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Abstract

Multimodal task processes on different modalities simultaneously. Visual Question

Answering, as a type of multimodal task, aims to answer the natural question answering

based on the given image. To understand and process the image, many models to solve the

visual question answering task encode the object regions through the convolutional neural

network based backbones. Such an image processing method captures the visual features of

the object regions in the image. However, the relations between objects are also important

information to comprehensively understand the image for answering the complex question,

and whether such relational information is captured by the visual features of the object regions

remains opaque. To explicitly extract such relational information in images for visual question

answering tasks, this research explores an interpretable and structural graph representation

to encode the relations between objects. This research works on the three variants of Visual

Question Answering tasks with different types of images, including photo-realistic images,

daily scene pictures and document pages. Different task-specific relational graphs have been

used and proposed to explicitly capture and encode the relations to be used by the proposed

models. Such a relational graph provides an interpretable representation of the model inputs

and proves its effectiveness in improving the model performance in output prediction. In

addition, to improve the interpretation of the model’s prediction, this research also explores

the suitable local interpretation method to be applied to the VQA model.
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CHAPTER 1

Introduction

1.1 Background

Artificial Intelligence contains two significant subfields: Computer Vision and Natural Lan-

guage Processing. Computer Vision aims at image processing to understand the image

contents and recognize the image objects, including the tasks of object detection, image clas-

sification and instance segmentation. Natural Language Processing studies target language

processing and understanding, including the tasks of text classification, sentiment analysis,

reading comprehension, intent identification and language generation.

With the development in Computer Vision and Natural Language Processing techniques,

attention is driven to the integrated field of Computer Vision and Natural Language Processing,

which is well known as multimodal processing that includes the processing of multiple

modalities in different natures. Generally, the multimodal tasks in the integrated field of

Computer Vision and Natural Language Processing can be associated with various modalities,

including images, videos, texts and speech. However, the multimodal task is commonly

associated with images and texts in most of the existing multimodal research works. This

research’s scope of the multimodal task focuses on the two modalities: images and texts,

usually known as the vision-language task.

Vision-Language tasks include diverse tasks associated with the simultaneous understanding

and processing of images and texts, which can be generally divided into two directions:

generative tasks and classification tasks. The generative tasks focus on the generation of

output with the given input. For example, image captioning aims to generate the descriptive
1
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texts relevant to the given images. On the other hand, text-to-image generation tasks aim

to generate an image that contains relevant objects and scenes mentioned in the given texts.

Unlike generating the outputs in generative tasks, the classification tasks predict the output

from the predefined class list. One typical multimodal classification task is Visual Question

Answering.

Visual Question Answering (VQA) [7] is a task to answer natural language questions with

natural language answers based on the given images. It examines a model’s comprehensive

understanding of the image in the condition of the diverse question contents. VQA models

are expected to understand the question and locate the relevant image region to answer the

question. The answers are normally predicted from a predefined answer space that contains

all the possible answers corresponding to a specific dataset.

Since the VQA task was proposed, it developed and expanded into different variants to

examine the language and vision understandings from different aspects over diverse types of

images. Conventional VQA tasks mainly examine the photo-realistic image understandings

from the aspects of object and object attribute recognition. Taking the VQA v2 [56] dataset

as an example of conventional VQA, answering its question "Is this a horse?" requires

to recognize the object horse, and answering the question "What color is the hydrant?"

requires to recognize the attribute color of object hydrant respectively. The Clevr dataset

[83] proposed in 2017 raised the significance of objects’ relationship understanding and

the model’s reasoning ability in terms of the VQA task. Compared to the straightforward

questions in previous VQA v1 [7] and VQA v2 [56] datasets, questions of the Clevr dataset

require a series of inference steps to reach the answer. For instance, answering the question

"What colour is the cube to the right of the yellow sphere" requires following the question

logic to identify the yellow sphere, understand the relative positional relation to the right of

and recognize the object cube. The GQA dataset [74] proposed in 2019 extended such vision-

language inference ability over synthetic images and relationship understanding between

objects from the limited types of positional relations in the Clevr dataset to the much more

diverse semantic relation types over the large scale of photo-realistic images. For example,

in addition to the positional relation to the right of, question "Is the man to the right of the
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player that wears gloves?" in GQA dataset also contains the semantic relation wear between

the objects player and glove. With the development of Optical Character Recognition (OCR)

techniques in the field of computer vision to identify the textual characters from images,

TextVQA [174] and STVQA [19] datasets were proposed concurrently in 2019. Unlike the

images that contain only visual objects in the previous datasets, images in TextVQA and

STVQA mainly collect images that include various types of scene texts, such as the prices on

the price tags of products and the book titles on the book cover. Instead of querying about

the objects, questions in these datasets ask about the texts associated with the objects in the

images. For example, answering the question "What brand of soda is on the table?" requires

to recognize the brand texts on the queried object soda in addition to the recognition of object

soda and object table. In the meantime, the VQA task has been extended to text-dominated

images, such as scientific charts and document pages. Questions of such VQA datasets mainly

examine the contextual understanding of the texts in the images. The questions are designed

to be specific to the textual contents of each given image. For example, given an image of a

scanned letter, a question in DocVQA dataset [128] would be "Which company address is

mentioned on the letter?".

1.2 Research Problem and Aim

Models used to solve the VQA tasks are in essence deep neural networks (DNNs) [7, 18,

71, 74, 83]. However, DNNs have always been regarded as a black box due to its lack of

interpretability compared to the traditional machine learning model.

Neural networks mimic the hierarchical structures of neurons in the human brain to process

information among hierarchical layers. Each neuron receives the information from its prede-

cessors and passes the outputs to its successors, eventually resulting in a final prediction [136].

DNNs are neural networks with a large number of layers, meaning they contain up to billions

of parameters. Compared to interpretable machine learning models such as linear regressions,

where the few parameters in the model can be extracted as the explanation to illustrate influ-

ential features in prediction, or the decision trees, where a model’s prediction process can be
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easily understood by following the decision rules, the complex and massive computations

done by DNNs are hard to comprehend both for experts and non-experts alike. In addition,

the representations used and constructed by DNNs are often complex and incredibly difficult

to tie back to a set of observable variables in the image and natural language processing

tasks. As such, vanilla DNNs are often regarded as opaque ‘black-box’ models with neither

interpretable architectures nor apparent features to interpret the model outputs.

However, why should we want interpretable DNNs? One fundamental reason is that while the

recent application of deep learning techniques to various tasks has resulted in high levels of

performance and accuracy, these techniques still need improvement. As such, when applying

these models to critical tasks where prediction results can cause significant real-world impacts,

they are not guaranteed to provide faultless predictions. Furthermore, given any decision-

making system, it is natural to demand explanations for the decisions provided. For example,

the European Parliament adopted the General Data Protection Regulation (GDPR) in May

2018 to clarify the right of explanation for all individuals to obtain “meaningful explanations

of the logic involved” for automated decision-making procedures [58]. As such, it is legally

and ethically crucial for the application of DNNs to develop and design ways for these

networks to provide explanations for their predictions. In addition, explanations of predictions

would help specialists verify their correctness, allowing them to judge if a model is making

the right predictions for the right reasons. As such, increasing interpretability is vital for

expanding the applicability and correctness of DNNs.

When it comes to the interpretations of DNNs, it mainly focuses on explaining the model’s

predictions, which is also known as local interpretability. Such interpretation aims at gen-

erating explanations to the model’s output. However, less attention has been given to the

transparent representations of the model’s inputs, especially for the image representations in

the multimodal task.

When processing the images for multimodal tasks, the image is encoded by DNNs. Specific-

ally, images are represented by the feature maps after several Convolutional Neural Network

(CNN) layers or the sequence of object’s features extracted by the Faster-RCNN model [156].

Such image representations are then fed into the main multimodal task model together with
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the text representations. It is usually known that such representations resulting from the CNNs

or the Faster-RCNNs can capture the image patterns, such as colours or lines, on the whole

image level or the segmented object level. However, if these ambiguous numerical values of

the feature maps only capture the visual object’s attributes such as colors and shapes, how can

the relative positional or semantic relations between the objects in the images be represented?

Would there be an explicit and transparent representation to show the different relationships

between visual objects clearly? Can such relational information be extracted and encoded?

To answer these research questions, this research works on a transparent and interpretable

method for a straightforward representation of the relations between visual objects in

the images for diverse VQA tasks. Specifically, this research works on three variants of the

VQA task: 1) Conventional VQA; 2) TextVQA and 3) Document-based VQA. Conventional

VQA focuses on question-answering over photo-realistic images with diverse object types

and mainly examines image object recognition and question understanding. TextVQA,

extended from the Conventional VQA, focuses on question-answering over images containing

diverse scene texts. This task requires understanding the texts and recognizing the texts’

associated objects in images to answer the questions. Document-based VQA, as the most

recent proposed VQA task, requires understanding the specific document layout and compact

document contents of document images to answer the questions. For each task, a task-specific

relational graph is proposed and used to directly capture and encode the various relationship

types between the objects in images. In such relational graphs, objects that are segmented by

their bounding boxes in images are taken as the graph nodes, and relationships between objects

are taken as the graph edges. Such graph representations of images are more transparent and

human-understandable compared to the numerical feature maps resulting from the multiple

CNN layers. It is also clear that such relational information in the images can be explicitly

extracted, encoded and integrated into the model training. The research results of each VQA

task also show that using such relational features improves the model performance in answer

prediction. This research also explores the suitable local interpretable methods that can

be applied to the VQA task to improve the interpretations of the model’s outputs.
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FIGURE 1.1. Image-Question-Answer Examples of the Conventional VQA,
TextVQA and Document-based VQA task. (a): GQA dataset [74] of the
Conventional VQA task; (b): STVQA dataset [19] of the TextVQA task; (c):
DocVQA dataset [128] of the Document-based VQA task.

1.3 Thesis Outline and Research Workflow

Chapter 2 of this thesis is the literature review, which first explores the literature on the typical

local interpretable methods over the Natural Language Processing tasks and the multimodal

tasks. Section 2.1 includes the work Local interpretations for explainable natural language

processing: A survey. This literature review also includes the literature related to the scene

graph generation and usage of scene graphs in different multimodal tasks.

Chapter 3 is the work published as REXUP: I REason, I EXtract, I UPdate with Structured

Compositional Reasoning for Visual Question Answering [119]. This work focuses on the

conventional VQA with images that contain only visual objects. This work experiments on

the GQA dataset with photo-realistic images and compositional questions to examine the

model’s inference ability over diverse relationship understandings between the visual objects.

GQA dataset provides the ground truth scene graphs that annotate the positional and semantic

relations between visual objects, where the graph nodes are the visual objects segmented by

their bounding boxes and the attributes of objects in the image. The edges of scene graphs

are the relations between these objects. This work encodes the objects, object attributes and

the relations into semantic features, and process in the parallel branches with the object’s

visual features over a sequence of reasoning steps to reach the answer. This work is the first
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to directly integrate and encode the scene graphs as the additional semantic features for the

VQA model. Additionally, this work adopts the dot product attention mechanism and extracts

the attention scores over visual objects and question words as the local interpretation of the

model’s outputs.

Chapter 4 is the work SceneGATE: Scene-Graph based co-Attention networks for TExt

visual question answering [25]. This work is submitted to ACL workshop 2023 and is

currently under review. This work focuses on the TextVQA task, which targets the recognition

of scene texts in the images to answer the questions. Solving the TextVQA task requires

the recognition of texts and their relations with the associated visual objects. To explicitly

capture and represent the relationship between the texts and their associated visual objects in

the images, this work proposes a TextVQA-specific scene graph that explicitly regards the

texts as the attribute to its closest objects. Different relative positional relations are identified

between the objects, and between the objects and their attributes. This work also proposed

and compared the different methods to encode the scene graph embedding as the additional

input features for the answer prediction model. To explore the local interpretations, this work

also extracts the attention scores of the visual regions and regards the region with the highest

attention score as the most important features to the model’s output. However, different from

the work in Chapter 3, this work adopts the self-attention mechanism of the multimodal

transformer structure.

Chapter 5 is the work PDF-VQA: A New Dataset for Real-World VQA on PDF Documents

[43]. This work was submitted to ECML PKDD 2023 and is currently under review. This

work focuses on the document-based VQA task. This work fills the gap of the previous

document-related VQA dataset that focuses only on the contextual understanding questions

over the document pages and proposes a new document-based VQA dataset that emphasizes

the structural understanding of document layout components conditioned on diverse question

types. This dataset proposes spatial and logical relational graphs that annotate the positional

relationships and hierarchical relationships between the document layout components to

capture the positional and hierarchically structural relationship features between the document

layout components. Each document layout component segmented by the bounding box is
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regarded as the nodes in the graph, and the graph edges are their relations. This work proposed

a graph-based model that integrates such relational information, object visual features and

the semantic features of document texts for answering the questions based on both document

page level and the full document multi-page level.

Chapter 6 concludes the findings of this research and also discusses the trend of future works

in the direction of 1) development of global interpretation; 2) refinability of model; and 3)

further development of multimodal task with diverse modalities.

1.4 Contribution

In summary, this research explores and experiments on three different VQA tasks of different

types of images including photo-realistic images with only visual objects, images with various

scene texts, and images of text-dominated document pages. This research work was among

the first to research interpretable scene graph in visual-question answering. In particular, the

proposed REXUP and SceneGATE models with semantic-aware and position-aware scene

graphs have demonstrated superior performance on various types of visual-question answering

tasks, and enhance the interpretable decision making process. This research work also pioneers

the research direction of employing multi-modal interpretable structural and relational graph

as a core component of document-based question answering, and examined how to generalize

the model in different level of questions. In particular, this idea is implemented in the LoSpa

system over single and multiple-page document question answering tasks.

The detailed contribution of each work in this research can be summarized as follows:

(1) Compositional Reasoning of Conventional VQA task:

(a) propose the deep reasoning VQA model that process on both image and scene

graph to integrate object visual features and object-relationship features;

(b) apply a super-diagonal fusion mechanism to boost integration of different

features;
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(c) interpret the model’s inference process by extracting the attention weigths of

object region and question words at each reasoning step.

(2) Scene Graphs for TextVQA:

(a) propose the novel TextVQA-specific scene graph to transparently represent the

relationships between objects and scene texts in images;

(b) propose the semantic and positional relation aware attention mechanism to

integrate the scene graph features with other input features;

(c) increase the model’s local interpretation through the attention weights.

(3) Multimodal Relational Graph in Document-based VQA:

(a) introduce a fresh dataset for Document-based VQA that investigates various

aspects of document comprehension, including the recognition of document

elements and understanding the structural layout;

(b) the pioneer work of expanding the scope of document VQA questions, elevating

them from the page-level to encompass the entirety of the document;

(c) the first work that provides the explicit annotation of document component

relationships in the structural graph;

(d) present a robust foundational model by incorporating graph-based components.



CHAPTER 2

Literature review

This literature review explores the literature from two main aspects: 1) the common local

interpretable methods in natural language processing and multimodal tasks; 2) the interpretable

graph representation in natural language processing and multimodal tasks.

The first subsection 2.1 is the work of Local interpretations for explainable natural language

processing: A survey, which is submitted to ACM Computing Survey journal and is under

minor revision. This section mainly covers the section of interpretability definition, feature

importance and natural language generation of the local interpretable methods from the

submitted work. I formulated the scope of this submitted work, managed the writing planning

and execution, wrote the Introduction, Section 3.1 Feature Importance, Section 4.1 Evaluation

of Feature Importance Methods, Section 5 Discussion and Conclusion and Section 6 Future

Trend of Interpretability, critically revised and edited Section 3.2, created all tables and

graphs.

The second subsection 2.2 contains the literature of major interpretable graph representation,

including the scene graph generation and the usage of scene graph in different multimodal

tasks.

10
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2.1 Local Interpretable Methods

2.1.1 Definitions of Interpretability in Neural Network

While there has been much study of the interpretability of DNNs, there are no unified

definitions for the term interpretabilty, with different researchers defining it from different per-

spectives. The key aspects of interpretability used by these researchers below are summarized

as below:

2.1.1.1 Explainability vs Interpretability

The terms interpretability and explainability are often used synonymously across the field of

explainable AI [1, 27], with both terms being used to refer to the ability of a system to justify

or explain the reasoning behind its decisions. For example, [113, 178, 179, 198] primarily use

explainability or explainable, while [23, 158, 166, 187] primarily use interpretable or inter-

pretability. Overall, the machine learning community tends to use the term interpretability,

while the HCI community tends to use the term explainability [1]. Recent work has suggested

more formal definitions of these terms [27, 44, 58]. Following [44], interpretability is defined

as ‘the ability [of a model] to explain or to present [its predictions] in understandable terms

to a human.’ Explainability is taken to be synonymous with interpretability unless otherwise

stated, reflecting its general usage within the field.

2.1.1.2 Local and Global Interpretability

An essential distinction in interpretable machine learning is between local and global inter-

pretability. Following [58] and [44], local interpretability is taken to be ‘the situation in which

it is possible to understand only the reasons for a specific decision’ [58]. That is, a locally

interpretable model is a model that can give explanations for specific predictions and inputs.

Global interpretability is taken to be the situation in which it is possible to understand ‘the

whole logic of a model and follow the entire reasoning leading to all the different possible

outcomes’ [58]. A classic example of a globally interpretable model is a decision tree, in
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which the general behaviour of the model may be easily understood by examining the decision

nodes that make up the tree.

2.1.1.3 Post-hoc vs In-built Interpretations

Another important distinction is whether an interpretability method is applied to a model

after the fact or integrated into the internals of a model. The former is referred as a post-

hoc interpretation method [134], while the latter is an in-built interpretation method. As

Post-hoc methods are applied to model the fact, they generally do not impact the model’s

performance. Some post-hoc methods do not require any access to the internals of the model

being explained and so are model-agnostic. An example of a typical post-hoc interpretable

method is Local Interpretable Model-Agnostic Explanations (LIME) [157] algorithm, which

generates the local interpretation for one instance by permuting the original inputs of an

underlying black-box model. In contrast to post-hoc interpretations, in-built interpretations

are closely integrated into the model itself. The interpretation may come from the transparency

of the model, where the workings of the model itself are clear and easy to understand (for

example, a decision tree), or may come from an interpretation generated by the model in an

opaque manner (for example, a model that generates a text explanation during its prediction

process).

2.1.2 Feature Importance

Identifying the important input features that significantly impact a model’s prediction results

is a straightforward method of improving a model’s local interpretability, directly linking

model outputs to inputs. Important features can be, for example, words for text-based tasks or

image regions for image-based tasks. This paper focuses on the four main different methods of

extracting important features as the interpretation for the model’s outputs: rationale extraction,

input perturbation, attribution methods and attention weight extraction. We conclude the

typology of feature importance methods in Figure 2.1 and present the sample visualisations

of extracted features from inputs in Figure 2.2.
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Feature
Importance
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[103];
[16]; [45]
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[216];
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Input Per-
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[157]; [15];
[159]; [5];
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Generating
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[207];
[160]; [30]

Attention
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Works with
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[117]; [124];
[194]

Question
Answering

[186]; [169];
[183]

Neural
Machine

Translation
[13]; [121]

Visual Question
Answering

[116]; [214];
[217]; [119]

Image
Captioning [209]; [6]

Debates over
Attention
as valid

explanation

Support [204]; [77]

Against [14]; [34];
[79]; [167]

Works to
improve
attention

faithfulness

[14]; [33]

Attribution
Methods

[182]; [64];
[135]; [46];
[40]; [12]

FIGURE 2.1. Typology of local interpretable methods by identifying the
important features from inputs.

2.1.2.1 Rationale Extraction

Rationale extractions are usually used as the local interpretable method for Natural Language

Processing (NLP) tasks of sentiment analysis and document classification. Rationales are
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FIGURE 2.2. Sample visualizations of identified important features from
the inputs detected by four different methods. (a): Rationale Extraction on
sentiment analysis task; (b) Attention Weights on Visual Question Answering
task: (c) Word importance from Attribution methods on machine translation
task; (d) Input perturbation on sentiment analysis task and the expansion of
counterfactual explanation.

short and coherent phrases from the original textual inputs and represent the critical textual

features that contribute most to the output prediction. These identified textual features work

as the local explanation that interprets the information the model primarily pays attention

to when making the prediction decision for a particular textual input. The good rationales

valid for the explanation should lead to the same prediction results as the original textual

inputs. As this work area developed, researchers also made extra efforts to extract coherent

and consecutive rationales to use them as more readable and comprehensive explanations.

The rationale extraction methods can be mainly divided into two streams: 1) a sequential

selector-predictor stacked model, where the selector first selects the rationales from the

original textual inputs and then pass to the predictor for the prediction result; 2) the adversarial-

based model that involves the parallel models to calibrate the rationales extracted by the

selector. This literature summarises several iconic and milestone works of rationale extractions

for each stream.
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For the selector-predictor stream, [103] is one of the first works for the rationale extraction

in NLP tasks. The selector process first generates a binary vector of 0 and 1 through a

Bernoulli distribution conditioned on the original textual inputs. This binary vector will

then be multiplied over the original inputs where 1 indicates the selection of input words

as rationales and 0 indicates the non-selection, resulting in a sparse input representation

that indicates which textual tokens are selected as rationales and which tokens are not. The

predictor will then process based on such information. Since the selected rationales are

represented with non-differentiable discrete values, the REINFORCE algorithm [205] was

applied for optimization to update the binary vectors for the eventually accurate rational

selection. [103] performed rationale extraction for a sentiment analysis task with the training

data that has no pre-annotated rationales to guide the learning process. The training loss is

calculated through the difference between a ground truth sentiment vector and a predicted

sentiment vector generated from extracted rationales selected by the selector model. Such

selector-predictor structure is designed to mainly boost the interpretability faithfulness, i.e.

selecting valid rationales that can predict the accurate output as the original textual inputs. To

increase the readiness of the explanation, [103] used two different regularizers over the loss

function to force rationales to be consecutive words (readable phrases) and limit the number

of selected rationales (i.e. selected words/phrases). [16] followed the same selector-predictor

structure as [103]. The main difference is that they used rectified Kumaraswamy distribution

[101] instead of Bernoulli distribution to generate the rationale selection vector, i.e. the binary

vector of 0 and 1 to be masked over textual inputs. Kumaraswamy distribution allows the

gradient estimation for optimization, so there is no need for the REINFORCE algorithm

to do the optimization. To boost the short and coherent rationales for better readability

and comprehensibility, [16] also applied a relaxed form of L0 regularization [114] and the

Lagrangian relaxation to encourage adjacent words selected or not selected together. Different

from the above methods, where rationale extraction is wrapped in an end-to-end model and

has not used annotated rationales during the training of rationale selection, [45] uses rationales

annotated by external experts as guidance during the training of rationale selector to generate

the local explanations (short and coherent rationales) that are consistent with these external

human-annotated rationales.
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For the stream of adversarial-based models, a third module is usually added in addition to the

selector-predictor stacks, functioning as a guide to boost the faithfulness of rationales and

improve the comprehensibility of interpretation. For example, to boost the faithfulness of

extracted rationales, [216] inserted the target labels of sentiment analysis as additional inputs

into the rationale selector to boost its participation in prediction. Additionally, to improve

the comprehensibility that prevents the rationale selector from selecting meaningless small

snippets, this work added a third element: a complement predictor. This additional module

predicts the labels for original textual inputs based on non-rationale words. The complement

predictor and the generator work much like the discriminative and generative networks in

generative adversarial networks (GANs) [55]: the rationale selector aims to extract as many

prediction-relevant words as possible as rationales to avoid the complement predictor from

being able to predict the actual textual label. Similar to [216], [28] also involved a third

module where the target labels of the original inputs are used as additional inputs, but with

the addition that these target labels can be incorrect. This work also proposed a counterfactual

rational generator to extract relevant rationales that cause false predictions. A discriminator is

then applied to discriminate between the actual and counterfactual rationale generator. Recent

work such as [168] reduces the complexity of using three modules but constructs a guider

model that operates over the original textual inputs for prediction and the rationale selector

model in the adversarial-based architecture to encourage the final prediction vectors from

two separate models to be close to each other, and thus achieve the faithfulness of extracted

rationales. Also, to achieve better comprehensibility, [168] proposed language models as a

regularizer, which significantly contributes to the better fluency of the extracted rationale by

selecting consecutive tokens that describe the rationale well.

2.1.2.2 Input Perturbation

Another method for identifying important features of textual inputs is input perturbation.

For this method, a word (or a few words) of the original input is modified or removed (i.e.

‘perturbed’), and the resulting performance change is measured. The more significant the

model’s performance drop, the more critical these words are to the model and therefore are

regarded as important features. Input perturbation is usually model-agnostic, which does not
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influence the original model’s architecture. The main difference among the proposed input

perturbation methods lies in how to perturb the tokens or phrases from original inputs into the

new instances.

[157] proposed LIME model that can be used as an interpretable method for any black-box

model. The main idea of LIME is the approximation of a black-box model with a transparent

model using variants of original inputs. For natural language processing tasks such as text

classification, words of original textual inputs are randomly selected and removed from the

inputs, using a binary representation to mark the inclusion of words. [15] applied LIME to a

QA task for identifying the important words in a question, where the words in the questions

are considered to be features, while the associated context (i.e. text containing the answer to

the given question) was held constant. The results indicate that in QA tasks, the complete

sentence of question plays a minor role, and just a small amount of question words are

sufficient for correct answer prediction.

[159] argued that the important features identified by [157] are based on word-level (single

token) instead of phrase-level (consecutive tokens) features. Word-level features relate to only

one instance and cannot provide general explanations, which makes it difficult to extend such

explanations to unseen instances. For example, in sentiment analysis, ‘not’ in ‘The movie

is not good’ is a contributing feature for negative sentiment but is not a contributing feature

for positive sentiment in ‘The weather is not bad’. The single token ‘not’ is insufficient

as a general explanation for unseen instances as it will lead to different meanings when

combined with different words. Thus, [159] emphasized the phrase-level features for more

comprehensive local interpretations and proposed a rule-based method for identifying critical

features for predictions. Their proposed algorithm iteratively selects predicates from inputs as

key tokens while replacing the rest of the tokens with random tokens that have the same POS

tags and similar word embeddings. If the probability of classifying the perturbed text into the

same class as that of the original text is above a predefined threshold, the selected predicates

will be considered as the ultimate key features to interpret the prediction results.

Similar to [157, 159], [5] also proposed a model-agnostic interpretable method to relate inputs

to outputs through the use of perturbed inputs generated by a variational auto-encoder applied
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to the original input. The perturbed input is supposed to have a similar meaning to the original

input. A bipartite graph is then constructed to link these perturbed inputs and outputs, and the

graph is then partitioned to highlight the relevant parts to show which inputs are relevant to

the specific output tokens.

[51] proposed a method to gradually remove unimportant words from original texts while

maintaining the model’s performance. The remaining words are then considered as the

important features for prediction. The importance of each token of the textual input is

measured through a gradient approximation method, which involves taking the dot product

between a given token’s word embedding and the gradients of its output with respect to its

word embedding [47]. The authors show that while the reduced inputs are nonsensical to

humans, they are still enough for a given model to maintain a similar level of accuracy when

compared with the original inputs.

The input perturbation method seems straightforward in identifying the significant input

features by measuring the target task’s performance changes with new perturbed instances.

However, there are also works questioning the faithfulness of input perturbation. For example,

[175] conducted several experiments and argued that when the distributions of perturbed

instances and original instances are less similar, the explanations of LIME [157] are not faith-

ful. Another problem of most input perturbation explanations is that the identified important

features are mostly independent tokens instead of coherent phrases like argued by [159],

which limits comprehensibility. The recent new track of local explanation: counterfactual

explanations [30, 160, 207] are generated via the approaches of input perturbation to provide

counterfactual explanations to show what would happen if some certain features are replaced

and prove those features are important for particular model decision. These counterfactual

explanations extend beyond the input perturbation from the simple word-level to present

the interpretation differently with the more straightforward counterfactual examples. Such

presentation of the input perturbation interpretation would give normal users a more intuitive

understanding.
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2.1.2.3 Attention weights

Attention weight is a weighted sum score of input representation in intermediate layers of

neural networks [13]. Extracting attention weights for inputs to provide local interpretations

for predictions is commonly used among models that utilise attention mechanisms. For

NLP tasks with only textual inputs, tokens with higher attention weights are considered

to have more impact on the outputs during the neural network training and are, therefore,

regarded as the more important features. Attention weights have been used for explainability

in sentiment analysis [117, 124, 194], question answering [169, 183, 186], and neural machine

translation [13, 121]. In tasks with both visual and textual inputs, such as Visual Question

Answering [116, 214, 217] and image captioning [6, 209], attention weights are extracted

from both images and questions to identify the contributing features from both modalities.

In the case of such multi-modal tasks, it is also important to boost the consistency between

the attended image regions and sentence tokens for a plausible explanation. In recent years,

different attention mechanisms have been proposed, including the self-attention mechanism

[190] and the co-attention mechanism for multi-modal inputs [217], aiming for better attention

weights calculation that genuinely reflects the contributing factors to the final prediction.

Though attention mechanisms have proved their effectiveness in performance increment in

different tasks and have been used as the indicators of important features to explain the

model’s prediction results, there have always been debates arguing about the faithfulness of

attention weights as the interpretation for neural networks.

[14] proposed the concept of combinatorial shortcuts caused by the attention mechanism. It

argued that the masks used to map the query and key matrices of the self-attention [190]

are biased, which would lead to the same positional tokens being attended regardless of the

actual word semantics of different inputs. [34] detected that the large amounts of attention of

BERT [39] focus on the meaningless tokens for interpretation such as the special token [SEP].

[79] argued that the tokens with high attention weights are not consistent with the important

tokens identified by the other interpretable methods, such as the gradient-based measures.

[167] applied the method of intermediate representation erasure and claimed that attention
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can only indicate the importance of even intermediate components and are not faithful enough

to explain the model’s decision from the level of the actual inputs.

In contrast, [204] proposed the work of ‘Attention is not not explanation’ specifically against

the arguments in [79], arguing that whether attention weights are faithful explanations is

dependent on the definition of explanation and conducted four different experiments to prove

when attention can be used as the explanation. A similar view is also proposed by [77],

illustrating that under some instances, attention maps over input can be considered as a

faithful explanation, which can be verified by the erasure method [8, 51], i.e. whether or not

that erasing the attended tokens from inputs would change the prediction results.

In order to improve the faithfulness of attention as the explanation, some recent works have

proposed different methods. For example, [14] proposed a method of generating unbiased

mask distribution by using random mask distributions to get attention weights through solely

training the attention layers while fixing the other downstream parts of the model, which

will therefore scale the attention weights towards tokens that are truly correlated with the

predicted label. [33] introduced three different task-scaling mechanisms that scaled over the

word representations from different aspects before passing to the attention mechanism and

claimed that such scaled word representations help to produce a more faithful attention-based

explanation.

Overall, the dilemma of using inputs with high attention weights as the explanation to a black-

box model’s decision is associated with the various definition and inconsistent evaluations

of explanation faithfulness from different works. [77] also proposed in their work that the

possible approach to solving this issue is to construct a unified evaluation of the degree of

faithfulness either from the level of a specific task or from the level of sub-spaces of the input

space. Nevertheless, regardless of the debates over the faithfulness of attention, explanation

by attention weights has a lower level of readability. Compared to rationale extraction works

that explicitly force the consecutive rationales to be extracted for better comprehensibility,

current works using attention as explanation neglect such interpretability aspect. Therefore,

even in some cases where the input tokens with high attention weights could work as faithful
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explanations, it would be hard for non-experts to understand the explanation well with non-

coherent highlighted tokens of the textual inputs. However, for the multimodal task such as the

visual question answering, some works have attention maps over the images as the explanation

[119] or the part of the explanations [206], the attended region are usually consecutive pixels

of the images, which can be more straightforward to be understood by non-expert users

compared to the attention map over pure texts.

2.1.2.4 Attribution Methods

Another method of detecting important input features that contribute most to a specific

prediction is attribution methods, which aim to interpret prediction outputs by examining

the gradients of a model. Common attribution methods include DeepLift [173], Layer-

wise relevance propagation (LRP) [12], deconvolutional networks [220] and guided back-

propagation [176].

Extracting model gradients allows for identifying high-contributing input features to a given

prediction. However, directly extracting gradients does not work well with regards to two

key properties: sensitivity and implementation invariance. Sensitivity emphasizes that if we

have two inputs with one differing feature that lead to different predictions, this differing

feature should be noted as important to the prediction. Implementation invariance means that

the outputs of two models should be equivalent if they are functionally equivalent, whether

their implementations are the same or not. Focusing on these properties, [182] proposed an

integrated gradient method. Integrated gradients are the accumulative gradients of all points

on a straight line between an input and a baseline point (e.g. a zero-word embedding). [64]

applied this method to natural machine translation to find the contribution of each input word

to each output word. Here, the baseline input is a sequence of zero embeddings in the same

length as the input to be translated. [135] applied integrated gradients to a question-answering

task to identify the critical words in questions and found that only a few words in a question

contribute to the model answer prediction.

Besides extracting the gradients, scoring input contributions based on the model’s hidden

states is also used for attribution. For example, [46] proposed a post-hoc interpretable method
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that leaves the original training model untouched by examining the hidden states passed along

by recurrent neural networks (RNNs). [40] applied LRP [12] to neural machine translation to

provide interpretations using the hidden state values of each source and target word.

The attribution methods are the preliminary approaches for deep learning researchers to

explain the neural networks through the identified input features with outstanding gradients.

The idea of the attribution methods were mostly proposed before the mature development and

vast researches of rationale extraction, attention mechanisms and even the input perturbation

methods. Compared to the other input feature explanation methods, the attribution methods

hardly consider the interpretation’s faithfulness and comprehensibility as the other three input

feature explanation methods. Visualizing the identified features from inputs would be at

the same plausible level as that of the other three feature importance methods to non-expert

users, but the attribution methods do not work to form the interpretation into coherent sub-

phrases for better readability and easier understanding. Thus, compared to rationale extraction,

attention weights extraction and input perturbation, using attribution methods to generate the

interpretation is more like a diagnosis method for deep learning experts to understand the

model’s decision and learn the model’s functionality.

2.1.2.5 Datasets

Tasks used for examining the interpretable methods discussed above include sentiment

analysis, reading comprehension, natural machine translation, question answering and visual

question answering. Below we list and summarise some common datasets that are used for

these tasks:

(1) BeerAdvocate review dataset [129] is a multi-aspect sentiment analysis dataset which

contains around 1.5 million beer reviews written by online users. The average length

of each review is about 145 words. These reviews are associated with the overall

review of the beer or a particular aspect, such as the appearance, smell, palate and

taste. Each written review also has a corresponding overall rating for beer and

another four different ratings for the four review aspects, where each rating ranges

from 0 to 5.
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(2) IMDB [122] is a large movie review usually used for binary sentiment classification.

The dataset contains 50k reviews labelled as positive or negative and is split in half

into train and test sets. The average length for each review is 231 words and 10.7

sentences.

(3) WMT is a workshop for natural machine translation. Tasks announced in these

workshops include translation of different language pairs, such as French to English,

German to English and Czech to English in WMT14, and Chinese to English

additionally added in WMT17. The sources are normally news and biomedical

publications. For many papers examining interpretable methods, the commonly used

datasets are French to English news and Chinese to English news.

(4) HotpotQA [213] is a multi-hop QA dataset that contains 113K Wikipedia-based

question-answer pairs where multiple documents are supposed to be used to answer

each question. Apart from questions and answers, the dataset also contains sentence-

level supporting facts for each document. This dataset is often used to experiment

with interpretable methods for identifying sentence-level significant features for

answer prediction.

(5) SQuAD [153] is a reading comprehension dataset that contains 100k question-answer

pairs from Wikipedia articles. SQuAD v2 [152] proposed in 2018 includes around

50K additional unanswerable questions to find the answerable questions with similar

semantic meanings.

(6) VQA datasets are used for multi-modal tasks with both textual and visual inputs.

VQA v1 [7] is the first visual question-answering dataset. VQA v1 contains 204,721

images, 614,163 questions and 7,964,119 answers, where most images are authentic

images extracted from MS COCO dataset [110] and 50,000 images are newly

generated abstract scenes of clipart objects. VQA v2 [56] is an improved version of

VQA v1 that mitigates the biased question problem and contains 1M pairs of images

and questions as well as ten answers for each question. Work on VQA commonly

utilises attention weight extraction as a local interpretation method.
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2.1.3 Natural Language Explanation

Natural Language Explanation (NLE) refers to the method of generating free text explanations

for a given pair of inputs and their prediction. In contrast to rational extraction, where the

explanation text is limited to that found within the input, NLE is entirely freeform, making it

an incredibly flexible explanation method. This has allowed it to be applied to tasks outside of

NLP, including reinforcement learning [48], self-driving cars [93], and solving mathematical

problems [111]. Here, it focuses on methods in which explanations are generated without

any or minimal scaffolding, that is, methods that form ‘natural language explanations’ by

filling in templates are not covered, but rather cases where the explanation model is tasked

with generating the entirety of the explanation content itself.

2.1.3.1 Multimodal Natural Language Explanation

Multimodal NLE focuses on generating natural language explanations for tasks that involve

multiple input modalities, including images and video. While explanations may span multiple

modalities, here it focuses on cases where the explanations significantly involve natural

language. Much work, including text-only NLE, stems from [65], which draws upon image

captioning research to generate explanations for image classification predictions of bird

images. The model first makes a prediction using an image classification network, and then

the features from the final layers of the network are fed into an Long-Short Term Memory

(LSTM) decoder [68] to generate the explanation text. The explanation is trained with

a reinforcement learning-based approach both to match a ground truth correction and to

be able to be used to predict the image label itself. Later work has directly built on this

model by improving the use of image features used during the explanation generation [201],

using a critic model to improve the relevance of the explanations [66], and conditioning on

specific image attributes [188]. [142] make use of an attention mechanism to augment the

text-only explanations with heatmap-based explanations and find that training a model to

provide both types of explanations improves the quality of both the text and visual-based

explanations. Most of these earlier approaches use learned LSTM decoders to generate the

explanations, learning a language generation module from scratch. Most of these methods
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generate their explanations post-hoc, making a prediction before generating an explanation.

This means that while the explanations may serve as valid reasons for the prediction, they

may also not truthfully reflect the reasoning process of the model itself. [206] attempt to

build a multimodal model whose explanations better match the model’s reasoning process by

training the text generator to generate explanations that can be traced back to objects used for

prediction in the image as determined by gradient-based attribution methods. They explicitly

evaluate their model’s faithfulness using LIME and human evaluation and find that this

improves performance and does indeed result in explanations faithful to the gradient-based

explanations.

More recently, NLE datasets have been developed for VQA [75], self-driving car decisions

[93], arcade game agents [49], visual commonsense [221], physical commonsense [151],

image manipulation detection [36], explaining facial biometric scans [131], as well as for

more general vision-language benchmarks [90].

The recent rise of large pretrained language models [39, 145, 148] has also impacted mul-

timodal NLE, with recent approaches replacing the standard LSTM-based decoder with

pretrained text generation models such as GPT-2 [11, 90, 126] with a good deal of success.

[90] additionally finds that using a pre-trained unified vision-language model along with

GPT-2 works best over other combinations of vision and language-only models. This suggests

that further utilizing the growing number of large pre-trained multimodal models such as

VLBERT [181], UNITER [32], or MERLOT [222] may lead to improved explanations for

multimodal tasks. However, while these models often do yield higher-quality explanations

that better align with human preferences, the use of large unified transformer models means

that the faithfulness of these explanations in representing the reasoning process of the model

is hard to determine, as the exact reasoning processes used by these large models is hard to

uncover.

2.1.3.2 Text-only Natural Language Explanation

Earlier work examining explanations accompanying NLP tasks largely examined integrating

them as inputs for fact-checking, concept learning, and relation extraction [3, 61, 177]. These
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efforts provided useful datasets for examining natural language explanations, but the first

work examining generating natural language explanations for NLP tasks in an automated

fashion was done by [23], using a set of explanations gathered for the SNLI dataset [20]

called e-SNLI. Similar to the multimodal models discussed above, the baseline models for

e-SNLI proposed in [23] are made up of two parts: a predictor module and an explanation

module, with the best performing model first generating explanations and then using these

explanations to make predictions. While this tighter integration of explanation generation

into the overall model may suggest more faithful and higher-quality explanations, [24] shows

that this model can still provide explanations that are inconsistent with their predictions,

suggesting that either the explanations are faulty or the model uses a flawed decision-making

process. Several works try to improve the faithfulness of such models by using generated

explanations as inputs to the final predictor model [100, 150, 227, 229]. By ‘explaining

then predicting’, the explanations are by construction used as part of the prediction process.

This may aid overall model performance by exposing latent aspects of the task [62]. [76]

additionally shows summarisation models can be trained to serve as explanation generation

models for this construction. However, recent work [203] suggests that jointly producing

explanations actually results in models with a stronger correlation between the predicted

label and explanation, suggesting these models are more faithful than explain-then-predict

methods despite the different construction. Further evaluation linking the underlying model’s

predictive mechanics with the generated explanations (e.g. [146] for highlighted rationales)

may work to investigate further how much these explanations align with the underlying model.

Beyond Natural Language Inference (NLI) tasks, other early tasks to which NLE was applied

include commonsense QA [150] and user recommendations [140]. While early work used

human-collected explanations, [140] shows that using distant supervision via rationales can

also work well for training explanation-generating models. [104] additionally embed extra

non-text features (i.e., user id, item id) by using randomly initialized token embeddings. This

provides a way to integrate non-text features besides the use of large pre-trained multimodal

models.
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Much like multimodal NLE, large pre-trained language models have also been integrated

into text-based NLE tasks, and most recent papers make use of these models in some way.

[150] introduce an NLE dataset for commonsense QA (‘cos-e’) and use a pre-trained GPT

model [147] to generate explanations used to make a final prediction. More recently, wT5

[137], which follows the T5 model [149] in framing explanation generation and prediction

as a purely text-to-text task, generates the prediction followed by a text explanation. More

recent work has shown that using these models allows good explanation generation (and

even may improve performance) for tasks and settings with little data [50, 80, 125, 215].

Automatically collecting explanations from existing datasets or generating explanations

using existing models can also provide extra supervision for learning to generate NLEs in

limited-data settings [21]. This highlights the strength of NLEs: by framing the explanation

as a text generation problem, explanation generation is as simple as fine-tuning or even

few-shot prompting a large language model to produce explanations, often with fairly good

results. However, while these approaches are often impressive, generated explanations can

still ‘hallucinate’ data not actually present in the training or input data and fail to generalize

to challenging test sets such as HANS [230].

2.1.3.3 Natural Language Explanation in Dialog

While the above work has all assumed a setup where a model is able to generate only one

explanation and has no memory of previous interactions with a user, some work has examined

dialog-based setups where a user is assumed to repetitively interact with a model. [123]

propose a model for the components of an explanation dialog comprising of two sections: an

explanation dialog, which consists mainly of presenting and accepting explanations; and an

argument dialog, where the provided explanation is challenged with an argument. [155] draw

on QA systems to design a model for explaining basic algorithms, presenting the model as an

‘interactive dialog that allows users to ask for specific kinds of explanations they deem useful’.

More recently, [109] use feedback from users as explanations to supervise and improve

an open domain QA model, showing how models can improve by taking into account live

feedback from users. Given the success of using human-written instructions to train large



28 2 LITERATURE REVIEW

Ref. Year Dataset Name Task Human-written explanations
[23] 2016 e-SNLI NLI ✓

[81] 2016 - Science Exam QA Extracted from
auxiliary documents

[111] 2017 - Algebraic Word Problems ✓
[177] 2017 - Email Phsishing classification ✓
[61] 2018 BabbleLabble Relation Extraction ✓

[3] 2018 LIAR-PLUS Fact-checking Extracted from
auxiliary documents

[150] 2019 cos-e Commonsense QA ✓
[193] 2019 - Sense making ✓

[10] 2019 ChangeMyView Opinion changing Extracted from
reddit posts

[224] 2020 WinoWhy Winograd Schema ✓

[96] 2020 PubHealth Medical claim fact-checking Extracted from
auxiliary documents

[199] 2020 - Relation Extraction,
Sentiment Analysis ✓

[180] 2020 e-FEVER Fact-checking Generated using GPT-3
[2] 2021 ECQA Commonsense QA ✓

[21] 2021 e-δ-NLI δ-NLI Rationale Generation
Extracted from

auxiliary documents,
automatically generated

TABLE 2.1. Summary of datasets with natural language explanations for text-
based tasks.

models [164, 200], making further use of human feedback to improve and guide the way

explanations are generated may further improve the quality and utility of NLEs.

2.1.3.4 Datasets

There are a number of NLE datasets for NLP tasks, which are summarised in Table 2.1.

Many of these datasets consist of human-generated explanations applied to existing datasets,

or make use of some automatic extraction method to retrieve explanations from supporting

documents. While most datasets simply present one explanation per input sample, others

present setups where multiple explanations are attached to each sample, but only one is valid

[193, 224]. [202] also summaries existing NLE-for-NLP datasets, focusing also on text-based

rationale and structured explanation datasets. A list of datasets for multimodal NLE in Table

2.2.
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Ref. Year Dataset Name Task Human-written explanations
[75] 2018 VQA-X Visual QA ✓
[75] 2018 ACT-X Activity Recognition ✓

[93] 2018 BDD-X Self-Driving Car
Decision Explanation ✓

[106] 2018 VQA-E Visual QA Generated from captions
[49] 2019 - Frogger Game ✓
[221] 2019 VCR Visual Commonsense Reasoning ✓
[151] 2020 ESPIRIT Physical Reasoning ✓
[102] 2020 VLEP Event Prediction ✓
[36] 2021 EMU Understanding edits ✓
[90] 2021 E-ViL Vision-language Tasks ✓

TABLE 2.2. Summary of datasets with natural language explanations for
multimodal tasks.

2.1.3.5 Challenges and Future work

NLE is very attractive as a human-comprehensible approach to interpretation: rather than

trying to utilise model parameters, NLE-based approaches essentially allow their models

to ‘talk for themselves’. Despite being freely generated, these explanations still display

a degree of faithfulness in their agreement with gradient-based explanation methods and

can be quite robust to noise [203]. This suggests that this approach exhibits a degree of

faithfulness and stability despite a lack of formal guarantee that these methods have either

quality. Furthermore, pipeline methods that use explanations for predictions can further

guarantee that the generated explanations represent the information being used for prediction,

even if their performance suffers compared to joint prediction models. NLEs have the benefit

of being extremely comprehensible: unlike text rationales or gradient methods, which often

require some understanding of the model being used, natural language explanations can

be easily read and understood by anyone, and tailoring explanations to a specific audience

is ‘simply’ a matter of training a model on similar explanations, which is even possible in

low-data scenarios [50, 80, 125, 215]. Finally, the trustworthiness of NLE methods is not

often explicitly evaluated. The focus has been put on the overall ‘explanation quality’ when

evaluating NLEs [35, 76]. While rating ‘explanation quality’ may in some ways suggest how

trustworthy the annotators find the explanations, more careful consideration of the type of
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contract-based trust [78] an NLE-based model may involve is required in determining the

utility of deploying these models in real-world scenarios.

Overall, NLE is a very flexible and attractive explanation method, with the potential to

greatly improve model explainability without requiring complex setups: just train your model

to output explanations [137]. However, evaluation must be carefully considered due to

issues with automated metrics [35] and the human-generated explanations themselves [26].

In addition, further exploring the link between generated NLEs and other explanation or

interpretability methods may further yield insights into models and improve our understanding

of the faithfulness of this method.

2.2 Interpretable Graph Representation

Scene graph is an interpretable graph representation that proposed by [84] to represent the

semantic content of a scene. The objects, attributes of objects and the relationships between

the objects are connected to describe the image in a structural graph. For example, for an

image that contains the yellow fries on the tray, the objects fries and tray are the nodes in the

scene graph, and the positional relationship on between fries and tray is the edge between their

nodes. Compared to describing the semantic contents of image in tedious natural languages,

scene graphs captures the most significant semantic information and are also more efficient to

be encoded for the further tasks.

2.2.1 Scene Graph Generation

Scene graphs are usually extracted from images using features of object regions. For example,

the Graph R-CNN model proposed by [212] to generate the scene graphs includes the three

typical steps: 1) extract the object regions by Faster-RCNN; 2) a relation proposal network is

used to prune the relational connections between objects that have low relatedness score; 3)

For graph context integration, an attentional graph convolution network (aGCN) is used to

capture contextual information between object and relations. Apart from the object regions,

relationships between objects is significant and challenging to predict. Early works focus on
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the local relationship prediction [115, 163], which simply converts the scene graph generation

task into the relationship prediction between the localized object regions. However, this

neglects the contextual information that are not geometrically close to the detected objects. To

improve the relation prediction with contextual information in scene graph generation, [208]

proposed the message passing mechanism to pass the contextual information between a pair

of bipartite subgraph of the scene graph, and the eventual scene graph will be updated through

RNN. Several variants of such message passing mechanism have proved the effectiveness

in relation prediction for scene graph generation [107, 108, 223]. Differently, [195] applied

the memory network to memorize the contextual information in relation prediction. The

memory network memorizes the information of previous objects during the iteration of RNN.

Scene graph generation depends on the existing dataset. However, the existing dataset such as

Visual Relationship Detection dataset [115] has limited and biased annotation of object and

relation types. Thus, to overcome this limitation, some recent scene graph generation works

proposed to integrate the commonsense knowledge extracted from the external knowledge

base to generate the diverse types of relations in scene graph [31, 57, 219].

Different from generating scene graphs from object regions in images, some works also

propose to generate scene graphs based on natural language based on the linguistic structures.

Existing methods of text to scene graph generation are relying on dependency parsing to

identify the parent of each word and their corresponding linguistic types. [165] parsed the

image description to dependency tree and generate a semantic graph. [165] then proposed

two different methods to generate the scene graph based on the generated semantic graph:

1) Rule-based parser: Nine different dependency patterns are defined to extract the objects,

relations and attributes from such semantic graph; 2) Classifier-based model: L2-regularized

maximum entropy classifier is used to predict the relation based on the extracted object and

attribute candidates from the semantic graph. [197] combines the dependency parsing and

scene graph parsing together into one step by modifying dependency parsing model.
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2.2.2 Scene Graph in Multimodal Tasks

Scene graphs have been used as an interpretable and structural input representation in various

multimodal tasks. For example, scene graphs can be directly used for image generation. [82]

used graph convolution networks to encode objects in scene graph, the embedding of which

is used to generate a scene layout containing the predicted bounding boxes and segmentation

masks of objects, the final image is produced on this scene layout through cascaded refinement

network. Extended from [82], [9] added appearance features and positional information to

scene graph in order to incrementally generate sequence of images through augmented scene

graphs. Additionally, scene graph has proved its effectiveness in VQA tasks. [192] integrated

the information from the scene graph of image and semantic graph parsed from question to

predict the answer for GQA dataset. [67] took VQA task as the best path finding task over

the scene graph, and train the reinforcement learning algorithm to conduct the policy-guided

random walk until the answer is reached on the scene graph.



CHAPTER 3

Scene Graph for Compositional Reasoning in VQA

This Chapter is the published work of REXUP: I REason, I EXtract, I UPdate with Struc-

tured Compositional Reasoning for Visual Question Answering [119]. I formulated the

research aim of this work, analysed the dataset and the experiment results, and wrote the

whole paper for publication.

This work is the first stage of this research, exploring the application of scene graph in

conventional VQA task.

VQA is a challenging multi-modal task that requires not only the semantic understanding

of images and questions, but also the sound perception of a step-by-step reasoning process

that would lead to the correct answer. So far, most successful attempts in VQA have been

focused on only one aspect; either the interaction of visual pixel features of images and

word features of questions, or the reasoning process of answering the question of an image

with simple objects. This work proposes a deep reasoning VQA model (REXUP- REason,

EXtract, and UPdate) with explicit visual structure-aware textual information, and it works

well in capturing step-by-step reasoning process and detecting complex object-relationships

in photo-realistic images. REXUP consists of two branches, image object-oriented and scene

graph-oriented, which jointly works with the super-diagonal fusion compositional attention

networks. REXUP is evaluated on the benchmark GQA dataset and conduct extensive ablation

studies to explore the reasons behind REXUP’s effectiveness. The best model significantly

outperforms the previous state-of-the-art, which delivers 92.7% on the validation set, and

73.1% on the test-dev set.

33
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3.1 Introduction

Vision-and-language reasoning requires the understanding and integration of visual contents

and language semantics and cross-modal alignments. Visual Question Answering (VQA) [7]

is a popular vision-and-language reasoning task, which requires the model to predict correct

answers to given natural language questions based on their corresponding images. Substantial

past works proposed VQA models that focused on analysing objects in photo-realistic images

but worked well only for simple object detection and yes/no questions [92, 116, 218]. To

overcome this simple nature and improve the reasoning abilities of VQA models, the Clever

dataset[83] was introduced with compositional questions and synthetic images, and several

models [69, 144] were proposed and focused on models’ inferential abilities. The state-of-

the-art model on the Clevr dataset is the compositional attention network(CAN)[73], which

generates reasoning steps attending over both images and language-based question words.

However, the Clevr dataset is specifically designed to evaluate reasoning capabilities of a

VQA model. Objects in the Clevr dataset images are only in three different shapes and four

different spatial relationships, which results in simple image patterns. Therefore, a high

accuracy on Clevr dataset hardly prove a high object detection and analysis abilities in photo-

realistic images, nor the distinguished reasoning abilities of a VQA model. To overcome the

limitations of VQA and Clevr [7, 56], the GQA dataset [74] includes photo-realistic images

with over 1.7K different kinds of objects and 300 relationships. GQA provides diverse types

of answers for open-ended questions to prevent models from memorizing answer patterns and

examine the understanding of both images and questions for answer prediction.

The state-of-the-art models on the Clevr and VQA dataset suffered large performance reduc-

tions when evaluated on GQA [6, 73, 141]. Most VQA works focus on the interaction between

visual pixel features extracted from images and question features while such interaction does

not reflect the underlying structural relationships between objects in images. Hence, the

complex relationships between objects in real images are hard to learn. Inspired by this

motivation, REXUP (REason, EXtract, UPdate) network is proposed to capture step-by-step

reasoning process and detect the complex object-relationships in photo-realistic images with

the scene graph features. A scene graph is a graph representation of objects, attributes of
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objects and relationships between objects where objects that have relations are connected via

edge in the graph.

The REXUP network consists of two parallel branches where the image object features and

scene graph features are respectively guided by questions in an iterative manner, constructing a

sequence of reasoning steps with REXUP cells for answer prediction. A super-diagonal fusion

is also introduced for a stronger interaction between object features and question embeddings.

The branch that processes scene graph features captures the underlying structural relationship

of objects, and will be integrated with the features processed in another branch for final

answer prediction. The model is evaluated on the GQA dataset and it uses the official GQA

scene graph annotations during training. To encode the scene graph features, it extracted the

textual information from the scene graph and used Glove embeddings to encode the extracted

textual words in order to capture the semantic information contained in the scene graph. In

the experiments, the proposed REXUP network achieved the state-of-the-art performance on

the GQA dataset with complex photo realistic images in deep reasoning question answering

task.

3.2 Related Work and Contribution

This related work explores research trends in diverse visual question answering models,

including fusion-based, computational attention-based, and graph-based VQA models.

3.2.1 Fusion-based VQA

Fusion is a common technique applied in many VQA works to integrate language and image

features into a joint embedding for answer prediction. There are various types of fusion

strategies for multi-modalities including simple concatenation and summation. For example,

[172] concatenated question and object features together and pass the joint vectors to a

bidirectional GRU for further processes. However, the recent bilinear fusion methods are

more effective at capturing higher level of interactions between different modalities and have

less parameters in calculation. For example, based on the tensor decomposition proposed
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in [18], [17] proposed a block-term decomposition of the projection tensor in bilinear fusion.

[22] applied this block-term fusion in their proposed MuRel networks, where sequences of

MuRel cells are stacked together to fuse visual features and question features together.

3.2.2 Computational Attention-based VQA

Apart from fusion techniques, attention mechanisms are also commonly applied in VQA for

the integration of multi-modal features. Such attention mechanisms include soft attention

mechanism like [6, 73] using softmax to generate attention weights over object regions and

question words, self attention mechanism like [139, 217] that applied dot products on features

of each mode, and co-attention mechanisms like in [54, 112] using linguistic features to guide

attentions of visual features or vice versa.

3.2.3 Graph Representations in VQA

In recent years, more works have been proposed to integrate graph representations of images

in VQA model. [141] proposed a question specific graph-based model where objects are

identified and connected with each other if their relationships are implied in the given question.

There are also works use scene graph in VQA like we did. [171] integrates scene graphs

together with functional programs for explainable reasoning steps. [63] claimed only partial

image scene graphs are effective for answer prediction and proposed a selective system to

choose the most important path in a scene graph and use the most probable destination node

features to predict an answer. However, these works did not apply their models on GQA.

3.2.4 REXUP’s Contribution

This work moves away from the classical attention and traditional fusion network, which have

been widely used in simple photo-realistic VQA tasks and focus mainly on the interaction

between visual pixel features from an image and question embeddings. Instead, it focuses on

proposing a deeper reasoning solution in visual-and-language analysis, as well as complex

object-relationship detection in complex photo-realistic images. This work proposes a new
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(A) REXUP Network (B) REXUP Cells

FIGURE 3.1. REXUP Network and REXUP cell. (a) The REXUP network
includes two parallel branches, object-oriented (top) and scene graph-oriented
(bottom). (b) A REXUP cell contains reason, extract, and update gate which
conduct multiple compositional reasoning and super-diagonal fusion process

deep reasoning VQA model that can be worked well on complex images by processing both

image objects features and scene graph features and integrating those with super-diagonal

fusion compositional attention networks.

3.3 Methodology

The REXUP network contains two parallel branches, object-oriented branch and scene-graph

oriented branch, shown in Fig. 3.1a. Each branch contains a sequence of REXUP cells where

each cell operates for one reasoning step for the answer prediction. As shown in Fig. 3.1b,

each REXUP cell includes a reason, an extract and an update gate. At each reasoning step,

the reason gate identifies the most important words in the question and generates a current

reasoning state with distributed attention weights over each word in the question. This

reasoning state is fed into the extract gate and guides to capture the important objects in the

knowledge base, retrieving information that contains the distributed attention weights over

objects in the knowledge base. The update gate takes the reasoning state and information

from extract gate to generate the current memory state.
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3.3.1 Input Representation

Both Object-oriented branch and Scene graph-oriented branch take question and knowledge

base as inputs; image object-oriented knowledge base (OKB) and scene-graph-oriented know-

ledge base (SGKB). For a question q ∈ Q with maximum U words, contextual words are

encoded via a pre-trained 300d Glove embedding and passed into bi-LSTM to generate a se-

quence of hidden states qw1...U with d dimension for question contextual words representation.

The question is encoded by the concatenation of the last backward and forward hidden states,
←−−qw1 and−−→qwU . Object features are extracted from a pre-trained Fast-RCNN model, each image

contains at most 100 regions represented by a 2048d object feature. For each oth object in an

image, linear transformation converts the object features with its corresponding coordinates

to a 512d object region embedding. The SGKB is the matrix of scene graph objects each of

which is in 900 dimensions after concatenating with their corresponding attribute and relation

features. To encode the scene graph object features, all the objects names, their attributes

and relations in the scene graph are initialized as 300d Glove embedding. For each object’s

attributes, it takes the average of those attributes features A. For each object’s relations, it first

averages each relation feature rs ∈ R and the subject feature oj ∈ O that it is linked to, and

then average all such relation-subject features that this object on ∈ O has as its final relation

feature. The object feature, attribute feature and relation feature are concatenated together as

one scene graph object feature SGo,r of the whole scene graph.

3.3.2 REXUP Cell

With the processed input, each branch consists of a sequence of REXUP cells where each cell

operates for one reasoning step for the answer prediction.

3.3.2.1 Reason Gate

At each reasoning step, the reason gate in each REXUP cell i = 1, ..., P takes the question

feature q, the sequence of question words qw1, qw2, ..., qwU and the previous reasoning state

ri−1 as inputs. Before being passed to the reason gate, each question q is processed through a
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linear transformation qi = W d×2d
i q + bdi to encode the positional-aware question embedding

qi with d dimension in the current cell. A linear transformation is then processed on the

concatenation of qi and the previous reasoning state ri−1,

rqi = W d×2d [ri−1, qi] + bd (3.1)

in order to integrate the attended information at the previous reasoning step into the question

embedding at the current reasoning step.

Then an element-wise multiplication between rqi and each question word qwu, where u =

1, 2, ..., U , is conducted to transfer the information in previous reasoning state into each

question word at the current reasoning step, the result of which will be processed through a

linear transformation, yielding a sequence of new question word representations rai,1, ..., rai,u

containing the information obtained in previous reasoning state. A softmax is then applied to

yield the distribution of attention scores rvi,1, ..., rvi,u over question words qw1, ..., qwu.

rai,u = W 1×d(rqi ⊙ qwu) + b (3.2)

rvi,u = softmax(rai,u) (3.3)

ri =
U∑

u=1

rvi,u · qwu (3.4)

The multiplications of each rvi,u and question word qwu are summed together and generates

the current reasoning state ri that implies the attended information of a question at current

reasoning step.

3.3.2.2 Extract Gate

The extract gate takes the current reasoning state ri, previous memory state mi−1 and the

knowledge base features as inputs. For the OKB branch, knowledge base features are the

object region features OBo, and for the SGKB branch, knowledge base features are the scene

graph features SGo,r. For each object in the knowledge base, it first multiplied its feature

representation with the previous memory state to integrate the memorized information at

the previous reasoning step into the knowledge base at the current reasoning step, the result
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of which is then concatenated with the input knowledge base features and projected into d

dimensions by a linear transformation. This interaction SI ′i,o,r generates the knowledge base

features that contains the attended information memorized at the previous reasoning step as

well as the yet unattended information of knowledge base at current reasoning step. The

process of the extract gate in the SGKB branch can be shown in the following equations, where

the interaction SI ′i,o,r contains the semantic information extracted from the object-oriented

scene graph.

SIi,o,r =
[
W d×d

m mi−1 + bdm
]
⊙
[
W d×d

s SGo,r + bds
]

(3.5)

It then makes SI ′i,o,r interact with ri to let the attended question words guide the extract gate

to detect important objects of knowledge base at the current reasoning step. In the SGKB

branch, such integration is completed through a simple multiplication as shown in (3.7).

SI ′i,o,r = W d×2d [SIi,o,r, SGo,r] + bd (3.6)

eai,o,r = W d×d(ri ⊙ SI ′i,o,r) + bd (3.7)

However, in OKB branch, SGo,r in Equation (3.5) and (3.6) is replaced with the object

region features OBo, and generated interaction I ′i,o, which will be integrated with ri through

a super-diagonal fusion [17] as stated in Equation (8), where θ is a parameter to be trained.

Super-diagonal fusion projects two vectors into one vector with d dimension through a

projection tensor that would be decomposed into three different matrices during calculation

in order to decrease the computational costs while boosting a stronger interaction between

input vectors. The resulted Fri,I′i,o
is passed via a linear transformation to generate eai,o.

Fri,I′i,o
= SD(ri, I

′
i,o; θ) (3.8)

eai,o = W d×dFri,I′i,o
+ bd (3.9)

Similar to the process in the reason gate, eai,o,r and eai,o are then processed by softmax

to get the distribution of attention weights for each object in the knowledge base. The

multiplications of each eai,o,r/eai,o and knowledge base SGo,r/OBo are summed together to
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yield the extracted information ei.

evi,o,r = softmax(eai,o,r) and evi,o = softmax(eai,o) (10)

ei =
O∑

o=1

evi,o,r · SGo,r and ei =
O∑

o=1

evi,o ·OBo (11)

3.3.2.3 Update Gate

A linear transformation is applied to the concatenation of the extracted information ei and

previous memory state mi−1 to get mprev
i .

mprev
i = W d×2d [ei,mi−1] + bd (12)

mi = σ(r′i)mi−1 + (1− σ(r′i))m
′
i (13)

To reduce redundant reasoning steps for short questions, sigmoid function is applied upon

mprev
i and r′i, where r′i = W 1×dri + b1, to generate the final memory state mi.

The final memory states generated in the OKB branch and SGKB branch respectively are

concatenated together as the ultimate memory state mP for overall P reasoning steps. mP is

then integrated with the question sentence embedding q for answer prediction. This work sets

P = 4.

3.4 Evaluation

3.4.1 Evaluation Setup

3.4.1.1 Dataset

The main research aim is proposing a new VQA model that provides not only complex object-

relationship detection capability, but also deep reasoning ability. Hence, this work chose

the GQA that covers 1) complex object-relationship: 113,018 photo-realistic images and

22,669,678 questions of five different types, including Choose, Logical, Compare, Verify and

Query, and 2) deep reasoning tasks: over 85% of questions with 2 or 3 reasoning steps and 8%
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of questions with 4+ reasoning steps. The GQA is also annotated with scene graphs extracted

from the Visual Genome [98] and functional programs that specify reasoning operations for

each pair of image and question. The dataset is split into 70% training, 10% validation, 10%

test-dev and 10% test set.

3.4.1.2 Training Details

The model is trained on GQA training set for 25 epochs using a 24 GB NVIDIA TITAN RTX

GPU with 10.2 CUDA toolkit. The average per-epoch training times and total training times

are 7377.31 seconds and 51.23 hours respectively. This work sets the batch size to 128 and

used an Adam optimizer with an initial learning rate of 0.0003.

3.4.2 Performance Comparison

In Table. 3.1, the proposed model is compared to the state-of-the-art models on the validation

and test-dev sets of GQA. Since the GQA test-dev set does not provide pre-annotated scene

graphs, the method proposed in [223] is used to predict relationships between objects and

generate scene graphs from images of GQA test-dev set for the evaluation procedure. However,

the quality of the generated scene graphs are not as good as the pre-annotated scene graphs in

the GQA validation set, which lead to the decreased performance on test-dev. Nevertheless,

the proposed REXUP model still achieves the state-of-the-art performance with 92.7% on

validation and 73.1% on test-dev. Compared to [6, 73, 184] that only used the integration

between visual pixel features and question embedding through attention mechanism, the

proposed REXUP model applies super-diagonal fusion for a stronger interaction and also

integrates the scene graph features with question embedding, which help to yield much higher

performance. Moreover, the proposed REXUP model greatly improves over [70], which

used the graph representation of objects but concatenated the object features with contextual

relational features of objects as the visual features to be integrated with question features

through the soft attention. The significant improvement over [70] indicates that the parallel

training of OKB and SGKB branch can successfully capture the structural relationships of

objects in images.
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Methods Val Test-dev
CNN+LSTM [74] 49.2 -

Bottom-Up [6] 52.2 -
MAC [73] 57.5 -

LXMERT [184] 59.8 60.0
single-hop [70] 62 53.8

single-hop+LCGN [70] 63.9 55.8
Our Model 92.7 73.1

TABLE 3.1. State-of-the-art performance comparison on the GQA dataset

# OKB SD SGKB Val Test-dev
1 O X X 62.35 56.92
2 O O X 63.10 57.25
3 O X O 90.14 72.38
4 O O O 92.75 73.18

TABLE 3.2. Results of ablation study on validation and test-dev set of GQA.
‘O’ and ‘X’ refers to the existence and absence of scene-graph oriented know-
ledge branch(SGKB) and super-diagonal(SD) fusion applied in object-oriented
knowledge branch(OKB) branch respectively

3.4.3 Ablation study

The ablation study is conducted to examine the contribution of each component in the proposed

REXUP model. As shown in Table 3.2, integrating object-oriented scene graph features is

critical in achieving a better performance on the GQA. Using only OKB branch leads to a

significant drop of 29.65% in the validation accuracy and 15.93% in the test-dev accuracy.

The significant performance decrease also proves the importance of semantic information of

objects’ structural relationships in VQA tasks. Moreover, applying the super-diagonal fusion

is another key reason of the model’s good performance on GQA. The ablation study compared

performances of models that apply super-diagonal fusion and models that apply element-wise

multiplication. The results show that using element-wise multiplication causes a drop of

2.61% on the validation set and 0.8% on the test-dev set. It still shows that the concrete

interaction between image features and question features generated by super-diagonal fusion

contributes to an improved performance on the GQA.
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# of cells Val Test-dev
1 90.97 72.08
2 90.98 72.13
3 92.67 72.56
4 92.75 73.18

TABLE 3.3. Parameter Testing with different number of the REXUP cell

3.4.4 Parameter Comparison

Sequences of REXUP cells will lead to sequential reasoning steps for the final answer

prediction. The three gates in each cell are designed to follow questions’ compositional

structures and retrieve question-relevant information from knowledge bases at each step. To

reach the ultimate answer, a few reasoning steps should be taken, and less cells are insufficient

to extract the relevant knowledge base information for accurate answer prediction, especially

for compositional questions with longer length. In order to verify this assumption, experiments

have been conducted to examine the model’s performances with different numbers of REXUP

cells in both branches. The results of different performances are shown in Table 3.3. From

the result, it can be seen that the prediction accuracy on both validation and test-dev set will

gradually increase (90.97% to 92.75% on validation and 72.08% to 73.18% on test-dev) as

the cell number increases. After experiment, it can conclude that four REXUP cells are best

both for clear presentation of reasoning capabilities and a good performance on the GQA.

3.4.5 Interpretation

To have a better insight into the reasoning abilities of the REXUP model, the linguistic and

visual attention weights that the model computes at each reasoning step are extracted to

visualize corresponding reasoning processes. Taking the first row in Fig. 3.2 as an example,

at the first reasoning step, concrete objects - man’s hand and head obtain high visual attention

score. When it comes to the second and third reasoning step, linguistic attention focuses on

wearing and corresponding visual attention focuses on man’s shirt and pants. This indicates

that the proposed REXUP model’s abilities in capturing the underlying semantic words of

questions as well as detecting relevant objects in image for answer prediction. Moreover,
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FIGURE 3.2. Visualization of important image objects and question words at
each reasoning step. Object regions with high attention weights are framed
with white bounding boxes. The thicker the frame, the more important the
object region is. Question words with high attention weights are colored blue
in the question.

the REXUP model’s good understanding of both images and questions is also shown when

given different questions for a same image. For example, in the second row in Fig. 3.2, the

model successfully captures the phone in image for the question, but for images of third row

in Fig. 3.2, the dog is detected instead. It is also found that sometimes the predicted answer is

correct even though it’s different from the answer in dataset. For example, in the first image

of Fig. 3.3a, the REXUP model assigns a high visual attention score to wetsuit in image

when question words person and wearing are attended. The REXUP model then gives the
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(A)

(B)

FIGURE 3.3. Figure 3.3a shows examples when the ground truth answer
and our prediction are both correct to the given question. Figure 3.3b shows
examples when our prediction is more accurate than the ground truth answer
in dataset

prediction wetsuit, which is as correct as shoe considering the given image and question.

Similarly, in the second image of Fig. 3.3a, both white bus and red bus are spatially on the

right of garbage. The REXUP model captures both buses but assigns more attention to the

red bus that is more obvious on the picture and predicts no, which is also a correct answer to

the question. In addition, it is found that in some cases the proposed REXUP model’s answer

is comparatively more accurate than the annotated answer in dataset. For example, for first

image of Fig. 3.3b, pen, as a small area surrounded by fence to keep animal inside, is more
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accurate than the annotated answer yard. Likewise, the bed and quilt are actually different in

shape but both in white color, which makes the proposed REXUP model’s answer correct and

the ground truth answer incorrect.

3.5 Conclusion

In conclusion, the REXUP network worked well in both capturing step-by-step reasoning

process and detecting a complex object-relationship in photo-realistic images. The proposed

model has achieved the state-of-the-art performance on the GQA dataset, which proves the

importance of structural and compositional relationships of objects in VQA tasks. Extracting

the semantic information of scene graphs and encoding them via textual embeddings are

efficient for the model to capture such structural relationships of objects. The parallel training

of two branches with object region and scene graph features respectively help the model to

develop comprehensive understanding of both images and questions.



CHAPTER 4

Scene Graph for TextVQA

This Chapter is the work SceneGATE: Scene-Graph based co-Attention networks for TExt

visual question answering [25] submitted to the ACL workshop 20231. I formulated the

research aim, designed the method, analysed the dataset, proposed and implemented the scene

graph construction, and wrote the whole paper.

This work steps from the conventional VQA task with images that contain only visual objects

towards the VQA task with images that contain visual objects as well as the diverse type of

scene texts. This task is commonly known as TextVQA. To answer the TextVQA questions, it

requires the recognition of visual objects and the related texts.

Most TextVQA approaches focus on integrating objects, scene texts and question words by a

simple transformer encoder. But this fails to capture the semantic relations between different

modalities. The paper proposes a Scene Graph-based co-Attention Network (SceneGATE)

for TextVQA, which reveals the semantic relations among the objects, Optical Character

Recognition (OCR) tokens and the question words. It is achieved by a TextVQA-based scene

graph that discovers the underlying semantics of an image. This work created a guided-

attention module to capture the intra-modal interplay between the language and the vision

as a guidance for inter-modal interactions. To explicitly teach the relations between the

two modalities, this work proposed and integrated two attention modules, namely a scene

graph-based semantic relation-aware attention and a positional relation-aware attention. This

work conducted extensive experiments on two benchmark datasets, Text-VQA and ST-VQA.

It is shown that the proposed SceneGATE method outperformed existing ones because of the

scene graph and its attention modules.

1Once accepted, this chapter will be updated with the accepted version.
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4.1 Introduction and Related Works

Text Visual Question Answering (TextVQA) asks questions about the texts in the images

of daily scenes that contain various textual information, such as brand name and price tags.

Most existing TextVQA models rely on Optical Character Recognition (OCR) techniques

to extract the textural characters from images as OCR tokens and then integrate such OCR

token features with image and question features into the same joint embedding space through

different mechanisms to get the answer representation. For example, [174] used a contextual

attention mechanism and [71] applied a multi-modal transformer encoder. To further capture

the relations between OCR tokens and their truly related objects in images, some works

integrated the positional information between objects and OCR tokens. For example, [60]

applied position-guided attention to identify the related objects for an OCR token and integrate

such information into its embedding. [53] builds a graph neural network to encode OCR

token features with its locationally related objects through graph structure. [87] also used the

graph structure to capture the relative position information between OCR tokens and objects.

[52] constructed a role-aware graph setting edge value as the relative distance between object

and OCR tokens and applied graph attention to identifying the important relations.

However, assuming locationally closeness as "relatedness" could result in ambiguous rela-

tionships because irrelevant objects and the actual related objects might locate in similar

positions around the same OCR token. In this work, we propose an explicit representation of

the relationships between OCR tokens and their associated objects by constructing a novel

scene graph structure that is specifically for TextVQA. Scene graph [82] is a graph structure

that annotates the attributes of objects and the relationships between objects of an image. Our

TextVQA scene graph assigns OCR tokens as the attributes of objects to explicitly represent

the affiliation of OCR tokens to their related objects. The scene graph embedding is encoded

via the semantic embeddings of the objects and OCR tokens in the scene graph. Therefore,

compared to previous works, our scene graph can also capture the relationships between ob-

jects and OCR tokens from the semantic aspect. A semantic relation-aware attention module

is then applied to identify the important relations to answer a given question. Moreover, we

propose a Scene Graph based co-Attention Network (SceneGATE) that includes a co-attention



50 4 SCENE GRAPH FOR TEXTVQA

FIGURE 4.1. Architecture of our SceneGATE model

module with two attention units: self-attention that boosts the intra-interactions for each

modality and the guided-attention unit that uses the question features to guide the attention

learning for the image and OCR token features. A positional relation-aware attention module

is applied to the integrated visual features of objects and OCR tokens. The SceneGATE

network operates on the two branches of scene graph features and the visual-level integrated

multi-modal features in parallel, which enables relationship learning from both positional and

semantic levels. The overall architecture of SceneGATE can be found in Figure 4.1.

The main contributions of this work can be summarized as

(1) the first attempt to introduce a novel scene graph generation framework for the

TextVQA environment and use the scene graph for image representation in the

TextVQA task;

(2) propose and integrate Scene Graph-based Semantic Relation-Aware Attention with

Positional Relation-Aware Attention to establish a complete interaction between

each question word and visual features.
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4.2 SceneGATE - Input Representations

This work proposed a scene graph based co-attention network for TextVQA task, the archi-

tecture is shown in Figure 4.1. It first describes the input representations, the scene graph

generation and the scene graph encoding methods in Section 4.2. It then explains the co-

attention networks for multi-modality semantic and positional relation integration in Section

4.3.

4.2.1 Input Representations

Given question words w1, ..., wt, each word is encoded into a d-dimensional Bidirectional

Encoder Representations from Transformers (BERT) embedding [39], the weights are then

fine-tuned during training. For objects in each image, we obtain the appearance features

for maximum 100 objects by the Faster-RCNN model pretrained on the Visual Genome

dataset [99]. We concatenate the appearance features of each object with its corresponding

bounding box coordinates to represent each object region. For the OCR tokens, we extract

their appearance features from the images using the same pretrained Faster-RCNN model.

Each OCR token2 is also encoded by 300-dimensional pretrained FastText embeddings3.

Following [71], we concatenate the appearance features, FastText embeddings, Pyramidal

Histogram of Characters (PHOC) [4] features and the bounding box coordinates of each OCR

token to get the d′-dimensional enriched OCR embedding.

4.2.2 Scene Graph Construction

Scene graph is a graph structure SG = (V , E) that denotes the relationships between objects

as well as the associated attributes of each object for an image, where objects sgo ∈ O,

attributes sga ∈ A and relationships sgr ∈ R are set as nodes of the graph. In this work, we

2Google Cloud OCR Extractor https://cloud.google.com/products/ai/
3FastText embedding pre-trained with subword information on Wikipedia 2017, UMBC WebBase corpus

and statmt.org news dataset: https://fasttext.cc/docs/en/english-vectors.html

https://cloud.google.com/products/ai/
https://fasttext.cc/docs/en/english-vectors.html
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construct a novel scene graph structure that is specific for TextVQA task to represent the

affiliation between OCR tokens and the associated object regions.

For each object in an image, we compare its bounding box coordinates with the other objects

in the image. We have defined 11 different relation types: inside, surrounding, to the right of,

to the left of, under, above, top right, bottom right, top left, bottom left4 and overlap. We also

compare the bounding box coordinates of each OCR token with all the objects in the image

and assign this OCR token as the attribute of the object whose bounding box surrounds the

OCR token’s bounding box with the highest Intersection over Union (IoU) score. Finally,

we get the triplet of (sgoi , sgr, sgoj) for every two objects and the pair of (sgoi , sgai) for each

object that has attributes. We use bi-directional edges in the scene graph.

4.2.3 Scene Graph Embedding

We use different methods to encode the scene graph based on whether the (Scene Graph-based)

Semantic Relation-Aware (SRA) Attention is applied or not. We will describe the methods in

details in this section. We will report our findings from the ablation studies in Section 4.5.2,

when the SRA attention is not applied.

When SRA Attention is applied, we initialize the node features of each object and attributes

with a 300-dimensional embedding. They are stacked together as the node embedding

matrix MatrixP×300, where P is total number of object and attribute nodes of each scene

graph. We then add an extra relationship type self to the 11 pre-defined relationship types

as mentioned in Section 4.2.2 in order to denote the relationship of each node to itself. In

addition to triplet of (sgoi , sgr, sgoj) denoting the relationships between every two objects,

we further add the relationship inside and surrounding between objects and their attributes

to explicitly show and encode the existing semantic relationships between the objects and

their associated OCR tokens. Hence, the object-attribute pair (sgoi , sgai) now becomes a

triplet of (sgoi , sgr, sgai) where sgr = surrounding, and (sgai , sgr, sgoi) where sgr would be

4The semantic relation types can be defined in various way if it can be represented in different semantic
categories. This will be encoded in the categorical embedding in Section 4.2.3
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inside. The 12 relationship types are then converted into numeric labels of 1 to 12 to build the

adjacency matrix that covers all the object nodes and attribute nodes of a scene graph.

When SRA Attention is not applied, we encode each scene graph according to [119]. We

first initialize the node embedding for all objects, relationship and attribute nodes in 300-

dimension, and then update each object node embedding with its associated attribute nodes

embeddings and all the relationship nodes embeddings as well as their associated subject

node embeddings. Specifically, for each sgoi , we update its embedding to a 900-dimensional

embedding by concatenating two additional embeddings: 1) the average of all the related

relationship embeddings, where each relationship embedding is the average of the embeddings

of the relationship node and the subject node that in the triplet of (sgoi , sgr, sgoj) for sgoi .

2) the average of all the embeddings of the associated attribute nodes that connected to sgoi .

The updated object node embeddings are stacked into a matrix MatrixN×900 as the scene

graph representations for each scene graph, where N is number of total object nodes in each

scene graph. We also propose two approaches to initialise the node features: Pretrained word

embedding and GCN-based Embedding as illustrated in Section 4.2.3.1 and 4.2.3.2. The

performances for these two approaches are compared in Section 4.5.2.

4.2.3.1 Pre-trained Word Embedding

Each node is initialized by either a 300-dim pre-trained GloVe5 or FastText. For words with

multiple tokens, we take the average of each token’s embedding as the node embedding.

4.2.3.2 GCN-based Embedding

Graph Convolutional Networks (GCN) take the node embedding matrix and the adjacency

matrix as inputs. They are propagated over all nodes, and result in a matrix with the updated

node features. We construct one graph based on all the unique categories of objects, rela-

tionships and attributes nodes across all the scene graphs of all the images in the dataset,

and propagate them over a 2-layer GCN for the updated node representations following

5GloVe embedding pre-trained on the Wikipedia and Gigaword5 corpus: https://nlp.stanford.edu/projects/
glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Equation (4.1).

H(l+1) = f
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(4.1)

H(l) at layer l = 0 is the input node features matrix XGCN ∈ RM×M where each node is

represented by one-hot encoding and M is the total number of nodes. Based on the triplets

of (sgoi , sgr, sgoj) and the pairs of (sgoi , sga) in the scene graphs, the objects are connected

with the related relations and the associated attributes in the adjacency matrix Ã. We assign a

weight 1 to all the connected edges and 0 to non-edges in Ã. D̃ is the degree matrix computed

based on Ã such that D̃ii =
∑

j Ãij . We trained two different GCNs in terms of different node

labels. In the object-GCN, we manually categorise all the objects types into 60 super-classes

based on the hypernym of the synset of each object token and use this 60 super-classes as the

label of each object node during GCN training. In the attribute-GCN, we label each attribute

node with the attribute tokens’ NER types6, where we have 8 different classes: CONSUMER

GOOD, EVENT, LOCATION, NUMBER, ORGANIZATION, PERSON, WORK OF ART

and OTHER. The outputs of the second layer of object-GCN H
(l2)
obj and attribute-GCN H

(l2)
att

are then passed to a minimum pooling layer as in Equation (4.2) to get the final node feature

matrix X
′
GCN ∈ RM×d.

Poolingmin = min(H
(l2)
obj , H

(l2)
att ) (4.2)

The node features of X ′
GCN are then used to as the initial node representations for object,

relationship and attribute to generate the scene graph embedding of each scene graph.

4.3 SceneGATE - Co-Attention Networks

For multi-modality integration, we apply a guided-attention module over the inputs, and

introduce two parallel branches of scene graph-based semantic relation aware attention and

positional relation aware attention layers.

6We used Google Cloud NLP API to identity the entity type: https://cloud.google.com/natural-language/
docs/analyzing-entities

https://cloud.google.com/natural-language/docs/analyzing-entities
https://cloud.google.com/natural-language/docs/analyzing-entities
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4.3.1 Self Attention Module

The Self Attention (SA) module consists of a multi-head attention layer and a feed-forward

layer with ReLU activation and dropout [189]. The input matrix X is transformed to three

matrices that are in same dimension: query, key, and value with the learnable weights. These

three matrices are then fed into a multi-head attention layer for the calculation of scaled

dot-product attention. We respectively apply two SA modules for our two sets of inputs X:

1) the question features to obtain the self-attended question representations T ; and 2) the

combination of object appearance features, the enriched OCR token features as described

in 4.2.1 and the answer token features from the decoder to obtain the attended visual-level

Object-OCR features and decoder hidden states V = Vobj ∪ Vocr ∪D.

4.3.2 Guided Attention Module

The Guided Attention (GA) module shares the same structure and hyper-parameters as that for

the SA module, but the inputs of the multi-head attention layer are the feature matrix X and

the transformed key and value matrices of another feature matrix Y . In the GA module, we

use the self-attended question representations T as the feature matrix Y to guide the attention

learning with the attended visual-level Object-OCR features V that functions as the input

feature matrix X . Finally, we get the question-guided Object-OCR features and decoder

hidden states V ′ = V ′
obj ∪ V ′

ocr ∪D′.

4.3.3 Semantic Relation-Aware Attention

We use the Transformer encoder [189] with 12 heads as the backbone for our Semantic

Relation-Aware (SRA) Attention Layer. As illustrated in 4.2.3, we annotated 12 pre-defined

different relationships sgr ∈ R between every two object nodes (sgoi , sgr, sgai) and 2 rela-

tionship types between object and their attributes (sgai , sgr, sgoi) in the scene graph. We

introduce the special attention mechanism that each head of the transformer will only attend

to certain nodes of the scene graph. In other words, we only let each node to attend to

nodes that are connected by some certain types of relationships Rj for j-th head in the SRA
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Attention Layer, where Rj is a subset of the 12 relationships R and contains only κ number of

relationship types. A bias term β is added to the calculation of the scaled dot-product attention.

When β = 0, the attention weights would be calculated normally between the two nodes,

considering an edge is mapped to some relationship types sgr ∈ Rj that the j-th head of SRA

Attention Layer is supposed to attend to. When β = −∞, the attention weights between two

nodes would also become −∞, considering an edge is mapped to a set of relationship types

sgr /∈ Rj . Since each head is meant to attend to a specific sub-information in a scene graph,

the calculation of attention is only limited to a given set of nodes. In order to manage which

relationship types and the number of relationship types that each head in the SRA Attention

Layer should have attention, we control the value of β and κ. Empirically we found out that

κ = 3 works the best.

4.3.4 Positional Relation-Aware Attention

Inspired by [87], we also construct a directed complete spatial graph over the object features

V ′
obj and OCR token features V ′

ocr in V ′, where each edge corresponds to one of the spatial

relationship types according to their relative positions. Additional edges are also added to

connect all the object nodes and OCR tokens to all the question tokens. Similar to the SRA

Attention Layer, the Positional Relation-Aware (PRA) Attention Layer also uses the structure

of the multimodal Transformer encoder with 12 heads as the backbone and makes each head

attends to different subsets of the spatial relationship types. All the heads would also allow all

the objects and OCR tokens to attend to the questions’ words.

Moreover, a causal attention mask is applied for the decoder D′ in the PRA Attention Layer.

D′
(t) is the answer token generated from the decoder at time step t. The attention layer would

attend to all question tokens, objects, and OCR tokens along with the previously decoded

entries in the answer D′
(<t), without attending to D′

(>t) the decoding entries after time step t.

T and V ′ obtained from the SA module and GA module are combined as the input sequence

and fed to two subsequent PRA Attention Layers to obtain spatially attended features Fs.

Outputs Fsg from the SRA Attention Layer are combined with Fs to become the input to the

Multimodal Transformer encoders [189]. The combined input allows the model to attend to
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all input features in a pair-wise manner. The multi-word answer in each time step t is decoded

using the dynamic pointer network following [71].

4.4 Experiments

4.4.1 Datasets

We evaluate our model with two widely used benchmark datasets: Text-VQA and ST-VQA.

The Text-VQA dataset is proposed by [174] in 2019. Different from the conventional VQA

datasets, images in the Text-VQA dataset contains texts in different formats and the questions

are specifically designed to be answered by referring to the textural information in images.

The Text-VQA dataset collected 28,408 images that contain texts from the Open Images

v3 dataset [97]. There are 45,336 question-image pairs in the Text-VQA dataset, which are

split into 34,602, 5,000 and 5,734 for training, validation and testing respectively. Each

question has 10 ground truth answers, and the voting of these 10 answers is used to compute

the soft accuracy score. The ST-VQA dataset [19] is a concurrent work of the Text-VQA

dataset. However, different from the Text-VQA dataset, the 23,038 images in ST-VQA dataset

were collected from multiple source image datasets, including the Coco-text [191], Visual

Genome [99], VizWiz [59], ICDAR [88, 89], ImageNet [38] and IIIT-STR [132], in order

to reduce the effect of possible biases from a single source image dataset. There are 17,028

images/23,446 questions for training set, 1,893 images/2,628 questions for validation set, and

2,971 images/4,070 questions for test set. Each question has at most 2 ground truth answers

to compute accuracy score by soft voting similar to the VQA context.

4.4.2 Implementation Details

We encode the question features, the appearance features of objects and OCR tokens in the

same dimension and the same maximum sequence length as that in [87]. Each scene graph

has an average of 36 object nodes and a maximum of 100 OCR nodes. The downstream

SA and GA modules had a dimension of 768, with 8 attention heads and a dropout rate of



58 4 SCENE GRAPH FOR TEXTVQA

Name Value Name Value
max text token length 20 max obj num 100
max ocr num 50 max SG obj num 36
max SG ocr num 100 batch size 8
learning rate 0.0001 # epoch 100
max gradient norm 0.25 optimizer Adam
lr decay @ step 14000, 19000 lr decay rate 0.1
warmup factor 0.2 warmup iterations 1000
# workers 0 distance threshold 0.5
SRA Attention context 3 PRA Attention context 3
seed 0 obj dropout rate 0.1
ocr dropout rate 0.1 hidden size 768
# positional relations 12 # semantic relations 12
textual query size 768 ocr feature size 3002
obj feature size 2048 sg feature size 300
# decodingsteps 12 text encoder lr scale 0.1
# text encoder layers 3 # PRA layers 2
# SRA layers 2 # MMTE layers 2

TABLE 4.1. Hyperparameters for training the SceneGATE

0.1. Our experiments were conducted utilising NVIDIA Titan RTX GPU with 24GB RAM,

16 Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz with 128GB RAM, and the operating

system of Ubuntu 20.04.1. Our final model contains about 95 million trainable parameters

and requires around 0.6 hours to train one epoch. The validation accuracy converged within

40 epochs of training for most of our model variants and our best model converged within 8

epochs on both datasets. In short, the training of our best performance model requires around

3GB GPU RAM and 4 hours to complete. We used a batch size of 8, and followed the exact

same setting as that in [87] for other hyper-parameter values. Details of all hyperparameters

can be found in Table 4.1.

4.4.3 Baseline Models

We compare SceneGATE network with the following baselines in this work: LoRRA [174]

encoded the OCR tokens with only FastText and it has an attention mechanism to integrate

all image, question and OCR token features into the same joint embedding space for answer

prediction. M4C [71] used enriched OCR token representations that include the appearance,
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semantic, character-level and spatial features of OCR tokens. The multi-modal transformer

encoder is used for modality integration and iterative decoding, while a dynamic pointer

network is applied for answer generation. Simple is not Easy (SNE) [231] had three separate

vanilla attention blocks for independent integration of object region, OCR visual-based and

OCR textual-based features with the questions respectively. Localization-aware Answer Pre-

diction (LaAP-Net) [60] integrated objects and OCR token features by attention mechanism

to get the OCR-related image features. Multi-Modal Graph Neural Network (MM-GNN) [53]

constructed three graphs for object regions, semantic OCR tokens and numeric OCR tokens,

which all interacted to learn from the related nodes. Spatially Aware Multimodal Multi-Copy

Mesh (SA-M4C) [87] adopted spatially-aware self-attention module to capture and to encode

12 different types of spatial relationships between objects and OCR tokens. Structured Mul-

timodal Attention (SMA) [52] applied the question-conditioned graph attention module to

identify the potential relationship between objects and OCR tokens from the question patterns.

Model Acc. on Val Acc. on Test
LoRRA 26.56 27.63
MM-GNN 32.92 32.46
M4C 39.40 39.01
LaAP-Net 40.68 40.54
SMA 40.05 40.66
SA-M4C 40.71 42.61
SNE 40.38 40.92
SceneGATE(Ours) 42.37 44.02

TABLE 4.2. Results on Text-VQA dataset

4.5 Results

4.5.1 Performance Comparison

Different from other works that used ST-VQA to enlarge the training dataset size, we compared

the performance of our model with different baselines by training only on the original Text-

VQA dataset. We can see from Table 4.2 that our model outperformed all the baselines and

received the state-of-the-art result of 42.37% validation accuracy and 44.02% test accuracy
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on the Text-VQA dataset. We ran the code provided by SA-M4C to train the Text-VQA

dataset with their default hyper-parameters. Their results were only 40.71% and 42.61% for

the validation and test accuracy respectively, which were almost 2% lower than our model.

Compared with M4C, SNE and LoRRA which simply used the attention mechanism to

integrate the different modalities, the models (SMA, SA-M4C and SceneGATE) that applied

the graph attention module achieved a better performance, indicating the importance of

explicit representation and encoding of the relationships between objects and their related

OCR tokens for the TextVQA task. However, both SMA and SA-M4C considered only the

visual representation of object nodes and their spatial relationships, when the node embedding

of OCR tokens in a graph was updated. Our model overcomes this limitation by an additional

encoding of the semantic embeddings of object nodes and the semantic relationships among

different objects and OCR tokens with the use of the scene graph. Our results also indicated

the importance of such semantic relationship representation and the scene graph in TextVQA

task.

In addition to the accuracy rate, we also used Average Normalized Levenshtein Similarity

(ANLS) score, which was proposed for the evaluation of the ST-VQA dataset [19], as the

additional evaluation metrics to evaluate the performances on ST-VQA. ANLS score aims

to eliminate the dropped performance caused by OCR recognition error. It compares the

similarities between the ground truth answers and the prediction results rather than the robust

identity as that of using accuracy rate. The performance of our models and baselines were

compared in Table 4.3 and we can see that our model greatly outperformed the baselines by

achieving 41.29%, 0.525 and 0.516 for the validation accuracy, validation ANLS score and

test ANLS score respectively.
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Model Acc. ANLS ANLS
on Val on Val on Test

MM-GNN - - 0.207
M4C 38.05 0.472 0.462
LaAP-Net 39.74 0.497 0.485
SMA - - 0.466
SA-M4C 37.86 0.486 0.477
SNE - - 0.509
SceneGATE(Ours) 41.29 0.525 0.516

TABLE 4.3. Results on ST-VQA dataset

4.5.2 Ablation Studies

4.5.2.1 SG Embedding

Using a scene graph to capture the explicit semantic relationships between objects and OCR

tokens makes an important contribution to our model’s SOTA performance on both the Text-

VQA and ST-VQA datasets. To examine the impact of different scene graph node embedding

initialization methods to the model’s performance, we also evaluated the model’s performance

of using GCN and GloVe for node embedding initialisation on both Text-VQA and ST-VQA

validation set. We can see from Table 4.4 that GloVe had the worst results with only 41.33%

and 40.79% accuracy on both Text-VQA and ST-VQA validation set, while using GCN

would increase the performance slightly. Using FastText had no doubt resulting in the best

performance considering FastText is more capable to deal with the OOV issue for the cases of

rare OCR tokens in a scene graph.

4.5.2.2 Network Component

To investigate the contribution of our model’s components, we first integrated all the image,

question, OCR tokens and scene graph features by multimodal transformer encoders as in

M4C [71]. This simple approach achieved 39.13% and 37.78% accuracy on Text-VQA

and ST-VQA validation set respectively as shown in Table 4.5. After the addition of the

co-attention module for a better inter- and intra-integration of the image, question, OCR

tokens features, the performance on validation and test set increased significantly to 41.27%
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Model Acc. on Acc. on
Text-VQA ST-VQA

SceneGATE w GloVe 41.33 40.79
SceneGATE w GCN 41.36 40.86
SceneGATE w FastText 42.37 41.29

TABLE 4.4. Validation performance of our model obtained on different types
of scene graph node embedding

Model Acc. on Acc. on
Text-VQA ST-VQA

MM Transformer 39.13 37.78
+ Guided Attention 41.27 39.57
+ PRA Attention 41.95 40.37
+ SRA Attention 42.37 41.29

TABLE 4.5. Ablation testing results on the validation set. PRA: Positional
Relation-Aware. SRA: Semantic Relation Aware

and 39.57%, indicating the effectiveness of such self-attention based guided attention. The

inclusion of PRA Attention layers gave an improvement on the accuracy rate by around 0.7%,

and the performance went further up to 42.37% and 41.29% for Text-VQA and ST-VQA

validation set by adding the SRA Attention layer over the scene graphs. These results prove

the critical roles of the co-attention, PRA and SRA Attention layers in our model.

4.6 Quality Analysis

Figure 4.2 shows some sample pairs of images with questions and the answers from different

baseline models. The OCR tokens and their associated object regions with high attention

weights were highlighted with yellow and red bounding boxes in the images. Compared with

other baselines, our model generated more accurate and complete answers with the correct

corresponding OCR tokens regions detected in the images. For example, our model perfectly

identified the brand of the beer with the answer coors light, while M4C missed the token light

and LoRRA and SA-M4C gave the completely incorrect results of the case in the top right

image. In addition, our model also showed good inference ability on top of text reading ability.

Taking the bottom right image as an example, to answer the question of How many items can
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you get for $5?, the model needs not only to recognise the correct location of $5, but it also

has the ability to understand the semantic meaning of the forward slash in the image and to

interpret the character before this symbol as a number. Our model has provided the correct

answer while the answers of LoRRA and SA-M4C were wrong.

4.7 Incorrect Classification Analysis

In Figure 4.3 we show some qualitative examples on the errors which our SceneGATE model

would make. The first row shows examples when our model inherits mistakes made by the

OCR system. Based on the bounding boxes visualized, we can observe that SceneGATE

is attending to the correct entities giving almost correct answers. In the first example, the

model is attending to the startling stories region of the image, and in the second example, the

model attends to word printed on the black jersey but gives "kidover" as the answer instead of

"andover". This is because the OCR tokens provided by the pretrained OCR model is wrong.

When the model dynamically copies the OCR tokens as the answer, it inherits the error made

by the OCR system despite its own ability to choose the correct elements. Since TextVQA

models largely depend on the information of scene texts, accuracy of pretrained OCR systems

could be a bottleneck for the TextVQA problem. The second row shows examples when

our predictions can also be considered as correct answers even though they are different

from ground truths. Taking the instance on the left as an example, the top three OCR tokens

which our model attends to are yosemite, national, and park, and our model outputs all three

words as the answer, which is actually correct to answer the given question. Similarly, in the

example on the right, the button to be pressed is called press start, so our model attends to

both words and outputs them as the answer.

4.8 Conclusion

We propose SceneGATE with the use of a novel TextVQA-based scene graph by treating the

OCR tokens in images as the attributes of the objects. Our SceneGATE applies the semantic

relation-aware attention upon the scene graph and uses the guided attention mechanism to
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get the question-guided object and OCR token features, which are then fed into the graph

attention module for the learning of positional relationships between objects and OCR tokens.

Our SceneGATE comprehensively learns the semantic and positional relationships between

objects and texts in images and outperforms SOTAs on both Text-VQA and ST-VQA datasets.
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FIGURE 4.2. Visualisation of attention outputs from SceneGATE. Yellow
boxes surround the OCR tokens predicted by SceneGATE. Red boxes are the
object regions associated with the OCR tokens. The thicker the box lines, the
higher the attention weights are.
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FIGURE 4.3. Visualisation of attention outputs from SceneGATE for incor-
rectly classified cases.



CHAPTER 5

Multimodal Relational Graph in Document-based VQA

This Chapter is the work PDF-VQA: A New Dataset for Real-World VQA on PDF Docu-

ments [43] submitted to ECML PKDD 20231. I formulated the research aim, designed the

dataset structure and the graph-based model architecture, analysed and visualized the dataset

and experimental results, and wrote the whole paper.

This work steps from the TextVQA task with photo-realistic images that contain scene texts

towards the document-related VQA task.

Document-based Visual Question Answering examines the document understanding of docu-

ment images in conditions of natural language questions. We proposed a new document-based

VQA dataset, PDF-VQA, to comprehensively examine the document understanding from

various aspects, including document element recognition, document layout structural under-

standing as well as contextual understanding and key information extraction. Our PDF-VQA

dataset extends the current scale of document understanding that limits on the single document

page to the new scale that asks questions over the full document of multiple pages. We also

propose a new graph-based VQA model that explicitly integrates the spatial and hierarchically

structural relationships between different document elements to boost the document structural

understanding. The performances are compared with several baselines over different question

types and tasks.

Different from the scene graphs that annotate the relationships between visual objects or

scene texts, this work proposes the relational graph between the document layout components.

1Once accepted, this chapter will be updated with the accepted version.

67
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This proposed dataset is also the first dataset that explicitly provides such annotated relational

graphs in terms of the document-related VQA task.

5.1 Introduction

With the rise of digital documents, document understanding received much attention from

leading industrial companies, such as IBM [228] and Microsoft [210, 211]. Visual Question

Answering (VQA) on visually-rich documents (i.e. scanned document images or PDF file

pages) aims to examine the comprehensive document understandings in conditions of the

given questions [85]. A comprehensive understanding of a document includes understanding

document contents [41, 42], the document layout structures [154] and the recognition of

document elements [118, 170].

The existing document VQA mainly examines the understanding of the document in terms of

contextual understanding [128, 185] and key information extraction [72, 143]. Their questions

are designed to ask about certain contents on a document page. For example, the question

“What is the income value of consulting fees in 1979?" expects the specific value from the

document contents. Such questions examine the model’s ability to understand questions and

document textual contents simultaneously.

Apart from the contents, the other important aspect of a document is its structured layout

which forms the content hierarchically. Including such structural layout understandings in the

document, the VQA task is also critical to improve the model’s capabilities in understanding

the documents from a high level. Because in real-world document understandings, apart

from querying about certain contents, it is common to query a document from a higher level.

For example, a common question would be “What is the figure on this page about?" and

answering such a question requires the model to recognize the figure element and understand

that the figure caption, which is structurally associated with the figure, should be extracted

and returned as the best answer.



5.1 INTRODUCTION 69

Additionally, the existing document VQA limits the scale of document understanding to a

single independent document page [128, 185]. But most document files of human’s daily

work are multi-page documents with successively logical connections between pages. It

is a more natural demand to holistically understand the full document file and capture the

connections of textual contents and their structural relationships across multiple pages rather

than the independent understanding of each page. Thus, it is significant to expand the current

scale of page-level document understanding to the full document-level.

In this work, we propose a new document VQA dataset, PDF-VQA, that contains questions to

comprehensively examine document understandings from the aspects of 1)document element

recognition 2) and their structural relationship understanding 3) from both page-level and full

document-level. Specifically, we set up three tasks for our dataset with questions that target

different aspects of document understanding. The first task mainly aims at the document

elements recognition and their relative positional relationship understandings on the page-

level, the second task focuses on the structural understanding and information extraction on

the page level, and the third task targets the hierarchical understanding of document contents

on the full document level. Moreover, we adopted the automatic question-answer generation

process to save human annotation time and enrich the dataset with diverse question patterns.

We have also explicitly annotated the relative hierarchical and positional relationships between

document elements. As shown in Table 5.1, our PDF-VQA provides the hierarchically logical

relational graph and spatial relational graph, indicating the different relationship types between

document elements. This graph information can be used in model construction to learn the

document element relationships. We also propose a graph-based model to give insights

into how those graphs can be used to gain a deeper understanding of document element

relationships from different aspects.

5.1.1 Contribution of PDF-VQA

Our contributions are summarized as 1) We propose a new document-based VQA dataset

to examine the document understanding of comprehensive aspects, including the document

element recognition and the structural layout understanding; 2) We are the first to boost
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the scale of document VQA questions from the page-level to the full document level; 3)

We provide the explicit annotations of spatial and hierarchically logical relation graphs of

document elements for the easier usage of relationship features for future works; 4) We

propose a strong baseline for PDF-VQA by adopting the graph-based components.

5.2 Related Work

Since the VQA task was introduced [7], the image source of the VQA task could be divided

into three types: realistic/synthetic photos, scientific charts, and document pages.

(1) VQA with realistic or synthetic photos is widely known as the conventional VQA

[7, 56, 74, 83]. These realistic photos contain diverse object types and the questions

of the conventional VQA query about the recognition of objects and their attributes

and the positional relationship of the objects. The later proposed scene text VQA

problem [19, 133, 174, 196] involves realistic photos with scene texts, such as the

picture of a restaurant with its brand name. The questions of scene text VQA query

about recognising the scene texts associated with objects in the photos.

(2) VQA with scientific charts [29, 85, 86, 130] contain the scientific-style plots, such

as bar charts. The questions usually query trend recognition, value comparison, and

the identification of chart properties.

(3) VQA with document pages involves images of various document types. For example,

the screenshots of web pages that contain short paragraphs and diagrams [185], info-

graphics [127], and single document pages of scanned letters/reports/forms/invoices

[128]. These questions usually query the textual contents of a document page, and

most answers are text spans extracted from the document pages.

VQA tasks on document pages are related to Machine Reading Comprehension (MRC) tasks

in terms of questions about the textual contents and answered by extractive text spans. Some

research works [128, 185] also consider it as an MRC task, so it can be solved by applying

language models on the texts extracted from the document pages. However, input usage is the

main difference between MRC and VQA. Whereas MRC is based on pure texts of paragraphs
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Dataset Source Q. Coverage Answer Type Img. # Q. # Text Info. Relation Info.
TQA [91] Science Diagrams diagram contents MCQ 1K 26K ✓ ✗
DVQA [85] Bar charts chart contents Ex, Num, Y/N 300K 3.4M ✓ ✗
FigureQA [86] Charts chart contents Y/N 180K 2.4M ✗ ✗
PlotQA [130] Charts chart contents Ex, Num, Y/N 224K 29M ✓ ✗
LEAFQA [29] Charts chart contents Ex, Num, Y/N 250K 2M ✗ ✗
DocVQA [128] Single Doc Page doc contents Ex 12K 50K ✓ ✗
VisualMRC [185] Webpage Screenshot page contents Ab 10K 30K ✓ ✗
InfographicVQA [127] Infographic graph contents Ex, Num 5.4K 30K ✓ ✗
PDF-VQA TaskA Single Doc Page doc elements Ex, Num, Y/N 12k 81K ✓ LR graph

SR graphPDF-VQA TaskB Single Doc Page doc structure Ex 12K 54K ✓
PDF-VQA TaskC Entire Doc doc contents Ex 1147 5.7K ✓

TABLE 5.1. Summary of conventional document-based VQA. Answer type
abbreviations are MCQ: Multiple Choice; Ex: Extractive; Num: Numerical an-
swer; Y/N: yes/no; Ab: Abstractive. Datasets with a tick mark in Text Info. the
column provides the textual information/OCR tokens on the image/document
page ROI. LR graph: logical relational graph; SR graph: spatial relational
graph.

and questions, document-based VQA focuses on the processing of image inputs and questions.

Our PDF-VQA is based on the document pages of published scientific articles, which requires

the simultaneous processing of PDF images and questions. We compare VQA datasets of

different attributes in Table 5.1. While the questions of previous datasets mainly ask about

the specific contents of document pages or the certain values of scientific charts/diagrams,

our PDF-VQA dataset questions also query the document layout structures and examine the

positional and hierarchical relationships understandings among the recognized document

elements.

Task Type Train Valid Test Total

Task A Image 8,593 1,280 2,464 12,337
Question 59,688 7,247 14,150 81,085

Task B Image 8,593 1,280 2,464 12,337
Question 37,428 5,660 10,784 53,872

Task C Document 800 115 232 1,147
Question 3,951 581 1,121 5,653

TABLE 5.2. Data Statistics of Task A, B, and C. The numbers in Image row
for Task A/B refer to the number of document pages but the entire document
number for Task C.
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FIGURE 5.1. PDF-VQA sample questions and document pages for Task A, B,
and C.

5.3 PDF-VQA Dataset

Our PDF-VQA dataset contains three subsets for three different tasks to mainly examine

the different aspects of document understanding: Task A) Page-level Document Element

Recognition, B) Page-level Document Layout Structure Understanding, and C) Full Document-

level Understanding. Detailed dataset statistics are in Table 5.2.

• Task A aims to examine the document element recognition and their relative spatial

relationship understanding on the document page level. Questions are designed

into two types to verify the existence of the document elements and count the

element numbers. Both question types examine relative spatial relationships and

understandings between different document elements. For example, “Is there any
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table below the ’Results’ section?" in Figure 5.1 and "How many tables are on this

page?". Answers are yes/no and numbers from a fixed answer space.

• Task B focuses on understanding the document layout structures spatially and

logically based on the recognized document elements on the document page level and

extracting the relevant texts as answers to the questions. There are two main question

types: structural understanding and object recognition. The structural understanding

questions relate to examining spatial structures from both relative positions or

human reading order. For example, “What is the bottom section about?" requires

understanding the document layout structures from the relative bottom position and

“What is the last section about?" requires identifying the last section based on the

human reading order of a document. The object recognition questions explicitly

contain a specific document element in the questions and require to recognition of

the queried element first, such as the question “What is the bottom table about?" in

Figure 5.1. Answering these two types of questions require a logical understanding

of the hierarchical relationships of document elements. For instance, based on the

textual contents, the section title would be a logically high-level summarization of its

following section and is regarded as the answer to “What is the last section about?".

Similarly, a table caption is logically associated with a table; table caption contents

would best describe a table.

• Task C questions have a sequence of answers extracted from multi-pages of the

full document. It enhances the document understanding from the page to the full

document level. Answering a question in Task C requires reviewing the full document

contents and identifying the contents hierarchically related to the queried item in

the question. For example, the question “Which section does describe Table 2?"

in Figure 5.1 requires the identification of all the sections of the full document

that have described the queried table. The answers to such questions are the texts

of the corresponding section titles extracted as the high-level summarization of

the identified sections. Identifying the items at the higher-level hierarchy of the

queried item is defined as the parent relation understanding the question in PDF-

VQA. Oppositely, Task C also contains the questions of identifying the items at the



74 5 MULTIMODAL RELATIONAL GRAPH IN DOCUMENT-BASED VQA

lower-level hierarchy of the queried item, and such questions are defined as the child

relation understanding. For example, a question, “What does the ‘Methods’ section

about?" requires extracting all the subsection titles as the answer.

The detailed question type distribution of each task is shown in Table 5.3.

Tasks Question Type Percentage Total

Task A Existence 82.26 66,698
Counting 17.74 14,387

Task B Structural Understanding 88.58 47,722
Object Recognition 11.42 6,150

Task C Parent Relationship Understanding 79.71 4,506
Child Relationship Understanding 20.29 1,147

TABLE 5.3. The proportion and absolute question numbers of each question
type in Task A, B and C respectively.

5.3.1 Data Source

Our PDF-VQA dataset collected the PDF version of visually-rich documents from the PubMed

Central (PMC) Open Access Subset2. Each document file has a corresponding XML file that

provides the structured representations of textual contents and graphical components of the

article3. We applied the pretrained Mask-RCNN [228] over the collected document pages to

get the bounding boxes and categories for each document element. The categories initially

consisted of five common PDF document element types: title, text, list, figure, and table. We

then labelled the text elements that are positionally closest to the tables and figures into two

additional categories table caption and figure caption respectively.

5.3.2 Relational Graphs Annotation

Visually rich documents of scientific articles consist of fixed layout structures and hier-

archically logical relationships among the sections, subsections and other elements such as

2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
3It follows the XML schema module provided by the Journal Archiving and Interchange Tag Suite created

by the National Library of Medicine (NLM) https://dtd.nlm.nih.gov/

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://dtd.nlm.nih.gov/
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tables/figures and table/figure captions. Understanding such layout structures and relation-

ships is essential to boost the understanding of this type of document. The graph has been

used as an effective method to represent the relationships between objects in many tasks [37,

118, 225, 226]. Inspired by this, for each document, we annotated the hierarchically logical

relational graph (LR graph) and spatial relational graph (SR graph) to explicitly represent the

logical and spatial relationships between document elements respectively. Those two graphs

can be directly used by any deep-learning mechanisms to enhance the feature representation.

In Section 5.5, we propose a graph-based model to enlighten how such relational information

can solve the PDF-VQA questions.

The SR graph indicates the relative spatial relationships between document elements based on

their absolute geometric positions with their bounding box coordinates. For each document

element of a single document page, we identify its relative spatial relationships with all the

other document elements among eight spatial types: top, bottom, left, right, top-left, top-right,

bottom-left and bottom-right.

The LR graph indicates the potential affiliation between document elements by identifying

the parent object and their children’s objects based on the hierarchical structures of document

layouts. We follow [118] to annotate the parent-child relations between the document elements

in a single document page to generate the LR graph. The graph of the full document of multiple

pages are augmented by the graphs of its document pages.

5.3.2.1 parent-child relation annotation

We follow the hierarchical structures of documents’ associated XML files to annotate the

parent-child relations between document elements. The structured XML provides the hierarch-

ies among the different sections and elements of the documents. To match such hierarchical

information to the document elements that are segmented by the bounding boxes detected by

the Mask-RCNN, we used the Google Vision API to detect the OCR of the cropped image of

each detected document element, and used the fuzzy string matching to map the texts between
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the detected OCR of document elements and the XML texts. Thus, the default parent-child re-

lations identified in the XML files would be transferred to the annotated parent-child relations

between document elements in the document page.

FIGURE 5.2. Example workflow of the question and ground truth answer
automatic generation for Task A. The question and answer generation work-
flows for Task B and C are the same but the scene representations for Task B
are based on both spatial and logical graph, and the scene representations for
Task C is based on the spatial graph.

5.3.3 Question Generation

Visually rich documents of scientific articles have consistent spatial and logical structures.

The associated XML files of these documents provide detailed logical structures between

semantic entities. Based on this structural information and the pre-defined question template,

we applied an automatic question-generation process to generate large-scale question-answer

pairs efficiently. For example, the question “How many tables are above the ‘Discussion’?"

is generated from the question template “How many 〈E1〉 are 〈R〉 the ‘〈E2〉’?" by filling the
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masked terms 〈E1〉, 〈R〉 and 〈E2〉 with document element label (“table"), positional relation-

ship (“above") and title name extracted from document contents (“Discussion") respectively.

We prepare each question template with various language patterns to diversify the questions.

For instance, the above template can also be written as “What is the number of 〈E1〉 are

〈R〉 the ‘〈E2〉’?". We have 36, 15, and 15 question patterns for Task A, B, and C, respectively.

We limit the parameter values of the document element label to only title, list, table, figure

as asking for the number/existence/position of text elements would be less valuable. The

parameter values include four document element labels, eight positional relationships (top,

bottom, left, right, top-left, top-right, bottom-left and bottom-right), ordinal form (first, last)

and the texts from document contents (e.g. section title, references, etc.). We also replace

some parameter values with their synonyms, such as “on the top of" for “above". The

predefined question templates for Task A, B and C are listed in Table 5.4, 5.5, 5.6 with the

corresponding question examples.

To automatically generate the ground truth answers to our questions, we first represent each

document page (for Task A and B)/the full document (for Task C) with all the document

elements and the associated relations from the two relational graphs as in Section 5.3.2.

We then apply the functional program, which is uniquely associated with each question

template and contains a sequence of functions representing a reasoning step, over such

document(page) representations to reach the answer. For example, the functional program

for question “How many tables are above of the ‘Discussion’?" consists of a sequence

of functions filter-unique → query-position → filter-category → count to filter out the

document elements that satisfy the asked positional relationships and count the numbers of

them as the ground-truth answer.

5.3.4 Question Balancing

We conduct the question balancing from answer-based and question-based aspects to avoid

question-conditional biases and balance the answer distributions. Firstly, we conduct an

answer-based balancing by down-sampling questions based on the answer distribution. We

identify the QA pairs with large ratios, divide identified questions into groups based on the
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Question Pattern Question Example
Existence Type Question Patterns

Is there any [E] on the [pos] of this page? Is there any table on the top of this page?
Can you find any [E] on the [pos] of this page? Can you find any figure on the right of this page?
On the [pos] of this page, is there a [E]? On the left of this page, is there a table?
Is it correct that there is no [E] at the [pos]? Is it correct that there is no figure at the bottom?
When you check the [pos] of this page, can you find any [E]? When you check the right of this page, can you find any table?
Are there any [E1] are [R] the [E2]? Are there any figures upper the ’Competition analysis’?
Can you find any [E1] [R] the [E2]? Can you find any table above the ’Balanced networks’?
Is there a [E1] found [R] the [E2]? Is there a table found under the ’Competition analysis’?
Is it correct that there is no [E1] [R] the [E2]? Is it correct that there is no table upper the ’Discussion’?
Confirm if there are any [E1] [R] the [E2]? Confirm if there are any figures upper the ’Result and Discussion’?
When you check the page, is there any [E1] [R] the [E2]? When you check the page, is there any table below the ’Results’?
Is there any [E]? Is there any table?
Are there any [E] on this page? Are there any figures in this page?
Is there a [E] in this page? Is there a table on this page?
Can you find a [E] on this page? Can you find a figure on this page?
When you check this page, can you find any [E]? When you check this page, can you find any table?
Is there a [E] on this page? Is there a ’Results’ on this page?
Can you find a [E] on this page? Can you find a ’Discussion’ on this page?
Does this page include a [E]? Does this page include a ’Conclusion’?
Can [E] be found on this page? Can ’Abstract’ be found on this page?
When you check this page, can you find [E]? When you check this page, can you find ’Introduction’?
Confirm if there is [E] on this page. Confirm if there is an ’Abstract’ on this page.

Counting Type Question Patterns
How many [E1] are [R] the [E2]? How many tables are left for the ’Result and Discussion’?
What is the number of [E1] [R] the [E2]? What is the number of tables below the ’Background & Summary’?
How many [E1] can you find on the [R] of [E2]? How many figures are upper the ’Discussion’?
Count the number of [E1] on the [R] of [E2]. Count the number of figures below ’Material and methods’.
When you check this page, how many [E1] can you find on the [R] of [E2]? When you check this page, how many tables can you find on the top of

’Background’?
Can you find [num] [E](s) on the page? Can you find 2 table(s) in the page?
Does this page include [num] [E](s) Does this page include 2 figures?
Confirm if there are [num] [E](s) on this page. Confirm if there are 1 table(s) in this page.
Are there [num] [E](s) on this page? Are there 3 figure(s) in this page?
Is there only [num] [E](s) on this page? Is there only 2 table(s) in this page?
How many [E]s on this page? How many tables in this page?
When you check this page, how many [E]s are on this page? When you check this page, how many tables are on this page?
What is the number of [E]s on this page? What is the number of figures on this page?
How many [E]s can be found on this page? How many figures can be found on this page?

TABLE 5.4. Task A question templates with the corresponding sample ques-
tions.

Question Pattern Question Example
Structural Understanding

What is the [turn] section in this page? What is the last section in this page?
Can you describe the [turn] section of this page? Can you describe the first section of this page?
What does the [turn] section include in this page? What does the last section include in this page?
What is the main contents of the [turn] section in this page? What is the main contents of the first section in this page?
When you check the [turn] section of this page, what information can you
get?

When you check the last section of this page, what information can you
get?

What is the [pos] section about? What is the top section about?
What is the [pos] of the page about? What is the left of the page about?
What is the topic of [pos] section? What is the topic of bottom section?
Can you describe the main topic of the [pos] section? Can you describe the main topic of the right section?
When you check the [pos] of this page, what information can you get? When you check the bottom of this page, what information can you get?

Object Recognition
What is the [E] on the [pos] of the page? What is the table on the top of the page?
What is the [pos] [E] about? What is the bottom table about?
Can you describe the [E] on the [pos] of the page? Can you describe the figure on the bottom of the page?
What information does the [pos] [E] contain? What information does the left figure contain?
When you check the [pos] [E], what information can you get? When you check the top table, what information can you get?

TABLE 5.5. Task B question templates with the corresponding sample ques-
tions.
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Question Pattern Question Example
Child Relation Understanding

What does the [E] include? What does the Introduction include?
What is the [E] about? What is the Competing interests about?
What subsections are in the [E]? What subsections are in the 2. Clinical Presentation?
What subsections can be found in the [E]? What subsections can be found in the Materials and methods?
When you check the [E], which subsections are included? When you check the Methods, which subsections are included?

Parent Relation Understanding
Which section does describe the [E] ? Which section does describe the Table 3?
Which section does include the description of the [E]? Which section does include the description of the Table 2?
Name out the section that include the [E]. Name out the section that include the Table 2.
Where can you find the [E]? Where can you find the Table 2?
When you search for the description of [E], which sections do you need to
check?

When you search for the description of Figure 1, which sections do you
need to check?

Which section does include the [E]? Which section does include the ’Corwin HL et al,2009’?
Which section does cite the [E]? Which section does cite the ’Wang C et al,2017’?
Where is the [E] cited in the document? Where is the ’Horner KC et al,2005’ cited in the document?
Where can [E] be found in the document? Where can ’Guan KL et al,1991’ be found in the document?
When you search for the citation of [E], which sections can you find it? When you search for the citation of ’Zhang Z et al,2013’, which sections

can you find it?

TABLE 5.6. Task C question templates with the corresponding sample ques-
tions.

patterns, and reduce QA pairs with large ratios until the answer distributions are balanced.

After that, we further conducted the question-based balancing to avoid duplicated question

types. To achieve this, we smooth over the distributions of parameter values filled in the

question templates by removing the questions with large proportions of certain parameter

values until the balanced distribution of parameter value combinations. Since the parameter

values of Task C question templates are almost unique, as all of them are the texts from

document contents, we did not conduct the balancing over Task C. After the balancing, Task A

questions are down-sampled from 444,967 to 81,085, and Task B questions are down-sampled

from 246,740 to 53,872.

For Task A, we keep some questions of which answers are "No" or "0" since it naturally

happens that a document page does not contain a target segment. For example, the answer

to the question "How many tables are on this page?" might be "0". Similarly, even if most

context-based answers to Task B questions are unique, we still keep certain questions with

"No specific answer" to ensure the trained model can handle a similar situation to Task A. An

example is an answer for a question "What is the top table about?". If there is no table on the

corresponding page, the answer to this question should return "No specific answer".
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(A) Task A

(B) Task B

(C) Task C

FIGURE 5.3. Distribution of question length for Task A, B and C.

5.4 Dataset Analysis and Evaluation

5.4.1 Dataset Analysis

The average number of questions per document page/document in Task A, B, and C are

6.57, 4.37, and 4.93. The average question length for Task A, B and C are 25, 10 and

15, respectively. The question numbers of different question length for Task A, B and C

are shown in 5.3. A sunburst plot showing each task’s top 4 question words is shown in

Figure 5.4. We can see that Task A question priors are more diverse to complement the
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simplicity of document element and position recognition questions and to prevent the model

from memorizing question patterns. For Task B and C, question priors distribute over “What",

“When", “Can you", “Which". We also specifically design questions in a declarative sentence

with “Name out the section..." in Task C. 13.43%, 0.24% and 29.38% of the questions in

Task A, B, and C are unique questions. This unique question ratio seems low compared

to other document-based VQA datasets. This is because, rather than only aiming at the

textual understanding of certain page contents, our PDF dataset targets more the spatial and

hierarchically structural understandings of document layouts. Our questions are generally

formed to ask about the document structures from a higher level and thus contain less unique

texts that are associated with the specific contents of each document page. Answers for Task

A questions are from the fixed answer space that contains eight possible answers: “yes",

“no", “0", “1", “2", “3", “4" and “5". Answers for Task B and C are texts retrieved from the

document page/entire document. We also analyzed the top 15 frequent question patterns in

Task A, B and C as shown in Figure 5.5 to show the common questions of each question type

in each task. We used a placeholder “X” to replace the different figures, table numbers or

section titles that would exist in the questions to present the common question patterns in this

analysis.

5.4.2 Human Evaluation

To evaluate the quality of automatically generated question-answer pairs, we invited ten

raters, including deep-learning researchers and crowd-sourcing workers. Firstly, to determine

the relevance between the question and the corresponding page/document, we define the

Relevance criteria. Correspondingly, we define Correctness to determine whether the auto-

generated answer is correct to the question. In addition, we ask raters to judge whether our

QA pairs are meaningful and possibly appear in the real world by using Meaningfulness

criteria 4. After we collect the raters’ feedback, we calculate the positive rate of each

perspective and apply Fleiss Kappa to measure the agreements between multiple raters, as can

be seen in Table 5.7. All three tasks achieve decent positive rates with substantial or almost

4More details and human evaluation survey examples can be found in Appendix B.
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(A) Task A

(B) Task B

(C) Task C

FIGURE 5.4. Sunburst plot showing the question distributions with the top 4
question words in Task A, B and C.

perfect agreements. For Task A, Relevance and Correctness can reach positive rates with

nearly perfect agreements. Few raters gave negative responses regarding the Meaningfulness

of questions about the existence of tables or figures, while those questions are crucial to

understanding the document layout for any upcoming table/figure contents understanding

questions. In Task B, all three perspectives achieve high positive rates with substantial

agreements. The disagreements about Task B mainly come from the questions with no
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(A) Counting question - Task A (B) Existence question - Task A

(C) Object Recognition - Task B (D) Structural Understanding - Task B

(E) Child Relation Understanding - Task C (F) Parent Relation Understanding - Task C

FIGURE 5.5. Top 15 most frequent questions in Task A, B and C.

specific answer (N/A), some raters thought those questions were incorrect and meaningless,

but these questions are crucial to understanding the commonly appearing real-world cases.

Because it is possible that a page does not contain the queried elements in the question, and no

specific answer is a reasonable answer for such cases. Finally, for Task C, both positive rates

and agreement across three perspectives are notable. In addition, except for three perspectives,

raters agree most of the questions in Task C need cross-page understanding (the positive rate

is 82.91%).
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FIGURE 5.6. The human evaluation survey sample for Task C. Task A and
B have the similar human evaluation survey design as Task C but with single
document page given.

5.4.3 Human Evaluation Setup

We randomly selected 30, 30 and 40 question-answer pairs from Task A, Task B and Task

C, respectively and put them with the related document page images or file links in the

google forms (An example of Task C can refer to Figure 5.6). For each task, raters need

to check each generated question-answer pair together with the attached document page or

file to determine whether the question-answer pairs meet the requirements of three aspects,

Relevance, Correctness, Meaningfulness. For example, for a given question in Figure 5.6,

"Name out the section that describes Figure 1", raters need to first go through the entire

document to check whether the document has Figure 1 and then check which sections provide

the description of that figure to compare with the provided answer. Finally, raters are required

to determine whether this question will be asked in the real world. We show the detailed
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Task A Task B Task C
Perspective Pos(%) Kappa Pos(%) Kappa Pos(%) Kappa
Relevance 98.46 94.02 91.67 77.07 100 100
Correctness 99.49 98.12 89.44 72.56 94.55 80.93
Meaningfulness 96.94 88.97 93.61 77.67 99.27 97.34

TABLE 5.7. Positive rates (Pos(%)) and Fleiss Kappa Agreement (Kappa) of
human evaluation.

definition of each aspect to ensure raters can understand the evaluation metrics of each

criterion at the beginning of the questionnaire of each task, as Figure 5.6 shows.

5.5 Our Model: LoSpa

We introduce a Logical and Spatial Graph-based model, LoSpa (as shown in Figure 5.7), which

utilizes the logical and spatial relational information that are annotated in the logical (LR)

and spatial (SR) graphs of our PDF-QVA dataset in Section 5.3.2. The Graph Convolutional

Network (GCN) is applied to integrate the relational information into document element

features.

5.5.1 Input Representation

we encode question words into a sequence of word embeddings q1, q2, ..., qT through a

pretrained BERT model. Given a document page I , we use the pre-trained ResNet-101

backbones to extract the visual features Xv ∈ RN×df for N document element regions. We

pass the sequence of OCR tokens in each document element to a pretrained BERT model and

extract the representation of [CLS] token, resulting in the semantic representation Xs ∈ RN×ds

for all N document elements.

5.5.2 Preliminaries of GCN

The Graph Convolutional Network (GCN) [95] is a type of convolutional neural network

designed to operate directly on a graph structure. It updates the embeddings of each node



86 5 MULTIMODAL RELATIONAL GRAPH IN DOCUMENT-BASED VQA

FIGURE 5.7. Logical and Spatial Graph-based Model Architecture for three
tasks. Task A, B and C use the same relational information to enhance the
object representation but different model architectures in the decoding stage.

by incorporating information from its neighboring nodes. The initial node embeddings are

represented by the matrixH0, with dimensions N × d0, where N is the number of nodes and

d0 is the size of the node features.

GCN performs propagation through multiple layers based on Equation 5.1:

Hl+1 = f
(
Hl,A

)
= σ

(
ÂHlW l

)
(5.1)

In each layer, the node embeddings are updated fromHl, with dimensions N × dl, toHl+1,

with dimensions N×dl+1, where l represents the layer number. The propagation rule involves

the use of the normalized symmetric adjacency matrix, denoted as Â. This matrix is obtained

by combining the adjacency matrixA with the identity matrix I , and applying a normalization

operation using the diagonal node degree matrix D̃. The weight matrix W l, with dimensions

dl × dl+1, is a trainable parameter associated with the l-th layer.

The activation function σ is applied element-wise to the product of Â, Hl, and W l. It is

important to note that the choice of activation function can vary across different GCN layers.
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5.5.3 Relational Information Learning

We follow [118] to construct a spatial graph Gs = (Vs, Es) that integrates the visual features of

document element regions and their spatial relations, as well as a logical graph Gl = (Vl, El)

that integrates the semantic features of document element regions and their parent-child

relations, for each document page I .

Based on the method proposed in [118], for each document page I with N document layout

components, each graph Gi = (Vi, Ei,Ai) consists of a set of nodes Vi (|Vi| = N), a set of

edges Ei, and an adjacency matrix Ai ∈ RN×N . We regard each document element as a node

υn ∈ Vi in a graph. We segment each document element by its corresponding bounding box.

5.5.3.1 spatial graph construction

The construction of the spatial graph follows the same method of constructing the appearance

graph as in [118].

Specifically, for spatial graph Gs, we follow [118] to use the visual features Xv ∈ RN×df of

document elements as node representation Vs and the distance with two nearest document

elements to weight edge value Es.

We establish connections between nodes by considering their spatial relationships based on

the proximity of their corresponding bounding boxes. Specifically, we connect each node to

its two closest neighbors, determined by the smallest gap distance between their bounding

boxes. The edge weight is assigned as the inverse of the distance value, emphasizing the

importance of the positional relationship for closely situated nodes.

To calculate the vertical distance values between the bounding box bboxn ([(xn
1 , y

n
1 ) , (x

n
2 , y

n
2 )])

of node vn and the bounding box bboxm ([(xm
1 , y

m
1 ) , (x

m
2 , y

m
2 )]) of node vm, we compare their

vertical positions based on their bounding box values. If a node vm is vertically positioned

below vn, we calculate the vertical distance as DV = |ym1 − yn2 |. Conversely, if a bounding

box is vertically positioned above vn, the vertical distance is calculated as DV = |ym2 − yn1 |.
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This process yields a set of distance values, denoted as D1
V , ..., D

m
V . We then connect the node

vn with the two nodes that have the smallest distance values for DV .

In the case of a two-column PDF page, in addition to considering the vertical distances

DV , we also calculate the horizontal distance DH between the bounding box bboxn and

the horizontally aligned bounding box bboxj with the smallest vertical gap distance. The

horizontal distance is computed as DH =
∣∣xj

1 − xn
2

∣∣. Subsequently, we connect the node vn

with the other two nodes that have the smallest distance values among the set of DV and DH .

5.5.3.2 logical graph construction

The construction of the logical graph follows the same method of constructing the semantic

graph as in [118].

Specifically, for the logical graph Gl, we follow [118] to use the semantic features Xs ∈ RN×ds

of document elements as node representation Vl and the existence of parent-child relation

between document elements (extracted from the logical relational graph annotation in our

dataset) as the binary edge values El {0, 1}.

5.5.3.3 graph training

For each document page I , we take Xs ∈ RN×ds and Xv ∈ RN×df as the initial node feature

matrix for Gl and Gs respectively. These initial node features are fed into a two-layer GCN

and trained by predicting each node category. After the GCN training, we extract the first

layer hidden states as the updated node representations X ′
s ∈ RN×d and X ′

v ∈ RN×d that has

augmented the relational information between document elements for Gs and Gf respectively,

where d = 768. For each aspect feature, we conduct separated linear transformations to the

initial feature matrices (Xv/Xs) and the updated feature matrices (X ′
s/X

′
v). Inspired by [118],

we apply the element-wise max-pooling over them. The pooled features X ′′
s and X ′′

v are the

final semantic and visual representations of nodes enhanced by logical and spatial relations,

respectively. Finally, we concatenate semantic and visual features of each document element,

yielding relational information enriched multi-modal object representations O1, O2, ..., ON .
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5.5.4 Answer prediction

We sum up the object features O1, O2, ..., ON with positional embedding to integrate the

information of document elements orders, which are inputs into multiple transformer encoder

layers together with the results of the sequence of question word features q1, q2, ..., qT . We

pass the encoder outputs into the transformer decoders and apply a pointer network upon the

decoder output to predict the answers. We apply a one-step decoding process each time using

the word embedding wi of one answer token of the fixed answer space as the decoder input.

For the decoder output zdeci for the decoder input wi, we then conduct the score yi between

zdeci and and the answer word embedding wi following the Equation 5.2:

yi = (wi)
T zdect + bdeci (5.2)

where i = 1, ..., C, and C is the total answer numbers of the fixed answer space. We apply a

softmax function over all the scores y1, ..., yC and choose the answer word with the highest

probability as the final answer for the current pair of document page and question.

For Task B and C that have extractive answers for questions, we treat them as the same

classification problem as Task A. The answer space for Task B are fixed to 25 document

element index numbers and the answer space for Task C are fixed to 400 document element

index numbers. The index numbers for document elements start from 0 and increase following

the human-reading order (i.e. top to bottom, left to right) over a single document page (for

Task B) and across multiple document pages (for Task C). OCR tokens are extracted from

the document element with the corresponding predicted index number as the final retrieved

answers for Task B and C questions. We apply the softmax function for Task B and use the

Sigmoid function for Task C, which contains multiple answers, and select all the document

elements indexes whose probability are over 0.5.
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5.6 Experiments Setup

We experimented with several baselines on our PDF-VQA dataset to provide a preliminary

view of different models’ performances. We choose the vision-and-language models that have

proved good performances on VQA tasks and a language model as listed in Table 5.8. We

followed the original settings of each baseline but made modifications on the output layers to

suit different PDF-VQA tasks.

5.6.1 Baseline Models

• M4C [71] applies the multimodal transformer, which takes into the question em-

bedding, OCR token embedding and image object features as inputs, and iteratively

decodes the answers over the combined answer space of OCR tokens and the fixed

answer list.

• VisualBERT [105] is a pretrained vision-and-language model that passes the se-

quence of text and object region embeddings to a transformer to get the integrated

vision-and-language representations.

• LXMERT [184] applies three transformer encoders to encode the text embeddings,

object region embeddings and the cross-modality learning between texts and image

features.

• ViLT [94] operates linear projection over image patches to get a sequence of image

patch representations and input to the transformer encoder together with the text

embeddings to get a pretrained vision-and-language model.

• BERT [39] is a pretrained language model that applies the structure of a multi-layer

bidirectional transformer encoder. We used only the textual features from document

pages as the inputs.

• LayoutLMv2 [210] is a pre-trained model to operate on the position and textual

features of document elements and generate the integrated representations that can

be used for downstream document-related tasks.
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5.6.2 Baseline Model Setup

• M4C applied multiple transformer layers, learning question embeddings, image

object features and OCR token features in the common embedding space and iterat-

ively decoding answer tokens from a fixed answer space or the OCR tokens in the

image. The OCR tokens are encoded in rich representations, including the textual

embedding of each token, appearance features of the token region on the image,

Pyramidal Histogram of Characters (PHOC) features and the location features. We

evaluated all three tasks with M4C but slightly modified the inputs and output layer

to suit document-based VQA. Firstly, since the number of OCR tokens is much

larger in PDF documents than that in real-life scenes, instead of inputting the features

of all OCR tokens in the page, we used the BERT [CLS] token features to represent

the sequence of textural contents in each document element region and took them

together with the question embedding and the visual features of each document

element region as the input sequence to the multi-layer transformer. Secondly, in the

decoding part, Task B and C, we used the d-dimensional representations for the index

numbers of the corresponding document element region in the page and generated

the scores through the dynamic pointer network to predict the index number of

document element region over the list of document element region index numbers.

For applying M4C to Task A, we set fixed answer space as the decode inputs and put

the pointer network on top to get a final prediction.

• BERT, LayoutLM2 are used only for Task A and B because the inputs of both

models are question and context token level information with the 512 maximum

limitations. For multi-page documents, the number of tokens is normally much

higher than 512 tokens, which means those two models can only catch the first-page

context information. In this case, we did not select those two models for conducting

Task C tests. For both Task A and B, we directly extract 768-dimension [CLS] token

embedding and feed it into classifiers for predicting the corresponding answer or

object sequential index.

• VisualBERT, LXMERT can process visual features of document layout elements

extracted from pretrained ResNet101-Res5. After we feed those raw object-level
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visual features and question tokens into those vision-language pretrained models,

we extract the enhanced visual representation of document layout elements and feed

them into a pointer network to get final scores for predicting corresponding answers

for all three tasks.

• ViLT is directly applied for conducting Task A and B by using the provided feature

extractor and pre-trained

• Vilt For VQA aims to predict the corresponding answer based on input questions

and image patch features. For addressing task C, we concatenate all document pages

into an image pixel matrix and feed into the feature extractor to extract image patch

features for feeding forward pass. The outputs pass through a Sigmoid layer instead

of the Softmax function adopted by other tasks for backward propagation in the

training stage and answer prediction in the inference stage.

5.6.3 Implementation Details

Dimension for the visual features of each document element region df is 2048. The activation

function used in GCN is Tanh. The GCN is trained with AdamW optimizer and 0.0001

learning rate for 10 epochs. Each question token is encoded into a 768-dimension fine-tuned

on the BERT-base model. Our model utilized a 6 layers transformer encoder and a 4 layers

transformer decoder with 12 heads and 768-dimension hidden size. The maximum numbers

for input question tokens and objects (document layout elements) are 50 and 25, respectively,

for Task A and B and 50 and 400 for Task C. For a fair comparison, epoch times are selected as

5, 10, and 20 for all Task A, B and C models, respectively. All the experiments are conducted

on 51 GB Tesla V100-SXM2 with CUDA 11.2.
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5.7 Results

5.7.1 Performance Comparison

We compare the performances of baseline models and our proposed relational information-

enhanced model over three tasks of our PDF-VQA dataset in Table 5.8. All the models process

the questions in the same way as the sequence of question words encoded by pretrained BERT

but differ in other features’ processing. The three large vision-and-language pretrained

models (VLPMs): VisualBERT, ViLT and LXMERT, achieved better performances than

other baselines with inputting only question and visual features. The better performance

of VisualBERT than ViLT indicates that object-level visual features are more effective than

image patch representations on the PDF-VQA images with segmented document elements.

Among these three models, LXMERT, which used the same object-level visual features

and the additional bounding box features, achieved the best results over Task A and B,

indicating the effectiveness of bounding box information in the cases of PDF-VQA task.

However, its performance on Task C is lower than VisualBERT. This might be because Task

C inputs the sequence of objects (document elements) from multiple pages. The bounding

box coordinates are independent on each page and therefore cause noise during training.

Surprisingly, LayoutLM2, pretrained on document understanding datasets, achieved much

lower accuracy than the three VLPMs. This might be because LayoutLM2 used token-level

visual and bounding box features, which are ineffective for the whole document element

identification. Compared to LayoutLM2 used the token-level contextual features, M4C, as a

non-pretrained model, inputting object-level bounding box, visual and contextual features

achieved higher performances. Such results further indicate that the object-level features are

more effective for our PDF-VQA tasks. The object-level contextual features of each document

element are represented as the [CLS] hidden states from the pretrained BERT model inputting

the OCR token sequence extracted from each document element.

Our proposed LoSpa achieves the highest performance compared to all baselines, demonstrat-

ing the effectiveness of our adopted GCN-encoded relational features. Overall, all models’
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Feature Aspects Task A Task B Task C
Model Q. B. V. C. R. Val. Test Val. Test Val. Test
VisualBERT [105] ✓ ✗ ✓ ✗ ✗ 92.72 92.34 82.00 79.43 21.55 18.52
ViLT [94] ✓ ✗ ✓ ✗ ✗ 90.82 91.31 54.36 53.45 10.21 9.87
LXMERT [184] ✓ ✓ ✓ ✗ ✗ 94.34 94.41 86.61 86.36 16.37 14.41
BERT [39] ✓ ✗ ✗ ✓ ✗ 82.35 81.87 22.41 23.64 - -
LayoutLM2 [210] ✓ ✓ ✓ ✓ ✗ 83.27 83.49 22.70 23.73 - -
M4C [71] ✓ ✓ ✓ ✓ ✗ 87.89 87.98 56.80 55.29 12.14 13.77
Our LoSpa ✓ ✓ ✓ ✓ ✓ 94.98 94.55 91.10 90.64 30.21 28.99

TABLE 5.8. Performance Comparison over Task A, B, and C. Acronym of
feature aspects: Q: Question features; B: Bounding box coordinates; V: Visual
appearance features; C: Contextual features; R: Relational Information.

performances are the highest on Task A among all tasks due to the relatively simple ques-

tions associated with object recognition and counting. The performances of all the models

naturally dropped on Task B when the ability of contextual and structural understanding are

simultaneously required. Performances on Task C are the lowest for all models. It indicates

the difficulty of document-level questions and produces massive room for improvement for

future research on this task.

5.7.2 Relational Information Validation

To further demonstrate the influences of relational information on document VQA tasks, we

perform the ablation studies on each task, as shown in Table 5.9. For all three tasks, adding

both aspects of relational information can effectively improve the performance of our LoSpa

model. Firstly, Spatial relation (SR) enhanced models can make the models of all three tasks

more robust. Regarding logical relation (LR), it can lead to more apparent improvements on

Task B since Task B involves more questions that require understanding document structure

more comprehensively. Moreover, since the graph representation of two relation features is

trained on the training set, most of the test set performance is lower than the validation set

during the QA prediction stage.
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Configurations Task A Task B Task C
Val. Test Val. Test Val. Test

None 94.17 94.12 90.02 89.59 27.13 27.71
Logical Relation (LR) 94.59 93.72 90.97 90.67 29.22 27.91
Spatial Relation (SR) 94.58 94.27 90.39 90.02 28.11 27.90
LR&SR 94.98 94.55 91.10 90.64 30.21 28.99

TABLE 5.9. Validating the effectiveness of proposed logical-relation (LR) and
spatial-relation (SR) based graphs.

5.7.3 Breakdown Results

We conduct the breakdown performance comparison over different question types of each

task as shown in Table 5.10. Generally, all models’ performances on Existence/Structural Un-

derstanding/Parent Relation Understanding questions are slightly better than Counting/Object

Recognition/Child Relation Understanding questions in tasks A, B and C, respectively, due to

their larger question numbers when training. Overall, all models’ performances are stable

on different question types of each task and follow the same performance trend as on all

questions in Table 5.8. However, M4C’s performance on Object Recognition is much lower

than its performance on the Structural Understanding questions. This indicates that M4C is

more powerful in recognising the contexts and identifying the semantic structures between

document elements. However, it does not have enough capacity to identify the elements and

related semantic elements simultaneously. Also, the LXMERT’s performances on Parent

Relation Understanding questions are much better than those on Child Relation Understanding

questions. This is because answers to parent questions are normally located on the same page

as the queried elements. In contrast, answers to child questions are normally distributed over

several pages, which is impacted by the independent bounding box coordinates of each page.

The stable performances of M4C over the two question types of task C also indicate that

using contextual features would eliminate such issues. Our LoSpa, incorporating relational

information between document elements, achieves stable performances over both question

types in Task C.
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Model
Task A Task B Task C

Existence Counting Struct-UD Obj-Reg Parent Child
Val. Test Val. Test Val. Test Val. Test Val. Test Val Test

VisualBERT [105] 94.11 91.62 92.52 92.45 83.24 80.86 71.49 70.30 21.55 19.91 19.64 18.52
ViLT [94] 92.34 93.40 90.62 91.01 53.41 51.97 59.54 61.66 11.04 10.21 8.75 8.79
LXMERT [184] 96.02 94.59 94.10 94.38 86.65 86.86 86.46 83.15 26.66 23.57 8.56 9.51
BERT [39] 86.25 86.04 81.80 81.31 30.42 30.55 21.37 22.33 - - - -
LayoutLM2 [210] 87.22 85.78 82.70 83.19 33.18 31.80 21.55 22.63 - - - -
M4C [71] 90.78 89.15 87.51 87.87 60.74 60.29 21.29 20.39 13.63 14.34 12.21 9.89
Our LoSpa 97.40 95.73 94.39 94.63 91.61 91.14 86.66 87.29 33.14 29.87 29.11 28.74

TABLE 5.10. Task A, B and C performance on different question types. Same
as the overall performance shown previously, the metric of Task A/B is F1 and
Task C is Accuracy.

5.8 Conclusion

We proposed a new document-based VQA dataset to comprehensively examine the docu-

ment understanding in conditions of natural language questions. In addition to contextual

understanding and information retrieval, our dataset questions also specifically emphasize the

importance of document structural layout understanding in terms of comprehensive document

understanding. This is also the first dataset that introduces document-level questions to

boost the document understanding to the full document level rather than being limited to one

single page. We enriched our dataset by providing a Logical Relational graph and a Spatial

Relational graph to annotate the different relationship types between document elements

explicitly. We proved that such graph information integration enables outperforming all the

baselines. We hope our PDF-VQA dataset will be a useful resource for the next generation of

document-based VQA models with an entire multi-page document-level understanding and a

deeper semantic understanding of vision and language.
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Conclusion and Future Works

This research work demonstrates the contribution of interpretable relational graphs to a better

understanding of multimodalities in multimodal tasks through the experiments of different

types of graph constructions and their applications in conventional VQA, TextVQA, and

document-based VQA tasks.

Chapter 3 demonstrates the work of REXUP model that proposed the parallel processing

of image object features and scene graph features in the conventional VQA task. In this

work, the scene graphs of images come from the GQA dataset annotations and are encoded

by concatenated semantic embeddings of the object, relations and attributes. Chapter 4

demonstrates the work of SceneGATE model, which proposed a new type of scene graph

explicitly working towards the TextVQA task. This TextVQA-based scene graph treats

the scene texts in images as the attributes of their associated image objects. Different

types of scene graph encoding have also been experimented with and compared. Chapter 5

demonstrates the work of PDFVQA, a newly proposed document-based VQA dataset with

specific annotation of both positional and logical relational graphs over the document layout

components. The annotated logical relational graph explicitly shows the hierarchical structures

of the different document layout components in a document. This work demonstrated in

Chapter 5 also proposed a graph-based model to show how the use of the positional and

logical relational graphs of documents can improve the performances on the document-based

VQA task.

Overall, with the development of VQA area from the photo-realistic images in the conventional

VQA to the most document-based VQA with document pages, task-specific interpretable

relational graphs have been used and proposed to capture the relationships between different

97
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objects explicitly. The experiments have shown that the encoding and integrating such

relational graph features also improve the model’s performance on different VQA datasets.

Apart from the interpretable input representation, this research also explores local interpreta-

tion method of using attention weights to explain the model’s prediction by identifying the

contributing input features. I hope that the research can share a great insight to the use of

interpretable graph representation for relational information as well as the functionality of

attention weights as the local interpretation in VQA tasks.

6.1 Future Works

Extended from the research of exploiting the local interpretable methods for the multimodal

task of images and texts, it raises three directions that can be considered as future works.

Firstly, local interpretable methods has played a key role in the existing works of explain-

able AI. Local interpretations explain the model’s outputs based on one input instance by

identifying the contributing input features to the output and providing the natural language

explanations. Such interpretations are easy for both AI experts and non-experts of other

domains to understand. On the contrary, global interpretability refers to the condition where

it becomes feasible to comprehend the comprehensive rationale behind a model and trace the

entire chain of reasoning that leads to all conceivable outcomes. Global interpretable models

are usually referred as the white-box model. Thus, the essence of deep neural networks make

it impossible to achieve the global interpretability. However, recently, some works combines

the prototypes with soft neural binary decision tree structures to learn the prototype of image

features and classify images via the soft decision tree [138, 161, 162]. At each node, the

trained tree display the prototypes of images that are extracted from the whole dataset to give

a global interpretation of the reasoning chain of the entire image classification process. This

method also inspires the possible future works of the global interpretation on the tasks of both

image and texts.
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Secondly, the development of explainable AI also raises attention to the model’s refinability.

The model’s interpretability helps to understand the model better, attaining trustful evidence

of the model’s decisions and using the interpretations as additional tools to examine the

model’s correctness on unseen data. With the model’s interpretation, we get some insights

about whether the model’s decision is correct. Then naturally, the next question arises: how

can we refine the model into more accurate decision-making performance and how to make

these models iteratively and automatically detect and refine the errors? These are the future

works beyond the development of interpretable models.

Last but not least, the exploration of multimodal tasks should be expanded to broader types

of modalities. Currently, the multimodal task is mostly scaled to the modalities of images

and texts due to the large available public datasets. However, more modalities of data exist in

different fields, such as videos in computer vision, speeches in natural language processing,

sensor data in navigation and time series data of the financial area. How to process and

integrate the features of these modalities and apply the interpretable graph representations of

these modalities remains an open question to investigate.



Bibliography

[1] Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explain-

able artificial intelligence (xai). IEEE Access, 6, 52138–52160.

[2] Aggarwal, S., Mandowara, D., Agrawal, V., Khandelwal, D., Singla, P., & Garg, D.

(2021). Explanations for CommonsenseQA: New Dataset and Models. Proceedings

of the 59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), 3050–3065. https://doi.org/10.18653/v1/2021.acl-long.238

[3] Alhindi, T., Petridis, S., & Muresan, S. (2018). Where is your evidence: Improving

fact-checking by justification modeling. Proceedings of the First Workshop on Fact

Extraction and VERification (FEVER), 85–90. https://doi.org/10.18653/v1/W18-5513

[4] Almazán, J., Gordo, A., Fornés, A., & Valveny, E. (2014). Word spotting and recogni-

tion with embedded attributes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(12), 2552–2566. https://doi.org/10.1109/TPAMI.2014.2339814

[5] Alvarez-Melis, D., & Jaakkola, T. (2017). A causal framework for explaining the

predictions of black-box sequence-to-sequence models. Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, 412–421.

[6] Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L.

(2018). Bottom-up and top-down attention for image captioning and visual question

answering. IEEE conference on computer vision and pattern recognition, 6077–6086.

[7] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Lawrence Zitnick, C., &

Parikh, D. (2015). Vqa: Visual question answering. IEEE international conference on

computer vision, 2425–2433.

100

https://doi.org/10.18653/v1/2021.acl-long.238
https://doi.org/10.18653/v1/W18-5513
https://doi.org/10.1109/TPAMI.2014.2339814


BIBLIOGRAPHY 101

[8] Arras, L., Horn, F., Montavon, G., Müller, K.-R., & Samek, W. (2017). " what is

relevant in a text document?": An interpretable machine learning approach. PloS one,

12(8), e0181142.

[9] Ashual, O., & Wolf, L. (2019). Specifying object attributes and relations in interactive

scene generation. Proceedings of the IEEE International Conference on Computer

Vision, 4561–4569.

[10] Atkinson, D., Srinivasan, K. B., & Tan, C. (2019). What gets echoed? understanding

the “pointers” in explanations of persuasive arguments. Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

2911–2921. https://doi.org/10.18653/v1/D19-1289

[11] Ayyubi, H. A., Tanjim, M., McAuley, J. J., Cottrell, G. W., et al. (2020). Generating

rationales in visual question answering. arXiv preprint arXiv:2004.02032.

[12] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015).

On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance

propagation. PloS one, 10(7).

[13] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. ICLR.

[14] Bai, B., Liang, J., Zhang, G., Li, H., Bai, K., & Wang, F. (2021). Why attentions

may not be interpretable? Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, 25–34.

[15] Basaj, D., Rychalska, B., Biecek, P., & Wróblewska, A. (2018). How much should

you ask? on the question structure in qa systems. BlackboxNLP@EMNLP.

[16] Bastings, J., Aziz, W., & Titov, I. (2019). Interpretable neural predictions with differ-

entiable binary variables. Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, 2963–2977.

[17] Ben-Younes, H., Cadene, R., Thome, N., & Cord, M. (2019). Block: Bilinear superdi-

agonal fusion for visual question answering and visual relationship detection. AAAI

Conference on Artificial Intelligence, 33, 8102–8109.

https://doi.org/10.18653/v1/D19-1289


102 BIBLIOGRAPHY

[18] Ben-Younes, H., Cadene, R., Cord, M., & Thome, N. (2017). Mutan: Multimodal

tucker fusion for visual question answering. IEEE international conference on com-

puter vision, 2612–2620.

[19] Biten, A. F., Tito, R., Mafla, A., Gomez, L., Rusinol, M., Valveny, E., Jawahar, C.,

& Karatzas, D. (2019). Scene text visual question answering. Proceedings of the

IEEE/CVF international conference on computer vision, 4291–4301.

[20] Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated

corpus for learning natural language inference. EMNLP.

[21] Brahman, F., Shwartz, V., Rudinger, R., & Choi, Y. (2021). Learning to rationalize for

nonmonotonic reasoning with distant supervision. Proceedings of the AAAI Conference

on Artificial Intelligence, 35(14), 12592–12601. https://ojs.aaai.org/index.php/AAAI/

article/view/17492

[22] Cadene, R., Ben-Younes, H., Cord, M., & Thome, N. (2019). Murel: Multimodal

relational reasoning for visual question answering. IEEE Conference on Computer

Vision and Pattern Recognition, 1989–1998.

[23] Camburu, O.-M., Rocktäschel, T., Lukasiewicz, T., & Blunsom, P. (2018). E-snli:

Natural language inference with natural language explanations. In S. Bengio, H.

Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi & R. Garnett (Eds.), Advances

in neural information processing systems 31 (pp. 9539–9549). Curran Associates, Inc.

http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-

language-explanations.pdf

[24] Camburu, O.-M., Shillingford, B., Minervini, P., Lukasiewicz, T., & Blunsom, P.

(2020). Make up your mind! adversarial generation of inconsistent natural language

explanations. Proceedings of the 58th Annual Meeting of the Association for Computa-

tional Linguistics, 4157–4165. https://www.aclweb.org/anthology/2020.acl-main.382

[25] Cao, F., Luo, S., Nunez, F., Wen, Z., Poon, J., & Han, S. C. (2023). Scenegate: Scene-

graph based co-attention networks for text visual question answering. Robotics, 12(4),

114.

[26] Carton, S., Rathore, A., & Tan, C. (2020). Evaluating and characterizing human

rationales. Proceedings of the 2020 Conference on Empirical Methods in Natural

https://ojs.aaai.org/index.php/AAAI/article/view/17492
https://ojs.aaai.org/index.php/AAAI/article/view/17492
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
https://www.aclweb.org/anthology/2020.acl-main.382


BIBLIOGRAPHY 103

Language Processing (EMNLP), 9294–9307. https://doi.org/10.18653/v1/2020.emnlp-

main.747

[27] Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cer-

utti, F., Srivastava, M., Preece, A., Julier, S., Rao, R. M., Kelley, T. D., Braines,

D., Sensoy, M., Willis, C. J., & Gurram, P. (2017). Interpretability of deep learn-

ing models: A survey of results. 2017 IEEE SmartWorld, Ubiquitous Intelligence

Computing, Advanced Trusted Computed, Scalable Computing Communications,

Cloud Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 1–6.

[28] Chang, S., Zhang, Y., Yu, M., & Jaakkola, T. (2019). A game theoretic approach

to class-wise selective rationalization. Advances in Neural Information Processing

Systems, 10055–10065.

[29] Chaudhry, R., Shekhar, S., Gupta, U., Maneriker, P., Bansal, P., & Joshi, A. (2020).

Leaf-qa: Locate, encode & attend for figure question answering. Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, 3512–3521.

[30] Chen, Q., Ji, F., Zeng, X., Li, F.-L., Zhang, J., Chen, H., & Zhang, Y. (2021). Kace:

Generating knowledge aware contrastive explanations for natural language inference.

Proceedings of the 59th Annual Meeting of the Association for Computational Lin-

guistics and the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), 2516–2527.

[31] Chen, T., Yu, W., Chen, R., & Lin, L. (2019). Knowledge-embedded routing network

for scene graph generation. Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 6163–6171.

[32] Chen, Y.-C., Li, L., Yu, L., Kholy, A. E., Ahmed, F., Gan, Z., Cheng, Y., & Liu, J.

(2020). Uniter: Universal image-text representation learning. ECCV.

[33] Chrysostomou, G., & Aletras, N. (2021). Improving the faithfulness of attention-based

explanations with task-specific information for text classification. Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), 477–488.

https://doi.org/10.18653/v1/2020.emnlp-main.747
https://doi.org/10.18653/v1/2020.emnlp-main.747


104 BIBLIOGRAPHY

[34] Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does bert look at?

an analysis of bert’s attention. Proceedings of the 2019 ACL Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP, 276–286.

[35] Clinciu, M.-A., Eshghi, A., & Hastie, H. (2021). A study of automatic metrics for the

evaluation of natural language explanations. Proceedings of the 16th Conference of

the European Chapter of the Association for Computational Linguistics: Main Volume,

2376–2387. https://doi.org/10.18653/v1/2021.eacl-main.202

[36] Da, J., Forbes, M., Zellers, R., Zheng, A., Hwang, J. D., Bosselut, A., & Choi, Y.

(2021). Edited media understanding frames: Reasoning about the intent and implic-

ations of visual misinformation. Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Papers), 2026–2039. https:

//doi.org/10.18653/v1/2021.acl-long.158

[37] Davis, B., Morse, B., Price, B., Tensmeyer, C., & Wiginton, C. (2021). Visual fudge:

Form understanding via dynamic graph editing. International Conference on Docu-

ment Analysis and Recognition, 416–431.

[38] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision

and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848

[39] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of

deep bidirectional transformers for language understanding. Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

4171–4186.

[40] Ding, Y., Liu, Y., Luan, H., & Sun, M. (2017). Visualizing and understanding neural

machine translation. Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 1150–1159.

[41] Ding, Y., Huang, Z., Wang, R., Zhang, Y., Chen, X., Ma, Y., Chung, H., & Han,

S. C. (2022). V-doc: Visual questions answers with documents. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 21492–21498.

https://doi.org/10.18653/v1/2021.eacl-main.202
https://doi.org/10.18653/v1/2021.acl-long.158
https://doi.org/10.18653/v1/2021.acl-long.158
https://doi.org/10.1109/CVPR.2009.5206848


BIBLIOGRAPHY 105

[42] Ding, Y., Long, S., Huang, J., Ren, K., Luo, X., Chung, H., & Han, S. C. (2023). Form-

nlu: Dataset for the form language understanding. arXiv preprint arXiv:2304.01577.

[43] Ding, Y., Luo, S., Chung, H., & Han, S. C. (2023). Pdf-vqa: A new dataset for

real-world vqa on pdf documents. Machine Learning and Knowledge Discovery in

Databases: Applied Data Science and Demo Track: European Conference, ECML

PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part VI, 585–601.

https://doi.org/10.1007/978-3-031-43427-3_35

[44] Doshi-Velez, F., & Kim, B. (2018). Considerations for evaluation and generalization

in interpretable machine learning. Explainable and interpretable models in computer

vision and machine learning, 3–17.

[45] Du, M., Liu, N., Yang, F., & Hu, X. (2019). Learning credible deep neural networks

with rationale regularization. 2019 IEEE International Conference on Data Mining

(ICDM), 150–159.

[46] Du, M., Liu, N., Yang, F., Ji, S., & Hu, X. (2019). On attribution of recurrent neural

network predictions via additive decomposition. The World Wide Web Conference,

383–393.

[47] Ebrahimi, J., Rao, A., Lowd, D., & Dou, D. (2018). Hotflip: White-box adversarial

examples for text classification. Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), 31–36.

[48] Ehsan, U., Harrison, B., Chan, L., & Riedl, M. O. (2018). Rationalization: A neural ma-

chine translation approach to generating natural language explanations. Proceedings

of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 81–87.

[49] Ehsan, U., Tambwekar, P., Chan, L., Harrison, B., & Riedl, M. O. (2019). Automated

rationale generation: A technique for explainable ai and its effects on human percep-

tions. Proceedings of the 24th International Conference on Intelligent User Interfaces,

263–274. https://doi.org/10.1145/3301275.3302316

[50] Erliksson, K. F., Arpteg, A., Matskin, M., & Payberah, A. H. (2021). Cross-domain

transfer of generative explanations using text-to-text models. In E. Métais, F. Meziane,

H. Horacek & E. Kapetanios (Eds.), Natural language processing and information

systems (pp. 76–89). Springer International Publishing.

https://doi.org/10.1007/978-3-031-43427-3_35
https://doi.org/10.1145/3301275.3302316


106 BIBLIOGRAPHY

[51] Feng, S., Wallace, E., Grissom II, A., Iyyer, M., Rodriguez, P., & Boyd-Graber, J.

(2018). Pathologies of neural models make interpretations difficult. Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, 3719–3728.

[52] Gao, C., Zhu, Q., Wang, P., Li, H., Liu, Y., Hengel, A. v. d., & Wu, Q. (2020).

Structured multimodal attentions for textvqa. arXiv preprint arXiv:2006.00753.

[53] Gao, D., Li, K., Wang, R., Shan, S., & Chen, X. (2020). Multi-modal graph neural

network for joint reasoning on vision and scene text. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 12746–12756.

[54] Gao, P., Jiang, Z., You, H., Lu, P., Hoi, S. C. H., Wang, X., & Li, H. (2019). Dynamic

fusion with intra- and inter-modality attention flow for visual question answering.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in neural

information processing systems, 2672–2680.

[56] Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., & Parikh, D. (2017). Making the v

in vqa matter: Elevating the role of image understanding in visual question answering.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

6904–6913.

[57] Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., & Ling, M. (2019). Scene graph generation with

external knowledge and image reconstruction. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 1969–1978.

[58] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D.

(2018). A survey of methods for explaining black box models. ACM Computing

Surveys, 51(5). https://doi.org/10.1145/3236009

[59] Gurari, D., Li, Q., Stangl, A. J., Guo, A., Lin, C., Grauman, K., Luo, J., & Bigham,

J. P. (2018). Vizwiz grand challenge: Answering visual questions from blind people.

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3608–3617.

https://doi.org/10.1109/CVPR.2018.00380

https://doi.org/10.1145/3236009
https://doi.org/10.1109/CVPR.2018.00380


BIBLIOGRAPHY 107

[60] Han, W., Huang, H., & Han, T. (2020). Finding the evidence: Localization-aware

answer prediction for text visual question answering. Proceedings of the 28th Interna-

tional Conference on Computational Linguistics, 3118–3131.

[61] Hancock, B., Varma, P., Wang, S., Bringmann, M., Liang, P., & Ré, C. (2018). Training

classifiers with natural language explanations. Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), 1884–1895.

https://doi.org/10.18653/v1/P18-1175

[62] Hase, P., & Bansal, M. (2022). When can models learn from explanations? a formal

framework for understanding the roles of explanation data. Proceedings of the First

Workshop on Learning with Natural Language Supervision, 29–39. https://doi.org/10.

18653/v1/2022.lnls-1.4

[63] Haurilet, M., Roitberg, A., & Stiefelhagen, R. (2019). It’s not about the journey;

it’s about the destination: Following soft paths under question-guidance for visual

reasoning. IEEE Conference on Computer Vision and Pattern Recognition, 1930–

1939.

[64] He, S., Tu, Z., Wang, X., Wang, L., Lyu, M., & Shi, S. (2019). Towards understanding

neural machine translation with word importance. Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 952–961.

[65] Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., & Darrell, T.

(2016). Generating visual explanations. European Conference on Computer Vision,

3–19.

[66] Hendricks, L. A., Hu, R., Darrell, T., & Akata, Z. (2018). Generating counterfactual

explanations with natural language. ICML Workshop on Human Interpretability in

Machine Learning, 95–98.

[67] Hildebrandt, M., Li, H., Koner, R., Tresp, V., & Günnemann, S. (2020). Scene graph

reasoning for visual question answering. arXiv preprint arXiv:2007.01072.

[68] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computa-

tion, 9(8), 1735–1780.

https://doi.org/10.18653/v1/P18-1175
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4


108 BIBLIOGRAPHY

[69] Hu, R., Andreas, J., Darrell, T., & Saenko, K. (2018). Explainable neural computation

via stack neural module networks. European conference on computer vision (ECCV),

53–69.

[70] Hu, R., Rohrbach, A., Darrell, T., & Saenko, K. (2019). Language-conditioned graph

networks for relational reasoning. IEEE International Conference on Computer Vision,

10294–10303.

[71] Hu, R., Singh, A., Darrell, T., & Rohrbach, M. (2020). Iterative answer prediction

with pointer-augmented multimodal transformers for textvqa. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9992–10002.

[72] Huang, Z., Chen, K., He, J., Bai, X., Karatzas, D., Lu, S., & Jawahar, C. (2019).

Icdar2019 competition on scanned receipt ocr and information extraction. 2019 Inter-

national Conference on Document Analysis and Recognition (ICDAR), 1516–1520.

[73] Hudson, D. A., & Manning, C. D. (2018). Compositional attention networks for

machine reasoning. International Conference on Learning Representations.

[74] Hudson, D. A., & Manning, C. D. (2019). Gqa: A new dataset for real-world visual

reasoning and compositional question answering. IEEE Conference on Computer

Vision and Pattern Recognition, 6700–6709.

[75] Huk Park, D., Anne Hendricks, L., Akata, Z., Rohrbach, A., Schiele, B., Darrell, T., &

Rohrbach, M. (2018). Multimodal explanations: Justifying decisions and pointing to

the evidence. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 8779–8788.

[76] Inoue, N., Trivedi, H., Sinha, S., Balasubramanian, N., & Inui, K. (2021). Summarize-

then-answer: Generating concise explanations for multi-hop reading comprehension.

Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, 6064–6080. https://doi.org/10.18653/v1/2021.emnlp-main.490

[77] Jacovi, A., & Goldberg, Y. (2020). Towards faithfully interpretable nlp systems: How

should we define and evaluate faithfulness? Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, 4198–4205.
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