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Abstract

LiDAR Simultaneous Localization and Mapping (SLAM) technologies, which are the

foundational technology behind automated driving, have received a great deal of interest in

recent years and have been the subject of a significant amount of research and development.

The performance of existing state-of-the-art (SOTA) LiDAR SLAM systems has been proven

to be producing odometry estimation with high accuracy and promising in various popular

autonomous driving datasets. These datasets like KITTI and Ford are all collected by vehicles

equipped with sensors such as LiDAR, cameras and GNSS under favorable weather conditions

by companies or institutes. However, challenging weather conditions such as rain and snow

continue to create a non-trivial obstacle for the existing LiDAR SLAM algorithms. This is

because the rainfalls or snowflakes which are not static will definitely cause noise points

for LiDAR perception and the assumption that the surrounding environment is static will be

broken.

Specifically, the noisy points including water drops or snowflakes have physical structures

like other common objects in the environment and could be detected by LiDAR sensor.

Meanwhile, on rainy or snowy days, these noisy points would surround the LiDAR tightly

and block other objects such as cars, pedestrians and buildings. This will lead to serious

deficiencies in environmental structures and introduce more difficulties to pose estimation

and loop closure, finally increasing the translational and rotational error of pose estimation

and reducing the accuracy of LiDAR SLAM algorithms.

Considering that noisy points usually lack the inherent structures exhibited in clean points,

we propose a novel denoising framework for point clouds generated from lidar sensors that

eliminate stochastic noisy points in a down sampling (DS) and super resolution (SR) manner

to address this issue. In the first step of this research, we investigate that to which degree the

performance of the State-Of-The-Art lidar SLAM approaches will decrease when exposed

to a variety of adverse weather conditions and then implement the denoising framework by

iv
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combining the DS module with SR module which is based on the Unet and trained under

certain super-solution datasets. The accuracy and robustness of our framework were validated

on the Oxford RobotCar dataset and the Canadian Adverse Driving Conditions dataset.
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CHAPTER 1

Introduction

1.1 Background

LiDAR Simultaneous Localization and Mapping (SLAM) has been widely used in various

application scenarios such as autonomous vehicles, unmanned aerial vehicles (UAVs), and

indoor navigation robots. Serving as a vital enabler, the LiDAR SLAM system endows them

with crucial environmental perception capabilities that empower autonomous navigation and

obstacle avoidance in unknown or dynamic environments. The continuous advancement and

refinement of LiDAR SLAM will further propel the development of autonomous navigation

and robotics, providing robust support for achieving intelligent autonomous planning and

actions. Recently, autonomous driving has been developing rapidly and creating a new

research field in the application of automobiles and bringing new opportunities for future

traffic [1]. Technologies in this field have earned significant breakthroughs and concentrate

on greater emphasis on efficiency and comfort. In the research of autonomous driving, Lidar

SLAM is one of the most important tasks [2].

1.2 Problem Formulation

Generally, a frame of LiDAR scan will be formatted as a point cloud. The point cloud is

made up of a collection of 3D points that contain information about the distance and intensity

of the points, sometimes also with the laser beam number or ring ID, which is often seen in

Velodyne LiDARs.
1



2 1 INTRODUCTION

Considering two given LiDAR frames P0 and P1, and their global pose matrix X 0 and X 1

in the world frame, the goal is to determine the relative position transformation between the

two frames. The relative position transformation is expressed by the point cloud registration

algorithm as Tr1
0 : X 1 → X 0, which is a 4 × 4 matrix as shown in Equation 1.1. This

matrix contains a 3 × 3 rotation matrix R and a 3 × 1 translation vector t. The rotation

matrix represents the orientation change between the two frames, while the translation vector

represents the positional change.

Tr =

 R t

0 0 0 1

 (1.1)

Furthermore, in a continuous LiDAR frame sequence, the transformation between two LiDAR

frames to any LiDAR frames could be extended to: Trt
0 : X t → X 0, as shown in Equation

1.2.

Trt
0 = Tr1

0 Tr2
1 · · · Trt

t−1 (1.2)

Thus, in the LiDAR SLAM system, the fundamental step is to estimate the pose matrix with

higher accuracy between the given LiDAR frame pairs. The error accumulated in this step

could be reduced by improving the accuracy of pose estimation or applying loop closure or

global optimization in the back end.

1.2.1 Pipeline of Lidar SLAM algorithms

In previous research such as [3], [4], [5], the LiDAR SLAM process generally consists of

five main stages: (1) pre-processing, (2) feature extraction, (3) correspondence searching, (4)

transformation estimation (5) back end processing. Among current LiDAR SLAM algorithms,

LOAM which represents a paradigm that has garnered widespread recognition performance

presents a modern integrated framework that has achieved state-of-the-art performance and

become the backbone of many following-up LiDAR SLAM methods. The pipeline of LOAM

[6] is shown in 2.3.

The input of a LiDAR SLAM system typically consists of sensor data collected by LiDAR(e.g.

LiDAR point cloud), which could be recorded as files in various formats such as binary files or
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FIGURE 1.1: Workflow of the state-of-the-Art lidar odometry algorithm LOAM[6].

rosbag. The initial step in the LiDAR SLAM process is data processing, also known as point

cloud registration. In this stage, LiDAR frames are extracted from raw data files and subjected

to preprocessing techniques such as noise filtering and re-organization to prepare them for

feature extraction. Several techniques are commonly used in data processing, including point

cloud dimension reduction, point cloud-to-range image projection, dynamic object detection

and removal, and semantic segmentation. These techniques are applied to produce a clean

and organized set of LiDAR data that is ready for feature extraction. By removing extraneous

data and organizing the point cloud data, the feature extraction module can more effectively

identify relevant features, improving the accuracy of the overall LiDAR SLAM system.

After that, the data output from the above step will be used for feature extraction. In this step,

the algorithms are going to extract key points, also known as feature vector points or point

clusters as candidates for features. There are several feature descriptors in computer vision

like SIFT [7], SURF [8], ORB [9], and those based on networks like DCP [10], can be used

to do feature extraction. In addition to the key elements, we also make use of other features,

such as network embedding in the style of OverlapNet by Chen [11] and normal distribution

NDT [12].

Next, potential matches between candidates are made to produce correspondence. Existing

works can be divided into three types of correspondence: point-to-point correspondence,

point cloud distribution correspondence, and network-based correspondence. The majority

of applications employ point-to-point correspondence searching because it is uncomplicated

and compatible with key point-paring algorithms that are already in place. Point-to-point

correspondence searching techniques such as ICP [13], RANSAC [14], and neural networks

are often utilized. Distribution-based algorithms do not require correspondence search since
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a natural correspondence exists between each pair of distributions in the algorithm and the

network feature-based algorithm only has one correspondence.

The following step is motion estimation, also known as pose estimation, in which the al-

gorithms rely on the kind of correspondence being utilized. Considering a relative point

set C(yi, xj), y ∈ Xt−1, x ∈ Xt, and a transformation function f , our target is to find a

minimization of the following loss function:

min
∑

loss(f(Xt,Xt−1), y). (1.3)

Finally, in the back-end processing step, the LiDAR SLAM system will calculate every pose

for the whole LiDAR sequence using Equation 1.2. Moreover, some works introduces loop

closure module[11], [15], [16] to reduce the global pose estimation error [6] [17].

1.2.2 Loss Function for Point-to-point correspondence

To characterize the correlation between two sets of points, the loss function for point-to-point

correspondence is usually set to be:

loss =
∑

(i,j)∈C

||yi − Rxj − t||2 (1.4)

where yi and xj are the given two sets of points selected from the point correspondence C.

In the loss function, the rotation metric R and translation vector t are all target parameters

that could be adjusted to minimize the total loss. In order to minimize the loss, singular

value decomposition (SVD) [18] is used for dimension reduction because of its generality

and flexibility.

The loss function above is adopted by the point cloud correspondence method. The distribution-

based method follows the same loss function but takes the normal distribution transform

(NDT) [12] method as the solver instead of directly computing the points. Instead of directly

computing the point correspondence, the range of match is computed by comparing the simil-

arity of the normal distribution of input data, as this gives more accurate results. In addition,
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The learning-based method does not use a feature extractor that has been predetermined, in

contrast to methods that are based on point correspondence and distribution correspondence.

Instead, they estimate the transformation that took place between the two sets of data by

embedding a pair of point clouds using neural networks that have millions of parameters

each. The algorithms are trained with an extremely large number of data samples in order to

comprehend the point cloud patterns that can be found in particular environments. In addition,

the transformation that takes place between LiDAR frames can be precisely predicted using

these methods.

1.3 Motivation

LiDAR SLAM plays a pivotal role in the field of autonomous driving [1]. The localization

capabilities enable real-time calculation of the vehicle’s position and orientation within the

map, providing crucial information for path planning and decision-making modules and

ensuring stable and safe vehicle operation in complex traffic environments. Meanwhile,

LiDAR SLAM facilitates dynamic map updates and optimization, adapting to changes in the

surrounding environment, thereby enabling more accurate path planning and decision-making.

Moreover, it provides the autonomous driving system with precise and reliable environmental

perception capabilities, including accurate detection of roadways, vehicles, pedestrians, and

other obstacles, allowing for a comprehensive understanding of the surrounding environment

and enabling the system to avoid obstacles and make informed safety decisions. In summary,

LiDAR SLAM provides intelligent environmental perception for autonomous driving systems,

establishing a solid foundation for safe and efficient autonomous driving experiences [2].

Though Lidar SLAM has been developed a lot, autonomous driving in adverse weather is still

a barrier preventing automatic driving vehicles from reaching L4 or greater automation levels

[19]. Adverse weather phenomena are common in most areas on this planet and affect the

autonomous driving system on data processing and decision and finally show significantly

negative effects on transportation. The global average incidence rate of precipitation is 11.0%

and it has been demonstrated that the probability of accidents is 70% greater in wet conditions
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than in dry conditions. Moreover, 77% of the world’s countries face snowy days [20]. For

example, in the United States, thousands of vehicle collisions occur in extremely cold weather

conditions such as snowy days annually. In our daily lives, driving while snowing or raining

is much more dangerous than driving in normal environments. It is indicated that snow poses

a genuine concern. Fog, haze, sandstorms, and intense light, among other phenomena, will

seriously limit visibility as well, resulting in noticeable driving difficulties. Minor weather-

related issues, such as cold and heat, pollution and vehicle hardware damage, may also have

unpredictable and negative consequences on both manned and autonomous vehicles.

As far as we know, the performance of L2 automatic driving under rain and snow conditions

can hardly meet expectations. For example, when the lane-keeping function is skidding on

the road, the car will oversteer. Autopilots of Tesla are able to navigate in light rain or snow

environments when the road signs are clearly visible, but it is still difficult to drive in some

tough situations, such as heavy rain or when lane lines are covered. Another typical L2

autopilot supplier, GM’s Supercruise, officially prohibits the use of the autopilot function in

any adverse weather conditions (including rain, fog and snow). It is clear that adverse weather

conditions limit people from driving casually, and current autonomous vehicles cannot be

totally trusted to work alone in all weather conditions. Therefore, in order to push autonomous

vehicles forward to be realized, more time and research are needed to develop technologies

that can adapt to all kinds of weather.

Working as the data source of cars, the sensors could directly be affected by weather conditions

and capture environmental changes immediately. These changes bring great difficulties for

autonomous vehicles to finish tasks that used to be simple including target detection, target

tracking and pose estimation tasks with damaged input data. Thus the decision and plan of

self-controlling the vehicle will also change, unlike working in common situations. After all,

the weather may not only disturb the perception module of the car but also affect the car itself.

The indirect impact caused by the change in the status of self-driving vehicles or surrounding

vehicles, in turn, will lead to a change in the environmental status and finally create a cycle.

The presence of water drops or snowflakes, resembling typical objects found in the envir-

onment, can indeed be detected by a LiDAR sensor. Moreover, during inclement weather
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conditions, such as rainy or snowy days, these particles accumulate densely around the

LiDAR, obstructing the visibility of other essential objects, including cars, pedestrians, and

buildings. Consequently, this phenomenon gives rise to significant shortcomings in environ-

mental structure perception, amplifying the challenges associated with pose estimation and

loop closure. Ultimately, these complications result in increased translational and rotational

errors in pose estimation, thereby diminishing the overall accuracy of LiDAR-based SLAM

algorithms. Thus, research on Lidar SLAM under adverse weather is essential for all-weather

autonomous driving.

1.4 Contributions of the Thesis

In order to tackle the problem of Lidar SLAM under adverse weather, we propose a novel

Lidar Odometry framework consisting of a downsampling module and a point cloud super-

resolution module.

In summary, our contributions include:

• We define the influence of adverse weather on the LiDAR SLAM system and

evaluate the performance of the existing point cloud denoising algorithms under

adverse weather.

• We devise a novel two-stage point cloud processing module for the LiDAR SLAM

system to remove noisy points and recover environmental structures.

• The experimental results show that our framework is effective on point processing

and the accuracy is better than the existing methods.



CHAPTER 2

Literature Review

The objective of this research is to develop a robust LiDAR-based SLAM system for chal-

lenging weather conditions. To provide a comprehensive understanding of laser SLAM and

point cloud denoising techniques, we will discuss fundamental background knowledge in this

chapter. Firstly, we will provide a brief overview of the three main approaches in LiDAR

SLAM: the traditional point cloud correspondence method, the distribution-based method,

and the learning-based method. Additionally, we will introduce LOAM, which is currently

considered the best LiDAR SLAM algorithm, including its pipeline and key steps. Next,

we will delve into existing point cloud denoising algorithms, which encompass three types:

statistics-based methods, intensity-based methods, and deep learning-based methods. Finally,

considering that this research incorporates point cloud upsampling methods to enhance the

accuracy of the LiDAR SLAM system, we will briefly introduce the existing point cloud

upsampling algorithms PU-Net and PU-GAN.

2.1 LiDAR SLAM System

LiDAR SLAM system aims to estimate the accurate motion, including translation and rotation

matrix, from two adjacent LiDAR scans with an initial value provided by odometry. Existing

LiDAR SLAM frameworks could be categorized into three types: the traditional point cloud

correspondence method, the distribution-based method and the learning-based method. Each

of these methods has its unique strengths and weaknesses, and researchers continue to develop

and improve upon these techniques to enhance the accuracy of LiDAR SLAM systems.
8
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2.1.1 Point Cloud Correspondence Method

This method aims to determine the pose estimation between pairs of point sets by establishing

a correspondence between them. One of the most commonly used algorithms for this purpose

is the Iterative Closest Point (ICP) method and its various modifications. Besl et al.proposed

the first ICP technique to determine the optimal pose transformation matrix with the least

squares for two sets of point clouds [21]. Over time, this method has been refined and adapted

to account for the diverse geometric features that can be extracted from point clouds. The

origin ICP algorithm uses iterative progress for pose estimation by calculating the sum of the

distances of corresponding point elements in given consecutive LiDAR scans and gradually

minimizing it until the iteration termination condition is met.

However, the ICP method is computationally expensive especially when the LiDAR data

is collected by 64 or 128-channel mechanical LiDAR and is sensitive to initial poses. In

order to make it robust and avoid plunging into a local minimum, various ICP variations

were proposed, including GICP[22] and NICP [23], which also reduced the computational

complexity.

Among these variants of ICP, introducing features is a common promotion. Generalized

ICP(GICP), proposed by Segal et al. [22] adopts a novel plane-to-plane matching strategy

that combines both point-to-point and point-to-plane ICP methods. By using covariance

matrices of local planes in the point clouds, GICP can accurately match corresponding points

in the two clouds. This results in a significant improvement in performance compared to

the traditional ICP method. GICP has become a popular choice for many applications that

require accurate registration of point clouds, such as 3D scanning and mapping, robotic

navigation, and computer vision. Similarly, the Normal Iterative Closest Point (NICP), which

is proposed by Serafin et al. [23] introduces the normal and curvature of the surfaces to realize

a more accurate matching metric. Since the normals and curvatures contain more geometric

information with fewer features, the performance of NICP is even much better than GICP.

Following the methodology that focuses on both line and plane features, a unique voting

system based on the Hough algorithm was proposed by Grant et al. [24] to locate planes
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in laser point clouds. For the purpose of computing the final transformation, Pathak et

al. [25] presents a plane-based registration approach that aligns the identified planes. A

speedy approach to extracting robust feature points from nonuniformly sampled point clouds

generated by LiDAR sensors was proposed by et al. [26]. This method starts by removing

ground points using a method that eliminates flat regions, then extracting critical points

of lines and planes, and finally using these points to estimate the transformation. They

published comparative results against the NARF key-point detector [27], which reached the

best performance at that time, and emphasize that the feature extraction methods could be

applied to the SLAM problem [16, 28]. Moreover, another method focuses on removing the

ground points using voxelization proposed by Douillard et al. [29] could cluster the remaining

points into segments, and finally use a modified ICP algorithm to match these segments.

2.1.2 Distribution-based Method

Another typical method to solve the registration issue that arises in LiDAR odometry applica-

tions is the Distribution-based Method, which includes the Normal Distribution Transform

(NDT) method [12] and LOAM [6] series.

There have been various NDT-based methods over the last two decades, such as weightedNDT

[30] and 3DNDT [31]. The basic steps of the NDT method include: (1) Divide the space

into grids, whose size can be customized based on the environment. Traverse these grids and

retain a grid that contains at least 3 points, (2) Calculate the mean and covariance matrix of

each grid, (3) The mean and covariance are obtained, and the Normal distribution could be

constructed, (4) Transform each point of the second scan according to the translation matrix

T, (5) Calculate which grid the point falls on, and calculate the normal distribution of each

point, (6) Evaluate the distribution of each mapping point and accumulate the results, then

applying Gauss-Newton’s method to optimize. The final rotation and translation resulting in

the maximum potential score are determined by the algorithm.

The primary application of the early NDT approach was for the purpose of registering 2D

scans. It is advantageous to use 3D-NDT because it generates a smooth piecewise spatial
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representation, which in turn makes it easier to generate a complete 3D-NDT map after

registration. This is in addition to the fact that it extends this approach to three dimensions.

This method is also more effective than the first methods, such as the ICP, for the point cloud

registration task[31].

TABLE 2.1: Benchmark list of existing LiDAR SLAM algorithms collected
from the website of KITTI dataset[32]

Methods Translation Rotation Runtime
V-LOAM [33] 0.54 % 0.0013 [deg/m] 0.1 s

LOAM [6] 0.55 % 0.0013 [deg/m] 0.1 s
CT-ICP [34] 0.58 % 0.0013 [deg/m] 0.06 s
SDV-LOAM 0.60% 0.0015 [deg/m] 0.05 s

wPICP 0.62 % 0.0015 [deg/m] 0.1 s
FBLO 0.62 % 0.0015 [deg/m] 1s
HMLO 0.62% 0.0014 [deg/m] 0.2 s

filter-reg [35] 0.65 % 0.0016 [deg/m] 0.01 s
MULLS [36] 0.65 % 0.0019 [deg/m] 0.08 s
SMTD-LO 0.66 % 0.0020 [deg/m] 0.3 s

After that, an important non-destructive testing-based method for odometry estimation called

LOAM [6] became open-source. The results of the evaluations carried out on the KITTI

odometry dataset are laid out in Table 2.1, and those evaluations indicate that this techno-

logy continues to work admirably. This package does not include any kind of odometry

preprocessing whatsoever. LOAM first selects the feature points on the sharp edges and plane

surface by calculating the distribution of the input point cloud, such as the curvature of each

group of points, and next evaluate the smoothness of adjacent points to identify edge and plane

points. Then the point-to-edge and point-to-plane strategies for scan matching are employed

to calculate the transformation, including the translation vector and rotation metric between

two input LiDAR scans. The LOAM algorithm is what’s used to figure out the difference

between two scans. In the PNDT [37], the probability distribution function of each point is

computed simultaneously with the mean and the covariance rather than desperately calculated

in classical NDT methods. This is in contrast to the conventional NDT, which computes the

probability distribution function just once. This causes an increase in the precision of both

the translational and rotational accuracy. The advantage is that distributions are created in

each and every one of the occupied cells, and this is true despite the fact that the resolution

can be granulated to an extremely small degree. LEGO-LOAM is a variant of LOAM that
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was introduced for the very first time in the [4] presentation. It does this by including label

matching as an additional way to enhance the likelihood of detecting matches between two

scans that belong to the same object. This is accomplished by comparing the labels of the

scanned images. In addition, a two-step Levenberg–Marquardt optimization has been intro-

duced, which maintains the same level of precision as LOAM while yet accomplishing a 35

% reduction in runtime.

Other variations of LOAM include SLOAM [38], ISC-LOAM [39], F-LOAM[40] and R-

LOAM [41]. SLOAM [38] presented the concept of texture-based lines and planes having

less dependability than semantic features, which were referred to as "semantic features."

As a result, SLOAM is able to outperform other LiDAR SLAM systems by showing more

robustness in more unstructured situations. ISC-LOAM [39] makes advantage of the intensity

readings to assist effective location recognition, in contrast to the loop closure method in

LiDAR SLAM, which actually disregards the reflectivity measurement and solely employs

geometric descriptors. F-LOAM[40] and R-LOAM [41]are two of the most recent methods

that have been developed for LiDAR odometry. When it comes to runtime performance,

F-LOAM is superior to both LOAM and LEGO-LOAM. whereas R-LOAM is an upgrade

over LOAM in that it incorporates an additional cost for mesh features, which ultimately

leads to a reduction in the median APE when compared to LOAM.

When it comes to its performance on the KITTI Odometry dataset, LOAM has shown to be

rather successful on a constant basis. LOAM is one of the known approaches that just uses

LiDAR, and it has some of the lowest error rates for both rotation and translation, which

is also the reason why LOAM was chosen as our backbone. Besides, the KITTI dataset is

collected in good weather conditions. Although current methods have achieved considerable

performance on KITTI, their performance could degrade significantly in extreme weather

conditions.
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TABLE 2.2: Results of existing LiDAR SLAM framework on different se-
quences of KITTI dataset [2]

Methods 00 01 02 03 04 05 06 07 08 09 10 Avg
LOAM [6] 0.78/0.53 1.43/0.55 0.92/0.55 0.86/0.65 0.71/0.50 0.57/0.38 0.65/0.39 0.63/0.50 1.12/0.44 0.77/0.48 0.79/0.57 0.85/0.51
ELO [42] 0.54/0.20 0.61/0.13 0.54/0.18 0.65/0.27 0.32/0.15 0.33/0.17 0.30/0.13 0.31/0.16 0.79/0.21 0.48/0.14 0.59/0.19 0.50/0.18

IMLS-SLAM [43] -/0.50 -/0.82 -/0.53 -/0.68 -/0.33 -/0.32 -/0.33 -/0.33 -/0.80 -/0.55 -/0.53 -/0.55
SUMA++ [17] 0.22/0.64 0.46/1.60 0.37/1.00 0.46/0.67 0.26/0.37 0.20/0.40 0.21/0.46 0.19/0.34 0.35/1.10 0.23/0.47 0.28/0.66 0.29/0.70

SALO [44] 0.91/0.72 1.13/0.37 0.98/0.45 1.76/0.50 0.51/0.17 0.56/0.29 0.48/0.13 0.83/0.51 1.33/1.43 0.64/0.30 0.97/0.41 0.95/0.80
SuMa [45] 0.3/0.7 0.5/1.7 0.4/1.1 0.5/0.7 0.3/0.4 0.2/0.5 0.2/0.4 0.3/0.4 0.4/1.0 0.3/0.5 0.3/0.7 0.3/0.7
GICP [22] 1.29/0.64 4.39/0.91 2.53/0.77 1.68/1.08 3.76/1.07 1.02/0.54 0.92/0.46 0.64/0.45 1.58/0.75 1.97/0.77 1.31/0.62 1.91/0.73

LO-Net [46] 1.47/0.72 1.36/0.47 1.52/0.71 1.03/0.66 0.51/0.65 1.04/0.69 0.71/0.50 1.70/0.89 2.12/0.77 1.37/0.58 1.80/0.93 1.09/0.63
DeepLO [47] 0.32/0.12 0.16/0.05 0.15/0.05 0.04/0.01 0.01/0.01 0.11/0.07 0.03/0.07 0.08/0.05 0.09/0.04 13.35/4.45 5.83/3.53 1.83/0.76

DeepVCP [48] -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 0.071/0.164

2.1.3 Learning-based LiDAR SLAM

Deep learning has shown exceptional performance on point cloud classification and segment-

ation, however, applying deep learning strategies to the solution of 3D LiDAR odometry

problems is still a difficult task. Velas et al.first employ Convolutional Neural Networks(CNN)

to accomplish continuous pose estimation on LiDAR scan sequences in [49]. In order to train

the network, the raw LiDAR data is first converted into a dense matrix that has 3 separate

channels. On the other hand, Velas treats the estimation of odometry as a classification

problem with certain motion parameter candidates rather than a regression problem, and thus

solely calculates translational parameter values.

In the pose estimation module of the LiDAR odometry pipeline, the network-based approaches

use neural networks to estimate poses. Instead of being developed for dozens of years like

the ICP-based and NDT-based approaches, the deep learning-based approaches in the field of

LiDAR odometry are relatively new. These approaches use deep learning as the first step in

the registration process for point clouds. In spite of this, there have appeared large quantities

of works focusing on learning-based LiDAR odometry, such as [50] [51] [52].

After that, an end-to-end approach that could directly accept LiDAR point cloud data and

calculate the 6-DoF pose estimation matrix between the given pairs of point clouds was

developed and named LO-Net[46]. As a method trained in an end-to-end manner, LO-Net

is able to learn an efficient feature representation. By introducing a new mask-weighted

geometric constraint loss, the performance is improved. The algorithm is able to better

understand the sequential dependencies and dynamics of the data as a result of this loss. Within

this context, both the position and the orientation are determined concurrently. Subsequently,
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DeepLO[47] presents both supervised and unsupervised methods at the same time and

proposes a geometry-aware LiDAR odometry framework for the first time. Vertex and normal

maps are both incorporated as network inputs by DeepLO, and this is accomplished without

any loss of precision.

In LodoNet’s [5] rotation and translation estimation modules, the PointNet classification

architecture was modified to accommodate LodoNet’s needs. However, in contrast to LO-

Net, LodoNet separates the translation and rotation modules into two parts, which leads to

the production of two 3-DoF forecasts once odometry has been completed. LodoNet also

introduces the spherical projection of the input LiDAR scan to represent the 3D LiDAR

data in 2D format, which also reduces the requirement for computational resources. In

summary, Learning-based LiDAR SLAM algorithms could automatically learn and extract

useful features from point cloud data, and directly learn state estimation models through

end-to-end training, improving positioning accuracy and robustness. However, there are also

some issues with the learning-based LiDAR slam. Firstly, learning-based methods require

a large amount of data with ground truth for training, and common existing datasets do not

contain such data collected under extreme weather conditions. If only use data collected under

clear weather for training, the resulting network will have poor performance under extreme

weather conditions, which limits the usage scenarios of learning-based methods. In addition,

learning-based methods have certain requirements for device performance. Although this

method could be used to generate accurate pose estimation results offline, it is difficult to

support large-scale neural network applications on vehicle or robot platforms.

2.2 Point Cloud Denoising Algorithm

The point cloud denoising technique is a crucial method to ensure the quality of LiDAR data.

In the last decades, with more attention paid to LiDAR perception, several kinds of point

cloud denoising algorithms have already been proposed, which will be introduced in this

section. We will focus on the point cloud denoising algorithm in adverse weather conditions

such as snowy, foggy, or rainy days.
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In the past decades, point cloud denoising has been continuously researched. Existing

denoising or filtering methods start from statistics-based methods. Based on Bayesian

estimation theory and PCA(Principal Component Analysis), early filtering like [53] and [53]

succeed in recognizing and removing some of the noise points caused by weather conditions.

Similar methods like [54] based on the nearest neighbor approach, and [55] based on the

voxel filter, also achieve point cloud denoising by presenting the geometric features of the

given point cloud.

Later, with the development of LiDAR, the range data collected by LiDAR starts to contain

intensity information. Since the intensities of normal objects and rainfalls or snowflakes at

the same distance are different to some extent, intensity-based methods like[56] outperform

statistic-based methods soon. However, in complex urban environments, dynamic objects still

pose a large problem for intensity-based methods.

Rainfall and snowflake noise are the two most common kinds of noisy points existing in

natural environments. These noisy points have different distribution characteristics and

will introduce outlier noise data into a clean point cloud. Thus, it will be necessary to

remove it to guarantee the accuracy of LiDAR perception. However, due to their special

distribution characteristics, people also find that these noisy points are difficult to remove

through conventional or traditional methods, such as filtering methods for indoor or clean

environments. In consideration of the characteristics of rainfall and snowflakes, there are

three main kinds of denoising methods that are suitable for LiDAR point clouds, especially for

processing point clouds collected in adverse weather such as rainy or snowy days: statistics-

based methods, intensity-based methods, and deep learning-based methods.

2.2.1 Statistics-based Point Cloud Denoising Methods

Statistics-based filtering methods are a conventional technique that relies on the differences in

distribution between noisy and clean point clouds. The two most common filtering methods

are known as Statistical Outlier Removal (SOR) and Radius Outlier Removal (ROR)[55].

Both methods are based on the aforementioned distribution differences.
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The Statistical Outlier Removal (SOR) filter is designed to eliminate outliers in point clouds

by conducting a statistical analysis for all points using a KD-tree. The process assumes that

the distance between the given point and its consecutive points follows a Gaussian distribution.

The average distance is calculated as the mean, while the standard deviation is determined

from the mean and each distance. Points with distances outside of the standard deviation

range are defined as outliers and removed from the data. SOR performs well in common

situations, especially when the environment contains random noisy points, but the run time in

practice is not satisfactory, and when the number of noisy points increases, the performance

will decrease sharply. Similarly, the ROR filter will also first calculate the average distance

using the KD-tree. Then a radius and number of thresholds will be manually set to remove

the points whose number of nearest neighbor points is less than the set threshold. Otherwise,

the points will be taken as normal ones and reserved in the point cloud. These two kinds of

methods are both simple but efficient for common point cloud filtering situations, such as in a

dynamic environment. While these traditional techniques have been successful in filtering

out noise in point clouds, they have limitations. For example, SOR assumes a Gaussian

distribution of distances, which may not always hold true. Additionally, ROR may not be

appropriate for point clouds with varying densities, as the specified radius may be too small

in dense regions, causing legitimate points to be removed, or too large in sparse regions,

allowing outliers to remain in the point cloud. Furthermore, when confronted with point cloud

denoising in adverse weather, they fail to capitalize on the unique distribution of a rainy or

snowy environment, i.e., in such adverse weather, the near region contains many more points

than in normal weather, while the rest area contains only a few points. Thus, when filtering

rainfall or snowflakes, these two methods are clearly limited in run time and accuracy.

It could be easily concluded that a point cloud filter with a fixed radius is not suitable

in most conditions, especially in point cloud denoising under adverse weather. Actually,

rainfall and snowfall are relatively evenly distributed throughout the space. As a result,

when calculating the mean distance of k-nearest neighbors, it is found that the normal points

surrounded by noisy points usually generate a shorter average distance than other ones far

away from noisy points. It will result in that filter removing the latter ones instead of noisy

points and finally achieving low accuracy. Then, depending on the circumstances, filtering
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methods with a dynamic radius emerge. In order to overcome this weakness, Dynamic Radius

Outlier Removal (DROR)[57] is designed to adjust the radius dynamically considering the

average distance among certain regions. This method performs better than SOR and ROR

especially under lightly snowy conditions, as a result of taking more distant LiDAR points

into consideration. Meanwhile, in order to work better in a heavily snowy environment, a

Dynamic Statistical Outlier Removal (DSOR) filter is proposed, which performs better in

heavily snowing situations with a lower rate of recall and removing snowy points at far regions

than DROR. However, DSOR is slightly weaker than DROR and the run time of DSOR is

significantly longer when dealing with point clouds collected on rainy days.

In addition, Haris et al.proposed Fast cluster Statistical Outlier Removal (FCSOR)[58] , which

reduces the run time of filtering by implementing parallel computation, although there is no

improvement in the accuracy compared with other methods. Recently, Yao et al.proposed a

new method based on PCA to realize dimensionality reduction from 3d to 2d for LiDAR point

clouds and use the Density-Based Spatial Clustering of Applications with Noise Clustering

method to remove sparse regions. This method improves the run time and filtering rate but

can only maintain low accuracy.

Despite these limitations, statistics-based point cloud filtering methods continue to be widely

used for their simplicity and efficiency. By effectively detecting and removing outliers, these

methods can significantly enhance the accuracy and reliability of point cloud data, making

them useful in various applications such as 3D mapping, autonomous vehicles, and object

recognition.

2.2.2 Intensity-based Point Cloud Denoising Methods

The intensity of LiDAR points differs from obstacle to obstacle. Ji-Il et al.suppose that the

intensity of normal points is higher than the intensity of a snowflake with the same distance,

and then propose the Low-Intensity Outlier Removal (LIOR) algorithm [56]. Based on the

difference in intensity of points, this method firstly selects those points with intensity under

threshold as candidates of snowy points and then sets up a radius for them. Then they calculate
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the neighbors inside the radius of each selected point, if the intensity of this point is lower

than the threshold in its searching area, the point will be taken as a snowy point. This method

takes advantage of both ROR and intensity, which achieves high denoising accuracy and

significantly reduces time consumption. Besides, inspired by LIOR, Ricardoet al.proposed

dynamic light intensity outlier removal(DIOR)[59], which combines Low-Intensity Outlier

Removal and Dynamic Radius Outlier Removal by implementing dynamic radius on intensity-

based screening for point clouds to improve the accuracy.

2.2.3 Deep Learning-based Point Cloud Denoising Methods

FIGURE 2.1: Network used in the deep learning-based point cloud denoising
method named weatherNet[60].

Current SOTA work in point cloud denoising is WeatherNet[60] and the network is shown

above. Weather net uses the basic block named LiLaBlock improved from LiLaNet[61], as

shown below. Lilanet is a point cloud classification method based on CNN and WeatherNet

is inspired by LiLaNet to develop a network for point cloud semantic tasks and finally

achieve the target to reduce noisy points in foggy and rainy weather. WeatherNet first collects

training data under indoor controllable weather conditions. Researchers use the fog and

rain model to simulate real floating particles and rainfalls to set up foggy and rainy weather,

then use a Velodyne VLP-32C LiDAR to collect LiDAR scans under clear, foggy and rainy

environments separately. About 176,000 LiDAR scans are collected and finally split to about

(60%− 15%− 25%) for training, validation and testing. By training the network mentioned

above on the collected dataset, WeatherNet succeeded in achieving the best IoU among all

existing methods. WeatherNet is also the first and most representative learning-based point

cloud denoising method. However, WeatherNet only achieves the denoising function. When

reproducing the code and applying the WeatherNet in LiDAR SLAM, the accuracy of the

final trajectory is still lower than the original LiDAR SLAM. Meanwhile, the data used in

WeatherNet is collected in an indoor simulation environment, where the car is static. It is
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different from the natural environment and could lead to potential errors. In addition, the

method of collecting data is hard to migrate or promote to other scenarios.

FIGURE 2.2: The LilaBlock used in weathernet which is improved from[61].

2.3 Point Cloud Upsampling

In this study, a novel denoising framework for point clouds which contains an upsampling

module is proposed. Thus this section will give an overview of point cloud upsampling

methods. There is relatively little research in this field. Based on PointNet++[62], PU-Net

[63] is the first work for point cloud upsampling. By directly operating on point clouds,

PU-net successfully generated uniform dense point clouds and outperformed the traditional

approaches. On the other hand, this method could only conduct super-resolution processing

on point cloud scans of specific little objects. As a result, the algorithm cannot directly work

on the LiDAR frames in mainstream autonomous driving datasets.

Subsequent point cloud upsampling works like PU-GAN [64] continue to introduce creative

network structures in computer vision and earn satisfying upsampling performance. PU-GAN

even maintain the best performance on different evaluation including Uniformity for different,

CD and HD, whose workflow is presented below. However, these upsampling frameworks are

only suitable for relatively dense point clouds and have little improvement on sparse data like

LiDAR scan to achieve super-resolution or even recover environmental features.

2.4 Data Sets

There are various LiDAR SLAM data sets that collect data under clear weather such as KITTI

[32] and Ford [65] data sets. However, there are only a few data sets that focus on all-weather



20 2 LITERATURE REVIEW

FIGURE 2.3: The workflow and network outline of PU-GAN[46].

autonomous driving. In order to study how adverse weather influences autonomous driving

and SLAM, the researchers could only use simulation methods to construct data sets [66] or

gather meteorological data that is typical in the region in which they live. The first work to

collect true data under all-weather conditions is from the researchers of The University of

Michigan, who collect 4-season LiDAR range data with their robot platform on the campus

[67]. After that, The Oxford Radar Dataset [68] which is the first data set that contains

sequences of data collected in a rainy environment was published. It is a large-scale dataset

collected on the same route several times. The LiDAR data is captured by two Velodyne

HDL-32E LiDARs. Besides, Pitropovet et al. [69] published the first autonomous vehicle

data set that solely concentrates on snow weather conditions in their work Canadian adverse

driving conditions (CADC) dataset, which contains data collected by LiDAR and GNSS+INS.
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Method

Feature-based LiDAR SLAM system is a critical component in autonomous driving tasks,

but it could be affected easily by challenging weather conditions and other environmental

factors. Existing LiDAR filtering methods will remove not only noisy points but also normal

points that constitute environmental structures. To address this issue, we proposed a two-

stage algorithm that firstly filters out noise points from range LiDAR data and then recovers

structures with a super-resolution module instead of directly combining the existing denoising

methods and the LiDAR SLAM system.

The proposed method consists of mainly two modules, a down-sampling module and a super-

resolution module. The down-sampling module aims to eliminate noisy points, including

some undetermined points and the super-resolution module is used to recover the destroyed

environmental structure. Specifically, we propose a LiDAR processing strategy inspired by

the concept of U-net[70], which is one of the most commonly used super-solution methods

in image processing. In order to reconstruct the environmental characteristics damaged by

the Down-sampling layers, the super-resolution layers succeed in enhancing the resolution

without loss of generality. The approach involves first projecting the input LiDAR point cloud

into a low-resolution range image. This generated range image is naturally sparse, but it

contains critical information about the environment. The sparse range image is then fed into a

trained Down-Sampling and Super-Resolution network, which uses the super-resolution layers

to enhance the resolution of the image without losing any of the important environmental

features. Finally, the output of the network is a dense point cloud that has been reconstructed

at high resolution, effectively capturing the important structures and details of the environment.

The pipeline of our approach is shown in Fig. 3.1.

21



22 3 METHOD

In summary, our proposed two-stage algorithm addresses the challenges faced by traditional

feature-based LiDAR SLAM systems in adverse weather conditions and other harsh environ-

ments. By combining existing filtering methods with the super-resolution module, we are able

to effectively filter out noise while preserving important environmental structures, providing

more accurate and reliable data for autonomous systems.

In this chapter, we will first discuss the influence of adverse weather on point clouds and the

denoising performance of baseline denoising methods. Then the data processing progress for

different datasets and modules in our proposed method will be explained. Finally, we will

introduce the evaluation indicators for experiments.

3.1 Influence of Adverse Weather on LiDAR

Adverse weather conditions, such as rain, snow, and fog, present a significant challenge for the

operation of Autonomous Driving Systems (ADS), particularly for Level 4 and higher ADS.

To tackle this issue, researchers have devoted significant efforts to find solutions. In the early

days of the development of autonomous vehicles, experts had already recognized the dangers

posed by wet and slippery roads and the impact of reduced visibility on the decision-making

process of drivers on expressways.

rain Rainfall has little impact on the LiDAR and the autonomous vehicle itself by affecting

the measurement and integrity of the LiDAR scans. It is still difficult to distinguish even

implementing the mathematical model on LiDAR perception. When the rain becomes heavy

or unrestrained, more serious harm will occur. The high and uneven rainfall rate is very likely

to form a cloud fog and make LiDAR look like a false obstacle. Therefore, heavy rain can be

considered dense fog or smoke when measuring its impact.

snow Different from rain only contains a waterfall, snow consists of solid objects and

snowflakes, which will form larger objects and be recognized as obstacles. As a result,

LiDAR detection will be disturbed and other objects in the surrounding environment will be

obscured, leading to incorrect detection. Considering that snow (such as fog chamber) is not
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easy to access, and driving in snow is also obviously dangerous, a snow effect test is rarely

conducted.

It is clear that the snow in the atmosphere or the snow rolled up to the air may bring exceptions

and shorten the measure distance of the LiDAR. More importantly, some kinds of LiDAR

do not even work in such temperatures, for example, Velodyne VLP-16 is designed to work

with a minimum operating temperature of −10 ◦C. It is not uncommon to have a colder

environment in the Northern Hemisphere, which may not even have a chance of survival.

When the temperature changes from a freezing environment (like − 20 ◦C) to a burning (like

+60 ◦C) environment, there will exist a significant extra time delay in LiDAR measurement

of about 7ns, which will add an extra 1m ranging error on the measurement result. It will

definitely reduce the near-field accuracy and the sensitivity of ranging and further perception.

wavelength Experiment shows that under the rainfall rate of 25 mm/h, the performance

deterioration of 905 nm is twice that of 1550 nm[71]. The attenuation of light propagation at

1550nm may be smaller than that of short wavelength. Some people say that this rule is only

applicable to thin fog (visibility>2km), while in heavy fog (visibility<500m), the attenuation

is independent of wavelength [72]. The ranging value at 905nm is still 60% longer than

that at 1550nm. In addition, compared with 905nm, the reflectivity of the 1550nm wave on

snowy days is about 97% lower [73]. Less snow cover interference can not make up for the

shortcomings of the original target detection work.

3.2 Proposed method

Since deep learning has demonstrated promising feature extraction capability in recent years,

we intend to design a learning-based network for LiDAR simultaneous localization and

mapping (SLAM) in challenging weather conditions. It is observed that rainfall or snowflakes

viewed from a LiDAR sensor usually lack the same inherent structure of the clean data. Initial

experiment shows that point cloud denoising could efficiently remove most of the noisy points,

but would also remove considerable clean points because of their simple judgment of noisy
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FIGURE 3.1: Workflow of our proposed framework. The network is inspired
by Unet[70] and the encoder-decoder architecture.

points. Thus the filtered or down-sampled point clouds may also lack necessary environmental

structures, causing the wrong match in LiDAR SLAM and even leading to the decreasing

accuracy of odometry estimation.

The purpose of our research is to tackle the challenge of eliminating noisy points while

concurrently preserving the underlying structural characteristics of the environment. To

this end, we propose a novel approach that addresses the deficiency of inherent structures

by initially reducing the density of noise through the downsampling of the point clouds.

Subsequently, we utilize a super-resolution module based on neural networks to recover

the entire point cloud, which has been trained to output only clean points. This super-

resolution module contributes to the enhancement of environmental information and results

in a substantial decrease in the overall noise level as compared to the original point cloud.

3.2.1 Preprocessing

In order to determine the influence of adverse weather conditions on LiDAR SLAM, we

choose datasets containing data collected under rainy or snowy weather conditions. The basic

progress of processing range data from chosen datasets is summarized as 3 steps:

(1)Extract origin range data from binary files(note that Oxford Radar dataset is column-

aligned, which differs from KITTI and CADC dataset);
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(2)Package (x, y, z, i) into PointXYZI type of ROS message(Here x, y, z represents the point

coordinate and i is the intensity of the objective);

(3)Publish the packaged message to certain rostopic for subsequent use. Processing details

for different datasets could be various.

3.2.2 Down sampling module

In the down-sampling stage, the goal is to filter out the rainfall or snowflakes from the point

cloud and produce clean data. We follow the Dynamic Radius Outlier Removal(DSOR)

filter, which is the first effective point cloud denoising method for snowy weather conditions

and succeeds in tackling the problem of uneven distribution of noisy points. The DSOR

filter works by first storing the point cloud in a k-d tree, a data structure commonly used for

efficient nearest-neighbor searches. This allows the DSOR filter to perform a KNN (k-nearest

neighbor) search on each point in the point cloud, collecting user-specified k neighbors for

each of them. Specifically, the DSOR filter recognizes the noise points only through geometric

information such as distance. To determine the global threshold for point removal, the mean

(µ) and standard deviation (σ) of the mean distances between each point and its k nearest

neighbors as shown in equation 3.1.

Tg = µ+ (σ × constant) (3.1)

Considering the uneven distribution of points caused by the LiDAR operating principle,

the distance between every point and LiDAR, as well as a new dynamic threshold (Td), is

calculated by equation 3.2

Td = Tg × r × distance (3.2)

Outliers are considered to be points that have mean distances that are lower than the threshold

value Td. These noise points will be removed. In this step, the constant r is a multiplicative

factor. Increasing r will have the opposite effect and will cause the filter to reject fewer points.
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In contrast, decreasing r will result in a decrease in Td and will cause the filter to reject a

greater number of points. The DSOR filter achieves the best performance when applied to the

LiDAR point clouds containing snowflakes, and could generate the cleanest point cloud with

as many environmental structures as possible compared to the other approaches

3.2.3 Dataset collection

The dataset used for training and testing the super-resolution module is collected under a

simulation environment. A robust virtual world is used to generate high-resolution point

clouds with simulated LiDAR, a technique similar to that presented in [74]. Numerous free

software applications exist, such as The ground-based LiDAR can be simulated in a number

of different computer programs, including CARLA, Gazebo, and Unity. In this study, the

dataset used is collected under the CARLA simulator [75] because of its accessibility and

comprehensive help official guidance.

The original LiDAR data contains 30,000 to 40,000 points per frame, and the down-sampled

point cloud from the DSOR filter in our experiment will lose about half the points with the

points number at about 16,000 points per frame, which will cause the lack of environmental

structure. In order to recover the environmental structure, the down-sampled point cloud is

token as input. Meanwhile, Velodyne VLP-32C or HDL-32E would produce LiDAR frames

with the resolution 32× 1024 which will be set as the output of our network.

Another concerning matter is that when upsampling the LiDAR scans, the input LiDAR

frames with low resolution need to have the same field of view (FOV) as the output with

higher resolution LiDAR frames. For instance, because the vertical FOVs of HDL-64E and

VLP-32C are distinct from one another, it is unable to train a neural network using the data

from VLP-32C to predict how HDL-64E will be perceived. After identifying the LiDAR in

the simulator, it is checked that the vertical FOV of VLP-16 is 30◦ and its horizontal FOV is

360◦, while our expected output is upsampled LiDAR scans containing 32 beams or collected

by VLP-23C or HDL-32E, which has the same FOV. After that, it will be possible to create a
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car in the simulation environment either manually or automatically, at which point it would

be possible for us to collect high-resolution point clouds that the simulated LiDAR collected.

After that, the generated LiDAR data will be transferred with high resolution to a range image

so that the neural network may analyze it. During the process of training the neural network,

the input consists of an intensity image with a low resolution equal to the LiDAR point cloud

generated by a Velodyne VLP-16 LiDAR. Our purpose is to design a network that could

output a high-quality range image in a resolution of 16× 1024, which is the same as the range

image projected from a scan collected by a Velodyne VLP-64 LiDAR. Then, we are going

to generate a low-res range image by uniformly extracting 16 beams from the output range

image. The resulting image has a resolution of 16× 1024.

In our experiments, it has been brought to our attention that the point size of LiDAR point

cloud collected by Velodyne VLP-32C is in the range of 14,400 to 600,00, with the corres-

ponding resolution between 16× 900 and 16× 3750 pixels. The accurate point size and pixel

depend on the rotation speed of LiDAR. We decided to make the resolution to be 16×1024 as

the low solution and 32× 1024 as the high resolution for every range image. Thus we could

handle a variety of sensors throughout the article. This decision was made for the purposes of

convenience and demonstration.

In order to implement the learning-based method in our strategy, origin point clouds will be

projected into a range representation first. To this end, for each given point p =
[
x y z

]⊤
∈

R3, which is a point from the K−th point cloud. The corresponding intensity of p is a certain

value i ∈ [0, 1], we have:

d =
√
x2 + y2 + z2,

ϕ = arcsin
(z
d

)
,

ψ = arctan
(y
x

)
,

(3.3)

where d is the distance between p and the origin of LiDAR coordinate, ϕ and ψ are the

inclination angle and the azimuth angle respectively. After that, each point will be projected

onto the spherical coordinate and a range image IK ∈ Rh×w×2
+ will be generated, in which h
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and w are the vertical resolution and horizontal resolution separately. The experiment shows

that in the progress of projection and inverse projection, approximately 5% points would be

lost, which could be ignored in research. Besides, In order to convert the original scans of

LiDAR into a 2D intensity image, each scan is also chopped, especially removing the points

in the area backward. This was done with the aim of making the image more compact. This

part of the vehicle is often considered to have less influence in autonomous driving because

this part will usually be obstructed by other sensors or the vehicle itself.

Last but not least, we will first scale both the intensity images with low resolution and high

resolution into the range of 0-1 and then transmit them to the neural network to be trained.

For instance, the VLP-16 has a detection range of up to 100 meters at its highest capability.

Therefore, in order to produce the normalized range picture, the distance of these images is

divided by 100. It is mainly because the distance that is further than the sensor’s measurement

is invalid, and the ranges of these objects are required to be set as value 0.

3.2.4 Super resolution module
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FIGURE 3.2: The chosen network architecture used for range image down-
sampling and super-resolution. The input size is 16× 1024 and the output size
is 32× 1024.

The challenge of LiDAR point cloud processing under adverse weather has currently been

transferred to a problem of implementing super-resolution for range image data based on

the denoised point cloud. To this end, we proposed a convolution neural network that aims

to recover the destroyed environmental structures. Our method takes a range image with
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low resolution 16 × 1024 as the input and produces the range image with high resolution

32 × 1024. Figure 3.2 illustrates the configuration of our proposed network architecture,

which is inspired by the encoder-decoder architecture described in U-net[70].

FIGURE 3.3: The residual block in our network. Each block consists of two
groups convolution layer, Batch Normalization layer, and ReLu. Finally, a
residual layer is adopted.

First, the initial low-resolution range image with the size of 16 × 1024 is subjected to

processing, which consists of a convolution layer that is transposed in order to increase the

resolution to meet our requirement. The size of this transposed convolution layer is 32× 1024.

After that, the encoder is made up of two residual blocks shown in Figure 3.3 and one pooling

layer, followed by another three groups consisting of a dropout layer, two residual blocks and

a pooling layer respectively. The purpose is to expand the filter banks by down-sampling the

feature spatial resolutions at the same time. Next, the rest of the network is a decoder module,

with a structure that is inverted with convolutions that are transposed in order to up-sample

the feature spatial resolutions. The decoder starts with a transposed convolution, followed by

a group of transposed convolutions, three residual blocks and a dropout layer. After that three

similar groups are applied. Meanwhile, we add a skip connection when every upsampling

layer is finished to resume high-frequency features lost in the down-sampling module. At

the end of the encoding-decoding structure, we set an extra convolution layer to produce the

output, i.e. the final high-resolution range image is generated by the output layer with the

assistance of a single convolution filter and a batch normalization.
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The hyperparameter for our method was selected after the validation of the collected dataset.

In model training, we use the Adam optimizer with the learning rate set to be 10−4 and a

decay factor of 10−5 after each epoch. The loss function used in model training is L1 Loss.

The training and validation are finished on the NVIDIA GeForce RTX 2080 Ti GPU.

3.3 Evaluation method

EVO When we need to evaluate the performance of a SLAM/LiDAR SLAM algorithm, we

may study it from several viewpoints, such as the accuracy and the speed, the evaluation of

accuracy being the most crucial evaluating indicator. The absolute trajectory error and the

relative pose error were both initially specified in the TUM dataset and became the majority

of the accuracy evaluation. In this section, we will introduce the available evaluation tools

such as EVO.

When evaluating a SLAM (Simultaneous Localization and Mapping) or LiDAR SLAM

algorithm, multiple factors must be considered, with accuracy being the most important

evaluation criterion. To assess the accuracy of the algorithm, two common metrics are used:

absolute trajectory error and relative pose error, which were originally established in the

TUM dataset. In our research, we introduce the most commonly used evaluation tool EVO

(Evaluation of Visual Odometry). This tool provides a comprehensive way to measure the

accuracy of the SLAM or LiDAR SLAM algorithm and is essential for accurately evaluating

the performance of the system.

In order to perform a comprehensive quantitative evaluation of the odometry estimation

results generated by the baseline approach and our proposed framework, we will utilize three

key evaluating indicators: RPE (Relative Pose Error), ATE (Absolute Trajectory Error), and

RMSE (Root Mean Square Error) [76]. These indicators will enable us to calculate the error

in pose estimation between the calculated results and the ground truth data.

Assume the poses in the trajectory are recorded as: P1, . . . ,Pn ∈ SE(3) and the ground truth

poses are recorded as Q1, . . . ,Qn ∈ SE(3). Then in the fixed time interval ∆, the relative
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pose error(RPE) is defined as [76]:

Ei :=
(
Q−1

i Qi+∆

)−1 (
P−1

i Pi+∆

)
(3.4)

From the RPE definition, the root mean squared error(RMSE) is defined as [76]:

RMSE (E1:n,∆) :=

(
1

m

m∑
i=1

∥trans (Ei)∥2
)1/2

(3.5)

Similarly, the absolute trajectory error(ATE) and the corresponding RMSE could be calculated

as [76]:

Fi := Q−1
i SPi (3.6)

and

RMSE (F1:n) :=

(
1

n

n∑
i=1

∥trans (Fi)∥2
)1/2

. (3.7)

The RPE indicator will measure the relative orientation and position error between two

consecutive frames, while the ATE indicator will measure the absolute position error between

the estimated trajectory and the ground truth trajectory. On the other hand, the RMSE indicator

will provide us with an overall measure of the error by taking the square root of the mean

square error between the estimated and ground truth poses. By utilizing these three indicators,

we aim to provide a comprehensive analysis of the accuracy of our proposed framework and

gain insights into its performance compared to the baseline approach. The results of this

analysis will be critical in determining the effectiveness of our proposed framework and will

guide future improvements and advancements.
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Experimental Evaluation

4.1 Experimental Environment

The experimental environment is on Ubuntu 20.04 and ROS 15.09. The Downsampling

modules are implemented and tested on Intel® Core™ i7-9700KF CPU with 16 GB of RAM.

The network is trained and tested on NVIDIA GeForce RTX 2080Ti GPU.

4.2 Datasets

Since realistic autonomous driving tests are limited, the dataset becomes the base of autonom-

ous driving. It is necessary to extract from datasets a great number of the features that are

utilized in object detection tasks, and it is also necessary for practically every technique to

be tested and validated in datasets. It is vital to contain data collected in adequate weather

circumstances, encompassing every type of weather in order to be able to better deal with the

bad weather conditions that could arise when operating an autonomous vehicle. Sadly, the

majority of the datasets that are typically used for training do not contain a particularly large

number of circumstances that deviate significantly from clear weather. Table 4.1 provides a

concise overview of existing open datasets collected under adverse weather conditions and

equipped with LiDAR. GPS/IMU and other non-visual sensors which are utilized throughout

the collection process for each dataset are also listed.

The researchers either used a simulation to construct their own weather datasets [66] or

gathered meteorological data that is typical in the region in which they live. Researchers

at the University of Michigan are the first team to collect 4-season LiDAR range data with
32
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TABLE 4.1: Overview of common autonomous driving datasets containing
LiDAR and being collected under bad weather conditions

Dataset Rain Fog/Haze
/Smog Snow Night Sensors

LIBRE [77] ✓ ✓ - - 10 LiDARs, IMU, GNSS, CAN
CADCD [69] - - ✓ - 1 LiDAR, GNSS, IMU

Oxford RobotCar [78] ✓ - ✓ ✓
3 LiDARs, GPS

(Radar extension: 360◦ radar)
Radiate [79] ✓ ✓ ✓ ✓ 1 LiDAR, 360◦ radar, GPS

EU [80] - - ✓ ✓
4 LiDARs,

radar, RTK GPS, IMU

nuScenes [81] ✓ - - ✓
1 LiDAR, 5 Radars,

GNSS, IMU
Waymo Open [82] ✓ - - ✓ 5 LiDARs
Foggy Cityscape [83] - ✓ - - -
ApolloScape [84] ✓ - - ✓ 2 LiDARs, Depth Images, GPS/IMU
Argoverse [85] ✓ - - ✓ 2 LiDARs, GNSS
A*3D [86] ✓ - - ✓ 1 LiDAR
NCLT [67] - - ✓ - 2 LiDARs, GPS, IMU
DENSE [87] ✓ ✓ ✓ ✓ 1 LiDAR, Weather Station
A2D2 [88] ✓ - - - 5 LiDARs, GPS, IMU

their robot platform around the campus [67]. Pitropovet [69] published the first autonomous

vehicle dataset that solely concentrates on snow weather conditions in their work Canadian

adverse driving conditions (CADC) dataset. In Waterloo, Canada, data collected by LiDAR

and GNSS+INS, was used to compile the different winter scenes. Their LiDAR was also

altered by the use of the noise-reduction technique stated in [57].

Benefiting from the availability of increasing simulators for auto driving and indoor simulating

labs such as fog chambers, research on autonomous driving has achieved a new height,

especially in the field of autonomous driving under adverse weather conditions. Researchers

are able to simulate complex road and driving conditions or environments and various

participants for interaction by using virtual platforms such as the well-known CARLA

simulator[75], which allows them to do so in a way that would be extremely difficult and

expensive to do in real field experiments. In addition, with regard to the climate, the occurrence

of every type of weather, in particular, that which is associated with the changing of the

seasons or extreme climates, is not always to be expected. For instance, researchers can

never be able to conduct snowing tests in tropical regions because of the continuous high
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temperature, and it’s probable that natural rain showers won’t last long enough to collect

the data necessary for experiments. Most notably, bad conditions are typically hazardous

for driving, thus researchers who are collecting raw data under such conditions are actually

facing hidden danger in real road scenes or field tests; nevertheless, simulators can assure

that there will be no risks at all. The use of simulators offers an excellent platform for doing

research on autonomous driving in challenging environmental circumstances at any time and

in any location. In recent years, a number of different simulation systems open-sourced and

produced plug-ins that allow the user to customize the weather conditions and time of day.

All the same, controlled indoor simulation environments also stand in for actual field tests

when it comes to quality assurance. This is advantageous in light of the restrictions that apply

to test fields as well as the potential risks to the people or facilities that are located in the

surrounding area.

Our research requires the datasets to contain LiDAR data collected under different adverse

weathers, and releasing ground truth is necessary for evaluation. However, among the existing

datasets, most of them do not have ground truth, thus the GPS data or GNSS data should be

included. Besides, different sensor models require totally different pre-processing scripts.

Since there are only two data sets, the Oxford Radar Dataset[78] and the CADC dataset[69]

containing the snowy sequences and meeting the requirements of having ground truth or GPS

data, we finally chose these two datasets to validate the performance of the proposed method

and exclude other datasets that do not meet the conditions. We will implement qualitative and

quantitative analysis in the following experiments.

4.3 Visualization of point clouds

Intuitively, rainy and snowy weather will introduce plenty of irregular noise into normal point

clouds. We will discuss the downsampling and super-resolution results and the influence of

these noisy points in this part. Firstly, we visualize the point clouds in different statuses from

our pipeline in white in Figure 4.1. Then, we subscribe the less sharp points, which are the

main feature points captured by the A-LOAM in red and display the distribution in Figure 4.3.
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FIGURE 4.1: Comparison of output point clouds of different stages.

Especially, Figure 4.1 presents a crucial aspect of our proposed framework by demonstrating

the sequential progression of its stages. The initial image in 4.1 (a) displays the origin point

cloud, which is characterized by the presence of a substantial number of noisy points. This

can negatively impact the performance of a LiDAR Odometry system by affecting the quality

of the extracted features.

To mitigate this issue, our framework incorporates a down-sampling module, as result depicted

in 4.1 (b), which is designed to filter out the noisy points from the origin point cloud. However,

this approach also results in the degradation of important environmental features, which can

impact the accuracy of the extracted features.

In light of these challenges, our framework involves a super-resolution module that effectively

recovers the environmental structures while ensuring that the noisy points are not reintroduced.

This is of critical importance in the context of LiDAR Odometry, as the quality of the extracted

features directly impacts the accuracy and efficiency of the system.

(a) The origin point cloud (b) The point cloud generated from
the down sampling module

(c) The point cloud generated
from the super-resolution mod-
ule

FIGURE 4.2: Point cloud visualization of point clouds generated from differ-
ent stages of our framework.
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Secondly, we will analyze the influence of the distribution to feature extraction in LiDAR

Odometry algorithms. As depicted in Figure 4.2 (a), the origin point cloud is characterized

by a high concentration of noisy points, which can affect the distribution of feature points

in the LiDAR coordinate system to distribute in the central area of the LiDAR coordinate.

After that, as shown in Figure 4.2 (b), the down-sampling module employed in our framework

effectively filters out a significant portion of these noisy points, resulting in a more evenly

distributed set of feature points. However, it should be noted that this process also results in

the loss of some environmental structure features, leading to a more sparse representation of

the data.

In contrast, the final output of our method, as depicted in Figure 4.2 (c), effectively recovers the

lost environmental structure information while maintaining approximately the same number of

points as the input. Additionally, the feature points are now more evenly distributed, covering

a wider region in the distance. Note that at the center of the point cloud, it is observed that

the points are densely distributed. This is mainly because when the up-sampling module is

recovering the environmental structure, this area already contains most points in Figure 4.2

(b) and is considered to be more dense than other areas. These results provide strong evidence

that our method is able to effectively denoise the origin point cloud while preserving the

critical information necessary for LiDAR Odometry.

In conclusion, the results presented in Figure 4.1 and Figure 4.2 provide compelling evidence

that our proposed framework is capable of overcoming the challenge of noisy points in

the origin point cloud. By utilizing a down-sampling module and our custom method, our

framework is able to effectively denoise the point cloud while preserving the environmental

structure and feature points necessary for LiDAR Odometry.

4.4 Oxford Radar Robotcar Dataset Result

The Oxford Radar Dataset[78] is a large-scale dataset collected on the same route several

times. The LiDAR data is captured by two Velodyne HDL-32E LiDARs. The following 4.3

shows the optimized ground truth of the route of this dataset.
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FIGURE 4.3: The reference route of Oxford Radar Robotcar dataset.

Our approach is compared with the SOTA LiDAR odometry method LOAM and the open-

sourced version A-LOAM is selected as the baseline. The Oxford Radar Robotcar dataset

has dozens of sequences containing LiDAR data recorded in varying weather conditions.

According to our experiments, most of the rainy sequences do not actually depict a rainy

environment. Instead, The scenes in these "rainy" sequences are only wet roads with clear

weather and only a few of them are collected under a really rainy environment. We will first

assess the accuracy of the odometry trajectory calculated by our approach and then present a

comprehensive quantitative analysis of accuracy evaluation results based on the ground truth

provided by the Oxford Radar Robotcar dataset.

Qualitative analysis We first plot the trajectory of A-LOAM, A-LOAM with DSOR module,

our method and the ground truth on test sequences including one sunny sequence and two

rainy sequences in Figure 4.4. It can be concluded that though A-LOAM has earned extremely

high accuracy on KITTI and other datasets under clear weather conditions, it is evident that
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(a) results on runny sequence 16-13-
09-37

(b) results on rainy sequence 16-13-
42-28

(c) results on rainy sequence 16-14-
15-33

FIGURE 4.4: Trajecotry results of baseline and proposed method on the
Oxford Radar Robotcar Dataset.

there is still a noticeable discrepancy between its odometry results and the ground truth. This

disparity becomes more pronounced in rainy environments. Conversely, our proposed method

produces better results on rainy days, even though the accuracy is slightly lower than the

baseline method on sunny days. This is further supported by our quantitative analysis.

Quantitative analysis Table 4.2 below shows the average translation and rotation error of

A-LOAM among sequences under clear weather(sunny/cloudy) and sequences under bad

weather(rainy). According to Table 4.2, it is concluded that in the normal outdoor environment,

the error accumulated by LOAM is reduced to very low but there is still a challenge for LiDAR

SLAM to work under rainy scenes. The error increased by almost 50% when it was raining

compared with clear conditions.

TABLE 4.2: Comparison of results generated by A-LOAM under clear and
rainy weather on Oxford Radar Robotcar Dataset

Methods Mean Translation/Rotation error variance
clear 1.1371/0.4138 0.01833/0.001694
rainy 1.6189/0.5107 0.005944/0.005768

Next, we test the performance of baseline A-LOAM, baseline with DSOR filter and our

proposed approach. Table 4.3 shows the results on selected test sequences of the Oxford

Radar Robotcar Dataset. Under rainy weather, our proposed method produces a better

odometry estimation result with lower error than the baseline A-LOAM and all the other
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TABLE 4.3: Results on Oxford Radar RobotCar Dataset

Sequence
Method 14-13-18-21 16-13-09-37 16-14-15-33(rainy) 16-13-42-28(rainy)
ORB-SLAM2 8.81/0.6186 6.68/0.6175 6.92/0.6978 6.06/0.6877
Radar SLAM Odometry 2.32/0.7 2.62/0.7 2.27/0.6 2.29/0.7
Radar SLAM 1.98/0.6 1.81/0.5 2.12/0.6 2.16/0.6
A-LOAM 1.0785/0.3857 1.0904/0.3848 1.6734/0.5644 1.5644/0.4570
SuMa++ 5.96/0.5617 9.05/0.528 7.98/0.5792 7.81/0.5712
Ours 1.7202/0.5293 1.6520/0.4287 1.4657/0.5238 1.5585/0.4292

Results are given as translation error / rotation error. Translation error is in %, and rotation
error is in degrees per meter (deg/100m).

methods, while under normal weather conditions such as sunny days, the baseline A-LOAM

is still the most accurate method and our methods could still over perform other methods.

Though our approach could recover some of the miss-denoised points, there remains a little

gap between our approach and the baseline.

Ablation study The Table 4.4 below shows the difference in results between A-LOAM

and our method with/without the super solution method under rainy weather. When only

implementing the down-sampling module, the results are much worse than the baseline

method and the trajectory results in Figure 4.4 (b) also show the trajectory deviation is larger.

This is because when only implementing a down-sampling module, both most of the noisy

points and some of the clean points will be removed at the same time. If these clean points

could have been chosen as feature points in the LiDAR SLAM module later, the error would

have been amplified as a result. Meanwhile, our proposed approach outperforms the first two

methods in all aspects. It is verified that the super-resolution strategy for recovering damaged

environmental structures will benefit from improving the accuracy of LiDAR SLAM.

TABLE 4.4: Results on sequence under rainy weather on Oxford Radar Dataset

Methods Translation/Rotation error ATE RPE(m) RPE(deg)
A-LOAM 1.6734/0.5644 126.5405 0.1941 0.1332

ours(without SR) 3.2344/0.6037 112.8269 0.6388 0.3679
ours 1.4657/0.5238 104.0945 0.1893 0.1241

4.5 Canadian Adverse Driving Condition Dataset Result

Since the CADC dataset does not provide ground truth, GPS trajectory is used to compare the

accuracy. The sequences in the CADC dataset are collected under snowing days on different
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(a) results on runny sequence 0001 (b) results on rainy sequence 0002 (c) results on rainy sequence 0004

FIGURE 4.5: Trajectory results of baseline and proposed method on the
Canadian Adverse Driving Condition Dataset. In these figures, the gray lines
are the ground truth trajectory, the red lines are the trajectory of the proposed
method and the blue lines are the trajectory of the A-LOAM algorithm.

routes but are limited by the situation that some sequences only last for no more than 100

meters, CADC dataset is more useful for object detection under adverse weather instead of

testing the accuracy of LiDAR odometry. However, we can still take the GPS/GNSS data

as the reference value to calculate the error and perform a qualitative analysis. Most of the

sequences in the CADC dataset only last for dozens of meters, which is even lower than the

lowest evaluation distance in the EVO evaluation. And some of the valid sequences have

wrong GPS data. After filtering, the trajectory of selected example sequences(must be long

enough, at least 100 meters to calculate translation and rotation error) is shown in the figures

below. The result shows that under snowing weather, snowflakes will significantly affect the

performance of feature matching in the baseline algorithm. The shape of the trajectory is

only slightly affected but when the route contains a turning operation, the matching degree of

ground truth and trajectory is obviously reduced.

TABLE 4.5: Average results on CADC Dataset

Sequence
Method 0001 0002 0004 0005
A-LOAM 3.7559/0.4323 3.4186/1.0918 5.1296/3.1818 2.9970/2.8052
Our method 1.9046/0.4587 1.8013/0.6741 1.7839/0.5112 1.6985/0.6211

Results are given as translation error / rotation error. Translation error is in %, and rotation
error is in degrees per meter (deg/100m).

The quantitative analysis result is recorded as Table 4.5 shows. The influence of snowing

weather on LiDAR is significantly improved compared to rainy weather. As has been discussed
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above, the snowflakes will introduce large amounts of noisy points and influence both the

intensity of a single point and the environmental structure of each frame of the point cloud.

The accuracy of baseline under snowing drops sharply and the translation error grows to

500% of the one under clear weather as a result. In contrast, our proposed method could deal

with this situation and provide relatively accurate LiDAR odometry results.

4.6 Limitation and Discussion

We propose a learning-based robust LiDAR odometry method and demonstrate better per-

formance in adverse weather environments compared to baseline. However, it should be noted

that our method has not reached the accuracy as the baseline in normal environments. We

speculate that the super solution could only recover part of the environmental structure. As

for the detailed elements in the environment such as pedestrians, cars, or bicycles, it is hard

for the super-resolution module to complete all the details, resulting in the low scan matching

accuracy for the following pose estimation in the LiDAR odometry module.

In order to enhance the effectiveness of our method, we intend to implement a perception

module that is capable of accurately determining the weather conditions of the environment.

This module will be responsible for judging whether the environment is rainy, snowy, or

clear. Therefore we could decide to only activate our down-sampling and super-resolution

methods in situations where the environment is either rainy or snowy. This approach will help

to preserve the original environmental structure, which is expected to result in a higher level

of accuracy.

Meanwhile, most of the existing datasets do not provide odometry ground truth which limits

further evaluation of the existing algorithm and our method. To address this issue, we plan to

train our model on a more comprehensive and complex dataset with a wider range of weather

conditions, particularly those that include snow scenes, for example, the Boreas dataset [89]

which is the newest published data set containing several long sequences of data collected

with Velodyne Alpha-Prime LiDAR under snowing environment. We plan to make further

tests on this data set by modifying the code for adopting data of 128 lines LiDAR as input
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and producing pose estimation results. This will help to further improve the accuracy of

our proposed framework. In addition, the size of the input point cloud has been limited to

16 × 1024 due to the network structure and training strategy. This issue can be solved by

inputting low-resolution point cloud blocks and recombination after the super-resolution

module.



CHAPTER 5

Conclusion

In this thesis, we first studied the influence of adverse weather on LiDAR odometry and made

a quantitative analysis based on the Oxford Radar Robotcar dataset. After verifying the effect

of adverse weather, we propose a novel processing framework for point clouds generated

from LiDAR sensors that eliminate stochastic noisy points in a downsampling (DS) and super-

resolution (SR) manner. The DS module employed the DSOR filter to remove snowy points

and the SR module is designed to refer to U-net which is pre-trained on clean datasets and

learns to leverage general inherent structure information for point cloud recovery. The point

clouds generated from the proposed framework contain more environmental characteristics

than simply down-sampled point clouds and maintain almost the same high resolution as

the original input point cloud. The experimental results show that the proposed method

could efficiently improve the accuracy of the SLAM algorithm and helps to overperform the

baseline.

Future outlook Our method is currently divided into two independent, resulting in extra time

and memory cost to some degree. In the future, we plan to improve the proposed method in

the following aspects.

Firstly, we plan to design a one-stage algorithm that combines down-sampling with super-

resolution in one neural network to reduce time consumption caused by the current down-

sampling module. The future network will refer to a range image-based method e.g. Rangenet++[90].

Secondly, we plan to jointly train a learnable DS module and the SR module in a semi-

supervised manner, by generating paired datasets using the realistic physical snow model.

Specifically, a teacher network is trained on the augmented paired datasets that contain

ground-truth noise labels. Then on the unpaired real datasets, we distill the knowledge
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from the teacher network into a student network by regularizing the prediction consistency

between the teacher and the student and improving the model robustness using the mean

teacher technique. We will also explore potential self-supervised training signals such as

the temporal reprojection loss between point clouds from two consecutive frames to provide

further supervision. Besides, except for the range image-based method, we will also explore

whether point cloud-based network structures such as pointnet[91] or pointnet++[62] could

work on point cloud denoising under adverse weather. Point cloud-based method would

concentrate more on geometric features, which means the processing progress focuses on the

3d data field.

In the future, we will develop a real-time point cloud denoising framework for LiDAR odo-

metry. Additionally, evaluating our method on more autonomous driving data sets collected

under real environments such as Boreas[89] is also crucial. We will continuously improve

this framework to become suitable for autonomous driving under all weather conditions.
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