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Abstract of thesis entitled
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Submitted by
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The rapid development of deep learning has revolutionized various
vision tasks, but the success relies heavily on supervised training with
large-scale labeled datasets, which can be costly and laborious to acquire.
In this context, semi-supervised learning (SSL) has emerged as a promis-
ing approach to facilitating deep visual learning with less labeled data.
Despite numerous research endeavours in SSL, some technical issues,
e.g., the low unlabeled utilization and instance-discriminating, have not
been well studied. This thesis emphasizes the cruciality of these issues
and proposes new methods for semi-supervised classification (SSC) and
semantic segmentation (SSS).

In SSC, recent studies are limited in excluding samples with low-
confidence predictions and underutilization of label information. Hence,
we propose a Label-guided Self-training approach to SSL, which exploits
label information to employ a class-aware contrastive loss and buffer-
aided label propagation algorithm to fully utilize all unlabeled data. Fur-
thermore, most SSC assumes labeled and unlabeled datasets share an
identical class distribution, which is hard to meet in practice. The dis-
tribution mismatch between the two sets causes severe bias and perfor-
mance degradation. We thus propose the Distribution Consistency SSL
to address the mismatch from a distribution perspective.

In SSS, most studies treat all unlabeled data equally and barely con-
sider different training difficulties among unlabeled instances. We high-
light instance differences and propose instance-specific and model-adaptive



supervision for SSS. We also study semi-supervised medical image seg-
mentation, where labeled data is scarce. Unlike current increasingly
complicated methods, we propose a simple yet effective approach that
applies data perturbation and model stabilization strategies to boost per-
formance.

Extensive experiments and ablation studies are conducted to verify
the superiority of proposed methods on SSC and SSS benchmarks.
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1

Chapter 1

Introduction

In this chapter, we first introduce the problem setting of semi-supervised
learning (SSL) in Section 1.1. We then discuss the main challenges of
SSL studies and present the motivations of our research in Section 1.2.
Section 1.3 describes the contributions and overall structure of this thesis.

1.1 Problem Statement

In the past several years, many remarkable breakthroughs have been
achieved in various computer vision tasks thanks to fast developments
of deep learning [46, 46]. However, such a big success is closely depen-
dent on constructing large-scale labeled datasets which are increasingly
costly and even infeasible in some professional areas (e.g., medical and
astronomical fields). In practice, unlabeled data is readily available and
easy to collect, while accurately labeled data is typically hard and time-
consuming to obtain. To mitigate the demand for labeled data, Semi-
supervised learning (SSL) [138, 111, 114] has been proposed as a power-
ful approach to facilitating visual learning with less labeled data.

In standard SSL setting, we are given a partially-labeled dataset D
containing a small portion of labeled samples Dl and a large number of
unlabeled samples Du, commonly, |Du| >> |Dl|. Our goal in SSL is to
effectively leverage the unlabeled samples to train a better performing
model than the one only trained on the labeled samples. For instance, as
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Figure 1.1: An example of the influence of unlabeled data
in semi-supervised learning. From https://en.wikipedia.org/wiki/Semi-
supervised_learning.

shown in Figure 1.1, large amounts of unlabeled data can help us esti-
mate the data distribution, such that the decision boundary can be mod-
ified to differentiate distinct classes better. Intuitively, a lower perfor-
mance bound exists when the model is only trained on the small portion
of labeled data, and a desired upper performance bound that is obtained
by using all accurate labels for the whole dataset D.

1.2 Challenges and Motivations

Semi-supervised learning has been researched for decades, and the es-
sential idea is to learn from the unlabeled data to enhance the training
process. However, we have no accurate label information on unlabeled
data, such that we cannot directly train models on unlabeled data in a
supervised fashion. To this end, many SSL methods aim to dig guidance
information, e.g., pseudo-labels, for the unlabeled data and cooperate
with less labeled data to train models.

The main challenges lie in two aspects. On one hand, the accuracy
of generated guidance information for unlabeled data, i.e., high quality.
It is straightforward that the accuracy pose a significant impact on the
ultimate SSL performance. Noisy and even wrong guidance will hurt
the training and largely degrade the performance. Many filtering strate-
gies, e.g., high-confidence threshold [83], entropy minimization [47], un-
certainty estimation [163], are carefully designed to select a portion of
unlabeled data with relatively reliable guidance information. On the
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other hand, thorough exploitation of unlabeled data, i.e., high quantity.
This aspect is usually ignored in many SSL studies. As shown in Fig-
ure 1.1, sufficient unlabeled data can be a strong support to seek a better
decision boundary. In fact, high quantity becomes increasingly impor-
tant when dealing with more challenging visual tasks, e.g., classifying
ImageNet [37], and segmenting Cityscapes [34]. These two aspects are
commonly in conflict with each other. For instance, all the generated
pseudo-labels can be directly employed to train models on unlabeled
data (which constitutes the highest quantity). However, this trivial ap-
proach can prove exceedingly detrimental to the model’s performance
due to the low quality of guidance. Thus our objective is to seek an op-
timal trade-off in specific downstream tasks. In summary, the primary
challenges of SSL reside in the effective and comprehensive utilization
of unlabeled data.

Specifically, the motivation of this thesis mainly concentrates on the
following two aspects.

In conventional semi-supervised classification (SSC), we find that
current methods are limited in excluding samples with low-confidence
pseudo-labels and under-utilization of label information. In the litera-
ture, a high-threshold mask is widely adopted to alleviate the confirma-
tion bias[4], but excluding samples with low-confidence pseudo-labels
results in severe inefficiencies in exploiting unlabeled data and consumes
a longer training time. Besides, the label information in existing studies
only contributes as a supervised loss, but its direct effects on pseudo-
label generations are not explicitly considered. Furthermore, we ob-
serve that the success of SSC studies largely depends on the assumption
that the labeled and unlabeled data share an identical class distribution,
which is hard to meet in real practice. The distribution mismatch be-
tween the labeled and unlabeled sets can cause severe bias in SSL and
result in significant performance degradation.

In semi-supervised semantic segmentation (SSS), we observe that
existing studies treat all unlabeled data equally and barely consider the
differences and training difficulties among unlabeled instances. In fact,
requiring more dedicated supervision in segmentation tasks than SSC,
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further enlarges the weakness of such instance-indiscriminating strate-
gies. Thus we emphasize the cruciality of instance differences and pro-
pose the instance-specific and model-adaptive supervision for SSS. In
addition, we studied semi-supervised medical image segmentation (SS-
MIS) where the labeled information is even scarcer. Despite their promis-
ing performance, we find that recent studies tend to integrate increas-
ingly complicated techniques to improve SSMIS in an indirect manner,
e.g., using auxiliary self-supervised tasks, employing additional feature-
label pruning strategies. In contrast, our emphasis lies in the SSL prob-
lem itself, as we strive to propose a simple yet highly effective method
to enhance SSMIS.

1.3 Thesis Contribution and Outline

In this section, we present major contributions and the organization of
this thesis. In Chapter 2, we provide a comprehensive literature review
on the deep visual learning with less labeled data and discuss how ex-
isting works are related to our methods in this thesis. Chapters 3 to 6
present our proposed methods in semi-supervised classification and se-
mantic segmentation in detail, which are listed below. In the end, Chap-
ter 7 concludes the thesis and discusses the possible future directions.

Chapter 3. Label-Guided Self-Training for Semi-supervised Learn-
ing In this chapter, we emphasize the cruciality of the label informa-
tion in SSL and propose a Label-guided Self-training approach to Semi-
supervised Learning (LaSSL), which improves pseudo-label generations
from two mutually boosted strategies. First, with the ground-truth la-
bels and iteratively-polished pseudo-labels, we explore instance rela-
tions among all samples and then minimize a class-aware contrastive
loss to learn discriminative feature representations that make same-class
samples gathered and different-class samples scattered. Second, on top
of improved feature representations, we propagate the label informa-
tion to the unlabeled samples across the potential data manifold at the
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feature-embedding level, which can further improve the labelling of sam-
ples with reference to their neighbours. These two strategies are seam-
lessly integrated and mutually promoted across the whole training pro-
cess. We evaluate LaSSL on several classification benchmarks under par-
tially labeled settings and demonstrate its superiority over the state-of-
the-art approaches.

- The contributions in this part are included in:

Zhen Zhao, Luping Zhou, Lei Wang, Yinghuan Shi and Yang
Gao, “LaSSL: Label-guided Self-training for Semi-supervised
Learning", AAAI, 2022. (Oral)

Chapter 4. DC-SSL: Addressing Mismatched Class Distribution in
Semi-supervised Learning In this chapter, we discuss the distribution
mismatch between the labeled and unlabeled datasets, which can cause
severe bias in the pseudo-labels of SSL, resulting in significant perfor-
mance degradation. To bridge this gap, we put forward a new SSL learn-
ing framework, named Distribution Consistency SSL (DC-SSL), which
rectifies the pseudo-labels from a distribution perspective. The basic
idea is to directly estimate a reference class distribution (RCD), which
is regarded as a surrogate of the ground truth class distribution about
the unlabeled data, and then improve the pseudo-labels by encouraging
the predicted class distribution (PCD) of the unlabeled data to approach
RCD gradually. To this end, we first revisit the Exponentially Moving
Average (EMA) model and utilizes it to estimate RCD in an iteratively
improved manner, which is achieved with a momentum-update scheme
throughout the training procedure. On top of this, two strategies are pro-
posed for RCD to rectify the pseudo-label prediction, respectively. They
correspond to an efficient training-free scheme and a training-based al-
ternative that generates more accurate and reliable predictions. DC-SSL
is evaluated on multiple SSL benchmarks and demonstrates remarkable
performance improvement over competitive methods under matched-
and mismatched-distribution scenarios.

- The contributions in this part are included in:
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Zhen Zhao, Luping Zhou, Yue Duan, Lei Wang, Lei Qi, and
Yinghuan Shi, “DC-SSL: Addressing Mismatched Class Dis-
tribution in Semi-supervised Learning", CVPR, 2022.

Chapter 5. Instance-specific and Model-adaptive Supervision for Semi-
supervised Semantic Segmentation In this chapter, we highlight the
significance of instance differences and propose an instance-specific and
model-adaptive supervision for semi-supervised semantic segmentation,
named iMAS. Relying on the model’s performance, iMAS employs a
class-weighted symmetric intersection-over-union to evaluate quantita-
tive hardness of each instance and supervises the training on unlabeled
data in a model-adaptive manner. Specifically, iMAS learns from un-
labeled instances progressively by weighing their corresponding con-
sistency losses based on the evaluated hardness. Besides, iMAS dy-
namically adjusts the augmentation for each instance such that the dis-
tortion degree of augmented instances is adapted to the model’s gen-
eralization capability across the training course. Not integrating addi-
tional losses and training procedures, iMAS can obtain remarkable per-
formance gains against current state-of-the-art approaches on segmenta-
tion benchmarks under different semi-supervised partition protocols.

- The contributions in this part are included in:

Zhen Zhao, Sifan Long, Jimin Pi, Jingdong Wang, and Luping
Zhou “Instance-specific and Model-adaptive Supervision for
Semi-supervised Semantic Segmentation", CVPR, 2023.

Chapter 6. Boosting Semi-supervised Medical Image Segmentation
with Data Perturbation and Model stabilization In this chapter, we
study the semi-supervised Medical Image Segmentation where the la-
beled data is even scarce. We argue that, while current state-of-the-art
methods exhibit promising performance, they usually come at the cost
of introducing increasingly complex algorithms and loss terms. Differ-
ently, we tend to focus more on the semi-supervised learning itself, and
we propose DPMS, a simple yet effective approach that applies strong
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data perturbation and model stabilization strategies to boost SSMIS per-
formance. Specifically, it follows a clean Siamese framework with a stan-
dard supervised loss and unsupervised consistency loss. On the one
hand, DPMS perturbs the unlabeled data via strong augmentations to
enlarge prediction disagreements considerably. On the other hand, it uti-
lizes a forwarding-twice and momentum updating strategies for normal-
ization statistics to stabilize the training on unlabeled data effectively.
Despite its simplicity, DPMS can obtain new state-of-the-art performance
on the public ACDC and Pancreas datasets under various semi-supervised
settings.

- The contributions in this part are included in:

Zhen Zhao, Ye Liu, Meng Zhao, Di Yin, Yixuan Yuan and
Luping Zhou, “Rethinking Data Perturbation and Model Sta-
bilization for Semi-supervised Medical Image Segmentation",
arxiv:2308.11903.
Zhen Zhao, Lihe Yang, Sifan Long, Jimin Pi, Luping Zhou
and Jingdong Wang, “Augmentation Matters: A Simple-yet-
Effective Approach to Semi-supervised Semantic Segmenta-
tion", CVPR, 2023.
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Chapter 2

Literature Review

In this chapter, we first give a brief introduction of deep supervised
learning for different visual tasks. Then we present the label-efficient
studies on unsupervised self-supervised learning and various semi-supervised
learning methods. In the end, we introduce the popular benchmark
datasets used for semi-supervised classification and semi-supervised se-
mantic segmentation in the literature.

2.1 Supervised Deep Visual Learning

In the past several years, many remarkable breakthroughs have been
achieved in different computer vision tasks thanks to the rapid devel-
opment of machine learning, especially the deep learning [46]. Starting
from the Alexnets [74] that achieved their record-breaking results in im-
age classification, there have been many deep learning based methods
proposed in the field of image classification and semantic segmentation.

The early LeNet [82] was the first convolutional neural network
(CNN) in computer vision problems and was successfully applied to
classify handwritten numbers. Despite its simplicity, LeNet has already
introduced essential network components in later deep nets, like con-
volutional layers, pooling layers and fully connected classification lay-
ers. AlexNet [74] was the first truly deep network and achieved the
breakthrough in classification tasks on ImageNet. It utilizes stacked con-
volutional layers and pooling layers to significantly improve classifica-
tion accuracy. The Rectified Linear Units (ReLU) were introduced as
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an effective activation function. Since then, AlexNet has motivated a
lot of following studies in this field. For example, two follow-up stud-
ies, GoogLeNet [133] and VGGNet [129], won the first and the second-
ranked networks in 2014, respectively. The former has a top-5 classifica-
tion error rate of 6.7%. Its core lies in the Inception Module, which uses a
parallel approach. The latter includes two versions with 16 and 19 layers,
containing a total of about 550 M parameters. Its convolutional neural
network structure is simplified by using all 3×3 convolutional kernels
and 2×2 max-pooling kernels. In 2015, ResNet [54] won the classification
task championship. It outperformed human recognition with an error
rate of 3.57% and set a new model record with a 152-layer network ar-
chitecture. ResNet adopts cross-layer connectivity (residual connection)
to successfully alleviate the gradient vanishing problem in deep neural
networks. The following-up ResNeXt citeresnext adopts grouped convo-
lution and achieves the comparable accuracy of ResNet152 with half of
the complexity. The success of transformer [139] in language models has
inspired many recent studies to explore the Transformer blocks to solve
the vision problems [19, 40, 95]. All these models have significantly con-
tributed to deep learning’s progress in image classification tasks.

Unlike classification tasks in which the whole image belongs to a
single semantic, semantic segmentation must classify each pixel, known
as dense prediction tasks in computer vision. In the era of deep learn-
ing, the pioneering work in this field is FCN [96], which introduced
an encoder-decoder architecture based on fully convolutional networks
for pixel-wise semantic segmentation. This groundbreaking approach
has inspired numerous subsequent methods employing similar architec-
tures, including the SegNet [5], ENet [118], DenseNet [64], the successful
DeepLab series [25, 24, 26, 27]. The Deeplab series have significantly ad-
vanced the field of semantic segmentation by effectively capturing fine-
grained details and producing high-quality segmentation results. Us-
ing the ResNet as the encoder, DeepLab v1 [25] further introduced the
idea of atrous (dilated) convolutions to capture multi-scale information
while maintaining computational efficiency. DeepLab v2 [24] carefully
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designed the atrous spatial pyramid pooling (ASPP) model and also in-
corporated a fully connected conditional random field (CRF) as a post-
processing step to refine the segmentation boundaries. DeepLab v3 [26]
further designed the "asymmetric" atrous convolutions, which have dif-
ferent dilation rates in the horizontal and vertical directions. DeepLab
v3+ [27] inherited the success of former explorations, dropped the post-
processing CRF, and adopted the encoder-decoder structure to improve
the segmentation performance further. In recent years, the Transformer
model has achieved remarkable success [139, 40, 19], leading researchers
to explore the potential of attention mechanisms in semantic segmenta-
tion to capture long-range contextual information. SETR [178] tended
to process semantic segmentation as a sequence-to-sequence prediction
perspective. Its transformer-based design effectively solves the limited
receptive field challenge of FCN-based methods. SegFormer [149] pre-
vented complex designs in previous methods and proposed a simple yet
effective solution for semantic segmentation, which consists of a positional-
encoding-free, hierarchical Transformer encoder and a lightweight AllMLP
decoder. Recent SegViT [167] successfully integrated the spatial infor-
mation in its Attention-to-mask (ATM) module and designed a plain
ViT transformer-based method to further boost the segmentation per-
formance. Despite their exceptional performance, as we discussed in
Chapter 1, these methods commonly required large-scale, high-quality
labeled datasets, which can be costly and even infeasible to obtain.

Most of deep segmentation methods leverage a pre-trained ResNet [54]
as the backbone encoder to extract semantic information and employ di-
verse decoders to generate dense predictions. Differently, medical im-
ages have some special properties like scarce labeled data, and fine-
grained classes, and smooth boundaries. To address these challenges,
numerous studies have devised specialized methods for medical image
segmentation, which can be classified into two primary categories. The
first focuses mainly on designing medical-specific network architecture,
like the widely used UNet [127] and vnet [104], which designs a fully
convolutional network that is trained end-to-end to capture multi-level
semantic features to perform dense predictions. The second tends to
propose medical-specific loss functions, like the Dice loss [104], which
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utilizes the dice coefficient to tackle the class imbalance problem. Never-
theless, the majority of these approaches heavily depend on extensively
annotated medical image datasets, which necessitates significant effort
from expert annotators to obtain precise annotations [141].

2.2 Self-supervised Deep Visual Learning

Self-supervised deep visual learning [93, 63] is a new learning approach
that aims to train deep neural networks for visual tasks without rely-
ing on human-labeled supervision. Instead of using manually annotated
labels, self-supervised learning leverages the inherent structure and in-
formation within the data itself to learn useful representations or fea-
tures. There are roughly two popular strategies that are widely explored
in label-efficient studies.

The first is to design pretext tasks, also known as proxy tasks or
auxiliary tasks. These pretext tasks are constructed by creating surro-
gate supervisory signals from the input data, without the need for hu-
man annotations. It can then encourage the model to learn meaningful
representations to solve these specific tasks, such as colorization [81, 80],
clustering [150, 157], channel prediction [170], jigsaw puzzles [71, 109],
image inpainting [119], etc. These tasks are commonly designed to help
the model capture relevant and useful information about the data distri-
bution. As a result, these methods learns to extract high-level features
that capture important visual cues, which enables the model to general-
ize well to other tasks that are related to the original task.

The second is to employ contrastive learning. Recent studies along
this line have presented promising results to directly leverage the un-
labeled data [63, 53, 29, 30]. Such methods exploit the similarity and
dissimilarity among different data instances for representation learning,
which essentially encourage similar feature representations between two
random crops from the same image and distinct representations among
different images. By learning to distinguish between different augmen-
tations of the same data, the model can capture the invariant and dis-
criminative aspects of the data. However, these approaches rely heavily
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on the assumption of instance discrimination, where each image instance
is considered to be a distinct class. The assumption limits its application
in semi-supervised learning, and we improve the standard contrastive
learning with a pseudo-label aided class-aware design in Chapter 3.

2.3 Large Foundation Models

Recently, we have witnessed rapid advancements in various large foun-
dational models, particularly the emergence of large language models
(LLMs) [112] and vision-language models (VLMs) [123]. Their impres-
sive perceptual and reasoning capabilities bring new possibilities as well
as formidable challenges to a wide range of artificial intelligence tasks.
In this section, we briefly discuss how such foundation models can mu-
tually benefit and affect semi-supervised visual studies.

Large language models, such as ChatGPT [116], Bloom [128], LLaMA [136]
and PaLM [32], have significantly broadened the boundaries of language
comprehension and generation, exhibiting remarkable human-like lan-
guage capabilities in complex reasoning. On top of these text-only LLMs,
recent multi-modal studies like LLava [91] and MiniGPT-4 [183], aim to
leverage the strong reasoning ability of LLMs to solve the visual prob-
lems. These works [86, 84, 168, 88] typically follow a two-step training
paradigm: 1) to train the visual converter to align the semantics of the vi-
sion encoder and LLM, 2) to construct an instruction-following dataset to
further fine-tune the whole model. Their effectiveness is closely depen-
dent on the generated instruction-following data. Furthermore, as we
all know, Reinforcement Learning from Human Feedback (RLHF) [117]
is crucial to enhancing the performance of LLMs. However, training
a reliable reward model is not a straightforward task and typically re-
quires a significant amount of accurate labeled data. In this regard, semi-
supervised learning, being a data-efficient strategy, can serve as a poten-
tial solution to further improve the performance of LLMs or VLMs.

Recent large vision models, such as SAM [72] and DINO [113], have
also achieved impressive improvements in visual tasks. Especially, SAM
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is the first foundation model for image segmentation, providing the pow-
erful segment anything model as well as a 1-billion mask dataset. Uti-
lizing a unified user interface prompt, SAM can segment any objects
within both images and videos, eliminating the requirement for addi-
tional training. Acknowledging its exceptional segmentation capabili-
ties, SAM has been widely applied in diverse AI domains and applica-
tions, such as remote sensing [23], medical segmentation [100], robotics [59],
tracking [158], and more. Considering that SAM cannot produce the spe-
cific semantics directly, subsequent studies such as semantic-SAM[85]
and ground-SAM [49] tend to enhance SAM’s semantic understanding
by training the additional classifier. However, certain segmentation tasks,
like shadow segmentation and camouflaged object detection, pose no-
table challenges for SAM, potentially leading to limitations or unsatis-
fied performance, as discussed in [28, 65]. For example, when dealing
with medical images that often exhibit smooth boundaries, SAM faces
difficulties in directly achieving successful segmentation of tumors and
biological organs [100].

When considering collaboration with SSL, SAM’s remarkable gener-
alization ability emerges as a promising approach to refine pseudo-labels
in semi- or weakly-supervised segmentation. Exploring the synergistic
potential between SAM and semi-supervised semantic segmentation is
an avenue for future research. This entails a mutually beneficial design
where the semi-supervised algorithm can provide initial segmentation
masks (followed by some specific filtering mechanisms), which can serve
as highly effective visual prompts for SAM. Simultaneously, the segmen-
tation masks generated by SAM can offer comprehensive and accurate
indications of pixel-level relationships, thereby serving as valuable sup-
plementary information for further refining the pseudo-labels. This re-
ciprocal interaction between SAM and semi-supervised techniques holds
substantial potential for enhancing the overall performance of the seg-
mentation process.
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2.4 Semi-supervised Deep Visual Learning

In this section, we first present the conventional semi-supervised learn-
ing algorithms and then introduce the most recent studies related to our
work in the field of semi-supervised learning.

2.4.1 Conventional Semi-supervised Learning

Early attempts [2, 42] in semi-supervised research can be traced back
to the 1970s, and since then, the goal of SSL has always been to im-
prove the learning performance by leveraging additional unlabeled in-
stances. Given that SSL has consistently provided an effective solution
to alleviate the labeling burdens, numerous studies on this topic [185]
have been conducted even prior to the era of deep learning. Some key
traditional methods [185, 160] in semi-supervised learning continue to
be widely adopted or have inspired recent research, including but not
limited to, graph-based methods [184, 8, 14], semi-supervised support
vector machines [68, 154, 155], self- and co-training [101, 15], and gen-
erative models [103]. In generative SSL studies [108], the Expectation-
Maximization (EM) algorithm was widely applied. It alternates between
estimating the model parameters using the labeled data and estimating
the missing labels for the unlabeled data. Semi-supervised SVMs [10]
extended traditional SVMs to incorporate unlabeled data and proposed
a penalty term for misclassifying unlabeled data points. Graph-based
SSL methods [180] represent data as nodes in a graph, where edges en-
code relationships or similarities between data points. Label propaga-
tion [62, 171] methods, one of the most straightforward graph-based SSL
methods, treat the labeled data as anchor points and propagate labels to
nearby unlabeled data points based on a similarity metric. Self-training
is training the model with a small set of labeled data, using the model
to make predictions on unlabeled data, and subsequently adding the
most confident predictions to the labeled set. Co-training involves train-
ing two or more models simultaneously and providing supervision for
each other. Despite their simplicity, such studies are still widely adopted
in recent semi-supervised classification [152, 177] and semi-supervised
segmentation [159, 31]. In contemporary research, deep neural networks
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have emerged as a dominant force across various research fields. Given
the advantages and challenges associated with deep models, it becomes
crucial to embrace the conventional SSL methods and explore novel SSL
methods tailored for deep learning scenarios [160].

2.4.2 Semi-supervised Classification

Semi-supervised learning has been researched for decades, and the es-
sential idea is to learn from the unlabeled data to enhance the training
process. Therefore, many SSL methods aim to dig guidance information
for the unlabeled data and cooperate with less labeled data to train mod-
els. Current dominant methods tend to propose pseudo-labels on unla-
beled data [111, 114], either for self-training-based or consistency-based
SSL approaches (which take the prediction of one augmented crop as the
pseudo-label for the other).

Self-training-based approaches [83, 4, 101, 156] first train on the small
amount of labeled data and then make predictions on unlabeled data in
a form of probability distributions over the classes. Next, the unlabeled
data and their corresponding pseudo-labels will be added to the labeled
data if the maximal probability of the predicted pseudo-labels is higher
than a predefined threshold (i.e. high confidence). After that, these ap-
proaches train on the augmented labeled data and infer on the remain-
ing unlabeled data, repeating the process until the model is able to make
confident predictions. Some works in [16, 122, 39] extended the self-
training from single model and single view to multiple models and mul-
tiple views, aiming to propose more confident pseudo-labels. The main
weakness of such approaches is that the model cannot effectively han-
dle wrong pseudo-labels, and the errors may quickly be accumulated,
resulting in performance degradation.

Based on the clustering assumption that if points are in the same clus-
ter, they are likely to be of the same class [22], many consistency-regularization
(CR) based SSL approaches [124, 79, 134, 13, 76, 132, 176] have been pro-
posed recently. As shown in Figure 2.1, these approaches primarily en-
courage invariant predictions on two perturbed inputs derived from a
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Figure 2.1: FixMatch, one of the most simple but effective SSL meth-
ods. At each iteration, a single unlabeled image will generate two ran-
dom crops, a weakly-augmented one (e.g. image translates, flip-and-
shift) and a strong-augmented one (e.g. RandAug [35], CTAug [12]).
The predictions on the weakly-augmented instances will be regarded as
the pseudo-label for their corresponding strongly-augmented variants.
Note that only the unlabeled data with high-confidence predictions will
be involved in the training process, which is critical to alleviating the
confirmation bias [4]. Meanwhile, the labeled data is used to update the
model via a supervised loss (e.g., a cross-entropy loss) at each iteration.

single image, which can also be regarded as pseudo-labelling one input
for the other. Typical approaches such as Ladder Network [124] and Π
model [79] applied Gaussian noise and random translation transforma-
tions to generate two different views and enforced consistency between
the predictions of them. Different from self-training-based approaches,
CR-based approaches simultaneously train the labeled and unlabeled
data at the iteration level. In this way, the selected unlabeled data in
the current iteration will not directly affect the training in the next iter-
ation, and the potential errors will not be accumulated as before. Au-
thors in [134] proposed a Mean Teacher model and highlighted the qual-
ity of pseudo-labels in SSL. In specific, it introduced a weight-averaged
teacher model to generate more robust targets for unlabeled data. After
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that, many works [106, 140, 151] extensively explored various data aug-
mentation strategies for SSL training and drew a vital conclusion that
stronger and more realistic data augmentation strategies were beneficial
and necessary. Holistic approaches like MixMatch [13], ReMixMatch [12]
and FixMatch [132] combined these findings and integrated other useful
techniques, such as MixUp [169], entropy minimization [47], distribution
alignment (DA) [17] into an unified framework, resulting in better per-
formance. However, the correlation between labeled and unlabeled data
and the relationship among different unlabeled instances are ignored in
these approaches.

More recent works have been proposed to further improve the SSL
performance through introducing other deep learning techniques on top
of the FixMatch method. Xu. et al. [153] replaced the fixed high-confidence
threshold with a time-dependent threshold that is gradually increased
from a low value to one. SelfMatch [70] designed a two-stage approach
to combine the power of contrastive self-supervised learning and consistency-
based semi-supervised learning. Authors in [1] exploited the pre-trained
model from source domain and intended to improve SSL performance
via transfer learning techniques. Most complicated, [87] unified the ideas
of consistency regularization, entropy minimization, contrastive learn-
ing, distribution alignment, and graph-based SSL, and proposed Co-
Match to jointly train two contrastive representations on unlabeled data
and smooth the pseudo-labels under the help of a large memory bank.
Despite their promising results, progresses along this line often involve
complicated network structures, heavy computations, and more hyper-
parameters.

In addition to those two main methods, there are some SSL works
on the graph-based and generative-based methods. In the graph-based
methods, the labeled and unlabeled samples are treated as nodes of a
graph, and the SSL task can be accomplished by propagating the labels
from the labeled nodes to the unlabeled ones by utilizing the instance
similarity. Recent papers [62, 171] adopt this idea and integrate the label
propagation techniques in deep semi-supervised learning. As for the
generative-based methods, authors in [110] propose Semi-Supervised
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Generative Adversarial Networks (GAN), which can make full use of
GAN to learn good feature representation from the unlabeled data, and
simultaneously train a generative model and a classifier. Motivated by
BiGAN [38], Augmented-BiGAN [75] first uses the generator to estimate
tangents of potential data manifold and then employ it to inject invari-
ances into the model’s classifier, resulting in impressive accuracy gains.
However, few follow-up works have been proposed based on these ap-
proaches, simply because of their poorer performance compared to the
above two main approaches.

2.4.3 Semi-supervised Semantic Segmentation

Motivated by the progress in semi-supervised classification, some stud-
ies aim to achieve dense segmentation performance with only a fraction
of labels. Similar to SSC, SSS studies are also built on top of two main
branches, i.e., the self-training based methods [159], and consistency reg-
ularization based methods [145]. Based on our summary, as shown in Ta-
ble 2.1, recent advanced methods tend to enhance the SSS performance
from three different directions, including “augmentations", “more super-
vision," and “pseudo-rectifying". Almost all existing studies applied var-
ious strong data augmentations to perturb unlabeled data while some of
them [115, 94] also perturbed the inputs at the feature level. In the branch
of “more supervision", multiple training branches, training stages, or
losses (MBSL) are widely adopted from the perspective of model per-
turbations [57, 159, 94, 78]. As the quality of pseudo-labels is critical
for semi-supervised training [177, 175], ECS [102] and ELN [77] also in-
troduced additional trainable correcting networks (ACN) to further pol-
ish the pseudo-labels. Despite of their promissing performance, recent
state-of-the-art methods [144, 94, 50, 77] usually come at the cost of com-
bining increasingly complex mechanisms, e.g. contrastive learning [93],
or multiple ensembling models. Differenly, we aim to propose a sim-
ple and clean method to boost the SSS performance. Specifically, to the
best of our knowledge, all the existing studies indiscriminately perturb
unlabeled samples and minimize an average consistency loss over all
unlabeled samples. On the contrary, we differentiate different samples
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Method Augmentations More Supervision Pseudo-rectifying

SDA FT MBSL CT UCL UAFS ACN PR

CCT [115] ✓ ✓ ✓
SCN [61] ✓ ✓

ECS [102] ✓ ✓
UAMT [163] ✓ ✓ - -

SSMT [57] ✓ ✓ ✓
PseudoSeg [186] ✓ ✓

CAC [78] ✓ ✓ ✓
DARS [55] ✓ ✓ ✓

AEL [56] ✓ ✓
PC2Seg [179] ✓ ✓ ✓ ✓

C3-Semiseg [182] ✓ ✓ ✓ ✓
SimpleBase [164] ✓ ✓ ✓

ReCo [92] ✓ ✓ ✓
CPS [31] ✓ ✓

ST++ [159] ✓ ✓
ELN [77] ✓ ✓ ✓

USRN [50] ✓ ✓ ✓ ✓
PSMT [94] ✓ ✓ ✓ ✓
U2PL [144] ✓ ✓ ✓ ✓

Table 2.1: Comparison of recent SSS algorithms in terms of “Aug-
mentations", “More supervision", and “Pseudo-rectifying" (sorted by
their publication date). We explain the abbreviations as follows.
“SDA": Strong data augmentations, including various intensity-based
and cutmix-related augmentations, “FT": Feature-based augmentations,
“MBSL": multiple branches, training stages, or losses, “CT": Co-
training, “UCL": unsupervised contrastive learning, “UAFS": uncer-
tainty/attention filtering/sampling, “ACN": additional correcting net-
works, “PR": prior-based re-balancing techniques. Note that, branches
of “more supervision" and “pseudo-rectifying" typically require more
training efforts. Differently, our method enjoys the best simplicity but
the highest performance.
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in terms of the learning difficulty, evaluated as instance hardness. We
utilize the hardness to guide the training process and achieve new state-
of-the-art performance on several segmentation benchmarks.

On the other hand, instance hardness [131, 121, 130, 20] has been
widely studied in hard example mining [165] and curriculum learning [181].
Their evaluation mainly depends on the instantaneous or historical train-
ing losses with respect to ground truths. Lacking accurate label informa-
tion makes hardness measurements of unlabeled instances much more
challenging. Some works [165, 67, 143] perform hardness analysis on
unlabeled data to split all the samples into the hard and easy groups by
sorting or ranking the hardness with a predefined threshold. Such meth-
ods only require qualitative analysis for selecting or filtering purposes.
However, specific quantitative hardness analysis, especially on segmen-
tation tasks, is still under-explored. In our proposed method, we need
the quantitative hardness to determine the mixup between strongly and
weakly augmented crops, as well as the exact unsupervised loss weight
for each unlabeled instance. Thus we propose a new class-weighted
symmetric metric to evaluate the hardness of unlabeled instances in seg-
mentation tasks.

As for semi-supervised medical image segmentation (SSMIS), most
of recent studies follow the same designing ideas as in natural domain [163,
147, 7, 148, 98, 173]. UA-MT [163] uses a mean-teacher (MT) framework
and encourages the student model to gradually generate consistent pre-
dictions as the teacher model based on the proposed uncertainty-aware
training scheme. SASSNet [89] further enforces a geometric shape con-
straint upon the segmentation outputs. DTC [97] designs an additional
task-level constraint into a dual task-consistency framework. Recent
state-of-the-art methods tend to introduce more advance techniques to
further improve SSMIS performance. MC-Net [147] perturbs the pre-
dictions with multiple different decoders and encourages the prediction
consistency between the perturbed decoders. Authors in [120] propose
to pre-train the image encoder with meta-labels and then introduce an
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4) filtering mask

5) rebalancing
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Figure 2.2: Different perspectives to improve SSL. Based on our explo-
rations, there are main six directions: 1) design appropriate data pertur-
bations 2) employ feature-level perturbations like VAT, dropouts 3) ap-
ply model-level perturbations or multiple model ensembling 4) propose
different pseudo-label filtering strategies, like thresholds, uncertainty es-
timations. 5) introduce proper rebalancing techniques to the input or
model levels considering the imbalance natures in practice. 6) integrate
various unsupervised techniques, especially self-supervised contrastive
learning, to directly leverage unlabeled data.

extra self-paced contrastive learning in semi-supervised framework. CT-
CT [98] introduces an extra transformer branch and encourages predic-
tion consistency between the CNN model and the Transformer model
to enable the model to benefit from the two learning paradigms. SS-
Net [148] employs the feature-level virtual adversarial training (VAT)
and prototype-level contrastive losses to achieve promising performance.
Despite their impressive performance, we clearly observe that SSMIS
studies along this line come at the cost of introducing more complex
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techniques, e.g., extra network structures or additional training proce-
dures and losses. Differently, in this work, we redirects the focus to-
wards the semi-supervised problem itself, and highlight the cruciality
of data perturbation and model stabilization to generate substantial and
appropriate prediction disagreement in SSMIS.

2.4.4 Summary

Based on our understanding, in Figure 2.2, we provide a summary of re-
cent advanced methods on pseudo-labeling based semi-supervised learn-
ing. Though the figure is built on top of the consistency regularization
(CR) based methods, the critical improvement strategies in self-training
based methods, essentially enjoy the same idea.

As we discussed in before, the key of SSL studies lie in the effective
and comprehensive utilization of unlabeled data. The most straightfor-
ward and effective way is to generate pseudo-labels for unlabeled data,
which is also currently dominant strategies in SSL studies. To train mod-
els on the labeled and unlabeled data simultaneously, CR-based meth-
ods designed a simple framework and directly encourage the predic-
tion consistency between two differently augmented views of the same
unlabeled image. The potential logic is that the different model’s pre-
diction derived from the same unlabeled instance are supposed to have
the same semantic outputs. Therefore, the key to such pseudo-labeling
based studies is to produce prediction disagreement [172, 174]. As shown
in Figure 2.2, the top 3 research directions is to generate prediction dis-
agreement from the data level, feature level and the model level. Cer-
tainly, one of the simplest approaches is to apply various label-preserving
perturbations. In the model level, ensemble techniques are also widely
applied, like the PI model [79], and well-known Mean-teacher [134].

In addition, one of the critical factors in SSL studies is the accuracy
of pseudo-labels, i.e., the filtering strategies in Figure 2.2. Without spe-
cific designs to refine the pseudo-labels, the SSL performance can be sig-
nificantly degraded due to the accumulated errors (also known as con-
firmation bias [4]). It also becomes one of the main challenges in SSL
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studies, and many strategies have been proposed accordingly, like un-
certainty estimations [163], sharpening [13], and high-confidence thresh-
olds [132]. Some studies also focus on the re-balancing techniques to
address the prediction collapsing [51] and long-tail issues in segmen-
tation [55]. Techniques like the distribution alignment [12], Sinkhorn-
Knopp algorithm [36], have been widely applied to encourage balancing
predictions in a explicit or implicit manner.

Certainly, various unsupervised learning algorithms can be utilized
to directly harness the unlabeled data, as depicted in Figure 2.2. Inspired
by the remarkable achievements of self-supervised learning, numerous
studies have focused on integrating standard or modified contrastive
learning into the framework of SSL. By applying the contrastive loss at
the feature embedding level, enhanced representation capabilities can be
achieved, thereby indirectly improving the SSL performance. The pri-
mary advantage of this approach is that it maximizes the utilization of
all unlabeled data, resulting in the highest possible leverage of such data.

2.5 Public Dataset

We examine the performance of our proposed methods on popular clas-
sification and segmentation benchmark datasets.

For semi-supervised classification, we conduct experiments on five
public classification datasets, including CIFAR-10 [73], CIFAR-100 [73],
SVHN [107], STL-10[33], and Mini-Imagenet [125].

• CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny
images dataset with 10 and 100 classes, respectively. Both of them
contain 50000 32x32 training images and 10000 32x32 testing im-
ages. In CIFAR-100, the classes are organized into 20 superclasses,
each containing five fine-grained classes.

• SVHN (Street View House Numbers) consists of 10-class colorful
32x32 house numbers. It has 73257 training images and 26032 test-
ing images, which are obtained from house numbers in Google
Street View images.
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• STL-10 is a popular image classification dataset commonly used
in computer vision research. It is an extension of the CIFAR-10
with a larger number of classes and higher resolution images. It
is composed of 5,000 labeled images of size 96x96 from 10 classes,
along with 10,000 unlabeled images.

• Sampled from ImageNet ILSVRC, Mini-ImageNet consists of 50000
training images and 10000 testing images, evenly distributed across
100 classes. The images are RGB color images with a resolution of
84x84 pixels. This dataset is particularly valuable for evaluating
models’ ability to learn from limited labeled examples and gener-
alize to unseen classes.

For semi-supervised semantic segmentation, we examine the supe-
riority of our propose method on following public datasets, including
two natural images and two medical images,

• Pascal VOC2012 [41]. It is a standard semantic segmentation bench-
mark with 21 semantic classes (including the background). The
classic VOC 2012 includes 1,464 fine-labeled training images and
1,449 validating images. As a common practice, the blended train-
ing set is also involved, including additional 9118 training images
from the Segmentation Boundary (SBD) dataset [52].

• Cityscapes [34]. It is a large dataset on urban street scenes with 19
segmentation classes. Cityscapes contains images captured from
a car-mounted camera, simulating the viewpoint of a driver or an
autonomous vehicle. The images cover a variety of urban scenes,
including streets, intersections, sidewalks, buildings, vehicles, and
pedestrians. Specifically, it consists of 2975 training and 500 valida-
tion images with fine annotations. It commonly serves as a bench-
mark for evaluating and comparing state-of-the-art algorithms in
urban scene understanding and semantic segmentation.

• ACDC [11] (Automated Cardiac Diagnosis Challenge) is a medical
dataset focused on cardiac image analysis, specifically targeting the
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assessment of cardiac function. It consists of cardiac magnetic reso-
nance imaging (MRI) scans acquired from patients with four differ-
ent cardiac conditions. Each MRI scan is typically represented as a
stack of 2D images acquired at different time points during the car-
diac cycle. The dataset contains 100 MRI scans from 100 patients,
divided into 3 sets: training (70 scans), validation (10 scans), and
testing (20 scans).

• LA (left atrium) dataset is constructed from the Atrial Segmenta-
tion Challenge dataset 1, which consists of a collection of 100 3D
gadolinium-enhanced MR imaging scans (GE-MRIs). Following
UA-MT [163], we also split the 100 scans into 80 scans for training
and 20 scans for evaluation.

1http://atriaseg2018.cardiacatlas.org/



27

Chapter 3

Label-guided Self-training for
Semi-supervised Learning

In this chapter, we focus on the conventional semi-supervised classifica-
tion (SSC) task and aim at enhancing the utilization of all available un-
labeled data and harnessing the instance relationships to maximize the
value of the labeled information in SSC. We propose a Label-guided Self-
training approach to semi-supervised learning (SSL), doubted as LaSSL,
and verity its superiority on classification benchmarks.

3.1 Introduction

The principal idea of SSL is to dig guidance information for the unla-
beled data and cooperate with few labeled data to train models. Current
state-of-the-art (SOTA) SSL approaches, either the classic self-training-
based [83, 4, 156] or the more recent consistency-based approaches [134,
106, 13, 12, 132], largely rely on the pseudo-labelling of the unlabeled
data [114]. The former approaches first train the model based on the la-
beled data and then use the model’s predictions on unlabeled data as
pseudo-labels. Differently, the latter approaches usually generate two
crops from a single image via data perturbations and take the prediction
of one crop as the pseudo-label for the other. Such approaches commonly
adopt a high-threshold mask to alleviate the confirmation bias[4], but ex-
cluding samples with low-confidence pseudo-labels results in severe in-
efficiencies in exploiting unlabeled data and consumes a longer training
time. More importantly, the label information in such approaches only
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Figure 3.1: Buffer-aided label propagation algorithm (BLPA) utilizes the
buffered labeled data to increase label information and the unlabeled
data to enhance the potential manifold. Therefore, BLPA is more accu-
rate compared to the standard distance-based labeling.

contributes as a supervised loss, but its direct effects on pseudo-label
generations are not explicitly considered.

Inspired by the observed limitations of the existing SSL approaches
as above, in this chapter, we propose LaSSL, a Label-guided Self-training
approach to Semi-supervised Learning. The term “label-guided" empha-
sizes the full exploitation of label information based on sample relations,
which is achieved by two intrinsically connected strategies aiming at im-
proving the generation of pseudo-labels.

Firstly, given the potential semantic content carried by ground-truth
labels and pseudo-labels, LaSSL obtains the instance relations at the pre-
diction level and explores a better feature embedding through a pro-
posed class-aware contrastive loss, so that the same-class samples are
gathered and the different-class samples are scattered. Consequently, all
the unlabeled samples are involved. At the same time, better feature
representations also indirectly benefit the quality of pseudo-labels. Our
approach differs from the assumption of instance discrimination in con-
trastive learning[63], where each image instance is treated as a distinct
class of its own.

Secondly, on top of the sample relations improved by the revised
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Figure 3.2: Typical contrastive learning (the left part) is based on the
instance discrimination. Only the anchor and its augmented crop are
considered similar, while all the other instances are treated to be distinct
classes. Obviously, there may exist many false negative samples (FNS).
Differently, the class-aware contrastive loss (CACL) makes full use of the
label information to explore the instance relationships and make con-
trastive learning more reasonable.

contrastive learning, we propagate the labels from the labeled samples
to the unlabeled ones across the underlying data manifold via the la-
bel propagation algorithm (LPA) at the feature-embedding level. In this
way, we could take advantage of the correlation between the labeled and
unlabeled samples to improve pseudo-label generation. Since perform-
ing LPA on all unlabeled data (i.e., at the epoch level) is computationally
inefficient and even infeasible on large datasets, in LaSSL, we perform
label propagation at each mini-batch (i.e., at the iteration level), with the
aid from the buffered outputs of the last iteration. The buffered data with
high confidence are treated as labeled data in the current LPA prediction,
providing more label information, while the buffered data with low con-
fidence are treated as unlabeled data, helping explore the potential mani-
fold. In addition, we perform the bagging technique on the buffered data
to further reduce the impact of potential noise pseudo-labels. Figures 3.1
and 3.2 shows graphic explanations of these two strategies accordingly.

In summary, better pseudo-labels make the class-aware contrastive
loss more reasonable and accurate; simultaneously, the class-aware con-
trastive training leads to more discriminative feature representations,
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Figure 3.3: Key to LaSSL: mutually-boosted designs.

which in turn can be used to polish pseudo-labels via LPA at the feature-
embedding level. Therefore, unlike previous works [87, 62], our pro-
posed two strategies are tightly coupled and mutually promoted across
the whole training process. This mutually boosted design, as illustrated
in Figure 3.3, is the core of LaSSL’s success.

3.2 Method

In this section, we first introduce our proposed LaSSL at a high level
and then present its components in detail. The full algorithm is shown
in Algorithm 1.

3.2.1 Overview

Unlike typical SSL approaches, in addition to the encoder h(·) and pre-
dictor f (·), LaSSL also integrates a projector g(·) to learn feature repre-
sentations. For simplicity, we use F(·) = f ◦ h(·) for the final prediction
output and G(·) = g ◦ h(·) for the final projection output. Following
the standard framework of self-training, LaSSL consists of two phases,
the inference phase and training phase at each iteration, as illustrated in
Figure 3.4 and 3.5.



3.2. Method 31

DA

BLPA

Figure 3.4: Infer on unlabeled samples and polish the pseudo-labels by
BLPA under the help of labeled samples. The red two-way arrows repre-
sent “sharing weights". (xb, pb) denote a batch of labeled samples. h(·),
f (·), and g(·) represent the encoder, the predictor, and the projector used
in LaSSL, respectively. A and a represent the strong and weak augmenta-
tion, respectively. ox

b and ou
b represent the labeled and unlabeled buffered

feature embedding, respectively. qu
b and q̂u

b represent the initial pseudo-
labels and ultimate revised pseudo-labels for unlabeled data ub.

Labeled data X and unlabeled data U are given in an N-class clas-
sification task. Let (xb, pb) be a batch of B labeled samples and ub be a
batch of µB unlabeled samples where µ denotes the size ratio of xb to ub.
Referring to [132], we also introduce the weak and strong augmentations
in LaSSL, denoted as a(·) and A(·), respectively.

Inference Phase

In the inference phase, as shown in Fig. 3.4, the main task is to gener-
ate pseudo-labels on unlabeled data and the model is not updated. Dif-
ferent from the standard self-training, we also infer on the labeled data.
Given the unlabeled ub and labeled xb, we can have the projection out-
puts ou

b = G(a(ub)) and ox
b = G(a(xb)), respectively, and the prediction

output qu
b = F(a(ub)), i.e. the pseudo-label. In addition, we maintain

a First-in-First-out queue, denoted by Q, which only stores the outputs
from the last iteration. This is simply because the most recent predictions
are more convincing during the training. To be specific, at the i-th itera-
tion, we have Qi = {(ob, qb)} where ob ∈ {ou

b} ∪ {o
x
b}, qb ∈ {q̂u

b} ∪ {pb}.
Correspondingly, the dequeue data at the i-th iteration will be Qi−1.
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Algorithm 1: LaSSL algorithm at each iteration
1 Input: labeled data (xb, pb), unlabeled data ub, weight λc
2 Parameter: pseudo-label threshold τ, similarity threshold ε,

prediction ratio η, sampling K times, weight λu.
3 Output: updated h, f , g.

1: // I. Inference Phase
2: obtain predictions (pseudo-labels) qu

b for a(ub)
3: obtain smoothed predictions q̄u

b via DA
4: obtain projections ox

b for a(xb) and ou
b for a(ub)

5: obtain the other pseudo-labels q̃u
b via BLPA

6: obtain final pseudo-labels q̂u
b using Eqn. (3.10)

7: // II. Training Phase
8: obtain prediction yu

b and projection zu
b for A(ub)

9: obtain prediction yx
b and projection zx

b for a(xb)
10: calculate three losses using Eqns.( 3.1), (3.2), (3.12)
11: combine three losses with λu and λc
12: back-propagate the loss and update h, g, f
13: update the EMA model

At the projection head, we perform the proposed buffer-aided label
propagation algorithm to jointly utilize the buffered information (Qi−1),
current outputs (ou

b and ox
b ), and ground-truth labels (pb), to generate an-

other prediction q̃u
b , which is detailed at the following section. At the pre-

diction head, referring to [12], we perform distribution alignment (DA)
on the predictions of unlabeled data, q̄u

b = DA(qu
b ). In the operation

of DA, we simply replace the uniformly moving-averaging by the expo-
nentially moving-averaging with a decay factor of 0.99 over the historical
predictions. In this way, we can not only prevent qu

b from collapsing to
certain classes but also prioritize the most current predictions. Conse-
quently, the well-polished pseudo-labels q̂u

b is obtained for the unlabeled
ub.

Training Phase

The training phase is the core to update the model with three losses,
a supervised CE loss Lx

b , an unsupervised CE loss Lu
b , and a class-aware

contrastive loss (CACL) Lc
b. As shown in Fig. 3.5, similar to the inference

phase, we can obtain the prediction output yx
b and projection output zx

b
for labeled samples, yu

b and zu
b for unlabeled samples. The ground-truth
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Figure 3.5: Train model on both labeled and unlabeled data by minimiz-
ing three losses. The dash line indicates “stop gradient". The definitions
of the used symbols are the same as in Figure 3.4.

labels pb and generated pseudo-labels q̂u
b are used to calculated the loss

Lx
b and Lu

b , respectively.

Lx
b = H(pb, yx

b) (3.1)

Lu
b = 1(max(q̂u

b ) ≥ τ) H(q̂u
b , yu

b ) (3.2)

where 1(·) retains the pseudo-labels whose maximum probability is higher
than a predefined threshold τ, i.e. high-confidence threshold. and H(p, q)
represents the cross-entropy (CE) between two distributions p and q.
As to CACL, we first explore the instance relationship ωi,j by comput-
ing the cosine similarity between their corresponding labels yi and yj.
Specifically, we regard the different image instances as the same class if
they have a high-confidence similarity, as distinct class otherwise. Af-
ter that, we can minimize a class-aware contrastive loss to obtain better
feature representations, so that same-class samples are gathered and the
different-class samples are scattered.

Though CACL in LaSSL can help the model to make better feature
representations, it has no direct effect on downstream tasks. Thus we re-
weight the CACL with a ramp-down function, starting from λ0

c along a
decreasing exponential curve. i.e., as the training progresses, we will pay
more attention to classification tasks, and less attention to contrastive
representation learning.
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3.2.2 Buffer-aided Label Propagation Algorithm

At the i-th iteration, the dequeue data Qi−1 contains the feature embed-
ding, ob−1, and corresponding labels, qb−1, from the last iteration. To
exploit these most recent historical outputs, we regard the dequeue sam-
ples with high confidence as labeled data in the current iteration, pro-
viding more label information, while treat the dequeue samples with
low confidence as unlabeled data, effectively helping explore the poten-
tial manifold. However, the samples with high-confidence labels can
inevitably include errors. In order to decrease the noise, we do K ran-
dom sampling with replacement on the dequeue data (i.e. bagging), and
denote each sampling result as ob−1(k) and qb−1(k), where k = 1, 2, ...K.
After that, we can split the sampling data with a predefined confidence
threshold τ into two groups, the high-confidence portion (ohigh

b−1 (k), qhigh
b−1(k))

and the low-confidence one (olow
b−1(k)). i.e., we have

qhigh
b−1(k) = 1(max(qb−1(k)) ≥ τ) qb−1(k), (3.3)

ohigh
b−1 (k) = 1(max(qb−1(k)) ≥ τ) ob−1(k), (3.4)

olow
b−1(k) = 1(max(qb−1(k)) < τ) ob−1(k). (3.5)

Combining the dequeue data with current outputs ou
b , ox

b and ground
truth labels pb, we can have the compound labeled features, os(k) =

[ox
b , ohigh

b−1 (k)], unlabeled features, ot(k) = [ou
b , olow

b−1(k)], and compound

label information, qs(k) = [pb, qhigh
b−1(k)].

Subsequently, a standard LPA can be applied. First, a symmetric ad-
jacency matrix Ω(k) with zero diagonal can be constructed by calculating
the similarities of os(k) and ot(k). Then the symmetrically normalized
counterpart of Ω(k) is obtained by,

Ω̃(k) = D−1/2Ω(k)D1/2 (3.6)

where D is the degree matrix of Ω(k). After that, the label informa-
tion can be iteratively propagated to the unlabeled samples. A recursive
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equation is,

Φj+1(k) = αΩ̃(k)Φj(k) + (1− α)qs(k) (3.7)

where Φj(k) denotes the predicted labels on compound unlabeled sam-
ples at the j-th iteration. α ∈ (0, 1) controls the amount of propagated
information. In LaSSL, we use the closed-form solution [62] to obtain
the optimal result directly,

Φ∗(k) = (I − αΩ̃(k))−1qs(k). (3.8)

Since we perform LPA at the iteration-level, the computation cost is rel-
atively small, so that BLPA can be easily scaled up to large datasets.
As a result, the prediction on current unlabeled samples with the k-th
sampling result can be obtained, ϕb(k), where ϕb(k) = Φ∗(k)[: µB]. Av-
eraging the K results, we can have another prediction for unlabeled ub

directly from the feature-embedding level,

q̃u
b =

1
K

K

∑
k=1

ϕb(k). (3.9)

To conclude the inference phase, we eventually have the pseudo label q̂b

for ub,
q̂u

b = ηq̃u
b + (1− η)q̄u

b , (3.10)

where η is a weight parameter to combine two predictions.

3.2.3 Class-aware Contrastive Loss

In the training phase, we have the projection outputs zx
b = G(a(xb))

and zu
b = G(A(ub)) for labeled and unlabeled data, respectively. Mean-

while, we have the complete label information for all the samples, i.e.,
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the ground-truth labels pb and the pseudo-labels q̂u
b . Through concate-

nating them together ŷ = [pb, q̂u
b ], we can explore all the instance rela-

tionships at the prediction level,

ωi,j =


1, if i = j

0, if i ̸= j and ŷi · ŷj < ε

ŷi · ŷj, if i ̸= j and ŷi · ŷj ≥ ε

(3.11)

where ε is a similarity threshold to determine whether two distinct in-
stances belongs to the same class. In addition to involving the labeled
samples, we can have more sense about the instance classes compared
to standard contrastive learning. Therefore, with the explored instance
relations at the prediction level, we design a class-aware contrastive loss,

Lc
b = −

|ŷ|

∑
i=1

log
∑
|ŷ|
j=1 ωi,j exp(zi · zj/T)

∑
|ŷ|
j=1,j ̸=i exp(zi · zj/T)

. (3.12)

where T is a temperature parameter [29].

3.2.4 Putting It All Together

In summary, the total loss at each mini-batch is,

Lb = Lx
b + λuLu

b + λcLc
b, (3.13)

where λu and λc are two weight parameter for the unsupervised consis-
tency loss and the class-aware constrastive loss, respectively. Similar to
[132], we commonly set λu = 1.0. However, we set λc as a time-variant
scaling parameter to wisely control the weight of CACL. It is worth not-
ing that, CACL aims to obtain better representations but has no direct re-
lationship with our downstream tasks. Therefore, we emphasize CACL
to improve the model at the early stages of training, togather with BLPA
to enhance the accuracy of pseudo-labels. As the training progresses, we
gradually focus more on downstream tasks, i.e., more on Lu

b . To achieve
this goal, we adjust λc in an exponentially ramping-down manner. Be-
sides, we stop performing BLPA when the weight λc becomes small. It
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is simply because BLPA relies upon the better representations derived
from CACL. Mathematically, referring to [79], given the total training
epochs Tt and the ramp-down length (Tt − Tr), the weight λc at the t-th
epoch can be calculated as,

λc =


λ0

c , if t ≤ Tr,

λ0
c exp (− (t− Tr)2

2(Tt − Tr)
), otherwise.

(3.14)

where λ0
c is set as the maximum value of λc. As a result, the whole train-

ing process of LaSSL can be treated as two different periods: it first ex-
ploits CACL and BLPA to update the model quickly, and then improve
the model further by emphasizing downstream tasks. To further sim-
plify the training, we stop applying CACL and BLPA when λc ≤ λ̂c.
These two parameters Tr and λ̂c, can affect how long the CACL and
BLPA will be involved across the training process. Besides, following
FixMatch and ReMixMatch, an exponential moving average (EMA) of
model parameters with decay of 0.999 is utilized to produce more stable
predictions.

3.3 Experiment

In this section, we conduct experiments on four classification datasets
to test the effectiveness of LaSSL, including CIFAR-10 [73], CIFAR-100
[73], SVHN [107] and Mini-Imagenet [125]. Following the standard pro-
tocol in SSL, we randomly select certain number of labeled data from
the training set and treat the remaining training data as unlabeled data.
The mean and standard deviation of five runs on testing set with differ-
ent random seeds are reported. By default, we use a Wide ResNet-28-2 as
the encoder h(·), one linear layer as the predictor f (·), and a 2-layer MLP
as the projector g(·). The default settings for hyper-parameters in LaSSL
is B = 64, µ = 7, K = 7, α = 0.8, η = 0.2, τ = 0.95, ε = 0.7, Tt = 512, λ0

c =

1.0, λ̂c = 0.1. Besides, we adopt a SGD optimizer with a momentum of
0.9 and a weight decay of 5e-4, and use a learning rate scheduler with
cosine decay to train the model. Unless otherwise noted, we use same
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CIFAR-10 CIFAR-100 SVHN

Methods 40 labels 250 labels 400 labels 2500 labels 40 labels 250 labels

Pseudo-label∗ - 50.22±0.43 - 42.62±0.46 - 79.79±1.09
Mean-Teacher∗ - 67.68±2.30 - 46.09±0.57 - 96.43±0.11
MixMatch∗ 52.46±11.50 88.95±0.86 33.39±1.32 60.06±0.37 57.45±14.53 96.02±0.23
UDA∗ 70.95±5.93 91.18±1.08 40.72±0.88 66.87±0.22 47.37±20.51 94.31±2.76
ReMixMatch∗ 80.90±9.64 94.56±0.05 55.72±2.06 72.57±0.31 96.64±0.30 97.08±0.48
FixMatch∗ 86.19±3.37 94.93±0.65 51.15±1.75 71.71±0.11 96.04±2.17 97.52±0.38

ACR† 92.38 95.01 - - - -
SelfMatch† 93.19±1.08 95.13±0.26 - - 96.58±1.02 97.37±0.43
CoMatch† 93.09±1.39 95.09±0.33 - -
Dash† 86.78±3.75 95.44±0.13 55.24±0.96 72.82±0.21 96.97±1.59 97.83±0.10

LaSSL 95.07± 0.78 95.71 ±0.46 62.33±2.69, 74.67± 0.65 96.91±0.52 97.85± 0.13

Table 3.1: Top-1 test accuracy (%) for CIFAR-10, CIFAR-100 and SVHN
on 5 different folds. All the related works are sorted by their publication
date. Results with ∗ was reported in FixMatch [132], while results with †

comes from the most recent papers [70, 87, 153, 1], respectively.

codebase and parameter settings to run experiments.

3.3.1 CIFAR-10, CIFAR-100, and SVHN

CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny im-
ages dataset with 10 and 100 classes, respectively. Both of them contain
50000 32x32 training images and 10000 32x32 testing images. For fair
comparisons, we use Wide ResNet-28-2 as the backbone for CIFAR-10
and Wide ResNet-28-8 for CIFAR-100. In Table 3.1, we compare the test-
ing accuracy of LaSSL against recent SOTA SSL approaches with a vary-
ing number of labeled samples. We can obviously see that our LaSSL
consistently outperforms other SOTA approaches on CIFAR-10 and CIFAR-
100 under all settings. Especially when considering situations with very
few labeled data, LaSSL improves over other SSL approaches by a large
margin, e.g. achieving an average testing accuracy of 95.07% on CIFAR-
10 with only 40 labels. When the number of classes is large like CIFAR-
100, LaSSL can still perform well and achieve a accuracy gain of around
7% over the SOTA approach given four labels per class. Checking more
details, we find that, achieving the accuracy of around 95% on CIFAR-
10, LaSSL needs only four labels per class while other SSL approaches
requires 25 or more labels per class. Obviously, LaSSL is more sample
efficient and shows its great potential for label-scarce scenarios.
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SVHN consists of 10-class colorful 32x32 house numbers. It has
73257 training images and 26032 testing images. The testing accuracy
on SVHN in Table 3.1 also shows comparable results to recent state-of-
the-art results achieved by Remixmatch and Dash. We can see that the
results of all of recent SSL approaches on SVHN are close to the fully
supervised baseline (97.3% [58]) with less than 1% difference. Though
its superior is not apparent in such simple dataset, LaSSL can achieve
the SOTA performance on SVHN with 250 labeled samples. Compared
to Dash [1] on SVHN with 40 labeled samples, LaSSL performs slightly
worse in terms of the average accuracy but can achieve a lower variance.

3.3.2 Mini-ImageNet

Following the SIMPLE [58], we test LaSSL on more complicated dataset,
Mini-ImageNet[125]. Sampled from ImageNet ILSVRC, it consists of
50000 training images and 10000 testing images, evenly distributed across
100 classes. We compare the performance of LaSSL against the SOTA SSL
approach, SIMPLE, on Mini-ImageNet with 4000 labeled samples. For a
fair comparison, ResNet-18 is set as the backbone, and each sample is
center-cropped and resized to 84x84. Apart from default parameter con-
figurations, we set λ0

c = 5.0, τ = 0.8 in this experiment. SIMPLE can
achieve an average testing accuracy of 49.39%, while LaSSL obtains a re-
sult of 60.14 ± 0.26 %. LaSSL can obviously outperform SIMPLE with a
better accuracy by a significant average gain of 10.75%.

3.3.3 Ablation Study

Effectiveness of different components. To investigate the impact of
three different components in LaSSL (i.e., CACL, BLPA and DA), we
test LaSSL with different combinations of these components on CIFAR-
10 with four labels per class. For fair comparisons, we compare their
performance with the same random seed during the first 100 epochs.
To better analyze the performance, we introduce two intuitive concepts,
quantity and quality of pseudo-labels. “Quantity" refers to the amount
of high-confidence pseudo-labels, calculated by the ratio of the number
of high-confidence predictions to the total number of unlabeled samples.
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(a) Quantity (b) Quality (c) Accuracy

Figure 3.6: (a), (b), (c) represent curves of the quantity, quality, and EMA
test accuracy of different combinations of CACL, BLPA, and DA (better
view on screen). Numerical results are listed in Table 3.2.

Method CACL BLPA DA Quant Qual Acc

Vanilla % % % 83.91 81.98 75.54

LaSSL-v1 ! % % 88.66 89.38 85.50
LaSSL-v2 ! ! % 89.08 94.31 90.24
LaSSL-v3 % % ! 85.73 94.90 90.42
LaSSL-v4 ! % ! 87.46 94.89 91.11
LaSSL-v5 ! ! ! 87.03 95.33 91.65

Table 3.2: Ablation studies on CIFAR-10 with 40 labeled data after train-
ing 100 epochs (random seed is fixed to 1.)

“Quality" measures how many high-confidence predictions are consis-
tent to ground-truth labels, which can be obtained by using real labels
from CIFAR-10.

It can be seen from Table 3.2 that each component matters compared
to the vanilla version. Integrating all three components can achieve the
highest accuracy and quality while maintaining a considerably high quan-
tity. In Figure 3.6, we show the detailed dynamics of the quantity, quality
and accuracy w.r.t the training epochs. We can observe from Figure 3.6(a)
that LaSSL-v1 can consistently achieve the highest quantity in the 100
epochs, indicating that the CACL is very effective in quickly improving
the number of high-confidence pseudo-labels. By comparing LaSSL-v1
to LaSSL-v2 and the vanilla to LaSSL-v3, we can find that BLPA and DA



3.3. Experiment 41

ε 0.6 0.7 0.8 0.9 1.0

Accuracy(%) 87.64 89.39 87.70 87.36 85.17

Table 3.3: Effects with different similarity thresholds. The similarity is
equal to 1 only when comparing the image instance with itself. There-
fore, we use ε = 1.0 to investigate the effect of excluding the “class-
aware" technique.

K 0 1 3 5 7

Accuracy(%) 92.71 92.10 94.64 93.43 94.87

Table 3.4: Effects with different number of samplings. In specific, K = 0
means the plain LPA without “buffer-aided"; K = 1 means exploiting
the buffered data directly without sampling; while K > 1 investigates
the complete BLPA.

are two powerful strategies to improve the quality. Besides, the dynam-
ics of Figure 3.6(b) and 3.6(c) are closely related, suggesting that the qual-
ity of pseudo-labels is the most crucial factor affecting the final perfor-
mance. The increasing tendency also indicates that LaSSL-v5 (i.e., stan-
dard LaSSL) is the most stable and accurate one with the consistently
highest testing accuracy.

Impact of different similarity threshold. In Table 3.3, we compare
the effect of CACL with different values of similarity threshold in terms
of the testing accuracy. For fair comparisons, BLPA and DA are not in-
volved. Since the similarity can never exceed 1.0, ε = 1.0 simply denotes
that every instance belongs to a distinct class, i.e., without class-aware
senses. We can observe that the “class-aware" strategy is indeed benefi-
cial in SSL. Besides, there intuitively exists a trade-off, i.e. lower values
of ε can involve more similarities among samples but inevitably intro-
duce more errors. In contrast, large ε may fail exploiting the instance
relations.

Impact of different sampling times. We investigate the impact of
BLPA with different values of K in Table 3.4. For fair comparisons, we
adopt default settings for CACL and DA. To reduce effects of wrong
pseudo-labels, we sample K-times on the buffered data and average the
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results in BLPA. K = 0 means no buffer-aided, while K = 1 uses all the
buffer data without sampling. As a result, K = 7 achieve the highest
testing accuracy. We can also find that directly involving all the buffered
data (i.e. K = 1) will degrade the performance due to introducing more
wrong high-confidence pseudo-labels. On the other hand, though large
K may introduce more computational efforts, it can generally lead to
more robust predictions and higher accuracy.

3.4 Summary

In this work, we propose LaSSL, a novel SSL approach that exploits the
label information to integrate a class-aware contrastive loss and buffer-
aided label propagation algorithm into a self-training paradigm. Two
strategies are tightly coupled and mutually boosted across the train-
ing process. Meanwhile, the label information is extensively utilized:
to provide a supervised loss, to generate instance relations for CACL,
and to be propagated on unlabeled samples in BLPA. Through extensive
experiments, we demonstrate that LaSSL can propose better pseudo-
labels with higher quality and quantity. In specific, the class-aware con-
trastive loss (CACL) can quickly increase the quantity of high-confidence
pseudo-labels, while the buffer-aided label propagation algorithm (BLPA)
can improve the quality of pseudo-labels effectively. Experiment results
show that LaSSL can outperform the SOTA SSL methods on four bench-
mark classification datasets with different amounts of labeled data, in-
cluding CIFAR10, CIFAR100, SVHN, and Mini-ImageNet. Especially
for few-label settings, LaSSL can achieve very promising accuracy, e.g.,
given four labels per class, LaSSL achieves an average accuracy of 95.07%
on CIFAR-10 and 62.33% on CIFAR-100.
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Chapter 4

DC-SSL: Addressing
Mismatched Class Distribution
in Semi-supervised Learning

In this chapter, we investigate a more challenging semi-supervised sce-
nario where the labeled and unlabeled data enjoy different class distribu-
tion. We find that such mismatched issues can bring significant perfor-
mance degradation to current state-of-the-art SSL methods. To this end,
we propose a new SSL learning framework, named Distribution Con-
sistency SSL (DC-SSL), which aims to improve the pseudo-labels from a
distribution perspective. Extensive experiments and ablation studies are
conducted to demonstrate the effectiveness of our method on popular
classification datasets.

4.1 Introduction

Recent consistency-based semi-supervised learning (SSL) methods have
seen fast progress and shown competitive performance to supervised
learning [111, 114]. These methods commonly utilize the model trained
on labeled samples to generate pseudo-labels on unlabeled samples, and
then enforce prediction consistency against their corresponding perturbed
variants. An implicit assumption in such methods is that the labeled and
unlabeled data share the same class distribution. However, such a strong
assumption cannot hold in real practice. The scarcity of labeled samples
or the sampling errors can inevitably lead to a distribution mismatch



44
Chapter 4. DC-SSL: Addressing Mismatched Class Distribution in

Semi-supervised Learning

0 1 2 3 4 5 6 7 8 9
Class Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
D

is
tri

bu
tio

n

Unlabeled
Labeled

(a) Matched Distribution

0 1 2 3 4 5 6 7 8 9
Class Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

tri
bu

tio
n

Unlabeled
Labeled

(b) Mismatched Distribution

FixMatchFixMatch+DA CoMatch Ours(TF) Ours(TB)
82

84

86

88

90

92

94

96

98

Te
st

 A
cc

ur
ac

y 
(%

)

86.19

93.52 93.21

95.31
93.89

Matched

(c) Test accuracy for (a)

FixMatchFixMatch+DA CoMatch Ours(TF) Ours(TB)
50

52

54

56

58

60

62

64

Te
st

 A
cc

ur
ac

y 
(%

)

57.54

54.08
52.73

62.44

63.95
Mismatched

(d) Test accuracy for (b)

Figure 4.1: (a) and (b) show the class distributions on CIFAR10 in the
matched and mismatched distributions settings, respectively. (c) and (d)
show the corresponding test performance on the recent SOTA SSL meth-
ods and our proposed DC-SSL with training-free (TF) and training-based
(TB) strategies.

between the labeled and unlabeled data. This could, unfortunately, in-
validate most of the advanced SSL methods.

To illustrate this problem, we conducted a performance comparison
under matched and mismatched distribution scenarios. As shown in
Figure 4.1(c), two state-of-the-art (SOTA) SSL methods, FixMatch [132]
and CoMatch [87], can achieve promising results on CIFAR-10 with only
40 labeled samples when the labeled and unlabeled class distributions
are matched, e.g., a high test accuracy of 93.21% of CoMatch. However,
when there exists a distribution mismatch as shown in Figure 4.1(b), the
test accuracy can drop sharply by around 30% on FixMatch and severely
more than 40% on CoMatch. It is because the pseudo-labels on the unla-
beled set are severely biased and unreliable in a mismatched distribution
setting, resulting in a significant performance degradation.
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Inspired by distribution alignment (DA) [12], we aim to improve the
biased pseudo-labels from a distribution perspective. The basic logic is
to modify the pseudo-labels by encouraging the predicted class distribu-
tion (PCD) of the unlabeled data to be close to the underlying ground-
truth class distribution (GCD) across the training. However, the exist-
ing works using DA [12, 45, 87, 146] widely assumed that the labeled
and unlabeled data fall in the same class distribution, and therefore took
the provided labeled class distribution (LCD) as the GCD on the un-
labeled set to rectify pseudo-labels. As shown in Figure 4.1(c), built
into FixMatch, although DA significantly improves the performance in
the matched distribution setting (i.e. LCD=GCD), it causes severe nega-
tive impact under the mismatched distribution scenario (i.e. LCD ̸=GCD)
with a sharp accuracy drop as shown in Figure 4.1(d). A key rescue and
challenge is to employ an accurate distribution to guide PCD on the un-
labeled data, whereas the unlabeled GCD is commonly unknown and
the known LCD is biased and unreliable.

To address the above limitations, we propose a simple but effective
method, named Distribution Consistency SSL (DC-SSL), which can ef-
fectively rectify the pseudo-labels from a distribution perspective. The
design of DC-SSL is based on two main components. First, instead of us-
ing LCD, DC-SSL directly estimates a reference class distribution (RCD)
from the unlabeled data, which is regarded as a surrogate of the un-
known GCD. To this end, we revisit the exponentially moving averaged
(EMA) model in SSL and carefully study i) why the EMA model is em-
ployed merely for the testing instead of the training process in recent
SOTA SSL methods [132, 58, 70, 87, 1], and ii) how the EMA model can
benefit the distribution estimation on unlabeled samples. Based on this
investigation, we design our framework to involve EMA to estimate a ro-
bust RCD by a momentum-updated scheme over historical label predic-
tions. As shown in Figure 4.2, the estimated RCD gradually approaches
GCD with the progression of the training procedure. Second, on top of
the estimated distributions, two direct and indirect updating strategies
are proposed, respectively, to modify the pseudo-labels, corresponding
to the training-free and the training-based strategies. The training-free
(TF) strategy directly modifies the pseudo-labels by scaling them with a



46
Chapter 4. DC-SSL: Addressing Mismatched Class Distribution in

Semi-supervised Learning

0 1 2 3 4 5 6 7 8 9
Class Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

tri
bu

tio
n

GCD
RCD

(a) After 50 epochs

0 1 2 3 4 5 6 7 8 9
Class Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

tri
bu

tio
n

GCD
RCD

(b) After 100 epochs

0 1 2 3 4 5 6 7 8 9
Class Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

tri
bu

tio
n

GCD
RCD

(c) After 200 epochs

0 1 2 3 4 5 6 7 8 9
Class Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
is

tri
bu

tio
n

GCD
RCD

(d) After 400 epochs

Figure 4.2: (a)-(d) compares the RCD in DC-SSL (TB) and GCD at differ-
ent training stages with the mismatched setting in Figure 4.1(b).

ratio of RCD to PCD, while the training-based (TB) strategy minimizes
a distribution consistency loss between PCD and RCD to indirectly en-
hance the SSL performance. Both strategies are orthogonal to existing
consistency-based SSL methods and can be easily applied with minimal
change of implementation.

4.2 Method

In an N-class classification task, the labeled data Dx and unlabeled data
Du are given to train a model with the embedding function f (·). In a
mini-batch, suppose we have B labeled samples, X = {(xb, yb)|(xb, yb) ∈
Dx}B

b=1, and µB unlabeled samples, U = {ub|ub ∈ Du}µB
b=1, where µ

represents the size ratio of U to X . In most SSL studies, the total loss can
be formulated as:

L = Lx(X ) + λuLu(U ), (4.1)
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Figure 4.3: (a) shows the diagram of FixMatch, a widely adopted
consistency-based SSL method. (b) and (c) are our proposed two strate-
gies to enforce distribution consistency on top of FixMatch. Sepcifically,
uw

b and us
b are the weakly and strongly augmented variants of an un-

labeled image ub, respectively. f denotes the network model and g is
the EMA of f . p is the network’s probability prediction and τ is a high-
confidence threshold. q represents the class distribution derived from
historical predictions by the scheme ϕ. Without introducing new net-
work components, our models estimate class distributions on unlabeled
data, and enforce distribution consistency by either the training-free up-
date denoted as ψ in (b) or the training-based consistency loss denoted
by Ld in (c). Dash lines indicate “stop gradient".

where Lx is a supervised loss and Lu is an unsupervised loss within a
mini-batch, measured on X and U respectively. λu is a weighting pa-
rameter to balance the relative importance between the labeled and the
unlabeled data. Commonly, Lx can be obtained by

Lx =
1
B

B

∑
b=1

H(yb, f (xb)), (4.2)

where H denotes the cross entropy loss. Whereas, the form of Lu de-
pends on specific SSL methods. In this section, we first review how Lu

is formulated in the backbone consistency-based SSL learner, FixMatch.
After that, we introduce the crucial components in our method on top of
the backbone: RCD estimation and two updating strategies.
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4.2.1 Backbone SSL Learner

Recent consistency-based SSL methods typically use weakly-augmented
unlabeled images to generate pseudo-labels and enforce consistency against
their corresponding strongly-augmented variants. As shown in Figure 4.3(a),
uw

b and us
b are obtained through weakly and strongly augmented op-

erations on an unlabeled instance ub. The weakly augmented opera-
tions consists of standard flip-and-shift augmentation strategies, while
the strongly augmented operations usually refer to RandAugment [35]
or CTAugment [12]. Subsequently, the model f outputs probability pre-
dictions pw, f

b and ps, f
b for uw

b and us
b, respectively. As the most simplified

but effective consistency-based SSL method, FixMatch [132] adopted a
fixed high-confidence threshold to alleviate the confirmation bias [4] of
pseudo-labels. Given a predefined high-confidence threshold τ, the un-
supervised loss in FixMatch can be calculated as,

Lu =
1

µB

µB

∑
b=1

1(max(pw, f
b ) ≥ τ)H( p̂w, f

b , ps, f
b ), (4.3)

where p̂w, f
b = arg max(pw, f

b ) denotes the hard pseudo-labels (i.e., in a
one-hot form) for unlabeled samples, and the operation 1(·) retains the
pseudo-labels whose maximum probability is higher than the thresh-
old τ. Besides, an exponential-moving-averaging model g is maintained
along with the model f . However, in FixMatch, g is only used for the
testing process and independent from the training process, as in many
recent SSL methods.

4.2.2 Distribution Estimations

Properly estimating the class distribution (i.e., frequency of each class
on unlabeled data) is the most important problem in our design. In-
spired by distribution alignment [12], our primary idea is to encourage
the predicted class distribution (PCD) on unlabeled data to be close to
the ground-truth class distribution (GCD). However, the lack of label
information makes this GCD unknown and challenging to obtain. Al-
most all existing works, either in balanced SSL [87] or imbalanced SSL
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Figure 4.4: (a) Comparison of testing accuracy between the trained
model f and its corresponding EMA model g. (b) Accuracy difference
(Q f −Qg) of the high-confidence pseudo-labels in a mini-batch between
f and g at each iteration. Statistically, g obtains a lower accuracy than f
at about 70% iterations. (c) Accurate difference (A f −Ag) of all pseudo-
labels between f and g at each iteration. The model g can generate more
accurate pseudo-labels in 96% iterations.

tasks [126], adopt the marginal distribution of the provided labeled data
as the GCD of the unlabeled data, which will inevitably produce severely
biased pseudo-labels, and largely degrade the SSL performance in mis-
matched distribution settings. Differently, in our work, instead of re-
lying on labeled data, we purely work on unlabeled data to propose a
referenced class distribution (RCD) as a surrogate of GCD. Specifically,
we carefully involve the EMA model during the training period to esti-
mate the RCD on unlabeled data. As shown in Figure 4.2, the iteratively-
improved RCD can be gradually approaching the GCD across the train-
ing process. In this section, we first revisit the EMA model in SSL and
then describe the momentum-updated scheme to estimate the distribu-
tion from the model’s predictions.

Revisiting the EMA Model

In the literature, an EMA model with a typical decay of 0.999 is widely
adopted in SSL methods for performance enhancement. To investigate
its effectiveness, based on FixMatch and using CIFAR-10 with 40 la-
beled samples, we compare the test accuracies of the trained model f
and the EMA model g across different training epochs. As shown in Fig-
ure 4.4(a), unsurprisingly, the EMA model g can consistently outperform
the trained model f . Based on this, we revisit the EMA model in details
by answering two questions the the following.
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Figure 4.5: Following the explorations in Figure 4.4, we observe same
findings on MiniImageNet with 1000 labels. (b) In terms of the accu-
racy difference (Q f −Qg) of the high-confidence pseudo-labels in a mini-
batch, g obtains a lower accuracy than f at about 61% iterations. (c) How-
ever, the accurate difference (A f − Ag) of all pseudo-labels between f
and g shows that the model g can generate more accurate pseudo-labels
in 88% iterations.

Question 1: Since the EMA model can achieve a higher test accu-
racy, will it be beneficial to directly exploit the predictions of the EMA
model as pseudo-labels for training? Surprisingly, the answer is NO.
In recent SSL studies [12, 132, 58, 87], the EMA model is only used
for testing rather than proposing pseudo-labels. However, the poten-
tial reasons are not clearly explained in the literature. Thus we per-
form another experiment to directly use the EMA model’s predictions
as pseudo-labels. However, this method significantly degrades the SSL
performance, achieving a testing accuracy of 45.31% compared to 82.50%
of the original FixMatch. We then explore the reasons in term of the accu-
racy of high-confidence pseudo-labels throughout the training, denoted
by Q. As shown in Figure 4.4(b), we measure the accuracy difference
of the high-confidence pseudo-labels from f and g throughout a same
training process, i.e. Q f − Qg. As seen, Q f is higher than Qg for above
70% of the training period. Therefore, directly using the EMA model’s
predictions leads to poor quality of the high-confidence pseudo-labels,
which explains why recent SSL methods exclude the EMA model in the
training process.

Question 2: How can our method use the EMA model to estimate
a better class distribution on unlabeled data? By further analyzing the
above experimental results, we find that, compared with f , although
EMA model g obtains a lower accuracy on high-confidence predictions,
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Figure 4.6: Following the explorations in Figure 4.4, we investigate the
EMA model’s performance on CIFAR10 in a mismatched distribution
setting as in Figure 3.6(b). (b) In terms of the accuracy difference (Q f −
Qg) of the high-confidence pseudo-labels in a mini-batch, g obtains a
lower accuracy than f at about 67% iterations. (c) However, the accurate
difference (A f −Ag) of all pseudo-labels between f and g shows that the
model g can generate more accurate pseudo-labels in 97% iterations.

it can produce a higher accuracy on all unlabeled data (with both high-
confidence and low-confidence predictions), i.e., obtaining larger amounts
of accurate predictions. Let A be the pseudo-label accuracy on all un-
labeled data in a mini-batch instead of just high-confidence ones. We
investigate A f −Ag across the training process in Figure 4.4(c). It is ob-
served that in most iterations, g can achieve a higher value of A (see
the negative values of A f −Ag), i.e. more accurate predictions. That is
indeed what we need for better distribution estimation, since the class
distribution ought to be estimated on the whole unlabeled data rather
than just the high-confidence ones. Therefore, we can rely on the EMA
model’s predictions to make a better class distribution estimation on un-
labeled data. As shown in Figure 4.5, we further find the same obser-
vations on MiniImageNet with 1000 labels. In addition, we investigate
the performance of the EMA model in a mismatched distribution setting
on CIFAR-10 with |Dx| = 40 and γu = 50. It can been seen from Fig-
ure 4.6 that g can outperform f throughout the whole training process in
terms of the accuracy on all pseudo-labels, yet with lower accuracy on
high-confidence ones.

Then can we directly use all predictions from the EMA model as
pseudo-labels of the unlabeled data to train models? No, it will also
largely decrease the test accuracy due to the well-known issue in SSL, i.e.,
the confirmation bias [4]. Combining the entropy minimization [47], it is
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claimed in [132] and [4] that retaining only the pseudo-labels with high-
confidence predictions can effectively alleviate the bias. In the following
section, we provide our solution to estimate the class distribution by the
predictions of EMA model.

In summary, we observe that the EMA model can achieve a higher
accuracy of pseudo-labels on all unlabeled data but a lower accuracy on
high-confidence ones.

Estimating Distribution from Predictions

The next problem is how we derive the class distribution from EMA’s
predictions on unlabeled data. Since the class distribution between dif-
ferent mini-batches can vary considerably, a natural way to improve the
estimation is to involve multiple mini-batches. As proposed in ReMix-
Match [12], a direct way to estimate the class distribution is to average
over historical predictions. However, such a method requires maintain-
ing a memory bank to store the model’s predictions from the most re-
cent K mini-batches. More importantly, it ignores temporal differences
among historical predictions, i.e., the more recent predictions are more
accurate throughout the training. Therefore, we adopt a momentum-
updated strategy, denoted by ϕ in Figure 4.3(b) and Figure 4.3(c), to es-
timate the class distribution, requiring calculations only on the current
mini-batch. ϕ is essentially a weighted averaging scheme and will assign
higher weights on more recent predictions. Given the prediction results
{pw, f

b }
µB
b=1 on the trained model f within a mini-batch, its corresponding

class distribution q f can be estimated as

q f := α q f +
(1− α)

µB

µB

∑
b=1

pw, f
b , (4.4)

where α is a momentum coefficient. In such ways, we cannot only de-
crease the memory cost but also prioritize the most recent predictions.
Likewise, given the EMA model’s prediction {pw, f

b }
µB
b=1, we can obtain
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another distribution estimation, qg,

qg := α qg +
(1− α)

µB

µB

∑
b=1

pw,g
b . (4.5)

4.2.3 Updating Strategies

At each mini-batch, we produce two distribution estimations from the
unlabeled samples: 1) the predicted class distribution (PCD), q f , esti-
mated by the trained model via Equation (4.4), and 2) the reference class
distribution (RCD), qg, derived by the EMA model via Equation (4.5).
Based on q f and qg, we design two alternative training strategies to im-
prove pseudo-labels either directly or indirectly.

Training-free Strategy

Inspired by ReMixMatch [12], we design a training-free strategy to en-
hance the quality of pseudo-labels from a distribution perspective. We
measure the distribution dissimilarity between RCD and PCD by a ratio
qg/q f . Then, the training-free strategy, denoted by ψ in Figure 4.3(b),
can be performed via two steps: 1) revise the pseudo-label by the distri-
bution dissimilarity ratio, and 2) normalize the revised pseudo-label in
a valid probability form. Consequently, the ultimate pseudo-label p̄w, f

b
can be calculated as

p̄w, f
b = Normalize(

qg

q f pw, f
b ), (4.6)

where Normalize(xi) = xi/ ∑ xi. Then the unsupervised loss Ltf
u in this

strategy is,

Ltf
u =

1
µB

µB

∑
b=1

1(max(pw, f
b ) ≥ τ)H( p̄w, f

b , ps, f
b ). (4.7)

To the end, the total loss for this strategy is Lx + λuLtf
u . No additional

training efforts are introduced by this strategy.
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Training-based Strategy

As shown in Figure 4.3(c), we also propose a training-based strategy to
encourage PCD to gradually approach RCD. Specifically, given RCD and
PCD, we can minimize a distribution consistency loss Ld:

Ld = H(pg, p f ), (4.8)

where we use the cross entropy loss H(·, ·) to measure the discrepancy
between the two distributions. Besides, we also reserve the consistency
loss at the instance level,

Ltb
u =

1
µB

µB

∑
b=1

1(max(pw, f
b ) ≥ τ)H(pw, f

b , ps, f
b ), (4.9)

where we use the soft pseudo-labels pw, f
b for calculations compared to

the hard labels p̂w, f
b used in Equation (4.3). In summary, the total loss is,

L = Lx + λuLtb
u + λdLd, (4.10)

where λu and λd are two weights of the consistency loss at the instance
level and at the distribution level, respectively.

Remarks: Our proposed DC-SSL is conceptually analogous to an
Expectation-Maximization (EM) procedure. In the E-step, DC-SSL pro-
duces distribution estimations pg and p f by taking f and g as avail-
able models with fixed parameters. In the M-step, DC-SSL updates the
models f and g by minimizing the total loss in Equation (4.1) or Equa-
tion (4.10) on top of the two distributions estimated in the E-step. The
algorithm can alternately improve the distribution estimations and the
trained models.

4.3 Experiment

This section presents our experimental setup and implementation de-
tails, followed by extensive evaluations of our methods with mismatched
and matched class distributions.
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Method CIFAR10,|Dx|=40 CIFAR10,|Dx|=250 CIFAR100, |Dx|=2500 MiniImageNet, |Dx|=1000

γu = 50 100 200 γu = 50 100 200 γu = 100 200 γu = 100 200

FixMatch 57.54 54.82 50.67 76.54 73.51 70.89 52.46 50.24 25.52 21.65
FixMatch+DA 54.08 46.71 41.37 70.78 66.25 61.69 48.96 46.59 22.92 19.82
CoMatch 52.73 46.20 38.85 69.36 64.47 60.05 47.03 43.89 20.37 19.03

Ours (TF) 62.44 56.47 52.32 79.25 76.10 72.01 56.43 52.01 27.44 23.53
Ours (TB) 63.95 57.16 53.27 81.82 77.26 73.34 59.02 52.70 29.12 24.41

Table 4.1: Mean test accuracy (%) with mismatched class distribution:
balanced labeled data and imbalanced unlabeled data. |Dx| is the num-
ber of labeled samples. The higher the γu, the more the imbalance, and
the more severe the distribution mismatch.

4.3.1 Experimental Setup

Dataset and Backbone. We evaluate our methods on four SSL image
classification benchmarks, CIFAR-10 [73], CIFAR-100 [73], STL-10[33],
and Mini-Imagenet [125]. Of these, CIFAR-10 and CIFAR-100 contain
50,000 32x32 training images and 10000 32x32 testing images, with 10
and 100 classes, respectively. STL-10 is composed of 5,000 labeled images
of size 96x96 from 10 classes, along with 10,000 unlabeled images. Mini-
Imagenet consists of 50000 training images and 10000 testing images,
evenly distributed across 100 classes. For fair comparison[132, 87], we
use Wide ResNet-28-2 for CIFAR-10, Wide ResNet-28-8 for CIFAR-100,
ResNet-18 for Mini-Imagenet and STL-10, respectively. We use Fixmatch
as our backbone (the fundamental consistency-based SSL method) and
compare our methods with multiple SSL baselines.

Mismatched Settings. Since the original datasets are all class-balanced,
we sample the training images to investigate two mismatched cases:
1) balanced labeled samples with imbalanced unlabeled samples, and
2) balanced unlabeled samples with imbalanced labeled samples. In-
spired by CIFAR-LT [18], we utilize an exponential function to mimic
the imbalanced distribution. For imbalanced labeled samples, we use

Γi = Γ0γ
− i

N−1
x , i ∈ [0, N − 1] to generate the labeled number for the

ith class. We use different Γ0 to investigate different scale of imbalance,
while the γx is calculated by the constraint ∑i Γi = |Dx|. On the other
hand, we refer to CIFAR-LT[18] to generate imbalanced unlabeled sam-

ples, with Mi = Mmaxγ
− i

N−1
u , where Mmax is set as the image number

of the ith class in the original datasets. By adjusting the value of γu for
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difference scales of imbalance, we control the degree of distribution mis-
match between the labeled and unlabeled samples, i.e., the larger the γu

, the higher the severity of distribution mismatch.

Parameters. In our proposed methods, we introduce two new hyper-
parameters: the momentum coefficient α for both strategies and the loss
weight λd for the training-based (TS) strategy. By default, we simply
set α = 0.99, and λd = 1.0. Ablation studies on these parameters are
provided in the next section. The default values of other training hyper-
parameters are B = 64, µ = 7, λu = 1, τ = 0.9. We train our methods for
512 epochs and utilize a SGD optimizer with a momentum of 0.9 and a
weight decay of 5e-4 to train the model. A learning rate scheduler with
a cosine decay is used to decrease the learning rate from an initial value
of 0.03. In addition, we train the model for 20 epochs to warm up before
applying our proposed distribution consistency.

4.3.2 Results for Mismatched Distribution

Imbalanced unlabeled samples. In Table 4.1, we test the performance
in a mismatched distribution setting where we have balanced labeled
data but imbalanced unlabeled data. It can be clearly seen that, as the
γu gets larger , i.e., the mismatch issue is more severe, the test accuracy
decreases considerably on all SSL benchmarks across different amounts
of labeled samples. The mismatched distribution in SSL is a very chal-
lenging problem indeed. Compared to other SOTA SSL methods, our
methods with either TF or TB strategies can achieve a remarkable per-
formance improvement. In all our tested cases, our TB strategy can
boost the mean accuracy of FixMatch by around 3%, and the accuracy
of CoMatch by around 11% on average. Interestingly, we find that Co-
Match obtains the worst results in all the tests among different baselines.
This is because CoMatch extensively exploits the label information car-
ried on the labeled samples to modify the pseudo-labels of unlabeled
samples. In addition to the standard DA technique, it maintains a large
memory bank to smooth the pseudo-labels by aggregating information
from nearby labeled samples in the embedding space. However, rely-
ing heavily on labeled samples can only be helpful when the labeled and
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Method STL-10

|Dx|=1000

FixMatch 65.38
FixMatch+DA 66.53
CoMatch 79.80

Ours (TF) 84.61
Ours (TB) 82.47

Table 4.2: Mean test accuracy (%) for STL-10 averaged on 5 different
folds. All the related works are reported in CoMatch [87].

Method CIFAR10, |Dx|=250 CIFAR100, |Dx|=2500 MiniImageNet, |Dx|=1000

Γ0 = 100 200 Γ0 = 100 200 Γ0 = 40 80

FixMatch 69.76 46.53 61.31 41.38 36.20 28.33
FixMatch+DA 61.80 27.61 50.94 31.82 33.87 23.53
CoMatch 57.87 26.77 48.02 30.08 30.24 21.47

Ours (TF) 72.21 52.59 64.63 41.23 39.07 31.75
Ours (TB) 73.04 48.49 65.24 42.09 40.13 32.82

Table 4.3: Mean test accuracy (%) with mismatched class distribution:
imbalanced labeled data and balanced unlabeled data. |Dx| is the num-
ber of labeled samples. The higher the Γ0, the more the imbalance, and
thus the more severe the distribution mismatch.

unlabeled distributions are identical. In the mismatched distribution set-
ting, closely dependending on label information can cause severe nega-
tive effects, as can be seen from the test results. Although our methods
share a similar idea of the DA to improve pseudo-labels from a distribu-
tion perspective, our methods significantly outperform other DA-based
baselines (i.e., Fixmqtch+DA and Comatch) due to our proposed better
RCD estimated directly on unlabeled samples.

Imbalanced labeled samples. We also investigate another mismatch
setting in Table 4.3: imbalanced labeled data but balanced unlabeled
data. It can be seen that our methods can effectively improve the perfor-
mance by rectifying the pseudo-labels from a distribution perspective.
The overall results further demonstrate the superiority of our methods,
e.g., TB strategy can obtain a mean accuracy of 40.13% on MiniImageNet
with imbalanced 1000 labeled samples, against 36.20% of FixMatch and



58
Chapter 4. DC-SSL: Addressing Mismatched Class Distribution in

Semi-supervised Learning

30.24% of CoMatch.

Observing the results from Tables 4.1 and 4.3, we can also find that,
our TB strategy can mostly achieve better performance than our TF strat-
egy at different degrees of distribution mismatch. This stems from their
different levels of influence on the pseudo-labels. The TF strategy can
pose strong effects on the pseudo-labels by directly modifying them with
a ratio of RCD to PCD. Differently, the TB strategy does not directly
adjust the pseudo-labels but indirectly improves the pseudo-labels by
enforcing their aggregated distribution to gradually approach the RCD.
That is, the TB strategy can take effects in a more moderate manner. In
the mismatched case, as shown in Figure 4.2, our estimated RCD may
not be very accurate at the early stages of the training process, but can
be gradually improved to approach the ground-truth distribution across
the training process. Therefore, our TB strategy is more suitable for the
mismatched cases and can gradually enhance the SSL performance along
with the iteratively-improved RCD.

STL10. This dataset contains out-of-distribution images in the un-
labeled set, where the distribution mismatch between labeled and un-
labeled sets inherently exists. Following [87], we evaluate on the five
pre-defined folds and Table 4.2 shows that DC-SSL with both strategies
can consistently outperform the SOTA methods, with more than 15% av-
erage accuracy improvements against FixMatch and more than 3% im-
provements against CoMatch.

4.3.3 Results for Matched Distribution

In Table 4.4 we also compare our strategies with recent SOTA SSL meth-
ods on conventional SSL settings. Following AlphaMatch and CoMatch,
we also exploit the pre-known GCD as RCD to test our proposed two
strategies. Surprisingly, without introducing more advanced techniques
like alpha-divergence or contrastive learning techniques, our two strate-
gies can consistently achieve a higher test accuracy than these SOTA
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Method CIFAR10 CIFAR100 MiniImageNet

|Dx|=40 250 400 2500 1000

MixMatch[13] 52.46 88.95 33.39 60.06 33.74∗

FixMatch[132] 86.19 94.93 51.15 71.71 39.03∗

AlphaMatch[45] 91.35 95.03 61.26 74.98 -
CoMatch[87] 93.21∗ 95.14∗ 60.71∗ 74.36∗ 43.72∗

Ours (TF) 95.31 95.87 62.47 75.10 45.19
Ours (TB) 93.89 95.24 61.33 74.62 44.23

Table 4.4: Mean test accuracy (%) in conventional SSL settings with bal-
anced and matched distributions, i.e., Γi =

|Dx|
N and γu = 1. Results with

∗ in baselines are provided by our own testings.

α 0.8 0.9 0.99 0.999

Accuracy (%) 93.14 94.82 95.38 94.64

Table 4.5: Effect of the EMA ratio in our TF strategy

methods, especially when the labeled data is severely scarce. On CI-
FAR10 with only 40 labels, our TB strategy can obtain a high average ac-
curacy of 95.31%, which is significantly better than 86.19% of FixMatch.
It can also be seen from the table that AlphaMatch and CoMatch (both
integrating the DA technique) can also achieve remarkable performance
gains over FixMatch, demonstrating that modifying the pseudo-labels
from a distribution perspective can effectively enhance the SSL perfor-
mance. Comparing the results in Table 4.1, we further verify our claim
that an accurate distribution of unlabeled samples is the key. Unsur-
prisingly, since we have the accurate distribution information in conven-
tional SSL settings, directly modifying the pseudo-labels in our TB strat-
egy can be more effective than our TF strategy that indirectly improves
the pseudo-labels in a more moderate way.

4.3.4 Effects of Hyper-parameters

We first examine the effects of two hyper-parameters introduced in our
proposed strategies using CIFAR10 with 40 labels in the conventional
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λd 1.0 3.0 5.0 7.0

TB (matched) 93.92 94.33 94.67 94.81
TB (mismatched) 64.01 62.79 59.03 61.55

Table 4.6: Effect of the loss weight of Ld in our TB strategy.

SSL setting. The momentum coefficient α affects how the class distribu-
tion is estimated from historical predictions. A larger value of α can in-
volve more historical predictions and relatively weaken the importance
of the current predictions, therefore leading to more stable results as
shown in Table 4.5. Meanwhile, the effect of the loss weight λd can be
seen from Table 4.6: different values of λd can slightly affect the accu-
racy in the matched case while a smaller λd can better favor the mis-
matched case (following the same mismatched distribution setting as
in Figure 3.6(b)). It is simply because a lower weight can better fit the
iteratively-improved RCD and improve the pseudo-labels smoothly. By
default, we set λd = 1 in all tests.

4.4 Summary

In this chapter, we carefully study how to improve SSL especially when
there is a class distribution mismatch between the labeled and unlabeled
sets. To address the mismatched issue, we propose DC-SSL, which can
rectify the pseudo-labels from a distribution perspective and achieves
the state-of-the-art performance across many SSL benchmarks under matched
and mismatched class distribution scenarios. For example, in conven-
tional matched distribution settings, DC-SSL (TF) can achieve a higher
average accuracy of 95.31% on CIFAR10 (40 labels) compared to the pre-
vious SOTA of 93.21% and the baseline FixMatch of 86.19%. In the mis-
matched settings, our methods consistently outperform other SSL meth-
ods, e.g., DC-SSL (TB) can obtain an average accuracy of 63.95% on CI-
FAR10 in a mismatched setting as in Figure 3.6(b), compared to Fixmatch
of 57.54% and CoMatch of 52.73%. Our main contributions are summa-
rized as follows,
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• We revisit the EMA model in SSL and observe that it can be help-
ful in estimating unlabeled class distributions, although it may not
produce more accurate high-confidence pseudo-labels directly.

• We propose a new method, DC-SSL, to enhance SSL performance
from a distribution perspective. Two effective strategies are de-
signed to improve the pseudo-labels by encouraging PCD of unla-
beled data to approach an iteratively-improved RCD gradually.

• Our method can obtain new SOTA performance across different
amounts of labeled data on standard SSL image classification bench-
marks under both matched and mismatched distribution scenarios.





63

Chapter 5

Instance-specific and
Model-adaptive Supervision for
Semi-supervised Semantic
Segmentation

In this chapter, we focus on the semi-supervised semantic segmenta-
tion (SSS) tasks. We find that most existing SSS studies treat all unla-
beled data equally and barely consider the differences and training dif-
ficulties among unlabeled instances. We argue that differentiating un-
labeled instances can promote instance-specific supervision to adapt to
the model’s evolution dynamically. To this end, we propose an instance-
specific and model-adaptive supervision, dubbed as iMAS, for semi-
supervised semantic segmentation. We thoroughly examine the efficacy
of our iMAS on popular segmentation benchmarks, namely Pascal VOC
and Cityscapes datasets. Our investigations demonstrate that iMas sur-
passes all existing methods and achieves new SOTA SSS performance.

5.1 Introduction

Though semantic segmentation studies [96, 27] have achieved signifi-
cant progress, their enormous success relies on large datasets with high-
quality pixel-level annotations. Semi-supervised semantic segmentation [60,
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105] has been proposed as a powerful solution to mitigate the require-
ment for labeled data. Recent research on SSS has two main branches, in-
cluding the self-training (ST) [83] and consistency regularization (CR) [134]
based approaches. [159] follows a self-training paradigm and performs
a selective re-training scheme to train on labeled and unlabeled data al-
ternatively. Differently, CR-based works [115, 94] tend to apply data or
model perturbations and enforce the prediction consistency between two
differently-perturbed views for unlabeled data. In both branches, recent
research [43, 164, 56] demonstrates that strong data perturbations like
CutMix can significantly benefit the SSS training. To further improve
the SSS performance, current state-of-the-art approaches [3, 144] inte-
grate the advanced contrastive learning techniques into the CR-based
approaches to exploit the unlabeled data more efficiently. Works in [61,
77] also aim to rectify the pseudo-labels through training an additional
correcting network.

Despite their promising performance, SSS studies along this line
come at the cost of introducing extra network components or additional
training procedures. In addition, majorities of them treat unlabeled data
equally and completely ignore the differences and learning difficulties
among unlabeled samples. For instance, randomly and indiscriminately
perturbing unlabeled data can inevitably over-perturb some difficult-to-
train instances. Such over-perturbations exceed the generalization capa-
bility of the model and hinder effective learning from unlabeled data.
As discussed in [164], it may also hurt the data distribution. Moreover,
in most SSS studies, final consistency losses on different unlabeled in-
stances are minimized in an average manner. However, blindly averag-
ing can implicitly emphasize some difficult-to-train instances and result
in model overfitting to noisy supervision.

In this chapter, we emphasize the cruciality of instance differences
and aim to provide instance-specific supervision on unlabeled data in a
model-adaptive way. There naturally exists two main questions. First,
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Figure 5.1: Diagram of our proposed iMAS. In a teacher-student frame-
work, labeled data (x, y) is used to train the student model, parame-
terized by θs, by minimizing the supervised loss Lx. Unlabeled data
u, weakly augmented by Aw(·), is first fed into both the student and
teacher models to obtain predictions ps and pt, respectively. Then we
perform quantitative hardness evaluation on each unlabeled instance by
strategy ϕ(pt, ps). Such hardness information can be subsequently uti-
lized: 1) to apply an adaptive augmentation, denoted by As(·), on un-
labeled data to obtain the student model’s prediction p̂; 2) to weigh the
unsupervised loss Lu in a instance-specific manner. The teacher model’s
weight, θt, is updated by the exponential moving average (EMA) of θs
across the training course.

how can we differentiate unlabeled samples? We design an instanta-
neous instance “hardness," to estimate 1) the current generalization abil-
ity of the model and 2) the current training difficulties of distinct un-
labeled samples. Its evaluation is closely related to the training status
of the model, e.g., a difficult-to-train sample can become easier with the
evolution of the model. Second, how can we inject such discriminative
information into the SSS procedure? Since the hardness is assessed based
on the model’s performance, we can leverage such information to adjust
the two critical operations in SSS, i.e., data perturbations and unsuper-
vised loss evaluations, to adapt to the training state of the model dynam-
ically.

Motivated by all these observations, we propose an instance-specific



66
Chapter 5. Instance-specific and Model-adaptive Supervision for

Semi-supervised Semantic Segmentation

and model-adaptive supervision, named iMAS, for semi-supervised se-
mantic segmentation. As shown in Figure 5.1, following a standard con-
sistency regularization framework, iMAS jointly trains the student and
teacher models in a mutually-beneficial manner. The teacher model is
an ensemble of historical student models and generates stable pseudo-
labels for unlabeled data. Inspired by empirical and mathematical analy-
sis in [48, 135], difficult-to-train instances may undergo considerable dis-
agreement between predictions of the EMA teacher and the current stu-
dent. Thus in iMAS, we first evaluate the instance hardness of each unla-
beled sample by calculating the class-weighted symmetric intersection-
over-union (IoU) between the segmentation predictions of the teacher
(the historical) and student (the most recent) models. Then based on the
evaluation, we perform model-adaptive data perturbations on each un-
labeled instance and minimize an instance-specific weighted consistency
loss to train models in a curriculum-like manner. In this way, different
unlabeled instances are perturbed and weighted in a dynamic fashion,
which can better adapt to the model’s generalization capability through-
out the training processes.

5.2 Method

The goal of semi-supervised semantic segmentation is to generalize a
segmentation model by effectively leveraging a labeled training set Dx =

{(xi, yi)}
|Dx|
i=1 and a large unlabeled training set Du = {ui}

|Du|
i=1 , with typ-

ically |Dx| ≪ |Du|. In our method, following the consistency regular-
ization (CR) based semi-supervised classification approaches [132, 151],
we aim to train the segmentation encoder and decoder on both labeled
and unlabeled data simultaneously. In each iteration, given a batch of la-
beled samples Bx = {(xi, yi)}

|Bx|
i=1 and unlabeled samples Bu = {ui}

|Bu|
i=1 ,

the overall training loss is formulated as,

L = Lx + λuLu, (5.1)

where λu is a scalar hyper-parameter to adjust the relative importance
between the supervised loss Lx on Bx and the unsupervised loss Lu on
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Algorithm 2: iMAS algorithm in a mini-batch.

1 Input: Labeled batch Bx = {(xi, yi)}
|Bx|
i=1 , unlabeled batch

Bu = {ui}
|Bu|
i=1 (|Bx| = |Bu|), hardness evaluation strategy ϕ, weak

augmentation Aw(·), adaptive strong augmentation As(·)
2 Parameter: confidence threshold τ, unsupervised loss weight λu

1: Lx = 1
|Bx| ∑

|Bx|
i=1

1
H×W ∑H×W

j=1 H(ŷi(j), yi(j)) // calculate the
supervised loss.

2: for ui ∈ Bu do
3: ps

i = fθs(Aw(ui)) // obtain segmentation predictions on
weakly-augmented instances.

4: pt
i = fθt(Aw(ui)) // obtain pseudo-labels from the teacher

model.
5: γi = ϕ(pt

i , ps
i ) // evaluate the hardness of each instance.

6: end for
7: Lu = 1

|Bu| ∑
|Bu|
i=1

γi
2H×W ∑H×W

j=1 [1(max(pt
i(j)) ≥

τ)H( fθs(AI
s(ui)), pt

i(j))+
1(max(pt′

i (j)) ≥ τ)H( fθs(AC
s (ui)), pt′

i (j))] // calculate
model-adaptive consistency loss

8: return L = Lx + λuLu

Bu. Without introducing extra losses or network components, iMAS can
perform effectively quantitative hardness analysis for each unlabeled in-
stance and then supervise the training on unlabeled data in a model-
adaptive fashion across the training course. In this section, we first in-
troduce our proposed iMAS at a high level in Sec. 5.2.1 and then present
the detailed designs in terms of the quantitative hardness analysis in
Sec. 5.2.2 and the model-adaptive guidance in Sec. 5.2.3.

5.2.1 Overview

Built on top of the CR-based semi-supervised framework, iMAS jointly
trains a student model with the learnable weights θs and a teacher model
with the learnable weights θt in a mutually-beneficial manner. The com-
plete algorithm is shown in algorithm 2. On the one hand, the teacher
model is updated by the exponential moving averaging of the student
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weights, i.e.,

θt ← αθt + (1− α)θs, (5.2)

where α is a common momentum parameter, set as 0.996 by default. On
the other hand, the student model relies on the pseudo-labels generated
by the teacher model to be trained on the unlabeled data. Specifically, the
student model is trained via minimizing the total loss L in Equation 5.1,
which consists of two cross-entropy loss terms, Lu and Lx, applied on
labeled and unlabeled data, respectively. Let H(z1, z2) denote the cross-
entropy loss between prediction distributions z1 and z2. The supervised
loss Lx is calculated as,

Lx =
1
|Bx|

|Bx|

∑
i=1

1
H ×W

H×W

∑
j=1

H(ŷi(j), yi(j)), (5.3)

where ŷi = fθs(Aw(xi)), represents the segmentation result of the stu-
dent model on the i-th weakly-augmented labeled instance. j represents
the j-th pixel on the image or the corresponding segmentation mask with
a resolution of H×W. The weak augmentationAw includes standard re-
sizing, cropping, and flipping operations. Importantly, the way to lever-
age the unlabeled data is the key to semi-supervised learning and also
the crucial part differentiating our method from others. In most CR-
based studies, the standard (std) unsupervised loss Lstd

u is simply,

Lstd
u =

1
|Bu|

|Bu|

∑
i=1

1
H ×W

H×W

∑
j=1

1(max(pt
i(j))≥τ)H( p̂i(j),pt

i(j)), (5.4)

where p̂i = fθs(Astd
s (ui)) represents the segmentation output of the stu-

dent model on the i-th unlabeled instance augmented by Astd
s , while

pt
i = fθt(Aw(ui)) represents the segmentation outputs of the teacher

model on the i-th weakly-augmented unlabeled instance. τ is a prede-
fined confidence threshold to select high-confidence predictions. Astd

s

represents standard instance-agnostic strong augmentations, including
intensity-based data augmentations [35] and CutMix [166] as shown in
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Table 5.1. However, such operations are limited in ignoring the differ-
ences and learning difficulties among unlabeled samples.

Differently, in our iMAS, we treat each instance discriminatively
and provide instance-specific supervision on the training of unlabeled
data. As shown in Figure 5.1, we first evaluate the hardness of each
weakly-augmented unlabeled instance via strategy ϕ, and then employ
the instance-specific and model-adaptive supervision on the strong aug-
mentationsAs as well as the calculations of unsupervised loss Lu, which
are elaborated in following sections.

5.2.2 Quantitative Hardness Analysis

In iMAS, we perform quantitative hardness analysis to differentiate dis-
tinct unlabeled samples. In most hardness-related studies, the instanta-
neous or historical training losses [181, 131] to the ground truth are used
to assess the instance hardness. However, in semi-supervised segmenta-
tion, evaluating the hardness of unlabeled data is challenging at 1) lack-
ing accurate ground-truth labels and 2) dynamic changes closely related
to the model performance. A “hard" sample can become easier with the
evolution of the model, but such dynamics cannot be easily identified
without accurate label information. Inspired by [48, 143], it is more dif-
ficult for the teacher and student models to achieve consensus on a hard
instance. Hence we design a symmetric class-weighted IoU between the
segmentation results of the student and teacher models to evaluate the
instantaneous hardness. The class-weighted design is used to alleviate
the class-imbalanced issue in segmentation tasks.

Such evaluation, denoted by ϕ, can be regarded as a function of
the model performance and dynamically estimate the training difficul-
ties of unlabeled crops throughout the training process. Specifically, as
shown in Figure 5.1, we first obtain the segmentation predictions ps

i and
pt

i on the i-th weakly-augmented unlabeled instance, from the student
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and teacher models, respectively,

ps
i = fθs(Aw(ui)), ρs

i =
1

H×W

H×W

∑
j=1

1(max(ps
i (j))≥τ) (5.5)

pt
i = fθt(Aw(ui)), ρt

i =
1

H×W

H×W

∑
j=1

1(max(pt
i(j))≥τ) (5.6)

where ρs
i and ρt

i represent the high-confidence ratios on ps
i and pt

i , respec-
tively. Let wIOU(z1, z2) denote the class-weighted IoU between segmen-
tation predictions z1 and z2. Note that, this evaluation is not commuta-
tive, i.e., wIOU(z1, z2) ̸= wIOU(z2, z1). To make wIoU valid for hardness
evaluation at each iteration, the symmetric hardness γi for i-th unlabeled
instance is calculated as,

γi =ϕ(pt
i ,p

s
i )=1−[

ρs
i

2
wIOU(ps

i , pt
i) +

ρt
i

2
wIOU(pt

i , ps
i )] (5.7)

where 1/2 ensures the hardness is in [0, 1]. In this way, the harder in-
stance that requires better generalization ability holds a larger value of γ

while the easier one will be identified by a smaller γ.

5.2.3 Model-adaptive Supervision

With the quantitative hardness evaluation for each unlabeled instance,
we carefully inject such information into the training process by per-
forming instance-specific and model-adaptive strong perturbations and
loss modifications. Specifically, we first leverage the instance hardness
for adaptive augmentations both individually and mutually. By “indi-
vidually", we adjust the intensity-based augmentation applied on each
instance according to its absolute hardness value; by “mutually", we re-
place random pairs of unlabeled data in CutMix with specific hard-easy
pairs assigned by sorting the corresponding hardness. Moreover, in-
stead of indiscriminately averaging the losses, we weigh the losses of
different unlabeled instances by multiplying their corresponding hard-
ness. We present these details below.
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Weak Augmentations

Random scale Randomly resizes the image by [0.5, 2.0].
Random flip Horizontally flip the image with a probability of 0.5.
Random crop Randomly crops an region from the image (513× 513, 769× 769).

Strong intensity-based Augmentations

Identity Returns the original image.
Invert Inverts the pixels of the image.
Autocontrast Maximizes (normalize) the image contrast.
Equalize Equalize the image histogram.
Gaussian blur Blurs the image with a Gaussian kernel.
Contrast Adjusts the contrast of the image by [0.05, 0.95].
Sharpness Adjusts the sharpness of the image by [0.05, 0.95].
Color Enhances the color balance of the image by [0.05, 0.95]
Brightness Adjusts the brightness of the image by [0.05, 0.95]
Hue Jitters the hue of the image by [0.0, 0.5]
Posterize Reduces each pixel to [4,8] bits.
Solarize Inverts all pixels of the image above a threshold value from [1,256).

CutMix augmentation

CutMix Copy and paste random size regions among different unlabeled images.

Table 5.1: List of various image transformations in iMAS.

Model-adaptive Strong Augmentations

The popular strong augmentations in recent semi-supervised segmenta-
tion studies mainly consist of two different types: intensity-based aug-
mentation and CutMix, as shown in Table 5.1. In iMAS, we apply instance-
specific adjustments to both types of augmentations.

Intensity-based augmentations. Standard intensity-based data aug-
mentations randomly select two kinds of image operations from an aug-
mentation pool and apply them to the weakly-augmented instances. How-
ever, as discussed by [164], strong augmentations may hurt the data dis-
tribution and degrade the segmentation performance, especially during
the early training phase. Unlike distribution-specific designs [164], we
simply adjust the augmentation degree for an unlabeled instance by mix-
ing its strongly-augmented and weakly-augmented outputs. Formally,
the ultimate augmented output of the i-th unlabeled instance, AI

s(ui),
can be obtained by,

AI
s(ui)← γiAI

s(ui) + (1− γi)Aw(ui), (5.8)
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where the distortion caused by the intensity-based strong augmentation
is proportionally weakened by the corresponding weakly-augmented
output. In this way, harder instances with larger hardness are not per-
turbed significantly so that the model will not be challenged on poten-
tially out-of-distribution cases. On the other hand, easier instances with
lower values of γ, which have been well fitted by the model, can be
further learned from their strongly-augmented variants. Such model-
adaptive augmentations can better adjust to the model’s generalization
ability.

CutMix-based augmentations. CutMix [166] is a widely adopted
technique to boost semi-supervised semantic segmentation. It is applied
between unlabeled instances with a predefined probability. It can ran-
domly copy a region from one instance to another, and so do their cor-
responding segmentation results. The augmentation pairs are generated
randomly. Differently, in iMAS, we improve the standard CutMix by a
model-adaptive design, which is distinct in two ways: 1) the mean hard-
ness determines the trigger probability of CutMix augmentation over the
mini-batch instead of using a predefined hyper-parameter; 2) the copy-
and-paste pairs are assigned specifically between the hard and easy sam-
ples. According to the instance hardness, we obtain two sequences by
sorting unlabeled samples of a mini-batch in the ascending and descend-
ing orders, respectively. We then aggregate two sequences element-by-
element to generate the hard-easy pairs. Formally, given a specific hard-
easy pair, (um, un), the model-adaptive CutMix can be expressed as,

AC
s (um)← Mm ⊙ un + (1−Mm)⊙ um

pt′
m ← Mm ⊙ pt

n + (1−Mm)⊙ pt,

AC
s (un)← Mn ⊙ um + (1−Mn)⊙ un

pt′
n ← Mn ⊙ pt

m + (1−Mn)⊙ pt
n


, (5.9)

by a triggering probability of γ =
1
|Bu|

|Bu|

∑
n=1

γn, (5.10)

where Mm and Mn denote the randomly generated region masks for um
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Method ResNet-50
1/16 (662) 1/8 (1323) 1/4 (2646)

Supervised∗ 63.8 69.0 72.5
MT [134] 66.8 70.8 73.2

CCT [115] 65.2 70.9 73.4
CutMix-Seg [43] 68.9 70.7 72.5

GCT [69] 64.1 70.5 73.5
CAC [78] 70.1 72.4 74.0
CPS [31] 72.0 73.7 74.9

PSMT† [94] 72.8 75.7 76.4
ELN [77] 70.5 73.2 74.6

ST++ [159] 72.6 74.4 75.4
iMAS (ours) 74.8 76.5 77.0

U2PL‡ [144] 72.0 75.2 76.2
iMAS (ours)‡ 75.9 76.7 77.1

Table 5.2: Comparison with SOTA methods on PASCAL VOC 2012 val
set under different partition protocols, using R50 as the backbone. La-
beled images are sampled from the blender training set (augmented by
SBD dataset), including 10, 583 samples in total. ‡ means the results are
obtained by setting the output_stride as 8 in DeepLabV3+ (16 for oth-
ers). ∗ denotes our reproduced results.

and un, respectively. Besides, the pseudo-labels need to be revised ac-
cordingly after applying CutMix data augmentations, obtaining pt′

m and
pt′

n . This mutual augmentation is applied following a Bernoulli process,
i.e., triggered only when a uniformly random probability is higher than
the average hardness γ.

Model-adaptive Unsupervised Loss

Considering the learning difficulty of each instance, we design a model-
adaptive unsupervised loss to learn from unlabeled data differentially.
Inspired by curriculum learning [9], we prioritize the training on easy
samples over hard ones. Precisely, we weigh the unsupervised losses for
each instance by multiplying their corresponding easiness, evaluated by
1− γ. Combined with model-adaptive augmentations, we can calculate
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Method ResNet-101
1/16 (662) 1/8 (1323) 1/4 (2646)

Supervised∗ 67.4 72.1 74.7
MT [134] 70.6 73.2 76.6

CCT [115] 68.0 73.0 76.2
CutMix-Seg [43] 72.6 72.7 74.3

GCT [69] 69.8 73.3 75.3
CAC [78] 72.4 74.6 76.3
CPS [31] 74.5 76.4 77.7

PSMT† [94] 75.5 78.2 78.7
ELN [77] 72.5 75.1 76.6

ST++ [159] 74.5 76.3 76.6
iMAS (ours) 76.5 77.9 78.1

U2PL‡ [144] 74.4 77.6 78.7
iMAS (ours)‡ 77.2 78.4 79.3

Table 5.3: Comparison with SOTA methods on PASCAL VOC 2012 val
set under different partition protocols, using R101 as the backbone. All
notations are the same as in Table 5.2.

the unsupervised loss by,

Lu=
1
|Bu|

|Bu|

∑
i=1

1− γi

2H ×W

H×W

∑
j=1

[1(max(pt
i(j)) ≥ τ)H( fθs

(AI
s(ui)), pt

i(j))+1(max(pt′
i (j))≥τ)H( fθs(A

C
s (ui)), pt′

i (j))].

(5.11)

Since the hardness is evaluated upon each (weakly augmented) image
instance, under its guidance, the two strong augmentations are performed
separately rather than in a cascading manner. In this way, the model will
not be trained on over-distorted variants, and our model-adaptive de-
signs can be effectively utilized.

5.3 Experiment

In this section, we examine the efficacy of our method on standard semi-
supervised semantic segmentation benchmarks and conduct extensive
ablation studies to further verify the superiority and stability.
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5.3.1 Experimental Setup

Dataset and backbone. Following recent SOTAs [31, 159] in semi-supervised
segmentation, we adopt DeepLabv3+ [27] based on Resnet [54] as our
segmentation backbone and investigate the test performance on Pascal
VOC2012 [41] and Cityscapes [34], in terms of the mean intersection-
over-union (mIOU). The classical VOC2012 consists of 21 classes with
1464 training and 1449 validation images. As a common practice, the
blended training set is also involved, including additional 9118 training
images from the Segmentation Boundary (SBD) dataset [52]. Cityscapes
is a large dataset on urban street scenes with 19 segmentation classes. It
consists of 2975 training and 500 validation images with fine annotations.

Implementation details. For both the student and the teacher mod-
els, we load the ResNet weights pre-trained on ImageNet [37] for the
encoder and randomly initialize the decoder. An SGD optimizer with a
momentum of 0.9 and a polynomial learning-rate decay with an initial
value of 0.01 are adopted to train the student model. The total train-
ing epoch is 80 for VOC2012 and 240 for Cityscapes. Following [144],
training images are randomly cropped into 513× 513 and 769× 769 for
Pascal VOC2012 and Cityscapes, respectively. On Cityscapes, we also
use the sliding evaluation to examine the performance on validation im-
ages with a resolution of 1024× 2048. We set Bu = Bx = 16 and adopt
the sync-BN for all runs.

5.3.2 Comparison with State-of-the-Art Methods

In this section, we demonstrate the superior performance of our iMAS
on both classic and blended VOC 2012 and Cityscapes under different
semi-supervised partition protocols. It is noteworthy that, on blended
VOC, U2PL [144] prioritizes selecting high-quality labels from classic
VOCs. Instead, we randomly sample labels from the entire dataset and
adopt the same partitions as specified in [31, 94]. Therefore, we repro-
duce corresponding results on U2PL and evaluate iMAS with different
output_strides, 8 and 16, respectively, for fair comparisons.
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Method 1/16 1/8 1/4 1/2 Full
(92) (183) (366) (732) (1464)

Supervised ∗ 45.5 57.5 66.6 70.4 72.9
CutMix-Seg [43] 52.2 63.5 69.5 73.7 76.5
PseudoSeg [186] 57.6 65.5 69.1 72.4 73.2

PC2Seg [179] 57.0 66.3 69.8 73.1 74.2
CPS [31] 64.1 67.4 71.7 75.9 -

PSMT [94] 65.8 69.6 76.6 78.4 80.0
ST++ [159] 65.2 71.0 74.6 77.3 79.1

iMAS (ours) 68.8 74.4 78.5 79.5 81.2

U2PL‡ [144] 68.0 69.2 73.7 76.2 79.5
iMAS‡(ours) 70.0 75.3 79.1 80.2 82.0

Table 5.4: Comparison with SOTA methods on classic PASCAL VOC
2012 val set under different partition protocols. Labeled images are sam-
pled from the official VOC train set, including 1, 464 samples in total.
Results are reported using Resnet-101. All notations are the same as in
Table 5.2.

PASCAL VOC 2012. In Tables 5.2 and 5.4, we compare our iMAS
with recent SOTA methods on blended and classic VOC, respectively.
We can clearly see from Table 5.2 that iMAS can consistently outperform
others regardless of using ResNet-50 or ResNet-101 as the segmentation
encoder. The performance gain becomes more noticeable and clear as
fewer labels are available. e.g., in the 1/16 partition, iMAS can improve
the supervised baseline by 11% and 9.1% when using ResNet-50 and
ResNet-101 as the encoders, respectively, and improve the ST++ [159] by
2.2% and 2.0%, accordingly. Checking the results among different parti-
tions, we can also observe that iMAS can even obtain better performance
while using fewer labels compared to other SOTAs. For example, iMAS
can obtain a high mIOU of 75.9% using only 662 labels, while U2PL re-
quires 1323 labels to obtain a comparable performance of 75.2% mIOU
on blended VOC. It suggests our method is more label efficient and po-
tentially a good solution for label-scarce scenarios. In classic VOC with
high-quality labels, our methods can outperform SOTA methods by a
notable margin, as shown in Table 5.4. We attribute this improvement
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Method 1/16 1/8 1/4 1/2
(186) (372) (744) (1488)

Supervised ∗ 64.0 69.2 73.0 76.4
MT [134] 66.1 72.0 74.5 77.4

CCT [115] 66.4 72.5 75.7 76.8
GCT [69] 65.8 71.3 75.3 77.1
CPS [31] 74.4 76.6 77.8 78.8

CPS† [144] 69.8 74.3 74.6 76.8
PSMT [94] - 75.8 76.9 77.6

ELN [77] - 70.3 73.5 75.3
ST++ [159] - 72.7 73.8 -

U2PL ∗ [144] 67.8 72.5 74.8 77.1
iMAS (ours) 74.3 77.4 78.1 79.3

U2PL‡∗ [144] 69.0 73.0 76.3 78.6
iMAS (ours)‡ 75.2 78.0 78.2 80.2

Table 5.5: Comparison with SOTA methods on Cityscapes val set un-
der different partition protocols. Labeled images are sampled from the
Cityscapes train set, including 2, 975 samples in total. Results are re-
ported using Resnet-50. ∗ and † represent reproduced results in iMAS
and U2PL, respectively. Results with ‡ are obtained by setting the out-
put_stride as 8 in DeepLabV3+.

to the model-adaptive guidance that treats each unlabeled instance dif-
ferently and effectively leverages them by instance-specific strategies in
HegSeg. Generally, in both classic and blended cases, reserving a large
feature map (i.e., set output_stride=8) can slightly improve the test per-
formance.

Cityscapes. In table 5.5, we evaluate our method on more chal-
lenging Cityscapes with ResNet-50 as the segmentation encoder. iMAS
with output_stride= 8 can achieve high mIOUs of 75.2%, 78.1%, 78.2%,
80.2%, in four different splits (1/16, 1/8, 1/4, 1/2), respectively. When
output_stride= 16, given only 186 labeled images, iMAS can obtain a
notable performance gain of 10.3% against the supervised baseline and
6.5% against the previous best, U2PL. Not relying on any pseudo-rectifying
networks [77] or extra self-supervised supervisions [144], iMAS achieves
substantially better performance than the previous SOTAs, especially
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iMAS on mIOU (%)
Loss Lu Augs of AI

s Augs of AC
s

72.1 (supervised)
✓ 75.5 (3.4↑)

✓ 76.5 (4.4↑)
✓ 76.9 (4.8↑)

✓ ✓ ✓ 77.9 (5.8↑)

Table 5.6: Ablation studies on the effectiveness of the instance-specific
model-adaptive supervision on the unsupervised loss, intensity-based
and CutMix augmentations, respectively. Results are reported on PAS-
CAL VOC 2012 under the 1/8 (1323) partition using Resnet-101 as the
backbone. Improvements over the baseline are marked in blue.
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Figure 5.2: Effectiveness of iMAS on the unsupervised loss, intensity-
based and CutMix augmentations, respectively.

with fewer labels. Despite the simplicity of iMAS, the impressive per-
formance further demonstrates the effectiveness and importance of our
instance-specific and model-adaptive guidance. Surely, regardless of dif-
ferent semi-supervised approaches, we can see from Tables 5.5 that pro-
viding more labeled samples can easily improve the semi-supervised
performance.

5.3.3 Ablations Study

We conduct ablation studies in the 1/8 partitions of blended VOC and
Cityscapes, and examine the impact of the model-adaptive guidance and
approach-related hyper-parameters.
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Figure 5.3: We examine the effect of the loss weight and confidence
threshold on VOC and Cityscapes under the 1/8 protocol in Figure (a)
and (b), respectively. Best viewed on screen.

Effectiveness of model-adaptive guidance. The key of iMAS lies in
the instance-specific and model-adaptive guidance. In Table 5.6, we con-
duct a series of experiments on VOC2012 dataset to demonstrate its ef-
fectiveness on three components, the unsupervised loss, intensity-based
and CutMix augmentations, respectively. It can been seen from Fig-
ure 5.2 that performing model-adaptive guidance can consistently im-
prove the standard operations, yielding around 1% improvements on all
standard counterparts. The powerfulness of strong augmentations can
also be witnessed, as discussed in [159]. As a whole, iMAS can bring an
improvement of 5.8% against the supervised baseline.

Impact of hyper-parameters. In Figure 5.3, we investigate the in-
fluence of different λu and τ on both datasets. It can be seen from Fig-
ure 5.3(a) that iMAS is not very sensitive to the loss weight on VOC while
a large λu is beneficial for Cityscapes. By default, we set λu = 3 for all
runs. According to Figure 5.3(b), we set τ = 0.95 for VOC and τ = 0.7
for Cityscapes as default settings. This is simply because Cityscapes is
a more challenging dataset requiring better discriminating ability and
using a high-threshold will prevent models effectively learning from un-
labeled samples.

Hardness Aanalysis The hardness evaluation closely depends on
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Figure 5.4: We examine how the mean instance hardness varies across
the training course on Cityscapes under the 1/4 partition.

(a) Instance-1 (easy one) (b) Instance-2 (hard one)

Figure 5.5: RGB images of Instance-1 and Instance-2 in Fig. 5.4

distinct instances and the model’s training status. We can see from Fig-
ure 5.4 that both the mean and standard deviation of hardness evalu-
ations on unlabeled data decrease as training processes and the model
performance improves. Specifically, easy instances (e.g., Instance-1) can
hold a low hardness from the very beginning, while the hardness of hard
instances (e.g., Instance-2) fluctuates along the training process but even-
tually decreases. To verify the correctness, in Figure 5.5, we show the
corresponding images of the two instances in Figure 5.4. Compared with
Instance-2 (I2), the hardness of Instance-1 (I1) drops rapidly to below
0.1 after 20 epochs, while Instance-2’s hardness is higher and decreases
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Figure 5.6: Qualitative results on Pascal VOC2012 using 183 fine labels.
Columns from left to right denote the original images, the ground-truth,
the supervised segmentation results, and the iMAS segmentation results,
respectively.

slowly, i.e., I1 is much easier than I2. This is consistent with our hu-
man perception that the bicycle-car overlap in I2 is harder to segment.
Moreover, from the algorithm side, I2 contains more minority classes
like wall, bicycle, train, traffic light and sign, while I1 mainly includes ma-
jority classes like road, building, cars. Such observation is also supported
by the ultimate test performance on different categories, e.g., road: 98.05,
cars:95.62, wall:51.39, train:44.49. Hardness fluctuations result from ran-
domly scaled and cropped operations, a common practice in segmenta-
tion. I2 fluctuates more frequently than I1, which also reflects the train-
ing difficulty of I2.

Qualitative Results. We also present some segmentation results on
Pascal VOC 2012 in Figure 5.6 under the 183 partition protocol, using
the Resnet-101 as the encoder. We can see that many mis-classified pix-
els and ignored segmentation details like arms in the supervised-only
results are corrected in iMAS.
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5.4 Summary

In this chapter, we highlight the instance uniqueness and propose iMAS,
an instance-specific and model-adaptive supervision for semi-supervised
semantic segmentation. Relying on our class-weighted symmetric hardness-
evaluating strategies, iMAS treats each unlabeled instance discrimina-
tively and employ model-adaptive augmentation and loss weighting strate-
gies on each instance. Without introducing additional networks or losses,
iMAS obtains new SOTA performance on Pascal VOC 2012 and Cityscapes
datasets under different partition protocols. For example, our method
obtains a high mIOU of 75.3% with only 183 labeled data on VOC 2012,
which is 17.8% higher than the supervised baseline and 4.3% higher than
the previous SOTA. Our main contributions are summarized as follows,

• iMAS can boost the SSS performance by highlighting the instance
differences, without introducing extra network components or train-
ing losses.

• We perform a quantitative hardness-evaluating analysis for unla-
beled instances in segmentation tasks, based on the class-weighted
teacher-student symmetric IoU.

• We propose an instance-specific and model-adaptive SSS frame-
work that injects instance hardness into loss evaluation and data
perturbation to dynamically adapt to the model’s evolution.
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Chapter 6

Boosting Semi-supervised
Medical Image Segmentation
with Data Perturbation and
Model Stabilization

In this chapter, we study the Semi-supervised Medical Image Segmenta-
tion (SSMIS), where the labeled data is even scarce. Instead of integrating
any recent advanced techniques like contrastive learning losses or mul-
tiple learning branches, we emphasize the crutiality of data perturbation
and model stabilization in SSMIS, and propose a simple yet effective
approach to boost SSMIS performance significantly, dubbed as DPMS.
Despite its simplicity, DPMS can obtain new state-of-the-art (SOTA) per-
formance on the public 2D ACDC and 3D LA datasets across various
semi-supervised settings.

6.1 Introduction

Medical image segmentation is an urgent vision task that contributes
to medical image reasoning, which is vital in the development of the
computer-aided diagnosis (CAD) system [137, 147, 66, 90]. Conven-
tional supervised medical image segmentation methods rely heavily on
extensive pixel-level annotated data for the model training. In practical
medical applications, obtaining large amounts of fine-grained annotated
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Figure 6.1: We compare our DPMS with recent SSIMS methods in terms
of the Dice score (%) on 2D ACDC and 3d LA datasets with only 5%
labeled data. Remarkable performance gains can be observed.

data is costly and even infeasible, greatly hindering their wide applica-
tions [161, 162]. To this end, many studies have been focused on semi-
supervised medical image segmentation (SSMIS), which aims at learn-
ing a deep segmentation model by using a limited number of annotated
medical images and abundant unlabeled medical images to achieve sat-
isfied segmentation performance [163, 147, 7, 148, 98].

Following the research line of semi-supervised semantic segmenta-
tion on natural images [159, 94], SSMIS studies have evolved from ear-
lier self-training based methods [6, 142] into recent dominant consistency
regularization (CR) based approaches [163, 148]. CR-based approached
methods, like Mean-Teacher [134] and FixMatch [132], leverage the label-
preserving data or model perturbations to encourage prediction con-
sistency on differently perturbed views from the same input. The key
to such methods is to generate prediction disagreements on unlabeled
data [174]. To further improve SSMIS performance, recent studies tends
to introduce more advanced and complicated techniques, such as ad-
ditional transformer-based branch [98], extra feature-level perturbations
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and constraints [148], additional self-supervised contrastive losses [120].
Despite their impressive performance, these methods usually come at
the cost of increasingly complex designs and benefit SSMIS in an indi-
rect manner. Differently, we focus on the semi-supervised problem itself
to produce appropriate prediction disagreement, and strive to propose a
simple yet highly effective method to boost SSMIS directly.

In an effort to simplify SSMIS studies, in this chapter, we diverges
from complex designs and redirects the focus towards the intrinsic na-
ture of the semi-supervised problem, i.e., to produce appropriate pre-
diction disagreement. As shown in Figure 6.2, we first conduct a thor-
ough analysis by revisiting SSMIS from three distinct perspectives: the
data, the model, and the loss supervisions. Through a comprehensive
study of the corresponding strategies, we rigorously evaluate their effec-
tiveness and implications. Specifically, employing data augmentations is
the most straightforward and effective way to generate label-preserving
disagreement in SSMIS. However, most of previous works focus on in-
vestigating the effectiveness of data perturbations in the natural image
domain, while few works studied the effectiveness on medical images.
Hence, we first revisit the contributions of different data perturbations to
the SSMIS problem. Based on our findings, we figure out that data per-
turbations can yield sufficient prediction disagreements and boost the
SSMIS performance. However, as discussed in [164, 174], too strong
data perturbations will inevitably hurt the distribution of the original
data and consequently degrade the performance. To tackle the issue, we
further study the model stabilization in SSMIS, where we come up with
two simple yet effective model stabilization strategies, i.e., the EMA-BN
and Extra-Weak, to prevent the model statistics from being severely dis-
turbed. As a result, we highlight the significance of data perturbation
and model stabilization in SSMIS.

Motivated by our revisiting, we propose DPMS, that adopts a simple
teacher-student framework to employ the effective Data Perturbation
and Model Stabilization strategies to boost SSMIS. On the one hand,
DPMS poisons the unlabeled data via various strong augmentations, in-
cluding geometrical transformantions, intensity-based perturbation and
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Figure 6.2: Revisiting SSMIS in terms of the data, the model and the loss
supervision.

copy-paste [44], to enlarge prediction disagreements considerably. On
the other hand, DPMS utilizes an extra forward (forwarding unlabeled
data into the student model) and momentum updating strategies for
normalization statistics to stabilize the training on unlabeled data ef-
fectively. Without bells and whistles, our simple DPMS can achieve re-
markable performance improvement compared to current state-of-the-
art (SOTA) SSMIS methods. As shown in Figure 6.1, DPMS consistently
outperform other methods by a large margin, e.g. obtaining a remark-
able 22.62% Dice improvement compared to previous SOTA SS-Net on
ACDC with 3 labels.

6.2 Method

In this section, we first introduce the formulation of SSMIS in Sec. 6.2.1
and then provide a comprehensive revisiting on core elements of the
data, the model and the loss supervision in SSMIS in Sec. 6.2.2. Finally,
Sec. 6.2.3 describe our proposed DPMS in detail.

6.2.1 Problem Formulation

In a common SSMIS task, labeled data X and unlabeled data U are pro-
vided, with typically |X| ≪ |U|. In terms of the training process, let
Bx = {(xi, yi)}B

i=1 be a batch of labeled samples and Bu = {ui}
µB
i=1 be

a batch of unlabeled samples, where µ denotes the size ratio of |Bu| to
|Bx|. Then the goal of SSMIS is to train a deep segmentation model on
both labeled an unlabeled data.
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In a common teacher-student framework, the student model, pa-
rameterized by θs, is first trained on the labeled data via a standard su-
pervised loss Lx,

Lx =
1
|Bx|

B

∑
i=1

1
H ×W

H×W

∑
j=1

ℓ(ŷi(j), yi(j)), (6.1)

where ŷi denotes the student model’s prediction output on the weakly
augmented input xi, i.e., ŷi = f (a(xi); θs), and j represents the j-th pixel
on the image or the corresponding segmentation mask with a resolution
of H ×W. ℓ represents the loss function used to supervise the train-
ing, which can be dice loss, cross-entropy loss, or a compound loss of
both. Weak augmentations, denoted by a(·), include random geometri-
cal transformations, like random cropping and flipping operations. The
teacher model, parameterized by θt, is typically not trained directly on
the labeled or unlabeled data, but updated by the weights and statistics
from the student model. We discuss more in Sec 6.2.2.

On the other hand, the unsupervised consistency loss on unlabeled
data, denoted by L⊓, can differ from method to method. Following a
standard CR-based method, the unlabeled data can be leveraged via en-
forcing prediction consistency on differently augmented views of the
same input. Let A(·) and a(·) represent two different augmentation
strategies, Lu can be formulated as,

Lu =
1
|Bu|

µB

∑
i=1

1
H ×W

H×W

∑
j=1

ψ(ui) ℓ( f (A(ui); θs), f (a(ui); θt)) (6.2)

where ψ(ui) represent the selection strategy to filter out unlabeled data
with less confident predictions. In summary, the total training loss is,

L = Lx + λtLu (6.3)

where λt denote the loss weight to adjust the importance of consistency
loss Lu and can also be a function of the iteration index t, i.e., iteration
dependent.
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Figure 6.3: Effect of different re-sampling strategies and size ratios of
unlabeled to labeled batches. By default, we apply the “oversampling
labeled data" and set the size ratio µ = 1 for fair comparisons.

6.2.2 Revisiting SSMIS

As shown in Figure 6.2, we then revisit the core elements of the data, the
model and the loss supervisions in SSMIS studies. Extensive exploration
and examination are conducted.

Data: Sampling and Augmentation

Regarding the data problem in SSMIS, we aim to address three primary
questions. First, data re-sampling. Since the amount of labeled and un-
labeled data differs significantly, e.g., |X| ≪ |U|, employing sampling
strategies is necessary to facilitate training on both labeled and unla-
beled sets. Naturally, there are two different ways: 1) oversampling the
labeled data and 2) under-sampling the unlabeled data. We examine
the two different sampling strategies for 2D ACDC and 3D LA semi-
supervised segmentations on the plain Mean-teacher and our proposed
DPMS methods. As depicted in Figure 6.3(a), both re-sampling strategies
demonstrate comparable and closely aligned segmentation performance
across different datasets and SSMIS methods. This is simply because all
the labeled and unlabeled data can be sufficiently traversed as long as the
total training iterations are significant. Therefore, different re-sampling
approaches will not large affect the SSMIS performance, and we over-
sample the labeled data by default in our study.
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Figure 6.4: Visual examples of different data augmentations on cardiac
images.

Second, the size ratio µ. The effect of different µ is extensively dis-
cussed in semi-supervised classification [132], but rarely explored in SS-
MIS. Similar to the loss weight of consistency loss Lu, larger µ will pri-
oritize the importance of unlabeled training. We investigate its effect
on ACDC datasets with different SSMIS methods. As shown in Fig-
ure 6.3(b), we can clearly see that µ = 2 can achieve the best perfor-
mance. However, different values of µ have less influences on our pro-
posed DPMS. Thus we select µ = 1 by default for fair comparison with
other SSMIS methods.

Third, the critical data augmentations. The key to SSMIS lies in
producing appropriate prediction disagreement, and applying data aug-
mentations can be the most straightforward and effective way to gen-
erate such label-preserving disagreement. As shown in Figure 6.4, we
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Augmentations A(·) Dice(%)
Geometrical Intensity Copy-paste ACDC (3) LA (4)

✓ 44.87 72.09
✓ ✓ 64.61 82.07
✓ ✓ 59.82 74.31
✓ ✓ ✓ 73.33 86.17

Table 6.1: Effect of different data augmentations on SSMIS. All the re-
sults are examined without any model stabilization strategies and with
loss weight λu = 1.0, thresholds τ = 0.95 and τ = 0.8, loss type “Dice"
and “CE" for datasets ACDC and LA, respectively.

investigate three popular kinds of data augmentations, i.e., geometrical
transformations (random cropping and flipping), intensity-based aug-
mentations (randomly adjusting brightness and contrast), and Copy-and-
paste [44] (widely applied in semi-supervised semantic segmentation [94,
31, 174]). In Table 6.1, we examine the effective of each type of augmen-
tations and their combinations on 2D ACDC and 3D LA datasets. Par-
ticularly, since the geometrical transformations will alter the image and
corresponding segmentation mask, we first need to apply the same ge-
ometrical transformation when examining the intensity-based or copy-
and-paste augmentations. As we expected, these strong augmentations
can significant boost the SSMIS performance on both 2D and 3D datasets.
Especially, the intensity-based augmentation has proven to be the most
effective way to perturb the unlabeled instance in SSMIS.

Model: Updating and Stabilization

When considering the model design in SSMIS, two main questions arise:
1) how the pseudo-labels are generated, and 2) how the model are sta-
bilized to prevent collapsing caused by strong data augmentations. In
the literature, there are two basic ways to produce pseudo-labels. First,
utilize the ensemble model, i.e., the teacher model, to generate pseudo-
labels for unlabeled instances, like the widely applied Mean-teacher frame-
work [134]. It is worth noting that the consistency-based methods are
essentially the same as pseudo-labeling, where the predictions from one
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Model Augs Dice(%)
Ema-teacher Ema-BN Extra-Weak ACDC (3) LA (4)

45.80 69.59
✓ 44.87 72.09
✓ ✓ 46.62 76.05
✓ ✓ 48.75 79.53
✓ ✓ ✓ 49.24 79.90

✓ 80.03 84.46
✓ ✓ 73.33 86.17
✓ ✓ ✓ 84.09 87.83
✓ ✓ ✓ 87.11 88.02
✓ ✓ ✓ ✓ 88.44 89.33

Table 6.2: Effect of different model stabilization strategies on SSMIS. The
“Augs" denotes all kinds of augmentations in Table 6.1 are applied. Loss
weights and thresholds are the same as in Table 6.1.

view serve as the pseudo-labels for another view. Second, utilize the stu-
dent model itself to generate pseudo-labels, like the FixMatch [132]. As
we can see from Table 6.2, compared to using the student model, adopt-
ing the teacher model to generate pseudo-labels performs better on 3D
LA dataset but worse on 2D ACDC dataset when applying strong data
augmentation discussed in Sec. 6.2.2. As a result, it remains inconclu-
sive as to which strategy is ultimately superior. In our study, we adopt
the standard mean-teacher framework as our baseline, and design more
stabilization strategies to further improve the performance.

As elucidated in [164, 174], applying strong data augmentations car-
ries the potential risk of over-perturbations, which can hurt the data
distribution and consequently degrade the SSMIS performance. Hence,
ensuring the stabilization of the model becomes crucial when employ-
ing strong data perturbations in the context of semi-supervised learn-
ing. Unlike existing studies, we did not revise the augmentation strate-
gies [174], nor did we consider rectifying strategies like distribution-
specific BN [21]. Differently, we design two simple yet effective strate-
gies to stabilize the training.

First, in addition to updating the weights of the teacher model, we
also updating the batch normalization (BN) statistics via the exponential
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Loss Dice(%)
loss type Threshold Ramp-up ACDC (3)
"dice+ce" ✓ ✓ 88.07

"ce" ✓ ✓ 87.05
"dice" ✓ ✓ 88.44
"dice" 86.53
"dice" ✓ 88.22
"dice" ✓ 87.25

Table 6.3: Effect of different consistency loss supervisions on 2d ACDC
dataset with 3 labels.

moving average (EMA) of BN of the student model.

θt ← αθt + (1− α)θs, (6.4)

νt ← ανt + (1− α)νs, (6.5)

where νt and νs represent the BN statistics of the teacher and the student
model, respectively. α is a momentum parameter, set as 0.99 by default.
We can see from Table 6.2 that applying EMA-BN can effective improve
the SSMIS performance on both 2D ACDC and 3D LA datasets. Im-
provements become even more pronounced when applying strong data
augmentation. For instance, using EMA-BN yields an improvement of
10.76% compared to the augmentation baseline, which further empha-
sizes the importance of model stabilization.

Second, to further stabilize the BN statistics, we forward the weakly
augmented inputs to the student model, not only the teacher model,
dubbed as “Extra-weak". Despite its embarrassing simplicity, we can
see from Table 6.2 that “Extra-weak" can effectively boost the SSMIS per-
formance, especially when the strong data augmentations are applied.
Indeed, applying all these stabilization strategies can successfully im-
prove the augmentation baseline by a large margin on both 2D and 3D
SSMIS tasks.
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Loss Dice(%)
loss type Threshold Ramp-up LA (4)
"dice+ce" ✓ ✓ 89.02

"ce" ✓ ✓ 89.33
"dice" ✓ ✓ 88.82
"ce" 83.68
"ce" ✓ 87.78
"ce" ✓ 88.30

Table 6.4: Effect of different consistency loss supervisions on 3d LA
dataset with 4 labels.

Loss Supervision: Loss Type and Filtering

In terms of the loss supervision in SSMIS, we explore following three
questions: 1) the appropriate loss type, 2) pseudo-label selections, and 3)
the ramp-up policy of unlabeled consistency loss. In the literature, there
are three widely adopted losses, the Dice loss, the cross-entropy (CE)
loss, and the compound loss of both. As we can see from Tables 6.3 and
6.4, different loss types can achieve close and comparable performance.
In specific, the "dice loss" has demonstrated superior performance on 2D
ACDC, while the "ce loss" has shown optimal results for 3D LA. Con-
sidering that the ACDC dataset comprises four distinct classes while the
LA dataset contains only two classes, the Dice loss emerges as the more
appropriate option for ACDC due to its capability to alleviate class im-
balance issues.

Employing pseudo-label selection process has been widely studied
in SSMIS. It is regarded as an effective and necessary procedure to ad-
dress the confirmation bias or accumulated errors in semi-supervised
learning [4]. Following the FixMatch [132], we simply adopt a pre-defined
threshold, denoted as τ, to filter out the unlabeled data with less con-
fident pseudo-labels. As we can see from Tables 6.3 and 6.4, a high-
confidence threshold can effectively improve the SSMIS performance,
e.g., yielding 4.1% and 1.69% Dice improvements on LA and ACDC, re-
spectively. More detailed ablations studies on the threshold τ is pro-
vided in Sec. 6.3.4.
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Figure 6.5: DPMS employs weak and strong augmentations (denoted
by a and A, respectively) to perturb unlabeled inputs ui. In a standard
teacher-student framework, the student model is trained on the pro-
vided labeled data (xi, yi) via a standard supervised loss Lx, as well as
on the unlabeled data ui via a consistency loss Lu supervised by pseudo-
labels generated from the teacher model. The weights and buffer statis-
tics of the teacher model are updated using the exponential moving aver-
age of the corresponding values from the student model. Pseudo-labels
pt

i are further filtered by a high-confidence threshold τ. A ramp-up term
λt is adopted to leverage the unlabeled data gradually.

Following Mean-Teacher [134] and UA-MT [163], we further investi-
gate the effect of the ramp-up policy of the unsupervised loss in SSMIS.
As discussed in PI-model [79], we adopt a simple iteration-dependent
loss weight ramp-up function λt to release the impact of consistency loss
gradually. Specifically, λt is starting from zero and ramping up along a
Gaussian curve during the first 150 epochs to the ultimate value of λu.
The ablation study of the hyper-parameter λu is provided in Sec. 6.3.4.
As shown Table 6.4, applying ramp-up strategy can bring a remarkable
performance improvement of 4.62% on LA dataset with 4 labels.
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6.2.3 Our Method: DPMS

Based on the above comprehensive revisiting, we can clearly observe the
significance of the data perturbation and model stabilization in SSMIS.
To this end, instead of integrating other complicated designs like con-
trastive losses [120], additional transformer branches [98], we simply fol-
low a plain mean-teacher framework, and propose our method DPMS by
integrating our explored effective perturbing and stabilizing strategies.
As shown in Figure 6.5, we first employ the weak and strong data aug-
mentations, a(·) and A(·) on data inputs, and feed the augmented data
into the student and teacher model to obtain predictions accordingly,

ps
i = f (A(ui); θs), (6.6)

qs
i = f (a(xi); θs), (6.7)

pt
i = f (a(ui)); θt). (6.8)

Then the student model can be trained on both labeled and unla-
beled data by the total loss,

L =
1
B

B

∑
i=1

1
H ×W

H×W

∑
j=1

ℓ(qs
i (j), yi(j)) + λt 1(max(pt

i(j))≥τ)ℓ(ps
i (j), pt

i(j)),

(6.9)

where 1(max(pt
i(j)) ≥ τ) represent to retain the pseudo-labels whose

maximum probability is higher than the pre-defined high-confidence thresh-
old τ. On the other hand, the teacher model is trained by using Equa-
tions 6.4 and 6.5 to update its weights and BN statistics, respectively.

6.3 Experiment

6.3.1 Datasets

We examine the effectiveness of our proposed DPMS on two public SS-
MIS benchmarks, i.e., the Automated Cardiac Diagnosis Challenge (ACDC)
and Left Atrium (LA) datasets. The ACDC dataset is a 2D benchmark
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medical dataset focusing on cardiac image analysis, targeting the assess-
ment of cardiac function. It contains 100 Magnetic Resonance Imaging
(MRI) scans from 100 patients, which can be divided into a training set
containing 70 MRI scans, a validation set containing 10 MRI scans and
a testing set containing 20 MRI scans. Following SS-Net [148] and CT-
CT [98], we resize all the slices of 2D ACDC dataset into 256×256 pixels
and normalized the intensity into [0, 1].

The LA dataset is a 3D benchmark medical dataset constructed from
the Atrial Segmentation Challenge dataset 1, which consists of a collec-
tion of 100 fully annotated 3D gadolinium-enhanced MRI scans. In the
pre-processing stage, all scans of the 3D LA dataset were center-cropped
on the heart region for fair comparisons among different methods and
normalized to zero mean and unit variance. During the train stage, the
scans are randomly cropped into 112x112x80 and randomly flipped. Fol-
lowing UA-MT [163], it is divided into a training set containing 80 MRI
scans and a validation set containing 20 MRI scans.

6.3.2 Implementation Details

Follow the previous works [163], we utilize the UNet [127] and VNet [104]
as our backbones on the ACDC and LA datasets, respectively. We use
an SGD optimizer with a momentum of 0.9 and a polynomial learning-
rate decay with an initial value of 0.01 to train the student model. We
train the segmentation model on the ACDC dataset with a batch size of
24 (12 labeled and 12 unlabeled instances) for 30,000 iterations. On LA,
following existing studies, we adopt a batch size of 4 (2 labeled and 2
unlabeled instances) for training 15, 000 iterations. By default, we over-
sampling labeled data and set the size ratio µ = 1, the momentum pa-
rameter α = 0.99, the maximum loss weight λu = 2.0 for all runs.

6.3.3 Comparison with SOTAs

We compare our DPMS method with recent SSMIS methods, including
UA-MT [163], SASSNet [89], DTC [97], URPC [99], MC-Net [147], SS-Net

1http://atriaseg2018.cardiacatlas.org/
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Method # Scans used Metrics Complexity
Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓ Para.(M) MACs(G)

U-Net 3 (5%) 0 47.83 37.01 31.16 12.62 1.81 2.99
U-Net 7 (10%) 0 79.41 68.11 9.35 2.70 1.81 2.99
U-Net 14 (20%) 0 85.15 75.48 6.20 2.12 1.81 2.99
U-Net 70 (All) 0 91.44 84.59 4.30 0.99 1.81 2.99
UA-MT [163]

3 (5%) 67 (95%)

46.04 35.97 20.08 7.75 1.81 2.99
SASSNet [89] 57.77 46.14 20.05 6.06 1.81 3.02
DTC [97] 56.90 45.67 23.36 7.39 1.81 3.02
URPC [99] 55.87 44.64 13.60 3.74 1.83 3.02
MC-Net [147] 62.85 52.29 7.62 2.33 2.58 5.39
SS-Net [148] 65.82 55.38 6.67 2.28 1.83 2.99
CT-CT [98] 65.50 - 16.2 - 28.93 2.99
DPMS (Ours) 88.44 ±0.15 80.00 ±0.20 2.03 ±0.56 0.59 ±0.09 1.81 2.99
UA-MT [163]

7 (10%) 63 (90%)

81.65 70.64 6.88 2.02 1.81 2.99
SASSNet [89] 84.50 74.34 5.42 1.86 1.81 3.02
DTC [97] 84.29 73.92 12.81 4.01 1.81 3.02
URPC [99] 83.10 72.41 4.84 1.53 1.83 3.02
MC-Net [147] 86.44 77.04 5.50 1.84 2.58 5.39
SS-Net [148] 86.78 77.67 6.07 1.40 1.83 2.99
CT-CT [98] 86.40 - 8.60 - 28.93 2.99
DPMS (Ours) 89.82 ±0.34 82.06 ±0.51 1.72 ±0.52 0.52 ±0.06 1.81 2.99
UA-MT [163]

14 (20%) 56 (80%)

85.87 76.78 5.06 1.54 1.81 2.99
SASSNet [89] 87.04 78.13 7.84 2.15 1.81 3.02
DTC [97] 86.28 77.03 6.14 2.11 1.81 3.02
URPC [99] 85.07 75.61 6.26 1.77 1.83 3.02
MC-Net [147] 87.83 79.14 4.94 1.52 2.58 5.39
DPMS (Ours) 91.06 ±0.14 84.03 ±0.23 1.27 ±0.11 0.36 ±0.03 1.81 2.99

Table 6.5: Comparisons with recent SSMIS methods on the ACDC
dataset with 3 (5%), 7 (10%), 14 (20%) labels in terms of Dice, Jaccard,
95HD, ASD and model complexities. Results of our proposed DPMS
are average over 3 runs, where the mean and standard deviation are re-
ported.

[148] and CT-CT [98]. We follow the same data partition protocols as
UA-MT [163] and SS-Net [148] to carry on our experiments and report
the mean performance averaged over three runs together with the stan-
dard error of the mean (SEM). Following previous works [163, 148], we
adopt Dice Score (%), Jaccard Score (%), 95% Hausdorff Distance (95HD)
in voxel and Average Surface Distance (ASD) in voxel to evaluate the
performance of different methods.

We first investigate the effectiveness of our DPMS on the 2D ACDC
dataset in Table 6.5. We observe that our DPMS method achieves new
state-of-the-art performance under all protocols without introducing any
additional parameters or multiply-accumulate operations (MACs) com-
plexity, surpassing the baseline method by a large margin. It should also
be noted that when there are only 5%, 10% or 20% labeled data available
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Method # Scans used Metrics Complexity
Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓ Para.(M) MACs(G)

V-Net 4(5%) 0 52.55 39.60 47.05 9.87 9.44 47.02
V-Net 8(10%) 0 82.74 71.72 13.35 3.26 9.44 47.02
V-Net 16(20%) 0 86.96 77.31 11.85 3.22 9.44 47.02
V-Net 80(All) 0 91.47 84.36 5.48 1.51 9.44 47.02
UA-MT [163]

4 (5%) 76 (95%)

82.26 70.98 13.71 3.82 9.44 47.02
SASSNet [89] 81.60 69.63 16.16 3.58 9.44 47.05
DTC [97] 81.25 69.33 14.90 3.99 9.44 47.05
URPC [99] 82.48 71.35 14.65 3.65 5.88 69.43
MC-Net [147] 83.59 72.36 14.07 2.70 12.35 95.15
SS-Net [148] 86.33 76.15 9.97 2.31 9.46 47.17
DPMS (Ours) 89.64 ±0.22 81.29 ±0.35 5.99 ±0.40 1.77 ±0.05 9.44 47.02
UA-MT [163]

8 (10%) 72 (90%)

86.28 76.11 18.71 4.63 9.44 47.02
SASSNet [89] 85.22 75.09 11.18 2.89 9.44 47.05
DTC [97] 87.51 78.17 8.23 2.36 9.44 47.05
URPC [99] 85.01 74.36 15.37 3.96 5.88 69.43
MC-Net [147] 87.50 77.98 11.28 2.30 12.35 95.15
SS-Net [148] 88.55 79.62 7.49 1.90 9.46 47.17
DPMS (Ours) 90.49 ±0.21 82.69 ±0.35 6.39 ±0.20 1.53 ±0.05 9.44 47.02
UA-MT [163]

16 (20%) 64 (80%)

88.74 79.94 8.39 2.32 9.44 47.02
SASSNet [89] 89.16 80.60 8.95 2.26 9.44 47.05
DTC [97] 89.52 81.22 7.07 1.96 9.44 47.05
URPC [99] 88.74 79.93 12.73 3.66 5.88 69.43
MC-Net [147] 90.12 82.12 8.07 1.99 12.35 95.15
DPMS (Ours) 91.64 ±0.26 84.62 ±0.43 5.21 ±0.28 1.44 ±0.07 9.44 47.02

Table 6.6: Comparisons with recent SSMIS methods on the 3D LA
dataset with 4 (5%), 8 (10%), 16 (20%) labels in terms of Dice, Jaccard,
95HD, ASD and model complexities.

with the remaining data unlabeled, our DPMS method exceeds the base-
line method by over 40%, 20% or 3% in terms of the Dice Score, respec-
tively. Especially when there are only 3 labeled data available, our DPMS
method can surpass the previous SOTA SS-Net by over 20% Dice score.
We can also see that when using 20% labeled data, our method achieves
comparable performance with the fully supervised upper bound (using
all labeled data). Surprisingly, DPMS can even achieve better 95HD and
ASD results than the fully supervised method, indicating the great po-
tential of our proposed method.

We further compare our method with recent SSMIS methods on the
3D LA dataset and the results are reported in Table 6.6. It can be clearly
seen from the table that our DPMS can consistently outperform other
methods under all partition protocols. When there are 5%, 10% and
20% labeled data available, our method can surpass the previous SOTA
method by around 3%, 2% and 1% in terms of the Dice Score, respec-
tively. It should be specially noted that when there are 20% labeled data
available with the rest data unlabeled, our DPMS method can even out-
perform the fully supervised method in terms of all evaluation metrics,
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DPMS RV Myo LV Mean
Perturbation Stablization Dice(%) 95HD Dice(%) 95HD Dice(%) 95HD Dice(%)↑ 95HD↓

28.54 34.20 49.51 19.97 58.59 28.87 45.55 27.68
✓ 55.69 14.09 44.96 18.96 55.51 16.74 52.05 16.60

✓ 64.34 11.59 68.92 9.82 82.41 12.43 71.89 11.28
✓ ✓ 86.25 1.80 87.01 1.11 92.55 1.72 88.60 1.54

Table 6.7: Ablations on data perturbation and model stabilization when
using 3 cases as labeled data on ACDC. RV, Myo, LV represent the right
ventricle, myocardium and left ventricle, respectively.

λu 0.5 1.0 1.5 2.0 3.0

ACDC (3) 87.99 88.44 88.28 88.60 88.26
LA (4) 88.27 89.33 89.72 89.64 89.35

Table 6.8: Ablations on the loss weight λu, set as 2.0 by default.

which further indicates the robustness of our method against the poten-
tially incorrect annotations. Thus our method can possibly be a potential
candidate to address noisy segmentation problems.

6.3.4 Ablation Study

In this section, we analyze the isolated effects of the data perturbation
and model stabilization in DPMS, as well as the sensitiveness of the
hyper-parameters used in our method, i.e., the maximum loss weight
of the unlabeled data λu and the pre-defined threshold to select high-
confident samples τ.

We first verify the isolated contributions of the data perturbation
and the model stabilization in Table 6.7. Here we report the category-
wise performance and the mean performance on the ACDC dataset us-
ing 3 labeled data (5% labels) with the remaining data unlabeled, and
we evaluate the performance in terms of the Dice Score and 95HD. It
can be inferred from the table that either the data perturbation or the
model stabilization can contribute to the ultimate segmentation perfor-
mance, where the data perturbation can mainly contribute to the recogni-
tion of the hard-to-distinguish classes like the right ventricle (RV), while
it shows only a limited contribution to the model on recognizing those
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τ 0.7 0.75 0.8 0.85 0.9 0.95

ACDC (3) 88.21 87.78 87.97 88.07 88.42 88.44
LA (4) 88.95 89.27 89.33 89.14 89.03 88.87

Table 6.9: Ablations on threshold τ, set as 0.95 and 0.8 for dataset ACDC
and LA, respectively.

easy-to-distinguish classes like the myocardium (Myo) or the left ventri-
cle (LV). The main reason is that data augmentation can provide effective
disagreements on unlabeled data, thus contributing to the robustness of
the model, while the too-strong data perturbation may potentially de-
stroy the original data distribution, leading to performance degradation.
On the contrary, model stabilization can greatly contribute to the recog-
nition of the model on any class. The main reason is that a stable teacher
model, especially the stable BN statistics, can generate more accurate
predictions (i.e., pseudo labels) for unlabeled data to train the student
model. In this way, the student model could learn useful semantics from
the supervision, thus contributing to the model learning. Equipping the
data perturbation with the model stabilization can further contribute to
the recognition performance. The main reason is that the stable teacher
model can provide accurate supervision for the student model, while
the data perturbation provides the prediction disagreement between the
student model and the teacher model. Learning from stable predictions
generated by the teacher model to mitigate the prediction disagreements
will greatly enable the student model to learn useful semantics, and im-
prove the robustness of the student model, which can further contribute
to the stability of the teacher model. Therefore, the recognition per-
formance of the model when combining the data perturbation with the
model stabilization can greatly improve the SSMIS performance.

We further examine the sensitivity of the hyper-parameters used in
our DPMS method in Table 6.8 and Table6.9. Here we conduct the ex-
periments on both the ACDC and the LA datasets, with only 5% labeled
data available. It can be seen from the tables that our DPMS method
is robust to different values of the hyper-parameters, where the varia-
tion of the performance using different hyper-parameters is less than 1%
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Figure 6.6: Qualitative results on ACDC (top 2 rows) and LA (bottom 2
rows) using only 5% labeled data. Columns from left to right denote the
segmentation results of the ground-truth, UA-MT [163], DTC [97], MC-
Net [147], SS-Net [148], and our proposed DPMS, respectively.

Dice, indicating the robustness of our method. Especially, it can be in-
ferred from Table 6.8 that a higher weight λu for the unlabeled data can
improve the performance of the model, suggesting that the model will
learn more semantics from unlabeled data. In this work, we adopt the
λu as 2.0 on both the ACDC and LA datasets, and we set the threshold
τ as 0.95 and 0.8 for the ACDC and LA, respectively, to obtain the best
performance.

6.3.5 Qualitative Visualization

Figure 6.6 shows some representative qualitative results on ACDC and
LA dataset with 5% labeled data. The UA-MT obtains the worse seg-
mentation results, e.g., not capable of segmenting the myocardium and
left ventricle in the second row. Though DTC and MC-Net can obtain
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better results on ACDC than UA-MT, both methods mis-classify the fore-
ground in the third row on the LA dataset. In contrast, we can observe
that many mis-classified regions and ignored segmentation details in the
segmentation results of other SSMIS methods can be successfully cor-
rected and segmented by our proposed DPMS, which further demon-
strates the effectiveness of DPMS.

6.4 Summary

In this chapter, we challenge the prevailing trend observed in recent SS-
MIS studies, where the focus has shifted towards increasingly complex
designs. Instead, we propose a simple yet highly effective method that
emphasizes the significance of data perturbation and model stabiliza-
tion to boost SSMIS performance. Specifically, we undertake a thorough
examination of the essential components of the data, model, and loss
supervision in SSMIS. Through in-depth analysis, we find that perturb-
ing and stabilizing strategies play a critical role in achieving promising
segmentation performance. Our main contributions are summarized as
follows,

• We revisit the key elements of data, model, and loss supervision in
semi-supervised medical image segmentation. Through in-depth
analysis, we conduct comprehensive studies on various strategies
associated with each element.

• We break the trend of recent SSMIS studies that tend to introduce
increasingly complicated designs and propose a simple yet effec-
tive DPMS that emphasize the significance of data perturbation
and model stabilization to boost SSMIS.

• Benefiting from the perturbing and stabilizing designs, our sim-
ple DPMS can readily achieve new state-of-the-art performance on
public 2D and 3D SSMIS benchmarks, especially effective in label-
scarce scenarios.

We hope our DPMS can serve as a strong baseline and inspire more sim-
ple yet effective methods in future SSMIS studies.
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Conclusion and Future Work

7.1 Conclusion

In this thesis, we first introduce the problem of semi-supervised learning
(SSL) and provide a comprehensive literature review about deep visual
learning and various label-efficient SSL methods. We also discuss that
the main challenges in SSL lie in the effective and comprehensive uti-
lization of unlabeled data. Afterwards, we have proposed four new SSL
methods for different downstream tasks.

In Chapter 3, we focus on the conventional semi-supervised clas-
sification (SSC) and propose a novel SSL approach that can effectively
utilize the label information to integrate a class-aware contrastive loss
(CACL) and buffer-aided label propagation algorithm (BLPA) into a self-
training paradigm. CACL and BLPA are seamlessly integrated and mu-
tually promoted across the whole training process. In Chapter 4, we
further discuss the more practical setting in SSC, i.e., the distribution
mismatch between the labeled and unlabeled sets. We first revisit the
EMA model in SSL and observe that it can be helpful in estimating un-
labeled class distributions, although it may not produce more accurate
high-confidence pseudo-labels directly. A new method, DC-SSL, is then
proposed to enhance SSL performance from a distribution perspective.
Proposed methods are evaluated on multiple SSL benchmarks.

In Chapter 5, we highlight the instance uniqueness and argue that
differentiating unlabeled instances can promote instance-specific super-
vision to adapt to the model’s evolution dynamically. We first perform
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a quantitative hardness-evaluating analysis for unlabeled instances in
segmentation tasks, based on the class-weighted teacher-student sym-
metric IoU. We then propose an instance-specific and model-adaptive
semi-supervised semantic segmentation (SSS) framework that injects in-
stance hardness into loss evaluation and data perturbation to dynami-
cally adapt to the model’s evolution. In Chapter 6, we break the trend of
semi-supervised medical image segmentation (SSMIS) studies that inte-
grate increasingly complex designs. We highlight the significance of data
perturbation and model stabilization in SSMIS, and propose DPMS, a
simple and clean two-branch teacher-student framework that can achieve
readily better performance than existing methods.

We have conducted extensive experiments and ablation studies on
popular SSC and SSS benchmarks to evaluate the effectiveness of our
proposed LaSSL, DC-SSL, iMas and DPMS methods.

7.2 Future work

Considering the recent development of SSL, we discuss the following
three potential research directions in future work.

• More flexible pseudo-polishing strategies. As we discussed in Chap-
ters 1, 3 and 4, the accuracy of generated pseudo-labels is of sig-
nificant importance to the SSL performance. Thus, improving the
quality of pseudo-labels becomes the most crucial factor in SSL
studies. However, existing studies tend to adopt stringent filtering
strategies, like the high-confidence threshold or fixed uncertainty
constraint, to select a portion of unlabeled data. Considering the
learning difficulties of different classes and the long-tail natures of
semantic segmentation, such fixed strategies cannot be an optimal
solution. Thus more flexible and advanced strategies can be de-
signed to polish the pseudo-labels further, and better performance
should be achieved.

• Equipping semi-supervised segmentation with weak labels. As



7.2. Future work 105

we can see from both semi-supervised classification and segmenta-
tion tasks, adding more labeled samples is the most effective way
to boost the semi-supervised performance, while few labels com-
monly cannot achieve satisfactory performance. In practice, it may
not be easy to acquire sufficient label data, especially for segmen-
tation tasks that require dedicated pixel-level annotations. To ad-
dress this issue, we can equip semi-supervised segmentation with
weak labels, like scribble annotations, bounding boxes, and image-
level semantics. These weak labels are commonly easier to obtain
than accurate per-pixel labels. The goal is to obtain satisfactory seg-
mentation performance using a few accurately-annotated labeled
data and certain amounts of weakly-labeled data (e.g., scribble an-
notations) and large amounts of unlabeled data.

• Semi-supervised Learning in multi-modal tasks. Though purely vi-
sual tasks have attracted much attention, there are few semi-supervised
studies on various multi-modal tasks, like visual grounding with
natural language and open-vocabulary segmentation and detec-
tion. For multi-modal tasks, we need not only visual or language
labels but also multi-modal corresponding label information, which
commonly requires more labelling efforts. Therefore, it can be in-
teresting and necessary to study label-efficient multi-modal tasks.

In addition, recent big foundation models have achieved very im-
pressive performance on different downstream tasks. If our focus re-
mains solely on enhancing SSL performance on various predefined set-
tings, the importance of SSL studies may significantly diminish. It can
possibly become a waste if SSL methods are merely applied as supple-
mentary tuning strategies. In the current era of large models, the ques-
tion of how to effectively explore further research in semi-supervised
learning remains an open challenge.
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