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Abstract

Randomized controlled trials (RCTs) are pivotal in medical research, notably as the

gold standard, but face challenges, especially with specific groups like pregnant wo-

men and newborns. Real-world data (RWD), from sources like electronic medical

records and insurance claims, complements RCTs in areas like disease risk prediction

and diagnosis. However, RWD’s retrospective nature leads to issues such as missing

values and data imbalance, requiring intensive data preprocessing. To enhance RWD’s

quality for predictive modeling, this thesis introduces a suite of algorithms developed

to automatically resolve RWD’s low-quality issues for predictive modeling.

In this study, the AMI-Net method is first introduced, innovatively treating samples as

bags with various feature-value pairs and unifying them in an embedding space using a

multi-instance neural network. It excels in handling incomplete datasets, a frequent issue

in real-world scenarios, and shows resilience to noise and class imbalances. AMI-Net’s

capability to discern informative instances minimizes the effects of low-quality data.

The enhanced version, AMI-Net+, improves instance selection, boosting performance

and generalization. However, AMI-Net series initially only processes binary input

features, a constraint overcome by AMI-Net3, which supports binary, nominal, ordinal,

and continuous features. Despite advancements, challenges like missing values, data

inconsistencies, and labeling errors persist in real-world data. The AMI-Net series

also shows promise for regression and multi-task learning, potentially mitigating low-

quality data issues. Tested on various hospital datasets, these methods prove effective,

though risks of overfitting and bias remain, necessitating further research. Overall,
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while promising for clinical studies and other applications, ensuring data quality and

reliability is crucial for these methods’ success.
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CHAPTER 1

Introduction

Medical evidence is crucial for the advancement of healthcare, as it provides the

foundation upon which clinicians base their decisions, guidelines are developed, and

policies are established [14, 211]. The generation of high-quality medical evidence is

paramount to ensure the safety and effectiveness of interventions, leading to improved

patient care and better health outcomes [93, 100, 136]. Over the years, researchers have

developed various methods to generate medical evidence, with randomized controlled

trials (RCTs) being considered the "gold standard" due to their ability to minimize

biases and establish causal relationships between interventions and outcomes [51, 58,

71, 216].

However, conducting RCTs can be challenging, especially when studying special popu-

lations such as pregnant women and newborns [162, 227]. Moreover, RCTs are often

expensive, time-consuming, and may have limited applicability to real-world settings.

As a result, researchers and clinicians have increasingly turned to alternative sources

of medical evidence, such as real-world data (RWD), to complement RCT findings

and provide a more comprehensive understanding of the safety and effectiveness of

interventions in real-world settings [69, 88, 219].

1



2 1 INTRODUCTION

1.1 Real-World Data in Medicine

Real-world data (RWD) in medicine refers to the vast and diverse array of data collected

from sources beyond the controlled environment of traditional clinical trials. These

sources include electronic health records (EHRs), medical claims and billing data,

patient registries, wearable devices, social media platforms, and even patient-generated

health data from various health apps [22, 219]. Unlike the highly structured, rigorously

controlled data obtained from clinical trials, RWD reflects the everyday experiences of

patients in real-life healthcare settings, capturing the complexity and heterogeneity of

patient populations, their conditions, and the treatments they receive [25].

The growing interest in real-world data is fueled by the increasing need for evidence-

based medicine, which seeks to optimize clinical decision-making by integrating in-

dividual clinical expertise with the best available external evidence from systematic

research [192]. RWD has the potential to enhance understanding of disease patterns,

treatment effectiveness, safety profiles, and patient outcomes in a way that is more

representative of the broader patient population [163]. This is particularly relevant given

that clinical trial participants are often a highly selected group that may not adequately

represent the full spectrum of individuals living with a particular condition [207].

Furthermore, real-world data provides a unique opportunity to study the long-term

effects of medical interventions, identify rare adverse events, and monitor the perform-

ance of healthcare systems [43]. It can also be used to support comparative effectiveness

research, which is crucial for determining the most appropriate therapeutic interventions

for specific patient groups [231]. Moreover, the rich information contained in RWD can

be harnessed to develop advanced predictive models, enabling personalized medicine

and more efficient resource allocation in healthcare systems [183].
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1.1.1 Predictive Learning on RWD

Predictive learning based on RWD represents an emerging and transformative approach

in medical informatics, leveraging the power of artificial intelligence (AI) and machine

learning (ML) techniques to derive actionable insights from large-scale, observational

datasets. By extracting patterns and relationships from diverse and complex data

sources, predictive learning can provide valuable information on disease progression,

treatment effectiveness, patient outcomes, and resource utilization [18].

The application of predictive learning in medicine has the potential to revolutionize

healthcare by enabling more accurate prognostication, early detection of diseases,

identification of optimal treatment strategies, and personalized care tailored to individual

patients’ needs and characteristics [245]. Furthermore, predictive learning can facilitate

the development of clinical decision support systems, allowing clinicians to make more

informed, data-driven decisions in real-time, ultimately leading to improved patient

outcomes and more efficient healthcare systems [221].

1.1.2 Low Quality Challenges

Despite its promise, the implementation of predictive learning based on RWD also

presents challenges. One of the most significant concerns with RWD is the potential for

low data quality, which can introduce biases and ultimately compromise the validity and

reliability of findings derived from these sources. There are several factors contribute

to low quality data including missing values, redundant and highly correlated features,

insufficient sample sizes, label noise, and imbalanced data [260, 262]. Each of these

issues can impact the performance and interpretability of predictive learning models,

leading to erroneous conclusions and potentially compromising patient care [37].
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Missing values often arise due to incomplete records or inconsistencies in data collection

practices, reducing the statistical power and potentially introducing biases in the analysis

[15]. Redundant features and feature correlations can result from duplicated or highly

correlated variables, leading to multicollinearity and overfitting in predictive models

[61, 117]. Insufficient sample sizes can limit the generalizability of findings and hinder

the identification of significant associations between variables, leading to type II errors

[246]. Label noise, which refers to errors in the assignment of outcome variables, can

lead to misclassification and negatively impact model performance [121]. Imbalanced

data, where the distribution of outcome variables is highly skewed, can result in biased

models that favor the majority class, thereby undermining the predictive accuracy for

minority classes [21].

Addressing these low-quality data issues is crucial for ensuring the reliability and

validity of predictive learning models based on real-world data.

1.2 Strategies for Low Quality Issues

Previously, numerous strategies have been proposed to address these problems, primarily

focusing on the data pre-processing part with three directions: feature selection to

eliminate redundant or highly correlated features, resampling techniques for imbalanced

data, data imputation for handling missing values [30, 39, 54, 60, 167, 189, 212]. These

approaches also have collectively contributed to enhancing model robustness and

mitigating the adverse effects of noisy data and small datasets.

Despite the substantial contributions of these approaches, the need to handle the in-

creasingly complex nature of data has highlighted significant limitations [263]. The

reductionist nature of feature selection can result in the loss of essential features or

complex interactions, limiting its overall efficiency and effectiveness [264]. Resampling
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techniques have their drawbacks as they might lead to the over-generalization of the

minority class or cause overfitting issues. Similarly, data imputation methods, while

inherently valuable, can introduce bias and distortion if not carefully executed [116].

In light of these limitations and in response to the swift advancement of machine

learning and deep learning technologies, the paradigm of learning directly from low-

quality data for predictive purposes has emerged as a focal point in contemporary

research. A pertinent example is seen in the healthcare sector where patient data often

fails to provide a comprehensive narrative. Due to patients not undergoing all possible

tests and variations in information recording standards, complete data documentation

is often a formidable task [137]. Addressing this issue invites the development of

probabilistic models predicated on certain assumptions regarding the missing data

mechanism, allowing for decision functions to be derived solely from observed data.

This innovative approach aims to harness the inherent structure within available data and

seeks to provide more accurate predictions and deeper insights, despite the challenges

presented by low-quality or incomplete datasets [78, 142, 220, 224, 225, 228].

In the face of different challenges of low quality data issues, a multitude of strategies

have been developed to identify valid data and informative features, facilitating direct

learning without the necessity for prior data pre-processing, such as EM-DD, mi-SVM,

mi-Graph, miFV, and Unicon [126, 285, 296]. However, these methods typically fail

to address a majority of low-quality issues simultaneously, instead only resolving a

portion of the problems at a time. As a result, the robustness and suitability for clinical

application of these methods remain inadequate.
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1.3 Contributions

The majority of my PhD study probes into the uncharted territory of merging diverse

strategies for direct learning from medical data that encompasses most potential low

quality issues. The objective is to form an amalgamated, robust predictive learning

mechanism, specifically tailored for the unique challenges and requirements of the

medical field.

From the standpoint of machine learning, this scenario is typically categorized as weakly

supervised learning (WSL), with multi-instance learning (MIL) being a representative

example [294]. Based on the assumptions of MIL, neural networks are proposed to be

integrated to perform predictive learning directly on low-quality medical data without

any data pre-processing strategies.

Moreover, this work propose a concept that treats each patient as a ’bag of instances’,

namely symptoms, and projects them into an embedding space. In this space, instances

correlate with each other across different embedding dimensions, each representing

a specific bodily condition. Following this, a Multi-Instance Learning (MIL) Neural

Network is performed on it to identify informative instances and obtain the bag score

for the final prediction.

Based on this assumption:

• This thesis presents one of the pioneering implementations of a Multi-Instance

Learning (MIL) neural network, harmoniously integrated with an embed-

ding method, meticulously crafted for predictive learning within the medical

domain.

• This approach eliminates the need for intentional data collection or manual

data screening, instead automatically processing the available data.
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• It is capable of autonomously identifying any critical feature or sign amidst a

large volume of low-quality data.

• Notably, this strategy’s application is not limited to the domain of Western

Medicine (WM), but it is also applicable in the field of Traditional Chinese

Medicine.

• This method exhibits high scalability and can be seamlessly applied to a diverse

range of predictive tasks, including classification and regression, requiring

minimal adjustments.

At the first attempt in this field, the foundational architecture model on binary data for

the classification task is proposed, named AMI-Net (Chapter 3). This model can effect-

ively learn directly from both WM and TCM datasets, despite their high-dimensional

feature space and a significant amount of missing values. However, AMI-Net’s cap-

ability to select informative instances is constrained by its pooling method, and it

struggles to handle imbalanced data effectively. To overcome these limitations, AMI-

Net+ (Chapter 4) is introduced, which incorporates an innovative self-adaptive MIL

pooling method to improve key instance identification and utilizes a focal loss approach

to address the imbalanced data issue. It is important to note that both AMI-Net and

AMI-Net+ primarily model binary data sets. To expand the model’s applicability within

the medical field, AMI-Netv3 is further proposed(Chapter 5). In this version, an innov-

ative feature embedding method is designed that maps any type of features to a unified

embedding space for modeling. Additionally, a novel supervision strategy is introduced,

termed auxiliary supervision, to enhance the model’s stability and predictive perform-

ance. While AMI-Net, AMI-Net+, and AMI-Net3 all offer significant advantages for

classification tasks, they currently lack the flexibility necessary for regression tasks. In

the field of medicine, regression tasks are quite common and vital, with applications

such as drug dosage prediction [117] and length of stay prediction [12]. To address
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this, AMI-Net3 is further enhanced to accommodate regression tasks (Chapter 6). The

model’s efficacy has been confirmed through its successful application to the warfarin

prediction task. The figure 1.1 demonstrates the 4 different versions of AMI-Net.

FIGURE 1.1: Four Different Versions of AMI-Net

To summarize, the key contributions of this thesis can be outlined as follows:

• In AMI-Net, a unified framework is proposed that combines the embedding

method with the MIL neural network to directly learn from low-quality data.

• In AMI-Net+, it introduces a novel MIL pooling method designed for the detec-

tion of informative instances, and incorporate focal loss to address imbalanced

prediction issues

• In AMI-Net3, it introduces a novel feature embedding method applicable to

all types of features, and a unique supervision strategy aimed at enhancing

classification performance.

• The functionality of AMI-Net3 is further expanded to include regression tasks.



CHAPTER 2

Background

The advent and rapid expansion of big data have sparked profound changes across

various sectors, with healthcare standing at the forefront of this transformation. The

exponential increase in diverse, complex, and swiftly growing data—emanating from a

range of sources such as electronic health records (EHRs) [56], genomic sequencing

[165], and wearable health devices has paved the way for innovative insights and

bespoke treatments [158].

This surge in healthcare data has given rise to the growing importance of predictive

models in medicine, a shift propelled by the evolution towards personalized healthcare

[91, 105, 117, 261, 264]. These models leverage mathematical algorithms and com-

putational techniques to anticipate possible outcomes or events in patients. They do

so by examining a wide array of data including historical health records, demograph-

ics, and clinical information [80]. Consequently, predictive models have shifted the

medical paradigm from a traditional symptom-based approach to a more sophisticated

data-driven methodology [268]. This shift empowers healthcare professionals to deliver

care that is not only more precise and individualized but also proactively anticipates

patient needs [16].

The applications of predictive models in medicine are diverse and far-reaching, ex-

tending from early disease diagnosis and risk stratification [65, 141, 169, 205] to

personalized treatment planning [239, 278, 280, 292] and efficient health resource

9
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management [115, 230, 250]. These models have led to the development of robust tools

that can predict, for example, the risk of readmission for heart failure patients [173, 191,

217], the likelihood of diabetes onset [119, 181, 182], the progression of cancer [134,

247], and the individual response to specific pharmaceutical treatments [91, 105, 117,

261], among others.

Furthermore, numerous specialized models have been designed, each serving crucial

roles from risk assessment to treatment planning and resource management [200].

Risk Stratification Models, for instance, lay the groundwork for preventive healthcare,

categorizing patients based on their potential of developing specific diseases [235]. A

quintessential example is the Framingham Risk Score, a broadly implemented model

that anticipates a patient’s 10-year risk of succumbing to cardiovascular disease [270].

By examining a range of variables, including age, sex, blood pressure, cholesterol

levels, and smoking status, this model fabricates a comprehensive risk profile [55].

The output produced is instrumental in steering physicians towards identifying suitable

preventive measures for patients across various risk levels [67]. This proactive approach

has immense potential to manage public health by preemptively identifying at-risk

individuals, thereby significantly reducing the associated healthcare costs and burden

of disease.

On another front, Diagnostic Models stand as a cornerstone in disease detection and

diagnosis, significantly enhancing the precision and speed of these critical processes

[183]. Machine learning algorithms, notably convolutional neural networks (CNNs),

have profoundly transformed radiology, enabling the detection of subtle anomalies

that might escape the human eye. For instance, CNNs can efficiently identify lung

nodules in CT scans, a capability crucial for early lung cancer diagnosis. This advanced

diagnostic approach not only improves patient prognosis through timely intervention but
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also alleviates the emotional and economic stress associated with late-stage diagnoses

[9, 70, 147, 243, 266].

Further, Prognostic Models provide a lens into the future health trajectory of patients

by predicting disease progression or patient outcomes based on current health status

and history [235]. The Acute Physiology and Chronic Health Evaluation II (APACHE

II) score serves as a testament to the utility of such models [132]. Leveraged to

measure the severity of disease in patients admitted to ICUs, the APACHE II score

takes into account a plethora of parameters, including age, history of severe organ

insufficiency, and various physiological measurements [303]. These prognostic models

guide healthcare providers in forming personalized care plans, facilitating decision-

making on the level of intervention needed, thereby improving patient outcomes and

reducing the likelihood of overtreatment [20, 29, 111, 223].

In the same vein, Treatment Response Models represent another category of predictive

models, devised to forecast a patient’s response to particular treatments or medications

[236]. Oncotype DX, a genomic test, exemplifies the practicality of these models

in clinical settings [185]. This test predicts the recurrence of breast cancer and the

likelihood of a patient benefiting from chemotherapy [232]. By doing so, it aids

clinicians and patients in making informed decisions about the necessity and potential

efficacy of chemotherapy, thus avoiding unnecessary treatment and its associated side

effects in cases where it might be of limited benefit [2, 233].

Finally, Resource Utilization Models occupy a crucial role in healthcare management,

forecasting variables such as patient flow, hospital readmissions, or ICU bed occupancy

[16]. These models contribute significantly to the efficient allocation of healthcare

resources, ensuring optimal utilization of medical facilities and minimizing wastage.

The LACE index, which calculates the risk of unplanned readmission or death within
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30 days after hospital discharge, is one such example [254]. By predicting readmissions,

this model allows healthcare institutions to anticipate and manage patient loads better,

contributing to improved patient care and more efficient use of hospital resources [125,

293].

The various types of predictive models, when viewed collectively, highlight the trans-

formative potential of data-driven decision-making in healthcare. From prevention and

diagnosis to prognosis, treatment, and resource management, these models are setting

the stage for an unprecedented era of personalized, efficient, and high-quality healthcare

services. It must be noted, however, that the success of predictive learning is deeply

dependent on the quality of the underlying data, a common challenge in healthcare

settings.

Indeed, healthcare data are notoriously marred by quality issues, as detailed by [210].

Complications like noise, missing values, and redundancies are commonly encountered

obstacles in the quest for meaningful and reliable predictive insights [262]. Failing to

address these problems can drastically undermine the accuracy and generalizability of

the derived predictive models [263].

As such, data pre-processing emerges as a critical step, transforming raw, disorganized

healthcare data into a format ready for sophisticated analysis. By rectifying the inherent

quality challenges in medical datasets, pre-processing techniques lay a solid foundation

for successful predictive modeling [282]. There is a broad spectrum of these techniques

available, each crafted to overcome a specific data challenge. Notably, feature selection,

data imputation, and resampling methods have demonstrated their effectiveness in

resolving the key quality issues found in healthcare data: redundancy, missing values,

and imbalanced data, respectively [94, 101, 157].
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2.1 Data Pre-processing for Low Quality Challenges

In this section, a few state-of-art data pre-processing techniques to be introduced

detailedly here. We also focus more on the algorithms that used ensemble learning and

deep learning since such algorithms caught more attention in recent years.

2.1.1 Feature Selection Approaches

Feature selection is a crucial step in the development of predictive models, as it aims to

identify the most informative and relevant features while reducing noise, overfitting,

multicollinearity, and computational complexity. Feature selection methods can be

broadly categorized into three main groups: filter methods, wrapper methods, and

embedded methods. Each of these categories encompasses several techniques designed

to handle different data properties and balance the trade-off between model complexity

and predictive performance.

2.1.1.1 Filter Methods

Filter methods are a category of feature selection techniques that evaluate the importance

of features independently of the learning algorithm [167]. They rely on statistical

measures, such as correlation, mutual information, or statistical tests, to assess the

relationship between individual features and the target variable. Filter methods are

computationally efficient, as they do not involve the training of predictive models, but

they may not always capture feature interactions or dependencies on the specific model

used. Some commonly used filter methods include:

• Pearson’s Correlation Coefficient [189]: Pearson’s correlation coefficient, a

number ranging between -1 and 1, is commonly used to measure the strength
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and direction of the linear relationship between two variables. It is calculated

as the ratio of the covariance between the two variables to the product of their

standard deviations. Given paired data {(x1, y1) , . . . , (xn, yn)}, the Pearson’s

correlation coefficient r is defined as

r =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(2.1)

where n is sample size, xi, yi are the samples indexed with i, x̄ and x̄ are the

sample means.

• Mutual Information (MI) [54]: MI quantifies the extent of mutual depend-

ence between two variables, thereby encapsulating the volume of information

obtained about one variable through the observation of the other. It is applic-

able to both continuous and categorical features as well as target variables.

Features with elevated MI scores are perceived to possess more shared in-

formation with the target variable, thereby marking them as pivotal for model

construction. Let (X, Y ) denote a pair of random variables with values span-

ning over the space X × Y . Assuming their joint distribution to be P(X,Y ) and

the marginal distributions as PX and PY , the mutual information is given by

I(X;Y ) = DKL

(
P(X,Y )|PX ⊗ PY

)
(2.2)

where DKL is the Kullback–Leibler divergence [123].

• Information Gain [198]: IG is a measure that quantifies the reduction in

entropy, or uncertainty, of the target variable upon gaining knowledge of a

specific feature. Rooted in the concept of entropy from information theory, IG

is usually employed with categorical features and target variables. Features

with high IG scores are considered to contribute more information about the

target variable, hence their importance in model construction. Let’s define
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the information entropy H from a preceding state that accounts for certain

information:

IG(V, a) = H(V )− H(V | a) (2.3)

where H(V | a) symbolizes the conditional entropy [161] of V given the value

of attribute a. This interpretation is intuitively justified when viewing entropy

H as a measure of the uncertainty of a random variable V : by acquiring (or

assuming) a about V , the uncertainty regarding V diminishes (i.e. IG(V, a) is

positive), unless V is independent of a, in which case H(V, a) = H(V ), and

thus, IG(V, a) = 0.

2.1.1.2 Wrapper Methods

Wrapper methods for feature selection are techniques where the feature selection process

is guided by the accuracy performance of a predetermined predictive model. [133] The

term "wrapper" is derived from the fact that these methods "wrap" themselves around

the predictive model to evaluate the usefulness of subsets of features based on the model

performance.

The procedure typically involves creating various subsets of features and using the

predictive model to assess their performance. Common strategies to form these subsets

include forward selection, backward elimination, and recursive feature elimination. [30,

39, 212].

• Forward Selection and Backward Elimination: These methods aim to find

the optimal subset of features that maximizes the performance of a specific

machine learning algorithm for a given problem.
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Forward Selection: Forward selection starts with an empty model and

adds predictors to the model, one-at-a-time, until no other predictors can

be added to improve the model to a statistically significant extent. At each

step, the predictor that gives the greatest additional improvement to the model

is included. The process starts with a simple model and gets increasingly

complex. It stops when adding any of the remaining variables would not

improve the performance of the model by a statistically significant amount.

Backward Elimination: In contrast to forward selection, backward elim-

ination starts with a full model that includes all potential predictors, and it

removes predictors one-at-a-time. At each step, the predictor that is the least

significant (or that detracts the most from the performance of the model) is

removed. The process starts with a complex model and simplifies it step by

step. It stops when removing any more of the variables would significantly

worsen the performance of the model.

There is also a combination of the two, known as bidirectional elimination

or stepwise selection, which both adds and removes predictors as part of the

model building process (Shown as Figure 2.1). These methods should be

used as part of an exploratory analysis, rather than for confirming specific

hypotheses.

• Recursive Feature Elimination (RFE) [60]: RFE aims to identify the subset

of features that contributes most to the prediction of the target variable. It is a

wrapper-type feature selection algorithm, which means that it uses a machine

learning algorithm and its performance as a measure to evaluate the importance

of features. The steps of RFE are as follows:

Step 1: RFE begins with a machine learning model trained on the initial

set of features.
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FIGURE 2.1: The process of forward section, backward selection, and
stepwise selection.

Step 2: The importance of each feature is obtained either directly from the

model (for those models that provide a way to rank feature importance, such

as decision trees or linear models with coefficients), or by training the model

multiple times, each time leaving out one of the features and measuring the

decrease in performance.

Step 3: The least important features are pruned from the current set of

features. This step involves discarding a specified number of least important

features.
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Step 4: The model is retrained on this pruned subset of features.

Step 5: Steps 2 to 4 are recursively repeated on the pruned set until the

desired number of features is eventually reached.

RFE can be computationally expensive due to the need to repeatedly train

models, but it has the advantage of taking into account the interactions between

features and providing a ranking of features according to their importance

[153].

2.1.1.3 Embedded Methods

Embedded methods integrate the process of feature selection within the construction

of the machine learning model itself. They are more computationally efficient than

wrapper methods and can capture complex feature interactions that filter methods

might overlook [206]. The primary embedded methods for feature selection encompass

strategies grounded in linear regression, decision tree algorithms, and neural network

models.

• Linear Regression Approaches: These are statistical methods used for pre-

dicting a response variable. They include methods like Ridge Regression,

Lasso, and Elastic Net:

Lasso (Least Absolute Shrinkage and Selection Operator) [203]: Lasso

performs L1 regularization, which adds a penalty equal to the absolute value

of the magnitude of coefficients. This type of regularization can result in

sparse models with few coefficients; Some coefficients can become zero and

eliminated from the model. Larger penalties result in coefficient values closer

to zero, which is the ideal for producing simpler models.

Ridge Regression [168]: Ridge performs L2 regularization, i.e., it adds a

penalty equivalent to the square of the magnitude of coefficients. This penalty
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term in the loss function forces the learning algorithm to not only fit the data

but also keep the model weights as small as possible. It does not eliminate

coefficients (like Lasso) but it will shrink them.

Elastic Net [304]: Elastic Net is a hybrid of Lasso and Ridge Regression

techniques. It is trained with L1 and L2 prior as regularizer. Elastic-net is

useful when there are multiple features that are correlated. Lasso is likely to

pick one of these at random, while elastic-net is likely to pick both.

• Decision Tree-based Approaches: Decision trees inherently perform feature

selection as they choose a subset of input features to split on at each node.

They choose the feature that provides the most informative split according

to some mathematical criteria like information gain or gini impurity, such

as bagging strategy based Random Forest [196] and boosting strategy based

Gradient Boosting tree [47, 127, 180]. Random Forest consists of a collection

of decision trees. It provides an indication of the importance of features,

computed as the total reduction in the criterion brought by that feature. Gradi-

ent Boosting Tree can also provide feature importances similar to Random

Forests. It builds multiple weak learners [251] in a sequential manner where

each subsequent model learns from the errors of its predecessor. The feature

importances are calculated based on the number and performance of the splits

across all trees.

• Neural Network-based Approaches: Traditional neural networks don’t per-

form explicit feature selection but can be regularized to induce sparsity, which

effectively results in feature selection.

Regularization Techniques (L1, L2, Dropout) [190, 267, 271]: Reg-

ularization techniques, including L1, L2, and Dropout, serve as essential

mechanisms to prevent overfitting in neural networks. Notably, L1 regulariza-

tion can induce sparsity in the model, thereby performing a form of feature
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selection by prioritizing essential features and reducing the impact of less

significant ones.

Autoencoders [193]: Autoencoders, a specific category of artificial neural

networks, are engineered for learning efficient encodings of input data. Even

though they’re not traditionally associated with feature selection, their bottle-

neck layer - which captures a compressed representation of the input data -

can be effectively utilized for this purpose, hence providing a condensed, yet

rich, set of features.

Attention Mechanisms [10, 218]: Although not strictly a feature selection

method, attention mechanisms in neural networks serve an essential role

in providing insights into which parts of the input data the model deems

significant during the learning process. As such, they indirectly highlight

features of importance and contribute to the overall understanding of feature

relevance in the model.

2.1.2 Resampling Approaches for Imbalanced Data

Imbalanced data is a common problem in machine learning where the classes in the

target variable are not represented equally [101]. In such cases, standard machine

learning models often show a bias towards the majority class, leading to inaccurate and

unreliable predictions for the minority class [122]. Resampling techniques are frequently

employed to counteract the imbalance in datasets, striving to achieve a balanced class

distribution. These techniques can be broadly categorized into undersampling and

oversampling methods. As depicted in Figure 2.2, the distinction between oversampling

and undersampling techniques becomes evident, marking their unique contribution to

balancing the dataset and hence improving model performance [171].
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FIGURE 2.2: Differences between undersampling and oversampling.

• Undersampling Approaches: Undersampling involves reducing the quantity

of instances or samples from the majority class. This method effectively

diminishes the dominance of the majority class, allowing the model to pay

more attention to the minority class during the learning process. Here are some

commonly used techniques:

Random Undersampling [155]: This is the simplest form of under-

sampling and involves randomly removing instances from the majority class.

Although it’s straightforward to implement, it may lead to loss of information

if instances that are potentially important to the decision function of a classifier

are removed.

Evolutionary-based Techniques [74, 289]: They aim to solve a binary

optimization problem to determine which samples should be removed, but their

application is restricted to small datasets due to computational constraints.

Neighborhood-based Methods [84]: Neighborhood-based methods lever-

age the principle of the k-nearest neighbor rule, while clustering-based tech-

niques segment data samples into distinct clusters with the aim of discarding

noisy and less informative samples. These include classic algorithms like the

Condensed Nearest Neighbor (CNN) algorithm [97], the Tomek-link (TL) and
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all k-nearest neighbors (AllKNN) algorithms [244], and the Edited Nearest

Neighbors (ENN) algorithm [269]. Some combinations of these methods, such

as the One-Sided Selection (OSS) method (which combines TL and CNN)

[135] and the Neighborhood Cleaning Rule (NCR) (which combines CNN and

ENN) [138], have been developed to improve performance. The Near Miss

(NM) algorithm selects samples from the majority class based on the distance

between the majority and minority classes [164], while the Instance Hardness

Threshold (IHT) [226] method focuses on removing "hard samples" that are

likely to be misclassified.

Clustering-based Approaches [288]: Clustering-based approaches parti-

tion data samples into clusters, aiming to eliminate noisy and less informative

samples. The core idea behind clustering-based undersampling is to identify

clusters within the majority class and then either downsample within each

cluster or represent the cluster by its centroid or some other representative

instance. This strategy maintains the general structure and distribution of the

majority class while reducing its size. Different algorithms can be used for the

clustering process. One commonly used algorithm is the K-means clustering

algorithm, which partitions data into K distinct, non-overlapping subsets or

clusters. The centroid of a cluster is used as a representative of that cluster.

Other clustering methods like DBSCAN or hierarchical clustering can also be

applied depending on the nature of the data [145]. After the clustering process,

instances from each cluster can be randomly removed until the desired class

balance is achieved. Alternatively, instances in a cluster can be replaced by

the cluster centroid or another representative instance, effectively reducing the

number of instances in the majority class.

• Oversampling Approaches [99]: Oversampling seeks to augment the quantity

of instances or samples from the minority class, either by duplicating existing
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instances or generating new ones. This method bolsters the presence of the

minority class in the dataset, facilitating its recognition by the model. In

addition to random oversampling techniques, that instances from the minority

class are randomly duplicated to balance the class distribution [171], the

common used methods are:

Synthetic Minority Over-Sampling Technique (SMOTE) [42]: SMOTE

and its derivative models [28, 95, 102, 160], standing for Synthetic Minority

Over-Sampling Technique, is an oversampling procedure that synthesizes

new instances from the minority class. The ultimate goal is to achieve a

balanced or near-balanced training set, contributing to a more robust classifier

training process. SMOTE constructs synthetic samples as linear interpolations

of two instances (x and xrandom) belonging to the minority class, described

mathematically as:

s = x+ u · (xrandom − x) (2.4)

where, 0 ≤ u ≤ 1, and xrandom is a randomly selected instance from the 5

nearest neighbors of x within the minority class.

Importantly, SMOTE does not induce additional correlation amongst differ-

ent variables. However, the synthetic samples created via SMOTE maintain a

strong positive correlation with the original minority instances used to generate

them (x and xrandom), as well as with other synthetic instances derived from

the same original instances. Despite the widespread use of SMOTE, it does

come with certain drawbacks: (1) It has a tendency to oversample samples

with low informative value [229]; (2) It also risks oversampling noisy data,

potentially distorting the underlying data distribution; and (3) The process of

determining the number of nearest neighbors for synthetic sample creation
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is challenging, and the selection of these neighbors lacks a clear direction,

leading to potential inconsistencies. In this context, Generative Adversarial

Networks (GANs) have been proposed.

Generative Adversarial Networks (GANs) [82, 92, 154, 184, 301]:

GANs have been celebrated for their remarkable ability to generate realistic,

diverse synthetic data. A typical GAN framework comprises two components:

a Generator that creates synthetic data and a Discriminator that evaluates

the authenticity of the generated data. These two components are trained

simultaneously in a competitive setting, with the generator progressively

improving its ability to generate synthetic instances that the discriminator

cannot distinguish from real instances.

In the realm of image generation, as demonstrated in works such as [152,

199], Generative Adversarial Networks (GANs) have exhibited outstanding

performance. GANs have also been explored in the context of generating

adversarial examples, with various approaches being developed. For instance,

[41, 146] employ GANs to produce malicious network traffic data, while [113]

leverage similar models to synthesize malware samples.

In the domain of modeling tabular data, Generative Adversarial Networks

(GANs) have proven to outperform classical methods for synthetic data gen-

eration, as evidenced by algorithms such as TGAN [272] and CTGAN [273].

Several GAN-based models have been proposed for the task of tabular data

synthesis. For instance, CTAB-GAN [291] is a conditional table GAN that

can effectively model diverse data types with complex distributions. In [175],

a Cramer GAN, categorical feature embedding, and a Cross-Net architecture

are utilized to synthesize Passenger Name Records (PNRs) data. GANs have

also been used to generate continuous time series on Electronic Health Re-

cords (EHR) data [276], and to synthesize high-dimensional discrete variables
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from EHR data using the MedGAN model [49], which combines an autoen-

coder with a GAN. Additionally, TableGAN [187] utilizes a convolutional

Discriminator and a de-convolutional Generator and a Classifier to ensure

the semantic consistency of the synthetic data. Lastly, CopulaGAN [33], a

variant of the CTGAN model, employs Cumulative Distribution Function

(CDF)-based transformation to facilitate the training of the CTGAN model.

2.1.3 Data Imputation for Missing Values

In the realm of data analysis and machine learning, dealing with incomplete data

presents a persistent challenge, particularly in healthcare where the nature of patient

examinations and treatments often results in sparsely populated datasets. Patients, by

virtue of their unique health profiles, do not undergo identical examinations, leading

to varied and often missing data points [260, 262, 263]. Moreover, there are different

types of missing values [66] (Shown in Figure 2.3).

• Missing Completely at Random (MCAR) [66]: MCAR is a mechanism in

which the probability of an observation being missing is unrelated to any other

observed or unobserved data. In other words, the fact that the data is missing

is independent of any known or unknown variables. If data are MCAR, then

excluding cases with missing data does not bias the results, although it may

lead to loss of efficiency.

• Missing at Random (MAR) [215]: MAR is a mechanism in which the

probability of an observation being missing is related to the observed data

but not the missing data. If data are MAR, ignoring the missingness when

conducting analyses could lead to biased results. However, missing data

imputation methods can produce unbiased results under MAR.
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FIGURE 2.3: The illustration of missing value types.

• Missing Not at Random (MNAR) [204]: MNAR is a mechanism in which the

probability of an observation being missing is related to the missing data, even

after controlling for the observed data. In this case, ignoring the missingness

when conducting analyses will generally lead to biased results. MNAR data

require more sophisticated techniques to handle, such as sensitivity analyses

or methods that explicitly model the missing data mechanism.

Missing data is a pervasive issue that can adversely affect the interpretation and gener-

alizability of research findings. Various methods have been developed to address this

problem, some of which are more traditional and straightforward than others. This work

first delve into these traditional approaches, their implementation, and their inherent

limitations.
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2.1.3.1 Case Deletion

Case deletion, also known as complete case analysis, is one of the most basic ways

of handling missing data. There are two primary types of case deletion: listwise and

pairwise [124].

• Listwise Deletion: In listwise deletion, an entire observation is excluded

from analysis if any single value is missing. This method is simple and

easy to implement but can lead to significant loss of data, especially if the

missingness is widespread across variables. It also assumes that data are

Missing Completely at Random (MCAR), an assumption that is rarely met in

real-world datasets [4].

• Pairwise Deletion: Unlike listwise deletion, pairwise deletion (or available

case analysis) uses all available data for each analysis. When calculating

statistics, it includes every case that has valid data for that particular calculation.

This method can lead to a more efficient use of data compared to listwise

deletion, but it can also result in different analyses being based on different

subsets of data, making comparisons challenging.

While the case deletion method provides a straightforward solution for data imputation,

the potential loss of valuable information and the risk of skewing the data distribution

are significant drawbacks that cannot be ignored. Given these considerations, the

univariate imputation methods are proposed. Unlike case deletion, which entirely

removes instances with missing values, univariate imputation focuses on replacing these

missing values with plausible estimates.
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2.1.3.2 Univariate Imputation

Univariate imputation replaces missing values in a variable by estimating the missing

values based solely on the values of that same variable [208]. It assumes that the

missing values are missing at random, which may not always be the case in practice.

Additionally, univariate imputation may introduce bias into the analysis if the missing

values are not actually missing at random [204].

There are several techniques for univariate imputation, including mean imputation, me-

dian imputation, mode imputation, and regression imputation [148]. Mean imputation

replaces missing values with the mean of the non-missing values in the same variable.

Median imputation replaces missing values with the median of the non-missing values,

and mode imputation replaces missing values with the mode (i.e., the most common

value) of the non-missing values.

Moreover, regression imputation [290] is a more sophisticated technique of univarite

imputation that involves using a regression model to estimate the missing values based

on the relationships between the variable with missing values and other variables in

the dataset. Relevant variables may predict the missing data pattern. For example,

suppose that men are more prone than women to skip certain questions; in this case,

gender becomes a predicting factor for missing data. It’s important that the variables

in question show a moderate or stronger correlation with the variable that has missing

values [178].

Traditional methods for dealing with missing data are simple to execute but come

with significant limitations. For example, listwise deletion can result in a considerable

amount of data loss, leading to diminished statistical power. When data is not missing

completely at random (MCAR), both listwise deletion and mean imputation can intro-

duce bias into the resulting estimates. Mean imputation and regression imputation are
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both susceptible to underestimating variances and covariances, as they fail to take into

account the inherent uncertainty about the imputed values [3, 4]. Given these consid-

erable drawbacks, the field of statistics has responded to this challenge by developing

advanced imputation techniques that provide more robust and accurate solutions, such

as multivariate imputation by chained equations [252], Bayesian multiple imputation

[177], and nearest neighbors imputation [24].

• Iterative Imputation [156, 176]: Multiple imputation is to generate multiple

imputations for missing data, as opposed to filling in a single value. And

iterative imputation is a type of multiple imputation that uses a series of

regression models, where each missing value is modeled conditionally upon

the other variables in the data. The process is repeated multiple times, resulting

in several completed datasets. It’s a flexible method that can handle different

variable types (e.g., continuous, binary, ordinal) and patterns of missing data.

MICE [252]: MICE also known as Fully Conditional Specification (FCS),

is a specific type of iterative imputation. It is an iterative method that imputes

missing values by running a series of regression models, one for each vari-

able with missing data. The process of MICE involves several distinct steps.

Initially, a simple imputation, such as mean imputation, fills in each missing

value, forming a fully populated but provisional dataset. Following this, an

iterative process begins. For each variable with missing data, the preliminary

imputations are reset to missing, and a regression model is established using

the other variables as predictors. The missing values are then replaced using

this model, leaving the observed values unaltered. This cycle is repeated for

all variables, establishing a chain of imputations. This iterative step is then

performed multiple times, allowing the distribution of the imputed values to

gradually mirror the joint distribution of the variables. As a result, several
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complete datasets, each containing different imputations for the missing values,

are produced. Each of these datasets can be analyzed using standard methods

for complete data. Finally, the separate analysis results are consolidated into a

single output, accounting for variability both within and between imputations

due to sampling error and imputation uncertainty, respectively. The process is

depited in Figure 2.4.

FIGURE 2.4: The process of MICE method.

• Bayesian multiple imputation [148]: Bayesian Multiple Imputation (BMI)

presents a probabilistic approach for handling missing data by leveraging

Bayesian statistical principles to substitute plausible values in place of absent

ones, leading to the generation of multiple completed datasets instead of a

single one. This technique builds a comprehensive joint probability model for

both the observed and missing data, employing Markov Chain Monte Carlo

(MCMC) methods [35] or comparable sampling procedures to draw from this

model [209, 214].

BMI encompasses a systematic procedure commencing with the devel-

opment of a Bayesian model, incorporating both observed and missing data.

This model encapsulates the ’analysis model’—the model designed for the
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completed data—and the ’missing data model’—the model depicting the prob-

ability mechanism responsible for the missing data [148, 209]. The subsequent

step involves sampling from the posterior distribution of the missing data,

given the observed data. These samples, rooted in the Bayesian model, replace

the missing values with plausible counterparts, thereby generating multiple

datasets, each complete and offering a slightly different imputation of the

missing values [77, 214].

Every completed dataset is subsequently analyzed as if it were entirely

complete, devoid of any missing values. The final phase amalgamates the

results derived from these individual analyses into a singular outcome. This

procedure accounts for the variability both within and between imputations,

thereby offering a robust and comprehensive solution to the missing data

challenge [209, 214].

• Nearest Neighbors Imputation [63]: Nearest Neighbors Imputation (NNI)

is a non-parametric method that estimates missing values by finding similar

observations (i.e., "neighbors") in the dataset based on available information

[63]. The methodology is centered around identifying the ’nearest’ instances in

the multidimensional dataset space and employing their values to compensate

for the missing data [5]. There exist numerous variants of NNI, exhibiting

divergence primarily in their definition and computation of ’distance’ or ’sim-

ilarity’, as well as in their aggregation of the nearest neighbors’ values, such

as:

Weighted Nearest Neighbors Imputation [248]: This variant assigns

weights to the nearest neighbors based on their ’distance’ from the instance

with the missing value. Neighbors that are closer have higher weights. The

imputed value is the weighted average of the values of the nearest neighbors.
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Locally Linear Embedding (LLE) Imputation [249]: LLE uses a man-

ifold learning technique called Locally Linear Embedding to calculate the

similarity between instances. It assumes that each instance lies on a locally

linear manifold and imputes missing values based on this assumption.

Radius-Based Nearest Neighbors Imputation [31, 44]: In this variant,

instead of specifying the number of neighbors, a ’radius’ is specified. All

instances within this radius are considered neighbors. The imputed value is

the mean or median of the values of these neighbors.

While traditional techniques for addressing missing data are straightfor-

ward to apply, they frequently come with significant drawbacks, including

data distortion, bias, and loss of crucial information [148, 215]. In light of

these limitations, more advanced strategies, such as univariate imputation, are

typically suggested to better manage missing data.

Despite approaches, ranging from iterative imputation, BMI, to NNI, offer ability to deal

with more complex missing data patterns and relationships among variables. However,

they also come with their set of limitations. For instance, iterative imputation relies

relies heavily on the assumption that the missing data are MAR. If this assumption

is violated, the imputed values could be biased. BMI require the specification of a

joint model for the observed and missing data, which can be challenging especially in

high-dimensional datasets. NNI, on the other hand, can be computationally intensive

with large datasets and its performance can be sensitive to the choice of parameters.

Given these limitations, machine learning based methods are proposed for imputation.

2.1.3.3 Machine Learning-Based Imputation Techniques

Machine learning-based imputation techniques have emerged as effective strategies to

deal with missing data. These methods are capable of capturing complex, non-linear
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relationships and interactions between variables, and can thus provide a more accurate

imputation of missing values compared to traditional statistical methods [120]. The

mechanisms of these techniques share a common principle: the missing value of a

variable is imputed by considering the observed values of other variables. Specifically, a

variable presenting missing data is designated as the target variable, while the remaining

variables function as input features. In this section, I will delve into three primary

machine learning-based imputation techniques: Decision Trees-Based Imputation,

Support Vector Machine (SVM)-Based Imputation, and Neural Networks for Data

Imputation.

• Decision Trees-Based Imputation [116, 240, 287]: Decision tree-based

imputation methods, such as Random Forests [240], XGBoost [287], and

LightGBM [116], has been highlighted for its ability to capture non-linear

relationships and interactions between variables, thereby providing an effective

imputation strategy. The main advantage is its ability to handle both continuous

and categorical data, as well as its robustness to outliers. However, the method

may be computationally expensive for large datasets with high-dimensional

feature space.

• Support Vector Machine (SVM)-Based Imputation: SVMs function [90]

by mapping the input space (the features) into a higher-dimensional space

where a hyperplane can be used to perform classification or regression tasks.

Therefore, SVMs for imputation is able to solve high-dimensional data space

and different data types of missing values [27].

• Neural Network-Based Imputation [34]: The effectiveness of decision trees

and SVMs hinges significantly on the manner in which data is represented to

them [98]. Nevertheless, the creation of such feature sets necessitates meticu-

lous feature engineering and, crucially, extensive domain expertise [94]. An
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innovative solution to circumvent this challenge involves deploying machine

learning models themselves to identify and distil high-level, abstract features

directly from unprocessed data [23]. Deep learning contributes substantially

to this solution by generating a multi-tiered representation framework, which

progressively transforms the data from one level of abstraction to a higher one

[139]. This approach towards abstract data representation holds considerable

promise in reconstituting meaningful features, thereby potentially mitigating

the need for extensive domain knowledge and feature engineering [81]. There

are several types of deep learning models that can be used for imputation:

Autoencoders [19]: Autoencoders are a type of neural network that are

trained to reproduce their input. They consist of an encoder, which compresses

the input into a lower-dimensional representation, and a decoder, which re-

constructs the input from this representation. In the context of imputation,

an autoencoder can be trained on the observed data, and then used to fill in

missing values based on the learned representations.

Generative Adversarial Networks (GANs) [130]: GANs consist of two

networks: a generator, which produces synthetic data, and a discriminator,

which tries to distinguish between real and synthetic data. For imputation, a

GAN can be trained to generate plausible values for missing data based on the

observed data (Shown in Figure 2.5).

Recurrent Neural Networks (RNNs) [129]: RNNs are particularly ef-

fective for sequential data, as they can capture temporal dependencies. For

time-series data with missing values, an RNN can be used to predict missing

values based on the observed temporal patterns.

Deep learning-based imputation methods can provide highly accurate

results, particularly for complex, high-dimensional data. However, they can

also be computationally intensive and may require careful tuning of model
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FIGURE 2.5: The process of GAN method.

parameters. Additionally, they typically require larger amounts of data to train

effectively compared to traditional imputation methods.

Currently, a majority of prevalent methods necessitate the implementation of data

assumptions during the pre-processing stage, followed by the execution of predictive

learning. This protocol introduces an inherent bias and precludes the possibility of joint

training, as the pre-processing component remains unoptimized by the final predictive

loss [260]. A further limitation of these current methodologies is their predominant
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focus on feature-level information rather than instance-level attributes [118]. This

approach tends to overlook vital information. For instance, indicators of Intensive

Care Unit (ICU) admission play a significant role in mortality prediction. However,

due to the relatively low incidence of such patient data, this critical information is

often neglected during data pre-processing, resulting in the omission of potentially

significant indicators [262]. Thus, a method that enables direct predictive learning

without the need for extensive data pre-processing can have a profound impact [96]. In

the medical field specifically, the ability to identify critical information while making

predictions is crucial. An ideal predictive learning method should possess the capability

to automatically extract and focus on the critical features within the data [38]. Moreover,

the ability to make decisions based on subtle features is also important in the medical

domain. Some medical conditions or diseases may exhibit subtle signs or patterns

that are not easily noticeable [174]. A robust predictive learning method should be

able to capture these subtle features and incorporate them into the decision-making

process [149]. This would enhance the accuracy and effectiveness of predictions,

potentially leading to better diagnosis, treatment, and patient outcomes. Thus, the

development of computational models capable of extracting key information from

extensive, often incomplete or low-quality data, in order to deliver reliable diagnostic

results, has become a subject of widespread interest [263]. This thesis is undertaken

within the expanding domain of this research field, with a commitment to developing a

methodology capable of making predictions based solely on existing data, eliminating

the necessity for pre-processing. Furthermore, it is designed to simultaneously tackle

a range of challenges intrinsic to low-quality data, encompassing missing data, label

noise, imbalanced data, and an excessive number of features.

Crucially, the proposed approach can capture individual-level information that sig-

nificantly impacts final decision-making, thereby assisting physicians in achieving
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precision medicine while implementing personalized predictive modeling [263]. In

this context, my research attention turns towards weakly supervised learning (WSL),

and more specifically, the representative method of multi-instance learning [68]. When

integrated with neural networks, the excellent scalability, compatibility, and flexibility

of multi-instance learning offer distinct advantages for predictive learning, especially

when dealing with real-world medical data [262].

2.2 Weakly Supervised Learning

Weakly Supervised Learning (WSL) is an emerging field that aims to strike a balance

between fully supervised and unsupervised learning paradigms by utilizing less pre-

cise, indirect, or noisy labels to train machine learning models. This form of learning

addresses situations where acquiring vast amounts of accurately labeled data is prac-

tically challenging or impossible [294]. It is typically categorized into three distinct

types based on the nature of the weak supervision: incomplete supervision, inexact

supervision, and inaccurate supervision [179, 302].

Incomplete Supervision: Incomplete supervision involves a learning scenario where

only a subset of instances are labeled. Semi-supervised learning (SSL) and Positive-

Unlabeled (PU) learning are the two commonly recognized techniques within this

category. SSL employs a blend of a few labeled instances with a significant volume of

unlabeled data during the training process [40]. SSL holds considerable promise and

has substantial applications within the realm of medicine, particularly in the context of

Electronic Health Records (EHR) data analysis. EHRs frequently consist of unstructured

free-text clinical notes that necessitate meticulous analysis and interpretation. However,

labeling these patient records is a labor-intensive task, often requiring the expertise of

clinicians, leading to a limited pool of labeled data. SSL can be used to augment the
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small amount of labeled data (annotated by clinicians) with a large amount of unlabeled

data, helping to develop models for predicting patient outcomes or identifying disease

patterns [253]. On the other hand, PU learning contends with positive and unlabeled

data, inherently assuming that the unlabeled data consists of both positive and negative

instances [64]. PU learning can be particularly helpful in the context of rare diseases,

where only a few positive examples might be available. In these cases, PU learning can

be used to learn about the disease’s characteristics and aid in its diagnosis [172].

Inaccurate Supervision: Inaccurate supervision involves situations where the labels

assigned to instances could be incorrect or noisy. This category includes learning with

noisy labels and learning with label noise. Both these approaches involve training the

model with datasets containing mislabeled instances, and the task is to develop a model

robust enough to handle the noise [179]. In the medical field, inaccurate supervision

holds substantial relevance and offers unique advantages. For example, clinical datasets

often contain erroneous or conflicting labels due to human error, ambiguous symptoms,

or the subjective nature of certain diagnoses. As an example, consider the case of mental

health disorders, where diagnoses often rely on subjective interpretation of symptoms.

Here, learning with noisy labels can help in developing models that are more robust to

such inconsistencies [237].

Inexact Supervision: This subclass focuses on scenarios where labels exist at different

levels of abstraction rather than corresponding precisely to the instance. MIL is included

in inexact supervision and learning from label proportions. In MIL, a label is attached

to a bag (group) of instances rather than to each specific instance, demanding the model

to discover the informative instances within the bag. Meanwhile, learning from label

proportions deals with scenarios where only the proportion of each class within a group

of instances is available.
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2.3 Multi-Instance Learning

Multi-instance learning (MIL) represents a unique approach to machine learning,

wherein the fundamental unit of training data is not a single instance, but rather a

set, or "bag," of instances. Instead of individual instance labels, the entire bag is as-

signed a supervisory label. This form of weak supervision holds particular promise for

scenarios where labeling individual instances may be impractical, costly, or impossible

[294].

The fundamental assumption in MIL is that a bag is labeled positive if and only if at

least one of its constituent instances is positive, and is otherwise labeled negative [59].

For instance, in a medical imaging context, a bag might represent a set of image patches

derived from a patient’s scan, and the bag would be labeled positive if it contains an

image patch indicative of disease [275]. When a new bag of unlabeled instances is

encountered, a trained MIL model is capable of predicting the bag’s label based on the

learned patterns from the training phase [38]. Figure 2.6 presents an illustrative example

of Multi-instance Learning (MIL). The corresponding process can be formulated as

follows.

Let X denote a feature space and Y a set of binary labels. In classical supervised learn-

ing, the goal is to learn a function Φ : X → Y from the given data set {(χ1, γ1) , (χ2, γ2) , . . . , (χm, γm)},

where each χi ∈ X and γi ∈ Y (i = 1, 2, . . . ,m). Each χi represents an instance labeled

by a known class γi = {0, 1}.

Conversely, in the MIL problem, each χi ∈ X is considered a ’bag’ of instances

χi = {xi,1, xi,2, . . . , xi,n} where each xi,j ∈ xi (j = 1, 2, . . . , n). In this case, only the

bag label γi is provided. It should be noted that the number of instances in different

bags may vary [299].
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FIGURE 2.6: Demonstration of bags and instances. A bag receives
a positive label if it contains at least one positive instance within it.
Conversely, if all instances within a bag are negative, the bag itself is
labeled as negative. The process of training and learning in MIL equips
the model with the ability to predict the class of an unlabeled bag
effectively.

The standard assumption made in the MIL problem is that a bag is labeled positive

if and only if at least one instance contained within it is predicted as positive. This

assumption can be mathematically formulated as follows:

γi =

 1, if ∃xi,j ∈ χi : Φ (xi,j) = 1

0, otherwise
(2.5)
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Early MIL methods are fundamentally rooted in the aforementioned assumption [8, 59,

286]. These methods posit that the bag label is determined by one or several distinctive

instances. However, these approaches do not take into account the correlations among

instances and the distribution of instances within the bag.

To address this limitation, a more generalized assumption has been proposed [260]:

γi = ψ
(
θxi,j∈χi

σ (xi,j)
)

(2.6)

where σ denotes a transformation applied to the attributes of the instances. The MIL

methods can be partitioned into two primary categories based on the distinct strategies

for choosing θ and ψ [118] (Shown in Figure 2.7). One approach, instance-level strategy,

attempts to infer instance labels indirectly and then use traditional supervised learning

techniques for analysis [8]. Another approach, bag-level strategy, modifies traditional

learning algorithms to work directly with bags, bypassing the need for instance labels

entirely [297].

• Instance-Level Strategies: θ is a scoring function to obtain the positive

probabilities of each containing instance. ψ is MIL pooling over instances to

return the bag probability. These methods focus on the individual instances

within each bag. They operate by attempting to assign labels to the instances

within a bag, effectively transforming the multi-instance problem into a single-

instance (or traditional) supervised learning problem [7]. An instance-level

strategy often involves two steps: first, assigning pseudo-labels to the instances

based on the bag label, and second, learning a traditional classifier based on

these pseudo-labeled instances. Popular instance-level methods include the
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FIGURE 2.7: Difference between instance-level approach and bag-level
approach in MIL.

diverse density (DD) approach [166] and the Expectation-Maximization (EM)

algorithm [285].

• Bag-Level Strategies: θ is MIL pooling over instance attributes to obtain the

low-dimensional bag embedding, that is further processed by a scoring function

ψ to return the bag probability. These methods, conversely, consider the bag

as a whole, rather than focusing on individual instances. They aim to learn

a bag-level classifier that directly predicts the bag’s label without assigning

labels to individual instances [38]. This type of approach often treats a bag

as an ordered or unordered set and learns from the set distribution. Methods

in this category include the kernel-based methods that employ set kernels

to compute the similarity between bags [75], and the neural network-based

methods that use architectures like convolutional neural networks (CNNs) or

recurrent neural networks (RNNs) to capture the bag’s characteristics [118].
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In the realm of MIL, both bag-level and instance-level approaches have their unique

strengths and weaknesses. Bag-level strategies, as demonstrated by Wang et al. [259],

tend to outperform in prediction accuracy and running time. This is primarily due to

the fact that they consider the collective information of instances within a bag, thereby

providing a more comprehensive view of the data. However, this approach may overlook

the individual characteristics of instances, which could be crucial in certain applications.

On the other hand, instance-level approaches, while they may suffer from insufficient

training due to unknown instance labels and introduce additional error, offer the ad-

vantage of efficiency and flexibility. They are capable of identifying key instances

within a bag, which could be pivotal in determining the overall label of the bag. This is

particularly useful in scenarios where a single instance can significantly influence the

bag’s label.

In this study, I aim to harness the strengths of both these approaches. A MIL pooling

module over instances and their attributes is proposed to integrate, which allows to

capture both the collective and individual characteristics of instances. This fusion of

bag-level and instance-level strategies enables us to fully uncover the intricate instance-

to-bag relationship. As a result, the method is able to achieve performance enhancement,

as corroborated by Yan et al. [277]. This hybrid approach provides a more robust and

comprehensive framework for MIL, thereby improving the effectiveness and reliability

of the learning process.

Moreover, while Multi-Instance Learning (MIL) is predominantly utilized for assigning

a single label to an instance or bag, its potential extends beyond this application.

The concept of assigning multiple labels to bags is particularly pertinent as bags can

encompass instances representing diverse concepts. This multi-label MIL notion has

been the subject of several studies [106, 283, 299].
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In addition to classification, MIL can also be employed for regression problems by

substituting the bag-level classifier with a regressor [6, 264, 265]. Some methodologies

have proposed ranking bags instead of assigning a class tag or score. This task differs

from regression as the objective is not to achieve accurate real-value labels, but to

compare predicted scores for sorting purposes. Ranking can be executed at either the

bag-level [26] or the instance-level [114].

MIL can also be adapted for clustering tasks, which include searching for clusters or

structures within a set of unlabeled bags. In certain scenarios, clustering is performed

in bag spaces using conventional algorithms and set-based distance measures. For

instance, the algorithm in [284] identified the most pertinent instances of each bag

and executed maximum margin clustering on those instances. Alternatively, clustering

can be carried out at the instance-level. For example, Wang et al. [258] performed

instance clustering for dictionary learning, and Tang et al. [241] utilized instance

clustering to stabilize the process of weakly-supervised object detection. The proposed

instance embedding regularization method focuses on feature learning and could prove

beneficial for multi-label MIL, multi-instance regression, multi-instance ranking, and

multi-instance clustering.

2.3.1 Classical MIL Methods

MIL has been the subject of extensive research, with scholars making significant strides

in the field. Numerous machine learning models have been developed to address

the MIL problem. For instance, linear Support Vector Machines (SVM) [195] have

been employed in MI-SVM and mi-SVM for bag-level and instance-level classification,

respectively. The Citation-kNN model [256] adopts a lazy approach to the MIL problem,

utilizing a k-nearest neighbor (kNN) classifier and various distance metrics.



2.3 MULTI-INSTANCE LEARNING 45

Fretcit-kNN [295] applies the minimal Hausdorff distance between frequent term sets

and uses both the references and citers of an unseen bag to determine its label in

web recommendation tasks. G3P-MI [281] tackles MIL from a unique perspective,

leveraging grammar-guided genetic programming. MI-Kernel [76] integrates kernel

methods into MIL, while EM-DD combines the expectation-maximization algorithm

with the diverse density (DD) algorithm for MIL [285].

The Multi-instance Fisher Vector (miFV) [213] is a representative algorithm for solving

MIL problems from the perspective of embedded space. It maps instance features

into a high-dimensional space through a pretrained Gaussian model and Fisher Vec-

tor coding. In addition to Fisher Vector coding, the Vector of Locally Aggregated

Descriptors (VLAD) is also used in [213] for MIL, in a method known as miVLAD.

The Multi-instance Dissimilarity (MInD) method [48] employs bag similarities for bag

classification.

Zhou et al. [296] introduced a pioneering work in Multi-Instance Learning (MIL),

proposing a non-independent and identically distributed method to handle instances

from the bag and capitalize on the relationships between instances. Their mi-Graph

algorithm offers improved MIL performance. Inspired by this work, the intention

in my research is to enhance the quality of instance embedding by leveraging these

instance relationships. In contrast to mi-Graph, which directly compares bags without

considering instance embedding, instance embedding is proposed here as the backbone

of MIL, further distinguishing between positive and negative instances within the

bag. Moreover, while mi-Graph employs a non-deep learning method, the approaches

proposed in this thesis are grounded in deep neural networks.
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2.3.2 Multi-Instance Neural Network

Deep neural networks have emerged as powerful tools for tackling a wide array of

machine learning challenges. Deep Belief Networks (DBN) [107] employ unsupervised

pre-training and utilize a fixed-length vector for feature learning and classification. Deep

Convolutional Neural Networks (CNN) [79, 104, 197, 238] and Vision Transformers

(ViT) [128, 188, 202] process images as input and have become the standard for image

recognition tasks. Deep Recurrent Neural Networks (RNN) [87], Long Short Term

Memory (LSTM) networks [86] and transformers [255] handle sequential data such as

text and speech, excelling in sequential prediction tasks.

In classical MIL problems, it’s generally presumed that instances are represented by

features that require no additional processing. However, for tasks such as image or text

analysis, the necessity for further feature extraction steps becomes apparent. As a result,

the idea of utilizing neural networks to parameterize all computational transformations

becomes highly appealing. This methodology provides significant flexibility and allows

for end-to-end training via backpropagation [118].

Nonetheless, the training of these deep networks requires a substantial amount of fully

labeled data, implying that each instance must have a label. In the MIL context, only

bag labels are accessible. Furthermore, MI data exhibits a complex structure, consisting

of a set of instances with varying instance counts across different bags. These intricacies

pose challenges when attempting to tackle the MIL problem using conventional neural

networks [259].

Before the raising of deep learning, numerous research initiatives sought to address the

MIL problem through the use of neural networks. Ramon and Raedt [201] pioneered

the concept of a Multi-Instance Neural Network (MINN), which estimates instance
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probabilities prior to the final layer and computes bag probability using a convex

max operator, also known as log-sum-exp. This network can be trained via back-

propagation. In a similar vein, Zhang and Zhou [298] proposed a multi-instance

network that calculates bag probability by directly taking the maximum of instance

probabilities.

The underlying function of MIL provides flexibility, allowing us to model any trans-

formation and score function, provided they adhere to the permutation-invariant prop-

erty. Consequently, a class of transformations is parameterized through the neural

network. Let X represent a bag of M instances. The transformer φτ , where τ are

parameters, transforms instances to the embedding space with K dimensions, such that

vm,K = φτ (xm) where m ∈M . Then the bag probability of xm is then determined by

the transformation θω : ηϕk∈K
(vm,k) → [0, 1].

In the case of employing the bag-level MIL pooling approach, θω is an injective function,

or alternatively, it is parameterized by the neural networks with parameters ω. f the

trainable MIL pooling methods are utilized, ϕ also become parameters. This approach

allows us to fully exploit the flexibility of neural networks, enabling us to model

complex transformations and score functions that can capture the intricate structure

of MIL data. This, in turn, can lead to improved performance in a wide range of MIL

tasks.

2.3.2.1 Multi-Instance Pooling

MINN is proposed to endow the MIL methods with more flexibility, that it parameterizes

all computational process and is trained end-to-end by back-propagation [201]. The

key step in MINN is MIL pooling that it is used to aggregate the information contained

within a bag into a single representation. This is necessary because traditional machine
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learning algorithms are designed to operate on individual instances, not bags of instances.

The pooling operation allows these algorithms to be applied to MIL problems.

There exists a diverse array of multi-instance pooling methods, which can primarily be

categorized into two distinct groups: trainable and non-trainable [262].

Trainable pooling methods are designed with parameters that can be optimized during

the learning process. These methods are adaptive in nature, adjusting their behavior

based on the data they encounter [277]. This adaptability can lead to improved per-

formance, especially in complex tasks where the optimal pooling strategy may not be

obvious or static [277]. Examples of trainable pooling methods include attention-based

pooling [13] and learned pooling, where the pooling operation is guided by a secondary

learning algorithm [81].

On the other hand, non-trainable pooling methods operate with fixed rules and do not

adjust their behavior based on the data [139]. These methods are simpler and more

computationally efficient than their trainable counterparts, making them suitable for

tasks where computational resources are limited or the optimal pooling strategy is known

a priori [32]. Examples of non-trainable pooling methods include the aforementioned

max pooling, mean pooling, and log-sum-exp pooling [32].

Each category of multi-instance pooling methods has its own strengths and weaknesses,

and the choice between them should be guided by the specific requirements of the task

at hand [259]. In the following sections, I will delve deeper into the specifics of both

trainable and non-trainable pooling methods, providing a comprehensive understanding

of their underlying mechanisms, applications, and performance characteristics [81].



CHAPTER 3

AMI-Net

Effective and efficient analysis of clinical records is a crucial task in the medical field.

These records, which comprise varying numbers of symptoms per patient, can be

conceptualized as a ’bag’ of instances. The challenge lies in identifying informative

symptoms (instances) and associating them with one or more diseases for accurate

medical diagnosis. Conventional approaches often represent patients as vectors in a

feature space and apply classifiers to generate diagnostic results. However, this method

often grapples with issues arising from low-quality data, largely due to factors like data

consistency, integrity, completeness, and accuracy.

To address these challenges, a novel method named the Attention-Based Multi-Instance

Neural Network (AMI-Net) is first proposed. The model classifies single diseases

based solely on valid information extracted from real-world outpatient records, taking

an end-to-end approach. It inputs a bag of instances and directly outputs a bag label.

An embedding layer maps instances into an embedding space, representing individual

patient conditions. The model harnesses the power of a multi-head attention transformer,

instance-level multi-instance pooling, and bag-level multi-instance pooling to capture

instance correlations and their significance in the final classification [255].

The proposed approach is distinctive in its ability to integrate these components into a

multi-instance neural network. The principal tasks of medical diagnosis from incom-

plete and low-quality data are addressed by mapping input instances in an embedding

49
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space, capturing instance correlations in different embedding subspaces, learning bag

embedding, and selecting informative instances via an attention mechanism to obtain

the bag score. This design leverages the Multi-Instance Learning (MIL) neural net-

work for parameterization, imbuing the architecture with flexibility and simplicity [81].

Importantly, this approach does not necessitate manual data collection or screening.

Instead, it automatically handles data, efficiently extracting useful information from a

vast amount of low-quality data to support the final medical diagnosis.

The proposed method has been tested on two incomplete and highly imbalanced data-

sets, one in the Traditional Chinese Medicine (TCM) domain and the other in the

Western Medicine (WM) domain. The experimental results have shown that AMI-Net

significantly outperforms all baseline results [32].

3.1 Methodology

The architecture of the proposed AMI-Net is made up of multiple computational module

for prediction. Here, we delve into a detailed explanation of each layer, elaborating on

their functionality and contribution to the overall system.

Firstly, an embedding layer is included to map instances into a high-dimensional

embedding space, a transformation that aids in the precise representation of individual

patient conditions. The subsequent process of classification and disease prediction thus

leverages these patient-specific embeddings.

Following the embedding layer is a multi-head attention transformer equipped with

a residual connection [103]. Borrowed from transformer architectures [255], this

module is designed to capture complex interactions among the instances. The residual

connection assists in bypassing the transformation function, thus promoting the ease of
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training and mitigating issues related to vanishing gradients. The transformer allows

the model to focus on different aspects of the input instances simultaneously, offering a

more nuanced interpretation of the underlying medical data.

After the multi-head attention transformer, a series of instance-wise fully connected

layers is applied. These layers serve to extract more intricate features from each instance,

further refining the representations of the symptoms.

The architecture then incorporates an instance-level Multi-Instance Learning (MIL)

pooling layer. This layer functions to aggregate the representations of the instances

within each bag (i.e., patient), thereby synthesizing the individual symptom information

into a unified representation.

Subsequently, a bag-level MIL pooling layer is used. This layer extends the pooling

operation to bags, consolidating the bag-level representations and further emphasizing

the most informative instances within each bag.

Finally, a sigmoid function is applied, serving as an activation function to produce the

final output of the model. It ensures the output values lie between 0 and 1, corresponding

to the probability of the presence of a particular disease.

Figure 3.1 provides a comprehensive visual overview of the AMI-Net, depicting the

intricate interplay among its various components and highlighting the end-to-end nature

of the architecture.



52 3 AMI-NET

FIGURE 3.1: The overview of AMI-Net.

3.1.1 Multi-Instance Pooling (MIL Pooling)

Reflecting on the distinct attributes of both trainable and non-trainable MIL pooling

methods, the proposed AMI-Net thoughtfully incorporates elements from both categor-

ies into its architecture. This strategic inclusion is guided by an understanding of the

inherent strengths and limitations of each method and is designed to maximize the

benefits accrued from their respective advantages.

The fusion of trainable and non-trainable MIL pooling methods in the model aims

to optimize prediction capability and adaptability. This approach enables a more

sophisticated analysis of instance data, effectively addressing scenarios where the

optimal pooling strategy is either known or needs to be learned from the data. By

striking a balance between the two, the model facilitates a comprehensive and accurate

interpretation of the underlying medical data.
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In the AMI-Net, inspiration has been taken from the document classification problem

for the instance-level MIL pooling method. More specifically, the approach borrows

from the way sentences are represented within the realm of text classification. Sum

pooling, a non-trainable MIL pooling technique, is employed at the instance level.

The sum pooling technique essentially computes the sum of all instances within a bag

to create a cumulative instance representation. This method is particularly effective

as it allows for the aggregation of information from all instances, thereby capturing

the holistic information present within each bag (i.e., patient). Thus, the sum pooling

technique, formulated as below, in the instance-level MIL pooling stage, contributes to

an overall richer representation of the patient’s condition. This, in turn, can lead to a

more accurate and robust prediction performance.

∀m=1,2,...,M : vm =
K∑
k=1

vm,k (3.1)

where M and K denotes the bag containing instances, and the embedding dimensions.

Moreover, an attention-based MIL pooling approach is proposed for the bag-level to

obtain the bag score, which is further mapped to the bag probability through a sigmoid

function.

3.1.2 Attention-based MIL Pooling

The primary objective of attention-based MIL pooling mechanism is to assign a set of

weights to instances within the bag. These weights, instead of being predetermined or

fixed, are trained and optimized by the neural network itself during the learning process.

In the proposed method, it is employed in the bag-level, which is formulated as follows:
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v =
M∑

m=1

amvm (3.2)

where:

S = W T
1 (tanh (vmW2)⊙ sigmoid (vmW3))

)
am = softmax(S)

(3.3)

where W1 ∈ Rdmodel ×1 and W2,W3 ∈ Rdmodel ×dl are parameters, and ⊙ is the element-

wise multiplication.

Considering the limitations of the tanh function, particularly its constrained capacity

to capture complex relationships and express non-linearity, an additional operation

is introduced in the model. Specifically, a sigmoid based function is applied in an

element-wise multiplication subsequent to the tanh function. This operation forms part

of what is commonly referred to as the gated mechanism, as discussed in the work by

Dauphin et al. [57]. The gated mechanism enhances the model’s capability to learn

complex relations, allowing for a richer expression of non-linearities in the data.

Moreover, the attention mechanism effectively guides the network to focus predom-

inantly on instances that are most likely to be labeled as positive, as outlined by Hu

et al. [112]. This strategic focus not only enhances the model’s performance but also

its interpretability. It equips the model with the ability to sift through a vast amount

of ’dirty’ or low-quality data and zero in on the key information. Such an approach

aligns closely with real-world medical diagnostic processes, wherein among a multitude

of symptoms and data points, medical professionals must identify the most critical

ones to arrive at an accurate diagnosis. In this sense, the attention mechanism allows
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the proposed model to mimic the discerning eye of a physician, thereby enhancing its

efficacy in medical predictive learning.

3.1.3 Multi-Head Attention

In this method, the integration of the multi-head attention [255] on the AMI-Net

is proposed. The principal aim of this integration is to capture the intricate intra-

relationships among instances within different embedding subspaces.

This strategy is particularly suited to the medical domain, where symptoms often

interrelate across various body parts or organs. In this context, each organ or body

part can be considered as a distinct embedding subspace. Therefore, the multi-head

attention mechanism can effectively uncover correlations and links among symptoms

that standard linear methods might overlook.

Moreover, the multi-head attention mechanism can help bridge the gap between standard

and non-standard expressions of symptoms, thereby enhancing the model’s robustness

when dealing with low-quality or inconsistent data.

The attention mechanism within the transformer model operates by taking a query (Q)

and a set of key-value (K, V) pairs as input and generating a weighted sum of the values

as output. The weights assigned to the values are computed based on the query and the

corresponding key, utilizing a cosine similarity-based function.

In the proposed methodology, significant emphasis is placed on exploring the correla-

tions among instances. Hence, in the context of the model, the query, key, and value

are all derived from the instances themselves. In terms of its practical implementation,

the multi-head attention mechanism consists of two main computational components:

scaled dot-product attention and multi-head attention transformation.
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The detailed architecture of the transformer, including its integration of the multi-head

attention mechanism, is illustrated in Figure 3.2. This visual representation further

clarifies the functioning of the transformer and its role in the overall structure of the

model.

FIGURE 3.2: The architecture of multi-head attention.

Scaled dot-product attention Initially, cosine similarity is calculated within the sub-

space for the instances themselves. This is followed by the application of the softmax

function to derive the final weights vector, which encapsulates the similarities and cor-

relations among instances. Given that a large instance dimension, di could potentially
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result in extremely small gradients from the softmax function, a scaling factor of 1√
di

is

employed. The final output is computed as follows:

Similarity(b, c) =
b · c

∥b∥∥c∥
= bcT (3.4)

Att(X,X,X) = softmax

(
similarity(X,X)√

di

)
X (3.5)

where · is dot-product function and X denotes a bag of instances.

Multi-head transformation This process fractionates the instance dimensions into sev-

eral subspaces, executing scaled dot-product attention independently on each subspace.

This parallel operation allows for the capture of instance correlations across diverse

subspaces. The resulting outputs from each subspace are subsequently concatenated

to form the final output. Throughout this procedure, linear transformations are inter-

mittently applied to facilitate the process. The entire procedure can be mathematically

formulated as follows:

MultiHead (X,X,X) = Concat ( head 1, . . . , head n)W
m (3.6)

headi = Att
(
XW 1

i , XW
2
i , XW

3
i

)
(3.7)

where W 1
i ,W

2
i ,W

3
i ∈ Rdmodel ×dk , Wm ∈ Rhdk×dmodel , h denotes the number of heads

and headi denotes the ith subspace.
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3.2 Experiments

In the experimental evaluation, the proposed AMI-Net method was applied to two

real-world medical datasets that were well-suited for the approach. The first dataset

originated from the domain of Traditional Chinese Medicine (TCM), while the second

was derived from the Western Medicine (WM) domain. Both datasets were used for

diagnostic purposes. Representative examples from these two datasets are presented in

Table 3.1.

TABLE 3.1: Examples of TCM and WM datasets

Dataset Features Diagnosis

TCM
Urine color yellow, Sweat, Pruritus, Coldness of
extremities, Perspiration

Meridian obstruction

Dark red tongue, Palpitation Not meridian obstruc-
tion

WM
Personal income 3000 5000, Unmarried,
LOS<10 days, MECT<=1, Onset age<17, Total
course<1095 days, Lorazepam tablets=0.5mg

Schizophrenia relapse

Personal income 1000 3000, Married, High
levels of prolactin, hyperglycemia, High levels
of corticotrophin, LOS 25 49 days, MECT
1 10, Onset age 1-10, Risperidone<=1mg, Total
course 1095 5840 days, Haloperidol injection
5mg

Not relapse

3.2.1 Datasets

Traditional Chinese Medicine: Traditional Chinese Medicine (TCM): The TCM

dataset was amassed from the medical records of diabetic patients at a Chinese Medical

Hospital in Beijing. This dataset has been previously analyzed to discern crucial herb-

herb interactions [194] and symptom-herb patterns [45]. The dataset comprises 1,617

outpatient records, each exhibiting one of 186 distinct symptoms. The number of



3.2 EXPERIMENTS 59

symptoms per patient varies, ranging from 1 to 17. However, it’s important to note that

the symptom expressions are not standardized and lack consistency. For instance, the

symptom ’sweat’ is expressed in various ways across different records.

The binary classification task in this study focuses on determining whether a patient has

meridian obstruction, a syndrome specific to Traditional Chinese Medicine (TCM). Out

of all the patients in the dataset, 1,436 are labeled as negative (no meridian obstruction),

while 181 are labeled as positive (presence of meridian obstruction). This results in

a highly imbalanced dataset with a positive rate of 0.112. A significant challenge in

this dataset is the presence of numerous missing values. This is primarily due to the

difficulties clinicians face in completing patient examinations, which can be attributed to

a lack of patient compliance and the non-standardization of TCM information collection.

Western Medicine (WM) Dataset: The Western Medicine (WM) dataset was provided

by Medicinovo Inc. in real-world medical studies. This dataset comprises 3,927

inpatient records of schizophrenic patients who underwent modified electro-convulsive

therapy (MECT) and showed improvement upon discharge. The objective of the model

built on this dataset is to predict the likelihood of a schizophrenia relapse within

three months. This prediction is based on 88 physical and clinical features, including

marital status, employment status, high levels of prolactin, the number of MECT

sessions (ranging from 1 to 10), and administration of 5mg haloperidol injections.

For each patient, there are at least 5 and at most 21 features present, representing the

individual patient’s condition. Similar to the TCM dataset, the WM dataset is also

highly imbalanced, with a positive label rate of only 0.057.
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3.2.2 Experimental Setup

For both the TCM and WM datasets, preprocessing and parameter setting steps were

implemented. Each input record was padded to the maximum size to ensure uniformity.

The number of embedding dimensions was set at 128, which closely aligns with the

number of human organs as per reference [50].

In the subsequent multi-head attention transformer, the number of heads was configured

to be four. This setting was chosen to balance computational efficiency and the capacity

to capture various feature interactions. For the instance-wise fully connected layers,

hidden sizes of 64 and 32 were selected, respectively, to ensure a sufficient level of

model complexity while avoiding overfitting.

For the final loss calculation, cross-entropy was employed as the loss function for binary

classification tasks. The Adam optimizer [131] was used to minimize this loss over

the training data. The hyperparameters for the Adam optimizer were set as follows:

the learning rate was set at 0.01, the momentum parameters β1 and β2 were set at 0.9

and 0.98, respectively, and ε was set at 1e−8. These settings are generally accepted as

effective starting points for many optimization tasks.

To evaluate and compare the model’s performance, the binary threshold was set at

0.5, and several evaluation metrics were used, including AUC, Accuracy, Precision,

Recall, and F1-score. These metrics provide a comprehensive assessment of the model’s

performance from different perspectives.

During the training process, the number of epochs was set at 1000. Early stopping

based on the AUC score over the validation dataset in cross-validation was employed

to prevent overfitting and select the best model. This strategy allows the training to be

stopped as soon as the model’s performance on the validation set starts to deteriorate.
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To ensure a fair comparison of the model’s performance, all experiments were con-

ducted using 10-fold cross-validation with five repetitions. This rigorous evaluation

methodology ensures that the results are robust and reliable, reducing the likelihood

of overfitting and providing a more accurate estimate of the model’s performance on

unseen data.

3.2.3 Comparison with Baseline Models

The task at hand is not only viewed as a MIL problem, but also as a traditional binary

classification problem. This perspective involves working with the dataset in a one-hot

format, which is a common representation for categorical data. In this context, the aim

is to learn a transformation function g : X → [0, 1], where X = {(λi, oi)}|X|
i=1 is a set of

(feature, value) pairs as described in Grangier et al. [85]. The values in these pairs are

binary, representing the presence or absence of a feature.

In cases where a value is missing, a common approach is to impute a 0, symbolizing

the unknown condition. This method of handling missing data allows us to maintain

the binary nature of the dataset while acknowledging the lack of information.

To evaluate the effectiveness of the proposed method, a comparison was made against

several baseline models. The first four of these models were constructed using datasets

transformed into the one-hot format. This transformation process involves converting

categorical data into a format that can be more easily processed by machine learning

algorithms. The purpose of comparing the proposed method against these baseline

models was to demonstrate its superior performance in handling the binary classification

task.
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• Logistic Regression (LR) [110, 274]: LR is a classical linear model that has

seen extensive use in various applications. These include binary classification

tasks, the selection of risk factors, and the development of risk assessment

scales. Its widespread adoption can be attributed to its simplicity, interpretabil-

ity, and effectiveness in modeling the probability of a binary outcome.

• SVM [257]: The Support Vector Machine (SVM) method employs a non-

linear transformation to map the input space into a higher-dimensional space.

Within this transformed space, SVM constructs a series of hyperplanes to

carry out regression and classification tasks. This technique enables SVM

to effectively manage intricate patterns and relationships within the data. As

a result, SVM serves as a potent tool for both regression and classification

problems, adept at handling complex data structures.

• Random Forest [109] and XGBoost [46]: Random Forest and XGBoost

are quintessential decision tree-based algorithms that tackle classification and

regression tasks using bagging and boosting methods, respectively. These

algorithms have gained considerable recognition in the medical field owing

to their interpretability, swift training speed, and outstanding performance.

Random Forest, a bagging method, operates by creating an ensemble of

decision trees and aggregating their predictions. This approach enhances

the model’s stability and reduces the likelihood of overfitting. On the other

hand, XGBoost, a boosting method, builds decision trees sequentially, with

each new tree aiming to correct the errors made by its predecessor. This

strategy results in a robust model that can capture complex patterns in the data.

Both Random Forest and XGBoost are celebrated for their capacity to handle

diverse data types and complexities, making them versatile tools in predictive

modeling.
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• mi-Net [259]: A MIL neural network using the bag-level MIL pooling ap-

proach with the max operator.

• MI-Net, MI-Net with DS and MI-Net with RC [259]: They are all proposed

by Wang et al. using the instance-level MIL pooling approaches, which have

achieved state-of-art performance on several classic MIL datasets.

• Att. Net and Gated Att. Net [118]: Two recent state-of-art MIL neural

networks, utilizing the attention based MIL pooling on instance level to capture

the relations of instance attributes. This innovative approach allows for a more

nuanced understanding of the data, enhancing the model’s ability to make

accurate predictions.

Additionally, the hyperparameters of all baseline models were optimized based on

the AUC score with "Grid Search" method in cross-validation process. Specifically,

LR, SVM and Random Forest were employed using scikit-learn package in Python

and XGBoost was developed using xgboost package. The comprehensive parameter

descriptions for SVM, Random Forest, and XGBoost, which have been fine-tuned using

the Grid Search method, are presented below:

• SVM: In WM dataset, we the following hyperparameter set {kernel =

poly, degree = 2, gamma = scale, coef = 0.0, decision_function_shape =

over.} In TCM dataset, the hyperpatameter set is {kernel = rbf, degree =

3, gamma = scale, coef = 0.0, decision_function_shape = over}.

• Random Forest: In WM dataset, we the following hyperparameter set

{n_estimators = 50,max_depth = 3,min_sample_split = 2,max_features =

1.0, boostrap = True}. In TCM dataset, the hyperpatameter set is {n_estimators =

30,max_depth = 2,min_sample_split = 3,max_features = 1.0, boostrap =

True}.



64 3 AMI-NET

• XGBoost: In WM dataset, we the following hyperparameter set {n_estimators =

120,max_depth = 5,max_leaves = 8, learning_rate = 0.05,min_child_weight =

1, subsample = 0.7, colsample_bytree = 0.7}. In TCM dataset, the hy-

perpatameter set is {n_estimators = 120,max_depth = 7,max_leaves =

10, learning_rate = 0.035,min_child_weight = 1, subsample = 0.6, colsample_bytree =

1.0}

3.3 Results and Analysis

3.3.1 Comparison with Different Models

Table 2 and Table 3 present the performance results of AMI-Net and other models on

the two medical datasets. When evaluating the WM dataset, AMI-Net demonstrated

superior performance in terms of Precision and F1-score, as indicated in Table 2.

Notably, the F1-score achieved by the model was significantly higher compared to other

models, indicating a balanced performance between precision and recall. Although the

AUC and Accuracy scores were slightly lower than those of the four classical machine

learning algorithms, the overall performance of AMI-Net remained commendable.

In the context of the TCM dataset, which was highly imbalanced, AMI-Net outshone

all other models in terms of Precision, Recall, and F1-score. This demonstrates the

its robustness in handling imbalanced datasets, a common challenge in medical data

analysis.

In spite of the incomplete and low-quality nature of the two datasets, which at times even

lacked a sufficient number of positive samples, AMI-Net demonstrated greater resilience

and dependability compared to other models in these demanding circumstances. This
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TABLE 3.2: Model Performance on the WM Dataset

Models AUC Accuracy Precision Recall F1

LR 0.732 0.954 0.250 0.019 0.035

SVM 0.657 0.956 0.232 0.270 0.249

Random Forest 0.767 0.946 0.132 0.171 0.148

XGBoost 0.706 0.945 0.100 0.007 0.013

mi-Net 0.556 0.621 0.089 0.482 0.150

MI-Net 0.554 0.782 0.151 0.253 0.189

MI-Net+DS 0.512 0.601 0.025 0.303 0.046

MI-Net+RC 0.586 0.837 0.323 0.228 0.267

Att. Net 0.608 0.849 0.342 0.143 0.202

Gated Att. Net 0.576 0.832 0.248 0.140 0.179

AMI-Net 0.702 0.907 0.356 0.283 0.314

TABLE 3.3: Model Performance on the TCM Dataset

Models AUC Accuracy Precision Recall F1

LR 0.755 0.882 0.396 0.116 0.179

SVM 0.703 0.889 0.272 0.109 0.156

Random Forest 0.737 0.889 0.310 0.089 0.138

XGBoost 0.729 0.886 0.327 0.063 0.106

mi-Net 0.587 0.621 0.210 0.412 0.278

MI-Net 0.665 0.813 0.364 0.414 0.387

MI-Net+DS 0.586 0.731 0.358 0.290 0.320

MI-Net+RC 0.592 0.863 0.324 0.359 0.341

Att. Net 0.642 0.861 0.368 0.244 0.293

Gated Att. Net 0.607 0.755 0.319 0.354 0.336

AMI-Net 0.702 0.818 0.399 0.468 0.431

resilience sets AMI-Net apart from other models, showcasing its ability to handle

challenging data conditions.

Furthermore, multi-instance neural networks exhibited efficient and effective perform-

ance in terms of Precision, Recall, and F1-score. These networks excelled in extracting
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crucial information from positive samples, underscoring the advantages of MIL in

practical applications. This is particularly evident in the medical domain, where the

ability to glean insights from sparse and imbalanced data is of paramount importance.

The results of this study affirm the potential of MIL as a powerful tool for real-world

medical data analysis.

3.3.2 Comparison of Different Number of Heads

To investigate the impact of varying the number of heads in the multi-head attention

transformer on the performance of the proposed method, experiments were conducted

with 0, 2, 4, 8, 16, and 32 heads on both the TCM and WM datasets. Here, 0 signifies a

model without multi-head attention. The performance was evaluated using the F1-score.

As depicted in Figure 3.3, the optimal performance was achieved when the transformer

was configured with four heads. This suggests that partitioning the data into four

subspaces enabled the model to most effectively capture the intra-relations of symptoms.

Interpreted through the lens of medical knowledge, this implies that a patient’s condition

is best understood when considered from four distinct aspects, within which symptoms

exhibit high correlation.

Interestingly, this finding aligns with the data collection methodology of the TCM data-

set. Symptoms in this dataset were gathered using four diagnostic methods: inspection,

listening and smelling, inquiry, and pulse-taking. These methods represent four primary

aspects of a patient’s bodily condition, mirroring the four subspaces used in the model.

This congruence between the experimental result and the TCM diagnostic approach

underscores the relevance and applicability of the method in the context of TCM.
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Furthermore, the results revealed that the model without multi-head attention performed

the worst. This underscores the importance of identifying correlations among symptoms

and bridging the gap between standardized and unstandardized symptom expressions.

The multi-head attention mechanism plays a crucial role in achieving these objectives,

further validating its inclusion in the method.

FIGURE 3.3: Comparison of different number of heads. 0 denotes the
model without multi-head attention.

3.3.3 Comparison of Different MIL Pooling Methods

To evaluate the influence of various instance-level and bag-level Multi-Instance Learning

(MIL) pooling methods, the F1-scores resulting from different combinations of these

methods were compared. Prior studies have explored the use of max pooling [259]

and attention-based pooling [118]. In this study, the scope was extended to include

sum pooling, max pooling, and attention-based pooling. By comparing these different

pooling strategies, the goal was to identify the most effective approach for the specific

task.
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The outcomes of these comparisons are presented in Figures 3.4 and 3.5. The perform-

ance of sum pooling and gated-attention based pooling at both the instance-level and

bag-level outperformed other MIL pooling methods. This suggests that these methods

are particularly effective at capturing the nuances of the data.

Interestingly, the model employing max pooling at the instance-level demonstrated the

poorest performance. This result indicates that symptoms are interconnected across

various embedding dimensions. Relying on information captured in a single dimension

for diagnosis could lead to an incomplete understanding of the patient’s condition. This

underscores the importance of a multi-dimensional approach in capturing the complex

relationships among symptoms.

FIGURE 3.4: Comparison of different MIL pooling methods on the
TCM dataset.

3.3.4 Influence of Data Noise

Given that data from real-world studies often exhibit varying degrees of inaccuracy and

ambiguity, experiments were conducted to assess the robustness of the proposed model
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FIGURE 3.5: Comparison of different MIL pooling methods on the WM dataset.

against different data noise ratios, using the F1-score as the performance metric. Two

dimensions of data noise were considered: feature noise and label noise.

To simulate feature noise, 1, 2, 3, 4, and 5 symptoms in each training sample were

randomly altered. If a sample contained fewer symptoms than the required number to

be changed, new symptoms were randomly added. For label noise, the ratio of labels in

the training set was inverted from 0.1 to 1.0, incremented by 0.1 each time.

The impact of feature noise on different models is illustrated in Figure 3.6. Despite

random changes to some symptoms, the proposed method maintained superior per-

formance compared to all other models, with minimal fluctuations. The MIL methods

demonstrated more stable performance than all other machine learning algorithms,

attributable to their ability to capture and utilize effective information. This stability

underscores their reliability in real-world applications.

Figure 3.6 also presents the influence of label noise. As the proportion of inverted

labels increased, the F1-score converged around 0.2 and 0.1, respectively, when all

samples in the validation set were labeled as positive. Despite this noise, the proposed
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method consistently outperformed others, suggesting its superior resistance to noise.

This resilience further validates the robustness of the method in handling real-world

data complexities.

FIGURE 3.6: Test for the influence of feature and label noise

3.3.5 Influence of Incomplete Data

In this section, the performance of the proposed method, AMI-Net, was evaluated on

incomplete datasets. Simulated incomplete data was created by randomly deleting 1, 2,

3, 4, and 5 symptoms from each training sample. If a sample had fewer symptoms than

the number of deletions, all symptoms were removed. The F1-score was used as the

performance metric.
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The results, as depicted in Figure 3.7, indicated that AMI-Net exhibited greater ro-

bustness than all other models when confronted with incomplete data. This finding

is particularly significant as real-world scenarios often involve missing information

due to patients not undergoing all examinations or clinical measurements. Clinicians

frequently need to infer missing information based on their experience and know-

ledge during the diagnostic process. The proposed method offers a promising strategy

for handling such incomplete data, showcasing its resilience in the face of missing

information.

FIGURE 3.7: Test for the influence of incomplete data

3.3.6 Visualization of Attention

The gated attention-based MIL pooling layer in AMI-Net has the capability to select

the most informative instances, in this case, symptoms. To enhance the interpretability

of AMI-Net, the attention mechanism on two examples are visualized, as displayed in

Figure 3.8. The importance of each symptom is represented by color intensity, with

darker colors indicating higher importance.

In the WM dataset, factors such as "personal income 3000-5000", "unmarried", "length

of stay<25 days" and "MECT<=1" were found to be dominant predictors of schizo-

phrenia relapse.
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In the TCM dataset, for the prediction of meridian obstruction, symptoms such as

"decreased defecation", "urine color is yellow", "heavy legs" and "dropping" were

assigned larger weights, signifying their importance.

These visualizations provide valuable insights into the decision-making process of

AMI-Net, enhancing its interpretability and potential for practical application.

FIGURE 3.8: An example of informative instances selection

3.4 Summary

In this study, a novel attention-based multi-instance neural network, AMI-Net, was

proposed to tackle the challenges of medical diagnosis using incomplete and low-quality

data. The AMI-Net architecture encompasses two key components: capturing intra-

relations among instances and selecting crucial instances for the final classification.

This approach enables a more comprehensive understanding of the data, resulting in

improved diagnostic accuracy.

The experimental results showcased the superiority of the proposed method compared

to other models in real-world medical applications. AMI-Net outperformed alternative

models in terms of Precision, Recall, and F1-score, indicating its efficacy and efficiency.
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Additionally, the interpretability of AMI-Net was highlighted, offering valuable insights

into the decision-making process of the model.

Notably, AMI-Net demonstrated robust performance even under challenging conditions

characterized by noisy and incomplete data. This resilience makes it a valuable tool

for real-world medical scenarios, where data quality and completeness can often be

compromised.

In conclusion, this study establishes the effectiveness of AMI-Net in addressing real-life

medical diagnosis challenges. It contributes to the advancement of real-world medical

research by providing a promising solution for handling the intricacies and uncertainties

inherent in medical data. The findings affirm the potential of Multi-Instance Learning

methods in enhancing the accuracy and reliability of medical diagnoses, paving the way

for further research in this field.



CHAPTER 4

AMI-Net+

The ability to effectively handle and learn from incomplete and low-quality data is

pivotal in creating robust predictive models. The proposed AMI-Net demonstrates a

superior capability to effectively handle and learn from incomplete and low-quality data

in creating robust predictive models. However, despite its advantages, there are still

substantial challenges that need to be addressed to enhance the efficacy of AMI-Net.

One of the key challenges in AMI-Net lies in its MIL pooling mechanism. The

performance of predictive models depends heavily on the chosen MIL pooling method,

and, unfortunately, no single method is universally suitable for all data types. The

need to adjust the pooling method according to specific data cases is a significant

constraint on the model’s overall versatility, requiring additional customization and

thereby limiting efficiency.

Furthermore, the issue of handling imbalanced data has been inadequately addressed in

the current version of AMI-Net. As missing values in datasets increase, the sensitivity

and accuracy of the model display a decline. Imbalanced datasets, particularly those

with a high volume of missing values, significantly challenge the performance of the

model, raising concern about its reliability and applicability in real-world settings,

where such problems are commonplace.

74
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In response to the identified limitations of AMI-Net, a cutting-edge enhancement known

as AMI-Net+ is proposed. This novel algorithm uses AMI-Net as its foundational

architecture, building on its proven strengths while introducing innovative improvements

to address its inherent challenges.

The heart of AMI-Net+ is a newly developed, self-adaptive multi-instance pooling

method. This methodology operates at the instance level, generating a robust represent-

ation of the data bag. In contrast to static pooling techniques, the self-adaptive method

dynamically adjusts to the specifics of the data case, thereby providing a more tailored,

data-sensitive approach to capturing information from diverse instances within the bag.

This innovation enhances the accuracy of the bag representation and, consequently, the

performance of the model.

In terms of addressing the problem of imbalanced data, the integration of the focal

loss function into the neural network model is proposed. Traditionally, cross-entropy

has been the common choice for dealing with classification tasks. However, the focal

loss, originally proposed in the object detection community to address the issue of

extreme foreground-background class imbalance, provides a more efficient solution

for the purposes of this study. Focal loss has demonstrated superior performance in

scenarios characterized by high class imbalance. It cleverly reduces the attention placed

on well-classified instances while focusing more intently on the hard, less represented,

and misclassified ones.

The incorporation of focal loss into the AMI-Net+ architecture is designed to bolster

the model’s resilience against data imbalance, thereby increasing its robustness and

overall predictive accuracy. The integration of focal loss and the implementation of

the self-adaptive multi-instance pooling method are pivotal to the advancement of



76 4 AMI-NET+

AMI-Net+, enabling it to navigate the complexities of real-world data more efficiently

and effectively.

The detailed mechanics of these innovative elements, their integration into the model,

and their impact on the overall performance of AMI-Net+ will be meticulously described

in the ensuing chapter. It is believed that these innovations will make significant strides

in addressing the limitations of AMI-Net, pushing the boundaries of predictive learning

using incomplete and imbalanced datasets.

4.1 Model Architecture

The foundational architecture of AMI-Net+ is depicted in Figure 4.1, elucidating its

methodical process of data computation. This model is designed to receive a "bag"

of symptoms - referred to as instances - as its initial input, facilitating the model’s

understanding of the complexities inherent in each unique health scenario.

Each instance undergoes a transformative process beginning at the embedding layer,

where it is mapped to a dense vector, thus generating instance embeddings. This process

of embedding serves to convert the initial, often heterogeneous input data into a compact,

unified format that facilitates the model’s ability to draw meaningful inferences.

Subsequently, the model employs multi-head attention to analyze the instance em-

beddings. This mechanism is designed to scrutinize the information from multiple

perspectives, thereby enhancing the breadth and depth of the model’s understanding.

This step is further enhanced by layer normalization [11] and residual connection [103],

which work collectively to mine the correlations between the instances, thus yielding

valuable contextual insights.
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FIGURE 4.1: The overall architecture of AMI-Net+

Following these initial analytical steps, AMI-Net+ implements a series of fully connec-

ted layers, designed to estimate instance representations. This network of interconnec-

ted nodes facilitates a nuanced, comprehensive analysis of the instance embeddings,

drawing on the collective intelligence of the layers to generate intricate, detailed repres-

entations.

The resulting instance representations are then processed using the innovative self-

adaptive multi-instance pooling method at the instance level to construct the overall bag

representation. This technique dynamically adjusts to each instance, resulting in a more

precise and comprehensive representation of the bag of symptoms.

The computation of the bag score is handled by a unique, gated attention-based multi-

instance pooling mechanism, specifically designed to function at the bag level. This

advanced algorithm focuses on synthesizing the information in the bag representation

to calculate a comprehensive bag score.
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Ultimately, the model employs a sigmoid function and focal loss for supervision. The

sigmoid function serves to convert the output into a probability, facilitating binary

classification. In tandem with this, the focal loss is utilized to improve the model’s

handling of imbalanced data, as previously discussed.

4.1.1 Self-Adaptive Multi-Instance Pooling

In this study, a novel technique is proposed called self-adaptive multi-instance pooling,

designed specifically for instance-level attributes processing. The overarching goal

of this method is to effectively learn and construct a bag representation, which serves

as a comprehensive summary of the input instances, and is utilized in subsequent

classification tasks.

This process commences with the input of instance representations, each of which en-

capsulates a symptom or condition in the given medical scenario. These representations

are then processed through a variety of untrainable pooling methods. Instead of being

subject to change and refinement during the learning process, these pooling methods

provide consistent, reliable frameworks for data manipulation, each extracting a unique

bag representation from the instance inputs.

Conceptually, each bag representation can be seen as a ’view’ or a unique descriptive

perspective of the original bag of instances. The multiplicity of these views mirrors the

diversity and complexity of the input data, providing a holistic and nuanced portrayal

of the bag of instances.

Drawing inspiration from the principles of multi-view learning and ensemble learning,

a strategy is designed to integrate these varied bag representations. In this innovative
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approach, all bag representations are concatenated, creating a unified stream of inform-

ation. This concatenated data is then processed through a dense layer, which performs

the essential function of calculating a weighted sum of the different views.

The resultant weighted sum integrates the strengths of each individual view, harmonizing

them into a cohesive and balanced understanding of the bag of instances. In this way,

the model can benefit from the insights each pooling method offers, thereby maximizing

the informative value of the bag representation.

Through the deployment of self-adaptive multi-instance pooling, the aim is to enrich the

capacity of the model to learn from and accurately classify real-world medical features.

Let X be a bag of N instances with K dimensions, and we formulate this proposed

pooling method as:

∀j=1,2,...,N : view v = Pooling k=1,2,...,K {xj,k} (4.1)

SelfAdaptive = Concat v=1,2,...,V { view v}W v (4.2)

where W v ∈ RV×1, x ∈ X and V is the number of selected pooling methods. In this

study, a diverse set of pooling techniques is performed, namely, max pooling, mean

pooling, sum pooling and log-sum-exp pooling.
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4.1.2 Focal Loss for Imbalanced Data

In the quest to address the pervasive problem of extreme data imbalance, an innovative

modification to the loss function is proposed. Specifically, the conventional cross-

entropy loss is suggested to be substituted with a more tailored alternative, the focal

loss, as referenced in the literature[144]. The unique advantage of the focal loss function

is its ability to steer the model’s focus towards the difficult and misclassified samples.

Upon completion of each feed-forward pass in the network, a predicted bag probability,

represented as ypred, is obtained. The corresponding true bag label is given by ytrue.

This juxtaposition of predicted and true outcomes is a crucial component in determining

the accuracy of the model’s predictions and thereby its performance.

To optimize the AMI-Net+ model and further hone its predictive capability, the focal

loss function is incorporated into the network’s training process. This decision is driven

by the focal loss function’s unique ability to alleviate the problem of extreme data imbal-

ance, a common and vexing issue in many medical applications. The focal loss function

is specifically designed to down-weight the contribution of easy-to-classify examples

and amplify the importance of those that are hard to classify or often misclassified.

The computation of the focal loss function in the AMI-Net+ model is as follows:

pt =


ypred if ytrue = 1

1− ypred if ytrue = 0

(4.3)

FocalLoss = −α (1− pt)
γ log (pt) (4.4)
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where γ ≥ 0 reduces the loss contribution of easily classified samples, and α is a

balance factor. In the experiments, it is found that γ = 2 and α = 0.25 achieved

the best performance. This revised loss function serves as a key ingredient in the

AMI-Net+ model, enhancing its robustness and versatility in handling diverse and

imbalanced datasets. By focusing on the challenging and often neglected samples,

the model can yield more nuanced and accurate predictions, ultimately improving its

overall performance in real-world medical applications.

4.2 Experiments

4.2.1 Data Description

To thoroughly evaluate the performance and resilience of the AMI-Net+ model, me-

ticulous testing was carried out using the identical datasets deployed in the AMI-Net

trials. These consist of two authentic medical datasets, each drawn from distinct med-

ical paradigms — Traditional Chinese Medicine (TCM) and Western Medicine (WM).

Illustrative examples of these datasets are provided in Table 4.1. It is notable that the

TCM dataset exhibits a notable imbalance, with a total of 1436 control patients and

a significantly smaller subset of 181 case patients. The WM dataset also displays a

pronounced imbalance, possessing a mere 224 positive labels amongst a pool of 3927

patients, which translates to a scant positive rate of 0.057.

These diverse datasets, with their inherent complexity and imbalance, provide a chal-

lenging yet fitting environment to evaluate the performance and adaptability of the

AMI-Net+ model. The results derived from these evaluations will offer valuable insights

into the model’s predictive performance and its ability to handle real-world medical

data.
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TABLE 4.1: Examples of TCM and WM datasets

Dataset Features Diagnosis

TCM
Urine color yellow, Sweat, Pruritus, Coldness of
extremities, Perspiration

Meridian obstruction

Dark red tongue, Palpitation Not meridian obstruc-
tion

WM
Personal income 3000 5000, Unmarried,
LOS<10 days, MECT<=1, Onset age<17, Total
course<1095 days, Lorazepam tablets=0.5mg

Schizophrenia relapse

Personal income 1000 3000, Married, High
levels of prolactin, hyperglycemia, High levels
of corticotrophin, LOS 25 49 days, MECT
1 10, Onset age 1-10, Risperidone<=1mg, Total
course 1095 5840 days, Haloperidol injection
5mg

Not relapse

4.2.2 Experimental Setup

For the analysis, the first step involved padding each record to match the maximum

length and then transforming each medical feature or symptom into a 512-dimensional

dense vector using an embedding process. Multi-head attention mechanisms were

employed in the model, utilizing 4 and 8 heads respectively for the Traditional Chinese

Medicine (TCM) and Western Medicine (WM) datasets. Subsequently, two fully

connected layers were implemented, each with hidden sizes of 256 and 128 respectively.

To manage the prevalent issue of extreme imbalance, focal loss was integrated, with the

parameters α and γ set at 0.25 and 2, respectively. The Adam optimizer was applied to

minimize the focal loss over the training data, with a learning rate of 1e−5, ϵ of 1e−8,

and momentum parameters β1 and β2 designated as 0.9 and 0.98 respectively.

The evaluation metrics comprised the Area Under the Curve (AUC), Accuracy, Precision,

and Recall. During the training process, the number of epochs was set at 500 and the
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batch size at 64. An early stopping strategy was also incorporated to select the optimal

model based on the AUC score.

To facilitate a fair comparison of the model with other methodologies, experiments were

conducted employing a 5-fold cross-validation approach. Several baseline models were

used for comparison, including logistic regression (LR), support vector machine (SVM),

random forest (RF), XGBoost (XGB), mi-Net, MI-Net, MI-Net with DS, MI-Net with

RC, and attention and gated attention based multi-instance neural networks (Att. Net,

Gated Att. Net). Among these, LR, SVM, RF, and XGB are traditional machine

learning algorithms constructed on the dataset in a one-hot format with zero imputation.

Moreover, the parameters of the baseline models were fine-tuned according to the AUC

scores obtained from the validation dataset.

This diverse selection of comparison models and comprehensive training regimen

enables a rigorous test of the robustness and efficacy of the proposed AMI-Net+ model.

The results obtained will provide valuable insights into the model’s performance, its

relative strengths, and areas of potential improvement.

4.3 Results and Analysis

4.3.1 Comparison with Baseline Models

Table 4.2 presents a comparison of the proposed model’s performance with that of

several baseline models. It is noteworthy that the method outperforms the others in

terms of both the Area Under the Curve (AUC) and recall scores. This demonstrates

the model’s exceptional ability to extract informative features, even from a very limited

number of positive samples.
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This capability is especially crucial in the realm of medical diagnosis. It is of paramount

importance that diseases are not overlooked in any patient. However, the collection

of sufficient positive samples presents a considerable challenge. Two widely used

algorithms, Random Forest (RF) and XGBoost (XGB), were unable to identify any

positive samples within the evaluation dataset, further underlining the significance of

the model’s performance.

Furthermore, a comparison of Precision, AUC, and Recall scores between Multi-

Instance Neural Networks (MINNs), including mi-Net, MI-Net, and Attention Network

(Att. Net), and classical machine learning methods such as Logistic Regression (LR),

Support Vector Machine (SVM), RF, and XGB, indicates the superior performance

of MINNs. This reinforces the assertion that Multi-Instance Learning (MIL) methods

hold a greater potential for successful implementation in many real-world applications,

especially within the medical domain.

The superior performance of the proposed AMI-Net+ model in terms of precision, AUC,

and recall underscores its potential utility in medical applications. The results suggest

that AMI-Net+ could potentially revolutionize the domain of medical diagnostics,

significantly improving the detection and management of diseases, ultimately leading

to improved patient outcomes.

4.3.2 Comparison of AMI-Net+ with Different Number of Heads

In this section, the objective is to evaluate the effect of varying the number of heads

within the multi-head attention mechanism on model performance. This experiment

was performed on both the Traditional Chinese Medicine (TCM) and Western Medicine

(WM) datasets, employing configurations with 0, 4, 8, 16, and 32 heads. In this context,
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TABLE 4.2: Performance comparison on TCM and WM datasets.

Models
TCM WM

AUC Accuracy Precision Recall AUC Accuracy Precision Recall

LR 0.760 0.944 0.200 0.017 0.755 0.882 0.396 0.116

SVM 0.657 0.946 0 0 0.703 0.889 0 0

RF 0.767 0.946 0 0 0.737 0.889 0 0

XGBoost 0.706 0.945 0.100 0.007 0.729 0.886 0.327 0.063

mi-Net 0.565 0.624 0.088 0.469 0.597 0.641 0.220 0.422

MI-Net 0.545 0.787 0.154 0.251 0.665 0.813 0.364 0.414

MI-Net with DS 0.510 0.621 0.045 0.383 0.586 0.731 0.358 0.290

MI-Net with RC 0.588 0.867 0.313 0.228 0596 0.861 0.353 0.358

Att. Net 0.608 0.849 0.342 0.143 0.642 0.861 0.368 0.244

Gated Att. Net 0.576 0.832 0.248 0.140 0.607 0.755 0.319 0.354

AMI-Net 0.702 0.907 0.356 0.283 0.702 0.818 0.399 0.468

AMI-Net+ 0.774 0.779 0.301 0.689 0.761 0.802 0.165 0.644

’0’ signifies a model configuration that does not incorporate multi-head attention. The

model’s performance was assessed using the AUC score as the metric.

As illustrated in Figure 4.2, the model lacking multi-head attention demonstrated a

considerably weaker performance compared to the other configurations. This disparity

highlights the critical role multi-head attention plays in identifying the correlations

among clinical features prior to the classification task.

Moreover, when examining the performance on the WM dataset, the model equipped

with 8 heads was found to be the optimal choice. This implies that clinical features in

the WM dataset exhibit correlations predominantly along eight dimensions. In contrast,

the model achieved peak performance on the TCM dataset when configured with 4

heads. This indicates an efficient exploration and identification of symptom correlations

in the TCM context.
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Hence, the findings support the application of multi-head attention in the model, while

also emphasizing the importance of adjusting the number of attention heads to match

the complexity and dimensional interdependencies of the dataset.

FIGURE 4.2: Comparison of AMI-Net+ with different number of heads
in the multi-head attention.

4.3.3 Comparison of AMI-Net+ with Different Multi-Instance

Pooling Methods

In this analysis, the impact of using various multi-instance pooling methods at the

instance level on the model’s performance, as measured by the AUC score, is investig-

ated. Prior research [118, 263] has demonstrated the superiority of both max pooling

and attention-based pooling, leading to the selection of these methods as baseline

approaches for comparison.

The results, as illustrated in Figure 4.3, clearly demonstrate the effectiveness of the

proposed pooling method, which exhibits superior performance compared to the others.

This highlights the notion that a well-crafted pooling strategy can significantly enhance
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the efficiency and accuracy of multi-instance learning models in medical diagnosis

tasks.

Interestingly, it is found that max pooling yields the least impressive performance. This

underscores the limitation of relying solely on capturing information from a single

embedding dimension when representing an instance. The simplistic approach of max

pooling may disregard critical information present in other dimensions, resulting in

suboptimal representations and poorer performance.

The proposed method effectively addresses this issue by employing a more complex

and informative strategy that preserves the necessary multi-dimensionality of instances.

Thus, these findings strongly advocate for the utilization of sophisticated multi-instance

pooling methods to fully capture the nuanced information contained within medical

instances and to maximize the potential of predictive models in healthcare applications.

FIGURE 4.3: Comparison of AMI-Net+ with different multi-instance
pooling methods on instance level.
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4.3.4 Evaluation of Focal Loss

To elucidate the functionality and effectiveness of focal loss (FL), a comparative study

is conducted on the model’s performance with both focal loss and cross-entropy loss

(CE) across the two datasets. Table 4.3 presents the comparative results, revealing the

superior capabilities of the model utilizing FL in correctly identifying positive samples

as compared to the one deploying CE.

Although the model with FL records lower Accuracy and Precision scores than the

counterpart with CE, it’s crucial to consider the context of the extreme data imbalance

in the datasets. In such scenarios, the Recall score becomes a paramount indicator due

to its focus on the capability of the model to correctly identify positive cases, which is

a crucial requirement in medical diagnosis. If all predictions are naught, an Accuracy

score of 0.946 can still be achieved, thereby illustrating its lack of reliability in such

imbalanced contexts.

Generally, the incorporation of FL into the model manifests a simplified yet remarkably

effective solution to address the challenge posed by extremely imbalanced data. By

specifically mitigating the disproportionate focus on the majority class, FL assists the

model in emphasizing harder, misclassified cases, thereby improving the performance

in identifying rare, but often critical, positive instances. This strategy is particularly

valuable in medical settings where missing a positive diagnosis could have significant

consequences, thus asserting the superiority of FL in such applications.

TABLE 4.3: Performance comparison of focal loss and cross-entropy loss.

Loss
TCM WM

AUC Accuracy Precision Recall AUC Accuracy Precision Recall

FL 0.774 0.779 0.301 0.689 0.761 0.802 0.165 0.644
CE 0.746 0.863 0.391 0.394 0.707 0.939 0.398 0.204
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4.4 Summary

This study addresses the dual challenge of incomplete and extremely imbalanced data

through the development of AMI-Net+. The architecture of this network incorporates a

multi-head attention mechanism coupled with a gated attention-based multi-instance

pooling method. This integration facilitates efficient capture of symptom correlations

and their informative elements. To enhance the model performance, a novel instance-

level multi-instance pooling method is proposed to achieve improved bag representation.

Additionally, the traditional cross-entropy loss is replaced with focal loss, a more

effective method for handling severe class imbalance.

The experimental findings convincingly demonstrate the superior performance of the

proposed method compared to a range of baseline models, as evidenced by higher

AUC and Recall scores. This performance superiority highlights the importance of the

AMI-Net+ model and its associated mechanisms in addressing the unique challenges of

medical data.

Beyond theoretical constructs, this research validates the practical applicability and

efficacy of AMI-Net+ in real-world medical applications. It proves to be a promising

tool for handling the unique challenges of real-world medical data, characterized

by imbalances and incompleteness. Furthermore, it sets a significant precedent for

future research in this domain, providing a solid foundation and insightful direction for

developing innovative solutions to address other complex data problems.



CHAPTER 5

AMI-Net3

Despite the notable performance of both AMI-Net and AMI-Net+, their practical

application has been primarily confined to binary data, thus limiting their potential

influence in real-world situations. In response to this constraint and with an aim to

amplify their predictive prowess, a novel framework called AMI-Net3 is introduced in

this chapter.

Within AMI-Net3, the problem is approached by viewing each patient as a bag populated

with varying numbers of feature-value pairs, referred to as instances. Leveraging the

proposed feature embedding technique, these instances are mapped to an embedding

space as demonstrated in Figure 5.1. This direct learning methodology equips the

predictive models with the capability to naturally attenuate the detrimental impact

of missing data. Furthermore, an innovative architecture called the Multi-Instance

Neural Network (MINN) is introduced, which excels at managing redundant and highly

correlated features. MINN integrates an attention mechanism designed to discern

informative features and their interconnections, providing empirical evidence within a

clinical context.

To optimally tune AMI-Net3, all transformations are parameterized using neural net-

works under both primary and auxiliary supervision, harnessing the focal loss function

as elucidated by Lin et al. [144]. Initially conceived for object detection tasks, focal

90
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loss adeptly addresses severe class imbalance by concentrating on difficult, infrequent,

and misclassified instances.

In the experimental evaluations, the performance of AMI-Net3 is assessed across three

diverse datasets extracted from real-world scenarios. Each dataset corresponds to

distinct clinical risk prediction tasks, specifically: adverse drug reaction of risperidone,

schizophrenia relapse, and invasive fungal infections. The results unambiguously

demonstrate that the proposed AMI-Net3 framework substantially outperforms other

competitive baseline models across all three medical datasets.

Beyond its performance, the AMI-Net3 framework presents an innovative paradigm

capable of harnessing deep learning techniques drawn from various domains, such as

computer vision (CV) and natural language processing (NLP), to address challenges

posed by real-world clinical risk prediction applications. This novel approach promises

to facilitate the development of advanced systems, including mortality prediction and

adverse drug reaction warning systems. By addressing these pivotal challenges, AMI-

Net3 contributes to the field of medical data analysis and paves the way for future

research in real-world clinical risk prediction.

5.1 Proposed Method

To address the issue of low-quality medical data in real-world settings, a novel frame-

work called AMI-Net3 is presented. The approach begins by introducing a unique

methodology to transform and standardize the raw data. Consequently, each patient,

denoted as (χ, γ), can be represented as a collection of n observable feature-value pairs,

i.e., χ = (f1, v1), (f2, v2), . . . , (fn, vn), where vj ∈ R and fj (j = 1, 2, . . . , n) repres-

ents a binary, nominal, ordinal, or continuous feature. The objective of the research is

to train a classifier that can accurately predict γ = 0, 1 based on the input set χ.
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FIGURE 5.1: Continuous and ordinal features are referred to as CF,
while binary features or those obtained through one-hot decoding from
nominal features, such as headache, diagnosis, and medication history,
are denoted as BF. The proposed feature embedding technique enables
the method to effectively convey a comprehensive patient narrative in an
informative embedding space using only observed data. Subsequently,
the MINN algorithm analyzes the available information and generates
the final output. The entire process is trained concurrently with both
main and auxiliary supervision to ensure optimal performance.

The approach adopts the Multi-Instance Learning (MIL) paradigm, treating χ as a

bag with the corresponding label γ, and the observed feature-value pairs as instances

within the bag. To model this, a two-level strategy is employed. The first level involves

generating embedding vectors, denoted as Gf = G(fj, vj) ∈ Rd, of d dimensions

for each instance using the proposed feature embedding method. The second level

introduces a novel Multi-Instance Neural Network (MINN) that aggregates valuable

information from the instances to compute the bag probability p(χ|γ). These two

modeling components are parameterized and trained jointly in an end-to-end manner.

The overall architecture is illustrated in Figure 5.2.
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FIGURE 5.2: The comprehensive architecture of AMI-Net3 comprises
two components for model training: auxiliary supervision and main su-
pervision. Auxiliary supervision involves two shallow neural networks
specifically designed for bf and cf respectively. On the other hand, the
main supervision part consists of the primary computational modules,
where 2*Conv1D represents the application of two-layer convolutions.
Both components utilize the focal loss function to optimize the perform-
ance of AMI-Net3.

5.1.1 Feature Transformation and Standardization

AMI-Net3, the proposed model, primarily learns from static datasets, specifically tabular

data, where the feature vectors are all 1-dimensional and can be either continuous or

discrete. To ensure the suitability of these features for AMI-Net3, two strategies are

used for feature transformation and standardization, taking into account their distinct

types. Refer to Figure 5.3 for an illustration of these strategies.

• Binary and Nominal Features (BF): In order to incorporate nominal features

into the analysis, a two-step process is followed. Initially, the nominal features

are transformed into binary representations using one-hot encoding. These
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FIGURE 5.3: To illustrate the process of feature transformation and
standardization for both binary features (BF) and continuous/ordinal
features (CF), a concrete example is provided. It is worth noting that, in
this analysis, only BF entries that have received positive responses are
considered for further investigation.

newly created binary features are then combined with the existing binary

features. The combined set is denoted as f b
1 , v

b
1, f

b
2 , v

b
2, . . . , f

b
n′ , vbn′ , where

vb ∈ 0, 1 and n′ represents the number of features in the binary feature set

(BF). For each patient, the value vb determines the inclusion or omission of

the corresponding binary feature f b. Specifically, if vb = 0, f b is excluded

from the feature set. Conversely, if vb = 1, the pair f b, vb is replaced simply

by f b. This process ensures that only relevant binary features are retained for

further analysis, taking into account their corresponding values.

• Continuous and Ordinal Features (CF): Regarding the continuous and

ordinal instances, a designed feature standardization algorithm is employed to

ensure uniform scaling across the data. This algorithm effectively standardizes

the instances to a common scale ranging from -1 to 1. (Refer to Algorithm 1

for a detailed description of the standardization process.) It is important to note
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that missing values are not considered during the computation. Furthermore,

to prevent any potential issues resulting from subtracting two elements that are

both equal to 0 within each formula, a hyper-parameter denoted as τ = 1e−8

is introduced. This parameter serves the purpose of ensuring stability and

mitigating any potential mathematical complications that could arise during

the standardization process.

Following the process of feature transformation and standardization, each patient (χ,

γ) can be represented as a collection of observed feature-value pairs, forming a bag
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of instances denoted as χ = f b
1 , f

b
2 , . . . , f

b
n1
, (f c

1 , v1), (f
c
2 , v2), . . . , (f

c
n2
, vn2). The bag

label, γ, is a binary value indicating the class label, taking values of either 0 or 1.

In this representation, f b
n1

belongs to the binary feature set (BF), f c
n2

corresponds to

the continuous and ordinal feature set (CF), vn2 represents the respective feature value

which can be a real number, and n1 and n2 denote the number of instances from the

BF and CF, respectively. This standardized format serves as the input structure for

AMI-Net3 model, providing a consistent and unified representation of patient data.

5.1.2 Feature Embedding

The process of feature embedding, visually demonstrated in Figure 5.4, is crafted to com-

pute a unique parameter vector, more specifically referred to as the ’embedding vector’,

for each instance nestled within the bag χ = f b
1 , f

b
2 , . . . , f

b
n1
, (f c

1 , v1), (f
c
2 , v2), . . . , (f

c
n2
, vn2).

Here, each embedded parameter is construed as a distinct attribute of the respective

instance.

This methodology parallels feature transformation and standardization approaches in

which bf = f b
j j = 1n1 and cf = f c

j , vjj = 1n2 are separately addressed using two

divergent strategies. For any f b ∈ bf , a dense vector is systematically parameterized

with d dimensions:

g(f b) = Lfb (5.1)

where Lfb = {w1, w2, . . . , wd} and ∀wj ∈ Lfb , wj ∈ R. About (f c, v) ∈ cf , it is

mapped to an embedding space of d dimensions using the following transformation:
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g(f c, v) = W c(vLfc/d) (5.2)

where W c ∈ Rd×d, Lfc = {w1, w2, . . . , wd} and ∀wj ∈ Lfc , wj ∈ R. W c designates a

weight matrix specifically constructed for the task of controlling distribution, which

judiciously allocates disparate attention weights across instance attributes. This alloca-

tion, in turn, modulates their individual contributions towards a more effective depiction

of the instance. Concurrently, Lfc represents a parameter vector, configured to signify

the presence of f c, and then incorporates a multiplication by v to indicate its value.

Within this context, the dimension d serves as a scaling factor, playing a crucial role in

stabilizing the back propagation during the training process.

Once the embedding vectors from bf and cf have been obtained, they are combined and

further processed to generate the output of the feature embedding module. To ensure

appropriate normalization, layer normalization [11] is applied to the combined vectors.

This step helps to stabilize and standardize the output, facilitating subsequent analysis

and processing of the feature embeddings.

Gf = LayerNorm
([
g(f b), g(f c, v)

])
(5.3)

The technique of feature embedding, as applied in AMI-Net3 methodology, exhibits

superior flexibility and efficacy. It is uniquely equipped to handle different feature types,

and adeptly encodes all discernible information into an embedding space.

Furthermore, it’s important to note the parallels between AMI-Net3 and prevalent Nat-

ural Language Processing (NLP) methodologies. In many current NLP practices, input

words are represented by embedding vectors through techniques such as Word2Vec

[170] or various pre-trained models [1]. These representations serve as the basis for
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FIGURE 5.4: The objective of the feature embedding module is to
assign a unique parameter vector to each input instance. These parameter
vectors represent the instance attributes and are subsequently subjected
to multi-head attention for further processing. The aim is to capture the
specific characteristics of each instance and enable effective attention-
based operations to extract meaningful information from the input data.

subsequent processing stages, mirroring the method employed. Thus, the feature

embedding technique demonstrates a promising capacity to synergize with NLP tech-

niques. A prime example is multi-head attention, a tool seamlessly integrated into the

methodology to reveal concealed correlations between instances.
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5.1.3 Gated Attention-based MIL Pooling

As previously discussed, trainable Multi-Instance Learning (MIL) pooling methods

provide an effective means of consolidating instance-level or bag-level information

within the neural network. As such, in the proposed Multi-Instance Neural Network

(MINN), attention-based MIL pooling is incorporated. This method, heralded as a

cutting-edge trainable pooling approach [118], offers notable benefits.

The primary objective of gated attention-based MIL pooling is to assign weights and

compute the weighted sum across the attributes of an instance (that is, the instance

embedding) or the instances contained within a bag (i.e., bag embedding). Let’s consider

an example bag T , consisting of K instances resulting from previous operations,

such that T = t1, t2, . . . , tK . Each instance tk is defined as a set of attributes tk =

tk,1, tk,2, . . . , tk,S where k spans from 1 to K and S represents the total number of

instance attributes. Utilizing the attention mechanism (Att), the instance embedding zk

is computed as follows:

zk =
S∑

j=1

ak,stk,s (5.4)

ak,s =
exp {tanh (w1tk,s)w2}∑S
s′=1 exp {tanh (w1ts′)w2}

(5.5)

where w1, w2 are parameters. Furthermore, the bag embedding z can be obtained by

introducing an additional gate mechanism (Gated Att) [57]:

z =
K∑
k=1

akzk (5.6)

ak =
exp {(tanh (w3zk)⊙ sigmoid (w4zk))w5}∑K

k′=1 exp {(tanh (w3zk′)⊙ sigmoid (w4zk′))w5}
(5.7)
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where w3, w4, w5 are also parameters, optimized by neural network. The element-wise

multiplication ⊙ and sigmoid function form the gate mechanism that improves the

non-linearity learning ability via information flow controlling and data adjusting. Also,

it eliminates the troubling linearity that the tanh function brings [57].

During the computation of bag embeddings, attention-based MIL pooling is utilized to

assign higher weights to instances that are more likely to be positive. This mechanism

not only enables the selection of important feature-value pairs but also enhances the

interpretability of the results generated by MINN. This interpretability is crucial for

clinical risk prediction tasks where understanding the contributing factors is necessary.

Finally, the bag embedding z is fed into a sigmoid function to predict the positive

probability p(χ|γ). This step ensures that the output probability is within the range of 0

to 1, providing a meaningful and interpretable prediction of the likelihood of positive

instances in the bag.

5.1.4 Model Training

The objective of model learning in AMI-Net3 is to optimize the selection of parameter

matrices, which are initially randomly initialized, in both the feature embedding and

MINN modules. To enhance the learning process, AMI-Net3 is trained using two com-

plementary strategies: the main supervision and a novel approach named as auxiliary

supervision. Furthermore, to address the challenge of imbalanced data, AMI-Net3 em-

ploys the focal loss as the chosen loss function. This loss function effectively handles

the imbalanced nature of the data and aids in achieving improved performance for

learning task.
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5.1.4.1 Auxiliary Supervision

The concept of auxiliary supervision is borrowed from the multiple teacher network

methodology [279], where both auxiliary and main supervision act as dual educators,

offering a comprehensive guidance system for model training. Unlike main supervision,

which is implemented across the entire framework, auxiliary supervision is targeted

specifically at the feature embedding portion of the model. This focus helps to expedite

feedback turnaround and aids in the learning of more suitable embedding weights.

Furthermore, in the realm of auxiliary supervision, separate treatment is maintained for

bf and cf . Distinct supervisions for each are provided by utilizing two separate shallow

neural networks (SNNs). This approach allows for a more customized and effective

supervisory system:

SSN(x) = (Flatten (xW1 + b1)W2 + b2)W3 + b3 (5.8)

where W1,W2 ∈ Rd×(d/4) and W3 ∈ R(d/4)×1.

At last, to optimize AMI-Net3, the auxiliary and main supervisions lead to the following

training loss function:

L (χ) = δL1 (bf) + ηL2 (cf) + µL3 (χ) (5.9)

where χ = [bf, cf ], bf = {f b
j }

n1
j=1 and cf =

{
f c
j , vj

}n2

j=1
. To fine-tune the model’s

attention on different sub-tasks, three balancing factors, namely δ, µ, and η, are intro-

duced. These factors play a crucial role in adjusting the model’s focus during training.

Moreover, to optimize the model’s performance, three loss functions, denoted as L1,

L2, and L3, are computed using the focal loss. This choice of loss functions allows for
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effective handling of imbalanced data and facilitates the achievement of desired results

across multiple sub-tasks.

5.1.4.2 Focal Loss

Focal loss, as proposed by Lin et al. [144], was originally designed to address the issue

of severe class imbalance commonly encountered in object detection tasks. It accom-

plishes this by reformulating the standard cross-entropy loss function, consequently

reducing the influence of well-classified instances while assigning greater importance

to those instances that are difficult to classify. Guided by this approach, focal loss is

employed in the optimization of AMI-Net3, aiming to enhance the model’s proficiency

in the detection of positive bags.

Following each forward propagation, the bag probability, represented as p (χ|γ), is

derived either from the main supervision or the auxiliary supervision, utilizing the

ground truth label γ. For the scope of this work, focal loss is implemented for binary

classification. The execution of this process is as follows:

pt =

 p (χ|γ) if γ = 1

1− p (χ|γ) if γ = 0
(5.10)

FocalLoss = −α (1− pt)
γ log (pt) (5.11)

where α is a weighting factor, balancing the importance of positive and negative labels.

Additionally, the term (1 − pt)
γ serves as a modulating element, where γ ≥ 0 is a

tunable parameter. This element effectively reduces the loss contribution of examples

that are relatively easier to classify. By incorporating this mechanism, the impact of

easily classified examples on the overall loss is attenuated, allowing the model to focus

more on challenging instances and improving its overall performance.
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5.2 Experiments

5.2.1 Data Description

Distinct from AMI-Net and AMI-Net+, which are confined to modeling binary features,

AMI-Net3 demonstrates versatility in handling multiple feature types. Thus, to ensure

an equitable evaluation of the proposed methodology, three static inpatient datasets,

collected by Medicinovo Inc. from hospitals in Beijing and Shanghai, China, are

employed. These datasets incorporate non-sequential attributes such as diagnosis

codes, demographics, and physical test results at the time of admission. Each dataset

aligns with a separate clinical risk prediction task, namely, adverse drug reaction of

risperidone (ADR), schizophrenia relapse (SR), and invasive fungi infection (IFI).

Unlike its predecessors that exclusively process binary features, the AMI-Net3 model

possesses the capability to process a variety of feature types concurrently. Consequently,

the datasets utilized in AMI-Net3 experiments are newly assembled, distinguishing

them from those utilized in the AMI-Net and AMI-Net+ experiments. Despite these

differences, all datasets retain a common trait: they epitomize low-quality, real-world

data beset by comparable data quality challenges.

The datasets originate from real-world settings and exhibit several low-quality issues,

including:

• Extreme Class Imbalance: The positive class rates for the three datasets are

only 0.10, 0.23, and 0.03, respectively.

• High-Dimensional Feature Space: Each of the three datasets contains a large

number of features that exceed the true number of features relevant for clinical

risk prediction tasks. Specifically, the datasets consist of 82, 614, and 67

features, respectively.
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• Incomplete Data: The average rates of missing values in the feature vectors

are 14.5%, 86.3%, and 35.4% for the three datasets, respectively. Furthermore,

within each patient, the maximum observed features account for 57, 72, and

34 out of the total 82, 614, and 67 features, respectively.

The detailed statistics of three data sets are shown in Table 5.1.

TABLE 5.1: Statistics of Data sets

Data set ADR SR IFI

Total Patients 5644 1032 4899

Positive Labels 548 240 136

Negative Labels 5096 792 4763

Total Features 82 614 67

Number of BF 33 525 50

Number of CF 49 89 17

Max. Observable Features 57 72 34

Avg. Missing Rate 14.5% 86.3% 35.4%

5.2.2 Experimental Setup

Upon transformation from raw data, instances within each bag are symbolized by

embedding vectors comprising 512 dimensions, with their interrelations apprehended

through a multi-head attention configuration consisting of eight heads. Under the

purview of main supervision, the two-layer convolutional operation comprises of 256

and 128 dimensions respectively. With regards to the auxiliary supervision via the

Shallow Neural Network (SNN), both layers maintain hidden sizes of 128 dimensions.

Focal loss parameters are denoted as α and γ, with values set at 0.25 and 2 respectively.

The training loss function incorporates weight balancing factors δ, µ, and η, assigned

the values 0.2, 0.3, and 0.5 respectively. Ultimately, the proposed method is optimized
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using the Adam optimization algorithm [131], setting ϵ to 1e−8, with the momentum

parameters β1 and β2 defined at 0.9 and 0.98.

In terms of the application of the proposed method across the three datasets mentioned

earlier, parameters remain consistent barring variations in the number of epochs and the

learning rate. For the Adverse Drug Reaction (ADR), Schizophrenia Relapse (SR), and

Invasive Fungal Infection (IFI) datasets, the respective epoch, learning rate pairs are as

follows: 600, 1e−6, 300, 1e−5, and 300, 1e−6, with a batch size of 64 being maintained.

To ensure an equitable comparison, a 5-fold cross-validation is utilized, in tandem with

the implementation of "early stopping" during training as dictated by the AUC score.

5.2.3 Baseline Methods

To validate the effectiveness of AMI-Net3, it is compared with a series of baseline

methodologies, namely:

• Without Data Imputation: Missing values can be considered as a condition

in developing decision rules, and under this assumption, we implement three

advanced tree based methods for comparison, LightGBM, XGBoost, and

CatBoost. To optimise their performance, these methods are paired with an

automated machine learning (AutoML)1 strategy [242], ensuring automatic

hyper-parameter selection.

• With Data Imputation: In this scenario, missing values are addressed us-

ing a variety of imputation techniques including zero, median, mice [36],

1https://github.com/ClimbsRocks/auto_ml

https://github.com/ClimbsRocks/auto_ml
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random forest (RF) [186], and KNN [17]. Subsequently, AutoML2 is independ-

ently applied to the three datasets to identify optimal base models and their

corresponding hyper-parameter sets.

• MINNs with Feature Embedding: Beyond the classification methods men-

tioned, AMI-Net3 is further contrasted against leading-edge Multi-Instance

Neural Networks (MINNs), including mi-Net, MI-Net [259], Att-Net and

Gated Att-Net [118]. In order to facilitate their operation, these networks are

integrated with the proposed feature embedding approach. All leverage the

focal loss function, boosting their resilience to imbalanced data, thus elevating

their competitiveness.

5.3 Results and Analysis

5.3.1 Performance on Clinical Risk Prediction

The comparative results of AMI-Net3 with baseline methods across three clinical risk

prediction tasks are presented in Table 5.2. Considering the substantial imbalance in the

three training datasets, AUC and F1-score are employed as the evaluation metrics for

all models to gauge their overall performance and capacity to identify positive samples,

respectively.

As depicted, AMI-Net3 consistently outperforms all baseline methodologies. Navigat-

ing imbalanced datasets to achieve a balanced focus on positive and negative samples

is challenging. However, the method exhibits superior capability in this aspect, as

evidenced by its F1-score that significantly surpasses that of the other methods. Inter-

estingly, models operating without data imputation fare better than those implementing

2https://github.com/EpistasisLab/tpot

https://github.com/EpistasisLab/tpot
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imputation, suggesting that imputation may introduce significant bias when dealing

with highly incomplete data and is, therefore, less desirable. In the context of MINNs,

their performance suffers due to the underutilization of information stemming from

the sole employment of either instance embedding or bag embedding in MIL pooling.

However, the "Auto-XGBoost," "Auto-LightGBM," and "Auto-CatBoost" methodo-

logies yield AUC scores comparable to AMI-Net3. Yet, their F1-scores fall short of

matching ours, indicating that while advanced tree-based methods possess adequate

internal mechanisms to confront the challenges in low-quality medical data, they could

serve as alternative solutions under certain conditions.

In conclusion, it can be confidently asserted that the proposed AMI-Net3 exhibits

superior efficacy and robustness in learning from low-quality medical data, thereby

outclassing the other baseline approaches.
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5.3.2 Evaluation of Integrated Modules in MINN

One of the main contributions in this work is the approach taken to address the chal-

lenges of class imbalance and highly correlated features. In the designed MINN, focal

loss and multi-head attention are employed to address these challenges and improve

the overall model performance. Experiments are conducted on AMI-Net3 with and

without these components to evaluate their impact and performance. It is important to

note that the necessity of focal loss is tested by replacing it with the commonly used

cross-entropy.

As shown in Figure 5.5, when multi-head attention is removed from AMI-Net3, feature

correlations cannot be captured anymore, resulting in a significant drop in AUC and

F1-score, particularly on the SR and IFI datasets. Moreover, focal loss demonstrates

its efficacy in overcoming the challenge of severe class imbalance when compared to

cross-entropy. Replacing focal loss with cross-entropy leads to a drop of over 50% in

the average F1-scores across the three datasets, highlighting the benefits of focal loss.

Additionally, auxiliary supervision helps to improve the AUC and F1-score, although

the improvement is not significant.

Overall, the comparison results indicate that the computational modules used, including

multi-head attention, auxiliary supervision, and focal loss, each play a crucial role in

enhancing the predictive performance.

A key innovation in this research lies in effectively addressing the challenges of class

imbalance and high feature correlation. This is achieved by incorporating focal loss

and multi-head attention in the uniquely designed MINN, while also utilizing auxiliary

supervision to strengthen the overall model performance. In order to evaluate the impact

of these components and their operational efficiency, experiments were conducted on
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AMI-Net3 with and without these elements. It is important to note that the necessity of

focal loss was assessed by substituting it with the conventional cross-entropy.

Figure 5.5 illustrates that when multi-head attention is excluded from AMI-Net3, the

model fails to capture feature correlations, resulting in a significant decrease in AUC

and F1-score, particularly in the SR and IFI datasets. Additionally, focal loss proves to

be highly effective in addressing the challenge of severe class imbalance compared to

cross-entropy. Replacing focal loss with cross-entropy leads to an average reduction of

more than 50% in F1-scores across the three datasets, highlighting the advantages of

focal loss. Furthermore, auxiliary supervision contributes to improvements in the AUC

and F1-score, although the improvements are not substantial.

In summary, the comparative results indicate that the computational modules utilized in

this research, including multi-head attention, auxiliary supervision, and focal loss, each

play a significant role in enhancing the predictive performance.

5.3.3 Scenario Analysis: Employing BF Exclusively

Prior research [260, 263] has established the effectiveness of feature embedding methods

for binary feature (BF) representations. To assess the impact of feature embedding on

continuous/ordinal feature (CF) representations and its effect on model performance,

we conduct experiments by excluding all CF during the training of AMI-Net3, and

observe any potential changes in AUC and F1-score.

Figure 5.6 presents a comparative analysis, indicating that the use of feature embedding

for both BF and CF significantly improves the ability of AMI-Net3 to capture the

comprehensive patient narrative, compared to using only BF as the input. This is

particularly evident in the ADR dataset, where the proportion of CF is considerably
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FIGURE 5.5: We run experiments to evaluate the value of the computa-
tional modules we integrate in MINN. (95% CI)

higher than the other two datasets. When only BF is utilized, the model performance

suffers a notable decline. These findings support the effectiveness of a flexible approach

and demonstrate that the proposed feature embedding effectively represents observed

features in an information-rich embedding space, thus making progress in the right

direction. In the IFI and SR datasets, where the CF ratios are only 25.4% and 14.5%

respectively, and BF provides sufficient feature information for predictions, selecting

BF alone as the input results in only a marginal decline in model performance.
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FIGURE 5.6: The experiment is to evaluate the effectiveness of the
proposed feature embedding. (95% CI)

5.3.4 Assessing the Influence of MIL Pooling

In the context of extracting instance or bag embeddings, a fully connected layer (FC)

can be used as an alternative to MIL pooling when it is equipped with a single output

neuron. In order to evaluate the effectiveness of our customized MIL pooling approach,

we compare attention-based MIL pooling methods (Att and Gated Att) with FC to

obtain instance embeddings (Ins Emb), bag embeddings (Bag Emb), or both. These
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comparisons are performed on three datasets, and the evaluation metrics used are AUC

and F1-score.

The results, as presented in Table 5.3, demonstrate the superior performance of AMI-

Net3. This suggests that FC alone does not adequately learn instance and bag represent-

ations and lacks the non-linear expressive capacity required for effective modeling. This

limitation becomes particularly evident when FC is used to replace both MIL pooling

layers, resulting in the least optimal model performance, as indicated by both AUC

and F1-score. On average, there is a 4.5% decrease in AUC and an 11.1% reduction

in F1-score. Additionally, models that utilize FC for bag embeddings perform worse

than those using FC for instance embeddings, indicating the inherent complexity and

importance of bag representations. Therefore, the importance of employing a computa-

tional module with strong non-linear expressive capacity, such as attention-based MIL

pooling, is underscored.

TABLE 5.3: Comparison of MIL Pooling and FC (95% CI)

Ins Emb Bag Emb
SR IFI ADR

AUC F1-score AUC F1-score AUC F1-score

FC
FC 0.667± 0.042 0.412± 0.034 0.896± 0.040 0.389± 0.029 0.816± 0.039 0.398± 0.033

Gated Att 0.709± 0.035 0.448± 0.023 0.928± 0.031 0.416± 0.026 0.835± 0.037 0.444± 0.024

Att
FC 0.659± 0.038 0.398± 0.026 0.915± 0.030 0.405± 0.035 0.818± 0.040 0.431± 0.022

Gated Att (Our Method) 0.716± 0.0140.716± 0.0140.716± 0.014 0.468± 0.0240.468± 0.0240.468± 0.024 0.937± 0.0260.937± 0.0260.937± 0.026 0.433± 0.0120.433± 0.0120.433± 0.012 0.837± 0.0280.837± 0.0280.837± 0.028 0.448± 0.0170.448± 0.0170.448± 0.017

5.3.5 Comparison of Different MIL Pooling Techniques

To corroborate the effectiveness of our chosen MIL pooling techniques, we conduct a

comparison of max-pooling (Max), Att, and Gated Att on our MINN. These methods

have previously been established as superior in identifying informative instances [118,

259].
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Table 5.4 illustrates that the MIL pooling technique utilized in AMI-Net3 outperforms

the others. The gated attention mechanism is hampered by the limited data volume

in the SR dataset, leading to a performance inferior to that of the simple attention

mechanism. However, with an increased data volume, the gating mechanism would

significantly boost the capacity to learn complex relationships, as demonstrated in the

other two datasets. It is worth noting that max-pooling generally underperforms in

comparison to the others, exposing the limitations of non-trainable pooling methods.

Although they might be viable options for instance-level MIL methods, they could

potentially hinder the computation of bag and instance representations for superior

results. As for trainable MIL pooling methods, they excel at learning complex relations

and enhance model performance through task- and data-specific adaptations.

TABLE 5.4: Comparison of Different MIL Pooling Methods (95% CI)

Ins Emb Bag Emb
SR IFI ADR

AUC F1-score AUC F1-score AUC F1-score

Max

Max 0.675± 0.069 0.399± 0.047 0.929± 0.072 0.284± 0.049 0.758± 0.069 0.416± 0.062

Att 0.712± 0.047 0.457± 0.038 0.921± 0.042 0.344± 0.037 0.799± 0.051 0.409± 0.048

Gated Att 0.709± 0.028 0.455± 0.033 0.926± 0.040 0.433± 0.0300.433± 0.0300.433± 0.030 0.802± 0.031 0.373± 0.028

Gated Att

Max 0.685± 0.042 0.421± 0.036 0.933± 0.045 0.264± 0.029 0.802± 0.038 0.446± 0.041

Att 0.680± 0.031 0.436± 0.026 0.929± 0.032 0.368± 0.022 0.825± 0.037 0.359± 0.024

Gated Att 0.679± 0.019 0.451± 0.023 0.935± 0.030 0.424± 0.026 0.832± 0.029 0.447± 0.023

Att

Max 0.684± 0.038 0.423± 0.032 0.930± 0.034 0.398± 0.025 0.815± 0.032 0.438± 0.026

Att 0.678± 0.021 0.436± 0.027 0.924± 0.031 0.311± 0.024 0.829± 0.029 0.444± 0.022

Gated Att (Our Method) 0.716± 0.0140.716± 0.0140.716± 0.014 0.468± 0.0240.468± 0.0240.468± 0.024 0.937± 0.0260.937± 0.0260.937± 0.026 0.433± 0.0120.433± 0.0120.433± 0.012 0.837± 0.0280.837± 0.0280.837± 0.028 0.448± 0.0170.448± 0.0170.448± 0.017

5.4 Limitations

The study encounters certain limitations, particularly regarding the criteria for data

collection. In the SR dataset, there is a significant imbalance between the number

of binary features (BFs) and continuous features (CFs). This imbalance may hinder

effective learning from CFs, thus reducing the sensitivity of predictive models. Future
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studies could address this issue by curating data based on prior knowledge or specific

inclusion and exclusion criteria. Another limitation is the focus on static data, while the

omission of temporal data, which is more prevalent in hospital settings and contains

valuable information such as frequent lab test results and physical examination records,

limits the study’s scope. A future direction is to explore a suitable framework for

temporal data, enabling continuous and predictive monitoring of clinical outcomes and

treatment guidance.

5.5 Summary

AMI-Net3 is introduced as a novel framework for clinical risk prediction using low-

quality data. It incorporates a feature embedding module and an innovative MINN,

enabling direct learning from observed data without the need for data imputation

techniques. The framework effectively addresses challenges related to redundant,

correlated features and extreme class imbalance. Comparative experiments conducted

on three low-quality medical datasets demonstrate the effectiveness, scalability, and

superiority of the proposed method when compared to state-of-the-art MINNs and

AutoML methods employing different data imputation strategies.

The main advantage of the AMI-Net3 is its capability to represent patient features in

the embedding space through feature embedding. This enables predictive models to

effectively utilize incomplete data and allows for flexibility in integrating techniques

from various deep learning domains, including CV, NLP, and MINN, for handling

real-world medical data. By learning from meta-features defined by their attributes, the

proposed framework empowers predictive models to capture essential characteristics.

Moreover, the use of feature embedding opens up possibilities for feature selection

and interpretation, as MINN and attention mechanism can identify significant features
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in clinical risk prediction for individual patients. Future work will delve deeper into

exploring these aspects.



CHAPTER 6

AMI-Net for Regression

In light of the exceptional learning capacities and predictive results exhibited by the

AMI-Net series algorithms through multi-instance learning in the context of low-

quality real-world medical data, these algorithms have predominantly been utilized for

classification tasks. However, the medical field encompasses numerous regression tasks

of considerable importance, such as drug dosage prediction or hospitalization duration

estimation. These tasks necessitate predictive models capable of generating continuous

output rather than discrete labels. The development of effective models for these tasks

is crucial due to their potential impact on patient care.

Recognizing this, the aim is to expand the applicability of the approach by adapting and

refining the methodology for regression tasks. The objective extends beyond simply

applying the same model architecture to a new task type; it involves exploring how the

unique characteristics of regression problems may require adjustments to the model’s

design or training process. Specifically, considerations are given to the appropriate

loss function for regression tasks, the impact of imbalanced datasets on regression

performance, and the optimal interpretation of regression model outputs within the

medical domain.

To concretize this exploration, the task of warfarin dosage prediction is selected as a

practical clinical application. Warfarin, an anticoagulant drug, demands careful dosage

management to balance therapeutic effects with the potential for serious side effects.

117
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Accurately predicting the appropriate dosage for individual patients poses a critical

challenge, aligning well with the regression-focused approach. Detailed description of

this task is provided in the following chapter.

6.1 Background of Warfarin Dose Prediction

Warfarin, an anticoagulant of international repute, plays a pivotal role in managing

non-valvular atrial fibrillation and venous thromboembolism [52]. Its global acceptance

and recurrent usage in various clinical settings are undeniable, yet the challenges

in its administration cannot be understated. One of the most distinctive features of

warfarin’s pharmacodynamic profile is its narrow therapeutic index, a characteristic

that necessitates precise dosing to maintain an effective yet safe level of the drug in the

body.

Adding complexity to this delicate balancing act is the broad spectrum of responses

displayed by individual patients. The dynamic interplay of genetic factors, lifestyle

habits, and concomitant medications often leads to considerable variability in drug

metabolism and responsiveness, with a subset of patients exhibiting heightened sensit-

ivity to warfarin [300]. In these warfarin-sensitive patients, standard doses may lead to

an increased risk of bleeding, emphasizing the necessity for careful dosage adjustments

and close monitoring [108].

Despite the frequent use of International Normalized Ratio (INR) monitoring as a

strategy to maintain therapeutic anticoagulation, it is a sobering reality that less than

60% of patients manage to maintain warfarin levels within the therapeutic window [222].

This statistic highlights the complexity of warfarin dose optimization and underscores

the urgent need for refined dosing strategies. With this in mind, the task of achieving
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optimal warfarin dosing lies at the forefront of therapeutic goals, ultimately influencing

the balance between efficacy and safety in a clinical scenario [52].

This challenge calls for the development of novel, data-driven approaches capable of

deciphering the complexity of warfarin pharmacokinetics and pharmacodynamics. By

facilitating individualized dosage adjustments, these strategies aim to bring the majority

of patients within the desired therapeutic window, thereby improving the overall safety

and efficacy profile of warfarin.

In recent decades, a concentrated effort has been deployed towards formulating com-

prehensive and effective warfarin dose prediction models. These sophisticated mod-

els amalgamate various patient-specific factors to create individualized therapeutic

strategies, considering each patient’s unique clinical, demographic, and genetic profile

[52, 89, 140, 151]. They embody a significant stride towards personalized warfarin

dosing, with the aim of improving patient safety and efficacy. Among the multitude of

predictive algorithms, multivariate linear regression (MLR) has gained favor due to its

ease of implementation and interpretability [52, 72, 73]. However, MLR’s inability to

effectively model non-linear relationships between predictors and outcomes limits its

utility, particularly within the complex non-linear interactions often occurring between

demographic, clinical, and genetic factors influencing warfarin response [159]. These

constraints could potentially compromise the performance of MLR models in diverse

patient populations, potentially leading to inaccurate dose predictions for certain subsets

of patients. To circumvent these limitations, researchers have ventured into the more

advanced domains of machine learning and deep learning. These evolving compu-

tational technologies offer a range of tools such as support vector machines (SVM),

decision tree-based algorithms, and neural networks. They provide significant promise

in personalized warfarin dosing by excelling at identifying and capturing intricate

interrelationships between variables [53, 89, 150]. For example, SVM identifies the
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hyperplane in an N-dimensional space that classifies data points distinctly, decision

tree-based algorithms offer a robust framework for classification and regression tasks,

while neural networks emulate the human brain’s architecture to learn complex patterns

through interconnected nodes.

These methodologies represent a paradigm shift in the modelling of warfarin dosing.

Instead of making assumptions about relationships between variables, they learn these

relationships directly from the data, allowing them to adapt to the non-linear and

interactive nature of the factors affecting warfarin dose [159]. This characteristic, in

particular, is expected to increase the accuracy of predictions, especially in patients for

whom traditional linear models may fall short.

Through their adept handling of high-dimensional and diverse data, machine learning

and deep learning algorithms could pave the way for more precise warfarin dosing

models. The implications of such advancements could be far-reaching, enhancing

the predictability of anticoagulation control, reducing the risk of adverse events, and

ultimately leading to improved patient outcomes.

However, both linear and machine learning models are built upon 1-dimensional vec-

tors in a given feature space, as illustrated in Figure 6.1a. These models routinely

face two significant challenges: high dimensionality and missing values [143]. High

dimensionality stems from the multitude of variables that characterize each patient’s

medical history, including their clinical features, medications, and indications. Missing

values, on the other hand, arise from the inevitable reality that patients will not undergo

all potential examinations during their hospital stay. Addressing these two primary

concerns – high dimensionality and missing values – forms the cornerstone of the

method proposed in our study.
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FIGURE 6.1: (a) An example of common data processing way. (b) An
example of how transforming and processing the original data from each
individual patient.

This work presents an innovative solution to address the challenges inherent in high-

dimensional feature space and missing values. Rather than relying on conventional

methodologies, the proposed approach involves treating each patient’s record as a

distinct combination of observed features and converting them into an embedding space

through feature embedding (as illustrated in Figure 6.1b). This strategy enables the

direct and seamless handling of incomplete and high-dimensional data without the need

for additional preprocessing steps. Furthermore, the capability of AMI-Net approach is

extended to encompass this particular regression task.
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6.1.1 Methodology

To accurately estimate the appropriate dosage of warfarin, even when dealing with

incomplete and high-dimensional data, an innovative framework is proposed. Within

this framework, each patient (X , y) is initially converted into a series of observed feature-

value pairs, denoted as X = (f1, v1), (f2, v2), . . . , (fn, vn). These pairs correspond to

the optimal warfarin dose y, and each feature fj (j = 1, 2, . . . , n) is either binary f b
j ,

ordinal, or continuous f c
j . Crucially, during the transformation process, all nominal

features are one-hot encoded into binary ones.

The goal is to train a regressor to predict y based on the set of features X . The

strategy for achieving this is twofold. The first level of the proposed approach involves

representing each observed feature-pair (fj, vj) as a d-dimensional embedded vector

gf = g(fj, vj) ∈ Rd.

The second level employs a novel neural network to discern and capture intricate

correlations present within the group G. It also aims to identify valuable inform-

ation within G for estimating the optimal warfarin dose y ∈ R. The group G in-

cludes grep, an embedded vector of a representative feature which embodies all ob-

served information - essentially the overall body condition. The rest of G comprises

g(f1, v1), g(f2, v2), . . . , g(fn, vn).

Both these components of the proposed model are parameterized and trained together

in a unified, end-to-end fashion. The complete architecture is depicted in Figure 6.2a.

6.1.2 Multi-Head Attention

The multi-head attention module employed closely follows the original definition by

Vaswani et al. [255]. However, the position encoding component is excluded in this
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FIGURE 6.2: (a) The figure outlines the overall structure of the pro-
posed methodology, which consists of two primary levels. The first
level incorporates a feature embedding module designed to convert the
observed information into an embedded space. The second level com-
prises a sophisticated neural network armed with multi-head attention,
a feed-forward network, and multi-instance pooling, all intended to
decipher and unravel hidden patterns among features for an accurate
final prediction. Notably, these two levels are trained in a unified, end-
to-end manner. (b) The methodology employs multi-head attention to
reveal correlations among embedded vectors, i.e., observed features.
Importantly, multi-head attention enables the detection of relationships
between Grep and other embedded vectors. Grep acts as a representative
of overall patient information, facilitating further processing and ana-
lysis.

work, as the data being dealt with does not possess sequential information. The multi-

head attention module consists of two computational components: scaled dot-product

attention and multi-head transformation.

In scaled dot-product attention, three input vectors with dimensions dk are utilized: a

query vector Q, a key vector K, and the corresponding value vector V . The output is

obtained through the following computations:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6.1)



124 6 AMI-NET FOR REGRESSION

This research primarily concentrates on uncovering potential associations among ob-

served features. As such, for the computations in question, all the vectors Q, K, and V

correspond to the embedded vector Gf obtained from the preceding feature embedding

step:

Attention(Gf , Gf , Gf ) = softmax

(
GfG

T
f√

dk

)
Gf (6.2)

Furthermore, to thoroughly explore the underlying relationships within the embedded

vector Gf , multi-head attention is used to access several sub-embedding spaces via

multi-head transformation:

Hr = Attention
(
W 1

rGf ,W
2
rGf ,W

1
3Gf

)
(6.3)

where W r is the output of a single attention head and W 1
r ,W

2
r ,W

3
r are three linear

projections for Gf . Then they are concatenate as the final output of multi-head attention:

MultiHead(Gf , Gf , Gf ) = [H1; . . . ;HR]W
4 (6.4)

where W 4 is the output projection. By adopting this approach, model can effectively

explore the associations between the self-defined representation vector grep and other

observed features. This enables grep to serve as a comprehensive representation of the

patient’s current medical condition. Furthermore, this representation can be utilized for

the estimation of warfarin dosage. The exploration of associations and the utilization

of grep enhance the understanding of the patient’s medical state and provide valuable

insights for subsequent medical decision-making processes.
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6.1.3 Feed-Forward Network

After multi-head attention, the feed-forward network is adopted, consisting of two

1-dimensional convolution layers with kernel size equals to 1 and ReLu activation in

between, to further enhance the representation capability of Gf :

FFN(x) = Conv1D(max (0,Conv1D(x))) (6.5)

By utilizing a feed-forward network, the final vector set T = trep, t1, t2, . . . , tn can be

obtained. For the subsequent operation of multi-instance pooling, only the self-defined

representation vector trep with d dimensions is included.

6.1.4 Multi-Instance Pooling

Multi-instance pooling plays a crucial role in the MINN framework by effectively

filtering out noise and irrelevant information [263]. In light of this, multi-instance

pooling is chosen over the commonly used fully connected layer as the final output

layer for predicting the warfarin dose. Furthermore, since the objective is to perform

regression rather than classification, it is worth noting that trainable multi-instance

pooling methods typically generate weights within the range of 0 and 1, which may be

better suited for classification tasks. To address this, a non-trainable approach is used,

specifically max pooling, which allows us to aggregate the most influential instances

within the bag and obtain a robust prediction for the warfarin dose.

Output = max (tk = {w1, w2, . . . , wd}) (6.6)

wi ∈ R is a parameter in the representation vector tk.
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Once the final output is obtained, the loss is calculated by comparing it with the true

value y. The model is then trained using backpropagation in an end-to-end manner.

6.2 Experiments

6.2.1 Data Description

The modeling data utilized in this study is derived from the publicly available IWPC

cohort, previously described by [52]. The IWPC data set can be downloaded from

the PharmGKB website (http://www.pharmgkb.org/downloads/). This comprehensive

data set comprises information from 6256 warfarin users spanning four continents. It

encompasses a range of demographic factors, including age, weight, height, as well as

clinical features such as indications, united medication, and genotypes of CYP2C9 and

VKORC1. For data integrity and consistency, subjects who did not reach stable warfarin

doses and instances with missing therapeutic dose information were excluded. As a

result, a total of 5410 subjects were included in the study. The dataset comprises eight

indications, 1458 comorbidities, and 1917 medications, leading to a high-dimensional

dataset. It is worth noting that the dataset contains a considerable number of missing

values, with an average missing rate of 41.8%. Table 6.1 provides a detailed breakdown

of the statistics for the included data.

6.2.2 Experimental Settings

Feature-pairs in this approach are mapped to an embedding space of 512 dimensions

and processed using multi-head attention with 8 heads. This allows for the exploration

of underlying relationships across 8 distinct embedding sub-spaces. In the feed-forward

network, two convolution layers with dimensions of 1024 and 512 are incorporated.
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TABLE 6.1: Statistics of the Data Set

Included Patients 5410

Binary or Nominal Features 3395

Continuous or Ordinal Features 4

Max. Observed Features 58

Min. Observed Features 5

Average Missing Rate 41.8%

Max. Missing Rate 83.8%

To prevent overfitting, a dropout layer [234] with a dropout rate of 0.3 is included in

each computational module. During training, the Adam optimizer [131] is used with a

learning rate of 5× 10−6, an epsilon value (ϵ) of 1× 10−8, and momentum parameters

β1 and β2 set to 0.9 and 0.98, respectively. Additionally, to ensure a fair comparison,

an "early stopping" mechanism is implemented based on five-fold cross-validation,

using R2, MAE (Mean Absolute Error), and MSE (Mean Squared Error) as evaluation

metrics. The employed loss function is the Log-Cosh loss, defined as follows:

loss(y, f(x)) =
n∑

i=1

log cosh(ytrue − ypred) (6.7)

where ytrue is the true value and ypred denotes the predicted value on the ith sample.

6.2.3 Baseline Models

To comprehensively evaluate the effectiveness of the proposed method, comparisons are

conducted with three advanced machine learning algorithms: XGBoost [46], LightGBM

[127], CatBoost [62] and FT-transformer [83]. To optimize the performance of these

machine learning methods, an AutoML approach [242] is employed to automatically

select the best parameter set. It should be noted that these methods are all decision



128 6 AMI-NET FOR REGRESSION

tree-based algorithms, which allow for direct learning from incomplete data and exhibit

robustness to sparse data, addressing two key challenges in the research.

Furthermore, the effectiveness of the chosen multi-instance pooling method is demon-

strated by comparing its performance with several alternative pooling methods in the

proposed framework. These include fully connected layer, max pooling, mean pooling

[263], attention-based pooling, and gated attention-based pooling methods [118]. By

conducting these performance comparisons, the aim is to showcase the superiority of

the selected multi-instance pooling method in capturing relevant information from the

instances.

6.3 Results and Analysis

6.3.1 Performance Comparisons

The proposed method is compared with three advanced machine learning techniques,

and the performance of different pooling methods is evaluated to generate the final

output. The detailed comparison results can be found in Table 6.2, using R2, MAE, and

MSE as evaluation metrics. A higher R2 indicates better performance, while MAE and

MSE are considered in the opposite direction.

The proposed method consistently outperforms all baseline methods, as evidenced by

the R2, MAE, and MSE values of 0.437, 8.471, and 160.016, respectively. Notably, FT

Transformer demonstrates superior performance compared to XGBoost, LightGBM

and CatBoost, highlighting its effectiveness in handling categorical and sparse matrix

data, which are prominent characteristics of the dataset.
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TABLE 6.2: Performance Comparison with Baseline Methods

Strategy Models R2 MAE MSE

Machine Learning Techniques

XGBoost-AutoML 0.420 8.979 167.972

LightGBM-AutoML 0.327 9.495 190.347

CatBoost-AutoML 0.427 8.773 163.884

FT-Transformer 0.431 8.592 162.714

With Different Pooling Methods

Fully Connected Layer 0.405 8.742 168.549

Mean Pooling 0.418 8.626 165.069

Att. Pooling 0.426 8.639 163.122

Gated Att. Pooling 0.424 8.580 163.558

This Work Max Pooling 0.437 8.471 160.016

When comparing the fully connected layer with other multi-instance pooling methods,

limitations of the fully connected layer in effectively locating relevant information are

observed, as its R2 value is only 0.405. On the other hand, attention-based pooling

(Att. Pooling) and gated attention-based pooling (Gated Att. Pooling) assign different

weights to instances to adjust their contributions. However, as the weights range from 0

to 1, they may restrict the model’s performance on regression tasks. Specifically, the

R2 values for Att. Pooling and Gated Att. Pooling are 0.426 and 0.424, respectively,

both lower than the performance achieved by the chosen max pooling method.

6.3.2 Impact of Multi-Head Attention

To assess the impact of employing multi-head attention, experiments were conducted

with different numbers of heads in the method: 0, 2, 4, 6, 8, 10, and 12. When 0 heads

were used, multi-head attention was not integrated into the proposed neural network.

The evaluation results can be seen in Figure 3.

Among the different configurations, it was found that utilizing 8 heads yielded the best

model performance. This suggests that the relations captured in these 8 subspaces fully
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FIGURE 6.3: The Performance Comparisons of Different Number of Heads

uncover the underlying associations present in the clinical features. This finding has

practical implications, as it implies that the employed features can be examined from 8

distinct perspectives, each with its own set of hidden connections.

Furthermore, the experiments confirmed the effectiveness of multi-head attention in

the method. Removing it led to a significant decrease in R2 to 0.417, indicating the

crucial role of multi-head attention in capturing the complex relationships among the

clinical features of warfarin users. These results underscore the importance of exploring

correlations among the features and highlight the necessity of incorporating multi-head

attention for improved performance.

6.3.3 Dose Subgroup Analysis

In this subsection, the primary focus is to evaluate the clinical applicability of the

proposed method across different dose subgroups. Following the criteria described

in [52], the warfarin doses are categorized into three groups: low dose group (≤

21mg/wk), medium dose group (> 21 to < 49mg/wk), and high dose group (≥
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FIGURE 6.4: The IPPs Comparison in Different Dose Subgroups

49mg/wk). To assess the model’s clinical applicability within these subgroups, the

ideal predictive percentage (IPP) [52] is employed, which indicates the percentage of

predicted doses falling within a 20% interval of the actual dose.

Figure 6.4 illustrates the results, indicating that the proposed method exhibits high

clinical applicability, particularly in the medium and high dose groups, with IPPs of

0.646 and 0.492, respectively. In comparison, the low dose group has an IPP of 0.451.

Notably, the medium dose group outperforms both the low and high dose groups in

terms of IPP. This suggests that patients in the medium dose group exhibit less clinical

variability and possess a more stable disease condition, making it easier to obtain the

optimal warfarin dose from the predictive models. On the other hand, the lower IPP

values in the low and high dose groups imply greater challenges in accurately predicting

the optimal warfarin dose for patients in these subgroups, likely due to their higher

clinical variability and disease complexity.
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TABLE 6.3: Comprehensive Evaluation of the Proposed Method Using
Different Feature Sets

Feature Set R2 MAE MSE

CF 0.412 8.612 163.559

Cl 0.383 8.972 174.648

GF 0.395 8.910 169.513

This Work (Mixed) 0.437 8.471 160.016

6.3.4 Different Feature Sets

Finally, an evaluation was conducted on the method using four different feature com-

binations: (1) only continuous or ordinal features (CF), (2) clinical factors excluding

continuous and ordinal features and genetic variables (Cl), (3) only genetic features

(GF), and (4) all features combined (Mixed). The detailed comparison results can be

found in Table 6.3.

By examining the results in Table 6.3, valuable insights can be gained regarding the

performance of the method across these feature combinations.

The results demonstrate that among the various clinical features, the continuous or

ordinal features, such as age, weight, height, target INR, and genetic variables, play a

crucial role in guiding the optimal warfarin dose prediction. These features provide

valuable insights and serve as primary indicators for accurate dose estimation. However,

it is important to note that clinical features, including other factors such as demographic

and medical history, also contribute significant information to the dose prediction task.

Therefore, combining both continuous/ordinal features and clinical features proves

to be the optimal approach, as it allows for the integration of comprehensive clinical

guidance and leads to improved modeling performance. By incorporating a diverse
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range of features, the proposed method effectively leverages the synergistic power of

these combined inputs, resulting in enhanced accuracy and robustness in warfarin dose

estimation.

6.4 Summary

This work presents a groundbreaking and viable approach for warfarin dose estimation

on incomplete and high-dimensional data, eliminating the need for data imputation and

feature selection prior to analysis. Additionally, the AMI-Net (Adaptive Multi-level

Integration Network) approach is extended to regression tasks, which hold significant

importance in clinical applications. The methodology comprises two levels, with the first

level utilizing a feature embedding module to seamlessly map all available information

to an embedding space, effectively addressing missing values and redundant features.

Leveraging the embedded vectors, the second modeling level employs a novel neural

network architecture capable of capturing intricate and underlying relationships among

features. This network not only facilitates the discovery of complex relationships

but also isolates invalid information and noise, leading to enhanced warfarin dose

determination.

Furthermore, future work aims to expand upon the existing methodology by addressing

the challenges associated with temporal data. This involves incorporating frequent

physical test results and lab test results to uncover hidden patterns and gain deeper

insights into the dynamics of warfarin dose requirements. Exploring temporal data

promises to provide a comprehensive understanding of patient profiles and enable more

accurate predictions and personalized dosage recommendations. This extension is

anticipated to advance the field of warfarin dose estimation and improve patient care

outcomes.
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Conclusions

The nature of real-world data (RWD) in TCM and WM is complex, with issues related

to data quality, inconsistency, and representation significantly affecting the usability and

reliability of predictive learning models. For example, TCM relies heavily on holistic

and subjective assessments, with diagnoses often based on qualitative observations like

tongue appearance and pulse. The data from TCM might be more heterogeneous and

less standardized compared to Western datasets. AMI-Net’s ability to handle incomplete

datasets and varying feature sets would be critical here. However, converting qualitative

TCM diagnostics into quantifiable data for the model could be a significant challenge.

WM datasets are typically more standardized and quantitative, with an emphasis on lab

results, imaging data, and electronic health records. The challenge here would be in

dealing with the volume of data, its complexity, and ensuring the model can understand

and utilize the diverse range of clinical measurements and observations.

Despite these challenges, the utility of RWD in clinical decision-making cannot be

overstated, as it provides an invaluable supplement to the evidence garnered from

randomized controlled trials (RCTs), especially in special populations where RCTs are

challenging to implement.

In this thesis, an exploration and proposal of the AMI-Net series – AMI-Net, AMI-

Net+, and AMI-Net3, are presented as innovative approaches to overcoming RWD’s

limitations, thus facilitating its effective use in predictive modeling. By mapping

134



7 CONCLUSIONS 135

data with varied features to a unified embedding space and emphasizing informative

instances, the AMI-Net series offers a robust mechanism for handling incomplete data,

noise, and extreme class imbalances, which are inherent issues when working with

RWD. Additionally, the development of AMI-Net3 extends the series’ applicability to

a broader range of features, while the exploration of regression further enhances the

versatility of these models.

Moreover, to effectively implement the AMI-Net series in clinical research and patient

care, a structured approach is recommended. Firstly, identify the specific clinical

objective, be it disease risk prediction, differential diagnosis, or prognostic analysis.

Then, gather relevant real-world data (RWD), such as electronic medical records and

input from portable devices, ensuring a broad and representative sample. The next step

is to preprocess this data using AMI-Net’s efficient data preprocessing tools, addressing

common data quality issues like incomplete datasets and noise. This ensures the

extraction of reliable insights even from imperfect data. Incorporate the preprocessed

data into the AMI-Net algorithm, utilizing its robustness and versatility with various

data types (binary, nominal, ordinal, and continuous). This facilitates its applicability

across different medical domains. The automatic identification of informative data

points by AMI-Net streamlines the decision-making process, enhancing patient care

effectiveness. For multi-task learning objectives, such as advancing disease management

and treatment methodologies, leverage AMI-Net’s multi-task learning capabilities to

concurrently address multiple research questions or clinical problems. This not only

enhances the efficiency and comprehensiveness of clinical studies but also reduces

research time and costs. Regularly evaluate the outcomes and insights generated by

AMI-Net, adjusting the approach as needed based on real-world application feedback.

This iterative process ensures continual improvement and adaptation of the AMI-Net
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series to specific clinical needs, maximizing its potential in harnessing RWD for more

informed, efficient, and personalized healthcare solutions.

However, it is crucial to acknowledge that while the proposed methods display promise,

they are not without limitations. In particular, the issues of missing values, data

inconsistencies, and labeling errors, coupled with the binary-input-feature constraint of

the AMI-Net and AMI-Net+, must be kept in mind. Furthermore, like all models dealing

with real-world data, there exists a constant risk of overfitting and bias, warranting

further research to refine understanding of these challenges and enhance the models.

7.1 Future Work

Efforts to develop AMI-Net models have primarily focused on single-task scenarios,

including classification and regression. However, it is important to acknowledge that

the realm of medical applications is extensive and often requires a multi-task or multi-

label approach. There are numerous real-world medical scenarios where multiple

outcomes or labels are required, such as in the generation of prescriptions or medication

therapy management. In these complex scenarios, the prediction of multiple, often

interrelated outcomes is paramount. Current AMI-Net models, while performing

admirably in single-task contexts, do not fully cater to these multi-task or multi-label

demands, thus marking a limitation in this work. However, the adaptability of AMI-

Net to handle various types of data (binary, nominal, ordinal, continuous) indicates

a potential for further development in handling complex tasks. The next steps could

involve enhancing the model’s ability to process and learn from multi-dimensional data,

integrating temporal dynamics for time-series analysis (useful in patient monitoring),

or even combining various data types (like imaging and textual data) for comprehensive

analyses, such as multi-label classification or even multi-task prediction.
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In addition, another challenge ubiquitous in the healthcare field is recognized: the

extreme multi-label problem. This problem arises when a large number of potential

labels exist, and only a few are relevant for a given instance. The extreme multi-

label problem is frequently encountered in medical contexts where a patient can have

several distinct medical conditions or symptoms concurrently, each requiring its label.

Addressing this problem requires models capable of discerning the intricate interplay of

multiple labels within a highly-dimensional label space. Here, too, it is acknowledged

that current AMI-Net models fall short.

In light of these identified limitations, an exploratory study utilizing traditional Chinese

Medicine data, as detailed by Wang et al. (2019) [261], has been undertaken. The

primary task in this context is to predict prescriptions based on a multitude of patient

symptoms, which involves dealing with a label set approaching one thousand in number.

This scenario provides a rich ground for tackling the extreme multi-label problem

inherent in such situations.

In this exploration, an innovative approach is introduced wherein the labels of a patient

are treated as a sequence, similar to the strategy adopted in sequence-based language

processing tasks. This unique perspective allows both the input (patient symptoms)

and the output (prescriptions) to be viewed as two distinct language sequences. This

innovative approach involves using a translator model to transform one sequence

into the other. Through this translation mechanism, the issue of label sparsity that

often complicates multi-label prediction tasks can be effectively sidestepped. In fact,

preliminary results indicate a marked improvement, reflecting the potential efficacy of

this method.

These promising findings provide an inspiring foundation for future research. They

underscore the potential of novel and creative approaches like sequence translation in
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addressing complex prediction tasks within the medical domain. This will certainly

guide and inform subsequent research endeavors aimed at improving the capabilities of

the models in multi-task and extreme multi-label environments.

The discussion thus far has primarily focused on limitations at the label level, namely

the challenges surrounding multi-task applications and the extreme multi-label problem.

However, it’s equally important to consider constraints arising from the nature of the

data the models are designed to handle.

In the current state, work is predominantly based on static data, that is, data points

that are fixed or unchanging over time. The static nature of data inputs provides a

snapshot of conditions or symptoms at a specific point in time, which has proven useful

in many applications. However, this approach may not fully capture the intricacies

and dynamism inherent in many real-world medical scenarios. Medical conditions

often present as temporal phenomena, changing and evolving over time, sometimes

in predictable patterns and other times in ways that are more erratic and less easily

anticipated. Consequently, the ability to work with temporal data, including time-

series data, is critical in providing comprehensive and accurate insights. Unfortunately,

existing AMI-Net models do not incorporate temporal data, which is a significant

limitation. The models’ architecture and functionality are not equipped to handle

the dynamic nature of time-series data, which could offer valuable insights into how

conditions evolve and respond to interventions over time. This lack of capacity to

incorporate and learn from temporal patterns can limit the utility of these models in

predicting future states or identifying trends.

This identified limitation forms a crucial area for future research. There is an aspiration

to extend the models’ capabilities to handle and learn from temporal data in the future,

thus enhancing their ability to capture and reflect the dynamic nature of medical
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conditions. Incorporating this temporal perspective will potentially strengthen the

predictive performance and generalizability of the models, making them more adaptable

and useful in a broader range of medical applications.

The identified gaps in the models’ capabilities are not meant to diminish their accom-

plishments, but rather to highlight the expansive potential for further research and

development. They underline the necessity for continued evolution and adaptation

of the models to meet the multifaceted and complex demands of real-world medical

applications. In subsequent research, the intention is to explore these areas of multi-task

learning and extreme multi-label problems, enhancing the models to address these chal-

lenges more effectively, thus moving closer to a comprehensive solution for predictive

learning in medicine.

Furthermore, while AMI-Net has demonstrated initial success in the medical field, its

underlying algorithms and methodology hold significant potential for application across

various sectors, including finance, environmental science, and retail. Each of these fields

presents unique challenges concerning data quality and noise, yet the core principles and

functionalities of AMI-Net are well-suited to address these issues. In the finance sector,

despite the complexities introduced by erratic market data and fraudulent transactions,

AMI-Net’s robustness to noise and capability to identify informative instances can

be leveraged to enhance risk assessments and fraud detection. The method’s ability

to manage binary, nominal, ordinal, and continuous features makes it particularly

adaptable to the diverse data types encountered in finance. Environmental science,

faced with the challenge of heterogeneous and sometimes incomplete climate data, can

benefit from AMI-Net’s ability to learn from incomplete datasets. This feature is crucial

in improving the accuracy and reliability of climate models, even when faced with

data inconsistencies. In the retail sector, where analyzing customer behavior is often

hindered by unstructured and voluminous data, AMI-Net’s capacity to automatically
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identify important instances from a large dataset can play a pivotal role in refining

customer behavior analysis and predictions.

Moreover, the integration of AMI-Net with IoT and wearable health technologies has

the potential to revolutionize tele-health and remote patient monitoring. This integration

would require the handling and interpretation of vast amounts of real-time health data,

but AMI-Net’s foundational algorithms are well-equipped to manage and process low-

quality and noisy data effectively. In summary, the AMI-Net suite, while initially

developed for medical applications, has underlying algorithms that are highly relevant

and applicable to a broad range of sectors. This adaptability is key to addressing the

specific challenges related to data quality and noise in each of these domains.

In conclusion, it can be argued that the AMI-Net series represents a significant step

forward in the utilization of RWD for predictive learning. The demonstrated capacity

of these models to navigate the inherent limitations of RWD underscores their potential

value in medical studies and other applications. Nonetheless, it is crucial that future

research continues to scrutinize and improve upon these algorithms, ensuring that the

generated insights maintain the highest level of accuracy and reliability. The judicious

application of these models, in tandem with rigorous quality control of data, could

propel the field towards more efficient, effective, and personalized medical care.
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[18] Kornelia Batko and Andrzej Ślęzak. ‘The use of Big Data Analytics in health-

care’. In: Journal of big Data 9.1 (2022), p. 3.

[19] Brett K Beaulieu-Jones, Jason H Moore and POOLED RESOURCE OPEN-

ACCESS ALS CLINICAL TRIALS CONSORTIUM. ‘Missing data imputation



BIBLIOGRAPHY 143

in the electronic health record using deeply learned autoencoders’. In: Pacific

symposium on biocomputing 2017. World Scientific. 2017, pp. 207–218.

[20] Vanesa Bellou et al. ‘Prognostic models for outcome prediction in patients with

chronic obstructive pulmonary disease: systematic review and critical appraisal’.

In: Bmj 367 (2019).

[21] Tirimula Rao Benala and Karunya Tantati. ‘Efficiency of oversampling meth-

ods for enhancing software defect prediction by using imbalanced data’. In:

Innovations in Systems and Software Engineering (2022), pp. 1–17.

[22] Eric I Benchimol et al. ‘The REporting of studies Conducted using Observational

Routinely-collected health Data (RECORD) statement’. In: PLoS medicine

12.10 (2015), e1001885.

[23] Yoshua Bengio, Aaron Courville and Pascal Vincent. ‘Representation learning:

A review and new perspectives’. In: IEEE transactions on pattern analysis and

machine intelligence 35.8 (2013), pp. 1798–1828.

[24] Lorenzo Beretta and Alessandro Santaniello. ‘Nearest neighbor imputation

algorithms: a critical evaluation’. In: BMC medical informatics and decision

making 16.3 (2016), pp. 197–208.

[25] Marc L Berger et al. ‘Good practices for real-world data studies of treatment

and/or comparative effectiveness: recommendations from the joint ISPOR-ISPE

Special Task Force on real-world evidence in health care decision making’. In:

Value in Health 20.8 (2017), pp. 1003–1008.

[26] Charles Bergeron et al. ‘Fast bundle algorithm for multiple-instance learning’. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 34.6 (2011),

pp. 1068–1079.

[27] Dimitris Bertsimas, Colin Pawlowski and Ying Daisy Zhuo. ‘From predictive

methods to missing data imputation: an optimization approach.’ In: J. Mach.

Learn. Res. 18.1 (2017), pp. 7133–7171.



144 BIBLIOGRAPHY

[28] Rok Blagus and Lara Lusa. ‘SMOTE for high-dimensional class-imbalanced

data’. In: BMC bioinformatics 14 (2013), pp. 1–16.

[29] Adam L Booth, Elizabeth Abels and Peter McCaffrey. ‘Development of a

prognostic model for mortality in COVID-19 infection using machine learning’.

In: Modern Pathology 34.3 (2021), pp. 522–531.

[30] Giorgos Borboudakis and Ioannis Tsamardinos. ‘Forward-backward selection

with early dropping’. In: The Journal of Machine Learning Research 20.1 (2019),

pp. 276–314.

[31] Shyam Boriah, Varun Chandola and Vipin Kumar. ‘Similarity measures for

categorical data: A comparative evaluation’. In: Proceedings of the 2008 SIAM

international conference on data mining. SIAM. 2008, pp. 243–254.

[32] Y-Lan Boureau, Jean Ponce and Yann LeCun. ‘A theoretical analysis of fea-

ture pooling in visual recognition’. In: Proceedings of the 27th international

conference on machine learning (ICML-10). 2010, pp. 111–118.

[33] Stavroula Bourou et al. ‘A review of tabular data synthesis using GANs on an

IDS dataset’. In: Information 12.09 (2021), p. 375.

[34] Omar Boursalie, Reza Samavi and Thomas E Doyle. ‘Evaluation metrics for

deep learning imputation models’. In: AI for Disease Surveillance and Pandemic

Intelligence: Intelligent Disease Detection in Action. Springer, 2022, pp. 309–

322.

[35] Stephen Brooks. ‘Markov chain Monte Carlo method and its application’. In:

Journal of the royal statistical society: series D (the Statistician) 47.1 (1998),

pp. 69–100.

[36] S van Buuren and Karin Groothuis-Oudshoorn. ‘mice: Multivariate imputation

by chained equations in R’. In: Journal of statistical software (2010), pp. 1–68.

[37] Enrico Capobianco. ‘High-dimensional role of AI and machine learning in

cancer research’. In: British journal of cancer 126.4 (2022), pp. 523–532.



BIBLIOGRAPHY 145

[38] Marc-André Carbonneau et al. ‘Multiple instance learning: A survey of problem

characteristics and applications’. In: Pattern Recognition 77 (2018), pp. 329–

353.

[39] Girish Chandrashekar and Ferat Sahin. ‘A survey on feature selection methods’.

In: Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[40] Olivier Chapelle, Bernhard Scholkopf and Alexander Zien. ‘Semi-supervised

learning (chapelle, o. et al., eds.; 2006)[book reviews]’. In: IEEE Transactions

on Neural Networks 20.3 (2009), pp. 542–542.

[41] Jeremy Charlier et al. ‘SynGAN: Towards generating synthetic network attacks

using GANs’. In: arXiv preprint arXiv:1908.09899 (2019).

[42] Nitesh V Chawla et al. ‘SMOTE: synthetic minority over-sampling technique’.

In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[43] Daohong Chen. ‘Real-world studies: Bridging the gap between trial-assessed

efficacy and routine care’. In: Journal of Biomedical Research 36.3 (2022),

p. 147.

[44] Jiahua Chen and Jun Shao. ‘Nearest neighbor imputation for survey data’. In:

Journal of official statistics 16.2 (2000), p. 113.

[45] Jinpeng Chen et al. ‘Mining symptom-herb patterns from patient records using

tripartite graph’. In: Evidence-Based Complementary and Alternative Medicine

2015 (2015).

[46] Tianqi Chen and Carlos Guestrin. ‘Xgboost: A scalable tree boosting system’.

In: Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining. 2016, pp. 785–794.

[47] Tianqi Chen et al. ‘Xgboost: extreme gradient boosting’. In: R package version

0.4-2 1.4 (2015), pp. 1–4.

[48] Veronika Cheplygina, David MJ Tax and Marco Loog. ‘Multiple instance learn-

ing with bag dissimilarities’. In: Pattern recognition 48.1 (2015), pp. 264–275.



146 BIBLIOGRAPHY

[49] Edward Choi et al. ‘Generating multi-label discrete patient records using gen-

erative adversarial networks’. In: Machine learning for healthcare conference.

PMLR. 2017, pp. 286–305.

[50] J Calvin Coffey and D Peter O’Leary. ‘The mesentery: structure, function,

and role in disease’. In: The lancet Gastroenterology & hepatology 1.3 (2016),

pp. 238–247.

[51] John Concato, Nirav Shah and Ralph I Horwitz. ‘Randomized, controlled trials,

observational studies, and the hierarchy of research designs’. In: New England

journal of medicine 342.25 (2000), pp. 1887–1892.

[52] International Warfarin Pharmacogenetics Consortium. ‘Estimation of the war-

farin dose with clinical and pharmacogenetic data’. In: New England Journal of

Medicine 360.8 (2009), pp. 753–764.

[53] Erdal Cosgun, Nita A Limdi and Christine W Duarte. ‘High-dimensional phar-

macogenetic prediction of a continuous trait using machine learning techniques

with application to warfarin dose prediction in African Americans’. In: Bioin-

formatics 27.10 (2011), pp. 1384–1389.

[54] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[55] Ralph B D’Agostino Sr et al. ‘General cardiovascular risk profile for use in

primary care: the Framingham Heart Study’. In: Circulation 117.6 (2008),

pp. 743–753.

[56] Sabyasachi Dash et al. ‘Big data in healthcare: management, analysis and future

prospects’. In: Journal of Big Data 6.1 (2019), pp. 1–25.

[57] Yann N Dauphin et al. ‘Language modeling with gated convolutional networks’.

In: Proceedings of the 34th International Conference on Machine Learning-

Volume 70. JMLR. org. 2017, pp. 933–941.



BIBLIOGRAPHY 147

[58] David L DeMets and Susan S Ellenberg. ‘Data monitoring committees—expect

the unexpected’. In: New England Journal of Medicine 375.14 (2016), pp. 1365–

1371.

[59] Thomas G Dietterich, Richard H Lathrop and Tomás Lozano-Pérez. ‘Solv-

ing the multiple instance problem with axis-parallel rectangles’. In: Artificial

intelligence 89.1-2 (1997), pp. 31–71.

[60] Xiaojian Ding, Fan Yang and Fuming Ma. ‘An efficient model selection for

linear discriminant function-based recursive feature elimination’. In: Journal of

Biomedical Informatics 129 (2022), p. 104070.

[61] Carsten F Dormann et al. ‘Collinearity: a review of methods to deal with it and

a simulation study evaluating their performance’. In: Ecography 36.1 (2013),

pp. 27–46.

[62] Anna Veronika Dorogush, Vasily Ershov and Andrey Gulin. ‘CatBoost: gradient

boosting with categorical features support’. In: arXiv preprint arXiv:1810.11363

(2018).

[63] Sahibsingh A Dudani. ‘The distance-weighted k-nearest-neighbor rule’. In:

IEEE Transactions on Systems, Man, and Cybernetics 4 (1976), pp. 325–327.

[64] Charles Elkan and Keith Noto. ‘Learning classifiers from only positive and

unlabeled data’. In: Proceedings of the 14th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. 2008, pp. 213–220.

[65] Joshua Elliott et al. ‘Predictive accuracy of a polygenic risk score–enhanced

prediction model vs a clinical risk score for coronary artery disease’. In: Jama

323.7 (2020), pp. 636–645.

[66] Craig K Enders. Applied missing data analysis. Guilford Publications, 2022.

[67] Bart S Ferket et al. ‘Systematic review of guidelines on cardiovascular risk as-

sessment: which recommendations should clinicians follow for a cardiovascular

health check?’ In: Archives of internal medicine 170.1 (2010), pp. 27–40.



148 BIBLIOGRAPHY

[68] James Foulds and Eibe Frank. ‘A review of multi-instance learning assumptions’.

In: The Knowledge Engineering Review 25.1 (2010), pp. 1–25.

[69] Jessica M Franklin and Sebastian Schneeweiss. ‘When and how can real world

data analyses substitute for randomized controlled trials?’ In: Clinical Pharma-

cology & Therapeutics 102.6 (2017), pp. 924–933.

[70] Maayan Frid-Adar et al. ‘GAN-based synthetic medical image augmentation for

increased CNN performance in liver lesion classification’. In: Neurocomputing

321 (2018), pp. 321–331.

[71] Thomas R Frieden. ‘Evidence for health decision making—beyond randomized,

controlled trials’. In: New England Journal of Medicine 377.5 (2017), pp. 465–

475.

[72] Brian F Gage et al. ‘Use of pharmacogenetics and clinical factors to predict the

maintenance dose of warfarin’. In: Thrombosis and haemostasis 91.01 (2004),

pp. 87–94.

[73] Tejasvita Gaikwad et al. ‘Warfarin dose model for the prediction of stable main-

tenance dose in indian patients’. In: Clinical and Applied Thrombosis/Hemostasis

24.2 (2018), pp. 353–359.

[74] Salvador Garcı et al. ‘Evolutionary-based selection of generalized instances for

imbalanced classification’. In: Knowledge-Based Systems 25.1 (2012), pp. 3–12.

[75] Thomas Gärtner, Peter Flach and Stefan Wrobel. ‘On graph kernels: Hard-

ness results and efficient alternatives’. In: Learning Theory and Kernel Ma-

chines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop,

COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings.

Springer. 2003, pp. 129–143.

[76] Thomas Gärtner et al. ‘Multi-instance kernels’. In: ICML. Vol. 2. 3. 2002, p. 7.

[77] Andrew Gelman et al. Bayesian data analysis. CRC press, 2013.



BIBLIOGRAPHY 149

[78] Zoubin Ghahramani and Michael I Jordan. ‘Supervised learning from incom-

plete data via an EM approach’. In: Advances in neural information processing

systems. 1994, pp. 120–127.

[79] Ross Girshick. ‘Fast r-cnn’. In: Proceedings of the IEEE international confer-

ence on computer vision. 2015, pp. 1440–1448.

[80] Benjamin A Goldstein and Michael J Pencina. ‘Developing Implementable Risk

Prediction Models with Electronic Health Records Data’. In: Wiley StatsRef:

Statistics Reference Online (2014), pp. 1–8.

[81] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep learning. MIT

press, 2016.

[82] Ian Goodfellow et al. ‘Generative adversarial networks’. In: Communications of

the ACM 63.11 (2020), pp. 139–144.

[83] Yury Gorishniy et al. ‘Revisiting deep learning models for tabular data’. In:

Advances in Neural Information Processing Systems 34 (2021), pp. 18932–

18943.

[84] Somya Goyal. ‘Handling class-imbalance with KNN (neighbourhood) under-

sampling for software defect prediction’. In: Artificial Intelligence Review 55.3

(2022), pp. 2023–2064.

[85] David Grangier and Iain Melvin. ‘Feature set embedding for incomplete data’.

In: Advances in Neural Information Processing Systems 23 (2010).

[86] Alex Graves and Alex Graves. ‘Long short-term memory’. In: Supervised se-

quence labelling with recurrent neural networks (2012), pp. 37–45.

[87] Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton. ‘Speech recogni-

tion with deep recurrent neural networks’. In: 2013 IEEE international confer-

ence on acoustics, speech and signal processing. Ieee. 2013, pp. 6645–6649.



150 BIBLIOGRAPHY

[88] Lawrence W Green. ‘Public health asks of systems science: to advance our

evidence-based practice, can you help us get more practice-based evidence?’ In:

American journal of public health 96.3 (2006), pp. 406–409.

[89] Enzo Grossi et al. ‘Prediction of optimal warfarin maintenance dose using

advanced artificial neural networks’. In: Pharmacogenomics 15.1 (2014), pp. 29–

37.

[90] Steve R Gunn et al. ‘Support vector machines for classification and regression’.

In: ISIS technical report 14.1 (1998), pp. 5–16.

[91] Wei Guo et al. ‘A machine learning model to predict risperidone active moiety

concentration based on initial therapeutic drug monitoring’. In: Frontiers in

Psychiatry 12 (2021), p. 711868.

[92] Yu Guo et al. ‘Combating imbalance in network traffic classification using GAN

based oversampling’. In: 2021 IFIP Networking Conference (IFIP Networking).

IEEE. 2021, pp. 1–9.

[93] Gordon H Guyatt et al. ‘GRADE guidelines 6. Rating the quality of evid-

ence—imprecision’. In: Journal of clinical epidemiology 64.12 (2011), pp. 1283–

1293.

[94] Isabelle Guyon and André Elisseeff. ‘An introduction to variable and feature

selection’. In: Journal of machine learning research 3.Mar (2003), pp. 1157–

1182.

[95] Hui Han, Wen-Yuan Wang and Bing-Huan Mao. ‘Borderline-SMOTE: a new

over-sampling method in imbalanced data sets learning’. In: Advances in In-

telligent Computing: International Conference on Intelligent Computing, ICIC

2005, Hefei, China, August 23-26, 2005, Proceedings, Part I 1. Springer. 2005,

pp. 878–887.



BIBLIOGRAPHY 151

[96] Yufei Han et al. ‘Multi-label learning with highly incomplete data via collab-

orative embedding’. In: Proceedings of the 24th ACM SIGKDD international

conference on knowledge discovery & data mining. 2018, pp. 1494–1503.

[97] Peter Hart. ‘The condensed nearest neighbor rule (corresp.)’ In: IEEE transac-

tions on information theory 14.3 (1968), pp. 515–516.

[98] Trevor Hastie et al. The elements of statistical learning: data mining, inference,

and prediction. Vol. 2. Springer, 2009.

[99] Mardhiya Hayaty, Siti Muthmainah and Syed Muhammad Ghufran. ‘Random

and synthetic over-sampling approach to resolve data imbalance in classifica-

tion’. In: International Journal of Artificial Intelligence Research 4.2 (2020),

pp. 86–94.

[100] R Brian Haynes. ‘Of studies, syntheses, synopses, summaries, and systems: the

“5S” evolution of information services for evidence-based healthcare decisions’.

In: BMJ Evidence-Based Medicine 11.6 (2006), pp. 162–164.

[101] Haibo He and Edwardo A Garcia. ‘Learning from imbalanced data’. In: IEEE

Transactions on knowledge and data engineering 21.9 (2009), pp. 1263–1284.

[102] Haibo He et al. ‘ADASYN: Adaptive synthetic sampling approach for im-

balanced learning’. In: 2008 IEEE international joint conference on neural

networks (IEEE world congress on computational intelligence). IEEE. 2008,

pp. 1322–1328.

[103] Kaiming He et al. ‘Deep residual learning for image recognition’. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 770–778.

[104] Kaiming He et al. ‘Mask r-cnn’. In: Proceedings of the IEEE international

conference on computer vision. 2017, pp. 2961–2969.



152 BIBLIOGRAPHY

[105] Xia He et al. ‘A Risk Scoring Model for High-Dose Methotrexate-Induced

Liver Injury in Children With Acute Lymphoblastic Leukemia Based on Gene

Polymorphism Study’. In: Frontiers in Pharmacology 12 (2021), p. 726229.

[106] Francisco Herrera et al. ‘Multiple Instance Multiple Label Learning’. In: Mul-

tiple Instance Learning: Foundations and Algorithms (2016), pp. 209–230.

[107] Geoffrey E Hinton. ‘Deep belief networks’. In: Scholarpedia 4.5 (2009), p. 5947.

[108] Jack Hirsh et al. ‘American Heart Association/American College of Cardiology

foundation guide to warfarin therapy’. In: Circulation 107.12 (2003), pp. 1692–

1711.

[109] Tin Kam Ho. ‘Random decision forests’. In: Proceedings of 3rd international

conference on document analysis and recognition. Vol. 1. IEEE. 1995, pp. 278–

282.

[110] David W Hosmer Jr, Stanley Lemeshow and Rodney X Sturdivant. Applied

logistic regression. Vol. 398. John Wiley & Sons, 2013.

[111] Chang-Hua Hu et al. ‘A prognostic model based on DBN and diffusion process

for degrading bearing’. In: IEEE Transactions on Industrial Electronics 67.10

(2019), pp. 8767–8777.

[112] Dichao Hu. ‘An introductory survey on attention mechanisms in NLP problems’.

In: Intelligent Systems and Applications: Proceedings of the 2019 Intelligent

Systems Conference (IntelliSys) Volume 2. Springer. 2020, pp. 432–448.

[113] Weiwei Hu and Ying Tan. ‘Generating adversarial malware examples for black-

box attacks based on GAN’. In: Data Mining and Big Data: 7th International

Conference, DMBD 2022, Beijing, China, November 21–24, 2022, Proceedings,

Part II. Springer. 2023, pp. 409–423.

[114] Yang Hu, Mingjing Li and Nenghai Yu. ‘Multiple-instance ranking: Learning

to rank images for image retrieval’. In: 2008 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE. 2008, pp. 1–8.



BIBLIOGRAPHY 153

[115] David Hua et al. ‘Using AI-Driven Triaging to Optimise Clinical Workflows in

Non-Emergency Outpatient Settings: A Real-World Case Study Concerning the

Screening of Tuberculosis’. In: Proceedings of the 2023 Australasian Computer

Science Week. 2023, pp. 240–243.

[116] Guilin Huang. ‘Missing data filling method based on linear interpolation and

lightgbm’. In: Journal of Physics: Conference Series. Vol. 1754. 1. IOP Publish-

ing. 2021, p. 012187.

[117] Xiaohui Huang et al. ‘Prediction of vancomycin dose on high-dimensional data

using machine learning techniques’. In: Expert Review of Clinical Pharmacology

14.6 (2021), pp. 761–771.

[118] Maximilian Ilse, Jakub Tomczak and Max Welling. ‘Attention-based deep

multiple instance learning’. In: International conference on machine learning.

PMLR. 2018, pp. 2127–2136.

[119] Md Aminul Islam and Nusrat Jahan. ‘Prediction of onset diabetes using machine

learning techniques’. In: International Journal of Computer Applications 180.5

(2017), pp. 7–11.

[120] José M Jerez et al. ‘Missing data imputation using statistical and machine

learning methods in a real breast cancer problem’. In: Artificial intelligence in

medicine 50.2 (2010), pp. 105–115.

[121] Tammy Jiang et al. ‘Addressing measurement error in random forests using

quantitative bias analysis’. In: American Journal of Epidemiology 190.9 (2021),

pp. 1830–1840.

[122] Justin M Johnson and Taghi M Khoshgoftaar. ‘Survey on deep learning with

class imbalance’. In: Journal of Big Data 6.1 (2019), pp. 1–54.

[123] James M Joyce. ‘Kullback-leibler divergence’. In: International encyclopedia

of statistical science. Springer, 2011, pp. 720–722.



154 BIBLIOGRAPHY

[124] Hyun Kang. ‘The prevention and handling of the missing data’. In: Korean

journal of anesthesiology 64.5 (2013), pp. 402–406.

[125] Devan Kansagara et al. ‘Risk prediction models for hospital readmission: a

systematic review’. In: Jama 306.15 (2011), pp. 1688–1698.

[126] Nazmul Karim et al. ‘Unicon: Combating label noise through uniform selection

and contrastive learning’. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2022, pp. 9676–9686.

[127] Guolin Ke et al. ‘Lightgbm: A highly efficient gradient boosting decision tree’.

In: Advances in neural information processing systems 30 (2017).

[128] Salman Khan et al. ‘Transformers in vision: A survey’. In: ACM computing

surveys (CSUR) 54.10s (2022), pp. 1–41.

[129] Han-Gyu Kim et al. ‘Recurrent neural networks with missing information im-

putation for medical examination data prediction’. In: 2017 IEEE International

Conference on Big Data and Smart Computing (BigComp). IEEE. 2017, pp. 317–

323.

[130] Jaeyoon Kim, Donghyun Tae and Junhee Seok. ‘A survey of missing data

imputation using generative adversarial networks’. In: 2020 International con-

ference on artificial intelligence in information and communication (ICAIIC).

IEEE. 2020, pp. 454–456.

[131] Diederik P Kingma and Jimmy Ba. ‘Adam: A method for stochastic optimiza-

tion’. In: arXiv preprint arXiv:1412.6980 (2014).

[132] William A Knaus et al. ‘APACHE II: a severity of disease classification system.’

In: Critical care medicine 13.10 (1985), pp. 818–829.

[133] R Kohavi and GH John. Wrappers for feature subset selection, Artificial Intelli-

gence, vol. 97, no. 1-2. 1997.



BIBLIOGRAPHY 155

[134] Konstantina Kourou et al. ‘Machine learning applications in cancer prognosis

and prediction’. In: Computational and structural biotechnology journal 13

(2015), pp. 8–17.

[135] Miroslav Kubat, Stan Matwin et al. ‘Addressing the curse of imbalanced training

sets: one-sided selection’. In: Icml. Vol. 97. 1. Citeseer. 1997, p. 179.

[136] Christine Laine et al. ‘Reproducible research: moving toward research the public

can really trust’. In: Annals of Internal Medicine 146.6 (2007), pp. 450–453.

[137] Edmund C Lau et al. ‘Use of electronic medical records (EMR) for oncology

outcomes research: assessing the comparability of EMR information to patient

registry and health claims data’. In: Clinical epidemiology 3 (2011), p. 259.

[138] Jorma Laurikkala. ‘Improving identification of difficult small classes by balan-

cing class distribution’. In: Artificial Intelligence in Medicine: 8th Conference

on Artificial Intelligence in Medicine in Europe, AIME 2001 Cascais, Portugal,

July 1–4, 2001, Proceedings 8. Springer. 2001, pp. 63–66.

[139] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. ‘Deep learning’. In: nature

521.7553 (2015), pp. 436–444.

[140] P Lenzini et al. ‘Integration of genetic, clinical, and INR data to refine warfarin

dosing’. In: Clinical Pharmacology & Therapeutics 87.5 (2010), pp. 572–578.

[141] Wenhua Liang et al. ‘Development and validation of a clinical risk score to

predict the occurrence of critical illness in hospitalized patients with COVID-19’.

In: JAMA internal medicine 180.8 (2020), pp. 1081–1089.

[142] Xuejun Liao, Hui Li and Lawrence Carin. ‘Quadratically gated mixture of

experts for incomplete data classification’. In: Proceedings of the 24th Interna-

tional Conference on Machine learning. 2007, pp. 553–560.

[143] Junji Lin et al. ‘Application of electronic medical record data for health out-

comes research: a review of recent literature’. In: Expert review of pharmacoe-

conomics & outcomes research 13.2 (2013), pp. 191–200.



156 BIBLIOGRAPHY

[144] Tsung-Yi Lin et al. ‘Focal loss for dense object detection’. In: Proceedings of

the IEEE international conference on computer vision. 2017, pp. 2980–2988.

[145] Wei-Chao Lin et al. ‘Clustering-based undersampling in class-imbalanced data’.

In: Information Sciences 409 (2017), pp. 17–26.

[146] Zilong Lin, Yong Shi and Zhi Xue. ‘Idsgan: Generative adversarial networks for

attack generation against intrusion detection’. In: Advances in Knowledge Dis-

covery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu,

China, May 16–19, 2022, Proceedings, Part III. Springer. 2022, pp. 79–91.

[147] Geert Litjens et al. ‘A survey on deep learning in medical image analysis’. In:

Medical image analysis 42 (2017), pp. 60–88.

[148] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data.

Vol. 793. John Wiley & Sons, 2019.

[149] Guoqing Liu, Jianxin Wu and Zhi-Hua Zhou. ‘Key instance detection in multi-

instance learning’. In: Asian Conference on Machine Learning. PMLR. 2012,

pp. 253–268.

[150] KE Liu, C-L Lo and Y-H Hu. ‘Improvement of adequate use of warfarin for the

elderly using decision tree-based approaches’. In: Methods of Information in

Medicine 53.01 (2014), pp. 47–53.

[151] Rong Liu et al. ‘Comparison of nine statistical model based warfarin phar-

macogenetic dosing algorithms using the racially diverse international war-

farin pharmacogenetic consortium cohort database’. In: PloS one 10.8 (2015),

e0135784.

[152] Steven Liu et al. ‘Diverse image generation via self-conditioned gans’. In:

Proceedings of the IEEE/CVF conference on computer vision and pattern re-

cognition. 2020, pp. 14286–14295.



BIBLIOGRAPHY 157

[153] Tao Liu et al. ‘Non-instinct detection of cellphone usage from lane-keeping

performance based on eXtreme gradient boosting and optimal sliding windows’.

In: IET Intelligent Transport Systems 16.11 (2022), pp. 1600–1610.

[154] Xiaodong Liu et al. ‘A GAN and feature selection-based oversampling technique

for intrusion detection’. In: Security and communication networks 2021 (2021),

pp. 1–15.

[155] Xu-Ying Liu, Jianxin Wu and Zhi-Hua Zhou. ‘Exploratory undersampling

for class-imbalance learning’. In: IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 39.2 (2008), pp. 539–550.

[156] Yushan Liu and Steven D Brown. ‘Comparison of five iterative imputation meth-

ods for multivariate classification’. In: Chemometrics and Intelligent Laboratory

Systems 120 (2013), pp. 106–115.

[157] Zhun-ga Liu et al. ‘Adaptive imputation of missing values for incomplete pattern

classification’. In: Pattern Recognition 52 (2016), pp. 85–95.

[158] Lin Lu et al. ‘Wearable health devices in health care: narrative systematic

review’. In: JMIR mHealth and uHealth 8.11 (2020), e18907.

[159] Zhiyuan Ma et al. ‘Ensemble of machine learning algorithms using the stacked

generalization approach to estimate the warfarin dose’. In: PloS one 13.10

(2018), e0205872.

[160] Tomasz Maciejewski and Jerzy Stefanowski. ‘Local neighbourhood extension

of SMOTE for mining imbalanced data’. In: 2011 IEEE symposium on compu-

tational intelligence and data mining (CIDM). IEEE. 2011, pp. 104–111.

[161] David MacKay. ‘Information theory, pattern recognition and neural networks’.

In: Proceedings of the 1st International Conference on Evolutionary Computa-

tion. Cambridge University Press Cambridge, UK. 2003.

[162] Ruth Macklin. ‘Enrolling pregnant women in biomedical research’. In: The

Lancet 375.9715 (2010), pp. 632–633.



158 BIBLIOGRAPHY

[163] Amr Makady et al. ‘What is real-world data? A review of definitions based on

literature and stakeholder interviews’. In: Value in health 20.7 (2017), pp. 858–

865.

[164] Inderjeet Mani and I Zhang. ‘kNN approach to unbalanced data distributions: a

case study involving information extraction’. In: Proceedings of workshop on

learning from imbalanced datasets. Vol. 126. ICML. 2003, pp. 1–7.

[165] Elaine R Mardis. ‘Next-generation sequencing platforms’. In: Annual review of

analytical chemistry 6 (2013), pp. 287–303.

[166] Oded Maron and Tomás Lozano-Pérez. ‘A framework for multiple-instance

learning’. In: Advances in neural information processing systems 10 (1997).

[167] Fawad Masood et al. ‘Novel approach to evaluate classification algorithms and

feature selection filter algorithms using medical data’. In: Journal of Computa-

tional and Cognitive Engineering 2.1 (2023), pp. 57–67.

[168] Gary C McDonald. ‘Ridge regression’. In: Wiley Interdisciplinary Reviews:

Computational Statistics 1.1 (2009), pp. 93–100.

[169] Roxana Mehran et al. ‘A risk score to predict bleeding in patients with acute

coronary syndromes’. In: Journal of the American College of Cardiology 55.23

(2010), pp. 2556–2566.

[170] Tomas Mikolov et al. ‘Efficient estimation of word representations in vector

space’. In: arXiv preprint arXiv:1301.3781 (2013).

[171] Roweida Mohammed, Jumanah Rawashdeh and Malak Abdullah. ‘Machine

learning with oversampling and undersampling techniques: overview study and

experimental results’. In: 2020 11th international conference on information

and communication systems (ICICS). IEEE. 2020, pp. 243–248.

[172] Fantine Mordelet and J-P Vert. ‘A bagging SVM to learn from positive and

unlabeled examples’. In: Pattern Recognition Letters 37 (2014), pp. 201–209.



BIBLIOGRAPHY 159

[173] Bobak J Mortazavi et al. ‘Analysis of machine learning techniques for heart

failure readmissions’. In: Circulation: Cardiovascular Quality and Outcomes

9.6 (2016), pp. 629–640.

[174] David B Morton and PH Griffiths. ‘Guidelines on the recognition of pain, dis-

tress and discomfort in experimental animals and an hypothesis for assessment’.

In: Vet Rec 116.16 (1985), pp. 431–6.

[175] Alejandro Mottini, Alix Lheritier and Rodrigo Acuna-Agost. ‘Airline passen-

ger name record generation using generative adversarial networks’. In: arXiv

preprint arXiv:1807.06657 (2018).

[176] Jared S Murray. ‘Multiple imputation: a review of practical and theoretical

findings’. In: (2018).

[177] Jared S Murray and Jerome P Reiter. ‘Multiple imputation of missing categorical

and continuous values via Bayesian mixture models with local dependence’. In:

Journal of the American Statistical Association 111.516 (2016), pp. 1466–1479.

[178] Carol M Musil et al. ‘A comparison of imputation techniques for handling

missing data’. In: Western journal of nursing research 24.7 (2002), pp. 815–

829.

[179] Nagarajan Natarajan et al. ‘Learning with noisy labels’. In: Advances in neural

information processing systems 26 (2013).

[180] Alexey Natekin and Alois Knoll. ‘Gradient boosting machines, a tutorial’. In:

Frontiers in neurorobotics 7 (2013), p. 21.

[181] Nonso Nnamoko, Abir Hussain and David England. ‘Predicting diabetes on-

set: an ensemble supervised learning approach’. In: 2018 IEEE Congress on

evolutionary computation (CEC). IEEE. 2018, pp. 1–7.

[182] Arie Nouwen et al. ‘Type 2 diabetes mellitus as a risk factor for the onset of

depression: a systematic review and meta-analysis’. In: Diabetologia 53 (2010),

pp. 2480–2486.



160 BIBLIOGRAPHY

[183] Ziad Obermeyer and Ezekiel J Emanuel. ‘Predicting the future—big data, ma-

chine learning, and clinical medicine’. In: The New England journal of medicine

375.13 (2016), p. 1216.

[184] Joo-Hyuk Oh, Jae Yeol Hong and Jun-Geol Baek. ‘Oversampling method using

outlier detectable generative adversarial network’. In: Expert Systems with

Applications 133 (2019), pp. 1–8.

[185] Soonmyung Paik et al. ‘A multigene assay to predict recurrence of tamoxifen-

treated, node-negative breast cancer’. In: New England Journal of Medicine

351.27 (2004), pp. 2817–2826.

[186] Adam Pantanowitz and Tshilidzi Marwala. ‘Missing data imputation through

the use of the Random Forest Algorithm’. In: Advances in Computational

Intelligence. Springer, 2009, pp. 53–62.

[187] Noseong Park et al. ‘Data synthesis based on generative adversarial networks’.

In: arXiv preprint arXiv:1806.03384 (2018).

[188] Arshi Parvaiz et al. ‘Vision transformers in medical computer vision—A con-

templative retrospection’. In: Engineering Applications of Artificial Intelligence

122 (2023), p. 106126.

[189] Karl Pearson. ‘VII. Note on regression and inheritance in the case of two

parents’. In: proceedings of the royal society of London 58.347-352 (1895),

pp. 240–242.

[190] Ekachai Phaisangittisagul. ‘An analysis of the regularization between L2 and

dropout in single hidden layer neural network’. In: 2016 7th International

Conference on Intelligent Systems, Modelling and Simulation (ISMS). IEEE.

2016, pp. 174–179.

[191] Edward F Philbin and Thomas G DiSalvo. ‘Prediction of hospital readmission

for heart failure: development of a simple risk score based on administrative



BIBLIOGRAPHY 161

data’. In: Journal of the American College of Cardiology 33.6 (1999), pp. 1560–

1566.

[192] Robert S Phillips, Bas Vaarwerk and Jessica E Morgan. ‘Using Evidence-Based

Medicine to Support Clinical Decision-Making in RMS’. In: Cancers 15.1

(2022), p. 66.

[193] Walter Hugo Lopez Pinaya et al. ‘Autoencoders’. In: Machine learning. Elsevier,

2020, pp. 193–208.

[194] Simon K Poon et al. ‘A novel approach in discovering significant interactions

from TCM patient prescription data’. In: International journal of data mining

and bioinformatics 5.4 (2011), pp. 353–368.

[195] Mohammad H Poursaeidi and O Erhun Kundakcioglu. ‘Robust support vector

machines for multiple instance learning’. In: Annals of Operations Research

216.1 (2014), pp. 205–227.

[196] Yanjun Qi. ‘Random forest for bioinformatics’. In: Ensemble machine learning:

Methods and applications. Springer, 2012, pp. 307–323.

[197] Jiaohua Qin et al. ‘A biological image classification method based on improved

CNN’. In: Ecological Informatics 58 (2020), p. 101093.

[198] J. Ross Quinlan. ‘Induction of decision trees’. In: Machine learning 1 (1986),

pp. 81–106.

[199] Alec Radford, Luke Metz and Soumith Chintala. ‘Unsupervised representation

learning with deep convolutional generative adversarial networks’. In: arXiv

preprint arXiv:1511.06434 (2015).

[200] Alvin Rajkomar, Jeffrey Dean and Isaac Kohane. ‘Machine learning in medi-

cine’. In: New England Journal of Medicine 380.14 (2019), pp. 1347–1358.

[201] Jan Ramon and Luc De Raedt. ‘Multi instance neural networks’. In: Proceedings

of the ICML-2000 workshop on attribute-value and relational learning. 2000,

pp. 53–60.



162 BIBLIOGRAPHY

[202] René Ranftl, Alexey Bochkovskiy and Vladlen Koltun. ‘Vision transformers for

dense prediction’. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision. 2021, pp. 12179–12188.

[203] Jonas Ranstam and JA Cook. ‘LASSO regression’. In: Journal of British Surgery

105.10 (2018), pp. 1348–1348.

[204] Noémie Resseguier, Roch Giorgi and Xavier Paoletti. ‘Sensitivity analysis when

data are missing not-at-random’. In: Epidemiology 22.2 (2011), p. 282.

[205] Sherri Rose. ‘Mortality risk score prediction in an elderly population using

machine learning’. In: American journal of epidemiology 177.5 (2013), pp. 443–

452.

[206] Mehrdad Rostami and Mourad Oussalah. ‘A novel explainable COVID-19

diagnosis method by integration of feature selection with random forest’. In:

Informatics in Medicine Unlocked 30 (2022), p. 100941.

[207] Peter M Rothwell. ‘External validity of randomised controlled trials:“to whom

do the results of this trial apply?”’ In: The Lancet 365.9453 (2005), pp. 82–93.

[208] Patrick Royston. ‘Multiple imputation of missing values’. In: The Stata Journal

4.3 (2004), pp. 227–241.

[209] Donald B Rubin. Multiple imputation for nonresponse in surveys. Vol. 81. John

Wiley & Sons, 2004.

[210] Vivek A Rudrapatna, Atul J Butte et al. ‘Opportunities and challenges in using

real-world data for health care’. In: The Journal of Clinical Investigation 130.2

(2020), pp. 565–574.

[211] David L Sackett et al. Evidence based medicine: what it is and what it isn’t.

1996.

[212] Yvan Saeys, Inaki Inza and Pedro Larranaga. ‘A review of feature selection

techniques in bioinformatics’. In: bioinformatics 23.19 (2007), pp. 2507–2517.



BIBLIOGRAPHY 163

[213] Jorge Sánchez et al. ‘Image classification with the fisher vector: Theory and

practice’. In: International journal of computer vision 105 (2013), pp. 222–245.

[214] Joseph L Schafer. Analysis of incomplete multivariate data. CRC press, 1997.

[215] Joseph L Schafer and John W Graham. ‘Missing data: our view of the state of

the art.’ In: Psychological methods 7.2 (2002), p. 147.

[216] Kenneth F Schulz and David A Grimes. ‘Allocation concealment in randomised

trials: defending against deciphering’. In: The Lancet 359.9306 (2002), pp. 614–

618.

[217] Karen A Schwarz and Cheryl S Elman. ‘Identification of factors predictive of

hospital readmissions for patients with heart failure’. In: Heart & Lung 32.2

(2003), pp. 88–99.

[218] Chiranjibi Shah, Qian Du and Yan Xu. ‘Enhanced TabNet: Attentive inter-

pretable tabular learning for hyperspectral image classification’. In: Remote

Sensing 14.3 (2022), p. 716.

[219] Rachel E Sherman et al. ‘Real-world evidence—what is it and what can it tell

us’. In: N Engl J Med 375.23 (2016), pp. 2293–2297.

[220] Pannagadatta K Shivaswamy, Chiranjib Bhattacharyya and Alexander J Smola.

‘Second order cone programming approaches for handling missing and uncertain

data’. In: Journal of Machine Learning Research (2006), pp. 1283–1314.

[221] Edward H Shortliffe and Martin J Sepúlveda. ‘Clinical decision support in the

era of artificial intelligence’. In: Jama 320.21 (2018), pp. 2199–2200.

[222] Wen-ying Shu et al. ‘Pharmacogenomics and personalized medicine: a review

focused on their application in the Chinese population’. In: Acta pharmacologica

Sinica 36.5 (2015), pp. 535–543.

[223] George CM Siontis et al. ‘External validation of new risk prediction models is

infrequent and reveals worse prognostic discrimination’. In: Journal of clinical

epidemiology 68.1 (2015), pp. 25–34.



164 BIBLIOGRAPHY
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