A = XPN (0|x|z) is the required
non-diagonal logical operator.

The algorithm for non-diagonal logical identity operators can be considered a special case
of the algorithm for non-diagonal logical operators, with the matrix EM substituted for EL

and the proof is omitted.

Corollary A.5.6 (Non-diagonal Logical Identity Group)
Given codewords |κi⟩ in orbit format and x ∈ SX , the algorithm in Section 2.6.2 yields a
non-diagonal operator A with X-component x such that A|κi⟩ = |κi⟩, ∀i, or returns FALSE if
no such operator exists.

We next show that the operators produced by the algorithms give us a generating set. We
first show that the logical identity group is generated by the operators yielded by the logical
identity algorithm.

Proposition A.5.7 (Logical Identity Group is Generated by M)
The logical identity group for an XP code is the group generated by M as calculated in
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Section 2.6.2:

IXP = ⟨M⟩ . (A.73)

Proof. If A ∈ ⟨M⟩ then A|κi⟩ = |κi⟩ for all codewords |κi⟩ by construction so A ∈ IXP, and so
IXP ⊃ ⟨M⟩.

We now prove the converse. In Proposition A.5.3, we showed that MZ generates the diagonal
subgroup of IXP

Let B = XPN (p|x|z) be a non-diagonal operator in IXP. Then x ∈ SpanZ2(SX) as
defined above. Hence, we can find a binary vector v such that x = vSX mod 2. Let B′ =
Mv

X ∈ ⟨M⟩. Then B and B′ have the same X component so B′ = XPN (p′|x|z′). Then
A′ = BB′ = XPN (p′′|0|z′′) is a diagonal logical identity operator because both B and B′ are
logical identities. Hence A′ ∈ ⟨M⟩. Therefore B = A′B′−1 ∈ ⟨M⟩.

Finally, we show that the logical operators with X-components in LX , along with the
stabiliser generators and the diagonal logical operators generate the entire logical operator
group.

Proposition A.5.8
Let E be the Z-support of the codewords of an XP code and let E = Eq + ⟨SX⟩ + ⟨LX⟩ be
the coset decomposition of E as in Eq. (2.89). Let M be the logical identity group as in
Section 2.6.2, let LZ be the set of diagonal operators as in Section 2.6.3 and let LX be a set of
logical operators with X-components drawn from the rows of LX . Then the logical operator
group is given by:

LXP = ⟨ωI,M,LZ ,LX⟩ . (A.74)

Proof. Say we have a logical operator with a non-trivial X-component of the form A =
XPN (p|x|z). The action of A on |e⟩ for e ∈ E is A|e⟩ = ωp+2e·z|e ⊕ x⟩. We have shown that
the codespace is spanned by the |κi⟩ which have Z-support exactly equal to E. Because logical
operators preserve the codespace, X-components of logical operators must satisfy the constraint:

e ⊕ x ∈ E,∀e ∈ E . (A.75)

All possible X-components for logical operators are given by ⟨SX⟩+⟨LX⟩. To see this, assume
there exists some x /∈ ⟨SX⟩ + ⟨LX⟩ meets the constraint in Eq. (A.75). Then ResZ2(SX ,x) /∈
⟨LX⟩ meets the constraint in Eq. (A.75), which is a contradiction.

Next, we show that any logical operator can be written as A = XPN (p|x|z) = LS where
L has X-component in ⟨LX⟩ and S ∈ ⟨MX⟩. We know that x ∈ ⟨SX⟩ + ⟨LX⟩ so x =
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(uSX + vLX) mod 2 for some binary vectors u,v. Let S = Mu
X then L = AS−1 is a logical

operator with X component in ⟨LX⟩.

Now assume that there are two different logical operators with X-component x ∈ ⟨LX⟩ -
say A1 and A2. The product B = A1A

−1
2 is a diagonal logical operator so A1 is the same as A2

up to a product of a diagonal logical operator. Applying Proposition A.5.4, B ∈ ⟨ωI,MZ ,LZ⟩

Accordingly, we can generate all possible logical operators by finding the non-diagonal
logical operators with X-components in LX . Together with the logical identity generators M,
ωI and LZ , these generate the full set of logical operators.

Diagonal Component of Logical X Operators

We have demonstrated how to find a non-diagonal logical operator with X-component in LX .
This will not necessarily act as a logical X operator. In particular, a logical X should square to
a logical identity and in this section, we show how to ensure that this is the case.

Assume we have used the algorithm in Section 2.6.3 to find a logical operator B =
XPN (0|x|b). Our aim is to calculate a logical X operator A = XPN (p|x|z) such that A2 is a
logical identity. As A2 is diagonal, we require A2 ∈ ⟨MZ⟩. Our strategy is to first find the Z
component of A, then adjust the phase component.

We first look at which Z components are possible for logical operators with the same X
component as B. We can multiply B by any diagonal logical operator in ⟨MZ ,LZ⟩ and get
a logical operator, and all possible Z components of such operators arise in this way. Let
MZ , LZ be the matrices formed from the Z components of MZ ,LZ respectively. Writing
⟨C⟩ = SpanZN

(C), the possible Z components are given by the affine span:

z ∈ Spb := b + ⟨MZ⟩ + ⟨LZ⟩ . (A.76)

We next address the condition that the Z component of A2, which we denote z2 here, has to be
in ⟨MZ⟩. By applying the square rule of Section 2.3.3:

z2[i] =

2z[i] : x[i] = 0

0 : x[i] = 1
. (A.77)

When x[i] = 1, z2[i] = 0. Hence, z2 has to be an element of ⟨MZ⟩ which is zero when x[i] = 1.
Because z2 is the Z component of a square, we also know that it is a multiple of 2. Hence
z2 ∈ Sp2 := ⟨MZ⟩ ∩ ⟨2diag(1 − x)⟩. All generators of Sp2 are divisible by 2, so let SpM be the
span with generators from Sp2 divided by 2. Any z ∈ SpM will have z2 ∈ ⟨MZ⟩.
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Where the precision N is a multiple of 2 and x[i] = 0, adding N
2 to z[i] does not change

whether z2 ∈ ⟨MZ⟩ because z2[i] = 2z[i]. Hence, we can add any element of ⟨N
2 diag(1 − x)⟩ to

z.

We can add any element of ⟨diag(x)⟩ to z and still ensure z2 ∈ ⟨MZ⟩ because where x[i] = 1,
z2[i] is guaranteed to be zero. Hence z2 ∈ ⟨MZ⟩ when z ∈ Spa defined as:

Spa := SpM + ⟨N2 diag(1 − x)⟩ + ⟨diag(x)⟩ . (A.78)

Hence, z ∈ Spa ∩Spb. If this span is not empty then we can find z such that z2 = uMZ modN ∈
⟨MZ⟩ for some vector u. Let pz, pu be the phase components of XPN (0|x|z)2 and Mu

Z

respectively. We set the phase component of A to be p = (pu − pz)/2.

A.5.3 Reed-Muller Codes

Reed-Muller codes are well-known Pauli Stabiliser codes. We can also look at them as XP
codes and better understand their logical operator structure. In the Proposition below, we
show that they are self-dual codes and have transversal logical operators at precision N > 2.
To demonstrate the results, we apply the techniques of Appendix A.4.

Proposition A.5.9 (Reed-Muller XP Codes)
The Reed-Muller code on 2r − 1 qubits can be written as the codespace of a precision N = 2r−2

code whose stabiliser generators are symmetric in X and P. The code has a transversal logical
diag(1, exp(−2πi/2r−1)) operator.

Proof. Let N = 2r−2 and the number of qubits n = 2r − 1. Let SX = {XPN (0|xi|0)} and
SZ = {XPN (0|0|xi)} where xi is the ith row of M r

r as in Section 2.5.4. Let |0⟩L = OSX |0⟩ and
let |1⟩L = XPN (0|1|0)|0⟩L where 1 is the vector of length 2r − 1 with all entries 1.

We claim that the codespace of SX ,SZ is spanned by {|0⟩L, |1⟩L}. For this, we need to show
that the simultaneous +1 eigenspace of the SZ is given by {|e⟩} where e ∈ SpanZ2{1,xi : 0 ≤
i < r}. Let u ⊂ [0 . . . r − 1] and let su := ⊕

j∈u xj . Note that XPN (0|0|xk)|su⟩ = ω2xk·su |su⟩.
Hence we need to show that xk · su mod 2r−2 = xk · (1 ⊕ su) mod 2r−2 = 0.

Applying Proposition A.4.1 the weight of the product of t distinct xi is 2r−t because:

1 ·
∏

0≤i<t

xi =
∑

k≤t≤r

(
r − t

k − t

)
=

∑
0≤j≤r−t

(
r − t

j

)
= 2r−t . (A.79)
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Now consider the dot product of xk with su:

xk · su =
∑
s⊂u

(−2)|s|−1xk ·
∏
i∈s

xi =
∑
s⊂u

(−2)|s|−12r−|s|−1 =
∑
s⊂u

(−1)|s|−12r−2 = 0 mod 2r−2 .

(A.80)

The above follows because each of the terms in the sum is a product of |s| + 1 distinct xj and
by applying Eq. (A.41). By setting t = 1 in Eq. (A.79) we see that xk · 1 = 2r−1. Hence:

xk · (1 ⊕ su) = xk · (1 − su) = xk · 1 − xk · su = 0 mod 2r−2 . (A.81)

Now rescale the code to precision N = 2r−1 consider the action of B = XPN (0|0|1) on |0⟩L

and |1⟩L. We can write |0⟩L = ∑
u⊂[0...r−1] su. Now B|su⟩ = ω21·su |su⟩. Calculating 1 · su:

1 · su =
∑
s⊂u

(−2)|s|−11 ·
∏
i∈s

xi =
∑
s⊂u

(−2)|s|−12r−|s| =
∑
s⊂u

(−1)|s|−12r−1 = 0 mod 2r−1 . (A.82)

Hence, the phase applied by B to each basis element making up |0⟩L is trivial and so B|0⟩L =
|0⟩L.

The action of B on |1⟩L is B|1⟩L = XPN (0|0|1)XPN (0|1|0)|0⟩L = XPN (0|1|1)D(2)|0⟩L.
The phase component of D(2) is 2(2r − 1) = −2 modN . Hence B|1⟩L = ω−2|1⟩L and B acts as
a logical diag(1, exp(−2πi/2r−1)) operator.

A.5.4 Modified Algorithms for Logical Identity Group and Logical Operators

Our objective here is to show that where N = 2t, we can calculate the logical identity group and
logical operators without first calculating the codewords in full. Assume that the codewords in
orbit form are as in Eq. (2.35) and let E be the Z-support of the codewords.

• To calculate the logical identity group generators, we just need to consider the elements
of E at most orbit distance t from the core elements Eq = {ql}.

• For the logical operators, we need to consider the elements of E at most orbit distance t
from the orbit representatives Em = {mi}.

We need a number of preliminary results to prove the main propositions. In these results,
we work with a binary matrix L in RREF. Let the rows of L be the binary vectors xi, 0 ≤ i < r.
Sums and products of vectors are component wise in Z (i.e. (x + y)[i] = x[i] + y[i], (xy)[i] =
x[i]y[i]).

We first write an expression for the sum modulo 2 of a subset of the xi:
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Lemma A.5.10
Let L be a binary matrix in RREF, with non-zero rows xi, 1 ≤ i < r and let c ⊂ [0 . . . r − 1].
Define:

sc :=
(∑

i∈c

xi

)
mod 2 . (A.83)

and for d ⊂ c define :

pd := (−2)|d|−1∏
i∈d

xi . (A.84)

Then:

sc =
∑

d⊂c,|d|≥1
pd . (A.85)

where we work in Z on the RHS.

Proof. Induction on |c|.

Base Step: Let |c| = 1 so that c = {j}. Then the LHS of Eq. (A.85) is:(∑
i∈c

xi

)
mod 2 = xj . (A.86)

While the RHS is:

∑
d⊂c,|d|≥1

(−2)|d|−1∏
i∈d

xi = xj . (A.87)

So the base step holds.

Induction Step: Assume |c| > 1 and the lemma is true for any sets d : |d| < |c|. Let j ∈ c

and c′ = c \ {j} so that sc = xj ⊕ sc′ . For binary vectors x,y:

(x + y) mod 2 = x + y − 2xy . (A.88)

Hence, the LHS of Eq. (A.85) is:

sc = (xj + sc′) mod 2 = xj + sc′ − 2xjsc′ . (A.89)
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Because |c′| = |c| − 1 < |c|, we can apply the induction hypothesis:

sc = xj +
∑

d⊂c′,|d|≥1
pd − 2xj

( ∑
d⊂c′,|d|≥1

pd

)
(A.90)

=
∑

d⊂c,|d|≥1,j /∈d

pd +
∑

d⊂c,|d|≥1,j∈d

pd (A.91)

=
∑

d⊂c,|d|≥1
pd . (A.92)

The induction step holds and the result follows.

Next, we let N = 2t and consider spans over ZN of the binary vectors E = Eq + ⟨L⟩. We
first show that certain products are in the span:

Lemma A.5.11 (Products of q,xi of Degree ≤ t)
Let E be a set of binary vectors with coset decomposition E = Eq + ⟨L⟩ as in Eq. (2.89). Let
the nonzero rows of L be xi, 1 ≤ i < r. Let N = 2t where t ∈ [1 . . . r]. Let Et be the elements of
E at most orbit distance t from Eq so that Et := {(q + vL) mod 2 : q ∈ Eq,v ∈ Zr

2,wt(v) ≤ t}.
Let c ⊂ [0 . . . r − 1], 1 ≤ |c| ≤ t and let pc := 2|c|−1∏

i∈c xi. Then:

pc − 2qpc ∈ SpanZN
(Et) . (A.93)

Proof. Induction on |c|.

Base Case: let |c| = 1 so that c = {j}. Then:

pc − 2qpc = xj − 2qxj = (q + xj) mod 2 − q . (A.94)

As t ≥ 1, (q + xj) mod 2 ∈ Et and so is q (as it is of orbit distance 0). Hence the linear
combination is in SpanZN

(Et) and the base case holds.

Induction Step: Assume |c| > 1 and that the lemma is true for any sets d : |d| < |c|. As
|c| ≤ t, the binary vector e = (q + ∑

i∈c xi) mod 2 = (q + sc) mod 2 ∈ Et. Expanding the
expression for e using Eq. (A.85):

e = q + sc − 2qsc (A.95)
= q +

∑
d⊂c,|d|≥1

pd − 2q
∑

d⊂c,|d|≥1
pd (A.96)

= q +
∑

d⊊c,1≤|d|<|c|
(pd − 2qpd) + (pc − 2qpc) . (A.97)
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By the induction hypothesis pd − 2qpd ∈ SpanZN
(Et) for any |d| < |c|. As e,q are also in the

span, the induction step holds.

We next show that the product of up to t of the binary vectors xi is in SpanZN
(Et):

Corollary A.5.12 (Products of xi of Degree t)
Let |c| = t and pc, N,Et be defined as in Lemma A.5.11. Then:

pc ∈ SpanZN
(Et) . (A.98)

Proof. For |c| ≤ t, we have shown in Lemma A.5.11 that pc − 2qpc ∈ SpanZN
(Et). Expanding

the second pc we have:

pc − 2qpc = pc − 2(−2)|c|−1∏
i∈c

xi = pc + (−2)t
∏
i∈c

xi . (A.99)

As the span is over ZN , any multiples of N = 2t can be disregarded so pc ∈ SpanZN
(Et).

The results for the modified algorithms follow directly from the following proposition:

Proposition A.5.13
Let E,Et, N be as in Lemma A.5.11. Then:

SpanZN
(E) = SpanZN

(Et) . (A.100)

Proof. Let e = (q + uL) mod 2 ∈ E. Let c = supp(u) := {0 ≤ i < r : u[i] ̸= 0}. Using
Eq. (A.85) we can write:

e = (q + sc) mod 2 (A.101)
= q + sc − 2qsc (A.102)
= q +

∑
d⊂c,|d|≥1

(pd − 2qpd) (A.103)

= q +
∑

d⊂c,|d|≥1

(
(−2)|d|−1∏

i∈d

xi + (−2)|d|q
∏
i∈d

xi

)
. (A.104)

We can disregard any multiples of N = 2t so we can write:

e modN =
(
q +

∑
d⊂c,1≤|d|≤t−1

(pd − 2qpd) +
∑

d⊂c,|d|=t

pd

)
modN . (A.105)

By Lemma A.5.11 and Corollary A.5.12, we know that all elements on the RHS are in SpanZN
(Et)

hence e ∈ SpanZN
(Et), ∀e ∈ E. Hence, all linear combinations of elements of E are also in the

span and the result follows.
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The main results of the section now follow by application of the previous proposition:

Proposition A.5.14 (Modified Logical Identity Algorithm)
Let EM be as defined in the algorithm of Section 2.6.2 i.e. the rows of EM are the binary
vectors e ∈ E, plus a final column of all 1’s. Let N = 2t and Et be the elements of E of orbit
distance at most t from the core Eq. Let E′

M be the matrix formed from the rows of Et plus a
row of 1’s. Then:

SpanZN
(EM ) = SpanZN

(E′
M ) . (A.106)

Proof. Let E = Eq + ⟨SX⟩ + ⟨LX⟩ be the coset decomposition of E. Let E′
q be the vectors in

Eq with an appended 1 (i.e. E′
q = {(q|1) : q ∈ Eq. Let GX = RREF(LX ∪ SX) and let L be

GX with an appended 0 so L = {(x|0) : x ∈ GX}. Then EM = E′
q + ⟨L⟩. The result follows by

applying Proposition A.5.13.

Proposition A.5.15 (Modified Logical Operator Algorithm)
Let EL be as defined as in the algorithm of Section 2.6.3 i.e. the rows of EL are the binary
vectors e ∈ E, plus a codeword index i which identifies which codeword the row belongs to. Let
N = 2t and Et be the elements of E of orbit distance at most t from the orbit representatives
Em. Let E′

L be the matrix formed from the rows of Et plus the codeword index. Then:

SpanZN
(EL) = SpanZN

(E′
L) . (A.107)

Proof. Let E = Em + ⟨SX⟩ as in Section 2.4.2. Let E′
m be the vectors in Em with an appended

i as in the Logical Operator Algorithm - i.e. E′
m = {(m|i) : m ∈ Em}. Form L from the rows

of SX with an appended 0 of length dim(C) so L = {(x|0) : x ∈ SX}. Then EL = E′
m + ⟨L⟩.

The result follows by applying Proposition A.5.13.

A.6 Measurements in the XP Formalism - Proof of Results

In this appendix, we prove the results discussed in Chapter 2.7. We first prove the results for
determining the outcome probabilities for measurement of XP operators. We then explain the
stabiliser algorithm for measurement of diagonal Pauli operators of Section 2.7.3.

A.6.1 Measurement Outcome Probabilities - Proof of Results

In this section, we show how to determine the outcome probabilities for measurement of XP
operators assuming we are given the codewords in the orbit form of Eq. (2.35). We first show
how to determine probabilities for measurement of diagonal operators, then look at non-diagonal
operators.
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Proposition A.6.1 (Outcome Probabilities - Diagonal XP Operators)
Let A be a diagonal XP operator which has +1 as an eigenvalue. Let E be the Z-support of
the codewords |κi⟩. Let E+ be the set of binary vectors E+ = {e ∈ E : A|e⟩ = |e⟩}. Let ρ
be an even superposition of the codewords as in Eq. (2.107) so that ρ = 1

|E|
∑

i |κi⟩⟨κi|. The
probability of obtaining outcome +1 when measuring A on ρ is:

Pr(+1) = |E+|
|E|

. (A.108)

Proof. Let the projector onto the +1 eigenspace of A be A+ and let |κ+
i ⟩ := A+|κi⟩. The

probability of obtaining outcome +1 is Tr(A+ρA+) = 1
|E|
∑

i⟨κ+
i |κ+

i ⟩.

Applying Eq. (2.22) with λ = +1, the action of the projector A+ on a computational basis
vectors |e⟩ is given by:

A+|e⟩ =

|e⟩ : if A|e⟩ = |e⟩

0 : if A|e⟩ ≠ |e⟩
. (A.109)

Let E+
i := {e ∈ ZSupp(|κi⟩) : A|e⟩ = |e⟩}. The action of A+ on the codeword |κi⟩ is:

|κ+
i ⟩ := A+|κi⟩ = A+

( ∑
0≤j<2r

ωpij |eij⟩
)

=
∑

eij∈E+
i

ωpij |eij⟩ (A.110)

⟨κ+
i |κ+

i ⟩ =
∑

eij∈E+
i

|ωpij |2 = |E+
i | . (A.111)

The result follows by noting that Pr(+1) = 1
|E|
∑

i⟨κ+
i |κ+

i ⟩ and E+ = ⋃
iE

+
i .

Proposition A.6.2 (Outcome Probabilities - Non-diagonal XP Operators)
Let ρ be an even superposition of the codewords as in Eq. (2.107). Let A = XPN (p|x|z) be
a non-diagonal XP operator with eigenvalue +1. Let E be the Z-support of the codewords
|κi⟩ as calculated in Chapter 2.4 and let SX be the canonical non-diagonal generators as in
Section 2.4.1. Let E± be the set of binary vectors E± := {e ∈ E : A2|e⟩ = |e⟩}.

If there exists B = XPN (pM |x|zM ) ∈ SX with the same X-component as A then let
C := XPN (pM − p|0|zM − z) and let C|e⟩ = ωqe |e⟩. The probability of obtaining outcome +1
when measuring A on ρ is:

Pr(+1) =


1

2|E|

(∑
e∈E±(1 + cos qeπ

N )
)

: if B exists
1

2|E| |E
±| : otherwise.

. (A.112)
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Proof. Let A = XPN (p|x|z) be the operator we wish to measure, and assume we obtain outcome
+1. Applying Eq. (2.23) with λ = +1, the action of A+ on a basis vector |e⟩ is:

A+|e⟩ =


1
2(|e⟩ +A|e⟩) : if A2|e⟩ = |e⟩

0 : if A2|e⟩ ≠ |e⟩
. (A.113)

Any elements e ∈ ZSupp(|κi⟩) where A2|e⟩ ≠ |e⟩ will be eliminated, so let:

E±
i = {e ∈ ZSupp(|κi⟩) : A2|e⟩ = |e⟩} . (A.114)

By calculating ResZ2(SX ,x), we can determine if there exists some B ∈ ⟨SX⟩ with the same
X-component as A. There are two possible cases:

Case 1: B does not exist: In this case, whenever e ∈ ZSupp(|κi⟩), e ⊕ x /∈ ZSupp(|κi⟩).
Applying Eq. (A.113):

|κ+
i ⟩ := A+|κi⟩ =

∑
eij∈E±

i

ωpij

2 (|eij⟩ +A|eij⟩) = 1
2

∑
eij∈E±

i

(ωpij |eij⟩ + ωqij |eij ⊕ x⟩) . (A.115)

for some qij ∈ Z2N . Hence:

⟨κ+
i |κ+

i ⟩ = 1
4

∑
eij∈E±

i

(1 + 1) = |E±
i |
2 . (A.116)

Case 2: B exists: Let B be the element of ⟨SX⟩ with the same X-component as A and
let e ∈ E±

i so that A2|e⟩ = |e⟩. Let B|e⟩ = ωb|e ⊕ x⟩ and A|e⟩ = ωa|e ⊕ x⟩ for some phases
a, b ∈ Z2N . Then e, e ⊕ x ∈ ZSupp(|κi⟩) with relative phase ωb. Consider the effect of the
projector A+ on |e⟩ + ωb|e ⊕ x⟩:

A+(|e⟩ + ωb|e ⊕ x⟩) = A+(|e⟩ + ωb−aA|e⟩) (A.117)

= 1
2
(
|e⟩ +A|e⟩ + ωb−aA|e⟩ + b

a
A2|e⟩

)
(A.118)

= 1
2
(
|e⟩ +A|e⟩ + ωb−a(A|e⟩ + |e⟩)

)
(A.119)

= 1 + ωb−a

2 (|e⟩ +A|e⟩) . (A.120)
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Now we determine
∣∣1+ωb−a

2
∣∣:
∣∣1 + ωb−a

2
∣∣ = 1

4(1 + ωb−a)(1 + ωa−b) (A.121)

= 1
4(2 + 2 cos((b− a)π/N)) (A.122)

= 1
2(1 + cos((b− a)π/N)) . (A.123)

Let B = XPN (pB|x|zB), let C := XPN (pM −p|0|zM −z) and let qe := b−a. Then C|e⟩ = ωqe |e⟩.
Hence:

⟨κ+
i |κ+

i ⟩ =
∑

e∈E±
i

|⟨e|κ+
i ⟩|2 = 1

2
∑

e∈E±
i

(1 + cos qeπ

N
) . (A.124)

The result follows by noting that Pr(+1) = 1
|E|
∑

i⟨κ+
i |κ+

i ⟩ and E± = ⋃
iE

±
i .

A.6.2 Analysis of Algorithm for Measuring Diagonal Paulis

In this section, we explain why the algorithm of Section 2.7.3 for measurement of diagonal
Pauli operators works. We also consider implications for the complexity of measuring higher
precision diagonal operators.

Firstly, we show that simulating the measurement of a diagonal Pauli operator reduces to
determining the change in the Z-support of the codewords E. Let A = XP2(0|0|z) and let
|κi⟩ = ∑

j ω
pij |eij⟩ be the codewords of the code in orbit format of Eq. (2.35) with Z-support

E = {eij}. Let A+ be the projector onto the +1 eigenspace of A. The action of A+ on |κi⟩ is
given by Eq. (2.22):

A+|κi⟩ =
∑

j:A|eij⟩=|eij⟩
ωpij |eij⟩ . (A.125)

Hence, the Z-support of the codewords after measurement outcome +1 is E+ = {e ∈ E : A|e⟩ =
|e⟩}. As A is of precision 2, the action of A on |e⟩ is A|e⟩ = i2e·z|e⟩ = (−1)e·z|e⟩. Hence
E+ = {e ∈ E : Parz(e) = 0}. From Proposition A.6.1, the probability of obtaining outcome
+1 is |E+|/|E| and the phase of any |eij⟩ remaining in the codewords is unchanged. Similarly,
the Z-support of the codewords after obtaining outcome −1 is E− = E \E+ with probability
|E−|/|E|. Therefore, we can simulate measurement by determining E+ and E− which in turn
requires us to determine Parz(e) for all e ∈ E.

Next, we show how the algorithm in Section 2.7.3 correctly determines E+, E−. To calculate
E+, we need to determine Parz(e) for all e ∈ E. For any binary vectors x,y, taking parity
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with respect to z commutes with taking the sum modulo 2. That is:

Parz(x ⊕ y) = (x + y − 2xy) · z mod 2
= (x · z + y · z − 2xy · z) mod 2
= Parz(x) ⊕ Parz(y) . (A.126)

Looking at Step 1 of the algorithm, assume there exists operators B,C ∈ SX ∪ LX with
X-components x,y such that Parz(x) = Parz(y) = 1. Then the X-component of BC is x ⊕ y
and from Eq. (A.126), we know that Parz(x ⊕y) = 1⊕1 = 0. Hence, updating SX ∪LX in Step
1 ensures that Parz(xi) = 0, for all X-components xi of the updated set SX ∪ LX . We remove
B from SX ∪ LX so updating Eq by adding vectors of form ql ⊕ x,ql ∈ Eq to Eq ensures that
E = Eq + ⟨SX⟩ + ⟨LX⟩ is unchanged (SX , LX are the matrices formed from the X-components
of SX ,LX respectively).

Now looking at Step 2 of the algorithm, we can express the binary vectors e ∈ E as linear
combinations modulo 2 i.e. e = (ql + uSX + vLX) mod 2 (see Section 2.6.4). After Step 1, we
have ensured that Parz(xi) = 0, for all xi ∈ SX ∪ LX . Linear combinations of the xi also have
parity 0 and so the parity of e is the same as the parity of ql because:

Parz(e) = Parz((ql + uSX + vLX) mod 2)
= Parz(ql) ⊕ Parz(uSX) ⊕ Parz(vLX)
= Parz(ql) . (A.127)

So e is in E+ if only if Parz(ql) = 0 which is equivalent to ql ∈ E+
q . Let r = |SX |, k = |LX |

then E = |Eq|2r+k, E+ = |E+
q |2r+k. Hence, the probability of obtaining outcome +1 is

Pr(+1) = |E+|/|E| = |E+
q |/|Eq|. By a similar argument, the result for the outcome −1 is also

correct.

The underlying reason the algorithm works is that the parity function of Eq. (2.108)
commutes with addition of vectors modulo 2. Hence, the parity of the binary vector el,u,v ∈ E

labelled in accordance with the quantum numbers of 2.6.4 is the same as the parity of ql ∈ Eq

(see Eq. (A.127)). This relationship breaks down for higher precision XP operators (e.g. N = 4).
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B.1 Controlled-Phase and Phase-Rotation Operators

In this Appendix, we give the detailed proofs of results relating to controlled-phase and phase-
rotation operators. The action and duality property of these operators derive from sum/product
duality properties for binary vectors and binary variables, and we start by proving these results.
We then prove results relating to phase-rotation operators. We first show that phase-rotation
operators can be written as a sum of projectors. This allows us to calculate the logical action
of phase-rotation operators. We then prove the duality result between controlled-phase and
phase-rotation operators. Finally we prove the key commutation relations for phase-rotation
and controlled-phase operators.

B.1.1 Product/Sum Duality Results for Binary Vectors and Variables

Proposition B.1.1 (Sum/Product Duality of Binary Vectors)
Let L be a binary matrix with rows xi for 0 ≤ i < r and v a binary vector of length r. Define:

sv(L) :=
⊕
i≼v

xi; (B.1)

pv(L) :=
∏
i≼v

xi. (B.2)
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Then over the integers:

sv(L) =
∑

0 ̸=u≼v
(−2)wt(u)−1pu(L); (B.3)

2wt(v)−1pv(L) =
∑

0 ̸=u≼v
(−1)wt(u)−1su(L). (B.4)

Proof. Restatement of Proposition E.10 of [117].

Proposition B.1.2 (Sum/Product Duality of Binary Variables)
Let e be a vector of r binary variables and let v a binary vector of length r. Define:

sv(e) :=
⊕
i≼v

e[i]; (B.5)

pv(e) :=
∏
i≼v

e[i]. (B.6)

Then over the integers:

sv(e) =
∑

0 ̸=u≼v
(−2)wt(u)−1pu(e); (B.7)

2wt(v)−1pv(e) =
∑

0 ̸=u≼v
(−1)wt(u)−1su(e). (B.8)

Proof. Application of Proposition B.1.1 with L the single-column matrix eT .

B.1.2 Phase-Rotation Operators

Proposition B.1.3 (Projector Form of RP Operators)
Phase-rotation operators can be written in terms of projectors A±1 := (I ±A)/2:

RPN (q,v) := exp(qπi
N
A−1) = A+1 + ωqA−1. (B.9)

Proof. Because A−1 is a projector, Am
−1 = A−1 for integers m > 0. Also A0

−1 = I = A+1 +A−1.
Hence:

exp((qπi/N)A−1) = I +A−1
∑
m>0

(qπi/N)m/m! (B.10)

= A+1 +A−1
∑
m≥0

(qπi/N)m/m! (B.11)

= A+1 + eqπi/NA−1 (B.12)
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Proposition B.1.4 (Action of RP Operators)
The action of a phase-rotation operator on a computational basis element |e⟩ where e ∈ Zn

2
and ω := exp(πi/N) is:

RPN (q,v)|e⟩ =

ω
q|e⟩ if e · v mod 2 = 1

|e⟩ otherwise.
(B.13)

Proof. Straightforward application of projector form of phase-rotation operators in Proposi-
tion B.1.3.

B.1.3 Duality of Controlled-Phase and Phase-Rotation Operators

The proposition below allows us to express controlled-phase operators (Section 3.2.1) as products
of phase-rotation operators (Section 3.4.1) and vice-versa.

Proposition B.1.5 (Duality of Controlled-Phase and Phase-Rotation Operators)
For N = 2t and u,v binary vectors of length n the following identities hold:

RPN (2,v) =
∏

0 ̸=u≼v
CPN (2 · (−2)wt(u)−1,u) (B.14)

CPN (2wt(v),v) =
∏

0 ̸=u≼v
RPN (2 · (−1)wt(u)−1,u) (B.15)

Proof. Using Eq. (3.26) and the notation of Proposition B.1.2, we can write RPN (2,v) |e⟩ =
ω2sv(e) |e⟩. From Proposition B.1.2, we have 2sv(e) = ∑

0 ̸=u≼v 2 · (−2)wt(u)−1pu(e).

Similarly, from Eq. (3.2), we can write CPN (2wt(v),v) |e⟩ = ω2wt(v)pv(e) |e⟩ and due to
Proposition B.1.2, we have 2wt(v)pv(e) = ∑

0 ̸=u≼v 2 · (−1)wt(u)−1su(e).

Hence the phases applied on the RHS and LHS are the same and the result follows.

B.1.4 Commutator Relations for Controlled-Phase and Phase-Rotation Op-
erators

In this Section, we prove the commutation relations for Pauli X operators with controlled-phase
operators (Section 3.2.1) and phase-rotation operators (Section 3.4.1).

Proposition B.1.6 (Commutator Relation for Phase-Rotation Operators)
Let Xi denote a Pauli X operator on qubit i. The following identity applies for phase-rotation



176 Supplementary Material on Diagonal Logical Operators of Stabiliser Codes

operators:

RPN (q,v)Xi =

ω
qXiRPN (−q,v) if v[i] = 1

XiRPN (q,v) otherwise
(B.16)

Proof. If v[i] = 0, the support of the operators do not overlap and hence the operators commute
and the second case follows.

For the case where v[i] = 1, let bn
i be the length n vector which is zero apart from component

i which is one. Then, for a computational basis vector |e⟩, we have:

RPN (q,v)Xi|e⟩ = RPN (q,v)|e ⊕ bn
i ⟩ (B.17)

=

|e ⊕ bn
i ⟩ if (e ⊕ bn

i ) · v = 0 mod 2

ωq|e ⊕ bn
i ⟩ otherwise.

(B.18)

ωqXiRPN (−q,v)|e⟩ =

ω
q|e ⊕ bn

i ⟩ if e · v = 0 mod 2

ωqω−q|e ⊕ bn
i ⟩ otherwise.

(B.19)

Since, by assumption v[i] = 1, e · v = 0 mod 2 ⇐⇒ (e ⊕ bn
i ) · v = 1 mod 2. Hence, the action

on computational basis vectors is identical and the result follows.

Proposition B.1.7 (Commutation Relation for Controlled-Phase Operators)

CPN (q,v)Xi =

XiCPN (q,v) if v[i] = 0

XiCPN (−q,v)CPN (q,v ⊕ bn
i ) otherwise

(B.20)

Where bn
i is the length n binary vector which is zero apart from component i which is one.

Proof. If v[i] = 0 then CPN (q,v) has no support in common with Xi so the operators commute.
Now assume v[i] = 1 then the operator on the LHS acts on the computational basis element
|e⟩ as follows:

CPN (q,v)Xi|e⟩ = CPN (q,v)|e ⊕ bn
i ⟩ (B.21)

=

ω
q|e ⊕ bn

i ⟩ if v ≼ (e ⊕ bn
i )

|e ⊕ bn
i ⟩ otherwise.

(B.22)

Since by assumption v[i] = 1, a phase of ωq is applied ⇐⇒ v ≼ (e ⊕ bn
i ) ⇐⇒ e[i] =

0 AND (v ⊕ bn
i ) ≼ e. Now consider the RHS and assume e[i] = 0 AND (v ⊕ bn

i ) ≼ e. In this
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case, we do not have v ≼ e because v[i] = 1 but e[i] = 0. Hence:

XiCPN (−q,v)CPN (q,v ⊕ bn
i )|e⟩ = ωqXiCPN (−q,v)|e⟩ (B.23)

= ωqXi|e⟩ = ωq|e ⊕ bn
i ⟩ (B.24)

We now show that all other cases result in a trivial phase. Assume e[i] = 1 AND (v ⊕ bn
i ) ≼ e.

In this case, v ≼ e and so:

XiCPN (−q,v)CPN (q,v ⊕ bn
i )|e⟩ = ωqXiCPN (−q,v)|e⟩ (B.25)

= ωqω−qXi|e⟩ = |e ⊕ bn
i ⟩ (B.26)

Now assume that (v ⊕ bn
i ) ≼ e is not true. In this case, we can never have v ≼ e and so

neither of the controlled-phase operators apply a phase, regardless of the value of e[i]. Hence the
LHS and RHS have the same action on computational basis elements and the result follows.

Example B.1.1 (Commutation Relation for Controlled-Phase Operators)
Using Proposition B.1.7, we can conjugate controlled-phase operators by strings of X operators
and vice versa. We first compute CS01X1CS−1

01 where CS01 is a controlled-S operator on qubits
0 and 1. Using the notation of Eq. (3.1):

CS01X1CS−1
01 = CP8(4, 11)X1CP8(−4, 11) (B.27)

= X1CP8(−4, 11)CP8(4, 10)CP8(−4, 11) (B.28)
= X1CP8(−8, 11)CP8(4, 10) (B.29)
= X1CZ01S0 (B.30)

We now compute (X0X1X2)CCZ012(X0X1X2)−1. Using Eq. (3.31) with x = v = 111, and
letting w := u ⊕ v:

(X0X1X2)CCZ012(X0X1X2)−1 = XP2(0|111|0)CP8(8, 111)XP2(0|111|0) (B.31)
=

∏
u≼111

CP8(8 · (−1)3+wt(u),v ⊕ u) (B.32)

=
∏

0≤wt(w)≤3
CP8(8,w) (B.33)

= CP8(8,0)
∏

0<wt(w)≤3
CP8(8,w) (B.34)

= −Z0Z1Z2CZ01CZ02CZ12CCZ012 (B.35)

Interactive versions of these examples are available in the linked Jupyter notebook.

https://github.com/m-webster/CSSLO/blob/main/notebooks/10.2_CP_commutation.ipynb
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B.2 Additional Details for Logical Operator Algorithms

This Appendix provides further details on the various logical operator algorithms. We first prove
results that reduce the complexity of the logical action and logical operator test algorithms
of Sections 3.3.2, 3.3.3 and 3.3.5. We then show how to calculate valid z vectors that result
in diagonal operators that commute with the X-checks up to a logical identity for use in
Section 3.3.4. We then demonstrate a method for more efficiently searching for depth-one
logical operators composed of multi-qubit controlled phase gates for use in Section 3.4.4. We
then show that the embedding operator of Section 3.4.3 acts as a group homomorphism on the
group generated by phase-rotation and Pauli X operators. Finally, we show that the canonical
form of Section 3.5.3 results in a logical operator with the required action.

B.2.1 Reducing Complexity of Logical Action Algorithms

In this Section we show how to reduce the complexity of algorithms which work with the
logical action of diagonal XP operators on the canonical codewords. If B := XPN (0|0|z) is a
diagonal logical operator of precision N := 2t, then the action of B on the computational basis
vectors euv := uSX + vLX making up the canonical codewords of Eq. (3.7) can be written as
B |euv⟩ = ω2euv·z |euv⟩. In the proposition below, we show that the phase component euv · z
is completely determined by terms of form eu′v′ · z where wt(u′) + wt(v′) ≤ t. As a result,
when working with logical actions, we do not need to consider all 2k+r of the euv vectors, just a
limited set which is of size polynomial in k and r. This reduces the computational complexity
of the algorithms in Section 3.3.2 and Section 3.3.5.

Proposition B.2.1
Let N := 2t and z ∈ Zn

N . The phase component euv · z can be expressed as a ZN linear
combination of eu′v′ · z where wt(u′) + wt(v′) ≤ t.

Proof. Let GX :=
(
SX

LX

)
and let a := (u|v). Noting that euv = aGX = sa(GX) and applying

Proposition B.1.1 we have:

aGX = sa(GX) =
∑

0 ̸=b≼a
(−2)wt(b)−1pb(GX) (B.36)
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Terms with wt(b) > t disappear modulo N = 2t. Using the linearity of dot product and
expressing the pb(GX) in terms of sc(GX):

aGX · z modN =
( ∑

0 ̸=b≼a
wt(a)≤t

(−2)wt(b)−1pb(GX)
)

· z modN (B.37)

=
( ∑

0 ̸=b≼a
wt(a)≤t

(−2)wt(b)−1 ∑
0 ̸=c≼b

(−1)wt(c)−1sc(GX)
)

· z modN (B.38)

=
( ∑

0 ̸=b≼a
wt(a)≤t

(−2)wt(b)−1 ∑
0 ̸=c≼b

(−1)wt(c)−1cGX · z
)

modN (B.39)

As wt(c) ≤ wt(b) ≤ wt(a) ≤ t, the result follows.

B.2.2 Test for Diagonal Logical XP Operators

In this Section, we prove that the algorithm in Section 3.3.3 correctly identifies diagonal logical
operators of XP form. We first show that if the group commutator of an operator B with each
of the logical identities A1, A2 is a logical identity, then the group commutator of the product
A1A2 is a logical identity.

Proposition B.2.2 (Commutators of Logical Identities)
Let IXP be the logical identity group as defined in Section 3.2.6 and let A1, A2 ∈ IXP. Let B
be an XP operator such that [[A1, B]] and [[A2, B]] ∈ IXP. Then [[A1A2, B]] ∈ IXP

Proof. As IXP is a group, A1, A2 ∈ IXP =⇒ [[A1, A2]] ∈ IXP. Hence we can write A1A2 =
CA2A1 for some C ∈ IXP. Calculating [[A1A2, B]], for some C,C ′, C ′′ ∈ IXP:

[[A1A2, B]] = A1A2BA
−1
2 A−1

1 B−1 (B.40)
= A1(A2BA

−1
2 B−1)BA−1

1 B−1 (B.41)
= A1CBA

−1
1 B−1 (B.42)

= C ′A1BA
−1
1 B−1 (B.43)

= C ′C ′′ ∈ IXP (B.44)

We now show that for a diagonal XP operator B, it is sufficient to check group commutators
with the r := |SX | operators of form XPN (0|xi|0) where xi are the rows of the X-checks SX .

Proposition B.2.3
Let C be a CSS code with X-checks SX and logical identity XP group IXP of precision
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N . Let B := XPN (0|0|z) be a diagonal XP operator. B is a logical operator if and only if
[[XPN (0|xi|0), B]] ∈ IXP for all rows xi of SX .

Proof. B is a logical operator if and only if [[A,B]] ∈ IXP for all A ∈ IXP. If B is a logical
operator then [[XPN (0|xi|0), B]] ∈ IXP because XPN (0|xi|0) ∈ IXP.

Conversely, assume [[XPN (0|xi|0), B]] ∈ IXP for all rows xi of SX . Let KM be the matrix
whose rows are a generating set of the Z-components of the logical identities as defined in
Section 3.3.1. Any logical identity A can be written as a product of terms of form XPN (0|xi|0)
and XPN (0|0|zj) where zj is a row of KM . By assumption, [[XPN (0|xi|0), B]] ∈ IXP and
[[XPN (0|0|zj), B]] = I. Due to Proposition B.2.2, the commutator of the product is a logical
identity and the result follows.

B.2.3 Algorithm to Determine Commutators of a Given X-Check

In the method of Section 3.3.4, for a given X-check x ∈ SX we seek all Z-components z ∈ Zn
N

such that the group commutator [[XPN (0|0|z), XPN (0|x|0)]] is a logical identity. This reduces
to solving for z such that both x · z = 0 modN and 2xz ∈ ⟨KM ⟩ZN

where the rows of KM are
the Z-components of the diagonal logical identities as in Section 3.3.1. In this Section, we show
how to solve for these constraints using linear algebra modulo N . The method is as follows:

Without loss of generality, reorder qubits so that the first m components of x are one
and the remaining n−m components are zero. In the matrices of form (a|b) below, the first
component has m columns corresponding to the non-zero components of x, the next n − m

columns correspond to the zero components of x. For v ∈ ZN , let v · 1 := (∑0≤i<n v[i]) modN .

1. The vector 2xz is of the form (2u|0) where u is of length m and the row span of
C0 := (2Im|0) over ZN represents all vectors of this form;

2. Group commutators which are also logical identities are in ⟨C0⟩ZN

⋂
⟨KM ⟩ZN

and a Howell
basis C1 is calculated via the intersection of spans method in Appendix 4.1 of [117];

3. The rows of C1 are of form (u|0) ∈ ⟨KM ⟩ZN
for u divisible by 2 modulo N . Now let

v := u/2. Because 2(v +N/2) = 2v = u modN , (v · 1) modN is either 0 or N/2. Adjust
the mth component of v by subtracting (v · 1) modN . Let C2 be the matrix formed from
rows of form (v|0);

4. Adding pairs of N/2 to the first m components does not change 2xz or x · z modN . Let
A be Im−1 with a column of ones appended. Add the rows (N/2 ·A|0) to C2;

5. Columns i where x[i] = 0 can have arbitrary values, as these do not contribute to 2xz or
x · z. Add the rows (0|In−m) to C2;
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6. Return qubits to their original order. The valid Z-components are given by the row span
of C2 over ZN .

B.2.4 Algorithm for Depth-One Operators

In the depth-one algorithm, we find transversal logical operators by starting with a level-t logical
XP operator acting on the embedded codespace, then multiplying by all possible elements of
the diagonal logical XP group of the embedded code. If the order of the diagonal logical XP
group is large, this method can be computationally expensive. In this Section, we demonstrate
an algorithm for more efficiently exploring the search space and checking if an operator acting
on the embedded codespace acts transversally on the codespace. We use the residue function
defined in Eq. 142 of [117] - we say that z′ = ResZN

(KL, z) if:

HowZN

(
1 z
0 KL

)
=
(

1 z′

0 K ′
L

)
(B.45)

The input to this algorithm is the following:

• A binary matrix V for the embedding operator EV ;

• A matrix KL representing the Z-components of the generators of the diagonal logical XP
group of the embedded code (see Section 3.3.4).

• A row vector z of KL which represents the Z-component of a non-trivial logical operator
at level t of the diagonal Clifford hierarchy acting on the embedded codespace. This
corresponds to a product of phase-rotation gates acting on the original codespace;

The output is a depth-one implementation of a non-trivial logical operator at level t of the
diagonal Clifford hierarchy, or FALSE if no such operator exists. The algorithm method is as
follows:

1. Remove z from KL;

2. Let todo be a list containing only the all ones vector of length |V |. The vectors a in todo
have columns indexed by rows of V and represent partial partitions of the n qubits. The
value of a[v] encodes the following information:

• 0: supp(v) is not a partition;

• 1: whether supp(v) is a partition has not yet been determined;

• 2: supp(v) is a partition. For depth-one operators, any u with overlapping support
(i.e. u · v ≥ 0 is not a partition).



182 Supplementary Material on Diagonal Logical Operators of Stabiliser Codes

3. While todo is not empty:

(a) Pop the vector a from the end of todo;

(b) Reorder the columns of z and KL by moving the columns with a[v] = 0 to the far
left, the columns with a[v] = 1 to the middle and the columns with a[v] = 2 to the
far right.

(c) Calculate z′ := ResZN
(KL, z). If z′[v] > 0 for any v where a[v] = 0 then the

partition is not valid. This is because taking the residue will eliminate the leftmost
entries of z if possible by adding rows of KL;

(d) If the partition is valid, find the first v such that z′[v] > 0 and a[v] = 1;

(e) If there is no such v, we have a depth-one implementation. Return the qubits to
their original order and return z′;

(f) Otherwise, let a1 be the same as a but where a[v] = 2 and a[u] = 0 for all u such
that u · v > 0. Let a2 be the same as a but with a[v] = 2. The vectors a1 and a2

represent the two possible scenarios where either v is or is not a partition - append
them to todo;

(g) Return to Step 3.

4. Return FALSE as all possible configurations have been explored.

The above algorithm yields depth-one operators composed of physical phase-rotation gates.
If implementations using physical controlled-phase gates are required, convert z and KL to
controlled-phase representations using the method in Section 3.4.2. If we require a logical
operator with exactly the same action as the original operator with Z-component z, substitute
the Z-components of the diagonal logical identity generators KM of Section 3.3.1 for KL.

B.2.5 Representation of Controlled-Phase Operators as XP Operators via
Embedding Operator

In this Section we prove that the phase-rotation operators of Section 3.4.1 acting on a codespace
correspond to diagonal XP operators in the embedded codespace defined in Section 3.4.3. We
do this by demonstrating that the mapping of phase-rotation operators acting on the codespace
to XP operators in the embedded codespace of Section 3.4.3 is a group homomorphism.

Proposition B.2.4 (Embedding operator induces a group homomorphism)
The embedding operator EV defined as follows is a group homomorphism between X RPV

N and
X P |V |

N :

EV (XRPV
N (p|x|q)) := XPN (p|xV T |q) (B.46)
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Proof. We prove this by considering generators of the group X RPV
N . Let bn

i be the length
n binary vector which is zero apart from component i which is one and consider Xi, Xj for
0 ≤ i, j < n:

EV (XiXj) = EV

(
XRPV (0|bn

i + bn
j |0)

)
(B.47)

= XPN (0|(bn
i + bn

j )V T |0) (B.48)
= XPN (0|(bn

i V
T |0)XPN (0|(bn

j V
T |0) (B.49)

= EV (Xi)EV (Xj). (B.50)

By a similar argument, EV

(
RPN (2,u)RPN (2,v)

)
= EV

(
RPN (2,u)

)
EV

(
RPN (2,v)

)
for u,v ∈ V .

Where X operators precede diagonal operators we have:

EV (XiRPN (2,v)) = EV (XRPV (0|bn
i |b|V |

v )) (B.51)

= XPN (0|bn
i V

T |b|V |
v ) (B.52)

= EV (Xi)EV

(
RPN (2,v)

)
(B.53)

Where diagonal operators precede X operators, we first consider the case where v[i] = 0. In
this case, the operators commute so we can swap the order of operators so that the X operators
precede the diagonal operator. Now consider the case v[i] = 1 where the operators do not
commute:

EV

(
RPN (2,v)Xi

)
= EV

(
ω2XiRPN (−2,v)

)
(B.54)

= XPN (2|bn
i V

T | − b|V |
v ) (B.55)

Due to the commutation relation of Eq. (3.15) and because (bn
i V

T )b|V |
v = b|V |

v when v[i] = 1:

EV

(
RPN (2,v)

)
EV (Xi) = XPN (0|0|b|V |

v )XPN (0|bn
i V

T |0) (B.56)

= XPN (2|bn
i V

T | − b|V |
v ) (B.57)

= EV (RPN (2,v)Xi) (B.58)

Because group operations are preserved for generators of the group, the embedding is a group
homomorphism.

B.2.6 Canonical Form of Logical Phase-Rotation Operators

In this Section, we show that the canonical form of logical phase-rotation operators discussed
in Section 3.5.1 acts as a logical operator as claimed.
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Proposition B.2.5 (Logical Phase Rotation Operator)
Let LZ be a binary matrix representing the Z-components of logical Z operators such that
LT

ZLX = Ik and let w be a binary vector of length k.

The operator RPN (2,wLZ) acts as a logical RPN (2,w) operator.

Proof. This can be seen by considering the action of the operator on the computational
basis element |euv⟩ where euv := uSX + vLX . From the argument in Proposition 3.5.1,
euv · zj mod 2 = 1 ⇐⇒ v[j] = 1. Hence:

euv · (
⊕
j≼w

zj) mod 2 = 1 ⇐⇒
⊕
j≼w

v[j] = 1 (B.59)

⇐⇒ v · w mod 2 = 1 (B.60)

Hence, the phases applied by the operators are the same and the result follows.

B.3 Application of Methods to Non-CSS Stabiliser Codes

In this work, we have focused on identifying diagonal logical operators for CSS codes in the
form defined in Section 3.2.3. In this Section, we show how to find diagonal logical operators
for arbitrary non-CSS stabiliser codes. We will prove the following main proposition:

Proposition B.3.1 (Mapping Non-CSS Stabiliser Codes to CSS Codes)
Let C be the codespace of a Pauli stabiliser code on n qubits. There exists a CSS code on n

qubits with codespace C′ such that C = DQC′ where Q := XP2(0|q|0), q is a length n binary
vector and D is a diagonal level 2 Clifford operator. Furthermore, a diagonal operator B is a
logical B operator of C′ if and only if QBQ−1 is a logical B operator of C.

The CSS code C′ in Proposition B.3.1 may have different error correction properties to
C (i.e. weight of stabiliser generators and logical operators), but allows us to determine the
diagonal logical operator structure of C. In this Section, we first introduce some background
material on non-CSS stabiliser codes. CSS codes of the form of Section 3.2.3 have diagonal
stabiliser generators with zero phase components and non-diagonal stabiliser generators with
zero phase and Z-components. This is not the case for arbitrary stabiliser codes, and we show
how to eliminate these components in two steps to yield the operators Q and D in the above
proposition. We illustrate Proposition B.3.1 by applying it to the perfect 5-qubit code of
Ref. [118].
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B.3.1 Background on Non-CSS Codes

Arbitrary Pauli stabiliser codes have stabiliser generators from the Pauli group ⟨iI,X, Z⟩⊗n =
X Pn

2 . A method of determining a canonical set of independent stabiliser generators, logical
X and logical Z operators is given on page 477 of Ref. [27]. Let SX and SZ be the canonical
stabiliser generators and let LX be the canonical logical X operators. Elements of SZ may
have signs of ±1 and elements of SX may have non-trivial phase and Z-components. For
Proposition B.3.1, we require that C′ := (DQ)−1C is stabilised by diagonal generators with
trivial phase components and non-diagonal generators with trivial phase and Z-components.

We now set out a canonical form for the codewords of the stabiliser code C. Let r be the
number of operators in SX and k the number of operators in LX and let v ∈ Zk

2. Let q be a
binary vector of length n such that B |q⟩ = |q⟩ for all B ∈ SZ . Define Lv

X := ∏
i≼v LX [i] where

LX [i] is the ith operator in LX . Due to the arguments in Sections 4.2 and 6.2 of [117], the
following codewords span the codespace C and define the encoding map C of C (Section 3.2.4):

|v⟩L =
∑

u∈Zr
2

Su
XLv

X |q⟩ . (B.61)

We now discuss how the codewords and logical operators of a stabiliser code C transform
when the codespace is acted upon by a unitary operator U . The codewords of the transformed
code C′ := UC are given by U |v⟩L so the encoding map of C′ is given by UC. The operator A
is a logical identity of C if and only if UAU−1 is a logical identity of C′. This is because:

(UAU−1)U |v⟩L = UA |v⟩L = U |v⟩L . (B.62)

As the stabiliser generators SX and SZ are elements of the logical identity group, they also
update via conjugation. The operator B is a logical B operator on C if and only if UBU−1

is a logical B operator on C′ because for all logical identities A of C the requirements of
Section 3.3.3 and Section 3.2.4 are met as follows:

[[UBU−1, UAU−1]] = U [[B,A]]U−1; and (B.63)
(UBU−1)UC = UBC = (UC)B. (B.64)

B.3.2 Eliminating Phase Components from Diagonal Stabiliser Generators

We now show how to find the vector q in Eq. (B.61) which allow us to eliminate signs from
the diagonal stabiliser generators of the non-CSS code C via conjugation by the operator
Q := XP2(0|q|0).
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The canonical diagonal stabiliser generators SZ are of form XP2(2pi|0|zi) where pi ∈ Z2 and
zi ∈ Zn

2 . Let Es be the binary matrix with rows of form (pi|zi) and let Ks := Ker Z2(Es). If
pi = 1 for any i, the top row of Ks is of form (1|q) and satisfies pi +q ·zi = 0 mod 2 for all i. Now
let Q := XP2(0|q|0) then we also have QXP2(2pi|0|zi)Q = XP2(2pi+2q·zi|0|zi) = XP2(0|0|zi).
Hence conjugation by Q eliminates the phase components of the diagonal stabiliser generators
as required. As Q is non-diagonal, the diagonal logical operators and identities may update on
conjugation by Q.

B.3.3 Eliminating Phase and Z-Components from Non-Diagonal Stabiliser
Generators

We now show how to find a diagonal level 2 Clifford operator D from Proposition B.3.1 which
allows us to eliminate the phase and Z-components of the non-diagonal stabilisers SX . Let |S⟩
be the state stabilised by the set of n independent operators SX ,SZ and LX . We can write |S⟩
as follows:

|S⟩ =
∑

u∈Zr
2,v∈Zk

2

Su
XLv

X |q⟩ =
∑

v
|v⟩L . (B.65)

Let SX and LX be the binary matrices formed from the X-components of SX and LX respectively.
Using the terminology of Proposition 5.1 of Ref. [117], |S⟩ is an XP state of precision N = 2
and so is a weighted hypergraph state of form:

|S⟩ = D
∑
u,v

|uSX + vLX + q⟩ = DQ
∑
u,v

|uSX + vLX⟩ . (B.66)

The operator D is a product of diagonal level 2 Clifford operators and can calculated via the
method in Algorithm 5.3.1 of Ref. [117]. Now let C′ be the CSS code specified by the X-checks SX

and X-logicals LX . Due to Section 3.2.3, codewords of C′ are of form |v⟩′
L := ∑

u |uSX + vLX⟩
and so the codewords of C can be written:

|v⟩L = DQ
∑

u
|uSX + vLX⟩ = DQ |v⟩′

L . (B.67)

Hence, C = DQC′ as required. Transforming a CSS code C′ by the diagonal operator D has
no effect on the diagonal stabiliser generators, logical identities or logical operators. However,
it can increase the weight of non-diagonal stabiliser generators and logical X operators, and so
increase the code distance.

Example B.3.1 (Perfect 5-Qubit Code)
Let C be the perfect 5-qubit code of [118] with stabiliser generators and logical X operator as
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follows:

S :=


XZZXI

IXZZX

XIXZZ

ZXIXZ

 ; X := ZIIZX (B.68)

. Let C′ be the CSS code with X-checks and X-logicals:

SX :=


10010
01001
10100
01010

 ; LX :=
(
00001

)
. (B.69)

We find that D = CZ01CZ12CZ23CZ01CZ34CZ40 satisfies C = DC′ using the conjugation
rule CZ01X0CZ01 = X0Z1. Whilst C has distance 3, C′ has distance 1. In the linked Jupyter
notebook, users can use the above method to find D,Q and C′ for various non-CSS stabiliser
codes from www.codetables.de.

https://github.com/m-webster/CSSLO/blob/main/notebooks/10.3_non-CSS.ipynb
https://github.com/m-webster/CSSLO/blob/main/notebooks/10.3_non-CSS.ipynb
http://www.codetables.de



