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Abstract

Multimodal integration is a framework for building models that can accept information

from different types of modalities. Vision-and-Language Model is one of the common

multimodal models, which learns the vision-language correlation from a large scale of datasets.

Due to the recent success in the Transformer model and Pre-training Fine-tuning Techniques,

Vision-and-Language Pre-training Models (VL-PMs) have been heavily investigated and they

achieved State-of-the-Art (SOTA) in various of Vision-and-Language downstream tasks, such

as Visual Question Answering (VQA), Image Text Matching (ITM) and Image Captioning

(IC).

However, most of the previous studies focus on improving the performance of the models

and only provide accessible code for research purposes. There are several existing open-source

libraries such as Natural Language Toolkit, OpenCV and HuggingFace, which combine and

standardise the available models and tools for easy access, but applying these libraries still

requires expertise in both Deep Learning and programming. Moreover, there has been no

recent research aimed at establishing user-friendly multimodal question-answering platforms

for non-deep-learning users. Therefore, the question of how State-Of-The-Art (SOTA)

multimodal models can be easily applied by professionals in other domains remains open.

Apart from the first challenge, there exists another challenge in the less-common domain.

Since general multimodal domains such as street view, landscape, and indoor scenes have been

extensively studied with current VL-PMs, while specific domains like medicine, geography,

and esports have garnered less attention. There are significantly fewer models and benchmarks

in these areas, especially in the esports domain. Due to the difficulties in data collection, there

aren’t many publicly available multimodal datasets, and those that exist tend to be small. This

scarcity poses challenges for model training. Consequently, the question of how to collect a

comprehensive multimodal dataset in the esports domain and how to improve domain-specific

multimodal models remains open.
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vi ABSTRACT

Therefore, the main focus of this thesis is integrating multimodal information for natural

language classification and generation tasks by addressing two main problems: 1)The VL-

PMs are not widely applied in industrial domains due to their complexity for normal users;

2)The lack of multimodal dataset support in the game domain for both situation understanding

and commentary generation.

To address the first problem, a novel multimodal question-answering system has been

proposed, which allows the end-users to apply the SOTA VL-PTMs with their domain

knowledge easily. It integrates pre-trained models from the HuggingFace API and conceals

the underlying code from end-users through a carefully designed website. This system

includes the following benefits: A comprehensive data processing method that handles noise

input data upon submitting, A detailed interpretive result evaluation technique that proves

the model’s reasoning of the predicted answer and portability due to web-based and thus can

work with multi-platform settings.

To address the second problem, a new multimodal dataset and a strong baseline have

been proposed, which enriches the information for the game situation and audience-engaged

commentary generation. The data is collected from 2020-2022 League of Legends game live

streams from YouTube and Twitch, and includes full of multimodal esports game information,

including text, audio, and time-series event logs. In addition, we also propose a new audience

conversation augmented commentary dataset by covering the game situation and audience

conversation understanding and introducing a robust joint multimodal dual learning model as a

baseline. We examine the model’s game situation/event understanding ability and commentary

generation capability to show the effectiveness of the multimodal aspects coverage, as well as

the joint integration learning approach.
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CHAPTER 1

Introduction

1.1 Background

Multimodal integration for classification and generation aims to construct models capable

of receiving and processing information from diverse modalities, such as text, images, and

audio. Among various modality combinations, the Vision-and-Language Model is a prevalent

type of multimodal model. Its primary objective is to merge textual and visual information

for the effective execution of multimodal tasks. The latest Transformer (Vaswani et al. 2017)

architecture outperforms the traditional deep neural networks primarily due to its attention

mechanism, which makes it one of the commonly adopted structures in the Vision-and-

Language Model. Inspired by the transfer learning technique, Transformer-based Vision-

and-Language Models usually follow Pre-training Fine-tuning techniques. This method

initially trains the Vision-and-Language Models with a large amount of general data to obtain

strong foundation models called Vision-and-Language Pre-trained Models (VL-PMs). The

foundation VL-PMs can then be fine-tuned/trained towards downstream tasks with limited

datasets and still achieve substantial performance. Building upon VL-PMs, Audio-and-

Language Pre-trained Models (AL-PMs) extend the Transformer architecture and Pre-training

Fine-tuning techniques for Audio-and-Language tasks. Furthermore, there exist several

studies that fuse all three modalities for comprehensive multimodal integration.

Several strong VL-PM baselines have been proposed in previous studies, each employing

different vision encoders. Early works such as VisualBERT (Li et al. 2019b), ViLBERT (Lu

et al. 2019), LXMERT (Tan and Bansal 2019), and UNITER (Chen et al. 2020) utilise Faster

R-CNN for image feature extraction. They encode the visual features into a sequence of
1



2 1 INTRODUCTION

Region-of-Interest (ROI) features, facilitating the integration of vision and language. Other

works including pixel-BERT (Huang et al. 2020) and SOHO (Huang et al. 2021) encode

images into pixel-level grid features with the application of ResNet to minimise the risk of

neglecting essential image regions. More recent studies, such as ViLT (Kim et al. 2021)

and SimVLM (Wang et al. 2021), employ ViT (Dosovitskiy et al. 2021) for visual feature

extraction. This technique involves dividing input images into flattened 2D patches and

arranging them into a sequence representation. These models can be adapted for real-world

applications such as medical diagnosis (Vu et al. 2020; Ren and Zhou 2020), guidance for

visually impaired people (Ren and Zhou 2020), and educational assistance (He et al. 2017).

However, VLPMs are not widely applied in industry due to their implementation complexity

and the challenges they pose for non-deep learning experts. Since the audio-and-language

field is less prevalent than the vision-and-language field, there only exist two main different

structures in AL-PMs. Mockingjay (Liu et al. 2020), TERA (Liu et al. 2021a), Audio

ALBERT (Chi et al. 2021) and DAPC (Bai et al. 2021) utilise single Transformer-based

auto-encoders in their structures, while Wav2Vec 2.0 (Baevski et al. 2020) and HuBERT (Hsu

et al. 2021) include an extra convolutional layer with the Transformer for improving the

model’s understanding of contextualised representations. Audio information can be integrated

with textual information in more specific domains, such as e-sports, for improved situation

understanding and language generation. However, current approaches (Tanaka and Simo-

Serra 2021; Zhang et al. 2022; Wang and Yoshinaga 2022) typically employ a unified model

to process game information and mimic human commentary, due to a lack of resources.

1.2 Research Contribution

However, the application of VL-PMs in practice is not extensive. This can be attributed to the

requirement of solid deep learning and programming skills for their implementation, which

can prove challenging for non-experts in deep learning. Therefore, we focus on improving

the usability of the VL-PMs by developing a Visual Question Answering (VQA) platform

named PiggyBack, which allows the users to apply the VL-PMs with their domain knowledge.

PiggyBack utilise the open-source HuggingFace API and conceals the code from users
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through a well-designed website for easy fine-tuning and evaluation. This platform comprises

a back-end system, designed for comprehensive data processing and model fine-tuning, along

with a front-end web system, designed towards interpretability and user-friendliness. The

main contributions of PiggyBack are summarised below:

• We introduce a web-based deep-learning platform (PiggyBack) designed to provide

non-deep-learning users with an intuitive interface, facilitating the effortless fine-

tuning of VL-PMs for VQA tasks.

• We offer users a choice between two pre-trained models, allowing them to select the

one best suited to their specific data and tasks.

• We integrate model evaluation in the system, capable of handling numerous image-

question pairs. The system enhances evaluation results with interpretability by

visualising the relevant regions in the image.

Furthermore, VL-PMs are usually pre-trained with common scenes like street or indoor views,

objects, people and animals. There are much fewer models and benchmarks in specific domain

such as medicine, geography and esports. Unlike traditional sports broadcasting, the dynamic

nature of esports brings complex game situations, which makes situation understanding

challenging for the average audience. Esports organisers address this problem by inviting

one or two casters to broadcast the game situation during the live stream. However, this

approach heavily relies on the casters and may not provide diverse information, such as

audience emotions, other perspectives of analysis and detailed game event information. To

better address this problem, we introduce GAME-MUG, which includes a multimodal game

situation understanding and commentary generation dataset, as well as a strong baseline

mode. Our multimodal dataset is collected from publicly available League of Legends (LOL)

resources from YouTube and Twitch, with corresponding game event logs, caster speech audio

and audience chats. Inspired by the joint learning technique of natural language understanding

and generation tasks, we propose a strong baseline that utilises multimodal information for

comprehensive game situation understanding and human-like emotional game commentary

generation. The main contributions of GAME-MUG are summarised below:
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• We propose a multimodal game understanding and commentary generation dataset

to provide a full understanding of the game situations with not only caster comments

but also diverse information, including audience conversation, caster speech audio,

and game event logs.

• We propose a joint learning baseline model to generate more human-like commentary

with the help of game situation understanding.

• We conducted extensive experiments to show the effectiveness of the multimodal

aspects in the game understanding task and commentary generation.

1.3 Thesis Overview

This thesis delves into multimodal integration for classification and generation, presenting a

user-friendly web platform, PiggyBack, along with a multimodal game understanding and gen-

eration dataset and its corresponding baseline, GAME-MUG. Beyond this introduction, there

are four additional chapters that provide an in-depth look at current trends in multimodality

and expound on the detailed implementations of the proposed systems.

Chapter 2 provides the background of the previous studies on multimodal integration, as

well as the classification and generation tasks. It starts with introducing the VL-PMs with

their pre-training objectives as well as the AL-PMs with their loss objectives. It subsequently

unveils the multimodal VQA task, complete with pertinent benchmarks, model structures,

and evaluation metrics. Finally, it showcases the multimodal language generation task with a

specific emphasis on the gaming domain, including relevant benchmarks, model structures,

and evaluation metrics.

Chapter 3 provides an insightful overview of PiggyBack, which is a pre-trained VQA

environment for backing up non-deep learning professionals. It begins by outlining the

back-end architecture, with detailed processes in data preparation, model structure embedding,

fine-tuning specifications, and visualization evaluation. It subsequently presents the front-end

design, explaining the interactive elements of the Data Uploader, Model Selector, Fine-tuner,
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and Visualiser. Finally, it assesses the effectiveness of the system through a human evaluation

study.

Chapter 4 provides an insightful overview of GAME-MUG, which is a Multimodal Oriented

Game Situation Understanding and Commentary Generation Dataset. It initiates by outlining

the approach for multimodal data collection, with discussions on data annotation, data

processing, and data analysis. It subsequently introduces the proposed baseline models,

explaining the method for processing time-series data and the joint learning model for game

situation understanding and game commentary generation. Finally, it assesses the performance

of the proposed model and the effectiveness of the multimodality data through an extensive

experiment.

Chapter 5 provides a conclusion of this dissertation with findings from evaluation results and

analysis. It also includes future works that help the development of the current multimodal

integration for natural language classification and generation.



CHAPTER 2

Literature review

This literature review chapter aims to critically analyse the previous research on the impact of

multimodal joint integration, with a specific focus on NLP tasks, and it identifies the major

findings, developing trends and research gaps in the literature. The scope of this review is

constrained to the studies based on Transformer (Vaswani et al. 2017) architecture, primarily

focusing on question answering and language generation. This chapter is organised into

three main sections. In Section 2.1, the multimodal joint learning approaches are introduced,

which includes models covering vision, audio and language modalities. In Section 2.2, the

multimodal integration and question answering are presented, which contains the existing QA

datasets, commonly used strategies and evaluation techniques. In Section 2.3, the methodology

of multimodal integration and language generation is unveiled, which incorporates the existing

generation datasets, different model structures and evaluation metrics.

2.1 Multimodal Joint Learning

Multimodality applications have grown exponential attentions in deep learning field, due to

the invention of the Transformer (Vaswani et al. 2017) architecture from Google in 2017. Its

model structure is shown in Figure 2.1 Transformer is a deep neural network consisting of an

encode and a decoder, each of which is composed of multiple stacked identical layers. The

encoder converts a sequence of input symbol representations into a continuous sequence of

representations, while the decoder incrementally generates elements to form the output symbol

sequence. The model produces symbols at each step in an autoregressive manner (Graves

2013), utilising previously generated symbols as additional input. More specifically, the
6
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FIGURE 2.1: Model structure of the original Transformer (Vaswani et al.
2017). It consists of an encoder (left) and a decoder (right).

encoder includes two sub-layers, which are multi-head self-attention (MultiHeadAtt) layer

and position-wise fully connected feed-forward network (FFN) layer. Each sub-layer is

connected through a residual connection and subsequently followed by layer normalization.

Apart from the two sub-layers in the encode, decoder stacks one more sub-layer to perform

multi-head attention over the output from the encoder module. The self-attention layer

in decoder is masked to prevent the model from attending to subsequent tokens. Since

Transformer is neither recurrence nor convolution, the position information is injected with

the input via the sine and cosine functions. Transformer has been extensively adopted in
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TABLE 2.1: Summary of VL-PMs.

VL-PM Text Encoder Vision Encoder Fusion Techniques

VisualBERT (Li et al. 2019b) BERT Faster R-CNN Single stream
ViLBERT (Lu et al. 2019) BERT Faster R-CNN Dual stream
LXMERT (Tan and Bansal 2019) BERT Faster R-CNN Dual stream
VL-BERT (Su et al. 2019) BERT Faster R-CNN+ResNet Single stream
UNITER (Chen et al. 2020) BERT Faster R-CNN Single stream
InterBert (Lin et al. 2020) BERT Faster R-CNN Single stream
Pixel-BERT (Huang et al. 2020) BERT ResNet Single stream
Unified VLP (Zhou et al. 2020a) UniLM Faster R-CNN Single stream
SOHO (Huang et al. 2021) BERT ResNet + Visual Dictionary Single stream
VL-T5 (Cho et al. 2021) T5, BART Faster R-CNN Single stream
XGPT (Xia et al. 2021) Transformer Faster R-CNN Single stream
ViLT (Kim et al. 2021) ViT Linear Projection Single stream
WenLan (Huo et al. 2021) RoBERTa Faster R-CNN + EffcientNet Dual stream
SimVLM (Wang et al. 2021) ViT ViT Single stream
CLIP (Radford et al. 2021) GPT2 ViT, ResNet Dual encoder
ALIGN (Jia et al. 2021) BERT EffcientNet Dual encoder
DeCLIP (Li et al. 2022) GPT2, BERT ViT, ResNet, RegNetY-64GF Dual encoder

various multimodal models to address challenges in different domains. This section provides

a comprehensive overview of existing models, organised by their types.

2.1.1 Vision-Language Pre-trained Models

Vision-and-Language (V-L) model is a common multimodality model that focuses on solving

VL tasks, such as visual question answering (VQA) (Antol et al. 2015a), image captioning

(IC) (Lin et al. 2014) and image text matching (ITM) (Frome et al. 2013). These tasks

require the model to process the information from two different modalities simultaneously.

Due to the success of Transformer and pre-trained models in Natural Language Processing

(NLP) and Computer Vision (CV), there are many existing works that pre-trained large-scale

Transformer models on both vision and language modalities. These models are called Vision-

and-Language Pre-trained Models (VL-PMs). There are three main steps to build a VL-PM:

1) encode visual and textual information into a common space to preserve their semantics; 2)

construct a cross-modality architecture to interact with two modalities during pre-training; 3)

design diverse tasks for efficient model pre-training.
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There exist several methods for text and image encoding. The majority of existing VL-PM

studies follow BERT (Devlin et al. 2019) to process the text. The input text is split into a

sequence of tokens W =< w1, w2, ..., wn > and two special tokens [CLS] and [SEP] are

concatenated to the front and end of the sequence respectively, completing it as W =<

[CLS], w1, w2, ..., wn, [SEP ] >. Each token is mapped to a word embedding as well as a

combination of position embedding and segment embedding. Position embedding indicates

the token positions in the sequence, while segment embedding differentiates the modality

types for different tokens.

To unify the input from visual and textual modalities, the image is encoded as a sequence of

embeddings to align with the representation of the text. Unlike the sequence of text, there is no

fixed relationship among visual objects, and it is important to capture the complex relationships

for V-L tasks. Therefore, previous studies incorporate different vision encoders to model the

attributes and relationships of visual objects. Some early works like VisualBERT (Li et al.

2019b), ViLBERT (Lu et al. 2019), LXMERT (Tan and Bansal 2019) and UNITER (Chen et al.

2020) apply Faster R-CNN (Ren et al. 2015) on images to extract a sequence of object regions

as bounding boxes and encode them into a sequence of Region-Of-Interest (ROI) features.

Other VL-PMs encode imgaes into pixel-level gird features, such as pixel-BERT (Huang

et al. 2020) and SOHO (Huang et al. 2021), they employ ResNet (He et al. 2016) instead of

Faster R-CNN to avoid the risk of neglecting critical image regions. Following the success of

Vision Transformer (ViT) (Dosovitskiy et al. 2021), some works utilise a ViT to extract visual

features, such as ViLT (Kim et al. 2021) and SimVLM (Wang et al. 2021). These models

initially divide the input images into flattened 2D patches and organise the corresponding

embeddings into a sequence representation. The patch sequence is then fed into a ViT to

extract the visual features.

Apart from input encoding, designing an encoder to integrate vision and language information

is also critical for VL-PMs, and there exists several different approaches to model the V-L

interaction. The most common approaches are fusion encoder and dual encoder. The fusion

encoder simultaneously accepts visual and language embeddings as input and considers

the final hidden layer as the unified representation of different modalities. Fusion encoder
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can be further divided into single-stream architecture and dual-stream architecture. Single-

stream architecture models, like VisualBERT and VL-BERT, learn the potential alignment

and correlation between image and text through a single Transformer encoder. They utilise

segment embedding to separate modalities, and handle the different inputs in a unified

framework due to the unordered representation inherent in Transformer’s attention mechanism.

By utilising a unified Transformer framework, single-stream fusion models are typically time

and cost efficient for pre-training and fine-tuning due to their smaller model size. However,

compared to dual-stream and dual encoder fusion, it demonstrates limited understanding of

different modalities and their alignment. Dual-stream architecture models, such as ViL-BERT

and LXMERT, process image and text information independently through separate image and

text encoders. These models then facilitate interaction between the modalities via a specialised

cross-modal layer, which more comprehensively encodes the inputs, leading to improved

performance in downstream tasks. Dual-stream fusion models are generally more complex

than single-stream fusion models, making them computationally demanding during both

pre-training and fine-tuning phases. Unlike models using Transformer cross-attention, a dual

encoder applies two single-modal encoders for image and text and projects both embeddings

into the same space for calculating V-L similarity sources. By forgoing the cross-modal

layer, dual encoder models enhance their training efficiency while maintaining competitive

performance compared to dual-stream models.

2.1.2 Vision-Language Model Pre-training Objectives

Pre-training objectives are critical for learning the universal representation of visual and textual

features. Common pre-training objectives focus on completion and matching. Completion

aims to recover the masked elements in both modalities by leveraging reminders to train the

model while matching unifies both modalities into a common space to produce a universal

V-L representation.

Masked Language Modeling. Masked Language Modeling (MLM) (Devlin et al. 2019) was

first introduced in BERT and it has been commonly incorporated in VL-PMs. This approach

prompts the model to predict the masked textual token based on both unmasked textual and
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visual clues. Following BERT, VL-PMs randomly selected 15% of the input textual token for

masking. Among the selected tokens, 80% are replaced by a special [MASK] token, 10% are

replaced by other tokens, and the remaining 10% remain unchanged. Its objective function

can be defined as:

LMLM = −E(v,t)∼D logP
(
tm | t\m,v

)
(2.1)

where v represents the vision features, tm represents the masked textual tokens, t\m represents

the unmasked textual tokens and D represents the training dataset.

Prefix Language Modeling. Prefix Language Modeling (PrefixLM) (Wang et al. 2021) is a

combination of the MLM and standard language modelling (LM). It includes bi-directional

attention on the prefix sequence and autoregressively factorises the remaining tokens, which

enables the model for zero-shot generalisation without fine-tuning. This approach has the

capability to perform the contextualised representation similar to in MLM, as well as the text

generation as in LM. Its objective function can be written as:

LPrefixLM = −E(v,t)∼D logP
(
t≥Lp | t≤LP

,v
)

(2.2)

where Lp represents the length of the prefix sequence, and other notations remain the same as

MLM.

Masked Vision Modeling. Inspired by MLM, Masked Vision Modeling (MVM) makes the

model to predict the masked visual regions by the information from unmasked visual features

and textual features. Following the masking technique in MLM, MVM masks 15% of the

visual regions by setting the pixel value to zero. There are two variants for MVM due to the

high-dimensional and continuous nature of the visual features.

One approach is Masked Region Feature Regression (MRFR) (Tan and Bansal 2019), which

regresses the masked visual feature outputs to the original visual features. It first converts

the masked visual feature output vector to the same dimension of the original visual feature
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vector, and then applies the L2 regression between these two vectors. The objective function

can be defined as:

LMVM = E(v,t)∼Df
(
vm | v\m, t

)
(2.3)

f
(
vm | v\m, t

)
=

K∑
i=1

∥h
(
vi
m

)
−O

(
vi
m

)
)∥22 (2.4)

where h (vi
m) represents the predicted visual feature, and O (vi

m) represents the original

visual feature.

Another approach is Masked Region Classification (MRC) (Tan and Bansal 2019), which

simply predicts the object class for the masked region. It is worth noting that in the absence

of ground truth labels in the dataset, two labelling methods are commonly used in training:

hard labelling and soft labelling. Hard labelling takes the most likely labels from the object

detection model as ground truth, and compares it with the VL-PM’s prediction via cross-

entropy loss. Instead of using one most likely label, soft labelling employs the distribution of

the object classes from the detector and the VL-PM. It then computes the Kullback-Leibler

(KL) divergence between two distributions. The overall objective function can be defined as:

LMVM = E(v,t)∼Df
(
vm | v\m, t

)
(2.5)

where f
(
vm | v\m, t

)
represents the different training methods. For hard labelling, it can be

defined as:

f1
(
vm | v\m, t

)
=

N∑
i=1

CE
(
c
(
vi
m

)
− g1

(
vi
m

))
(2.6)
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where c (vi
m) is the representation of the object detected by Faster R-CNN, g1 (vi

m) is the

representation of the object detected by the VL-PM, and N represents the number of vision

regions. For soft labelling, f
(
vm | v\m, t

)
can be defined as:

f2
(
vm | v\m, t

)
=

K∑
i=1

DNL

(
ĉ
(
vi
m

)
− g2

(
vi
m

))
(2.7)

where ĉ (vi
m) represents the distribution of the object detected by Faster R-CNN, and g2 (v

i
m)

represents the distribution of the object detected by the VL-PM.

Sentence-Image Prediction. Sentence-Image Prediction (SIP) (Li et al. 2019b) is a pre-

training objective aiming to align the image and text by projecting them into the common space.

During training, the fused representation of two modalities are fed into a fully connected

(FC) layer to predict the alignment score. To ensure the quality of training, both positive and

negative samples are sent into the model. The negative sample is created by replacing the

original image region or text with randomly selected ones from other samples.

Cross-Modal Contrastive Learning. Cross-Modal Contrastive Learning (CMCL) (Huo et al.

2021) is another pre-training objective focuses on vision and language alignment. There exist

a special visual token [CLSV ] and a special textual token [CLST ] during pre-training, and

these tokens are the aggregated representation of the vision and language. VL-PMs calculate

the normalised text-to-image and image-to-text similarities and apply cross-entropy losses

over these similarities to update their weights. The overall objective function can be defined

as:

LVLC =
1

2
E(I,T )∼D

[
CE
(
yv2t, pv2t(I)

)
+ CE

(
yt2v, pt2v(T )

)]
(2.8)

where yv2t and yt2v represent the retrieved labels of vision-to-text and text-to-vision respect-

ively, pv2t(I) and pt22(I) represent the softmax-normalised vision-to-text and text-to-vision

similarities. These can be further defined as:
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pv2tm (I) =
exp (s (I, Tm) /τ)∑M

m=1 exp (s (I, Tm) /τ)
(2.9)

pt2vm (T ) =
exp (s (T, Im) /τ)∑M

m=1 exp (s (T, Im) /τ)
(2.10)

where I and T represent the images and text, τ represents the temperature coefficient and s(·)

represents the similarity function.

Word Region Alignment. Word Region Alignment (WRA) (Chen et al. 2020) follows

the idea of unsupervised learning to align image regions and words. VL-PMs utilise the

IPOT algorithm to learn the vision and language alignment approximately, since the exact

minimisation of Optimal Transport (OT) is computationally intractable. The minimised OT

distance served as the loss for training the VL-PMs. The objective function is defined as:

LWRA = min
T∈Π(a,b)

T∑
i=1

K∑
j=1

Tij · c (ti,vj) (2.11)

where Π(a,b) =
{
T ∈ RT×K

+ | T1m = a,T⊤1n = b
}

, and c (ti,vj) is cost function com-

puting the distance between language and vision.

2.1.3 Audio-Language Pre-trained Models

Audio-and-Language (A-L) model is another kind of multimodal model focusing on solving

audio tasks, such as Automatic Speech Recognition (ASR) (Oord et al. 2018), and Text-

to-Speech (TTS) (Taylor 2009). To perform these tasks, the model needs to process the

multimodal audio and language information at the same time. The Audio-Language pre-

trained models (AL-PTM) with audio and language information are shown in Table 2.2. Given

that the audio-and-language field is less prevalent than the vision-and-language field, this

section offers a review of the recent A-L models, categorised by their types.
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TABLE 2.2: Summary of AL-PTMs.

AL-PTM Input Encoder Loss Objective

Mockingjay (Liu et al. 2020) mel-spectrogram Transformer L1 loss
TERA (Liu et al. 2021a) log mel-spectrogram Transformer L1 loss
Audio ALBERT (Chi et al. 2021) log mel-spectrogram Transformer L1 loss
DAPC (Bai et al. 2021) spectrogram Transformer Modified MSE loss
Wav2Vec 2.0 (Baevski et al. 2020) raw waveform CNN + Transformer Contrastive + Diversity loss
HuBERT (Hsu et al. 2021) raw waveform CNN + BERT Cross-Entropy loss

Inspired by BERT (Devlin et al. 2019), Mockingjay (Liu et al. 2020), TERA (Liu et al.

2021a), Audio ALBERT (Chi et al. 2021) and DAPC (Bai et al. 2021) utilise auto-encoders

in their structure and employ masked acoustic model (MAM) during pre-training. Similar

to MLM, MAM masks some regions of the original audio input and models should learn

to reconstruct the entire input by filling the masked regions. Mockingjay encodes the input

Mel-spectrogram with a Transformer encoder and projects the audio representation with a

2-layer MLP accompanied by layer normalisation. The Transformer encoder and the MLP

are optimised simultaneously with L1 reconstruction loss. Audio ALBERT deploys the same

network structure and optimisation method as Mockingjay, but all its Transformer encoder

layers share the same parameters. This technique has an insignificant influence on speaker and

phoneme classification performance but improves the training and inference speed. TERA

expands upon the masking procedures in MAM by incorporating three additional methods:

1) applying Gaussian noise; 2) implementing horizontal masking along the channel axis;

3) substituting contiguous segments with random values. This approach outperforms both

Mockingjay and Audio BERT, achieving better results in several downstream tasks, including

speaker classification, phoneme classification, and keyword spotting. Furthermore, it also

produces promising results in ASR tasks with the testing data from Librispeech and TIMIT.

While most models reconstruct the entire input, DAPC only predicts the masked regions along

the time and frequency axes of the input spectrogram. This approach compels the model to

predict temporal frames and frequency bins, thus enhancing its understanding of the input.

The model is then optimised by minimising the loss between the masked ground truth and the

prediction. These models utilise a unified Transformer encoder during training, providing a

simple and effective method for integrating speech and language. Since they employ a simpler

model architecture, their performance is generally inferior to that of more recent models.
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There also exists hierarchical models, such as Wav2Vec 2.0 (Baevski et al. 2020) and

HuBERT (Hsu et al. 2021) combine an extra convolutional layer with the Transformer

for improving the model’s understanding of contextualized representations. Wav2Vec 2.0

consists of a multi-layer convolutional network as a feature encoder and a Transformer to

capture the sequence information. In addition, the feature encoder’s output is discretised with

a quantisation module, which represents prediction targets during self-supervised learning.

The model is then optimised with the combination of contrastive loss and diversity loss. This

approach makes self-attention capture the dependencies over the latent representations of

the audio sequence. HuBERT applies a similar architecture as Wav2Vec 2.0, but its training

process is different from Wav2Vec 2.0. Its targets are built by a separate clustering process,

which prevents model sticks in a small subset of the available targets. Furthermore, HuBERT

utilises the embeddings from BERT’s intermediate layer to improve the targets’ quality. The

model is optimised with simple cross-entropy loss. Although hierarchical models are more

complex, they represent further iterations of the AL-PM with robust training method, offering

enhanced performance on down stream tasks.

2.1.4 Audio-Language Model Loss Objectives

Loss objectives are essential in pre-training AL-PTMs since most of the models use similar

MAM but are combined with different loss objectives. Common loss objectives are introduced

in this section.

L1 Loss. L1 Loss or Mean Absolute Error (MAE) is a simple but robust loss objective to

outliers (Willmott and Matsuura 2005). It computes the average absolute difference between

the prediction and ground truth, without considering their directions. The formula can be

written as:

LMAE =

∑n
i=1 |Yi − Pi|

n
(2.12)

where Yi is the ground truth and Pi is the predicted results.
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Modified MSE Loss. Modified Mean Square Error Loss with Orthonormality Penalty is

proposed with DAPC (Bai et al. 2021), which is a method to calculate the loss between the

ground truths and predicted masks without leaking the information. The reconstruction loss is

a shifted version of the masked reconstruction. Given the input length L of the sequence X

with dimension n, random masks M ∈ Rn×L, feed-forward network g()̇ and encoder e()̇, the

formula can be written as:

Rs = ∥(1−M→s)⊙ (X→s − g(e(X ⊙M)))∥2fro (2.13)

where → s means right-shifting s time frames but keeping the input dimensions unchanged.

Then the predictive information (PI) can be estimated as:

IT = MI
(
Zpast , Z future ) = ln |ΣT (Z)| −

1

2
ln |Σ2T (Z)| (2.14)

where ΣT (Z) is the covariance of the distribution of 2T consecutive latent steps, while Σ2T (Z)

is the covariance of T consecutive latent steps. By adding the orthonormality penalty, the

overall loss objective becomes:

min
e,g

Ls,T (X) = −
(
IT + αIT/2

)
+ βRs + γRortho (2.15)

where Rortho = ∥Σ1 − Id∥2fro is the orthonormality penalty while α, βandγ are trade-off

weights.

Contrastive and Diversity Loss. The combination of Contrastive Loss and Diversity Loss is

proposed with Wav2Vec 2.0 (Baevski et al. 2020), which makes the model learn the speech

representations by solving a contrastive task:

L = Lm + αLd (2.16)
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where α is a tuned hyperparameter, Lm is the Contrastive Loss and Ld is the Diversity Loss.

The Contrastive Loss can be formulated as:

Lm = − log
exp (sim (ct,qt) /κ)∑

q̃∼Qt
exp (sim (ct, q̃) /κ)

(2.17)

where ct is the network output centered over masked timestamp t, qt is the true quantised

speech representation in latent space and q̃ ∈ Qt is a set of K + 1 quantised candidate. In

order to increase the use of quantised codebook representations, the Diversity Loss is designed

as:

Ld =
1

GV

G∑
g=1

−H (p̄g) =
1

GV

G∑
g=1

V∑
v=1

p̄g,v log p̄g,v (2.18)

where V is the set of entries, G is the set of codebooks and p̄g,v is a batch of utterances in

each codebook.

Cross-Entropy Loss. Cross-Entropy Loss (Zhang and Sabuncu 2018) is one of the common

loss objectives in deep learning and HuBERT (Hsu et al. 2021) brings it into the speech. The

overall loss objective can be written as:

L = αLm + (1− α)Lu (2.19)

where Lm and Lu are the cross-entropy loss over the masked and unmasked timestamps

respectively and they can be defined as:

Lm(f ;X,M,Z) =
∑
t∈M

log pf

(
zt | X̃, t

)
(2.20)

Lu(f ;X,M,Z) =
∑
t/∈M

log pf

(
zt | X̃, t

)
(2.21)
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where M is the set of masked indices for a sequence X with length T , X is a set of speech

utterance X = [x1, · · · , xT ], Z is the discovered hidden unit Z = [z1, · · · , zT ], and T is the

number of frames.

2.2 Multimodal Question Answering

Visual Question Answering (VQA) (Antol et al. 2015a) is a common multimodal research

problem that gains substantial interest in both NLP and CV. VQA requires generating nature

language answers by referring to the given question and its correlation image. Similar to any

other V-L tasks, VQA includes sub-tasks in CV, such as object detection for finding particular

semantic objects and position extraction for finding objects’ relevant positions in the image.

Questions in VQA can be binary (Zhang et al. 2016), multiple-choice (Zhu et al. 2016) or

open-ended (Xu et al. 2020). To answer binary questions, the model predicts the answer as

either yes or no. To answer multiple-choice questions, the model chooses the correct answer

from a set of provided answers. To answer open-ended questions, the model is expected to

generate the most accurate answer in a few words or short phrases. This section provides an

overview of the existing VQA datasets, models and evaluation metrics.

2.2.1 Benchmarks

Various datasets have been proposed since 2014, which empowers the training and evaluation

of the VQA frameworks. The major datasets are summarised in Table 2.3. Images in these

datasets are mainly sources from the Microsoft Common Objects in Context (COCO) (Lin

et al. 2014), while questions in these datasets have different levels of complexity.

DAQUAR. Dataset for Question Answering on Real-world images (DAQUAR) (Malinowski

and Fritz 2014) is the first and smallest VQA dataset. Its images are gathered from NYU-

DepthV2 dataset (Silberman et al. 2012), which contains 1,449 indoor images, with a total of

894 object classes. There are 12,468 question-answer (QA) pairs in this dataset, which are

generated with the help of both humans and machines. This dataset is divided into two sets: a
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TABLE 2.3: Summary of VQA Datasets

Dataset Image Source Image Number Question Number

DAQUAR (Malinowski and Fritz 2014) NYU-Depth V2 1,449 12,468
VQAv2 (Goyal et al. 2017) MS-COCO 204,721 1,105,904
FM-IQA (Gao et al. 2015) MS-COCO 158,392 316,193
Visual Genome (Krishna et al. 2017) MSCOCO, YFCC 108,000 145,322
SHAPES (Andreas et al. 2016) Synthetic Shapes 15,616 244
FVQA (Wang et al. 2018) MS-COCO, ImageNet 2,190 5,826
CLEVR (Johnson et al. 2017) Synthetic Shapes 100,000 999,968
IconQA (Lu et al. 2021) Synthetic Shapes 42,021 260,840

training set consisting of 795 images with 6,795 QA pairs, and a testing set consisting of 645

images with 5,673 QA pairs.

VQAv2. VQAv2 dataset (Goyal et al. 2017) is a updated version of the original VQA

dataset (Antol et al. 2015a). It contains 204,721 real images from MS-COCO, with a total of

91 object classes. There are 1,105,904 questions, which are generated by Amazon Mechanical

Turk (AMT), and answers to these questions are gathered from a different groups of workers.

VQAv2 is a balanced dataset in terms of language bias, it is divided into three sets: a training

set consisting of 82,783 images with 4,437,570 QA pairs, a validation set consisting of 40,504

images with 2,143,540 QA pairs, and a testing set consisting of 81,434 images with 447,793

questions.

FM-IQA. Freestyle Multilingual Image Question Answering (FM-IQA) (Gao et al. 2015)

is another dataset that is based on MS-COCO. It contains a sub-set of 158,392 images from

MS-COCO with a total number of 316,193 questions. It applies Baidu crowdsourcing server

to collect Chinese QA pairs that are generated by humans. The QA pairs are translated into

English, making it a multilingual dataset. This dataset provides no official split but includes

human evaluation of the responses on a scale of 0-2.

Visual Genome. Visual Genome (Krishna et al. 2017) is another large VQA dataset, which

contains 108,249 images from MS-COCO and YFCC (Thomee et al. 2016), with an average

number of 14.10 objects per image. There are 145,322 questions in the dataset, which are

generated manually with the guidance of six Ws’: What, Where, Who, When, How and Why.

This dataset includes two different types of questions: region-based questions and free-form
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open-ended questions, and it has no binary questions. This dataset provides no official split

but authors suggest a 80%-10%-10% split in their experiments.

SHAPES. SHAPES (Andreas et al. 2016) is a dataset that mainly focuses on the object’s

shapes, characteristics, locations and relationships. It explores the possibility of learning

the spatial and logical relations among various objects. This dataset includes a total number

of 244 unique questions and each question is paired with 64 different images, which forms

15,616 question-image-answer pairs. It is divided into two sets: a training set consisting of

14,592 QA pairs, and a testing set consisting of 1,024 QA pairs.

FVQA. Fact-Based Visual Question Answering (FVQA) (Wang et al. 2018) is a updated

version of KB-VQA (Wang et al. 2017) dataset. In this dataset, supporting facts and common-

sense knowledge are provided as the concepts to the images, forming a triplet. The un-

derstanding of each visual concept is extracted from existing structured knowledge bases,

including ConceptNet (Speer et al. 2017), DBpedia (Auer et al. 2007) and WebChild (Tandon

et al. 2017). This dataset is annotated by human annotators, within three steps: 1) annotator

selects an image and its corresponding visual content; 2) annotator chose one pre-extracted

supporting facts relevant to the visual content; 3) annotator writes a QA pair containing

the chosen supporting facts. This dataset contains 2,190 images with 193,005 candidate

supporting facts and a total of 5,826 QA pairs. It is divided into two sets: a training set

consisting of 1,100 images and 2,927 QA pairs, and a testing set consisting of 1,090 images

and 2,899 QA pairs.

CLEVR. Compositional Language and Elementary Visual Question Reasoning (CLEVR)

(Johnson et al. 2017) is a synthetic dataset similar to SHAPES. It collects 100,000 synthetic

images from different 3D shapes, such as cubes, spheres and cylinders. The questions mainly

focus on testing the models’ visual reasoning capabilities. There are total number of 999,968

QA pairs and this dataset is divided into three sets: a training set consisting of 70,000 images

and 699,989 QA pairs, a validation set consisting of 15,000 images and 149,991 QA pairs,

and a testing set consisting of 15,000 images and 14,988 QA pairs.
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IconQA. Icon Question Answering (IconQA) (Lu et al. 2021) is a large dataset focusing on

answering questions by referring to an icon image. The images are sourced from open-source

textbooks and the QA pairs are annotated by crowd workers. There are three sub-tasks defined

in this dataset including multi-image choice, multiple-text choice and filling-in-the-blank.

This dataset contains 645,687 icon images in 377 classes, and 107,439 QA pairs in three

sub-tasks. This dataset is divided into two sets: a training set consisting of 84,370 QA pairs,

and a testing set consisting of 14,988 QA pairs.

2.2.2 Model Structures

VQA model is a common multimodal QA model, which involves multimodal visual-and-

language information understanding. Transitional VQA models without attention mechanism

consist of first extracting both question features and image features and fusing these two

modalities to provide an answer to the question. There are various Convolutional Neural

Network (CNN) based approaches to extract visual features including ResNet (He et al. 2016),

VGGNet (Simonyan and Zisserman 2015) and GOOgLeNet (Szegedy et al. 2015). Textual

feature extraction is performed through Long Short Term Memory (LSTM) (Hochreiter and

Schmidhuber 1997) and Gated Recurrent Unit (Chung et al. 2014). SOTA VQA models

before the release of Transformer connect extracted features through different fusion methods

for answer prediction.

However, the gradient vanishing or exploding problem (Bengio et al. 1994) still occurs with

LSTM and GRU, which prevents the deep neural networks (DNNs) for multimodal NLP

tasks. The introduction of Transformer and attention mechanism makes the development

of DNN feasible, which empowers the studies in VQA. By focusing on the most related

words and visual regions in both question and image, the attention mechanism extracts

detailed relationships and correlations between two modalities, while preserving their features

simultaneously. Current Transformer based models outperform the transitional models and

achieve the SOTA performance. There are many other models available, the following section

discusses two model structures that are highly related to the work presented in this thesis.
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FIGURE 2.2: Model structure of the VisualBERT (Li et al. 2019b). It takes
the vision and language inputs into a unified Transformer encoder.

VisualBERT. VisualBERT (Li et al. 2019b) is a model focusing on learning joint contextual-

ised representations of vision and language. With the invention of visual embedding, it reuses

Transformer’s self-attention mechanism for input text and input image regions alignment.

Apart from text embedding following BERT, visual embedding F is made from the sum of: 1)

a visual feature representation f0, extracted from Faster-RCNN; 2) a segment embedding fs,

indicating the embedding type; 3) a position embedding fp, indicating the alignments between

words and image regions. As shown in Figure 2.2 ,the visual embeddings and text embed-

dings are passed to the Transformer, which allows the model learns the alignments between

two modalities and constructs a new joint representation. It then applies the MLM and SIP

objective functions mentioned in Section 2.1.2 for pre-training. After pre-training, the model

is then fine-tuned with VQAv2 dataset for the VQA task by assigning same probability to

each correct answer and minimising the cross entropy loss between the target and prediction.

LXMERT. Learning Cross-Modality Encoder Representations from Transformers (LXMERT)

(Tan and Bansal 2019) is a model focusing on learning the interactions between vision and

language. It consists of three Transformer encoders, including a language encoder, a vision

object encoder and a cross-modality encoder. As illustrated in Figure 2.3, LXMERT includes

both visual and textual embeddings similar to VisualBERT, and it sends these information to

the language encoder and vision object encoder separately. The outputs from each encoder
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are then fed into the cross-modality encoder, which contains multiple bi-directional cross-

attention sub-layers. These layers are used to align the entities and exchange information

between two modalities. During pre-training, the model applies 4 different pre-training

objectives from Section 2.1.2, including MLM, MRFR, WRC, SIP as well as an extra Image

Question Answering task for increasing cross-modality performance. The pre-trained model

is then fine-tuned for the VQA task.

FIGURE 2.3: Model structure of the VisualBERT (Tan and Bansal 2019). It
takes the vision and language inputs via two Transformer encoders and fuses
the features by a corss-modality encoder.

2.2.3 Evaluation Metrics

Evaluating natural language answers generated by a VQA system requires consideration

of both semantic and syntactic correctness. Open-ended questions require the model to

generate sentences, while multiple-choice questions only need the model to make classification

predictions. Evaluation metrics can vary between different question types, and there are three

common metrics including simple accuracy, Wu-Palmer Similarity (WUPS) and human

evaluation.

Simple Accuracy. Simply accuracy is compared the number of correctly answered questions

with the total asked questions, and it can be computed as:

Accuracy =
total number ofcorrectly answered questions

total number of questions
(2.22)

Simple accuracy can evaluate multiple choices VQA questions as well as open-ended questions

that strictly require exact answers. Simple accuracy metric is a fast and efficient method for
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VQA evaluation, but there is an obvious limitation of this metric. Since it needs the exact

answer, a semantic correct but different answer is considered equally wrong as a totally wrong

answer.

Wu-Palmer Similarity. To address the limitation in simple accuracy, Wu-Palmer Similarity

(WUPS) (Wu and Palmer 1994) is proposed to evaluate the model performance by comparing

the semantic connotation between the ground truth and prediction. The similarity score is

higher when prediction’s semantic meaning is closer to the ground truth. The WUPS is

computed as:

WUPS(a, b) =
1

NQ

NQ∑
i=1

min

{∏
a∈PA

max
t∈GA

WUP(a, t),
∏
t∈GT

max
a∈PA

WUP(a, t),

}
(2.23)

where NQ is the question number; PA is the predicted answers; GA is the ground truth answers,

and WUP (a, t) is the function calculating the distance between words a and t based on the

taxonomy tree. WUPS improves the evaluation process with the similarity approach but it

only works with single words due to the rigid semantic concepts.

Human Evaluation. Human evaluation for assessing predicted answers in VQA is a robust

method semantically, as individuals can apply their common sense to both visual and textual

information. However, human evaluation is expensive and may include bias, since the human

resource is precious and different individuals can have different subjective opinions on the

same question.

2.2.4 User Interface Design

User interface design is a crucial element for democratising access to VL-PMs for those

who are not experts in deep learning. Typical user interface design belongs to Huamn-

Computer Interface design process. As shown in Figure 2.4, HCI design process model

usually comprises five main steps: identifying user needs, analysing requirements, designing
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FIGURE 2.4: HCI design process flow chart

TABLE 2.4: HCI design process model comparison

Models Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Cross 2021 Exploration Generation Evaluation Communication Implement & deploy N/A
Dix et al. 2003 What is wanted Analysis Design Prototype Implement & deploy N/A
Mirnig et al. 2015 Identifying the need Observe & analysis Design Prototype User feedback N/A
Sharp 2003. Identifying needs Developing designs Building designs Evaluating N/A N/A
Park and McKilligan 2018b Understand the need Imagine Select a design Plan Create Improve

the system, prototyping the system, and implementing and deploying the system (Park

and McKilligan 2018a). Identifying user needs is the initial step, which concentrates on

extracting insights from the users’ requirements (Preece and Rogers 2007; Dix et al. 2003).

Subsequent to understanding these needs, the process of analysing requirements seeks to

identify the optimal solutions, integrating usability and best practices into the procedure (Dix

et al. 2003). Progressing towards an ideal solution, prototyping endeavours to refine the

usability of the solution by presenting early-stage designs to the intended users (Sharp 2003).

Prototypes are fashioned as simplified representations of a design and are frequently modified

in response to users’ feedback. Once the prototype satisfies the users’ functional and usability

requirements (Dix et al. 2003), it will be implemented and deployed on the appropriate

software or hardware platforms.As shown in Table 2.4, there are five different process models

that are commonly used in HCI design. Some of the models focus on solving the engineering

design problems (Cross 2021; Park and McKilligan 2018b; Mirnig et al. 2015), while others

focus more on interaction design (Sharp 2003). Although there are differences in each model,

the main design flow remains similar and follows the standard HCI design process.
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TABLE 2.5: Summary of esports datasets

Dataset Game Title Modalities Avg Clip Duration

MOBA-LoL (Ringer et al. 2019) League of Legends Video, Image, Audio 5s
LoL-V2T (Tanaka and Simo-Serra 2021) League of Legends Video, Transcript 23.4s
Dota2-Commentary (Zhang et al. 2022) Doat 2 Game Info, Transcript -
CS-LoL (Xu et al. 2023) League of Legends Transcript, Chat 1.63s

2.3 Multimodal Language Generation

Language generation plays a critical role in human-machine interfaces and it involves many

NLP tasks such as dialogue system, machine translation and summarisation. Multimodal

language generation contains information from other modalities, which extends models’

capabilities to other applications, including image captioning, visual storytelling and mul-

timodal dialogue system. This Thesis mainly focuses on the multimodal language generation

on the application of esports. esports consist of online gaming competition matches, and

spectators can watch these matches online or in person. Live game streaming is at the heart

of the esports community, since it informs the audience about the game situation as well as

makes an immersed environment for the spectators (Ishigaki et al. 2021). However, esports

usually contains a large amount of multi-modality content, which requires more attention

during the match compared to traditional sports. Key movements and highlights from some

players can occur simultaneously, which may make the caster’s commentary occasionally less

comprehensive. To solve this problem, previous studies proposed several datasets, different

deep-learning frameworks and evaluation metrics. The following section presents an overview

of the existing studies.

2.3.1 Benchmarks

There exist a limited number of benchmarks available for esport games since they are dif-

ferent from reality. As shown in Table 2.5, there are five multimodal datasets that focus on

Multiplayer Online Battle Arena (MOBA) game commentary generation. Four of these are

built based on League of Legends (LoL) due to its popularity.
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MOBA-LoL. Multiplayer Online Battle Arena League of Legends (MOBA-LoL) (Ringer

et al. 2019) is a dataset that includes 10 hours of League of Legends footage from 10 streamers

from Twitch. The footage is divided into 7,200 non-overlapping video clips, each of which is

five seconds long. The clips are annotated for emotional affect from streamers’ vocal, facial

and bodily cues. There are five major emotions including: Positive Arousal, Neutral Arousal,

Positive Valence, Neutral Valence, and Negative Valence. Apart from emotion, game events

are also annotated on the clips and there are nine different game events: In Line, Shopping,

Returning to Line, Roaming, Fighting, Pushing, Deafening, Dead and Miscellaneous. This

dataset is divided into two sets: a training set consisting of 5,517 clips, and a testing set

consisting of 1,375 clips.

LoL-V2T. LoL-V2T (Tanaka and Simo-Serra 2021) is a large-scale League of Legends dataset

that contains 9,723 clips with 62,677 related captions. Each video clip has multiple captions,

that are obtained by human annotation or ASR-generated subtitles from YouTube. The video

clips only contain game-play scenes with an average length of 23.4 seconds. The captions

were reconstructed by DeepSegment to resolve the issue of incomplete sentences. This dataset

is divided into three sets: a training set consisting of 6,977 clips and 44,042 captions, a

validation set consisting of 851 clips and 5,223 captions, and a testing set consisting of 1,895

clips and 13,412 captions.

Dota2-Commentary. Dota2-Commentary (Zhang et al. 2022) is a large dataset that contains

234 Dota2 matches. The game events from these 234 matches are captured by 34 different

event handlers, and 70 game matches have been manually annotated, which leads to 7,473

high-quality event-commentary data. The remaining 164 game matches are not labelled but

are used for pseudo-supervised commentary data during the adaptive training. The supervised

data set is divided into three sets: a training set consisting of 5,064 clips, a development set

consisting of 500 clips, and a testing set consisting of 1,909 clips.

CS-LoL. CS-LoL (Xu et al. 2023) is a dataset contains on viewers’ comments and game

scene descriptions for 20 League of Legends matches. The game scene descriptions (also

known as transcripts) are extracted from YouTube, while the viewers’ comments are collected

from Twitch. Comments that are less than two words or only contain emotes are filtered out
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from the dataset. After filtering, this dataset includes 24,770 transcripts for describing the

game scenes and 60,431 viewer comments from 15,346 unique viewers. This dataset provides

no official split.

2.3.2 Model Structures

Game commentary generation falls into the category of multimodal natural language genera-

tion but there are not many studies about it. Therefore, the section introduces several recent

approaches that focus on the commentary generation.

Multi-modal Encoder. Multi-modal Encoder (Ishigaki et al. 2021) formulated game com-

mentary into three parts: 1) multimodal encoding; 2) timing identification; 3) utterance

generation. In the multimodal encoding section, each video frame is converted to an image

embedding by Vision Transformer (Dosovitskiy et al. 2021) and then they are encoded to

image embeddings using a Long Short-term Memory (Hochreiter and Schmidhuber 1997)

(LSTM):

hi,V = LSTMV (hi−1,V ,ViT (imgi)) (2.24)

where V iT retruns the [CLS] token and the final state hi,V is the representation of the vision

information. A linear transformation is used to represent the game metadata in the game clip

and another LSTM is used to encode the textual input. All the encoded representations are

concatenated to form the final input vector. In the timing identification section, a concatenated

vector is passed into a neural network with a soft-max function to predict whether or not utter

at this timestamp. In the utterance generation section, LSTM is combined with an attention

mechanism:

hj,d = LSTMd (hj−1,dec, embd (yj−1)) (2.25)

aji =
exp (hj,dWhi,V )∑10
i=1 exp (hj,dWhi,V )

(2.26)

cj =
∑
i

ajihi,V (2.27)
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oj = Softmax ([hj,d; cj]Wd) (2.28)

where embdd represents the embedding of an utterance, yj−i is the previously generated

utterance cj is a vector produced by the attention over the outputs of LSTM. Both the timing

identification model and utterance generation model are trained with cross-entropy loss.

Esports Data-to-text Generation. Esports Data-to-text Generation (Wang and Yoshinaga

2022) utilised the Transformer-based encoder and RNN-based (Bahdanau et al. 2015) decoder

structure. The hierarchical encoder architecture (Liu and Lapata 2019) is implemented instead

of the original Transformer, which includes a low-level encoder and a high-level encoder. The

low-level encoder encodes each word of the event while the high-level encoder encodes the

series of events in the game. The game events data and the commentaries are concatenated

together as the encoded input and passed the encoded representations to the RNN-based

decoder.

LoL-V2T. LoL-V2T (Tanaka and Simo-Serra 2021) proposed two Transformer models for

the commentary task and they are Vanilla Transformer (Zhou et al. 2018) with video inputs

and MART (Lei et al. 2020). The Vanilla Transformer contains a video encoder and a caption

decoder. The video encoder is made of a stack of two identical layers with attention while the

caption decoder inserts one more attention layer over the video encoder output in addition

to the layers in the encoder. The input video embeddings are extracted from CNN and

concatenated with the position encoding. MART is a model based on the Transformer with the

recurrent memory module. It deploys a unified encoder-decoder design and adds an external

memory module for previous information and generated captions.

2.3.3 Evaluation Metrics

There are three common evaluation metrics used in the language generation area, which

are shown in Table 2.6. Those evaluation metrics assess the generated results on sentence

distance, string overlap or lexical diversity.
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TABLE 2.6: Different events in League of Legends.

Evaluation Metrics Description
BLEU (Papineni et al. 2002) Measure the co-occurrence frequency of two sentences
ROUGE (Lin 2004) Calculate the similarity between two sentences
METEOR (Banerjee and Lavie 2005) Calculate the harmonic mean of the precision and recall

BLEU. Bilingual Evaluation Understudy (BLEU) uses the weighted average number of

matched phrases in two sentences to calculate the co-occurrence frequency. It can be formu-

lated as:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(2.29)

where pn is the modified precision score, which is calculated from the matched n-gram:

pn =

∑
C∈{ Candidates }

∑
n-gram ∈C Count clip (n-gram )∑

C′∈{ Candidates }
∑

n-gram’ ∈C′ Count(n-gram ′)
(2.30)

and BP is the brevity penalty, where c is the length of the predicted translation and r is the

length of the reference corpus:

BP =

1 if c > r

e(1−r/c) if c ≤ r
(2.31)

It was developed for machine translation evaluation and has been adopted for the natural

language generation tasks such as dialogue generation, question generation and text style

transfer.

ROUGE. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) uses the recall score

to calculate the similarity between the reference texts and the generation. ROUGE was

originally developed for text summarization, including four different types and the commonly

used ones are ROUGE-N and ROUGE-l. ROUGE-N measures the n-gram recall statistics and

it’s formulated as:

ROUGE-N =

∑
S∈{ ReferemceSummaries }

∑
gram n∈S

Count match ( gram n)∑
S∈{ ReferenceSummaries }

∑
gramn∈S Count ( gram n)

(2.32)
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where n is the length of the n-gram, gramn is the maximum count of n-grams co-occurring in

a candidate and countmatch(gramn) is the set of reference. n is usually set to one and two for

the language generation evaluation. ROUGE-l measures the longest common subsequence

(LCS) between generated and reference sentences.

METEOR. Metric for Evaluation of Translation with Explicit Ordering (METEOR) calculates

the harmonic average on the unigram precision and recall. It addresses several weaknesses in

the BLEU metric, which is computed as:

Score = Fmean ∗ (1− Penalty) (2.33)

where Fmean is a harmonic mean, calculated from recall (R) and precision (P):

Fmean =
10PR

R + 9P
(2.34)

and Penalty is calculated from the number of chunks and matched unigrams:

Penalty = 0.5 ∗
(

number of chunks
number of unigrams_matched

)3

(2.35)

METEOR was also developed for machine translation originally but has been widely used in

the language generation field.

Apart from the popular evaluation metrics mentioned above, there are some other metrics that

focus on different criteria such as Distinct (Li et al. 2016) and Self-BLUE (Zhu et al. 2018).

Distinct counts the number of distinct bigrams and unigrams in the generation to represent

the diversity degree. Those values are scaled by the number of total generated tokens to avoid

preference for longer sequences. Self-BLUE measures the resemblance degree between the

candidate sentences and the reference sentences by averaging the BLUE sources for each

generated sentence. It is also a metric to measure diversity.
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2.4 Summary

This chapter introduces existing approaches in the research field of multimodal integration

for natural language classification and generation. Visual-and-language integration is one of

the common multimodal tasks which includes both visual and textual information as input.

Due to the invention of Transformer, recent Vision-and-Language models applied attention

mechanisms in their structures and adopted pre-training and then fine-tuning strategies.

Therefore, many pre-training objectives are developed to make pre-trained models learn the

interactions between two different modalities.

Visual Question Answering is one of the applications in multimodal classification and genera-

tion. It requires the model to choose or generate the correct answer from the question and

its corresponding images. This task can be treated as a downstream task for any pre-trained

Vision-and-Language model. To test the performance of the models, there exist several

benchmarks and evaluation metrics specifically designed for Visual Question Answering.

Game commentary is another application in multimodal classification and generation. It

requires the model to generate game-related commentaries based on the game situation. This

is a challenging task since it requires multimodal information which is vastly different from

the real world. Previous research proposed several multimodal benchmarks and started to

deploy different deep-learning techniques for game commentary.



CHAPTER 3

Multimodal Question Answering System

3.1 Introduction

Visual Question Answering (VQA) (Antol et al. 2015b) is a Vision-and-Language task that

requires answering natural language questions by referring to relevant regions of a given image.

This task has proved its practical assistance in various real-world applications, including

automatic medical diagnosis (Vu et al. 2020; Ren and Zhou 2020), visual-impaired people

guidance (Ren and Zhou 2020), education assistance (He et al. 2017) and customer advertising

improvement (Zhou et al. 2020b). To achieve acceptable performances, task-specific models

require large-scale datasets to learn the visual and textual features sufficiently (Long et

al. 2022b). However, domain-related datasets could be low-resource due to the collection

difficulties and expensiveness, especially in the medical domain. For example, the largest

radiology dataset SLAKE (Liu et al. 2021b) only contains 14K image-question pairs. The

Vision-and-Language Pre-trained Models (VLPMs) become helpful in this case. VLPMs are

pretrained on huge image-text dataset collections to learn the generic representations of the

visual and textual alignment (Long et al. 2022a), which can be used in various downstream

tasks. Recently, several large VLPMs (Li et al. 2019b; Su et al. 2019; Tan and Bansal 2019)

have been proposed and have proved their state-of-the-art performances. These large VLPMs

empower the merit of transfer learning and can be smoothly adapted to different domains by

fine-tuning on small-scale datasets while maintaining competitive performances. Therefore,

VLPMs have become popular among deep learning researchers, and many open-source tools

and APIs are publicly released. Nevertheless, VLPMs are not vastly applied in industrial
34
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domains. This is because such implementation requires solid deep learning and programming

skills and thus is challenging for non-deep learning experts.

Contribution. With this in mind, we propose PiggyBack, a deep learning web-based inter-

active VQA platform, to support field experts such as physicians, educators and commercial

analysts. Our PiggyBack is mainly for helping those who lack deep learning expertise or

programming skills to easily apply VLPMs on VQA tasks with their dataset. More precisely,

Piggyback provides two pre-trained models, and users can freely choose and train one of

the models over their training data by interacting with its user interface. It also supports

model evaluation directly on users’ testing sets with numerous image-question pairs. It

enhances the evaluation results with interpretability by visualising the relevant regions for

question-answering on the image. Such interpretation would help users build confidence

in the model’s decision, especially for critical fields. The PiggyBack system is capable of

accommodating various VQA datasets focused on different domains, such as VQAv2 (Goyal

et al. 2017), PDFVQA (Ding et al. 2023), SlideVQA (Tanaka et al. 2023), VQA-RAD (Lau

et al. 2018), and SLAKE (Liu et al. 2021b). In this thesis, we evaluate our system using

medical-focused datasets to showcase its capabilities in a highly specialised domain.

Comparison. To the best of our knowledge, PiggyBack is the first web-based deep-learning

platform that provides a user-friendly interface for non-deep learning users. It allows the

users to train VQA models with their datasets by utilising VLPMs in the manner of transfer

learning (also known as fine-tuning) and testing the model with their testing datasets. Some

of the existing VQA platforms are not based on VLPMs, such as Simple Baseline for VQA1

and Explainable VQA2, which cannot provide the benefit of the generalised pre-trained model.

Other VQA platforms only focus on testing the models’ performance by evaluating the single

image-question pair, such as CloudCV3, ViLT VQA4 and OFA-VQA5, which cannot be trained

towards users’ datasets. Furthermore, none of these platforms combines and simplifies the

training and testing procedures to provide the VLPMs’ capability for other field experts.

1http://visualqa.csail.mit.edu/
2https://lrpserver.hhi.fraunhofer.de/visual-question-answering/
3http://visualqa.csail.mit.edu/
4https://huggingface.co/spaces/nielsr/vilt-vqa
5https://huggingface.co/spaces/OFA-Sys/OFA-vqa

http://visualqa.csail.mit.edu/
https://lrpserver.hhi.fraunhofer.de/visual-question-answering/
http://visualqa.csail.mit.edu/
https://huggingface.co/spaces/nielsr/vilt-vqa
https://huggingface.co/spaces/OFA-Sys/OFA-vqa


36 3 MULTIMODAL QUESTION ANSWERING SYSTEM

3.2 Question Answering Fine-tuning

PiggyBack integrates the VLPMs implemented by HuggingFace Transformer (Wolf et al.

2020) while keeping all the coding away from users behind the well-designed browser-based

Graphic User Interface (GUI). Therefore, we designed both the backend and front-end of the

system to standardise the workflow scenario for VQA tasks, so any non-deep learning/non-

programming professionals can utilise PiggyBack effortlessly. Its design flow is shown in

Figure 3.1, and the backend and front-end are described in the following sections. The system

backend is built upon the Flask (Grinberg 2018). Since it contains no database abstraction

layer, the input data is handled by Python and saved in the server’s local environment. The

backend includes four components that cover all necessary procedures in model fine-tuning

and evaluation.

FIGURE 3.1: PiggyBack Platform Framework: 1)Data Uploader, 2)Model
Selector, 3)Fine-Tuner, and 4)Visualiser.
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3.2.1 Data Preparation

PiggyBack simplifies the users’ data preparation by providing the automatic data cleaning

process and asking for simple dataset formats, which can be easily prepared. It includes a zip

file including all the images and a CSV file containing all the questions and their ground-truth

answers for the associated images. As the backend models require the input data following the

VQAv2’s one-question ten-answers format (Agrawal et al. 2015), we developed a module in

our system to clean the imperfect data in users’ uploaded CSV. The cleaning steps include: 1)

auto-fill the 10 answers when users did not provide enough answers; 2) remove the duplicated

image question pairs accidentally provided by the users or the questions with no valid image

id; 3) remove the images that exceed the required size. The cleaned CSV is then transferred

into JSON format, which can be directly loaded into different models. Visual features are

extracted from images by a feature extraction module and saved into JSON format. This

stand-alone module is containerised by Docker (Merkel 2014) and implements the Bottom-

Up, and Top-Down Attention model (Anderson et al. 2018). Such data cleaning processes

are all wrapped in the backend, which leaves users an easy and simplified experience in

their data preparation step. To handle edge cases, such as no valid data from the user, the

data preparation module validates the data before sending it for preprocessing. The detailed

process is shown in Figure 3.2.

3.2.2 Embedded Model Architectures

Inspired by V-Doc (Ding et al. 2022), our system includes two state-of-the-art pre-trained

models: VisualBERT and LXMERT, that offer the users an opportunity to conduct the per-

formance comparison of models with different structures and enable them to choose the model

that suits their data the best. VisualBERT (Li et al. 2019b) encodes the visual embedding

as the sum of bonding region features, segment embedding and position embedding. In the

meantime, it encodes the textual embedding following the BERT format, including token

embeddings, segment embeddings and position embedding. A single Transformer structure is

proposed in VisualBERT, which uses visual and textural embeddings to discover alignments

between vision and language. VisualBERT is pre-trained with Masked Language Modeling
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FIGURE 3.2: PiggyBack Data Validation Process.

with the Image Task and Sentence-image Prediction Task, and it can be fine-tuned with VQA

datasets. LXMERT (Tan and Bansal 2019) directly takes a sequence of objects from images

as the visual inputs and a sequence of words from sentences as the linguistic inputs. There are

three Transformer encoders inside LXMERT, which separately encode image object features,

question features and cross-modality interactions. LXMERT is pre-trained with five tasks,

including Masked Cross-Modality Langage Model, RoI-Feature Regression, Detected-Label

Classification Cross-Modality Matching and Image Question Answering, and it can be fine-

tuned for VQA downstream task. Both pre-trained models are built upon the HuggingFace

deep-learning API (Wolf et al. 2020), and have proved to be an outstanding performance on

the VQA tasks.
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3.2.3 Model Fine Tuning

Once the model is selected, PiggyBack loads the pre-trained model and finds the answer

space from the preprocessed data. Then it feeds the data into the data loader and launches

the fine-tuning process with the specific answer space on the pre-trained model. As shown

in Figure 3.3, the backend automatically communicates with the front-end website during

fine-tuning. When the fine-tuning operation finishes, the fine-tuned model will be packed

into a loadable file, which can be imported for evaluation. All the fine-tuning procedures are

handled by the backend, so there is no deep-learning knowledge required from the users.

FIGURE 3.3: PiggyBack Fine-tuning Process.
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3.2.4 Visualised Evaluation

PiggyBack allows the fine-tuned model to evaluate with numerous image-question pairs and

delivers the predictions in a single CSV file. Apart from the predicted answers, PiggyBack

embeds a visualisation module, which enhances the model interpretability by annotating

the important object regions in the images according to their attention scores. Attention

scores have long been used as a feature-based local interpretation method for deep neural

networks. Both VisualBERT and LXMERT utilise the Transformer structure with the multi-

head self-attention mechanism (Vaswani et al. 2017). For the visual component, the attention

mechanism assigns attention weights for each region of the input images. The region with

higher attention weights is naturally considered more critical to the model’s outputs (Han

et al. 2020). We sum up the attention weights across all heads for all transformer layers as

the final attention score for each object region and visualise the top 5 object regions with the

highest attention scores and annotate them with their bounding boxes. Regions with higher

attention scores are marked in a darker colour.

3.3 Data and Model Wrangling

PiggyBack provides an interactive web front-end that is built upon the Bootstrap1 framework.

We established three pages to cover the four components in the backend. The home page

includes Data Uploader, Model Selector and Fine-tuner, which introduces a straightforward

interface for input datasets uploading, model choosing and training operating. The progress

page shows the fine-tuning progress. The evaluation page includes Visualiser, which illustrates

the models’ performance to the users after fine-tuning. Those web pages aim to guide the

users in completing the fine-tuning and evaluation process.

1https://getbootstrap.com/

https://getbootstrap.com/
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FIGURE 3.4: Preview of Data Uploader and Model Selector on Front-end
Interface in PiggyBack.
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3.3.1 Data Uploader

Our system landing page presents the GUI of the Data Uploader for collecting the user’s

training dataset, which is shown in Figure 3.4. Under the "Images" and "Questions and

Answers" sections, the users only need to upload a compressed ZIP folder that includes all

images as well as a CSV file that contains all the questions and answers with the corresponding

image id. There are two constraints placed in the uploaded dataset due to the prerequisite of

the VLPMs: 1) the input image’s width and height should be within 1920 pixels; 2) the input

question, answer and image id should be legitimate to form one piece of the data. To help the

users comprehensively understand the data format, we provide the illustrations on the data

uploading page and the "Sample Dataset" files that can be downloaded and even modified by

users with their data.

The interactive web page can provide prompt feedback to the users when the image data is

sent into the Data Uploader:

1). If there is no valid image in the uploaded folder, a red Error banner will show up, and it

requires a new image folder from the users;

2). If there are some oversized images in the uploaded folder, a yellow Warning banner will

show up, and the users can choose to fine-tune without those images or resubmit the image

folder after modification;

3). If all the images meet the constraint, a green Success banner will show up, and the

users can choose to fine-tune with current images or resubmit the image folder. The input

question-and-answer data in CSV is preprocessed in the system backend.

3.3.2 Model Selector and Fine-tuner

After uploading the dataset successfully, the users can choose either VisualBERT or LXMERT

by simply selecting if from the “Choose a model” drop-down menu in the interface. Once

the users click “Start fine-tuning” with the chosen pre-trained model, all the processed data

features will be passed to the loaded pre-trained model for the fine-tuning process. Meanwhile,
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a progress bar appears on the web page, indicating the completion of the fine-tuning step. If

the users neglect the model selection but click “Start fine-tuning”, a red Error banner will

show up asking to select the pre-trained model, and the system will hold the fine-tuning

process till a pre-trained model has been selected.

3.3.3 Visualiser

Once fine-tuning finishes, users will be automatically redirected to the evaluation page, which

incorporates the Visualiser. As shown in Figure 3.5, we provide three different scenarios for

users to test the fine-tuned model.

Sample evaluation. This evaluation section equips with a sample case at the top half of

the page. Both visual and textual outputs are shown directly on the page, so the users can

have a quick glance at the model’s performance and understand the visualised outputs from

the PiggyBack. We put a radiology image and medical-related questions as an example; the

users can select different questions in the drop-down menu and click "Get Answer" to see the

predicted answers. Furthermore, the Visualiser annotates the top five regions in the image

based on the significance calculated by the fine-tuned model. The insights of the significance

calculation are introduced in Sec.3.2.

Single evaluation. PiggyBack provides a testing GUI for the users, which allows them to

upload a single image and ask a question about it. As shown in Figure 3.5, this section is at

the bottom left of the evaluation page. The system shows the uploaded image’s preview on the

page, which ensures that they type in the relevant question. Similar to the sample evaluation

above, a predicted answer and its corresponding annotated image will appear on the page

upon clicking “Get Answer”.

Multiple evaluation. Apart from single evaluation, PiggyBack is capable of multiple image-

question pairs evaluation, which is more practical in the real-world scenario. This section is

at the bottom right of the evaluation page. The required format of the multiple evaluation

data is similar to the training data; the only difference is that the answers are not required

in the testing CSV. In this evaluation GUI, the instruction of the CSV modification and the
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FIGURE 3.5: Preview of Fine-tuner and Visualiser on Front-end Interface in PiggyBack.

hyperlink to the previous sample dataset is provided for the users, which helps them with the

testing data preparation. We designed a simple checking mechanism, which shows a red error

message when there is no valid image or question entry in the dataset. After uploading the
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testing data, the users can click “Get Answers” to get model predictions, and a green banner

will show up with the download links for both annotated image ZIP and answer CSV. The

annotated images in the ZIP are renamed with their questions, which helps the user easily

combine the model predictions with the corresponding images.

3.4 Evaluation and Analysis

FIGURE 3.6: Screenshot of a Human Evaluation Sample.

To evaluate the quality of visualisations, we invited three workers with general backgrounds in

medical research and medical imagery. In the human evaluation survey shown in Figure 3.6,

workers are provided with annotated images from different models as well as the original

questions. They are then asked to provide their feedback based on the following three criteria:

• Relevance: The relevance between the interpretation and the question-answer pair.

• Meaningfulness: The meaningfulness of the interpretation in terms of question and

answer.

• Correctness: The correctness of the interpretation in terms of the predicted answer.
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TABLE 3.1: Pairwise Comparison Between LXMERT and VisualBERT Visu-
alisations with Positive Rates (Pos).

Criteria LXMERT VisualBERT

Pos Agree Pos Agree

Relevance 90.00% 95.00 90.00% 100
Meaningfulness 83.33% 90.74 76.67% 98.02
Correctness 80.00% 91.38 70.00% 82.14

After gathering human feedback, we compute the positive rate of each criterion and utilise

Krippendorff’s alpha coefficient to measure the agreements, the results are presented in

Table 3.1. Although both models demonstrate equal performance in terms of Relevance,

LXMERT significantly outperforms VisualBERT in the categories of Meaningfulness and

Correctness, confirmed by the substantial agreements among all workers. We hypothesise that

the difference in performance is primarily attributed to the structural variations between the

models since LXMRT comprises three Transformer encoders while VisualBERT incorporates

just one.

3.5 Summary

PiggyBack is a web-based vision-and-language modelling platform that aims to support

non-deep learning users utilizing the SOTA VL-PMs for VQA problems in their specific

domains. The PiggyBack system provides a user-friendly interface that simplifies all the

data uploading, model fine-tuning and evaluation with only a few clicks. Meanwhile, it

accompanies the results with a straightforward interpretation to help users better understand

the model’s decision. According to the human evaluation results, the interpretations produced

by the models align well with human judgment, suggesting that the PiggyBack platform holds

potential as a user-friendly tool for non-deep learning experts seeking to utilise VL-PMs.

Although our PiggyBack system offers an end-to-end solution for enhancing the usability of

VL-PMs, various models may exhibit unique advantages when processing different domain-

specific data. In future research, we aim to develop a method capable of recommending

optimal models for various domain datasets, thereby further improving the effectiveness of

the PiggyBack system.



CHAPTER 4

Multimodal Oriented Game Situation Understanding

and Commentary Generation Dataset

4.1 Introduction

The recent advent of esports has led to a highly popular and rapidly growing industry, capturing

the attention of a large and continuously expanding global audience. Within a few seconds

of a game event occurring, numerous aspects demand attention, such as player action, skills

demonstrations, team cooperation, gain and loss, and the key items contributing to the specific

game events. This requires the audience to quickly digest complicated information whenever

something significant happens in the game. Unlike conventional sports broadcasting like NBA

games (Yu et al. 2018), where the fundamental sport’s concepts are easily comprehensible,

this dynamic nature of esports introduces complexity, making it challenging for the average

audience to fully grasp the game situation. Therefore, we need to find a way to assist the

audience in understanding the game situation better.

Currently, esports competition organisers address this issue by involving one or two casters to

explain the game situation during live streaming of the esports. However, this heavily relies on

the specific casters, making it difficult for them to provide more diverse information, including

audience opinions, feelings, and detailed game match information. In addition, different

casters may prioritise different game aspects, leading to a large amount of online esports

games resources unexplained. Therefore, it is important to explore methods for automatically

generating game-related commentary that offers a comprehensive understanding of the game

situation, incorporating multiple aspects, such as audience discussion, emotions, and domain-

specific information details.
47
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Existing esports game commentary datasets (Tanaka and Simo-Serra 2021; Wang and Yosh-

inaga 2022; Zhang et al. 2022) only utilise single-modal information as input to generate

textual commentary, disregarding the potential richness of multiple aspects that can provide

valuable information about the game. The lack of multimodal resources hinders researchers

interested in commentary generation for Multiplayer Online Battle Arena (MOBA) games

from determining the best approach to leverage information from various sources to address

the game commentary task. Moreover, previous works primarily focus on providing accurate

game-related facts (Wang and Yoshinaga 2022; Zhang et al. 2022) in the generated comment-

ary for the audience, neglecting the importance of infusing human-like qualities and emotions

to better engage the audience. Due to the lack of resources, existing game commentary

generation models (Tanaka and Simo-Serra 2021; Zhang et al. 2022; Wang and Yoshinaga

2022) simply employ an encoder-decoder to process raw game information and generate

human-like commentary without fully understanding the game situations.

We introduce GAME-MUG, a multimodal game situation understanding and commentary

generation dataset, and its strong baseline. Our dataset incorporates publicly available League

of Legends (LOL) resources with professional caster comments from popular live streaming

platforms, YouTube and Twitch, with multimodal information, including game event logs,

caster speech audio, and game-related natural language discussions encompassing both human

casters’ commentaries and audience chats and emotions. Inspired by the joint learning of

natural language understanding and generation tasks, we propose a strong baseline model that

employs joint learning for comprehending game situations from multimodal information, and

generating game commentary based on this understanding of game situations and emotions.

In order to conduct the game commentary generation, we summarise the game situation and

audience conversation via multi-modality sources.

Contribution.We introduce a multimodal game understanding and commentary generation

dataset to provide a full understanding of the game situations with not only caster comments

but also diverse information, including audience conversation, caster speech audio, and game

event logs. We also propose a joint learning baseline model to generate more human-like
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TABLE 4.1: Summary of Existing Game Datasets

Dataset # Matches Modality sources Core Task

FSN 50 video, transcript Game commentary generation
Getting Over It 8 video, audio, transcript Game commentary generation

Minecraft 3 video, transcript Game commentary generation
MOBA LoL - video, audio, streamer’s image Streamer emotion prediction, game event type prediction
Car Racing 1,389 video, game info, transcript Game commentary generation
LoL-V2T 157 video, transcript Game commentary generation

eSports Data-to-Text - game info, transcript Game commentary generation
Dota2-Commentary 234 game info, transcript Game commentary generation

CS-lol 20 transcript, chat Viewer comment retrieval

Game-MUG (ours) 216 audio, chat, game info, transcript Game commentary generation, game event type prediction

commentary with the help of game situation understanding. We conduct extensive experiments

to show the effectiveness of multimodality in game understanding and commentary generation.

4.2 Related Works

4.2.1 Game-related Datasets

Most datasets in the game domain are proposed for commentary generation across different

games, such as live-streamed MOBA games (Tanaka and Simo-Serra 2021; Wang and

Yoshinaga 2022; Zhang et al. 2022) as well as pre-recorded esports games (Ishigaki et al.

2021; Li et al. 2019a; Shah et al. 2019) or traditional sports (Yu et al. 2018), while there

are several datasets that also focus on classification tasks related to scene understanding as

shown in Table 4.1. CS-lol (Xu et al. 2023), as the only dataset providing audience chat,

proposed a task of viewer comment retrieval to understand viewer opinions and preferences

by introducing game scene descriptions. MOBA-LoL (Ringer et al. 2019), on the other hand

proposed two classification tasks on their dataset. On top of predicting game event types,

they also provide multi-view to understand the game context by predicting the streamer’s

emotional state. Among all the datasets proposed for game commentary generation, most

datasets allow only a single modality as the input, video only, or game information only. Some

datasets allow multimodal input, but it was not for MOBA games. So far there is no previous

work that utilizes audience emotion when they build datasets to generate more human-like

commentary for MOBA games. In order to close this gap, our dataset will be providing both



504 MULTIMODAL ORIENTED GAME SITUATION UNDERSTANDING AND COMMENTARY GENERATION DATASET

audience emotion as well as rich multimodal input, including audio, audience chat, and game

information.

4.2.2 Visual-Linguistic Generation

Among all the previous works that tried to do video captioning or generate commentary

for games, most used encoder-decoder structure (Yu et al. 2018; Li et al. 2019a; Shah et al.

2019; Ishigaki et al. 2021; Tanaka and Simo-Serra 2021; Zhang et al. 2022; Wang and

Yoshinaga 2022), and some (Tanaka and Simo-Serra 2021; Zhang et al. 2022; Wang and

Yoshinaga 2022) experimented with several types of structures like unified encoder-decoder,

pretraining method, rule-based model, and hybrid models. Some work (Li et al. 2019a;

Wang and Yoshinaga 2022; Zhang et al. 2022; Ishigaki et al. 2021; Yu et al. 2018) applied

recurrent seq2seq models like LSTM/GRU structures for encoding the input and decoding

for commentary, some (Tanaka and Simo-Serra 2021; Wang and Yoshinaga 2022; Zhang

et al. 2022) used Transformer-based models for generating commentary. However no one has

proposed to model dense interaction/fusion among different input modalities, previous models

either lack multimodal input or simply concatenate different modality features together as one

feature vector (or approximate representation of their products via simple tensor operation).

The semantic gap between different modalities is ignored. In addition, no previous work

tried dual learning of understanding game scenes and generating commentary due to limited

information provided by datasets. Our method makes use of the audience’s chats and opinions

in understanding the game context to facilitate the automatic generation of commentary.

4.3 Game-MUG

We introduce a new game commentary dataset using multimodal game situational information

called Game-MUG. It features three modalities, including game match event logs, audio

features derived from signal data as well as textual discussions, such as caster comment

transcript and audience chat. It consists of 70k clips with transcripts and 164k audience chats

collected from 45 LOL competition live streams. Each live stream has an average of 4.8
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individual matches, which leads to 216 game matches and 15k game events in total. Game

matches are sourced from 3 distinct leagues between 2020 and 2022, including Tencent League

of Legends Pro League, League of Legends Champions Korea and World Championships.

These top-tier league matches in various regions attract a substantial number of views (from

507K to 7.2M), which derives abundant audience chats in multiple languages. We collect

caster commentaries and audience live chats from two different live stream platforms: Twitch,

which contributes 150 matches to the dataset, and YouTube, which contributes 66 matches. In

addition to this, we crawl game events from the League of Legends Competitive Statistics

Website1.

4.3.1 Data Collection

Gaming Human Commentary Transcription. We collect human commentaries by tran-

scribing the raw live stream files2. Due to the substantial size of live-stream videos, we

useYT-DLP and Twitch-DL to only download their high-definition (44.1kHz) audio and

utilise a speech recognition model named Whisper (Radford et al. 2022) for speech-to-text

conversion. Whisper is a large supervised model that implies the encoder-decoder architecture

from Transformer (Vaswani et al. 2017). We use Whisper medium English model and set the

compression ratio to 1.7 without previous text conditions for speech-to-text recognition, which

slightly trades off the transcript accuracy but maximises its robustness. Each transcribed text

is paired with its start and end timestamps in seconds.

Audience Live Chats Collection. Audience live chats are scrapped from the live stream

platforms. We employ a multiplatform software named Chat Downloader to scrap the chat

content from YouTube and Twitch. Because of the multilingual nature of live chats, we

use Lingua to identify different languages and apply a special label called “emo” for chat

instances that only include emotes or emojis. We filter out the live chats without any content

and associate reminders with their respective timestamps in seconds.

1https://gol.gg/esports/home/
2YouTube and Twitch disable their Automatic Speech Recognition tools on game live streams

https://lolesports.com/standings/lpl
https://lolesports.com/standings/lpl
https://lolesports.com/standings/lck
https://lolesports.com/standings/worlds
https://www.twitch.tv/
https://www.youtube.com/@live
https://github.com/yt-dlp/yt-dlp
https://github.com/ihabunek/twitch-dl
https://github.com/openai/whisper
https://github.com/xenova/chat-downloader
https://github.com/pemistahl/lingua
https://gol.gg/esports/home/
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Game Events Collection. Game events are collected from the League of Legends Competitive

Statistics Website by a scrapper. It first finds the game-related HTML tags and extracts the

contents from the selected tags. It is worth noticing that sometimes the contents of the tags

can be empty, which means a minion or a non-epic monster triggers this event. Our scrapper

automatically populates missing contents in the tags and links them to game timestamps,

constructing complete game event instances. We categorise collected game events into the

following six different classes in our dataset: 1) Kill: A game character is defeated; 2) Non-

Epic Monster: A jungle monster is eliminated; 3) Tower: A turret/inhibitor is destroyed; 4)

Dragon: A dragon is eliminated; 5) Plate: A turret’s defensive barrier is shattered; 6) Nexus:

An nexus is destroyed, leading to the end of the game.

Audio Feature Extraction. It is known that human speech tone fluctuates based on emo-

tions (Kienast and Sendlmeier 2000) and audio modality demonstrates a notable advantage

over video in capturing emotional fluctuations (Wu et al. 2021). Therefore, we extract audio

features from the caster speech audio to enrich emotional representation within diverse domain

data. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) (Eyben et al. 2016) is

commonly used for voice research and it encompasses 18 Low-Level Descriptors, which

cover features related to frequency, amplitude and spectral parameters. We utilise audiofile to

convert raw audio files into audio waveforms and then extract audio features with a sampling

rate of 50Hz using openSMILE (Eyben et al. 2010), a tool commonly used for vocal emotion

recognition (Doğdu et al. 2022). Although 44.1kHz signals retain all the details, they require

significant storage space and computational power for feature extraction. As an alternative,

we also generate the same set of audio features based on the 8kHz signals, which are derived

through down-sampling from the original signals.

4.3.2 Data Annotation

Emotion is essential for engaging audiences in live game streaming, and humans can readily

discern it through a combination of emotion-bearing sentences Ghazi et al. 2015 and graphic

symbols, such as emojis or emotes Liu et al. 2022. Considering the enormous amount of our

data, it is timely and financially expensive to annotate each piece of data manually. Inspired

https://github.com/audeering/audiofile/


4.3 GAME-MUG 53

TABLE 4.2: Pairwise Comparison Between GPT-3.5 and GPT-4 Summaries,
Overall Coefficient (Krippendorff 2011) is.

Categories GPT-3.5 GPT-4 Tie

Kill 25.78% 51.56% 22.66%
Tower 14.20% 59.66% 26.14%

Dragon 17.71% 66.67% 15.63%

Overall 18.75% 58.75% 22.50%

FIGURE 4.1: The Designed Prompt Algorithm for Query GPT-3.5 and GPT-4.

by the success of Standford Alpaca (Taori et al. 2023), we make use of GPT-3.5 (Ouyang et al.

2022) and GPT-4 (OpenAI 2023) to condense human commentaries into concise summaries

with emotional clues from audience chats. Figure 4.1 illustrates the approach for querying

the GPT-4 API. We set the background information as watching a live game streaming via

a system prompt. Whenever a game event occurs, we forward the commentary and live

chat content to the GPT-4 API through the summary prompts. We design several prompt

parameters to guide the GPT-4 generation: <game streaming platform> indicates different live

stream platforms, <number of summary words> control the number of generated words, and

<game-related topics> adjusts the generated summary to focus on different aspects, such as

on player, character, event or overall situation. To ensure the annotation quality, we conduct

a pairwise human evaluation between the summaries from GPT-3.5 and GPT-4. As shown

in Table 4.2, GPT-4 excels GPT-3.5 in all three categories, indicating GPT-4’s summaries
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TABLE 4.3: Distrbutions of Game Events in Collected Dataset, Non-Epic
Monster, Plate and Nexus Categorise into Other.

Event # of events Avg per match Percentage

Kill 5,548 25.69 36.45%
Tower 2,509 11.62 18.98%

Dragon 1,646 7.62 10.81%
Other 5,138 23.79 33.76%

Total 15,221 70.47 100%

are better aligned with human understanding. Therefore, we choose GPT-4’s summaries as

ground truth annotations in our dataset.

4.3.3 Data Processing

Considering each live stream can be treated as a chronological sequence comprised of game

events, human commentaries and live chats, we match them via their timestamps. As game

events’ timestamps are reset after each match, we manually adjust them to align with live

stream seconds prior to the matching process. Additionally, background music before the

commencement of each live stream is also removed manually, since there is no game-related

factual information to help with game situation understanding.

4.4 Data Analysis

Our dataset includes 70,711 transcripts with an average duration of 12.2 seconds and 3,657,611

chats. There are 15,221 game events in the collected 216 game matches. Not all events are

equally important for the human caster and audience, Kill, Tower and Dragon events usually

attract more interest than other events. Therefore, we categorise all other events into Other as

an initial input processing step for our following analysis in Section 4.4 and experiments in

Section 4.7. We present the statistics of each event category in Table 4.3.
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4.4.1 Game Keyword Analysis

Different from other domains, game-related data contains numerous keywords that rarely

appear in everyday conversations. We manually extract 2,003 unique keywords from the caster

speech transcript in our dataset and clean the typos and misspells while retaining essential

abbreviations, such as character’s skills denoted by Q, W, E, and R. As shown in Figure 4.2,

extracted keywords can be categorised into 5 different classes, including skill, player, team,

character and item. To better address the importance of each keyword, we compute their Term

FIGURE 4.2: The Visualisation for Keyword Analysis with Top 15 Words
from Kill and Tower Event.

Frequency - Inverse Document Frequency (TF-IDF) based on the game events with different

time windows, specifically 15 seconds and 30 seconds. This calculation is performed using

the Scikit-learn library Buitinck et al. 2013 with normalisation. Figure 4.2 shows a sample

visualisation of the keywords’ characteristics when the window of time equals 30 seconds.

We select the top 15 keywords for Kill and Tower events and differentiate their types by

distinct colours. The size of each keyword’s node depends on the normalized occurrence of

the keyword, whereas the distance between the event and keyword nodes is determined by the

normalized TF-IDF values. From Figure 4.2, we can see that Kill and Tower are more related
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to items to attack, skills that either increase the damage for attacking enemies or limit the

ability of enemies moving to avoid damage or fighting back. This reflects the typical player’s

actions in games, which often involve attacking opponents, indicating that the text in our

dataset effectively describes the game scene and offers a robust understanding of the situation.

Moreover, we can see that team, players, and character names are also frequently mentioned

or discussed by commentators when these cases happened, though the specific names might

depend on specific games, it demonstrates the multiple aspects that people could focus on

about the game situation.

FIGURE 4.3: The Concurrent Plot for Audience Chat Analysis with the Num-
bers of Emotes, Emojis, and Eame Events.

4.4.2 Audience Chat Analysis

The audience tends to send a large number of emotes and emojis in chat to express their

sentiments. We retrieve emotes and emojis based on their distinct formats found in publicly
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available sources34 and then count the number of emotes and emojis per 30-second window

in each match. The counts of emotes, emojis, and game events are plotted concurrently on

the same timeline, shown in Figure 4.3. It’s not hard to discover that the number of emotes

correlates with the game situation, since audiences tend to send more emotional expressions

in chats to share their feelings when there happens a dramatic turning point or a series of

events.

4.4.3 Game Commentary Generation

In the commentary generation section, we will get the output from the encoder module and

feed it into a context-aware pre-trained language model. Similar to the Transformer, this

model works like an auto-regressive decoder, which can perform sequence generation. It will

also be fine-tuned with the caster audio text.

The audience chat plays an important role in generating audience-aware commentary, as it

usually includes the emotional expression from the audience when there comes to the game

highlights. However, the chat’s content is short and contains different representations of the

emotions, such as emotional words, repeat punctuation and emojis or emotes. To get the best

result, we will perform the ablation studies with different chat input strategies.

4.5 Proposed Baseline

Based on Game-MUG, we proposed a joint learning framework that generates summaries of

the game commentaries based on the understanding of the game situation through multimodal

data, shown in Figure 4.4. For game situation understanding, we implemented a multimodal

Transformer encoder that encodes both text data and audio data. For game commentary

generation, we employ a pre-trained decoder along with the encoded game information to

generate new summaries. The quality of generated summaries is evaluated by both automatic

metrics and humans.

3https://www.frankerfacez.com/emoticons/
4https://github.com/carpedm20/emoji/

https://www.frankerfacez.com/emoticons/
https://github.com/carpedm20/emoji/
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FIGURE 4.4: Game Situation Understanding Model (Left); Game Comment-
ary Summarisation Model (Right).

4.5.1 Input Processing

Given an i-th event Ei happening at tei of a game, we try to predict its event type via the

multimodal information provided in our dataset and the game situation understanding module

and generate a commentary summary via the game commentary summarisation module.

Taking m most recent game events which happened before Ei as a historical reference, we

extract the time-series event sequence as E = {Ei−m, . . . , Ei−2, Ei−1}. Assuming that the

input window size for transcript and chat is w, we extract a time-series sequence consisting of

x transcript clips T = {Ts−x, . . . , Ts−1, Ts}, where Ts refers to the s-th transcript clip in the

current game. These clips fully cover the time period from (tei − w) to tei, meaning that the

timestamp (tei − w) falls within the time frame covered by Ts−x, and tei falls within the time

frame covered by Ts. The time-series sequence of chats C is extracted based on their specific

timestamps between (tei − w) and tei. For the audio component, given the window size wa,

the audio feature sequence is extracted as A within the time period between (tei − wa) and

tei. This results in a vector consisting of wa ∗ 50 values that serve as the input for the audio

Transformer, given that the audio features are sampled at a rate of 50Hz.

4.5.2 Game Situation Understanding

Inspired by LXMERT’s cross-modality encoder representations (Tan and Bansal 2019) and

HERO’s hierarchical encoder (Li et al. 2020), our game situation understanding model

consists of three encoders: a text encoder, an audio Transformer encoder and a multimodal
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FIGURE 4.5: Game Situation Understanding Model.

Transformer encoder. The model architecture is shown on Figure 4.5. On the text side,

the input is a combination of multi-field sequential time-series data from previous event

E, caster transcript T and audience chat C, with graphical emotional expressions in chats

being converted into their text representation. Since chats tend to contain many repetitions

in phrases and emotions, we truncate the input sequence up to 256 tokens. Following the

approaches in BERT (Devlin et al. 2019), we insert a [CLS] token at the beginning and a

[SEP] token at the end of the input sequence, creating the input embeddings by summing

the token, segment, and position embeddings. These input embeddings are initially passed

into a pre-trained multi-field text encoder. The [CLS] token output from this pre-trained

multi-field text encoder is then forwarded to the text Transformer encoder to project the text

representation into a common space. On the audio side, the combination of audio feature A

and position embedding are fed into an audio Transformer, which maps the audio into the

same common space as the text. The text and audio representations are then concatenated

to form a single vector, which serves as the input for the multimodal Transformer encoder

followed by a fully connected layer to predict the subsequent game event. We take advantage

of existing pre-trained models in our multi-field text encoder including BERT (Devlin et al.
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2019), RoBERTa (Liu et al. 2019), DeBERTa (He et al. 2021), and XLNet (Yang et al. 2019).

More details can be found in Section 4.6.1.

4.5.3 Game Commentary Summarisation

FIGURE 4.6: Game Commentary Summarisation Model.

We obtain the event representations from the game situation understanding model before

the fully connected layer and incorporate these representations along with transcripts and

chats into the pre-trained generative model for summarisation. We calculate the mean of each

event representation by inference the trained game situation understanding model with all

the matches in our dataset to get the special event embeddings. These embeddings are then

added to the decoder models’ vocabulary as <|kill|>, <|tower|> and <|dragon|> to enhance

efficiency during summary generation. Similar to the encoder model, we truncate the chat

sequence up to 256 tokens for emotion extraction before combining them with special event

tokens and transcripts. As shown in Figure 4.6, a special [TL;DR] token and GPT-4 summary

are concatenated to the sequence as a reference during fine-tuning. We fine-tune two different

pre-trained decoders, including GPT-2 (Radford et al. 2019) and Pythia (Biderman et al. 2023)
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with our data and fine-tuned model generates summaries through beam search. More details

can be found in Section 4.6.1.

4.6 Experiments

4.6.1 Experiment Setup

Game Situation Understanding. We test four pre-trained encoder models with their large

settings as the baseline multi-field text encoders: BERTLARGE, RoBERTaLARGE, DeBER-

TaV3LARGE, and XLNetLARGE. The text and audio Transformer encoder and the multimodal

Transformer encoder are all 8-head and 6-layer encoder structures and 1024 embedding

dimensions. The entire model is trained using AdamW (Loshchilov and Hutter 2019) with 2

epochs for each instance, with a dropout value of 0.1 (Srivastava et al. 2014), a learning rate

of 1e-6, and a learning rate decay rate of 0.95 for every 2 epochs.

Game Commentary Summarisation. We adopt two pre-trained decoder models as the

baseline commentary summarisation models: 762M GPT2 with 1280 dimension size and

410M Pythia with 1024 embedding size. We apply Principal Component Analysis (Wold et al.

1987) to the game event embeddings when their dimensions are larger than the embeddings

of pre-trained models for fine-tuning consistency. All models are trained using AdamW for 3

epochs, with a learning rate of 1e-5, and a warmup step of 5.

Our implementations are based on PyTorch (Paszke et al. 2019) and HuggingFace Trans-

formers (Wolf et al. 2020), with the help of Scikit-learn (Buitinck et al. 2013). All experiments

are run on a test bench with 24GB NVIDIA RTX 3090 GPU.

4.6.2 Evaluation Metrics

We evaluate the game situation understanding model with a multi-label accuracy metric,

which directly compares the predicted game event with the ground truth for each event class.

Generated summaries are evaluated with ROUGE (Lin 2004) and BERTScore (Zhang et al.



624 MULTIMODAL ORIENTED GAME SITUATION UNDERSTANDING AND COMMENTARY GENERATION DATASET

TABLE 4.4: The effect of special event tokens on 2 different Game Comment-
ary Summarisation Models.

Special Event Token GPT2 Pythia

BertScore ROUGE-L BertScore ROUGE-L

✘ 76.15 18.52 74.45 13.24
✔ 76.38 17.10 75.37 15.98

TABLE 4.5: The effect of Chat, Audio and previous Game Events on 2
different Game Situation Understanding Models.

Chat Audio Game
Events

BERT DeBERTaV3 RoBERTa XLNet
Kill Tower Dragon All Kill Tower Dragon All Kill Tower Dragon All Kill Tower Dragon All

✘ ✘ ✘ 77.98 47.75 8.45 61.97 79.46 62.16 1.41 65.06 79.17 62.16 8.45 65.83 93.75 10.81 4.23 63.71
✔ ✘ ✘ 86.01 20.72 9.86 61.58 81.55 62.16 0.00 66.22 79.46 59.46 7.04 65.25 96.43 0.90 5.63 63.51
✘ ✔ ✘ 83.63 37.84 14.08 64.29 77.08 36.94 49.30 64.67 78.57 62.16 25.35 67.76 72.02 55.86 22.54 61.78
✘ ✘ ✔ 80.55 51.35 17.19 64.96 72.35 61.26 17.19 62.18 78.50 58.56 35.94 67.95 95.22 15.32 0.00 63.25
✔ ✔ ✘ 75.00 48.65 11.27 60.62 82.44 43.24 43.66 68.73 77.38 63.06 15.49 65.83 67.86 53.15 14.08 57.34
✔ ✘ ✔ 83.22 51.35 18.03 66.81 81.82 58.56 40.98 70.74 80.07 55.86 36.07 68.34 80.07 62.16 21.31 67.90
✘ ✔ ✔ 84.97 32.43 42.62 66.59 79.72 49.55 34.43 66.38 84.62 51.35 26.23 68.78 76.22 60.36 21.31 65.07
✔ ✔ ✔ 83.57 43.24 18.03 65.07 86.71 31.53 59.02 69.65 80.42 52.25 31.15 67.03 83.92 53.15 18.03 67.69

2020), which are common automatic evaluation metrics. To have the best correlation with

humans, we choose a RoBERTaLARGE version of BERTScore, which deploys a RoBERTa

model to compare the similarity between the model generations and references.

4.7 Results

4.7.1 Overall Performance

As illustrated in Table 4.5, when all input features are utilised, DeBERTaV3 notably out-

performs the others in overall accuracy as well as Kill and Dragon categories by trading

off the performance on Tower. Trailing behind DeBERTaV3, the overall performance of

RoBERTa and XLNet is similar, with a margin difference of less than 1%. It is worth noting

that RoBERTa excels in the Dragon category, while XLNet excels in the Kill and Tower

categories. Although BERT achieves an overall accuracy of 65.07%, it ranks last among the

four encoder variants. This is likely attributable to the other models’ more robust optimization

built upon BERT’s architecture. In addition, all models produce better prediction accuracy for

Kill than for Tower and Dragon. This trend is primarily due to the imbalanced event data

since the average number of Kill instances per match is 25.69, which is double the average
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TABLE 4.6: Audio Time Window Hyperparameter Testing on 2 Different
Variations of the Game Situation Understanding Models.

Audio BERT DeBERTaV3

Kill Tower Dragon All Kill Tower Dragon All

5s 80.55 42.34 25.00 63.89 83.62 35.14 57.81 68.59
10s 83.62 37.84 23.44 64.53 83.28 35.14 59.38 68.59
15s 84.30 40.54 18.75 64.96 86.35 28.83 57.81 68.80

number of Tower instances (11.62) and triple the average number of Dragon instances (7.62).

Regarding the game commentary summarisation results presented in Table 4.4, we note that

GPT2 consistently outperforms Pythia across both evaluation metrics, irrespective of the

presence of special event tokens.

4.7.2 Ablation Studies

To further analyse the effectiveness of our data, we conduct ablation studies to compare 3

different input combinations with transcripts for the game situation understanding model:

1) Audio: with and without audio features as part of the sequence input; 2) Chat: with

and without chat as part of the sequence input; 3) Game Events: with and without game

events as part of the sequence input. The results are presented in Table 4.5. We observed that

supplementing the model with additional input data improves its capability for understanding

game situations. This results in a noticeable performance increase across all three models,

particularly for the Dragon event, albeit with a slight trade-off in performance for other

events. More specifically, incorporating audio or previous game events individually with the

transcript yields better improvement than adding chat data alone. Furthermore, combining

two types of extra inputs surpasses the performance of just a single extra input.

We also conduct experiments both in the presence and absence of the Special Event Token,

which is defined as the intermediate embedding before the fully connected layer within

the game situation understanding model, as illustrated in Figure 4.4. Other inputs, such as

transcripts, chats, and GPT-4 summaries, are essential for fine-tuning since omitting any of

these causes a significant drop in generation performance. The results of these experiments
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TABLE 4.7: Full Hyperparameter Testing Results.

Transcript
+ Chat Audio Game

Events
BERT RoBERTa DeBERTaV3 XLNet

Kill Tower Dragon All Kill Tower Dragon All Kill Tower Dragon All Kill Tower Dragon All
15s 5s 3 90.26 16.22 1.45 60.86 85.71 29.73 0.00 60.86 73.38 29.73 0.00 53.07 77.92 27.93 0.00 55.53
15s 5s 4 85.67 36.04 5.97 62.97 80.33 58.56 7.46 65.06 79.00 58.56 7.46 64.23 82.00 30.63 1.49 58.79
15s 5s 5 86.69 33.33 12.50 63.89 80.20 62.16 4.69 65.60 82.25 53.15 23.44 67.31 92.15 22.52 0.00 63.03
15s 5s 6 84.62 31.53 19.67 63.10 79.72 59.46 14.75 66.16 83.22 50.45 21.31 67.03 83.92 56.76 0.00 66.16
15s 5s 7 85.25 30.91 16.67 62.72 83.09 51.82 25.00 67.63 83.81 48.18 30.00 67.86 85.25 55.45 0.00 66.52
15s 5s 8 82.05 36.70 17.86 62.56 78.02 55.96 23.21 65.53 83.15 42.20 35.71 66.89 86.08 62.39 0.00 69.18
15s 5s 9 80.83 33.02 17.86 60.75 79.32 55.66 26.79 66.59 83.46 38.68 39.29 66.59 87.22 53.77 1.79 67.76
15s 5s 10 81.92 33.96 15.38 61.48 78.46 57.55 25.00 66.51 83.08 43.40 46.15 68.42 87.31 55.66 7.69 69.38
15s 10s 3 86.04 30.63 4.35 61.89 69.16 57.66 7.25 57.79 71.43 61.26 4.35 59.63 65.58 33.33 13.04 50.82
15s 10s 4 87.00 36.04 7.46 64.02 84.33 33.33 31.34 65.06 77.67 61.26 11.94 64.64 74.00 33.33 10.45 55.65
15s 10s 5 84.98 37.84 12.50 63.89 79.52 55.86 28.12 66.88 81.91 49.55 17.19 65.38 83.96 42.34 7.81 63.68
15s 10s 6 81.82 34.23 21.31 62.23 79.72 56.76 24.59 66.81 81.12 44.14 40.98 66.81 79.37 54.05 1.64 62.88
15s 10s 7 83.09 30.91 13.33 60.94 80.94 46.36 35.00 66.29 84.17 45.45 35.00 68.08 84.53 55.45 3.33 66.52
15s 10s 8 81.68 36.70 16.07 62.10 78.75 52.29 28.57 65.75 84.98 43.12 39.29 68.72 86.45 58.72 10.71 69.86
15s 10s 9 82.33 31.13 19.64 61.45 79.70 57.55 23.21 66.82 81.95 40.57 48.21 67.29 86.47 50.00 7.14 67.06
15s 10s 10 80.38 35.85 15.38 61.00 82.31 58.49 17.31 68.18 82.69 42.45 44.23 67.70 86.54 57.55 3.85 68.90
15s 15s 3 82.14 36.94 2.90 60.66 70.13 65.77 2.90 59.63 80.84 54.05 11.59 64.96 59.42 60.36 8.70 52.46
15s 15s 4 84.33 44.14 8.96 64.44 75.67 63.06 5.97 62.97 80.00 54.05 23.88 66.11 63.00 53.15 14.93 53.97
15s 15s 5 83.28 39.64 10.94 63.03 74.74 69.37 6.25 64.10 85.32 36.94 34.38 66.88 73.38 66.67 4.69 62.39
15s 15s 6 81.82 38.74 13.11 62.23 81.12 54.95 26.23 67.47 84.27 49.55 34.43 69.21 76.92 66.67 3.28 64.63
15s 15s 7 83.45 30.91 15.00 61.38 80.22 50.91 28.33 66.07 86.33 37.27 36.67 67.63 82.01 56.36 1.67 64.96
15s 15s 8 79.12 38.53 14.29 60.73 77.29 61.47 26.79 66.89 87.18 43.12 41.07 70.32 83.15 62.39 3.57 67.81
15s 15s 9 81.58 33.02 8.93 60.05 77.44 58.49 19.64 65.19 81.95 41.51 42.86 66.82 85.71 52.83 3.57 66.82
15s 15s 10 80.00 37.74 17.31 61.48 81.92 56.60 21.15 67.94 86.54 38.68 44.23 69.14 84.62 53.77 11.54 67.70
30s 5s 3 80.52 34.23 20.29 61.48 81.49 48.65 44.93 68.85 82.47 32.43 71.01 69.47 85.71 54.05 10.14 67.83
30s 5s 4 81.33 43.24 23.88 64.44 79.00 51.35 40.30 67.15 86.00 44.14 40.30 69.87 84.33 51.35 17.91 67.36
30s 5s 5 80.55 42.34 25.00 63.89 81.91 50.45 37.50 68.38 83.62 35.14 57.81 68.59 82.94 50.45 23.44 67.09
30s 5s 6 83.22 43.24 26.23 65.94 80.42 55.86 36.07 68.56 83.57 31.53 57.38 67.47 84.27 47.75 21.31 67.03
30s 5s 7 81.29 41.82 25.00 64.06 80.58 57.27 30.00 68.08 83.81 40.00 56.67 69.42 84.53 48.18 25.00 67.63
30s 5s 8 79.12 46.79 14.29 62.79 81.68 56.88 33.93 69.41 83.15 41.28 57.14 69.41 84.98 50.46 17.86 67.81
30s 5s 9 78.57 46.23 14.29 62.15 77.82 51.89 32.14 65.42 68.42 36.79 0.00 51.64 86.47 46.23 19.64 67.76
30s 5s 10 78.85 52.83 9.62 63.64 81.15 55.66 30.77 68.42 71.15 71.70 0.00 62.44 85.00 46.23 21.15 67.22
30s 10s 3 81.17 35.14 23.19 62.50 81.49 48.65 47.83 69.26 83.77 35.14 56.52 68.85 83.77 55.86 15.94 67.83
30s 10s 4 82.33 40.54 25.37 64.64 77.33 49.55 43.28 66.11 85.67 30.63 50.75 67.99 82.67 52.25 17.91 66.53
30s 10s 5 83.62 37.84 23.44 64.53 81.23 50.45 35.94 67.74 83.28 35.14 59.38 68.59 83.96 53.15 17.19 67.52
30s 10s 6 81.82 45.05 22.95 65.07 79.02 54.95 32.79 67.03 83.57 38.74 59.02 69.43 85.31 52.25 16.39 68.12
30s 10s 7 80.94 39.09 25.00 63.17 82.73 48.18 31.67 67.41 83.09 39.09 56.67 68.75 83.09 49.09 20.00 66.29
30s 10s 8 79.12 51.38 14.29 63.93 81.32 53.21 35.71 68.49 83.88 42.20 55.36 69.86 84.62 51.38 19.64 68.04
30s 10s 9 78.20 43.40 12.50 60.98 80.83 50.94 32.14 67.06 69.17 74.53 0.00 61.45 87.97 45.28 21.43 68.69
30s 10s 10 80.00 49.06 11.54 63.64 80.77 56.60 30.77 68.42 74.62 69.81 0.00 64.11 86.92 48.11 23.08 69.14
30s 15s 3 85.39 29.73 18.84 63.32 81.17 48.65 36.23 67.42 88.64 25.23 53.62 69.26 79.55 54.95 24.64 66.19
30s 15s 4 83.67 37.84 23.88 64.64 79.67 46.85 32.84 65.48 86.67 33.33 52.24 69.46 83.00 47.75 20.90 66.11
30s 15s 5 84.30 40.54 18.75 64.96 82.59 49.55 32.81 67.95 86.35 28.83 57.81 68.80 82.94 53.15 23.44 67.74
30s 15s 6 83.57 43.24 18.03 65.07 80.42 52.25 31.15 67.03 86.71 31.53 59.02 69.65 83.92 53.15 18.03 67.69
30s 15s 7 80.58 40.91 21.67 62.95 83.81 52.73 31.67 69.20 85.25 42.73 56.67 70.98 82.73 50.91 20.00 66.52
30s 15s 8 79.85 49.54 10.71 63.47 79.12 55.05 30.36 66.89 86.81 39.45 53.57 70.78 83.15 51.38 25.00 67.81
30s 15s 9 79.32 50.00 12.50 63.32 80.83 51.89 35.71 67.76 71.80 64.15 0.00 60.51 86.47 48.11 21.43 68.46
30s 15s 10 79.62 51.89 11.54 64.11 80.00 56.60 32.69 68.18 69.62 69.81 5.77 61.72 83.85 50.94 25.00 68.18

are shown in Table 4.4. We observed the addition of a special event token can guide model

generation, leading to improvements in BertScore for both GPT2 and Pythia.

4.7.3 Hyperparameter Testing

Gaining a comprehensive understanding of the game involves the formidable but essential

task of correctly predicting the Dragon. Even though it constitutes merely 10.81% of the

total events, eliminating a dragon could signify a pivotal turning point in the game.

We present the audio hyperparameter testing results with different time windows of the

transcript and chat in Table 4.6. We observe that, except for XLNet when the time window
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TABLE 4.8: Game Event Hyperparameter Testing on 2 Different Variations
of the Game Situation Understanding Models

Game
Events

BERT DeBERTaV3

Kill Tower Dragon Overall Kill Tower Dragon Overall

3 85.39 29.73 18.84 63.32 88.64 25.23 53.62 69.26
5 84.30 40.54 18.75 64.96 86.35 28.83 57.81 68.80
7 80.58 40.91 21.67 62.95 85.25 42.73 56.67 70.98
9 79.32 50.00 12.50 63.32 71.80 64.15 0.00 60.51

of the transcript and chat is shorter (15s), a longer audio time window aids all variations in

better classifying the Dragon, while maintaining overall performance. We hypothesise that

the difference in performance with XLNet is due to its architectural divergence from the other

models, which are based on BERT. When the time window for the input transcript and chat

is extended to longer periods (30s), the Overall performance of all the models improves by

1% to 3%. However, increasing the audio time window offers insignificant improvement in

classifying the Dragon, and may even reduce performance. This could be attributed to the

extended length of the input sequence causing the model to overlook critical details.

We also explore the effectiveness of different numbers of previous game events and results are

shown in Table 4.8, where input transcript and chat time windows are set to 30 seconds, and

the audio time window is set to 15 seconds. Increasing the number of previous game events

improves the models’ aggregate performance up until a specific threshold. However, it is

observed that when this threshold is surpassed, there is a discernible decrement in performance.

We hypothesise that the performance decline is due to the extended length of the previous

events, which have less correlation with the target event.

The time window of transcript and chat also affects the performance of the models and

Table 4.7 demonstrate a similar trend to the audio. Apart from XLNet, when the time window

of the transcript and chat is 15s, more previous events bring better classification performance

in Dragon. When the time window for the transcript and chat lengthens to 30 seconds,

the overall performance of the models improves. However, incorporating more previous

events provides a negligible improvement in classifying the Dragon and might even diminish

performance.
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4.7.4 Human Evaluation

FIGURE 4.7: Screenshot of a Human Evaluation Sample.

Automatic metrics may not correlate well with human judgments in different aspects Durmus

et al. 2020, therefore we conduct the human evaluation to enrich the comprehensiveness of

the results. We randomly collected testing samples for evaluating the summaries from GPT2

and Pythia and recruited nine workers, all with general background knowledge of League

of Legends for evaluation, resulting in 1,890 instances of human feedback. In the human

evaluation survey shown in Figure 4.7, workers are given the original transcript accompanied

by the truncated chat and the generated summaries from the baseline models. They are then

asked to rank the summaries based on the following three criteria:

• Game Event Information: The quality of summaries in terms of the game event-

related expressions.

• Coherence: The quality of summaries in terms of fluency and logic.

• Overall: The overall quality of summaries regarding the above criteria and any other

game-related criteria.
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TABLE 4.9: Human Evaluation Comparison Between GPT2 and Pythia Summaries.

Category GPT2 Pythia

Event Coherence Overall Event Coherence Overall

Kill 75.31% 75.31% 66.67% 24.69% 24.69% 33.33%
Tower 60.74% 59.26% 59.26% 39.26% 40.74% 40.74%

Dragon 61.62% 66.67% 59.60% 38.38% 33.33% 40.40%

All 64.76% 65.71% 61.27% 35.24% 34.29% 38.73%

As shown in Table 4.9, summarisations of GPT2 are more preferred by humans in all categories

which aligns with the results from automatic evaluation metrics.

4.8 Summary

We introduce the GAME-MUG as a multimodal dataset for game situation understanding and

game commentary generation. It contains diverse game-related information from game event

logs, caster comments, audience conversations and caster speech audio. We utilise GPT-4 for

summary labelling and validate the annotations with human judgement, which makes the cost

of data collection more efficient.

To support research on both tasks, we propose a joint learning baseline model with different

pre-trained model variations. Experiments show that the combination of multimodal data

improves the model’s understanding of the game situations while providing the game situation

information leads to more human-like game commentary generation. We hope that this

research gives insights into dual-task learning on game situation understanding and game

commentary generation. To encourage further research on these tasks, we will make our

dataset publicly available, hoping it will lead to novel developments and applications.

In this work, we focus solely on League of Legends as the representative MOBA game due to

its popularity Duan et al. 2023. This constraint limits the range of game scenarios covered

by GAME-MUG and, consequently, the scope of potential applications built upon it. There

are several inconsistencies in model performance, which we plan to explore further in future

work by evaluating different models’ effectiveness in understanding game situations. We also
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encourage future studies to incorporate a variety of MOBA games to enrich the diversity of

game scenarios further. Moreover, we used GPT-generated summaries for annotation in our

dataset and may consider employing other generative AI models should new options emerge.



CHAPTER 5

Conclusion

This thesis discusses multimodal integration for natural language classification and gener-

ation. The introduction provides a general background of the current multimodal studies,

highlighting two key unsolved problems in the field: 1)The VL-PMs are not vastly applied in

industrial domains due to its learning curve; 2)The lack of multimodal dataset in the game

domain for both complex situation understanding and emotional commentary generation. The

literature review offers a comprehensive overview of previous multimodal models and their

objectives. To effectively understand the two identified problems, we also delve into the

backgrounds of multimodal visual question answering and multimodal language generation

simultaneously in the literature review. The multimodal question answering system addresses

the first problem by introducing a user-friendly platform with a carefully designed website for

model fine-tuning. The multimodal game-oriented dataset, along with its baseline, tackles the

second problem by assembling a multimodal game situation understanding and commentary

generation dataset, supplemented with a joint learning model for both situation understanding

and generation.

We introduce a multimodal question answering system named PiggyBack, designed to enhance

the usability of VL-PMs by allowing users to fine-tune these models with their own datasets

for VQA tasks. PiggyBack is a back-end and front-end system that leverages the open-

source HuggingFace API. It simplifies user interactions by providing a website interface for

fine-tuning and evaluation. Specifically, PiggyBack’s back-end manages data processing

and model fine-tuning, while its front-end oversees system-user interactions to promote

interpretability and user-friendliness. The effectiveness of the system has been verified

through a human evaluation study, focusing on relevance, meaningfulness, and correctness.

69
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The results showcase impressive overall performance, indicating our system provides a strong

alignment with human judgments.

Upon addressing the usability of VL-PMs, we focus on the construction of a multimodal data-

set for game situation understanding and commentary generation as well as its corresponding

baseline. Multimodal data encompassing the caster’s commentary text, the caster’s speech,

and audience chats are sourced from publicly accessible League of Legends resources on

YouTube and Twitch. Conversely, game event logs are collected from an open-source League

of Legends statistics website. In addition to data collection, we employ GPT-4 to annotate the

game situation and audience conversation using multi-modality sources. Based on the dataset,

we propose a robust baseline model that employs joint learning with multimodal information

for a comprehensive understanding of game situations and emotional game commentary

generation. Our comprehensive experiments demonstrate that multimodal data enhances

the model’s understanding of complex game situations. Furthermore, our human evaluation

study reveals that presenting the game situation results in a more human-like commentary

generation.

5.1 Future Works

In this thesis, we have discussed the user-friendly multimodal question answering system,

PiggyBack, with the capability of fine-tuning the VL-PMs on the VQA task. However, we

developed the system for local usage only, which requires substantial computational power

for fine-tuning power models. Given the advancement in multimodal large language models,

we encourage future research to deploy this system on the cloud, thus enhancing the system’s

portability and flexibility. Moreover, our system currently focuses solely on VQA tasks,

potentially limiting the full potential of VL-PMs in multimodality. Hence, we urge future

studies to incorporate a broader range of downstream tasks into our system. In GAME-MUG,

we only consider League of Legends as the representation of the MOBA game due to its

popularity Duan et al. 2023. This constrains the range of game scenarios covered by GAME-

MUG and consequently limits the scope of potential applications built upon it. We encourage
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future studies to incorporate a variety of MOBA games to further enrich the diversity of

game situations. Besides, GAME-MUG only contains English commentaries, which limits

its linguistic features. Future research could expand this dataset to include low-resource

languages by considering other live-stream platforms, such as Huya, Douyu and Twitcasting.

https://www.huya.com/
https://www.douyu.com/
https://jp.twitcasting.tv/
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