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Abstract

Decentralized Applications (DApps) have seen exponential growth in the past decade leading
to a new paradigm known as Web3. Web3 is the ecosystem formed by the execution of multiple
DApps. Blockchains offer a platform for DApp executions. However, the performance and
security of current blockchains is limited and impair the adoption of Web3. More specifically,
for demanding DApp workloads, modern blockchains perform poorly or lose transactions.

This thesis presents various contributions to enhance blockchain performance and security
to widen the adoption of Web3. To enhance blockchain performance for DApp executions, we
first present the Smart Redbelly Blockchain (SRBB). SRBB enhances DApp performance by re-
ducing blockchain congestion. SRBB alone is not sufficient to service multiple demanding DApp
workloads. Therefore, we introduce a DApp-oriented dynamic transparent sharding mechanism
that concurrently execute DApps in separate shards. To boost the DApp performance of SRBB,
we present a decoupled variant of SRBB known as Collachain.

While blockchain performance is critical, existing blockchain designs are vulnerable to the
formation of an oligarchy in the governance that can dictate the outcome of the protocol. Such
an oligarchy can lead to the insecure execution of DApps, impairing the adoption of Web3. To
mitigate the formation of an oligarchy in blockchain governance, we finally present a proportional
governance protocol that proportionally elects a diverse set of governors to mitigate an oligarchy
in the governance process.
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Chapter 1

Introduction

A blockchain has often been regarded as a complex and convoluted distributed system that
executes transactions amongst unknown sets of peers. However, it has often been overlooked
that the fundamental principles forming a blockchain have been studied in distributed systems
research for many years [6]. Put simply, a blockchain exhibits the properties of a fully dis-
tributed State Machine Replication (SMR) protocol [7]. Thus, a blockchain on a high level
can be described as a set of machines executing user requests in an agreed order to maintain a
global identical state. To agree on the execution order, machines communicate with each other
to propose and vote on batches of user requests batched in a particular order (i.e. blocks).
Machines agree to execute a block once the block receives a majority of votes, a process known
as distributed consensus. The distinction between SMRs and blockchains is that blockchains
require an agreed block from a consensus instance to be related to the block decided in the
previous consensus instance. More specifically, blockchains, after agreeing upon a block and
executing the said block, adds the block to an append-only ledger where each block points to
its predecessor, essentially forming a chain of blocks. In contrast, SMRs concatenate outputs of
consensus instances without relating the output of a consensus instance to its predecessor [8].
While consensus is trivial if all machines adhere to protocol, disagreement can occur if faulty
or corrupt machines exist. To reach agreement despite faulty machines, Crash Fault Tolerant
(CFT) consensus algorithms were implemented on blockchains [9]. To ensure agreement in the
presence of arbitrarily failing machines, Byzantine Fault Tolerant (BFT) consensus algorithms
were used [10, 11, 12].

Since its inception as a decentralized payment system [13], blockchain has seen widespread
use over the years. The Blockchain industry is predicted to be worth 403 Billion USD by
2030 [14]. Today there are over 8800 active cryptocurrencies powered by blockchains and 10%
of the world’s population own cryptocurrencies [15]. In 2014, Ethereum [16] introduced the
ability to interact with code and execute functions on the blockchain through transactions.
This gave rise to applications that executed on the blockchain which were dubbed Decentralized
Applications (DApps). More specifically, a DApp consists of an interface (e.g., web front-end)
that communicates via Remote Procedure Calls (RPC) with a back-end piece of code executing
on the blockchain. The execution of the DApp back-end code on the blockchain makes these
applications inherently decentralized as there is no single authority controlling the execution
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of blockchains [17]. The recent growth of blockchain users has been largely driven by the
growth of DApps. The number of unique users using DApps increased 7× in 2021 [18]. A
majority of these DApps included Decentralized Finance (DeFi) applications (e.g., Decentralized
Exchanges), decentralized games (e.g., Alien Worlds), and Non-fungible Tokens (NFTs) (e.g.,
Bored Ape [19]) executed on blockchains [20].

The ecosystem that is formed by multiple DApps executing on multiple blockchains is known
as Web3 [21, 1]. Web3 is the latest iteration of the web providing decentralization over central-
ized web applications controlled by big technology companies (e.g., Google, Facebook, and Ama-
zon). Centralized web applications are notorious for censorship and data manipulations [22].
For instance, the processes followed when Facebook removes user content that violates its com-
munity standards lack transparency [23]. News feeds on Google and Facebook show biased
content towards certain political beliefs [24]. Moreover, the business model of these big tech-
nology companies involves tailoring advertisements to users based on the personal information
collected, which is a form of data manipulation. Web3 is an ideal replacement for centralized
web applications that manipulate data and censor content [25]. However, to widen the use of
Web3, one first needs to solve the existing performance and security issues that plague modern
blockchains [1, 25, 2, 3]. More specifically, modern blockchains suffer from performance degra-
dation and transaction losses induced by congestion from demanding DApp workloads [26, 27,
28, 1]. These blockchains are also prone to the formation of an oligarchy, potentially leading to
blockchain attacks such as double-spending [2].

Recent blockchain performance improvement solutions focus on two main areas: (1) Im-
provements to the blockchain itself (Layer 1, or blockchain layer) through protocol and archi-
tectural changes, and (2) offloading request executions and state storage on the blockchain to
a separate dedicated environment off-chain (Layer 2 ) while still utilizing the security of the
blockchain layer [29]. Layer 1 blockchain performance enhancing solutions include amongst
other things blockchain sharding, decoupling blockchain components, and concurrent request
executions [3, 30, 31, 32, 33, 34]. The most popular Layer 2 solutions are rollups, both opti-
mistic and Zero-Knowledge (ZK) [29, 35]. Rollups consist of two main steps: (a) transactions
are executed off-chain producing proofs of execution, (b) these proofs are submitted to the
Layer 1 blockchain where they are verified and, if correct and unopposed, will be added to
the blockchain through the consensus. The verification of execution proofs on the blockchain
does not require the blockchain to execute the request or have any knowledge of the execution
parameters, hence the verification essentially requires zero knowledge.

In this thesis, we focus on improving the performance and security of the blockchain layer
to support the execution of an ever-growing ecosystem of DApps and contribute towards the
wider adoption of Web3. To this end, we present various novel contributions to improve the
performance and security of the blockchain protocol. As Layer 2 solutions are built on top of
the blockchain layer, the performance and security improvements we present on the blockchain
layer in this body of work can be relied upon by Layer 2 solutions to further improve blockchain
performance.

In summary, this thesis presents various enhancements in blockchain performance and secu-
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rity for DApp executions with the motivation of widening the adoption of Web3.

Motivation: Widening the adoption of Web3

Goal: Enhance blockchain performance and security for DApp executions

Based on our thesis goal, we list below our two main objectives.

1.1 Objectives

Objective 1: Enhance blockchain performance for DApp executions: Over the years
various proposals were introduced to enhance blockchain performance by changing the blockchain
protocol [3, 30, 31, 32, 33, 34, 10, 36]. Some of these proposals focused on enhancements in
the blockchain consensus [36, 32], while others focused on improving transaction executions
and storage of blockchains [34, 32, 37]. There was yet another category of approaches that
improved blockchain performance by changing the architecture of blockchains [32, 33, 5]. Some
of these enhancements weaken security assumptions to achieve performance [32, 33]. Many
secure modern blockchains built upon recent improvements in the blockchain protocol are not
able to execute real DApp workloads without transaction losses and a severe decline in perfor-
mance compared to their reported performances [37, 10, 38, 16, 11, 39]. Thus, there is a need
to enhance the performance of the blockchain protocol to support the execution of real DApp
workloads.

As a result, our first objective of enhancing blockchain performance encapsulates the sub-
objectives below that enable the blockchain protocol to support real DApp workloads.

• Objective 1.1: Investigate the reasons why modern blockchains cannot support real DApp
workloads.

• Objective 1.2: Design, develop and evaluate a secure blockchain capable of supporting
real DApp workloads.

• Objective 1.3: Design, develop and evaluate a blockchain sharding approach that im-
proves blockchain performance by executing DApps concurrently.

• Objective 1.4: Design, develop and evaluate a decoupled variant of the initially developed
blockchain to further improve DApp performance.

Improving DApp performance through various methods helps towards widening the adoption
of Web3.
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Objective 2: Enhance blockchain security for DApp executions: Blockchain gover-
nance is the process followed to make decisions and modify the blockchain protocol [2]. Thus,
governance encapsulates a wide range of tasks that also includes blockchain consensus. To
achieve scalability in an open network modern blockchains restrict the number of machines ex-
ecuting governance [2, 10]. To allow any user to execute governance, many blockchains offer a
periodic rotation of the set of machines that govern [10, 30, 31, 2]. However, the governance
protocols used in modern blockchains to elect governors are vulnerable to the formation of a
governance oligarchy that can lead to double-spending attacks [2]. Thus, our objective of en-
hancing blockchain security encapsulates the sub-objectives below that mitigate a governance
oligarchy in blockchains and facilitate the secure execution of DApps.

• Objective 2.1: Design and develop a blockchain governance protocol to mitigate a gov-
ernance oligarchy.

• Objective 2.2: Prove the properties that the governance protocol provides.

• Objective 2.3: Evaluate the developed governance protocol on blockchains to observe its
feasibility.

Providing means to improve the security of DApp execution through a governance protocol
that mitigates a governance oligarchy contributes towards widening the adoption of web3.

1.2 Contributions

This dissertation presents four novel contributions aligning with the research objectives pre-
sented previously and our goal of enhancing blockchain performance and security for DApp
executions. First, we identify bottlenecks in modern blockchains that make them incapable
of supporting real DApp workloads and then we present a highly performing blockchain that
supports real DApp workloads. Second, we present a novel dynamic sharding solution for
blockchains that supports the dynamically changing user request rates of DApps and enables
the concurrent execution of DApps. Third, we present a decoupled variant of the initially
presented highly performing blockchain to further improve DApp performance. Finally, we
present a novel blockchain proportional governance protocol to mitigate a governance oligarchy
in blockchains to ensure the secure execution of DApps.

In summary, our thesis presents the following contributions:

1. The Smart Redbelly Blockchain (Objective 1.1 & 1.2) - We identify blockchain congestion
(the saturation of transaction queues in the blockchain) to be the reason that modern
blockchains cannot support real DApp workloads [28]. To reduce blockchain congestion
and support real DApp workloads, we develop a provably secure permissionless blockchain
known as Smart Redbelly Blockchain (SRBB). SRBB uses the DBFT consensus and Red-
belly blockchain’s superblock optimization. Unlike the Redbelly blockchain, SRBB (1)
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supports smart contract and DApp executions (2) features a transaction validation reduc-
tion (TVPR) to reduce blockchain congestion and (3) features a reward-penalty mecha-
nism (RPM) to reduce blockchain congestion in the presence of corrupt machines. Our
results with 200 machines spanning 5 continents and 10 regions demonstrate that SRBB
outperforms 6 modern blockchains: Algorand, Diem, Avalanche, Solana, Ethereum, and
Quorum [2] for real DApp workloads [28]. Unlike other evaluated blockchains, SRBB is
able to commit 100% of the transactions for the demanding nasdaq and Uber DApp
workloads.

2. DApp-oriented Dynamic Transparent Blockchain Sharding (Objective 1.3) - To concur-
rently execute multiple DApps to further improve performance and to support the dy-
namically changing demand of DApps, we present a DApp-oriented dynamic transparent
blockchain sharding protocol. In our sharding protocol, each DApp or a group of related
DApps executes on at most one shard. This allows the concurrent execution of DApps
without cross-shard transactions, a concept known as DApp-oriented or service-oriented
sharding [40]. Our sharding protocol is also able to change the number of shards and the
size of a shard at runtime while also allowing users to transparently query the sharding
configuration. The sharding protocol we present can be adapted to any smart contract
supported blockchain but for evaluation purposes, we build our sharding protocol on
SRBB. With just 3 shards of SRBB, each executing the nasdaq, Uber and fifa DApp
workloads concurrently, we achieve an average throughput of 2828.87 TPS and a peak
throughput of 9523 TPS.

3. Collachain: Decoupling Smart Redbelly Blockchain (Objective 1.4) - To further extend our
objective of improving blockchain performance, we decouple the consensus and execution
of SRBB to produce Collachain. We discuss the trade-offs the decoupling entails and show
that Collachain yields a 33% increase in peak throughput compared to SRBB.

4. Blockchain Proportional Governance: Mitigating a Governance Oligarchy (Objective 2)
- To enhance blockchain security, we present a novel blockchain proportional governance
protocol that relies on a proportional election protocol to mitigate an oligarchy amongst
the governors. We prove the properties of our solution. Finally, to present the feasibility
of our proportional governance mechanism, we implement and evaluate it on SRBB and
Ethereum Proof-of-Authority (PoA) which are two blockchains on the slower and faster
end of the blockchain performance spectrum. In a geo-distributed evaluation spanning
200 nodes, we demonstrate that our solution can elect 200 governors from 500 candidates
with 1000 voters within 6-12 minutes.

1.3 Thesis Outline

Chapter 2 presents the background. It explains blockchain concepts in detail, and related work,
which forms the foundation of concepts this thesis builds upon.
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Chapter 3 presents the main contribution of this thesis which is the Smart Redbelly Blockchain.
SRBB enhances blockchain performance for DApp executions. More specifically, SRBB is a
provably secure blockchain able to support real DApp workloads [1, 28].

Chapter 4 introduces a DApp-oriented dynamic transparent sharding protocol that enhances
blockchain performance by concurrently executing DApps in separate shards. The sharding
protocol we present is dynamic in that it provides the ability to adjust shards according to
DApp demand at runtime. Our sharding protocol is also transparent allowing anyone to query
the blockchain and identify the sharding configuration.

Chapter 5 builds upon SRBB presented in Chapter 3 to produce a decoupled blockchain,
Collachain, to further enhance blockchain performance of SRBB.

Chapter 6 presents a blockchain proportional governance protocol to enhance blockchain se-
curity. This proportional governance mechanism is designed to mitigate a governance oligarchy.

Chapter 7 concludes by presenting how we fulfill the goals and objectives identified in the
thesis. This chapter also discusses future research directions that include widening the evalua-
tions and combining the four individual contributions to produce a single overarching system.



Chapter 2

Background

In this chapter, we present blockchain concepts and the related work to the content presented
in the subsequent chapters. First, we present blockchain preliminaries that define the core
components of a blockchain. Next, we define blockchain network models that most common
blockchains function upon. The blockchain consensus problem is defined subsequently as our
proofs in subsequent chapters rely on this definition. As the motivation of our thesis is to widen
the adoption of Web3, we introduce Web3 technologies next. To provide context to Chapter 3,
we then describe blockchain performance metrics and evaluation tools. Subsequently, we present
blockchain governance concepts to form the background for Chapter 6. Blockchain sharding
concepts presented next provide background knowledge for Chapter 4. Finally, we conclude by
presenting several blockchain consensus protocols and blockchain attacks.

2.1 Blockchain Preliminaries

While variations exist in blockchain implementations, there are some common concepts found
in many modern blockchains. We now introduce these concepts that form a blockchain.

2.1.1 Blockchain nodes

A blockchain consists of nodes which are machines such as PCs, laptops, or other pieces of
hardware connected together over a network.

Clients are blockchain nodes that send read and write requests to the blockchain. Note that
the term client is used to define implementations of Ethereum (e.g., Geth client – Ethereum’s
Golang implementation) by the Ethereum community but we identify a client solely as a sender
of requests to the blockchain.

Validators, also known as miners in some blockchain implementations, are blockchain nodes
that perform a number of critical tasks. Mainly, validators (1) validate client write requests (2)
propose validated client write requests in batches known as blocks to the network of validators
(3) decide the execution order of client write requests (4) execute write requests in total order,
and (5) service client read requests. Depending on the blockchain, validators also perform other
tasks such as storing the client write requests after execution for auditability and transparency.
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Note that validators can also behave as clients sending write or read requests to the blockchain.
Throughout this thesis, we mention two types of validators. Namely, Correct and Byzantine
validators.

Validators that follow the blockchain protocol are known as correct validators. For example,
a correct validator does not: (1) propose blocks with invalid transactions, (2) equivocate when
reaching agreement on the transaction order, and (3) censor transactions. Validators that
deviate from the blockchain protocol either arbitrarily or otherwise are known as Byzantine
validators. The term Byzantine stems from the Byzantine Generals problem [6], where a group
of generals from the Byzantine army can only successfully conquer an enemy fortress if a majority
of generals decide to attack. It follows that if the total number of generals is n, and those that
send arbitrary messages to confuse the generals’ decision is f , then deviating generals should
be less than a third of the total number of generals to ensure all correct generals decide to
attack (n/3 > f). However, in the blockchain context, Byzantine validators, in addition to
sending arbitrary messages to cause disagreement on the transaction order, can also perform
other protocol-deviating behaviors such as proposing invalid transactions to blocks, censoring
transactions, sending erroneous messages, or delaying messages.

2.1.2 Accounts/Wallets

An account enables a node to send write requests to the blockchain. An account mainly contains
an address that uniquely identifies the account. The account balance indicates the amount of
funds contained in the account. This notion of a blockchain account is analogous to a bank
account in that a bank has an account number and a balance whereas a blockchain account has
an address and a balance. Thus, a blockchain account is usually called a wallet.

There are a number of differences between a bank account and a blockchain account (i.e., a
wallet). Firstly, a wallet is uniquely identified from its address, which is derived from the public
key of an asymmetric key pair generated upon the creation of the wallet. Secondly, the wallet is
secured by the cryptography of the private-public key pair. In other words, one can only send
requests from the wallet if they possess the private key of the wallet. This is because requests
sent from a wallet require a valid signature from that wallet’s private key. Blockchain nodes only
process write requests upon verifying the signature of the sent request with the corresponding
public key of the sending wallet and identifying that the request indeed came from the owner of
the private key of the wallet. Thirdly, in most blockchains [16, 1, 11], a wallet has a sequence
number that increments every time the wallet owner sends write requests to the blockchain.
This sequence number is also known as a nonce in some blockchains (e.g., Ethereum [16]), and
helps a blockchain execute requests in order. More specifically, if two requests are sent from
a wallet, the request with the lower sequence number should be executed prior to the request
with the higher sequence number.

2.1.3 Transactions

Transactions are write requests sent by clients to the blockchain. In modern blockchains, trans-
actions can be of three main types: native payments that transfer funds between accounts/wal-
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lets, code deployments that upload code to be executed by the blockchain, and code executions
that invoke functions in the uploaded code.

A transaction in blockchains has a specific structure. Moreover, a transaction commonly
consists of (1) the sender wallet address which is the address of the account sending the trans-
action, (2) the receiver wallet address which is the wallet receiving funds, (3) the sequence
number (i.e., nonce), and (4) amount of funds transferred if the transaction is a native payment
transaction, the byte code of the code to be uploaded if the transaction is a code deployment or
the byte code of the function invocation if the transaction is a code execution. Two transactions
can conflict if they read the same data and at least one transaction is a write request [1, 41].

2.1.4 State Machine (SM)

The SM is a virtual machine with an instruction set, also known as a stack machine, that is
able to execute transactions, maintain the blockchain state, and store executed transactions.
When a transaction is executed, the SM updates the state referred to in the transaction (i.e.,
sender wallet balance, receiver wallet balance, code state).

The Ethereum Virtual Machine (EVM) is the SM of the Ethereum blockchain. Its different
implementations and various optimized versions are used in a number of blockchains [16, 11,
1, 42, 43, 44]. The EVM stores the blockchain state in a specialized tree known as the Merkel
Patricia Tree (MPT). Whenever a transaction is executed, the EVM updates the MPT. The
nodes of the MPT are stored in memory and branches of this tree are periodically flushed to
the disk when the size of the MPT exceeds a certain threshold. Keeping the MPT in memory
allows the blockchain state to be accessed quickly by clients.

2.1.5 Gas

Gas is a metric used in Ethereum [16] and other blockchains that use the Ethereum Virtual
Machine [1, 43] to measure the computational complexity required to execute specific operations
in a blockchain. The execution of transactions requires executing operations on the blockchain
that expends computational resources. Validators are compensated for expending computation
resources with a fee based on the gas value. A unit of gas has a monetary value known as the gas
price based on the usage of the blockchain network, which allows the amount of gas a transaction
uses to translate to a transaction fee in cryptocurrency. When submitting a transaction, a client
should include a reasonable gas value within the transaction known as the gas limit. The gas
limit represents the maximum amount of gas a client is willing to spend on a transaction. If
a validator executes a transaction that exceeds the gas limit (the transaction runs out of gas),
the transaction is reverted and the amount of gas spent is charged as a fee from the sender’s
wallet address.

2.1.6 Blocks

A block is simply a batch of transactions. The contents of a block change based on the blockchain
implementation. However, a block typically contains a set of transactions, a hash representing
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the contents of the block, the hash of the previous block, also known as the parent block,
which points the block to its predecessor, and an index, also known as the block number, which
represents the location of the block in the chain of blocks. The first block in a blockchain is
known as the Genesis block, which defines the initial state once a blockchain bootstraps. Unlike
other blocks, the Genesis block does not point to a preceding block. When validators agree on
the location of a block in the chain, a block is considered final or decided. Blockchains execute
transactions within decided blocks triggering global state updates.

2.1.7 Transaction Pool

Transaction pool and mempool are two terms used to define the location at which transactions
are stored temporarily soon after being received from a client, and before being included in a
block. In most cases, the transaction pool resides on each validator node [16, 1]. A validator
node creates blocks from transactions in its transaction pool and propagates these blocks to
other validators.

2.1.8 Transaction Models

There are typically two main transaction models used in blockchains. The Unspent Transac-
tion Output (UTXO) model used in blockchains such as Bitcoin [13] and Redbelly [12] uses
transaction outputs from previous transactions as inputs to spend on new transactions. More
specifically, if a user A wants to send an amount in cryptocurrency to user B, user A should
use its unspent transactions as input and generate a new transaction which when executed will
provide an unspent transaction to B. The amount unspent in the input of this transaction
after execution will be credited back to A as a new unspent transaction after a proportion of
it is deducted as the transaction fee. A can then use the unspent transaction it receives in
subsequent transactions.

In contrast, the account/balance model used in Ethereum [16] and a number of other
blockchains [1, 11, 45, 10] uses a transaction model similar to conventional bank transac-
tions [45]. If a user A wants to transfer an amount in cryptocurrency to user B, A should
have sufficient balance in their account to pay the transaction fee and the amount specified in
the transaction. Once a transaction is executed, the sender’s account balance and the receiver’s
account balance are updated according to the transferred amount. As the account/balance
model reflects the incremental update of states and arbitrary amounts in cryptocurrency can
be processed with a single transaction, it is more suited to implement complex application logic
like smart contracts [45].

2.1.9 Blockchain

A blockchain is a decentralized and distributed system with multiple validator nodes commu-
nicating over a peer-to-peer network that (1) agrees upon the execution order of transactions
sent by clients (2) executes agreed transactions, and (3) stores executed transactions in blocks,
where each block points to its predecessor forming a chain of blocks also known as a Blockchain.
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There are three main types of blockchains. Namely, permissionless, open, and permissionless
blockchains. Permissionless blockchains do not place any restrictions on nodes to join or leave
the network. Anyone can become a client or a validator. These blockchains are open to the
public and are also known as public permissionless blockchains. The two largest blockchains
Bitcoin [13] and Ethereum [16] are both public permissionless blockchains.

Open Blockchains allow any node to join or leave the network. However, specific validator
tasks such as proposing blocks or agreeing on the order of transactions are restricted to a fixed
set of nodes. An open blockchain can be made permissionless by periodically granting validator
rights to nodes, allowing anyone in the network to become a validator. This is the process
employed by Algorand [10].

Permissioned Blockchains are the opposite of permissionless blockchains and consist of an
access control layer. Any node that receives permission to access the network can join the
network. However, permission is usually provided to an exclusive set of nodes. In contrast
to permissionless blockchains, these blockchains work with a limited number of nodes. A few
notable examples of permissioned blockchains include Hyperledger [33] and Quorum [11].

2.1.10 Transaction Validation

Transaction validation is the task of checking whether the data encapsulated in a transaction
conforms with the blockchain protocol. More specifically, transaction validation involves a
number of sanity checks on a transaction. In modern blockchains, these transaction validations
are performed twice [1]:

• Eager validation: Eager validation occurs when a validator receives a transaction either
from another validator or a client. A validator then performs the following checks on the
transaction:

1. Is the transactions properly signed?

2. Does the sender account have sufficient funds to cover the specified payments to a
receiver?

3. Is the transaction out of order (i.e., sequence number too low or too high compared
to the last received transaction from the same sender)?

4. Is there sufficient gas or transaction fees to execute the transaction?

5. Is the transaction oversized?

If eager validation of a transaction succeeds, the validator pushes the transaction to a
pending queue in the transaction pool (this makes a transaction eligible to be included
in a block by a validator) and propagates the valid transaction to downstream peers
(i.e., validators directly connected to the local node that have not seen the transaction
before), eventually propagating the valid transaction throughout the network and having
it eagerly validated at every validator. If the eager validation fails, validators drop the
invalid transaction.
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• Lazy validation: Lazy validation occurs before the transactions in a block are executed
and checks the sequence number of the transaction, whether the sender account has suf-
ficient balance to send funds to the receiver, and the availability of gas to execute the
transaction. Thus, lazy validation is less time-consuming than eager validation.

There is then reasonable doubt whether invalid transactions would be executed, if a malicious
validator includes invalid transactions in a block without eagerly validating, and before the
execution of the same block at another validator, the lazy validation is not able to capture
the invalidity due to the checkers it excludes such as transaction signature verification and
transaction size verification. This is a non-issue since the execution of an invalid transaction
does not trigger a state transition but will throw an exception. In other words, the state machine
after lazily validating transactions rechecks other validity criteria (e.g., transaction signature
verification, transaction size limit check) during the transaction execution step, and throws an
exception if an invalidity is found. Subsequently, the invalid transaction is discarded 1 [1]. In
Chapter 3, we present Smart Redbelly Blockchain [1], that reduces transaction eager validations
to improve blockchain performance without impacting security.

2.1.11 Incentives

Public permissionless blockchains [13, 16, 10] provide decentralization by allowing any node to
propose blocks to consensus if they expend sufficient resources (i.e., solving PoW puzzle, staking
coins). However, without a reward, there is no reason for a node to become a validator and
propose blocks expending one’s own resources. Thus, public permissionless blockchains reward
validators to motivate participation [46] and keep the blockchain decentralized. Rewards can
be offered in a number of ways depending on the blockchain implementation. Most often,
rewards are offered to validators for proposing blocks that are eventually appended to the final
canonical chain. Validators also receive rewards from clients in the form of transaction fees
for including client transactions in blocks. The transaction fees are proportional to the gas
consumed when executing a transaction. Incentives can also include penalties or punishments
in some blockchains [1]. These are negative incentives that validators incur for deviating from
the blockchain protocol. Care must be taken when designing a blockchain incentive mechanism
to prevent nodes from breaking blockchain safety in order to maximize rewards.

2.2 Blockchain Network models

The network model plays an important role in the guarantees made in a blockchain. We identify
below three main network models used in blockchain literature [13, 12, 10].

Synchronous network: Synchronous networks assume that the upper bound on the delay
of every message is known [47]. In practice, synchrony is difficult to guarantee and can easily
be violated in an open network like the Internet [48].

1https://github.com/ethereum/go-ethereum

https://github.com/ethereum/go-ethereum
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Partially Synchronous network: Partially synchronous networks assume that there ex-
ists an unknown Global Stabilization Time (GST) and a known positive duration δ such that
message delays are bounded by δ after GST. In other words, there is no known bound on the
transmission delay of messages between nodes [47, 1].

Asynchronous network: Asynchronous networks are the opposite of synchronous networks.
More specifically, the upper bound on the delay of every message is unknown. Liveness in
blockchains cannot be guaranteed under asynchrony.

2.3 Defining the Blockchain Consensus Problem

2.3.1 Consensus Problem

The Byzantine Generals’ problem defines the problem of reaching agreement among a group
of processes in the presence of faulty processes [6]. Our consensus problem is based on this
notion. A faulty process can either suffer from a crash failure (e.g., hardware failure) or can be
Byzantine exhibiting arbitrary behaviour. As mentioned previously, the term Byzantine stems
from the Byzantine Generals’ problem [6] where processes equivocate to cause disagreement.
In general, a Byzantine process can exhibit any arbitrary behaviour which can include actions
such as equivocation, sending invalid messages or being unresponsive. The opposite of a faulty
process is a correct process. Correct processes always adhere to the protocol. In a distributed
system, inputting a value to the consensus is known as proposing, and reaching agreement on
a value is known as deciding.

A system that requires to reach agreement should satisfy the following three properties [49,
50]:

• Liveness: Every correct process eventually decides.

• Safety: No two correct processes decide different values.

• Validity: If all correct processes propose the same value, no other value is decided.

Solving the consensus problem is required for all distributed systems to reach agreement.
Blockchains are also specialized distributed systems requiring consensus to reach agreement.
There are however some intricacies in adapting the consensus problem to the blockchain context
since blockchains use different primitives such as transactions, blocks, a chain of blocks, and
validators. Thus, in the next Section 2.3.2, we reformulate the consensus problem and adapt it
to blockchains to define the blockchain consensus problem.

2.3.2 Blockchain Consensus Problem

We reformulate the blockchain consensus problem from the consensus problem as the problem
of ensuring the liveness, safety, and validity of a blockchain. The safety and liveness properties
are adapted from the definition by Garay et al. [51] and the validity property is taken from its
classic definition [12].
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Definition 1 (The Blockchain Consensus Problem). The blockchain consensus problem is to
ensure that a distributed set of validators maintain a sequence of transaction blocks such that
the following properties hold:

• Liveness: a valid transaction received by a correct validator is eventually reliably stored
in the block sequence of all correct validators.

• Safety: two local chains of blocks maintained by any two correct validators are either
identical or one is a prefix of the other.

• Validity: each block appended to the blockchain of each correct validator contains a set
of valid and non-conflicting transactions.

A valid transaction mentioned in the above properties should adhere to the definition of
valid transactions mentioned in Section 2.1.10. The safety property does not require correct
validators to share identical chains because one validator may already have received the latest
block before another. When the chain is identical at two validators, then the state of these two
validators generated deterministically from the blocks in the chain is identical.

Note that when a validator stores a valid transaction within a block sequence, a client
asynchronously listening to the response of the particular transaction receives an ACK. Thus
the liveness property implicitly provides responsiveness (i.e., the client eventually receives the
response from the system).

2.4 Web3

2.4.1 Smart Contracts

Smart contracts are pieces of code often written in high-level languages (e.g., Solidity) that are
compiled to bytecode and executed on a blockchain. These pieces of code are uploaded and
executed on the blockchain with the use of smart contract upload and smart contract invocation
transactions respectively. The execution of smart contracts is duplicated across every node in
a blockchain using the instruction set available on each node’s virtual machine (e.g., EVM).
Smart contracts, as the name suggests, offer conditional payments in the blockchain once certain
conditions are met. However, since the inception of the Ethereum blockchain [16], the use of
smart contracts has expanded. Rather than executing simple contracts purely for payments,
smart contracts nowadays execute as part of Decentralized Applications (DApps).

2.4.2 Decentralized Applications (DApps)

DApps are blockchain applications that consist of a blockchain client that communicates with
a smart contract back-end using Remote Procedure Calls (RPC). RPC uses common languages
such as JavaScript, Golang, Java, and Rust. A DApp can consist of a group of back-end smart
contracts. Non-fungible Tokens (NFTs), Decentralized Finance (DeFi) applications, blockchain
games such as crypto kitties, ERC20 tokens, and Decentralized Exchanges (DEX) such as
UniSwap are a few common DApps currently in use. The DApp market capitalization was
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10.52 Billion USD by 20192. The Ethereum blockchain still remains the largest ecosystem for
DApp executions accounting for almost 3000 DApps 3.

2.4.3 Web3

Replacing current web applications with DApps executed on blockchains is touted as the next
evolution of the web also known by the buzzword Web3 [1, 3]. The concept of Web3 removes the
inherent dependence on the centralized nature of current web applications. Thus, mitigating a
handful of technology companies deciding what should and should not be allowed in the web4.
The power is given instead to users through decentralization, building a web that is by the
people for the people. Unfortunately, as we mention throughout this thesis, there is currently
no blockchain capable of supporting demanding realistic DApp workloads to widen the adoption
of Web3. As such, we present a new blockchain capable of handling realistic DApp workloads
(Chapter 3).

2.5 Blockchain Performance

Blockchain performance evaluations mostly focus on transaction throughput and latency.

2.5.1 Transaction Throughput

Transaction throughput is the number of transactions committed per unit of time by a blockchain.
A committing of a transaction refers to a transaction being executed, written to a block, and
appended to the blockchain in an irreversible manner. When this happens, blockchains usu-
ally generate an ACK (Acknowledgement) notification known as a transaction receipt notifying
the client that the sent transaction was committed. Once this ACK notification is received by
a client, the client knows that the transaction was successfully committed. When measuring
throughput, we consider the client’s perspective. In other words, we calculate the number of
transactions committed per unit of time from the ACKs a client receives.

2.5.2 Transaction Latency

The transaction latency is the amount of time taken to commit a single transaction. This time
is the difference between the transaction send time and the transaction commit time as seen
by the client. In other words, the commit time is the time that the client receives an ACK
notifying that the sent transaction was committed. Usually, when calculating the latency of
blockchains, measuring the latency of a single transaction is not sufficient. Thus, an average of
all latencies are taken to measure the latency of a blockchain.

2https://www.emergenresearch.com/industry-report/dapps-market
3https://www.tap.global/blog/what-are-dapps
4https://ethereum.org/en/web3/

https://www.emergenresearch.com/industry-report/dapps-market
https://www.tap.global/blog/what-are-dapps
https://ethereum.org/en/web3/
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2.5.3 Blockchain Congestion

Blockchain congestion occurs when requests are received faster than they can be processed by
the blockchain. This leads to the saturation of transaction queues in the blockchain. As a result,
transaction losses and performance degradation can be witnessed during periods of blockchain
congestion. The performance degradation in such occasions can be identified by a decrease in
throughput and an increase in latency.

Blockchain congestion has been a major problem in the blockchain space, largely due to the
increase in the number of users, as well as the wider adoption of demanding DApps. Not only
is this problem common to the oldest DApp-enabled blockchain, Ethereum [26], but also to one
of the most recent and fastest blockchains, Solana [27]. A recent in-depth study demonstrated
that, due to congestion, 6 modern blockchains lose transactions and degrade in performance
when executing DApps under real application workloads [28].

2.5.4 Blockchain Performance Evaluation Tools

Hyperledger Caliper: Hyperledger Caliper [52] is a blockchain performance evaluation tool.
Caliper can evaluate Ethereum and a set of blockchains developed within the Hyperledger
project including Besu and Fabric. The blockchain evaluation metrics that Caliper supports
include transaction throughput, transaction latency, and resource usage (i.e., CPU, Memory,
and Network usage). Caliper supports a pre-defined workload that should specify the calling
smart contract, the calling contract function, and the transaction sending rate. The pre-defined
workloads in Caliper are synthetic and user-defined and may not provide a realistic evaluation
of blockchains in a real-world setting.

Chainhammer: Chainhammer [53] is a blockchain evaluation tool that primarily evaluates
the throughput of EVM-based blockchains under demanding workloads. It does not support
varying transaction sending rates but evaluates blockchains under a constant high workload.
Chainhammer also does not provide flexibility to adjust transaction workloads to mimic realistic
scenarios.

Diablo: Diablo [28] is a blockchain benchmarking suite that supports the evaluation of
a wide range of blockchains. Currently, Diablo supports the evaluation of Algorand [10],
Solana [39], Diem [38], Quorum [11], Ethereum [16], Avalanche [37], and the Smart Redbelly
Blockchain [1] presented in this thesis. Diablo implements a generic client interface that can be
changed to support the evaluation of many blockchains. Most importantly, Diablo evaluates
blockchains under realistic DApp workloads. Diablo mimics transaction workloads observed
in the real world for popular web applications like nasdaq, Uber, and fifa to produce realistic
workloads for DApps. The key idea is to observe how blockchains perform when evaluated under
realistic DApp workloads so that observations can be made on the capability of blockchains to
widely support Web3. In this thesis, we use the Diablo blockchain benchmark suite for all
our benchmarks to reliably evaluate our contributions in enhancing blockchain performance to
widen the adoption of Web3.
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2.6 Blockchain Governance

Blockchain governance is the processes relied upon to make decisions and modify the blockchain
protocol [2]. More specifically, blockchain governance includes performing key tasks in the
blockchain. These tasks may include proposing a block to the blockchain, deciding a block to
be executed, changing blockchain parameters such as the number of transactions a block can
store, verifying transactions, and upgrading the blockchain protocol to newer versions [54]. Note
that a validator is a type of blockchain governor as validators solve consensus (i.e., decide on the
order of transactions and blocks to be executed). However, blockchain consensus alone is not
sufficient to ensure blockchain governance as it can involve complex decision making processes
among stakeholders in a dynamically changing environment.

Blockchain governance is an important concept and the absence of governance in the past
has led users to create dissident instances of the two largest blockchains: Bitcoin is now split
into BTC and BCH while Ethereum is now split into ETH and ETC [2, 55, 56] (Fig 2.1)

Figure 2.1: If blockchain nodes disagree on a protocol update then they may start accepting
distinct blocks, which results in a split with a classic version of the blockchain (e.g., ETC, BTC)
and a new version of it (e.g., BCH, ETH).

Since blockchains often consist of thousands of nodes, to achieve scalability, governance tasks
are often restricted to a subset of blockchain nodes known as governors [2]. The set of governors
are often termed as a committee or a governor committee. There are a number of processes
relied upon to elect governors from blockchain nodes to perform key tasks. Below we explain
such governance membership selection methods.

2.6.1 Governance Selection

PoW (Proof-of-Work): PoW was first introduced to blockchains in Bitcoin [13] and has
since been used in a number of blockchains [16, 57, 58] for various purposes. The main use
cases of PoW in blockchains are to (1) select a validator to perform governance tasks such as
proposing a block, (2) delay block proposals, and (3) mitigate Sybil attacks where an adversary
can assume multiple identities to overwhelm the governor committee [59].

In Bitcoin and many other PoW-based blockchains, a node is required to do some work
in the form of solving a computationally expensive cryptographic puzzle to propose a block, a
process also known as mining. More specifically, solving the cryptographic puzzle entails finding
a number known as a block nonce which when hashed with the contents of a block yields a result
that falls within a certain threshold. This threshold is known as the difficulty value. Thus, the
only way to find the block nonce that yields the solution is to expensively guess. Once a node
finds the block nonce, its verification can be done trivially by checking if the solvers’ block nonce
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hashed with the block content yields the desired difficulty value.
In PoW-based blockchains, validators compete to solve the PoW for a block. The first

validator to do so for a particular block proposes it to the network. Each validator, upon
verifying the PoW of the received block, starts working on the next block building upon the
previously verified block. The difficulty is adjusted for the next block such that it takes some
time for a validator to solve PoW for the next block and propose it to the network. The
difficulty of solving PoW is by design. First, as it involves costly guesswork, for any given index
in the blockchain, any validator has a probability to propose a block, making the blockchain
decentralized. Second, performing PoW slows down block proposals reducing the probability of
multiple validators proposing blocks for the same index in the chain creating what is known as
a soft fork [60]. In Section 2.8.1, we discuss how such scenarios can be handled by executing
blockchain consensus.

PoS (Proof-of-Stake): PoS was developed to address the poor performance and high energy
consumption of PoW [61, 62]. Similar to PoW, PoS can select governors to perform specific
tasks such as propose blocks. However, in contrast to PoW, PoS does not require a node to
solve a complex cryptographic puzzle. Instead, nodes are selected to perform specific tasks
proportional to the amount of resources staked by the node. Staking is similar to betting where
a deposit is made with the resources a node possesses. If the node misbehaves this deposit
is taken, as known as stake slashing in blockchain terms. While theoretically, the stake can
be any resource a node possesses, in most cases it is often a monetary asset such as crypto
coins or tokens. One limitation of PoS is that it provides more opportunities for those having
higher stake to be selected as governors [2]. Given the skewed distribution of wealth, PoS can
inadvertently create an oligarchy [63].

DPoS (Delegated Proof-of-Stake): DPoS is a variant of PoS used in EOS, Cardano, and
TRON [64, 65, 66]. Instead of staking resources directly to be selected as governors, nodes
delegate power to candidate nodes to become governors by voting. Voting nodes stake their
assets on candidate nodes. The idea is that an election algorithm (e.g., EOS uses a multi-winner
approval voting algorithm [67]) selects the delegates (i.e., governors) where the votes by each
voter node to a delegate are weighed by the stake owned by the voter. As PoS-based voting
approaches weigh ballots of voters based on the coins they have staked [64, 65, 66], the impact
on the election outcome if an adversary splits their stake among multiple identities (Sybil’s
attack) and cast ballots is minimized [2].

Elected nodes who become governors are selected to propose blocks based on their own stake
and the stake backing of voter nodes. When a governor proposes blocks, the reward it gets is
distributed proportionally among the voters that elected the said governor. Thus, a voter in
their best interest votes for a candidate node that has a higher stake of their own or a significant
stake backing such that the chances of the candidate node proposing blocks as a governor are
high. If a governor’s stake is slashed due to misbehaving, the nodes that backed the governor
will not lose a proportion of their stake.
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NPoS (Nominated Proof-of-Stake) Another variant of PoS known as NPoS is used in the
Polkadot blockchain [54]. It is almost identical to how DPoS works but is different in that (1)
voters (i.e., nominators) can lose stake if the governor they elected misbehaves, and (2) upon
electing the governors, the stake is evenly distributed among the elected governors such that
each governor has an equal chance of proposing blocks. However, both DPoS and NPoS require
voters to possess stake to elect a governor. The more stake a group of voters possesses, the
more chance they have of electing a set of preferred governors leading to an oligarchy.

Other Governance Selection Methods: There are other methods to select a group of
governors in a blockchain. Algorand [10] employs a Verifiable Random Function (VRF) coupled
with PoS to select a governor committee, a concept also known as cryptographic sortition. The
key advantage of cryptographic sortition is its non-interactive nature that prevents adversaries
from predicting future governors. However, given the reliance on PoS, the Algorand governance
method can lead to an oligarchy among governors as nodes with more stake have a higher
probability of being elected as governors. Proof-of-Authority (PoA) was first introduced as part
of the Ethereum blockchain [68] to mitigate the shortcomings of PoW in small networks. Unlike
PoW, the PoA implementation of Ethereum also known as clique 5 maintains a list of governors
known as an authority and selects one of these governors per epoch, which is a period that a
static set of governors remain active, to propose a block. The proposed block must be signed
with the selected authority’s private key which is known as sealing a block. The authority can be
either static or dynamic. A static authority is defined in the genesis block when the blockchain
bootstraps while the authority can be made dynamic by facilitating existing authority nodes
to add or remove authorized members. PoA was recently found to be vulnerable to cloning
attacks [69].

2.6.2 Blockchain Governance Reconfiguration

As blockchains typically handle valuable assets, several works already noted the risk of a user
bribing other users to build an oligarchy capable of stealing these assets [70]. Having a fixed set
of governors can expose these governors to such bribery attacks. Blockchain governance recon-
figuration is the process of rotating governance committees periodically to mitigate such bribery
attacks. There are several blockchains that use governance reconfiguration to mitigate bribery
attacks [10, 30, 31]. Most of these works explicitly assume a slowly-adaptive adversary [71, 10,
31] that can corrupt a limited number of nodes between consensus epochs but cannot corrupt
participants during an epoch.

2.6.3 Voting Schemes to Elect Governors

Blockchains that use DPoS or NPoS [64, 66, 65, 54] use voting schemes at their core to elect
governors. Both Polkadot [54] and EOS [67] use a multi-winner election protocol to select a
group of governors. The former uses a multi-winner election protocol coined the sequential
Phragmén method [72]. However, the reliance on PoS favors the wealthiest or users with the

5https://eips.ethereum.org/EIPS/eip-225

https://eips.ethereum.org/EIPS/eip-225
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most resources. Given the Pareto Principle [73] stating that few users typically own most of
the resources (as an example, in 2021, the wealthiest 1% of US citizens owned about 1/3 of the
total wealth [74]), these approaches have the risk of forming an oligarchy of governors.

In the context of electing governors, a multi-winner election protocol executes as follows:
Given a set of n voters, each casting an ordinal ballot as a preference order over all m candidates,
a multi-winner election protocol outputs a winning committee of size k.

Proportionality: Election algorithms consist of multiple unique properties. An interesting
property in election algorithms is that of proportionality.

Black [75] was the first to define the proportionality problem where elected members in
an election must represent “all shades of political opinion” of a society. Dummett [76] later
introduced fully proportional representation to account for ordinal ballots, containing multiple
preferences. Dummett’s fully proportional representation indicates that given a set of voters
n voting to elect a committee of k governors, if there exists 0 < l ≤ k, a Hare’s quota such
that qH = n/k, and a group of l · qH who all rank the same l candidates in the top of their
preference orders, then these l candidates should all be elected [76]. However, the use of the
Hare’s quota qH makes Dummett’s fully proportional representation vulnerable to strategic
voting whereby a majority of voters can elect a minority of seats [77]. This problem was solved
with the introduction of Droop’s quota qD as the smallest quota such that no more candidates
can be elected than there are seats to fill [78]. Woodall [79] replaces Hare’s quota with Droop’s
quota q = n

k+1 and defines the Droop proportionality criterion tweaking the fully proportional
representation property: if for some whole numbers j and s satisfying 0 < j ≤ s, more than j ·qD

of voters put the same s candidates (not necessarily in the same order) as the top candidates
in their preference list, then at least j of those s candidates should be elected.

There are other election methods that do not ensure fully proportional representation such
as First-Past-The-Post (FPTP) single-winner election and the Single Non-Transferable Vote
(SNTV) multi-winner election [80]. This is because voters can only reveal their highest prefer-
ence, and only the highest preference is counted in the election outcome.

The fully proportional representation property can be achieved using the Single Transferable
Vote (STV) algorithm [78] also used in the Australian Senate. In STV, candidates are added
one by one to the winning committee and removed from the ballots if they obtain a quota q of
votes.

In chapter 6, we present a governance election method that mitigates an oligarchy of gov-
ernors by using a proportional governance method [2]. More specifically, we adapt the STV
(Single Transferable Vote) election algorithm to a Byzantine setting to elect proportionally a
diverse set of governors to mitigate an oligarchy being formed in the governance through the
election process.
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2.7 Blockchain Sharding

2.7.1 Introduction to Sharding

Sharding was a concept first made popular with database systems. Due to the growing amount
of requests, sharding became popular to scale databases for fast information retrieval [4]. The
sharding technique consists of splitting a database structure across multiple machines called a
shard. For example, a table can be split into rows or columns and stored across multiple machines
reducing the database index at each machine, thus speeding up information retrieval. Similar
to database systems, to address blockchain congestion and scalability limitations sharding was
applied to a number of blockchains [30, 31, 57, 81, 82]. The basic idea of sharding in blockchain is
to split different blockchain tasks into shards. For instance, instead of the entire network of nodes
executing consensus, the blockchain network can be split into multiple shards each consisting
of validator committees that concurrently solve consensus on disjoint transactions. Similarly,
other blockchain tasks such as validating transactions and maintaining blockchain state can be
dedicated to multiple shards where each shard performs these tasks on a disjoint set concurrently,
helping improve performance. Elastico [71] shards the consensus into committees that process
transactions concurrently. OmniLedger and RapidChain [30, 31] shards both the consensus and
the blockchain state. Redbelly blockchain shards transaction validations/verifications [12].

Figure 2.2: Random spawning of shards prevents Byzantine nodes from overwhelmingly joining
a single shard.

2.7.2 Deterministic Sharding

Deterministic sharding [83, 84, 12] consists of assigning blockchain nodes or transactions to
shards deterministically. The advantage of such an approach is that the current shard state
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is inherently transparent as anyone can infer the shard of a node or transaction by simply
computing a local deterministic function.

SharPer [83] creates shards deterministically based on geographical distribution. Nodes that
are located close to each other are assigned to the same shard. Red Belly Blockchain [12] shards
only the transaction verification (i.e., validating that a transaction is signed properly). The
motivation stems from the fact that the verification of cryptographic signatures is CPU intensive.
Instead of having all nodes verify all transactions, Redbelly Blockchain assigns deterministically
each transaction, based on its hash, to two subsets of nodes: its f +1 primary verifiers and its f

secondary verifiers [12]. The secondary verifiers wait for some time for the primary verifiers to
verify the transaction. If the primary verifiers are too slow or unresponsive, then the secondary
verifiers start verifying the transaction. A node detects whether a transaction is properly signed
once it receives the same response from f + 1 distinct verifiers.

The drawback of deterministic sharding is that the outcome of the deterministic shard-
ing function is predictable, which makes the blockchain vulnerable to attacks. In particular,
an attacker can exploit this information to overwhelmingly join a single shard and prevent
the validators of the said shard from reaching consensus, potentially leading the blockchain
to an inconsistent state. Such inconsistent states cause “forks” that are exploited by various
attacks [85, 86] to double spend. SSChain [84] allows nodes to freely join a shard determinis-
tically. To mitigate shard-takeovers [3] SSChain follows a two-chained approach: a root chain
verifies the blocks coming from each shard before committing them, and a shardchain agrees
upon blocks to send to the root chain. The root chain is able to make an accurate verification
of shard blocks by storing the full state of the blockchain.

2.7.3 Probabilistic Sharding

Most blockchain sharding approaches use a set of governors known as a mainchain or a main
committee (i.e., also known as the beacon chain in Ethereum [82]) to spawn shards [3, 57]. Pre-
viously mentioned governance selection methods such as PoW and PoS are used to first select
governors to the main committee and to mitigate Sybil attacks. Subsequently, the main com-
mittee creates shards randomly from blockchain nodes. The use of randomness to create shards
prevents a Byzantine node from foreseeing the shard they will join. This mitigates Byzantine
nodes overwhelmingly joining a single shard to corrupt it (Fig 2.2) and cause double spending
(Section 2.9.3). Once a shard is created, the nodes in each shard act as a committee of valida-
tors independently solving consensus, and deciding on disjoint transactions. However, since the
number of validators in each shard is few in number compared to a non-sharded counterpart, the
risk of bribery attacks (Section 2.9.2) rises. This stems from the logic that it is often easier to
bribe a few validators than a considerable number. If sufficient validators in a shard are bribed,
consensus disagreements occur leading to double spending attacks (Section 2.9.3). To miti-
gate this, most sharding approaches reconfigure committees periodically similar to governance
reconfigurations mentioned previously [54, 10, 71, 57].
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2.7.4 Limitations

Cross-shard transactions are specific types of transactions that update state in two or more
shards. As one shard may have to wait for a withdrawal or deposit part of a transaction to be
completely executed in another shard before executing the transaction itself, the performance
can be impacted. With an increasing number of cross-shard transactions, the performance gains
of sharding can be limited [3, 4].

Most sharding approaches are static [3] where the number of shards and the number of nodes
within a shard cannot be adjusted at runtime [30, 31]. As blockchains are built to execute for a
long period (e.g., Bitcoin [13] has been running for more than a decade without interruption),
and since the transaction request rates to blockchains change over time, there is a need to
dynamically adjust shards according to demand. Ideally, during periods of high demand, the
blockchain should execute more shards to reduce blockchain congestion, whereas during low
demand the blockchain should reduce the number of shards to reduce operating costs (e.g.,
electricity charges).

Another limitation with most sharding protocols is their inability to provide clients with the
sharding configuration transparently and securely [3].

In Chapter 4, to alleviate the aforementioned limitation, we present a dynamic transparent
DApp-oriented blockchain sharding approach.

2.8 Blockchain Consensus Protocols

For the first public permissionless blockchains like Bitcoin and Ethereum [13, 16], a consensus
protocol known as Nakamoto’s consensus was used [13]. Later, BFT consensus algorithms were
adopted for permissioned blockchains with some changes in the blockchain architecture [46].
These BFT algorithms are now being used in public permissionless blockchains as well [87, 10,
38, 37].

2.8.1 Nakamoto’s Consensus

Nakamoto’s consensus was first introduced in the Bitcoin blockchain [13] and is a namesake
for Satoshi Nakamoto, the author of the Bitcoin white paper [13]. Nakamoto bought forth the
idea of reaching consensus on the longest chain in the event that multiple chains of blocks have
formed due to network delays between validators. The longest chain rule defines that the chain
of blocks with the highest indexed block should be selected as the final canonical chain [46].

In the context of Bitcoin, the longest chain rule helps achieve consensus. In Bitcoin, a
validator broadcasts a block after performing PoW. Each validator receiving the proposed block
performs a verification which includes verifying the PoW for the block. If the verification is
successful, validators append the received block to its relevant parent block. Due to network
delays, there can be instances where two or more validators propose blocks for the same index
in the chain without knowing another validator has solved PoW for the same block index. In
such instances, validators may receive two blocks that are both valid for the same index of the
chain. When this happens validators append both blocks to the same index creating what is
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known as a fork. This fork is resolved through the longest chain rule eventually deciding a
single final chain. Once the fork is resolved, the blocks and the transactions at a particular
height from the tail of the chain (e.g., 5 blocks from the tail) are considered confirmed. This
confirmation is done with a high probability that another longer chain would not exceed the
current longest chain such that the block at a particular height is overwritten. While under
synchrony a longer chain will not be revealed after an unknown time guaranteeing liveness, under
a realistic network setting such as the internet, where the communication is asynchronous or
at best partially synchronous, a longer chain can be revealed after sufficient time, overwriting
the current longest chain. Thus, you can never guarantee that consensus has been reached at a
given index of the blockchain. As such, probabilistic consensus does not guarantee either safety
under asynchrony or partial-synchrony.

Another downside to the longest chain rule is the possibility of forks being formed. Not
only will this impact performance due to having to resolve forks constantly, but it may also
lead to blockchain attacks and potentially double spending [88, 89] (Section 2.9.3). The Bitcoin
blockchain minimizes the formation of forks with the use of PoW. By requiring validators to
perform work that takes a time larger than the block propagation time, Bitcoin rate limits the
number of blocks proposed per index.

2.8.2 BFT Consensus

To mitigate the shortcomings of Nakamoto’s consensus, such as high resource usage, low perfor-
mance, and large carbon footprint, BFT consensus algorithms were introduced to permissioned
blockchains [11]. BFT consensus algorithms can satisfy the consensus properties of liveness,
safety, and validity when in the presence of Byzantine faults. Furthermore, BFT consensus
algorithms do not create forks and deterministically reach finality on a value (i.e., a block in
the context of blockchains) [36]. However, popular BFT consensus algorithms are known to
scale poorly for a large number of processes without architectural changes [90, 46]. BFT con-
sensus algorithms started becoming feasible in blockchains with the advent of committee-based
blockchain protocols. These committee-based protocols periodically selected a subset of nodes
known as a committee to solve consensus [10, 54, 37]. A relatively small number of nodes
solving consensus allowed BFT algorithms to be used without impacting blockchain scalability.
Risks introduced in committee-based blockchain protocols such as the vulnerability of commit-
tees against bribery attacks (Section 2.9.2) were mitigated by reconfiguring/rotating committees
(i.e., governance committee) periodically [10, 54]. Sybil’s attacks were mitigated by using stake-
based weights on votes when selecting a committee. Once BFT consensus algorithms became
feasible in blockchains, a number of blockchains started employing such algorithms to minimize
resource usage, carbon footprint and improve performance [10, 54, 37, 11]. Below we discuss
several BFT consensus algorithms used in a number of popular blockchains.

Practical Byzantine Fault-Tolerant (PBFT): PBFT is a leader-based BFT consensus
algorithm that tolerates f faulty nodes such that 3f < n [87]. PBFT elects a leader known as
a primary from a set of processes for a specific period of time known as a view. Upon receipt
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of a client’s request via a point-to-point message, the primary initiates a three-phased protocol
to ensure that all processes agree on the order of transactions within a view and across views,
and satisfies the safety property of the consensus problem (Section 2.3.1). The three phases of
PBFT are pre-prepare, prepare, and commit. First, a primary multicasts a pre-prepare message
to all processes. Upon receiving a pre-prepare, a process verifies the message, and if successfully
verified sends an acknowledgment in the form of a prepare message containing the contents of the
pre-prepare message. Upon a process receiving 2f prepare messages from unique processes and a
corresponding pre-prepare message, the commit phase commences. In this phase, processes send
a commit message to other processes. Finally, processes commit transactions, upon receiving
2f + 1 commit messages with the same value each from a unique process. Leader-based BFT
consensus algorithms like PBFT have a view-change protocol to elect a new primary (leader)
if the current primary is unresponsive or faulty to ensure the progress of the system. The
communication complexity of PBFT in the normal case is O(n2).

A few noteworthy blockchains such as Solida [91], Hyperledger Fabric [33], and ByzCoin [92]
uses variants of PBFT consensus.

Istanbul BFT (IBFT): IBFT is a BFT consensus algorithm that features the same three-
phased commit protocol of PBFT consisting of pre-prepare, prepare, and commit [93]. In the
good case, IBFT terminates in three message delays and has a communication complexity of
O(n2). As with PBFT, IBFT tolerates up to f faulty nodes such that 3f < n. However, PBFT
and IBFT have two clear distinctions. First, unlike PBFT, IBFT does not restrict servers
(i.e., validators in blockchains) from proposing blocks. In fact, both validators and clients can
propose blocks. Second, IBFT supports a dynamic set of validators whereas PBFT requires a
static set. IBFT is currently used in the Quorum blockchain, which is a permissioned blockchain
featuring the EVM. A recent analysis of IBFT identified that it does not satisfy liveness in a
partially synchronous network, leading to a more improved version known as IBFT2.0 which is
said to satisfy both safety and liveness [94].

BA⋆ (Byzantine Agreement): BA⋆ is a BFT consensus algorithm used in Algorand [10]
that achieves scalability by selecting a committee of nodes to solve consensus based on a VRF.
With BA⋆, the number of nodes executing consensus is dynamic and a reconfiguration of com-
mittees occurs periodically making it suitable for a permissionless setting. To prevent Sybil
attacks, BA⋆ weighs users according to their stake in the consensus committee selection process
where higher staked users have a higher probability of being selected to the committee. This
makes it difficult for an adversary to split their stake among multiple identities and gain a
majority coalition in the consensus committee. As with classic BFT consensus algorithms [6],
BA⋆ also requires the number of faulty nodes f to be less than a third of the total nodes (i.e.,
3f < n). BA⋆ consists of two phases. The first phase includes a leader proposing a block that
is reduced to a binary consensus (i.e., each process inputs a 1 or 0 value to the consensus and
decides on either 1 or 0). The second phase makes the binary decision on the proposed block
based on voting. BA⋆ requires a strong-synchrony assumption to achieve safety. Finally, BA⋆

terminates in 6 rounds in the normal case and 13 rounds in the worst case [10, 46].
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DiemBFT: DiemBFT is a leader-based BFT consensus used in the Diem blockchain [38] that
operates in a permissioned network. As such, one must receive approval from Diem Networks6

to be validator nodes in the committee. The core principles of DiemBFT rely on the classical
BFT approach [6]. As such, DiemBFT tolerates up to f faulty nodes such that 3f < n. The
commit protocol of DiemBFT is inspired by HotStuff [95] and follows the phases of prepare,
pre-commit, and commit, in which each phase creates a quorum certificate consisting of votes
from n− f nodes for a block and their respective signatures. The main novelty of DiemBFT is
its leader election mechanism. Leader election in DiemBFT is done symmetrically in order to
ensure fairness. To prevent crashed leaders from being elected DiemBFT introduces a leader
utilization mechanism that leverages a reputation scheme to limit the number of times a crashed
leader can be elected. In case a faulty leader is elected, DiemBFT triggers a quadratic view
change protocol. In a network with no faulty leaders, DiemBFT achieves linear communication
cost similar to HotStuff [96]. In the worst case where faulty leaders exist, DiemBFT achieves a
cubic communication cost similar to PBFT [38].

Avalanche consensus: Avalanche [37]7 introduces a new BFT consensus algorithm that can
adjust the number of Byzantine failures the network can tolerate by tweaking certain parameters.
Its core idea relies on a protocol known as Snow. On a high level, a node participating in the
Snow protocol selects a sample of nodes from the network and queries them for a transaction.
If a quorum within the selected sample sends the same transaction, the receiving node adapts
the transaction value, and increments the success counter. In the next round, when nodes
query transactions again, their adopted transaction in the previous round is sent by each node.
After a threshold of consecutive successes on a particular transaction across multiple rounds,
each node decides the said transaction. As the Snow protocol allows nodes to converge to
a single decision, if one correct node decides a certain transaction, the same transaction will
be decided by all other correct nodes. The use of constant samples makes the Snow protocol
scale to large networks as the number of messages sent remains constant despite the growth
in the total number of nodes. Unlike classic blockchains [13, 16, 10, 38, 54, 11, 43], Avalanche
stores transactions in Directed Acyclic Graphs (DAGs), with a confidence value analogous to
the concept of confirmations for a block appended to the blockchain in Ethereum and Bitcoin.

Democratic Byzantine Fault Tolerant (DBFT): DBFT [36] is a leaderless BFT consen-
sus algorithm that assumes partial synchrony. All nodes executing DBFT can propose blocks
for a consensus round making the decision inherently "Democratic". Unlike conventional leader-
based consensus algorithms that assume partial synchrony, DBFT consists of a weak coordinator
that proposes its value without imposition. As all nodes can propose a block, nodes can decide
a value even if the coordinator becomes slow or faulty. In the best case, when all non-faulty
processes propose the same value, DBFT can terminate in 4 message delays. The DBFT con-
sensus is used in the Redbelly blockchain [12]. To improve performance, the DBFT consensus
in the Redbelly blockchain uses an optimization known as the superblock. Moreover, the DBFT

6https://www.diem.com/en-us/
7https://docs.avax.network/overview/getting-started/avalanche-consensus

https://www.diem.com/en-us/
https://docs.avax.network/overview/getting-started/avalanche-consensus
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consensus decides a vector of values per consensus round rather than a single value. This vector
of decided values (i.e., vector of blocks) is then merged removing any conflicting and invalid
transactions in a process known as reconciliation [36]. The resulting batch of transactions out-
put from reconciliation is known as the superblock and is sent to the SM for execution. The
Smart Redbelly Blockchain we present in this thesis uses the Redbelly blockchain’s consensus
with some distinctions. Unlike Redbelly blockchain, SRBB introduces an important transaction
validation reduction and supports DApp executions. We outline these details in Chapter 3.

Scalable Byzantine Fault Tolerant (SBFT): SBFT [97] is a byzantine fault-tolerant con-
sensus algorithm that builds upon PBFT but achieves better scalability by using threshold
signatures to reduce the communication complexity [5]. Like PBFT, SBFT commits at most
one proposed block per consensus instance. The Concord [98] blockchain combines a lightweight
C++ implementation of the EVM with SBFT.

2.9 Blockchain Attacks

While blockchains can be vulnerable to a multitude of attacks depending on their implementa-
tion, in this thesis we turn our focus to three common attacks when presenting our contributions.

2.9.1 Sybil Attacks

A Sybil attack [99] consists of an adversary impersonating multiple identities to overwhelm
the blockchain and cause disagreements in governance including consensus. For example, if an
adversary impersonates sufficiently many validators, they can form a coalition in the consensus
committee causing either disagreement (i.e., forks), which impacts blockchain safety, or remain
passive impacting blockchain liveness. As mentioned previously, the use of PoS and PoW
approaches mitigates Sybil’s attacks on blockchains as they make it difficult for an adversary to
assume the identity of multiple users. In PoS approaches, an adversary has to split their stake
to impersonate multiple users but splitting stake can reduce the chances of being selected to
perform a specific governance task. This is because in PoS approaches the probability of being
selected to perform tasks is proportional to the stake owned. In PoW approaches, the adversary
has to split their computing power to assume the identity of multiple users. This effectively
reduces the hash power behind each impersonated user, reducing the probability of such users
being selected to the committee.

2.9.2 Bribery Attacks

A bribery attack is the act of offering something to corrupt a blockchain node (e.g., a validator).
If a sufficiently large number of validators are bribed (e.g., f s.t. f ≥ n/3 in blockchains with
BFT consensus), a blockchain validator/governance committee will consist of a coalition of
corrupt validators causing forks in the system. This can impact both the safety and liveness of
the blockchain.
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2.9.3 Double Spending Attacks

Double spending attacks, as its name suggests, occur when the same coin or token is spent
twice in a blockchain, allowing a user to purchase more assets for the price of a coin or token.
An adversary launches a double spending attack by causing a fork in the blockchain consensus
using a threshold coalition. In blockchains with BFT consensus, if the number of validators is n,
the threshold coalition is f s.t. f ≥ n/3. To gain control of a threshold coalition, an adversary
often launches bribery or Sybil attacks on the blockchain.



Chapter 3

Smart Redbelly Blockchain:
Reducing Congestion to Improve
Performance

In this chapter, we present Smart Redbelly Blockchain (SRBB), a permissionless blockchain
that enhances blockchain performance for DApp executions with the motivation of widening
the adoption of Web3.

Decentralization promises to remedy some of the weaknesses of the web, including data
exposure [100], user manipulation [101], and outages [102]. The idea, often called Web3, is
to execute Decentralized Applications (DApps) on blockchains. Unfortunately, Web3 remains
hypothetical as blockchains suffer from performance degradation and transaction losses induced
by congestion from realistic DApp workloads [26, 27, 28]. In fact, Ethereum, the largest DApp-
compatible blockchain in market capitalization, has experienced congestion for at least 5 years
since Initial Coin Offerings (ICOs) [103] and CryptoKitties [104] became popular. These con-
gestion issues are not just isolated to Ethereum since they recently affected a supposedly fast
blockchain called Solana [27]. Recent benchmarks also indicate that 6 modern blockchains lose
transactions when executing realistic DApp workloads [28] with high transaction request rates.
Therefore, to decentralize the web, one has to first address the problem of blockchain congestion.

We identify two important causes of congestion in modern blockchain designs [10, 37, 38, 16,
11, 39] that leads to transaction losses and performance degradation. First, every transaction is
propagated across the network of validators, and validated at each validator leading to as many
validations as there are validators making the transaction validation redundant. After the vali-
dation of transactions, validators in many modern blockchains [38, 16, 11] include transactions
in blocks and propagate them again as part of a block across the network. Thus, transac-
tions are propagated redundantly, first individually and then in blocks. Modern blockchains
propagate transactions individually to validators prior to proposing them in blocks to increase
the probability of a transaction being included in a block immediately, as not every validator
gets to propose a block per consensus round [16, 10, 11]. Removing the initial propagation of
transactions between validators would require the first validator receiving client transactions to
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include it in a block. Until the validator that receive a client transaction is selected to propose
a block through consensus, a client can expect to wait a considerable time. Thus, the initial
propagation of transactions is necessary for modern blockchains to prevent significant process-
ing times of client transactions. The redundant transaction validation is a consequence of the
initial transaction propagation. As invalid transactions should not be propagated, every correct
validator validates a transaction prior to propagation. As we see in Section 3.5, this initial
redundant validation and propagation of transactions causes congestion leading to transaction
losses and performance degradation. Second, malicious (or Byzantine) validators can include
invalid transactions in blocks and broadcast such blocks to the network of validators. This can
spam the network with invalid transactions in what we call a flooding attack which can cause
unnecessary consumption of node resources and network bandwidth, leading to congestion and
transaction losses (Section 3.5.3).

We present Smart Redbelly Blockchain (SRBB), a permissionless blockchain that enhances
blockchain performance by reducing the two aforementioned causes of congestion. To reduce
congestion and enhance performance, SRBB introduces two novel contributions: (1) Transaction
Validation and Propagation Reduction (TVPR) and (2) Reward-Penalty Mechanism (RPM).
TVPR does not propagate transactions individually among nodes but only propagates trans-
actions in blocks (Section 3.2), hence preventing the redundant validation and propagation of
transactions without impacting the core blockchain properties of safety, liveness, and validity
(Definition 1). We explain in Section 3.6 that applying TVPR can be problematic to modern
blockchains as it can lead to considerable wait times for a transaction to be included in a decided
block and executed as not every validator’s block is committed per consensus round. However,
applying TVPR to SRBB does not cause the same issue due to SRBB’s consensus protocol
that combines blocks proposed by all validators per consensus round to a decided superblock
that is executed [12]. We acknowledge that TVPR could cause censorship of transactions if
the validator initially receiving the transaction is Byzantine, and propose methods to alleviate
such an issue in Section 3.6. To prevent congestion induced by Byzantine validators performing
flooding attacks with invalid transactions, SRBB introduces RPM.

While the name Smart Redbelly Blockchain is derived from its predecessor the Redbelly
Blockchain (RBBC) [12], the two blockchains are different. More specifically, Redbelly is an open
blockchain, works on an Unspent Transaction Output (UTXO) model, and does not support
DApp execution. In contrast, SRBB is a permissionless blockchain, works on an account balance
model, supports DApp execution, and features two novel contributions to reduce blockchain
congestion and enhance performance: (1) Transaction Validation and Propagation Reduction
(TVPR) and (2) Reward-Penalty Mechanism (RPM). These contributions enable SRBB to
better support realistic DApp workloads compared to 6 modern blockchains. Namely, Algorand,
Avalanche, Diem, Ethereum, Quorum, and Solana [10, 37, 38, 16, 11, 39].

In summary, this chapter presents the following contributions:

• A permissionless blockchain, Smart Redbelly Blockchain (SRBB), that (i) prevents the
redundant validation and propagation of transactions found in modern blockchains and
(ii) mitigates the propagation of invalid transactions by malicious validators. SRBB uses
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TVPR for (i) and RPM for (ii). We prove that despite introducing TVPR and RPM,
SRBB solves the blockchain consensus problem, ensuring liveness, safety, and validity
(Theorem 1).

• To better assess the advantage of TVPR and RPM, we compared SRBB with a baseline,
which is a “naive” smart contract supported version of RBBC consisting of the DBFT
consensus [36] with the superblock optimization [12] applied to the Ethereum Virtual
Machine (EVM) but without TVPR and RPM. Our results show that TVPR increases the
throughput of the baseline by 55× and divides the baseline latency by 3.5 (Section 3.5.2).
RPM increases the throughput of the baseline by 7% under flooding attacks (Table 3.1).
Lastly, both TVPR and RPM reduce transaction losses.

• To demonstrate the improvements of SRBB over modern blockchains in a common and fair
setting, we used the Diablo benchmark suite [28] with its recommended settings and real
DApp workloads. We compared SRBB’s performance against the reported performances
of Algorand, Avalanche, Diem, Ethereum, Quorum, and Solana. When deployed across the
globe to execute a demanding fifa web service workload on a DApp, SRBB commits twice
as many transactions compared to the evaluated 6 modern blockchains in Diablo. More
interestingly, SRBB is the only blockchain out of the evaluated blockchains in Diablo to
commit all transactions for the application workloads of nasdaq and Uber.

Chapter Outline: The remainder of this chapter is structured as follows: Section 3.1 presents
the problems in modern blockchains. Section 3.2 presents SRBB (with TVPR and RPM) and
proves it correct. Section 3.5 evaluates SRBB and Section 3.6 discusses it. Finally, Section 3.7
concludes the chapter.

3.1 Problems in Modern Blockchains

In this section, we define the redundant eager validation and propagation of transactions prob-
lem, and the invalid propagation of transactions problem in modern blockchains. These prob-
lems cause congestion and thereby transaction losses and performance degradation.

3.1.1 Redundant Eager Validation and Transaction Propagation

Redundant eager validations: Many modern blockchains (e.g., Ethereum, Solana, Algo-
rand, Avalanche, Quorum, and Diem) [16, 105, 11, 39, 54, 37] follow a protocol where validators
first eagerly validate transactions received from clients or peer validators, add these transac-
tions to their transaction pool pending queue if valid (Alg. 1, line 8) and propagate each valid
transaction individually to the network of validators. In other words, every transaction in the
blockchain initially gets eagerly validated at every validator node and propagated individually
throughout the blockchain network of validators. More precisely, if the number of validators
is n, a transaction is eagerly validated n times instead of once. The eager validation of trans-
actions at every validator except the first validator receiving the transaction is redundant, as
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transactions are lazily validated (Chapter 2, Section 2.1.10) prior to execution. Even if lazy
validation succeeds for an invalid transaction due to lazy validation being weaker than eager
validation, the transaction will fail at execution time by throwing an error (Alg. 1, line 32).
Thus, the invalid transaction will have no impact on the blockchain state. In fact, we prove
SRBB preserves liveness, safety, and validity without the redundant eager validation of trans-
actions (Section 3.4). We discuss in Section 3.6 that eagerly validating a transaction once is
sufficient to mitigate DoS attacks.

Redundant transaction propagation: In some modern blockchains [16, 105, 11, 39, 54],
transactions from the transaction pool pending queue of validators get included in blocks and
propagated again as a part of a block after the initial transaction propagation. In this case, the
initial propagation of individual transactions among validators is redundant since transactions
are propagated again in blocks. However, the initial propagation of individual transactions
ensures a transaction is included in a block without a significant wait time. This is because in
modern blockchains only a single validator gets to propose a block per consensus round which
is eventually committed and executed [16, 105, 11, 39, 54], and without the initial transaction
propagation, a client’s transaction may not be included in a block for some time if the val-
idator directly receiving the transaction from the client is not selected to propose a block for
an immediate consensus round. In contrast, even when the initial transaction propagation is
removed on SRBB, a client’s transaction can be immediately included in a block without a wait
time as SRBB’s consensus allows all validators to propose a block per consensus round, which
is combined into a superblock and executed.

In our evaluation (Section 3.5), we show the congestion impacts of the redundant eager
validation and propagation of transactions. We observe transaction losses and performance
degradation (i.e., throughput and latency) in modern blockchains under realistic DApp work-
loads.

3.1.2 Invalid Transaction Propagation

The invalid transaction propagation problem occurs when Byzantine validators propagate in-
valid transactions in blocks. This can happen when Byzantine validators falsely eagerly val-
idate or skip the eager validation of transactions received from clients and peers but include
such invalid transactions in blocks nonetheless and propagate them to the network of valida-
tors. Propagating invalid transactions in blocks does not cost anything to the validator but
can cause transaction losses and performance degradation in modern blockchains due to the
following reasons: (1) validators use extra CPU cycles validating invalid transactions (prior to
execution) without contributing to the throughput and (2) the network bandwidth is consumed
unnecessarily.

While mechanisms to ban validators that propagate invalid transactions can be implemented,
such methods can be ineffective. For example, it is unclear whether banning validators is
effective. Since banning validators include blocking a validator’s address, a banned validator
can easily derive a new wallet address and participate in the blockchain again [106].
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Figure 3.1: The modern blockchain protocol (steps 1-4) and TVPR modification of SRBB (steps
1-3) are represented graphically on a high level. Despite having TVPR, each validator of SRBB
executes all transactions due to its superblock-enabled DBFT consensus that combines blocks
from each validator to a superblock prior to execution (explained in Section 3.2.4).

Therefore, modern blockchains do not offer validator banning mechanisms in their imple-
mentation [16, 11, 44, 43, 39]. There are, however, frameworks like flashbots1 that can integrate
validator bans in blockchains. Flashbots is known to be centralized [107]. This was also revealed
by its latest Tornado Cash censorship2.

In Section 3.5.3, we notice transaction losses and performance degradation in modern
blockchains caused by congestion when Byzantine validators propagate invalid transactions in
blocks. Thus, to mitigate Byzantine validators proposing invalid transactions, in Section 3.2.5,
we present a novel RPM that slashes validators for propagating invalid transactions in blocks and
rewards validators for proposing valid blocks. Unlike conventional validator banning methods
like flashbots3, RPM is decentralized and does not suffer from censorship issues. This is because
RPM punishes validators for including invalid transactions in blocks using a decentralized smart
contract-based method. While in conventional validator banning methods, validators can de-
rive new wallet addresses and rejoin the blockchain, the slashing of stake integrated into RPM
disincentivizes validators to rejoin the blockchain with new wallet addresses and re-propagate
invalid transactions.

1https://github.com/flashbots/block-validation-geth
2https://www.coindesk.com/tech/2022/08/17/tornado-cash-fallout-can-ethereum-be-censored/
3https://time.com/6223034/ethereum-merge-sanctions-flashbots/

https://github.com/flashbots/block-validation-geth
https://www.coindesk.com/tech/2022/08/17/tornado-cash-fallout-can-ethereum-be-censored/
https://time.com/6223034/ethereum-merge-sanctions-flashbots/
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Algorithm 1 Smart Redbelly Blockchain protocol
1: State:

2: blockchain, an array of blocks, initially:
3: blockchain[0] = genesis-block
4: P is the txpool pending queue

5: receive(t): � t received from neighbors or directly from clients

6: if eager-validate(t) then � if eager validation succeeds

7: if t ̸∈ blockchain and t ̸∈ P then � t not in blockchain or txpool pending queue

8: P← P ∪ t � add to txpool pending queue

9: if TTL of t not exceeded then
10: propagate(t) � modern blockchains do this but SRBB does not

11: propose():

12: bi ← create-block-with(Q) � create a block bi from Q ⊂ P

13: blockQueue ← blockQueue.append(bi) � append to block queue

14: P← P \Q � remove txs from txpool to create b

15: bi ← blockQueue[0 ] � get first element from block queue

16: propagate(bi) � propagate block via rb-broadcast

17: Upon reception of B for index k s.t. B←
⋃j

i=1 bi: � rb-delivered blocks

18: B∗ ← consensus(B) � exec. DBFT cons. and decide B∗ s.t. B∗ ⊆ B

19: for all bi ∈ B∗ starting from i = 1 do
20: for t ∈ bi do
21: err ← execute(t)
22: if err ̸= null then
23: bi ← bi − t � remove invalid t from bi

24: if bi ̸= null then � bi has transactions

25: blockchain[k] = bi � insert to permanent chain

26: k++
27: blockQueue.remove(B∗) � remove the set of decided blocks from the block queue if they exist in the queue

28: execute(t):

29: err ← lazy-validate(t) � lazy validation

30: if err ̸= null then
31: return err
32: Sr, err ← ApplyTransaction(t, Si) � Apply t on state Si

33: if err ̸= null then
34: return err
35: else
36: return null
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3.2 Smart Redbelly Blockchain (SRBB)

In this section, we present SRBB, a permissionless blockchain that (1) prevents the redundant
validation and propagation of transactions and (2) mitigates the propagation of invalid transac-
tions. SRBB integrates (i) a novel TVPR to prevent the redundant validation and propagation
of transactions, and (ii) a novel reward-penalty protocol to mitigate the propagation of invalid
transactions. In addition, SRBB is compatible with the largest ecosystem of DApps, optimally
resilient against Byzantine failures, and supports real DApp workloads like nasdaq, Uber, and
fifa (Section 3.5).

First, we present our assumptions followed by TVPR which is a part of SRBB that prevents
the redundant eager validation and propagation of transactions problem in modern blockchains.
Second, we present the transaction life cycle of SRBB followed by the SRBB Virtual Machine
(VM) implementation. Third, we present the novel reward mechanism of SRBB coined RPM
that mitigates the invalid transactions propagation problem in modern blockchains. Finally, we
prove SRBB solves the Blockchain Consensus Problem (Chapter 2, Sec. 2.3.2).

3.2.1 Assumptions

Partially Synchronous Model: Our network consists of a set of validators n that are well-
connected. As consensus cannot be solved in the asynchronous setting, we assume partially
synchronous communication similar to prior work [47] (Chapter 2, Section 2.2). In practice, we
cope with partially synchronous communication by increasing timeouts [12].

Byzantine Model: We assume that out of n SRBB validators, at most f are Byzantine where
f < n/3 (consensus is unsolvable in this model if f ≥ n/3). The maximum number of Byzantine
validators is thus t = n/3 − 1 such that f ≤ t. Byzantine validators can act arbitrarily like
proposing conflicting4 blocks, and invalid transactions. In general, any behavior that deviates
from the protocol is considered Byzantine behavior.

Threat Model: Several blockchains [31, 30, 91] reconfigure their committee of n validators
every epoch (i.e., a pre-specified unit of time) to mitigate a majority of the committee from being
bribed by a slowly-adaptive adversary. A slowly-adaptive adversary is defined as a malicious
entity that can bribe validators progressively (not instantaneously) and only between epochs
(not during an epoch) such that the total corrupted validators is f where f < n/3 at any
time [30]. As n validators cannot reach consensus if f ≥ n/3 validators are corrupt through
bribery, the assumption of a slowly-adaptive adversary prevents consensus disagreements and
double spending attacks. Therefore, we assume that the adversary is slowly adaptive similar to
prior works [31, 30].

4Two transactions can conflict if they read the same data and one transaction is a write request [41]
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3.2.2 Membership and Committee Reconfiguration

SRBB is a permissionless blockchain where (1) any node can join or leave the network and (2)
any node has a chance to become a validator based on a periodic election process if they stake a
certain amount of tokens. This membership approach of periodically rotating validators prevents
an exclusive set of nodes from always being validators, providing a permissionless environment
similar to Algorand [10]. An SRBB node can be (1) a client that sends transactions and reads
the state of the blockchain (2) a validator that participates in consensus executes transactions,
and keeps a full state of the ledger to service clients, or (3) a candidate validator that is an
applicant to the validator position.

Initially, SRBB is bootstrapped with an initial set of validators pre-defined in the genesis
block through a Know Your Customer (KYC) process5. Any node that wants to be a validator in
the future (i.e., also known as a candidate validator) must first express interest by (1) depositing
tokens (e.g. a pre-defined sum of ether – a unit of cryptocurrency used in Ethereum) in a
reconfiguration smart contract or (2) authenticating using a KYC process. SRBB periodically
elects validators to a committee from the set of candidate validators by calling an election. In this
election, the current set of validators elect the next set of validators using a reconfiguration smart
contract. The details of the validators of a committee are registered in the smart contract after
an election outcome and each SRBB validator gets to know of other validators in the committee
through an event emitted by the reconfiguration smart contract. The periodic rotation of SRBB
validators mitigates the validator committee from being bribed by a slowly-adaptive adversary.
Note that registering validator details and their stake in a smart contract provides a weaker
form of anonymity in comparison to PoW blockchains like Bitcoin where anyone can join or
leave the blockchain without the need to maintain a stable identity with a reserved stake.

The requirement to deposit tokens or pass a KYC process to be a candidate validator
provides a form of Sybil resistance. The former makes it costly for a single user to assume
the identities of multiple candidate validators, and the latter prevents a user from assuming
multiple identities through authentication. We leave intricate details of the SRBB membership
open-ended such that either depositing tokens or a KYC process can be used.

In this chapter, to produce a functioning reward-penalty mechanism (Section 3.2.5), we
consider that depositing tokens is required to become a candidate validator. Note that a high
deposit may impact, in theory, transaction fees. This is because one needs to set transaction
fees high enough to exceed the payout from a Sybil-attacking coalition that is willing to spend
enough deposits to seize control of the protocol. To alleviate this stress on the transaction fees,
the validator deposit is recoverable after a locked period like in the design of PoS protocols [108].

3.2.3 TVPR (Transaction Validation and Propagation Reduction)

In TVPR, instead of validators eagerly validating and propagating transactions received from
peer validators individually, validators only eagerly validate transactions received directly from
clients. These validated transactions are then included in blocks and propagated. In other

5A process to uniquely identify an entity is who they claim to be by verifying identity information.
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words, we remove step (3) in Figure 3.1 of the modern blockchain protocol where each validator
individually propagates transactions to peers to produce Transaction Validation and Propa-
gation Reduction (TVPR). When considering Alg. 1, we remove Alg. 1, line 10 to prevent
validators from propagating transactions (i.e., broadcasting transactions) individually to peers.
This way, validators do not require to eagerly validate and propagate transactions received from
peer validators. To be more precise, in modern blockchains during the initial transaction prop-
agation, if the number of validators is n, a transaction t is eagerly validated n times, whereas
TVPR eagerly validates a transaction t once (i.e., only the validator receiving the transaction
directly from the client eagerly validates it). Thus, we remove the redundant eager validation
and propagation of transactions. Note that transactions are still included in blocks and propa-
gated. In Section 3.3 we discuss in detail how reducing the eager validation of transactions does
not cause the execution of invalid transactions. In Section 3.5.2, we present the throughput
improvements and latency and transaction loss reductions of integrating TVPR to SRBB com-
pared to modern blockchains. The potential drawbacks of TVPR are deferred to the discussion
section (Section 3.6).

3.2.4 Transaction Life Cycle of SRBB

We now present the transaction life cycle of SRBB. An SRBB node consists of the SRBB VM
and SRBB consensus. The SRBB VM is built upon Geth and integrates with TVPR. SRBB
consensus uses the DBFT consensus protocol [36] combined with the superblock optimization of
RBBC [12]. When describing the transaction life cycle of SRBB, we do not dwell deeply on the
consensus as it is not our contribution6. Instead, we give sufficient information to understand
SRBB in its entirety, highlighting our novelties. A transaction submitted by a client to SRBB
goes through the stages below:

1. Reception: The client creates a properly signed transaction and sends it to at least one
SRBB validator where the transaction is eagerly validated (Alg. 1, line 6). If the eager validation
fails, the transaction is discarded. Otherwise, the transaction is kept in a pending queue in the
transaction pool (Alg. 1, line 8). Once the transactions in the transaction pool pending queue
reaches a threshold (pre-defined in the configurations), a validator creates a block bi and adds
it to a block queue (Alg. 1, line 13). Subsequently, the transactions used to create the block are
removed from the transaction pool pending queue P. Next, the validator fetches the first block
from the block queue (Alg. 1, line 15) and propagates it to all validators (Alg. 1, line 16). Note
that, unlike modern blockchains, SRBB does not propagate transactions individually. SRBB
simply includes transactions in blocks and propagates blocks to the network, hence implementing
our TVPR solution. In fact, SRBB is at the time of writing, the only blockchain with TVPR.
For index k of the blockchain every correct SRBB validator propagates a block bi s.t. i is the
ID of the SRBB validator and i ∈ Z+. These blocks are propagated via reliable broadcast [109].

2. Consensus: An SRBB validator, after receiving a set of blocks B from peer validators
via reliable broadcast [109] for index k of the blockchain where B←

⋃j
i=1 bi s.t. j ≤ n, executes

6we defer the details of the consensus to the original publication [12]
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DBFT consensus [36] (Alg. 1, line 18) as outlined in Alg. 2, and decides a superblock B∗.
The SRBB validator after deciding the superblock sends it to the SRBB VM for execution
(Alg. 1, lines 19-26). The decided blocks in the superblock are removed from the block queue
(Alg. 1, line 27). All undecided blocks are kept in the block queue to be included in future
consensus rounds. The consensus proceeds to the next round after a superblock is decided, and
starts propagating a block again from the front of the block queue via reliable broadcast, if not
already propagated (Alg. 1, lines 15-16).

Note that the only similarity between SRBB and RBBC [12] is this consensus phase. RBBC
does not support the execution of smart contracts or DApps and does not have TVPR and
RPM.

Algorithm 2 SRBB consensus
1: B← {b1, b2, ...bi} � reliably delivered blocks
2: blocks ← ∅ � blocks delivered from rbbroadcast are stored here in line 8
3: index ← 0 � consensus round
4: blockQueue ← ∅ � pending blocks to propose to consensus
5: consensus(B):
6: decCount ← 0, decBlocks ← 0
7: for all block ∈ B do
8: blocks[i]← block � add rb-broadcasted blocks to list s.t. i is ID of sender
9: decBlocks[i]← b-consensus-propose(i, true) � props. to binary cons.

10: wait until ∃i : b-consensus-decide(i) is true � till binary cons. decided
11: for j from 0 to n do
12: if blocks[j] == ∅ then
13: decBlocks[j]← b-consensus-propose(j, false)
14: if decBlocks[j] == true then decCount ← decCount + 1
15: wait until decCount == n
16: superblock ← ∅
17: for i from 0 to n do
18: if decBlocks[i] == true then
19: superblock ← superblock ∪ blocks[i] � combine decided blocks

20: return superblock

3. Commit: An SRBB VM, upon receiving the superblock B∗, takes a block bi at a
time from B∗, iterates through its transactions (Alg. 1, line 20), and attempts to execute them
(Alg. 1, line 21). In the execution process, first, the SRBB VM lazily validates the transaction
(Alg. 1, line 29). If a transaction’s lazy validation succeeds, the SRBB VM attempts to apply the
transaction to the current blockchain state (Alg. 1, line 32). A state transition for executing a
transaction only occurs if the transaction is valid and non-conflicting. Since lazy validation is not
as strict as eager validation (Chapter 2, sec. 2.1.10), a transaction may pass the lazy validation
but still be invalid. The SRBB VM like modern blockchains handles such cases by throwing
an error without transitioning state (Alg. 1, line 34). More specifically, during transaction
execution, the SRBB VM rechecks other validity criteria not present in lazy validation (e.g.,
transaction signature verification, transaction size limit check), and throws an exception if
invalidity is found.
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If either the lazy validation fails or applying the transaction fails that means the transaction
is invalid. The SRBB VM in this scenario discards the invalid transaction from the block bi

(Alg. 1, line 23) and moves on to the next transaction in the block. Subsequently, bi is appended
to the blockchain (Alg. 1, line 25) and the SRBB VM moves to the next block in the superblock.
The SRBB VM follows the same procedure to process the subsequent blocks in the superblock
until all the valid blocks are written to the blockchain.

Algorithm 3 The Reward-Penalty Mechanism
1: Initial State:
2: For block b: ht , Pk and Sk are the hash of its txs, the block sender pub and priv keys resp.
3: CertB ← {Pk , (ht)Sk} is the certificate of a block
4: T is the set of transactions in b where t ∈ T
5: rb is a constant block reward
6: c is the cost of eager validating a transaction
7: count is (h → val) where count is a map between a hash and its count
8: NB is the block number
9: i is the block index in the superblock and round is the consensus round

10: propReceived(CertB, T , i, round): � validators invoke when block decided
11: if invoked[hash(i, round)] == true then � already invoked for b in i, round
12: exit � exit function
13: invoked[hash(i, round)] = true
14: Pk , (ht)Sk ← retrieve(CertB) � retrieve data from Cert
15: addressv ← derive(Pk) � derive address of block proposer
16: if addressv ̸∈ V then
17: exit � invalid CertB, return
18: else
19: ht ← Pk((ht)Sk ) � retrieve hash of transactions from Cert
20: if hash(T) == ht then
21: count[hash(Pk , T , i, r)]← count[hash(Pk , T , i, r)] + 1 � inc. count
22: if count[hash(Pk , T , i, r)] == n-t then � thresh. decided the same block
23: address ← derive(Pk) � derive address of block proposer
24: I ← rb � define incentive
25: C ← |T | · c � cost of eager validating transactions in b
26: R← I − C � calculate reward
27: K [address] = K [address] + R � add reward to proposer deposit
28: count[hash(Pk , T)] = 0 � reset count
29: report(CertB, NB, t, T): � Report validator Cert. block number and transaction
30: Pk , (ht)Sk ← retrieve(CertB) � retrieve data from Cert
31: address ← derive(Pk)
32: ht ← Pk((ht)Sk ) � retrieve hash of transactions from Cert
33: if addressv ̸∈ V or hash(T) ̸= ht or t ̸∈ T then
34: exit � invalid CertB or false report, return function
35: else
36: count[hash(Pk , NB, t)] = count[hash(Pk , NB, t)] + 1 � inc. report count
37: if count[hash(Pk , NB, t)] = n-t then � thresh. val. reported invalid t
38: address ← derive(Pk) � derive validator that added invalid-tx
39: K [address] = K [address]− P � reduce byz. validators deposit by P
40: for all v ∈ V and v ̸= address do � distribute penalty with validators
41: K [v] = K [v] + P/(|V | − 1)
42: emit address � emit byz. validator event
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3.2.5 The Reward-Penalty Mechanism (RPM) for SRBB Validators

With modern blockchains and with SRBB, the invalid transaction propagation problem (Sec-
tion 3.1.2) exists as Byzantine validators can propose invalid transactions in blocks that are
propagated to the network. To cope with this problem we propose RPM as a part of SRBB.

While we previously distinguished correct from Byzantine validators, in the real world,
validators behave rationally [110]. In other words, validators behave selfishly to maximize
rewards instead of blindly following the protocol. Thus, it makes sense for rational validators to
increase their gains by bypassing eager validation and proposing invalid transactions in blocks to
save validation costs. RPM incentivizes rational validators to not propose invalid transactions
within blocks and propagate such blocks. As a result, RPM mitigates transaction losses and
performance degradation (Table 3.1). Like many blockchain reward mechanisms, RPM also
rewards validators in a consensus round for proposing blocks. To the best of our knowledge,
none of the reward and penalty mechanisms mitigate the propagation of invalid transactions
within blocks [39, 111, 112, 113, 114].

The block proposal game: We use game theory to model the strategies of SRBB validators.
We define a game G per consensus round as a tuple (V, S, U) where V is the set of players who
are SRBB validators, S is the set of strategies followed by players and U is the pay-off (i.e.,
reward or penalty) for each strategy.

A validator could follow a correct strategy or a Byzantine strategy. We consider the correct
strategy as a validator proposing valid blocks (i.e., blocks with valid transactions) by eagerly
validating all transactions before including them in blocks. A Byzantine strategy is when a
validator proposes invalid blocks by including invalid transactions in blocks (e.g., not eagerly
validating transactions to save costs). Our goal is to design rewards for strategies so that the
best strategy for a rational validator to follow is the correct strategy.

Reward-Penalty Mechanism: We present our RPM in Alg. 3. Earlier, we assumed out
of n validators, at most f are Byzantine where f < n/3 (Section 3.2.1). As the committee
progresses we assume that validators behave rationally.

Upon deciding on a superblock, validators invoke a propReceived function for each block in
the decided superblock parsing the block proposer’s certificate CertB, the set of transactions
T in the block, the index of the block in the superblock i and the consensus round r (Alg. 3,
line 10). The certificate of the block proposer CertB consists of the public key of the block
proposer Pk and the signed hash of the transactions in the block (ht)Sk

where ht is the hash
of transactions and Sk is the private key of the block proposer. Thus, CertB = {Pk, (ht)Sk

}.
Alg. 3, line 12 exits if a validator invokes propReceived more than once for the same i and r

(i.e., prevents duplicate invocations). One validator cannot parse the same CertB and T more
than once to the propReceived function either as there is a checker preventing this, although not
included in Alg. 3 for brevity.

For each invocation of propReceived by a distinct validator, RPM retrieves data from the
certificate CertB (Alg. 3, line 14) and checks the validity of CertB by verifying whether the
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addressv derived from Pk is in the validator set of addresses V (Alg. 3, line 16). If not, CertB

is invalid and proposed by a non-validator so the propReceived function exits (Alg. 3, line 17).
Otherwise, RPM retrieves ht from (ht)Sk

(Alg. 3, line 19) and checks if the hash of T (i.e.,
hash(T)) is equal to ht (Alg. 3, line 20), verifying whether the block proposer with Pk proposed
a block with transactions T . If hashes are equal, Alg. 3 increments the propReceived invocation
count for a block in a superblock for a particular Pk and T (Alg. 3, line 21). If at least n − t

validators have decided on a superblock with a block b that has the same T and Pk, RPM derives
address from Pk, calculates the reward from Alg 3, lines 24- 26 (i.e., Section 3.2.5 presents the
reward design in detail) and increases the deposit of the proposer whose block is included in
the decided superblock (Alg. 3, line 27). Finally, when the epoch ends, the tokens added to a
validator’s deposit exceeding Dv are funded to the validator’s wallet address (not included here
for brevity).

Invoking propReceived is in the best interest of a rational validator due to the following
reason: If a validator v1 eventually does not invoke propReceived for a decided block b1 proposed
by validator v2 then v2 may also decide not to invoke propReceived for a decided block b2
proposed by v1. This could result in both blocks proposed by v1 and v2 not reaching the n− t

threshold and receiving a reward accordingly (Alg. 3).
RPM penalizes rational validators that propose blocks including invalid transactions in the

following way: upon noticing an invalid transaction in a block that is part of a decided su-
perblock, validators become reporters invoking report in Alg. 3, line 29 parsing CertB (certificate
of the block proposer that included the invalid transaction), NB (the block number containing
the invalid transaction), t (the invalid transaction), and T (the set of transactions T in NB).
Then the validity of CertB is verified and the function exits if an invalidity is noticed (Alg. 3,
lines 30- 34) avoiding false reporting. Otherwise, a count is incremented corresponding to the
number of validators that observed the invalid transaction t in block NB proposed by the block
proposer with public key Pk (Alg. 3, line 36). If at least n − t validators have made the same
report (Alg. 3, line 37), then the Byzantine validator that proposed a block with invalid trans-
actions receives a penalty P s.t. P = K[address], which is deducted from its deposit (Alg. 3,
line 39) leaving the deposit at 0. The deducted penalty is then equally distributed among the
other validators in the committee (Alg. 3, line 41). In RPM validators lose deposits only if they
propose a block that includes invalid transactions (Alg. 3, line 39). Correct validators eagerly
validate each transaction before inclusion in a block proposal. As such, correct validators do not
lose their deposit. Finally, an event is emitted containing the wallet address of the Byzantine
validator (Alg. 3, line 42). All correct validators listen to this event and exclude the Byzantine
validator from future communications within the committee.

Alg 3 contains a block reward value rb, an incentive I, an eager validation cost c, and a
cumulative reward R for including a block in a superblock. The goal is to design these rewards
in a way that the best strategy for a validator to follow is the correct strategy. Next, we present
our reward design.

Reward design Let us consider R as the cumulative reward for proposing a block, I as
the incentive, C as the cost of eager validating all transactions in a block, P as the amount
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deducted in ether from a validator’s deposit if the validator follows a Byzantine strategy (i.e.,
the entire current deposit is taken out), rb as a constant ether value issued to validators for
proposing a block, and ∑Ntx

n=0 Txfees as the total transaction fees in the proposed block (i.e.,
the transaction fee is not included in RPM in Alg. 3 as it is charged separately at the SRBB
VM when transactions are executed). Then the two reward equations are: R = I −C − P and
I = rb +∑Ntx

n=0 Txfees. We do not include double spending rewards rational validators may gain
as double spending is mitigated through committee reconfiguration.

From Theorem 2, proposing invalid transactions results in a validator losing her entire
deposit. Rational validators try to maximize their gains effectively. Therefore, RPM discourages
proposing invalid transactions in blocks.

3.3 Smart Redbelly Blockchain: Implementation

In this section, we present design choices and implementation details of some important aspects
of SRBB that helped it become a highly performing blockchain.

3.3.1 Consensus Implementation

The SRBB implements the DBFT consensus protocol in Golang to achieve compatibility with
the SRBB VM ported from Geth (i.e., the Golang implementation of the EVM). More specif-
ically, we used the Golang version 16.2.2, the newest version at the time of developing SRBB.
The SRBB DBFT consensus includes a number of optimizations.

Batching messages: Batching messages is a classic optimization in distributed systems. In
our Golang implementation of DBFT, we used Golang RPC calls to communicate between
validators. When there were multiple messages ready to transmit through the wire on a validator
node to the same destination validator, we combined the messages into a batch and send the
requests in a single RPC. This batching optimization helped scale the Golang implementation
of DBFT to 200 geo-distributed VMs on AWS spanning 5 continents (Section 3.5).

Choice of RPC library and encoding method: We used the Golang net/rpc library
with gob (golang binary) encoding to execute RPC calls. We chose net/rpc with gob encoding
because it yielded better performance compared to Golang gRPC.

Keep-alive connections: At bootstrap time of SRBB, we established keep-alive connections
between validators. Thus, every time an RPC call needed to be made between validators
for communication, a connection did not need to be established, reducing the communication
latency.

Hashing messages: A hashing optimization is included in the reliable broadcast similar to
Redbelly consensus [36] to reduce the size of the broadcasted messages. More specifically, a
SHA256 hash is derived for each block and a mapping between the block and the hash value is
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kept. The block is then propagated to validators. A reliable broadcast is subsequently started
for the hash derived from the block. When the hash is reliably delivered, the corresponding
block in the mapping is considered reliably delivered. Next, a binary consensus instance starts
for each reliably delivered block. The use of hashes benefits the performance in two ways. First,
it reduces the usage of the network bandwidth. Second, it reduces the CPU and memory usage
at a validator when encoding and decoding messages during wire transfers.

3.3.2 SRBB VM implementation

The SRBB VM was ported from the Geth version v1.10.18, the latest at the time of develop-
ment, and changed to prevent redundant eager validation and propagation of transactions by
integrating TVPR. Below we mention in detail our implementation of TVPR on Geth to produce
SRBB VM. We also outline that despite Geth’s recent releases, our TVPR is still relevant.

TVPR implementation: We integrated TVPR into the EVM by disabling the initial indi-
vidual transaction propagation among validators. This way only the first SRBB node receiving
transactions from clients eagerly validated and included the transactions in blocks and propa-
gated them to the network. Implementing TVPR involved changing the Geth implementation,
which required a deep dive into the implementation details of Ethereum and discussions with
Ethereum core developers. In total, we changed 161 LOC (Lines of Code) for the TVPR im-
plementation. These changes included: (1) disabling the event that notifies successful eager
validation of each transaction to the function that broadcasts transactions individually and (2)
disabling functions that handle individual transactions received from peers.

One might think that SRBB allows the execution of invalid transactions because a transac-
tion is eagerly validated only once by a SRBB validator and then lazily validated at each SRBB
validator prior to execution, where the lazy validation is not as strict as the eager validation.
Note that the reduction of transaction eager validations does not cause the execution of invalid
transactions in SRBB. Instead, in the case of invalid transactions, the SRBB execution throws
an exception. More precisely, a transaction is valid only if (i) the transaction is properly signed,
(ii) its size does not exceed a limit, (iii) its nonce is the next sequence number, (iv) its gas cost
is covered by the sender balance, (v) its transferred amount is covered by the sender balance.
The lazy validation checks (iii), (iv), (v) whereas the execution checks any remaining invalid-
ity. In particular, the Geth implementation7 which SRBB builds upon, raises an ErrInvalidSig
exception if (i) is not satisfied. Overflow and VM exceptions are raised if (ii) is not satisfied8.

Note that since we developed SRBB VM, the official implementation of Geth has changed.
To the best of our knowledge, none of these changes have impacted the relevance or the guaran-
tees of TVPR. This is because after reducing eager validations, if an invalid transaction bypasses
lazy validation, the execution will attempt to execute the invalid transaction and throw an ex-
ception if any remaining invalidity is found, without transitioning state.

7L635 of https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go of com-
mit c4a6621

8L187-219 of https://github.com/ethereum/go-ethereum/blob/master/core/vm/interpreter.go, and
https://github.com/ethereum/go-ethereum/blob/master/core/vm/errors.go.

https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/interpreter.go
https://github.com/ethereum/go-ethereum/blob/master/core/vm/errors.go
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Superblock compatible with SRBB VM: As the SRBB consensus returns a superblock,
and since the superblock increases in size with the number of nodes, the SRBB VM slows down
for large n consuming excess CPU, and memory having to process large superblocks. As a
solution, we optimized the SRBB VM to fully process one proposed block (i.e. sub-block) of
the superblock at a time allowing it to alternate frequently between CPU-intensive (verifying
signatures and transaction executions) and memory-intensive (block writes) tasks reducing the
stress on resources.

3.4 Smart Redbelly Blockchain: Proofs of Correctness

Here we present the proofs of correctness of SRBB. First, we prove that SRBB solves the
blockchain consensus problem (Chapter 2, Section 2.3.2). Second, we prove that RPM mitigates
rational validators from proposing invalid transactions in blocks.

Theorem 1. SRBB solves the blockchain consensus problem.

Proof. We prove that each property of Def. 1 is preserved by SRBB.

Liveness: As a result of removing line 10 of Alg. 1 in SRBB, transactions are no longer prop-
agated individually to the network among validator peers and eagerly validated at each SRBB
validator. However, correct validators still create blocks including valid transactions, and prop-
agate them to peers (Alg. 1, line 16). Thus, every correct SRBB validator receives a set of blocks
B propagated by correct SRBB validators at index k (Alg. 1, line 17). An SRBB VM decides a
set of blocks B∗ s.t. B∗ ⊆ B (a superblock) and stores the valid transactions in these decided
blocks on the blockchain (Alg. 1, lines 18-25). While the decided blocks are removed from the
block queue (Alg. 1, line 27), undecided blocks are kept in the SRBB block queue to be in-
cluded in future blocks. These transactions are eventually re-included in a future decided block
by correct SRBB validators and stored in the blockchain. Thus, every transaction received by a
correct SRBB validator is eventually stored in the block sequence of all correct SRBB validators.

Safety: The preservation of safety is proved by contradiction. If none of the two chains of
blocks maintained locally by any two correct SRBB validators v1 and v2 is a prefix of one an-
other, it means the superblock B∗ decided at index k (Alg. 1, line 18) of v1 and the superblock
B∗′ decided at index k of v2 are different. This results in two different transaction executions
(Alg. 1, line 21) for v1 and v2. However, this is a contradiction because any two correct SRBB
validators v1 and v2 should decide on the same superblock at index k due to consensus guaran-
tees of DBFT [36] (Alg. 1, line 18). Thus, any two validators v1 and v2 should store the same
block b at index k of the chain (Alg. 1, line 25). Therefore, any two correct validators should
maintain locally an identical chain of blocks or a chain where one is a prefix of another (i.e., be-
cause blocks do not get decided, executed, and stored at the same time in all SRBB validators)
resulting in the same execution. Thus, through proof by contradiction, SRBB achieves safety.

Validity: Due to the consensus protocol, all correct SRBB validators decide on the same
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superblock B∗ at index k (Alg. 1, line 18). If each block bi in the superblock B∗ has a valid
set of transactions, it is appended to the blockchain (Alg. 1, lines 20-25). Thus, each block
appended to the blockchain of each correct SRBB validator is a set of valid non-conflicting
transactions.

Theorem 2. Rational validators proposing invalid transactions in blocks lose their deposit.

Proof. If a rational validator proposes invalid transactions in a block to minimize C and thereby
increase R (i.e., R = I − C), other validators are incentivized to report the invalid transaction
along with the proposing validator (Alg. 3 lines 29- 41). As a result, a penalty P is deducted
from the reported validator’s deposit, and the validator is removed from the committee (Alg. 3,
lines 39 and 42). When a Byzantine validator’s block with invalid transactions is decided, we
know that they gain a reward of I − C ′ where C ′ < C (i.e., Byzantine validators skip eager
validation to save cost). If the initial deposit of the Byzantine validator is D, now it becomes
D′ = D + I − C ′. However, once reported by n− t validators, Byzantine validators lose P s.t.
P = D′ = D + I −C ′. Thus, the Byzantine validator’s deposit becomes Dend = D + I −C ′−P

leading to Dend = 0 eventually. Thus, the Byzantine validator loses their entire deposit D

eventually.

3.5 Smart Redbelly Blockchain: Evaluation

In this section, we present our evaluation of SRBB and its performance compared to 6 modern
blockchains. We show that for realistic Diablo DApp workloads of nasdaq, Uber, and fifa,
SRBB outperforms Algorand, Avalanche, Diem, Ethereum, Quorum, and Solana. In other
words, SRBB shows higher throughput, lower latency, and fewer transaction losses compared
to 6 modern blockchains under the evaluated realistic DApp workloads. We also show that
SRBB outperforms a naive blockchain comprising of the EVM, the DBFT consensus, and the
superblock optimization. This goes to show that our TVPR and RPM contributions improve
SRBB’s ability to support realistic DApp workloads.

3.5.1 Experimental Setting

We evaluated SRBB using the Diablo blockchain benchmark suite [28] that evaluates blockchains
against specified workloads by sending pre-signed transactions. We used the realistic DApp
workloads of nasdaq, Uber, and fifa that span 3, 2 and 3 minutes respectively9. nasdaq
(peak request rate - 19800 TPS, avg. request rate - 168 TPS) uses a real trace of Apple, Ama-
zon, Facebook, Microsoft, and Google stock trades executed on a DApp, Uber (peak request
rate - 900 TPS, avg. request rate - 852 TPS) uses a real trace from the mobility service Uber
executed on a DApp and fifa (peak request rate - 5305 TPS, avg. request rate - 3483 TPS) uses
a real workload from the soccer world cup executed on a DApp. For the DApp workload exper-
iments, we used 200 validators spanning 10 AWS regions (i.e., 5 continents), namely: Bahrain,

9https://github.com/lebdron/minion/tree/aec

https://github.com/lebdron/minion/tree/aec
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Cape Town, Milan, Mumbai, Sao Paulo, Ohio, Oregon, Stockholm, Sydney, and Tokyo. For all
DApp benchmarks, we used the same AWS c5.2xlarge EC2 instances (8 vCPUs, 16 GB RAM –
equivalent to a modern-day PC) as Diablo [28].
Rationale for machine selection: The c5.2xlarge AWS instance type was consistently used
throughout all SRBB benchmarks for two reasons. First, to make all results comparable with
Diablo [28]. Second, to make the evaluations encompass a wide range of blockchains as some
blockchains require specific CPU and memory requirements (e.g., Solana) that cannot be met
with smaller AWS instances.
Rationale for selecting 6 modern blockchains to compare with SRBB: Evaluating all
blockchains in existence against SRBB is not realistic. We used the 6 modern blockchains evalu-
ated in Diablo for comparison against SRBB because Diablo reported a thorough evaluation
of these blockchains under realistic DApp workloads. To make the comparison fair, we used the
same configuration parameters as used in Diablo [28] when evaluating SRBB.
Performance metrics: Our evaluation focuses on the throughput, latency, and transaction
loss of blockchains which are indicators of blockchain congestion. With more congestion, a
blockchain’s throughput drops, and latency and transaction losses increase.

In summary, all experimental parameters were the same as the ones used in Diablo [28]
for realistic DApp evaluation. Similar to the Diablo DApp evaluations, all workloads were
evaluated with one full experimental iteration. This is because our discussions and comparisons
with the authors of Diablo revealed multiple runs of the same Diablo DApp workload ex-
periments yield minimal statistical variance in the results due to a long experimental time of
∼5 minutes (i.e., DApp workloads send transactions for 2-3 minutes and blockchains typically
processed these transactions for ∼5 minutes).

SRBB reached a maximum average throughput of ~2000 TPS for realistic DApp work-
loads. SRBB achieved higher throughput and fewer transaction losses compared to 6 modern
blockchains for the realistic DApp workloads of nasdaq, Uber, and fifa [28].

Moreover, SRBB was the only blockchain out of the evaluated blockchains to not lose trans-
actions for the realistic DApp workloads of nasdaq and Uber. For the demanding fifa work-
load, SRBB committed over 98% of transactions. The higher throughput, lower latency, and
fewer transaction losses of SRBB compared to modern blockchains indicate that SRBB reduces
blockchain congestion.

For the remainder of this section, first, we compare SRBB with modern blockchains (Sec-
tion 3.5.2) for the real DApp workloads of nasdaq, Uber, and fifa from the Diablo blockchain
benchmarking suite. Then we evaluate the benefits in transaction losses and performance of
RPM in SRBB when Byzantine validators propagate invalid transactions.

3.5.2 Comparison with Other Blockchains

Figures 3.2 and 3.3 depict the performance of 6 modern blockchains (i.e., Algorand, Avalanche,
Libra-Diem, Ethereum Proof-of-Authority, Quorum IBFT, Solana) compared to SRBB and
EVM+DBFT which is a naive smart contract supported version of RBBC that combines the
Ethereum VM with the superblock optimized DBFT consensus but does not have TVPR and
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RPM. The evaluation of EVM+DBFT is included to show that the performance benefits of
SRBB come from TVPR and not from the prior works of the superblock optimization and the
DBFT consensus of RBBC.

Note, some blockchains did not yield an average latency or throughput value for certain
workloads (e.g., 0 TPS and 0 s latency) because the transaction costs exceeded their budget [28]
or they crashed due to the high load.

Figure 3.2 presents the average throughput in the y-axis and transaction commit percentage
as a value at the top of the bar for the nasdaq, Uber, and fifa workloads, depicted by (N,U,F)
in Figure 3.2 for brevity. SRBB is the only blockchain to commit 100% of the transactions for
the nasdaq and Uber workloads. SRBB also commits 98% of transactions for the demanding
fifa workload where no other blockchain commits more than 47% of transactions. SRBB
reaches average throughputs of 167 TPS, 828 TPS, and 1808 TPS for the nasdaq, Uber, and fifa
workloads respectively, which are the highest average throughputs for all evaluated blockchains.
Figure 3.3 shows the average latencies for the (N,U,F) workloads. SRBB yields the least average
latency among all evaluated blockchains for both the nasdaq and Uber workloads with average
latencies of 6.6 and 3.9 seconds respectively. For the fifa workload, SRBB yields an average
latency of 64 seconds. This slightly higher average latency of SRBB over Avalanche, Diem, and
Solana in the fifa workload is due to SRBB committing 98% of the transactions as opposed to
only 2% or fewer transaction commits in the other blockchains. All 6 modern blockchains yield
throughputs lower than 900 TPS and latencies higher than 20 seconds. These performances
are much lower compared to their claimed performances [28], indicating major performance
degradation.

Most importantly, SRBB multiplies the average throughput by 55×, divides the latency by
3.5, and reduces transaction losses considerably compared to EVM+DBFT. Since the difference
between SRBB and EVM+DBFT is TVPR, TVPR is responsible for better performance and
reduction in transaction losses and not prior works from RBBC [36, 12].

The disparity between the performance of EVM+DBFT and SRBB is due to the following
reason: Executing the superblock and validating and propagating transactions redundantly is
expensive on the EVM. This is why naïve EVM+DBFT shows weak performance. However,
with the TVPR optimization, the validation and propagation of transactions redundantly is
reduced. This reduces the heavy processing required by the EVM from two computationally
expensive tasks to just one. Thus, SRBB performs significantly better than EVM+DBFT.

3.5.3 Evaluation of Performance with Byzantine Validators

Here we present the performance of SRBB when a Byzantine validator propagates invalid trans-
actions. We created invalid transactions by setting the balance of the transaction sender to
0 ETH. More specifically, we compare the average throughput and transaction losses of SRBB
without RPM and SRBB with RPM. Thus, this evaluation shows the performance benefits RPM
yields considering throughput and transaction losses. Due to budget constraints, we had to re-
strict this benchmark to a single AWS region and the smallest validator size a BFT blockchain
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Figure 3.2: Throughput (y-axis) and commit percentage (top of the bar) for nasdaq, Uber and
fifa workloads (i.e., (N,U,F) is nasdaq, Uber and fifa)
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can tolerate10 (i.e., four validators). More specifically, we performed this benchmark on the
Sydney AWS region with 3 correct and 1 Byzantine validator.

#valid #invalid #Byzantine throughput #valid
txs sent txs sent Validators (TPS) txs dropped

SRBB w/o RPM 20K 10K 1 3998.2 TPS none
SRBB w/ RPM 20K 10K 1 4285.71 TPS none

Table 3.1: The average throughput and valid transaction drops of four SRBB validators where
one is Byzantine.

For Table 3.1, we used a sending rate of 15000 TPS to stress test the blockchains. From
Table 3.1, it is clear that despite Byzantine validators propagating invalid transactions in blocks,
SRBB did not drop any valid transactions. RPM integrated with SRBB showed the best
performance by increasing the average throughput to 4285 TPS which was 7% higher than
SRBB without RPM. This is because Byzantine validators who are also rational (i.e., try to
maximize their reward) do not propagate invalid transactions in the presence of RPM due to
the fear of being penalized. Thus, RPM helps improve performance.

3.6 Discussion

In this section, we discuss the potential drawbacks of TVPR in SRBB and how they could be
addressed. We also discuss the applicability of TVPR to modern blockchains.
Censorship of transactions: In modern blockchains (e.g., Ethereum) if a validator decides
not to include a transaction in its new block, the said transaction is likely to be included in
another block by another validator eventually due to transactions being propagated to all val-
idators initially. This prevents censorship. With SRBB, since there is no individual transaction
propagation among validators, if a validator decides not to include a transaction from a client in
its new block, the transaction becomes censored (i.e., note we consider a validator that censors
transactions as a Byzantine validator). One solution would be to let a distributed load balancer
handle the censorship problem. A load balancer existing between clients and validators can
randomly forward each transaction from a client to a different SRBB validator, to increase the
probability of transaction inclusion in blocks. Even then, a transaction may be censored if the
load balancer forwards the transaction to a validator that censors it. In this case, if the client
does not receive a transaction receipt as proof of its execution within a period, the transaction
can be resent by the client and forwarded to a different validator than before by the load bal-
ancer due to the randomness in forwarding. The new validator may not censor the transactions
as the previous validator. If they also censor the transaction, this entire process can be repeated
until a validator that does not censor the transaction receives it. This process can be automated

10Using many medium-sized instances instead of the four c5.2xlarge AWS instances used in Table 3.1 does
not overcome our budgetary constraints as medium-sized AWS instances yield minimal savings compared to c5
instances.
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to reduce the burden on the client. A Byzantine load balancer itself may be problematic. In
such a case, a client may require to distribute transactions to multiple load balancers. We look
at a few transaction load balancing and transaction distribution strategies among multiple load
balancers to mitigate censorship in our future work [115].
Applicability of TVPR to other blockchains: In contrast to SRBB, implementing TVPR
on modern blockchains can be problematic. Due to removing propagation of transactions among
validators through TVPR, the first validator receiving a transaction should include it in a block
for the transaction to be eventually executed. If the first validator receiving a transaction is
weak, (e.g., has a low probability of creating blocks), it will rarely win the consensus protocol.
Thus, a client can expect to wait a long time for their transaction to be included in a block. To
prevent this drawback, clients may submit transactions to the most powerful validators in the
hope of increasing the probability of their transactions being included in blocks sooner. This can
centralize the blockchain towards a few validators and these few validators can be overloaded
with transactions leading to a DoS.

In contrast, with SRBB, despite having TVPR, clients do not have to wait a long time for
their transactions to be included in a block. This is because, in SRBB, all validators regardless
of being weak or powerful can make block proposals per consensus round and combine their
blocks to create a superblock [12]. More specifically, since SRBB uses the Redbelly consensus [12]
(Section 3.2.4) there is no single validator winning one consensus round. Every validator gets
to include a block in the decided superblock per consensus round if every validator proposes a
block. Thus, a transaction sent by a client to any validator will be included in the superblock
in the same consensus iteration or the next (e.g., with 1000 validators, a client does not have
to wait for 1000 iteration before its transaction is included in a block as all 1000 validators can
propose blocks per consensus round and include their block in the decided superblock).
Removing eager validations completely: Several works like Hyperledger Fabric [33] and
PRISM [32] completely remove eagerly validating transactions. However, unlike SRBB, these
two blockchains do not remove the initial transaction propagation as in our TVPR solution.
The complete removal of transaction eager validations increases the chances of DoS attacks on
the blockchain through spam transactions consuming network bandwidth. This is because there
is no validator initially validating the transactions, leaving the potential for spam transactions
to be submitted to the system. In contrast, SRBB’s validators eagerly validate transactions
received directly from clients. SRBB’s RPM goes further and reduces the potential of Byzantine
validators submitting invalid transactions to the network.

3.7 Summary

In this chapter, we introduced SRBB, a provably correct permissionless blockchain that im-
proves performance in realistic DApps by mitigating blockchain congestion. We demonstrated
that reducing transaction validations and propagation in normal cases using TVPR and miti-
gating invalid transaction propagation under flooding attacks using RPM can lead to minimal
transaction losses and significant performance improvements in SRBB. These improvements
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make SRBB perform significantly better than Algorand, Avalanche, Diem, Ethereum, Quorum,
and Solana when executing DApps under real workloads.

Despite SRBB’s better DApp support over state-of-the-art, it is unlikely to support a large
number of DApps. In a realistic setting, a blockchain might receive an aggregation of multiple
DApp workloads. For instance, if an aggregation of the nasdaq, Uber, and fifa workloads were
sent to SRBB, there will likely be an increase in transaction losses and a decline in performance
due to increased blockchain congestion. Therefore, in the next chapter, we present a dynamic
transparent DApp-oriented sharding protocol that enables DApps to be executed concurrently
in separate shards to reduce blockchain congestion and improve blockchain performance.



Chapter 4

DApp-oriented Dynamic
Transparent Blockchain Sharding for
Concurrent Execution of DApps

In this chapter, we propose a new dynamic transparent blockchain sharding protocol that im-
proves DApp performance by concurrently executing different DApps on different shards, a
concept known as DApp-oriented or service-oriented sharding [40]. We implement our sharding
protocol on SRBB to empirically show the boost in DApp performance.

Previously (Chapter 3), we introduced SRBB to improve DApp performance. However, to
support a large eco-system of millions of different DApps to widen the adoption of Web3, one
needs to eventually rival the performance of the current centralized applications on the web.
The great success of sharding in database performance led to the application of such techniques
on blockchains [31, 30, 116]. The use of shards allows transactions to be executed concurrently
in separate environments, reducing blockchain congestion.

Unfortunately, the existing blockchain sharding protocols (Table 4.1) suffer from limitations.
In fact, they are typically static: once the blockchain is spawned, there is no way to change
the number of shards at runtime based on DApp demand [54, 57]. Respawning the blockchain
constantly to adjust the number of shards based on DApp demand is not ideal as blockchains
are intended to run for a long time (e.g., Bitcoin [13] has been running for more than a decade
without interruption). The popularity of these DApps is heterogeneous, and a new popular
DApp may severely increase the number of requests to a particular smart contract, similar to the
CryptoKitties DApp that congested the Ethereum network [122]. Ideally, a sharding protocol
should allow the blockchain governance to resize the shards and adjust the shard number on-
demand without hard forking, i.e., creating a duplicated instance of the same blockchain. This
would reduce blockchain congestion and improve performance by provisioning more resources
for popular DApps, grouping less demanded DApps on fewer shards, or offering more resources
(e.g., CPU, storage) to a particularly congested shard.

Another problem is that most sharding protocols are opaque (cf. 2nd column of Table 4.1):
there is no way to securely access their shard configuration by querying the blockchain. Even if
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Sharded Transparency Dynamism Shard number Shard size No synchrony
blockchains dynamism dynamism needed
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ts Elastico [71]

OmniLedger [31]
RapidChain [30]
SSChain [84]
SharPer [83]
Cerberus [117]

D
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Avalanche [37]
ChainSpace [81]
Cosmos [118]
Ethereum sharding [116] –
Polkadot [54]
Zilliqa [57]
SkyChain [119]
Monoxide [45]
AHL [120]
RingBFT [121]
Sharded SRBB

Table 4.1: Comparison of sharded blockchains: the dynamism ranges from low, as indicated by
, to high, as indicated by , a checkmark indicates that the property holds while a cross

indicates that the property does not hold. The first column represents the transparency of the
sharding solution which refers to the ability for anyone to retrieve the sharding configuration
from the ledger. The second column represents the dynamism of the sharding approach which
is a combination of shard number dynamism (i.e., the ability to change the number of shards
at runtime) and the shard size dynamism (i.e., the ability to change the size of a shard at
runtime). The last column "No synchrony needed" refers to whether the sharding solution
assumes synchrony or not.

a sharding protocol was made dynamic by offering the users the ability to change the number
of shards at runtime, there would be no secure way for these users to confirm the changes took
effect. In some cases, sharded blockchains offer a website where users can find information
about the current shard configuration. For example, Cosmos [118] offers a website to observe a
map of its zones [123]. However, such a web service is typically centralized and prone to a single
point of failure, hence defeating the purpose of using a distributed ledger for security. First,
this website could simply be hacked, conveying a misleading sharding configuration. Second,
the traffic towards the website could be easily redirected with a network attack [48]. Finally,
users could expose themselves to phishing attacks by accessing a hacked copy of the website
instead of the real one. Such attacks are becoming frequent to fool blockchain users about the
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information they access online [124]. These types of limitations can be avoided by recording
the sharding configuration on the ledger, which allows anyone to access it transparently and
securely.

We propose a novel DApp-oriented dynamic transparent blockchain sharding protocol that
can concurrently execute DApps on separate shards to enhance performance while being able
to dynamically adjust shards according to DApp demand. We implement our sharding protocol
on SRBB. Since our protocol is intended to operate in open networks, it does not assume
synchrony, but rather partial synchrony [47], in that the bound on the message delays is unknown
(Chapter 2, Section 2.2). This protocol is made transparent by exploiting the blockchain itself:
validators can (i) create, (ii) close or (iii) adjust the size of a shard by invoking functions of a
smart contract residing on the default shard (called mainchain) within a limited time window
(if the network asynchrony prevents them from succeeding, then they retry with a larger time
window until success). As all smart contract invocations are logged to the secure storage of
the distributed ledger, the shard configuration is securely visible from the world state making
the sharding transparent. A new shard is created as a shardchain provisioned by the assets
deposited on the mainchain by its users. An important challenge we had to solve was for the
network topology to adapt based on the output of the sharding smart contract. To achieve
this we present a reconfiguration function in the smart contract which emits an event that
triggers the spawning, shutdown, and restart of some of the blockchain machines. Like other
sharding approaches, we provide randomness in shard creation to prevent shard takeovers by
malicious nodes. We implement and evaluate the ability of our sharding solution to execute
DApps concurrently on SRBB [1]. Our results confirm that our sharding protocol leads to
speedup, that the performance of shards can benefit from a growing number of node resources,
and that our mainchain does not act as a performance bottleneck.

In summary, this chapter presents the following contributions:

• We introduce DApp-oriented dynamic transparent blockchain sharding. This sharding
mechanism follows a service-oriented sharding model [40] where each shard is dedicated
to a DApp or group of DApps disjoint from DApps executing on other shards. Each
DApp executes on at most one shard. Our sharding mechanism also provides the ability
for a blockchain to reconfigure the number of its shards and the size of each of its shards
transparently and on demand without disrupting the blockchain service. The ability to
dynamically shard based on DApp demand is particularly appealing to reduce blockchain
congestion and thereby improve the performance of DApp execution on blockchains.

• We propose a DApp-oriented dynamic transparent sharding solution that (1) concurrently
executes DApps in shards, and (2) provides the capability to create a new shard, adjust a
shard, close a shard, and rotate shard validators. We present our sharding solution algo-
rithms as inherently transparent smart contracts that emit events to replace the current
sharding configuration at the network level.

• We demonstrate the feasibility of our approach by implementing our sharding algorithms
on SRBB deployed in 10 countries across all 5 continents. The experimental results confirm
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that the performance improves when shards execute DApps concurrently (Figure 4.2).
We demonstrate the speedup of DApp execution when 3 shards of SRBB concurrently
execute 3 DApp workloads separately [28]: the first shard executes nasdaq, the second
shard executes Uber and the third shard executes fifa. We show that with just 3 shards
executing the aforementioned demanding DApp workloads, a total average throughput of
2828.87 TPS, and a peak throughput of 9523 TPS can be achieved. In contrast, the average
throughput and the peak throughput were halved when SRBB received an aggregate
workload consisting of nasdaq, Uber, and fifa workloads.

Chapter Outline: The rest of this chapter is ordered as follows: In Section 4.1, we present
our DApp-oriented dynamic transparent sharding protocol. Section 4.2 discusses the availability
of our sharding solution and Section 4.3, proves our sharding solution is secure with high prob-
ability. In Section 4.4, we illustrate the performance of our sharding protocol when executing
concurrent DApps deployed at a large scale on SRBB. Finally, in Section 4.5, we conclude the
chapter.

4.1 DApp-oriented Dynamic Transparent Sharding Protocol

4.1.1 System Model

From n validators, a group of validators is selected through a random mechanism to the main-
chain. The set of nodes that execute consensus on the mainchain is termed the mainchain
committee. The mainchain committee is tasked with administrative tasks of the network such
as shard creation, shard committee rotation, and dynamic adjustment of the number of shards
and the nodes in a shard. A mainchain can create one or many shards from validators. Each
shard keeps a separate state, and transactions and is tasked with executing a unique DApp or
a set of related DApps. A validator wishing to join a shard should stake a deposit and register
a wallet address prior to joining a shard to mitigate Sybil attacks.

4.1.2 Threat Model

To implement our sharding protocol, we alter a previous assumption of our threat model (Chap-
ter 3, Section 3.2.1). More specifically, out of n validators, we assume f is Byzantine such that
f < n/4. This is to ensure that when validators are split into shards, a shard has Nv validators
such that fNv < Nv/3 with high probability (proofs are deferred to Section 4.3), similar to pre-
vious work [31] [71]. For a system executing BFT consensus within a shard, as is the case in our
evaluations, fNv < Nv/3 ensures all correct validators agree. Note that n and Nv can vary at
run-time due to the dynamism of our approach. A shard-takeover attack consists of an adversary
gaining control over sufficiently many validators within a shard to prevent consensus from being
reached. As mentioned previously (Chapter 3), we assume a slowly-adaptive adversary that can
bribe validators between epochs but not when a shard committee is active [31] [30], and we
cope with bribery by rotating shards periodically. More precisely, the shard committee (i.e. the
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set of validators in the shard) rotates per epoch, mitigating bribery through a slowly-adaptive
adversary.

4.1.3 Network Model

The sharding network model assumes honest validators in the network are well-connected and
the communication channels between honest validators are partially synchronous (Chapter 2,
Section 2.2). While various sharded blockchains typically assume a stronger property, called
synchrony [47], synchrony is typically difficult to guarantee and can be violated in an open
network like the Internet [48], which has led to numerous double spending attacks against
blockchains [85, 86].

4.1.4 Bootstrapping

A subset of n validators are selected to perform consensus on the mainchain based on a random
beacon. The mainchain committee rotates periodically to mitigate bribery takeovers and the
size of the mainchain is changeable in a similar approach to how we change the shard size (Alg. 4
line 16), which allows new nodes to join the mainchain committee if a threshold of mainchain
validators agree.

4.1.5 Overview

In this section, we present an overview of how the DApp-oriented dynamic transparent sharding
protocol works.

Figure 4.1 depicts a high-level example of a dynamic blockchain sharding execution where
smart contract invocations stored in blocks configure the sharding. Initially, there are 25 val-
idators in the mainchain with a single genesis block, as depicted on the 1st column, they decide
the shard size. Then, other validators invoke the Join(·) function to register interest to join a
new shard (cf. 2nd column). When enough validators have cast their interest to join, the shard
creation smart contract invokes CreateShard(·) on the mainchain to create a new (blue) shard
(cf. 3th column). The resulting function invocation is stored as a transaction in a new block on
the mainchain. A new (blue) shardchain, maintained by the (blue) shard is created: it is linked
to the block of the mainchain where its creation transaction is stored. New validators invoke
the Join() function as depicted in the middle column. After that, the CreateShard(·) function
creates a new (green) shard while the old (blue) shard invokes the CloseShard(·) function, which
reports the blue shard history to a new block on the mainchain (cf. 4th column). Finally, the
new shard rotates its participants by executing the Replace(·) function whose invocation gets
stored in a new block.

In the next sections, we explain how the DApp-oriented dynamic transparent sharding (1)
executes concurrent DApps in shards (DApp-oriented sharding) and (2) achieves transparency.
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Figure 4.1: An example of the consecutive steps (from left to right) of a DApp-oriented dynamic
transparent sharding execution where 2 shards are created and one of these shards is closed,
and shard validators are rotated. Each shard executes DApps disjoint from other shards making
our sharding protocol DApp-oriented and capable of fully executing DApps concurrently. As
shard configurations are logged to the blockchain, it is transparent.

4.1.6 DApp-oriented Sharding

In the web-scale blockchain that we foresee, each DApp or a group of related DApps execute
on at most one shard. This concept is known as DApp or service-oriented sharding [40]. For
example, on a three-sharded system, we could have a Twitter DApp on the first shard, a Youtube
DApp on the second shard, and an NFT DApp with multiple smart contracts (e.g., an ERC20
token and NFT smart contract) on the third shard. Validators in a shard deploy respective
DApps on their shards. As a shard has Nv validators such that the Byzantine validators are
less than a third with high probability (i.e., fNv < Nv/3), copies of the same DApp will not
be deployed on multiple shards to disrupt the DApp-oriented nature of the sharding approach.
Clients send requests to the shard that executes their required DApp. Each shard tag and the
services they execute are made publicly available so the clients can connect to the shard they
prefer to send their transactions. Due to the DApp-oriented nature of sharding, the state of each
shard is disjoint, hence state consistency is not affected due to data migrations happening from
the closing of multiple shards. Also, due to shard independence, there is no need for cross-shard
transactions. We do not present our own cross-sharding protocol and it is out of the scope of
the DApp-oriented dynamic transparent sharding protocol.
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4.1.7 Transparency

Our sharding protocol works by invoking functions in smart contracts. As such, the CreateShard(·),
Join(·), and CloseShard(·) functions invocations are registered in the blockchain as depicted in
Figure 4.1. If the sharding protocol is implemented on a permissionless blockchain like SRBB
as is the case in our evaluations, it allows anyone to query the blockchain and know the current
and past sharding configurations.

4.1.8 Assumptions

We assume validators have static IP addresses and use these static IP addresses to identify other
validators in the DApp-oriented dynamic transparent sharding protocol. This is for the sake of
simplicity. Note that if required the implementation can be adjusted to use an Ethereum Node
Record (ENR) 1.

Using IP addresses can be a Sybil risk if a single validator uses multiple IP addresses to
join a shard by invoking the Join function. To prevent such issues, as mentioned previously,
we adopt a stake-based strategy, which not only requires a validator to stake deposit prior to
joining a shard but also requires a validator to register their wallet address in the sharding
smart contract.

To prevent duplicate invocations to join a shard, the invoker’s wallet address is stored in a
map called[senderAddr ] where the key is the invoker’s wallet address (i.e., senderAddr) and the
value is a true or false Boolean value. The Join function can exit if called[senderAddr ] is set to
true, preventing a Byzantine validator from joining the same shard with different IP addresses
while using the same wallet address. A node is also prevented from invoking a shard function
with multiple wallet addresses while parsing the same IP address. This is done by allowing only
the registered wallet addresses on the sharding smart contract to invoke functions. Invocations
from unidentified wallet addresses can be discarded.

The remainder of this chapter focuses on presenting our DApp-oriented dynamic transpar-
ent sharding protocol and its impacts on DApp performance. We defer additional security
guarantees to future work.

4.1.9 Shard creation

The shard creation is presented in Alg. 4 and is deployed on the mainchain as a smart contract
during the bootstrap of the blockchain. The NumberOfAdmins refers to the number of validators
in the mainchain.

The shard creation smart contract is initialized with a set of data structures. The variable
event refers to a broadcast message sent to all blockchain nodes in a shard. This event has a
name (e.g., ShardNodes) and values that it broadcast (i.e. ShardNodes broadcasts an unsigned
integer, a string array, and an address array). A mapping is a data structure mapping a key to a
value. The bool is a boolean data type and | admins | is the set containing the wallet addresses
of mainchain validators.

1https://eips.ethereum.org/EIPS/eip-778

https://eips.ethereum.org/EIPS/eip-778
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Algorithm 4 The smart contract that triggers the creation of a new shard
1: Initialization:
2: event ShardNodes(uint, string[], address[])
3: uint shardSize
4: uint NumAccounts
5: mapping (string→ string[])shard
6: mapping (address→ bool))called
7: mapping (string→ bool))voted
8: mapping (uint→ address[])accounts
9: mapping (uint→ uint)SizeOfShard

10: mapping (uint→ uint)NumberOfShards
11: mapping (uint→ bool)Created
12: admins : the set of addresses of admins
13: NumberOfAdmins = | admins | � admins are the mainchain validators
14: mapping (uint→ bool)CloseInvoked
15:
16: SetSize(val, NShards): � threshold of admins/mainchain validators set shard size, number & accounts/shard
17: if SenderAddr ∈ admins then � if function invoker is an admin/mainchain validator
18: SizeOfShard[val]++
19: NumberOfShards[NShards]++
20: if NumberOfShards[NShards] == (2 ∗NumberOfAdmins/3-1 ) &

SizeOfShard[val] == (2 ∗NumberOfAdmins/3-1 ) then � if shard size, number, accounts agreed
21: shardSize = val
22: NumShards = NShards
23:
24: Join(ipAddr): � when a node wants to join any shard as a validator
25: if called[senderAddr ] == false & voted[ipAddr ] == false then � prevents assigning IP twice to shard and

making duplicate invokes from the same account/wallet
26: called[senderAddr ] = true
27: voted[ipAddr ] = true
28: random = RANDContractaddr .GetRand() � Fetch random number from RANDAO
29: shard[(random) mod (NumShards)] ∪ ipAddr � assigns the IP to a random key in the shard map
30: accounts[(random) mod (NumShards)] ∪ senderAddr � assigns the wallet address to a random key in the

accounts map
31: if length(shard[(random) mod (NumShards)]) == shardSize & Created[tag] == false then �

tag = (random) mod (NumShards)
32: CreateShard((random) mod (NumShards),shard[random mod (NumShards)],
33: accounts[random mod (NumShards))
34: length(shard[random mod (NumShards)]) = 0 � reset the shard tag value to 0
35: length(accounts[random mod (NumShards)]) = 0 � reset the shard tag value to 0

36:
37: ClosedShards(tag): � mainchain validator (admin) calls this if received n-t COMMITS for close from shardchain
38: if SenderAddr ∈ admins then � if the invoker is a mainchain validator/admin
39: CloseInvoked[tag] + +
40: if CloseInvoked[tag] == (2 ∗NumberOfAdmins/3-1 ) then
41: Closed[tag] = true
42:
43: CreateShard(tag, []shard), []accounts):
44: emit ShardNodes(tag, shard, accounts) � emit ip addresses & accounts of shard nodes, triggers shard start
45: Created[tag] = true � Assign shard as created
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Admins (i.e., validators of the mainchain) start by setting the size of shards and the number
of shards (Alg. 4 line 16). Note that a threshold of admins should agree to the same settings
for these values to be set (Alg. 4, line 20), and a threshold of admins can again agree to change
these values during runtime making the sharding dynamic. Unlike other sharding schemes, we
provide the capability to change shard size and number of shards even when the number of
validators in the network remains constant (no validators joining or leaving).

Validators not in the mainchain invoke the Join function and parse their IP address (Alg. 4,
line 24) in an attempt to join a shard. Note that, line 25 of Alg. 4, prevents validators from
attempting to join multiple shards as well as two validators from joining shards with the same
IP address. Subsequently, the shard creation contract fetches a random number random from
a verifiable random number generation contract (Alg. 4, line 28) taken out of our system (We
rely here on the Randao implementation [125] of a random number generator for the sake
of explaining our protocol). Any other random number generation solution can also be used
instead [126]).

Based on random, the IP address of a validator is assigned to a random key of the shard
mapping (Alg. 4, line 29). Deriving the key values as (random) mod (NumShards) ensures
that the IP address of a validator is assigned a shard tag x such that x ∈ {0, 1, ..., NumShards}.
Similarly, the wallet address of the validator is also added to a random key corresponding to a
shard tag of an account mapping.

We underscore that NumShards can be adjusted by admins to accommodate more, or fewer
shards in the system. If for a particular shard key/tag the maximum number of validators (i.e.,
ShardSize) that could be assigned is complete, the shard creation contract invokes the function
CreateShard, parsing an array of validators and validator accounts for a shard tag (Alg. 4,
line 33).

The CreateShard function emits a smart contract event ShardNodes (i.e., a broadcast to all
validators) with the validator’s IP addresses and accounts that should be in a particular shard
tag (Alg. 4, line 44).

Validators, upon receiving the same ShardNodes event from fmain + 1 validators such that
fmain < NumberOfAdmins/3, verify its IP address is included in the smart contract event. If
included, the validator candidates reconfigure and form a validator committee for a shard with
a specific tag. Validators in a shard are known as shard validators. Details of this process are
outlined in Alg. 5.

Algorithm 5 The algorithm executed by validators to create a new shard upon receiving event
1: Upon recv. same contract event from fmain + 1:
2: if localIP ∈ event then � If local IP is in event
3: tag, shard, accounts ← extract(event) � extract values from event
4: stop(node)
5: editGenesis(accounts) � Edit genesis with accounts
6: connectPeers(shard) � connect with other members of the shard
7: start(node)
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4.1.10 Shard closing

Shard closing is a procedure that helps prevent resource wastage. If a shard is not processing
many transactions or is idle for a while, shard nodes can decide to close the shard. This is a
part of the extended dynamism our protocol provides.

Algorithm 6 The smart contract that triggers the closing of a new shard
1: Initialization::
2: event Bs(string y)
3: event COMMIT(string x, string m)
4: mapping(string→ uint) threshold
5: uint Nv
6: bool reached
7: mapping(bytes32→ string) called;
8: Nv = val � The number of nodes in a shard from Algorithm 4
9: ShardTag = tag � tag of shard generated– based on RANDAO in Algorithm 4

� nodes call CloseShard parsing the state root
10: CloseShard(stateroot):
11: if called[hash(SenderAddr, stateroot)] == true then � SenderAddr parsed stateroot before
12: return � avoids double voting

13: called[hash(SenderAddr, stateroot)] = true � ’SenderAddr’ parsed stateroot
14: threshold[stateroot] = threshold[stateroot] + 1 � number of nodes parsed specific ’stateroot’
15: if threshold[stateroot] == 2*Nv/3+1 & !reached then � state root first reaching threshold
16: reached = true
17: emit COMMIT(stateroot, ”COMMIT”, ShardTag) � emits a commit event with the stateroot

18: emit Bs(stateroot) � emits event with the parsed stateroot

Alg. 6 presents the smart contract algorithm for closing a blockchain shard. The variable
Nv is the number of validators that the shard contains.

Firstly, once a shard validator decides to close the shard it is a part of, it invokes CloseShard
(Alg. 6 line 10) parsing the state root the node prefers to close at. Alg. 6 lines 11- 12, ignores
if a state root is parsed to the function by the same validator more than once. Otherwise,
the threshold is increased (Alg. 6, line 14), which indicates the number of validators that have
parsed a specific state root to the CloseShard function. At line 15 of Alg. 6, if 2 ·Nv/3 + 1 nodes
s.t. Nv is the total number of validators in the shard (i.e., shard validators) have parsed the
same state root to CloseShard, then a commit event is emitted with the ShardTag. Otherwise,
the parsed state root to the CloseShard function is emitted in a smart contract event with the
name Bs.

Alg. 7 presents the execution at a shard validator when either a commit or a Bs smart
contract event is received from the shard close smart contract algorithm (Alg. 6).

All shard validators subscribe to the close shard smart contract in their state. Upon receiv-
ing an event from the smart contract containing the address CloseContractAddr, the shard
validator checks if the event is a commit event (i.e., whether it contains the keyword commit)
at Alg. 7 line 3. If this condition is met, the current block number (Alg. 7 line 4) of the shard
validator is retrieved and the state of the shard validator is traversed from the 0th block to the
current block to find the block number that contains the state root received in the event. If a
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Algorithm 7 The algorithm executed by a participant to close a shard upon reception of the
smart contract closure event
1: Upon receiving a smart contract event:
2: event← subscribe(CloseContractAddr) � all nodes subscribe to closing smart contract
3: if contains(event, commit) then � smart contract event contain the “COMMIT” string
4: number = getCurrentBlockNumber()
5: for i = 0; i < number ; i++ do
6: block ← getBlock(i)
7: if block.stateroot = event.stateroot then
8: Close(block.number) � parse closing block number to sync balances algo
9: exit() � exit code

10: else
11: if nodeHas(event.stateroot) then � If node has same state root
12: closeContractAddr .CloseShard(event.stateroot) � pass stateroot to SC
13: else
14: pending.push(event.stateroot) � push the stateroot to a pending array
15: Check()

16: Check(): � Do in parallel
17: for i=0; i < length(pending); i++ do
18: if nodehas(pending[i]) then
19: CloseContractAddr .CloseShard(pending[i]) � parse stateroot to smart contract

block exists with the received state root in the shard node, it decides to parse the block number
to a Close function (Alg. 7 line 8) shown in Alg. 8 and exits.

If the event is not of type commit but the shard validator has the state root contained in
the event (Alg. 7 line 11), the validator invokes the CloseShard function in the Close shard smart
contract parsing the state root. If the event is not of type commit and the shard validator
does not have the state root received, it is pushed to a pending array and kept (Alg. 7 line 14),
in case the shard validator sees the state root sometime in the future. In Alg. 7 line 16, a
Check function concurrently and repeatedly checks, if the shard validator has the pending state
root. The CloseShard function is invoked parsing the state root if the state root is found (Alg. 7
line 19).

Algorithm 8 Shard chain participant Send Closing Account Balances to main chain

1: Initialization:
2: A is the set of account addresses in the shard
3: Account(address, balance) � A tuple of address and balance
4: SA is the set of Account(address, balance) tuples

5: Close(BNumber): � parse block number at which the shard should close
6: for a ∈ A do
7: b ← getBalance(a, BNumber) � Balance of account a at closing block
8: SA ∪Account(a, b)
9: Broadcast(SA, ShardTag) � Broadcast to main chain nodes

10: stop(shardNode)
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Alg. 8 executes at each shard validator and retrieves balances of all accounts at the block
number that the shard closes (Alg. 7 line 8) and broadcasts it and the shard tag to the mainchain
validators (Alg. 8 line 9). Note that this broadcast is a reliable broadcast and waits for an ACK
before the shard participants stop in the subsequent line.

Algorithm 9 Syncing of balance at the main chain from shard chains

1: Initialization:
2: threshold = 2N/3 + 1 s.t. N is the total number of shard chain nodes
3: mapping (bytes32 → uint) count

4: Receive(SA), ShardTag: � Receive Account tuple set
5: count[hash(SA)] ← count[hash(SA)] + 1 � times specific account tuple set received
6: if count[hash(SA)] == threshold then � If threshold of same SA received
7: CreateContractAddr .ClosedShard(ShardTag)
8: stop(node)
9: editGenesis(SA) � Edit the genesis, adding accounts and balances tuple set

10: start(node)

A mainchain participant upon receiving the tuple set of accounts and balances SA from
shard participants, and the shard tag, execute Alg. 9. Upon receiving SA, the algorithm keeps
count of the number of unique SA sets received (Alg. 9 line 5). If 2 · Nv/3 + 1 number of the
same SA set is received s.t. Nv is the number of shard validators in the closing shard, the
mainchain node invokes the ClosedShard function in Alg. 4 to set the shard with the specific tag
as closed. Consequently, the mainchain validators stop (Alg. 9 line 8), edit the genesis adding
the new accounts and balances (Alg. 9 line 9) and restarts (Alg. 9 line 10). This way, the
mainchain validators are synced with the accounts and balances of the shardchain. Note that,
syncing accounts and balances from multiple shardchains upon shard closing does not affect the
consistency of the state in the mainchain since states in each shard are disjoint as mentioned in
Section 4.1.6.

4.1.11 Shard Committee Rotation

A shard with a particular tag remains active once it is created until it is closed. There is a risk
of validators being bribed by a slowly-adaptive adversary while a shard is active. If sufficiently
many validators in a shard committee are bribed this way (at least 1/3), there is a risk of shard
takeover. To mitigate this risk, we propose a shard committee rotation protocol that is part
of the shard creation smart contract (Alg. 4) but presented separately below for clarity. We
consider an epoch as a specific time t where a shard committee processes transactions (during
an epoch multiple blocks can be processed). At every t interval, all correct shard validators
perform committee rotation correctly. Note that the number of correct validators in a shard is
greater than 2Nv/3.

The committee rotation starts with shard validators invoking Replace in the Alg. 1 Extension
at line 4. Each correct shard validator parses the IP address of a shard validator they wish to
replace within the shard and the shard tag simultaneously to the Replace function. For example,
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Algorithm 1 Extension Shard committee rotation algorithm, a part of shard creation smart
contract
1: Initialization::
2: mapping (string→ uint) ReplaceIpInvoked
3: mapping (address→ uint) ReplaceAddressInvoked

4: Replace(ipAddr , tag): � Shard node parses its Ip address
5: ReplaceIpInvoked[ipAddr ]++
6: ReplaceAddressInvoked[senderAddr ]++
7: if ReplaceIpInvoked[ipAddr ] > 2 ·Nv/3 & ReplaceAddressInvoked[senderAddr ] > 2 ·Nv/3 then
8: called[senderAddr ] = false
9: voted[ipAddr ] = false

10: Created[tag] = false
11: shard[tag] = shard[tag] \ ipAddr � remove IP from shard
12: accounts[tag] = accounts[tag] \ senderAddr � remove account/wallet address from shard
13: Join(ipAddr) � Invoke Join in Algorithm 4

correct shard validators could decide to replace the shard validator that has been in the shard the
longest. If a particular IP address and sender address have been used for the invocation 2 ·Nv/3
times, the called and voted mappings are set to false for the corresponding IP address and sender
address. Subsequently, the Create[tag] is set to false and the Join function is invoked with the
IP address. The Join function ensures shard validators are assigned to new shard committees
following the same process of shard creation, that is, rotating the shards committees every
epoch. Note that there is a checker that verifies the wallet address of the validator invoking
the Replace function to prevent a Byzantine shard validator’s invocation from being considered
more than once during shard rotation in an epoch. However, these details are excluded in the
algorithm for brevity.

At the end of an epoch, upon observing shard validators invoking Replace, the mainchain
participants can adjust the number of shards and the number of validators per shard parameters
according to the workload, which will change the number of shards and the validators per shard,
making our sharding approach dynamic.

4.2 Availability

Shard validator rotation in every epoch is essential to tolerate bribery from a slowly-adaptive
adversary. However, frequent changes of validators are a challenge when the state is sharded.
New shard validators need to sync the state from previous shard validators, to service the DApps
for a particular shard tag. This syncing process involves downloading the entire blockchain from
previous nodes and is an expensive task, which is known to be a bottleneck on performance
and affects the availability of shard nodes for transaction processing [84]. Since our sharding
approach is Byzantine fault tolerant, downloading the latest state would suffice by querying
f +1 previous shard committee members. There is no need to download the entire state history
(i.e. snapshots) or the entire block history. As such, we provide better availability than some
sharding approaches that shard the state [31].
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4.3 Proof sketches

The first lemma shows that each shard contains less than Nv/3 Byzantine validators with
high probability when the total number of validators in the network is n where f < n/4 are
Byzantine. This is key to guaranteeing agreement among each shard to ensure that the view
of the blockchain is consistent across all replicas. Note that while we prove by hand that each
shard contains less than Nv/3 Byzantine nodes with high probability, concomitant works like
OmniLedger [31] implicitly make this assumption. They assume that random shard assignment
ensures the ratio between Byzantine and correct validators in any given shard closely matches
the ratio of Byzantine and correct validators in the entire network with high probability. For
simplicity in the analysis, we assume that the shard validators correspond to a sample of Nv

validators taken uniformly at random among the whole set of n validators, and we reuse the
same reasoning as in [71].

Lemma 3. In each shard of Nv validators, there are less than Nv/3 Byzantine validators with
high probability when the network has a total of n validators and f Byzantine validators s.t
f < n/4.

Proof. By assumption, we return a validator taken uniformly at random among all n validators.
Consider each of these events as a Bernoulli trial such that a random variable Xi is 1 if the
returned validator is correct and 0 if it is Byzantine. Let ρ be the portion of Byzantine validators.
Because there are at most f < n/4 Byzantine validators among the initial n validators, we have
ρ < 1/4.

Pr[Xi = 1] = p = (n−ρ)
n ,

Pr[Xi = 0] = 1− p = ρ
n .

The random variable X = ∑Nv
i=1 Xi thus follows a binomial distribution and Pr[X = k] =(Nv

k

)
ρNv−k(1− ρ)k, hence we can derive the probability Pr[X ≤ 2Nv/3] of creating a shard with

less than 2/3 of correct validators:

Pr[X ≤ 2Nv/3] =
2Nv/3∑
k=0

(
Nv

k

)
ρNv−k(1− ρ)k.

As this probability decreases exponentially fast with Nv there exists a parameter λ and a
constant n0 for which Pr[X ≤ 2Nv/3] ≤ 2−λ for all Nv ≥ n0. As a result, each shard contains
at most ⌈Nv/3⌉ − 1 Byzantine validators with high probability, which concludes the proof.

Given Lemma 3 and our threat model, we know that validators in a shard agree when less
than Nv/3 are Byzantine. Hence each time a new block is added to a shard that did not fail,
then the shard remains consistent with high probability. As a result, transparent access to
sharding information remains guaranteed. An important remark is that the proof of Lemma 3
relies on having Nv ≥ n0, however, for the sake of the empirical analysis, we choose Nv relatively
small (200 validators) in Section 4.4 to limit the cost of our AWS experiments.
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Lemma 4. If 2 ·Nv/3 + 1 of the validators of shard s invoke its CloseShard() function with the
same argument, then the shard s eventually closes.

Proof. The state root at which a shard validator wishes to close the shard is received by all
correct validators in the shard by the Bs event (Alg. 6, line 18) since the network is partially
synchronous. Also, if a shard validator agrees to close the shard at a particular state root
after seeing the state root event, they will either have that state root in their history or will
eventually have it since consensus ensures the nodes have the same state history eventually.
Therefore, if at some point in time, 2 ·Nv/3 + 1 validators (Alg. 6 line 15)—where the number
of Byzantine validators is f < Nv/3, agree on the state root, a commit event will be emitted
(line 17) triggering the close of the shard.

4.4 Evaluation

In this section, we evaluate the performance of our DApp-oriented dynamic transparent shard-
ing protocol. Our sharding approach was implemented on SRBB [1]. Note that while we
evaluated our sharding protocol on SRBB to benefit from the fork-free guarantees, our solution
is adaptable to any Ethereum-based blockchain executing a BFT consensus. We implemented
our smart contract algorithms using Solidity. All the experiments were performed on AWS
with c5.2xlarge (8 vCPUs, 16 GB RAM) EC2 instances which have similar performance to a
modern PC. The AWS instances were evenly distributed across 10 AWS regions which included
5 continents. Namely, we used the Bahrain, Cape Town, Milan, Mumbai, Sao Paulo, Ohio,
Oregon, Stockholm, Sydney, and Tokyo AWS regions. All evaluations were performed using the
Diablo blockchain benchmarking suite [28]. We used the nasdaq, Uber, and fifa DApp work-
loads to present the capability of our DApp-oriented dynamic transparent sharding protocol to
concurrently execute different DApps (Sections 4.4.1).

4.4.1 Concurrently Executing DApps in Different Shards

Figure 4.2 presents the average throughput at load of 200 SRBB validators spread across 10
AWS regions against sharded SRBB consisting of 3 shards with 200 SRBB validators per shard.
When an aggregation of the nasdaq, Uber, and fifa workloads are sent to SRBB, we ob-
serve that SRBB only achieves an average throughput of 1451.18 TPS. SRBB also loses 9% of
the transactions sent. This is expected, due to the congestion caused by 3 demanding DApp
workloads.

With 3 shards of SRBB each executing the nasdaq, Uber and fifa DApp workloads [28]
concurrently, the sharded version of SRBB achieves an average throughput of 2828.87 TPS. The
higher average throughput in comparison to SRBB is expected since each SRBB shard processes
a unique set of transactions, without performing cross-shard transactions because, as mentioned
previously, we follow a DApp-oriented sharding approach. In contrast to SRBB, sharded SRBB
loses only 2% of the transactions sent.

Figure 4.3 presents the peak throughput when (1) SRBB executes the aggregated workload
consisting of nasdaq, Uber, and fifa workloads and (2) sharded SRBB receive the nasdaq,
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Figure 4.2: The average throughput of 200 SRBB validators executing the aggregation of nas-
daq (N), Uber (U) and fifa (F) workloads compared with sharded SRBB consisting of 3
shards (each shard has 200 validators). The first shard executed the nasdaq workload, the
second shard executed the Uber workload and the third shard executed the fifa workload.
The execution of the 3 workloads in sharded SRBB was concurrent. When SRBB executed the
aggregated workload, only 91% of transactions were committed. It also performed significantly
lower than sharded SRBB.



72
Chapter 4: DApp-oriented Dynamic Transparent Blockchain Sharding for Concurrent

Execution of DApps

SRBB (N,U,F) 3 shards
0

2000

4000

6000

8000

Pe
ak

Th
ro

ug
hp

ut
(T

PS
)

Figure 4.3: The peak throughput of 200 SRBB validators executing the aggregation of nasdaq
(N), Uber (U), and fifa (F) workloads compared with sharded SRBB consisting of 3 shards (each
shard has 200 validators). In sharded SRBB, the first shard executed the nasdaq workload,
the second shard executed the Uber workload and the third shard executed the fifa workload.
The execution of the 3 workloads in sharded SRBB was concurrent. A peak throughput of
4986 TPS was achieved when SRBB executed the aggregated workload. In contrast, sharded
SRBB achieved a peak throughput of 9523 TPS.
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Uber and fifa workloads on shard 1, 2 and 3 respectively. SRBB only achieves a peak through-
put of 4986 TPS. In contrast, sharded SRBB reaches a peak throughput of 9523 TPS, which is
almost twice as much as SRBB. Executing DApps in separate shards allow sharded SRBB to
reduce congestion, and improve blockchain performance compared to SRBB.

4.5 Summary

In this chapter, we introduced DApp-oriented dynamic transparent blockchain sharding, a
DApp-oriented sharding protocol that executes DApps concurrently and has the ability to
change its sharding configuration at runtime without hard forks. Our implementation relies
on smart contracts, hence anyone can double-check the effectiveness of the sharding configura-
tion by auditing the current state of the blockchain.

Most importantly, the performance of our worldwide geo-distributed evaluations demon-
strates that the DApp-oriented dynamic transparent sharding improves throughput under a
balanced workload (Figure 4.2). With just 3 shards where each shard is dedicated to exe-
cuting a single DApp: nasdaq, Uber and fifa respectively, our sharding protocol on SRBB
(sharded SRBB) can achieve a total average throughput of 2828.87 TPS and a peak throughput
of 9523 TPS. In contrast, executing SRBB alone halved the average throughput to 1451.18 TPS
and the peak throughput to 4986 TPS compared to its sharded counterpart. This shows that
sharded SRBB built upon the DApp-oriented dynamic transparent sharding protocol can sup-
port multiple realistic DApps by concurrently executing them on separate shards.

We have thus far improved blockchain performance for DApp execution by presenting SRBB
and a sharding protocol. SRBB outperformed 6 modern blockchains under realistic DApp work-
loads. The sharded version of SRBB which used our sharding protocol, yielded better perfor-
mance over SRBB and supported the concurrent execution of multiple DApps. In addition to
blockchain sharding, other avenues have shown promise in enhancing blockchain performance
such as Layer 2 solutions [29] and the decoupling of blockchain consensus and state execu-
tions [32, 33]. As this thesis focuses on improvements in the blockchain layer, in the next
chapter, we focus on another method to enhance the DApp performance of SRBB which in-
volves decoupling SRBB.



Chapter 5

Collachain: Decoupling Smart
Redbelly Blockchain

In this chapter, we present a more performant version of SRBB by decoupling its SRBB VM
and consensus into two separate machines to improve the performance of DApps under burst
workloads compared to SRBB. Support for burst workloads is important to widen the adoption
of Web3 as stock markets like nasdaq have sporadic bursts in requests.

Decoupling has been used in various forms in blockchains for varying purposes [32, 33]. For
example, PRISM [32] decouples blocks into separate chains to improve the performance of the
longest chain rule used in Nakamoto’s consensus. Hyperledger Fabric [33] decouples transaction
ordering and execution using separate order nodes and peer nodes. Decoupling transaction
ordering facilitates different ordering services (i.e., consensus protocols) to be plugged into the
system. Similar to Fabric, we decouple our consensus and execution to produce Collachain.
However, unlike Fabric, the main motivation behind our decoupling is to enhance blockchain
performance rather than to offer flexibility in using a customized consensus protocol. Fabric
and Collachain are inherently different in their architecture. More specifically (1) Fabric follows
a UTXO model whereas Collachain follows a balance model and (2) Fabric’s client nodes submit
transactions for execution and for consensus in two separate rounds whereas Collachain simply
submits transactions to the SRBB VM.

In summary, this chapter presents the following contributions:

• We present the decoupled version of SRBB known as Collachain which separates the SRBB
VM and the consensus of SRBB into two separate machines.

• We evaluate Collachain against SRBB using the Diablo blockchain benchmark suite [28].
Collachain shows a 33% increase in peak throughput compared to SRBB for the nasdaq
burst workload [28].

• As we already evaluated real DApp workloads throughout this thesis, we show that Col-
lachain is well-suited for burst native payment workloads (a timely requirement for the
wider adoption of Web3) and scales up to 200 nodes spread across 10 AWS regions span-
ning 5 continents. Collachain achieves an average throughput of 2038 TPS at 200 nodes
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for burst native payment workloads. When Transport Layer Security (TLS) is enabled
between nodes, Collachain achieves an average throughput of 1960 TPS, showing only a
drop in 4% compared to its non-TLS counterpart.

Chapter Outline: The rest of this chapter is ordered as follows: Section 5.1 presents the
model for Collachain, Section 5.2 presents Collachain, Section 5.3 presents the evaluation of
Collachain, and Section 5.6 presents the discussion mentioning potential drawbacks. Finally, in
Section 5.7, we conclude this chapter.

5.1 Model

System Model: For Collachain, we introduce the notion of a participant that is a pair of
SRBB VM and consensus nodes. More specifically, a participant owns a SRBB VM and a
consensus node (More specifically, 1 participant has 1 VM + consensus. There are n such
participants). Therefore, when we say there are m nodes in Collachain, we mean there are
n = m/2 participants each owning a node pair consisting of a consensus and SRBB VM node.

Collachain is a permissionless blockchain where (1) any node can join or leave the network
and (2) any node has a chance to become a validator based on a periodic election process if they
stake a certain amount of tokens. This membership approach of periodically rotating validators
prevents an exclusive set of nodes from always being validators, providing a permissionless envi-
ronment similar to Algorand [10]. A Collachain node can be (1) a client that sends transactions
and reads the state of the blockchain (2) a validator that participates in consensus, executes
transactions, and keeps a full state of the ledger to service clients, or (3) a candidate validator
that is an applicant to the validator position.

Initially, Collachain is bootstrapped with an initial set of participants pre-specified in the
genesis block through a KYC process. Potential future participants must first express interest
by (1) depositing tokens (e.g. a pre-defined sum of ether) in a reconfiguration smart contract or
(2) authenticating using a KYC process. Depositing tokens provides mitigation against Sybil
attacks. Unlike SRBB, Collachain periodically elects participants by executing an election.
Participants’ consensus node and SRBB VM pair are voted upon in this election. The current
set of participants elects the next set of participants using a reconfiguration smart contract. The
details of the participants of a committee are registered in the smart contract after an election
outcome and each Collachain validator gets to know of other validators in the committee through
an event emitted by the reconfiguration smart contract.

Threat model: We assume that there are n Collachain participants such that at most f is
Byzantine where f < n/3. Byzantine participants can act arbitrarily and deviate from the
protocol. The periodic rotation of Collachain validators mitigates the validator committee from
being bribed by a slowly-adaptive adversary.

Network Model: Our network consists of a set of n participants and 2n nodes. These 2n

nodes are well-connected. We assume partially synchronous communication similar to prior
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work, as consensus cannot be solved with asynchrony in the presence of Byzantine valida-
tors [47](Chapter 2).

5.2 Collachain

Collachain is a collaborative permissionless blockchain compatible with the largest ecosystem
of DApps and is optimally resilient against Byzantine failures. The layered architecture of
Collachain is depicted in Figure 5.1 with a SRBB VM node at the top, and a consensus node
at the bottom. The communication between the consensus node and the SRBB VM node is
event-based and implemented with gRPC. Although the event-based communication adds some
communication overhead, since both the consensus node and the SRBB VM of Collachain can
execute on separate machines, this offers better modularity and better performance compared
to SRBB (Section 5.3).

Figure 5.1: The architecture of Collachain. ➊ A client sends a transaction to some Smart Red-
belly Blockchain VM node (SRBB VM), ➋ at each replica, the web3.js server eagerly validates
transactions and sends them to the transaction pool that ➌ sends a block to the consensus
client. ➍ The consensus client proposes it to the consensus protocol. Upon reception of a new
block from the consensus client, ➎ the consensus server in the consensus node propagates it
through the network with a reliable broadcast. Remote consensus nodes start participating in
the same instance (if not done yet) upon reliably delivering this proposed block. ➏ When the
consensus outputs some acceptable blocks, all of these blocks are combined into a superblock ➐.
The VM client sends this superblock to the SRBB VM by invoking commit ➑. The VM server
upon receiving the superblock sends the block to be executed ➒. After execution, the block is
appended to the ledger and stored in the data store ➓.
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5.2.1 The Transaction Lifecyle

Since Collachain is the decoupled version of SRBB, there are slight variations between the
architecture and the transaction lifecycles of these two blockchains. Since the SRBB VM and
consensus are decoupled in Collachain across two machines, RPC invocations occur between the
consensus instance and the state machine instance for communication. To facilitate RPC calls,
additional components were added to Collachain’s system architecture that was not present in
SRBB.

The lifecycle of a transaction in Collachain goes through the stages below:

1. Reception. The client creates a properly signed transaction and sends it to at least one SRBB
VM node. Once a request containing the signed transaction is received ➊ by the JSON
RPC server of SRBB VM, the eager validation (Chapter 2) starts. If the validation fails,
the transaction is discarded. If the validation succeeds, the transaction is added to the
transaction pool ➋. Unlike modern blockchains where the transaction is propagated to
all validators increasing the number of eager validations, Collachain includes transactions
in blocks directly from the transaction pool. This is because Collachain includes TVPR
from SRBB. Once a threshold of transactions has been received, the SRBB VM serializes
blocks created from the transaction pool and sends them to the consensus client ➌.

2. Consensus. Once the consensus client receives a proposed block, it sends the corresponding
byte array to the consensus system by invoking the propose([]byte) method using gRPC
➍. The consensus server upon receiving this byte array starts a new instance of consensus
using the new block if it is not currently part of another consensus instance and reliably
broadcasts the block to the network of consensus nodes ➎. Otherwise, it adds the new
block to the block queue waiting for the current consensus instance to terminate. The
consensus execution then invokes a binary consensus instance for each reliably delivered
block. The output of the binary consensus instance indicates the indices of acceptable
blocks ➏ as detailed before in Alg. 2, line 18. The consensus system creates a superblock
with all acceptable blocks (Alg. 2, line 19) and sends it to the VM client ➐. The VM
client sends the superblock to the SRBB VM via gRPC by invoking the commit([]byte)
method ➑.

3. Commit. When the superblock is received by the VM server on SRBB VM, the superblock is
first deserialized using JSON unmarshalling. Subsequently, the superblock is passed on to
the execution module of the SRBB VM ➒. The execution of transactions in Collachain is
identical to SRBB. The SRBB VM lazily validates and executes transactions by iterating
through every block in the superblock and every transaction in each block (Chapter 3,
Section 3.2.4). Finally, the SRBB VM appends each block to the ledger in the datastore
➓.
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5.3 Evaluation

In this section, we present the evaluation of Collachain. First, we present a comparison of
performance between Collachain and SRBB. Next, we evaluate the scalability of Collachain for
the Diablo nasdaq workload.

In summary, we show that Collachain yields an improvement of 33% in peak throughput over
SRBB. We also show that Collachain can commit 100% of the nasdaq workload transactions
within 12 seconds whereas SRBB takes 15 seconds to commit 100% of the transactions. Finally,
we show that Collachain scales up to 200 machines (i.e., 100 participants) achieving an average
throughput of ∼ 2000 TPS.
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Figure 5.2: The throughput over time of Collachain (The decoupled version of SRBB) and
SRBB for the nasdaq workload on 200 machines.
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Figure 5.3: The CDF latencies of Collachain and SRBB for the nasdaq workload on 200
machines.
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5.4 Collachain vs SRBB

Below we present a comparison of performances between Collachain and SRBB. We deployed
200 c5.2xlarge (8 vCPUs, 16 GiB of memory) geo-distributed machines spanning 10 AWS regions
on 5 continents. Namely: Bahrain, Cape Town, Milan, Mumbai, Sao Paulo, Ohio, Oregon,
Stockholm, Sydney, and Tokyo. The 200 machines of Collachain consisted of 100 consensus
nodes and 100 SRBB VM nodes, thus, the evaluation of Collachain consisted of 100 participants
each owning a consensus and SRBB VM node. We evenly distributed the machines such that
10 consensus nodes and 10 SRBB VM nodes existed per AWS region and each consensus and
SRBB VM node pair that worked together as a participant existed in the same AWS region.
In contrast, for SRBB, there were 200 SRBB nodes across 10 regions where 20 SRBB nodes
were located in a single region. The total number of machines used for both blockchains was
kept equal to ensure the computational power used in both cases is equal and the comparison is
fair as can be. We elaborate more on the fairness of this evaluation as a part of our discussion
(Section 5.6).

Figure 5.2 shows the throughput over time for Collachain and SRBB for the nasdaq work-
load. To produce a smooth curve (i.e., instead of a saw-toothed curve), the throughput is
averaged over 3 seconds, and depicted as a function of time every 3 seconds. Collachain reaches
a peak throughput of 4000 TPS whereas SRBB reaches a peak throughput of ∼3000 TPS. Thus,
Collachain improves the throughput of SRBB by 33% for the same number of machines. Fig-
ure 5.3 shows the Cumulative Distributed Function (CDF) latencies of both Collachain and
SRBB. We observe that Collachain commits 100% of the transactions within 12 seconds whereas
SRBB takes 15 seconds to commit 100% of the transactions.

Executing consensus and SRBB VM on the same machine results in high CPU and memory
under demanding transaction workloads. In the implementation, as separate Go routines handle
execution and consensus, the true potential of concurrency is not achieved due to resource
constraints. Decoupling helps to split the consensus and execution tasks into two separate
machines, allowing the use of more CPU and memory for the same task, and speeding up
performance.

5.5 Scalability of Collachain

To evaluate scalability, we deployed Collachain in 10 AWS regions spanning 5 continents. Namely:
Canada, London, Mumbai, Oregon, Paris, São Paulo, Singapore, Stockholm, Sydney, and Tokyo.
The SRBB VM nodes were of type c5.2xlarge with 8 vCPUs, 16 GiB of memory, and the consen-
sus nodes were of type c5.4xlarge with 16 vCPUs, 32 GiB of memory. As we evaluated varying
workloads throughout this thesis, we evaluated Collachain with a burst workload. This was to
observe Collachain’s capability to handle such workloads that we envision would be increasingly
observable with the wider adoption of Web3. Each SRBB VM node received a burst workload of
1500 native payment transactions concurrently at a rate of 1500 TPS. As previously mentioned,
each participant was considered to execute both a consensus node and a SRBB VM node.
To show the impact of encryption on Collachain, we evaluate Collachain without end-to-end
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encryption (w/o TLS) and with encryption (with TLS).
Figure 5.4 depicts the throughput of Collachain with an increasing number of nodes: We

start our experiment with 20 machines spread evenly in 10 AWS regions and add machines by
groups of 20 evenly spread across the same 10 AWS regions until we reach 200 machines (i.e.,
100 participants). We observe that the throughput increases as we increase the number of nodes
from 1100 TPS at 20 machines to 2038 TPS at 200 machines, demonstrating the scalability of
Collachain in a geo-distributed setting. The curve flattens out at a large scale between 140
and 200 nodes, indicating that the gain obtained in throughput is less effective when adding
more machines. This is due to an increase in the number of machines consuming the available
bandwidth. Finally, we observe, as expected, that TLS encryption comes at a cost. However,
this overhead is negligible in comparison to the overall performance as the peak throughput
with TLS (1960 TPS) is only 4% lower than the peak throughput without TLS (2038 TPS).

Figure 5.5 shows the latency of transactions of Collachain in the aforementioned geo-
distributed environment as the number of nodes increase. We observe that the latency increases
with the number of nodes. We observe similar minimum latencies across all system sizes but
the 99th percentile indicates that some requests can take much longer, especially at large scale:
the transactions take less than 10 seconds to execute on up to 40 nodes while they take less
than 40 seconds to execute at 200 nodes. It is important to note that these latencies can be
viewed as the time for a transaction to become final: thanks to our deterministic byzantine
fault tolerance consensus (Chapter 3), transactions are committed (and thus final) as soon as
the consensus ends and the superblock is executed and appended to the chain. This differs
from classic blockchains [16, 13] whose consensus is reached after the block is appended and
after more “block confirmations” occur. Interestingly, this increase in latency as the number
of machines increases does not prevent the throughput of Collachain from scaling as seen by
Figure 5.4. This is due to the superblock optimization: As more machines participate, more
blocks get proposed, and running consensus takes more time, which increases the latency, how-
ever, the number of transactions decided per consensus instance also increases, which provides
scalability.

5.6 Discussion

In this section, we discuss the potential drawbacks of decoupling SRBB to produce Collachain.
We also discuss the fairness of the comparison between SRBB against Collachain.

5.6.1 Fault Tolerance of Collachain

For Collachain to achieve the same fault tolerance as SRBB, the consensus node and the SRBB
VM node should be considered as belonging to the same participant (i.e., entity) such that
f < n/3 participants are Byzantine where the total number of participants is n. A limitation
with decoupling is if we consider the SRBB VM nodes and consensus nodes separately then the
fault tolerance will be much lower than SRBB. This is because the consensus nodes alone as a
separate entity can only tolerate a third of its nodes failing and with the addition of failures
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Figure 5.4: The avg. Throughput of Collachain with and without TLS

Figure 5.5: The percentile Latencies of Collachain
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from SRBB VM nodes, Collachain will have a lower fault tolerance (i.e., inability to recover
from a low number of failures).

5.6.2 Additional Resource Usage

Decoupling can incur additional resource usage. With SRBB, a single user can use a single
machine to join as a SRBB validator whereas with Collachain a single user requires two machines
to execute a consensus and a SRBB VM node separately.

5.6.3 SRBB vs Collachain Comparison Fairness

Although in our evaluation we compare SRBB’s performance to Collachain, one may argue
such a comparison is not fair. We used the same number of total machines when comparing the
performance of SRBB and Collachain to ensure that decoupling itself helps performance rather
than an increase in the number of machines that increases the processing power. However, one
might argue that to compare Collachain to SRBB fairly, the consensus nodes in the Collachain
should equal the nodes of SRBB if consensus is the bottleneck. However, we see that Collachain’s
consensus scales as the number of consensus nodes and SRBB VM nodes increase (Figure 5.4).
Thus, showing that consensus is not a bottleneck. It is true that comparing a blockchain to its
decoupled counterpart can be unreasonable. As the saying goes, we want to compare apples
with apples. However, our comparison is merely to distinguish that decoupling on SRBB is
effective and is a method that has the potential to improve performance with the same amount
of available resources (i.e., machines).

5.6.4 Choice of DApp Workload

To compare Collachain with SRBB we used the nasdaq workload. One may incorrectly think
that we cherry-picked nasdaq to show the performance enhancements of Collachain over SRBB
(Figure 5.2 and Figure 5.3). As our focus was to evaluate the gain in performance for DApps
under burst workloads, we believe our evaluation was fair as the nasdaq workload is a realistic
DApp burst workload with a peak transaction sending rate of ∼20K TPS [28]. We intend to
evaluate Collachain with a wide variety of realistic DApp workloads as a part of our future
work.

5.7 Summary

In this chapter, we presented Collachain – a decoupled version of SRBB. Our experiments
demonstrated that Collachain can increase the peak throughput of SRBB by 33% and can
decrease SRBB’s latency by 3 seconds for a real DApp workload. We further demonstrate that
Collachain scales well up to 200 machines spanning 5 continents and 10 AWS regions.

In this thesis, we have thus far focused on enhancing blockchain performance for DApp
executions (Objective 1) to widen the adoption of Web3. While blockchain performance is im-
portant, blockchain security must also be considered for the wider adoption of Web3. DApps
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offer decentralization to mitigate the centralization drawbacks such as the single point of failure
and data censorship brought about by centralized web applications [25]. However, the execu-
tion of DApps can be centralized if a governance oligarchy in the blockchain dictates DApp
executions. This can lead to insecure executions (e.g., double spending attacks) or censorship
defeating the benefits that DApps and Web3 offer. Therefore, in the next chapter, we focus
on enhancing blockchain security for DApp executions (Objective 2) by presenting a blockchain
governance protocol to mitigate an oligarchy.



Chapter 6

Blockchain Proportional
Governance: Mitigating a
Governance Oligarchy

In this chapter, we focus on enhancing blockchain security for DApp executions to widen the
adoption of Web3. An oligarchy in blockchain governance can dictate DApp executions or lead
to dissident executions of DApps resulting in either censorship or double spending attacks. We
enhance blockchain security by mitigating such an oligarchy in blockchain governance.

The notion of governance, which is generally understood as the processes relied upon to make
decisions and modify the protocol, has become an important topic in blockchain [127, 128, 54].
In the context of blockchains, governance can include decisions such as updating the blockchain
protocol, varying blockchain parameters (e.g., changing the block period), and deciding upon
a block to be executed (e.g., solving consensus) [54, 129]. The absence of governance has led
users to create dissident instances of the two largest blockchains: Bitcoin is now split into BTC
and BCH while Ethereum is now split into ETH and ETC [130, 131].

A pernicious threat in blockchain governance is the risk of an attacker controlling an oligarchy
amongst the governors. If this happens the oligarchy can dictate the decisions to modify the
blockchain protocol making the blockchain governance centralized, and the DApp executions in
the blockchain centralized.

An oligarchy can be formed in blockchain governance through the governance election pro-
cess. More specifically, modern blockchains, which have mostly replaced Proof-of-Work (PoW)
with Proof-of-Stake (PoS), elect governors based on their stake providing more opportunities to
those that have a higher stake to elect governors [10, 82, 54, 64]. Given the skewed distribution
of wealth, this can inadvertently create an oligarchy [63].

To mitigate the aforementioned method of forming an oligarchy of governors, we propose pro-
portional governance that is compatible with smart contract supported (i.e., DApp-supported)
blockchains.

The proportional governance tackles the formation of an oligarchy among governors through
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the election process. Proportional governance elects governors that proportionally represent
the voters. This is to prevent an adversary from creating an oligarchy in the governance.
Proportionality is a concept widely used in social choice theory to elect a set of candidates
fairly to a legislative body [132]. In general terms, proportionality ensures that a diverse set of
candidates are elected ensuring even the minority voters are represented in a legislative body.

As multiple governors need to be elected to a blockchain governance committee, we needed a
multi-winner election protocol. Thus, we used the Single Transferable Vote (STV) protocol [78],
used for example to elect the Australian senate [133]. STV outputs a set of candidates propor-
tionally representative of the voted preferences. However, the STV protocol is synchronous: a
voter simply has to cast a vote within a limited known period of time for its vote to be counted
when tallying votes. Blockchains instead operate in a general network (e.g., the Internet) where
the communication is not synchronous and where Byzantine nodes can arbitrarily delay mes-
sages. Thus, the STV protocol executing on a blockchain with n nodes that waits for votes from
all n nodes cannot progress if Byzantine voters do not cast votes. This is because one cannot
distinguish a slow voter from a Byzantine voter due to the upper bound on the message delay
being unpredictable.

To solve this problem, we develop a variant of STV known as BFT-STV that offers (1) the
same proportionality guarantees as STV, (2) does not assume synchrony, and (3) works in a
Byzantine setting s.t. at most t < n/3 of n voters are Byzantine (we denote f ≤ t as the actual
number of Byzantine voters). The ratio of f comes from (i) the need for voters to reach con-
sensus on the new set of governors and (ii) the impossibility of solving consensus with f ≥ n/3
Byzantine participants in blockchains [134]. We implement BFT-STV in a smart contract to
make our proportional governance pluggable and compatible with smart contract supported
blockchains.

To the best of our knowledge (Table 6.1), the proportional governance we propose is the first
solution that solves the proportional governance problem (Def. 2). Our solution (1) mitigates an
oligarchy among governors and (2) is pluggable and compatible with smart contract supported
blockchains due to its generality and smart contract based implementation.

In summary, this chapter defines the proportional governance problem (Section 6.2), de-
signs a solution for it known as proportional governance that is compatible and pluggable with
smart contract supported blockchains (Sections 6.3), proves the solution correct (Section 6.3.4)
and evaluates the proportional governance solution (Section 6.4). Lastly, to complement the
proportional governance that elects a set of governors, we present a governance reconfiguration
protocol. Our proposed solution offers the following contributions:

• We introduce the first Byzantine fault tolerant multi-winner election protocol, called BFT-
STV to elect a set of governors proportionally to solve the proportional governance prob-
lem (Def. 2) and to mitigate an oligarchy among governors (Section 6.3). BFT-STV is a
new primitive that augments the STV election protocol to work in a setting where at most
t < n/3 Byzantine voters exist among n voters without assuming synchrony (we denote
f ≤ t as the actual number of Byzantine voters). As it is impossible to distinguish a non-
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Blockchain Election Proportional Governance

Tendermint [135] None no
Algorand [10] Sortition no

Hybrid consensus [136] PoW puzzle no
Zilliqa [57] PoW puzzle no

OmniLedger [31] Sortition no
RapidChain [30] PoW puzzle no
ComChain [137] None no

Libra [138] None no
SmartChain [139] None no

Polkadot [54] Multi-winner approval voting no
EOS [64] Multi-winner approval voting no

This work (compatible with smart contract supported blockchains) Multi-winner preferential voting yes

Table 6.1: Blockchains do not solve the proportional governance problem (Def. 2)

responsive Byzantine voter from a delayed message, we introduce a new election quota
qB = n−t

k+1 where k is the size of the committee. Interestingly, we show that our BFT-STV
protocol preserves the proportionality of STV while ensuring termination (Section 6.3.4).

• We implement this new protocol in a smart contract written in the Solidity programming
language, making our protocol easily compatible and pluggable with smart contract sup-
ported blockchains [16, 39, 11, 1] (one can re-implement our protocol to make it work with
a different smart contract programming language). Implementing the BFT-STV protocol
on a smart contract comes with its own technical challenges. Smart contracts are public,
thus to preserve the privacy of votes to avoid strategic voting, we employ a commit-reveal
scheme ( 6.3.2).

• We prove that our protocol is correct (Section 6.3.4). In particular, we also show that BFT-
STV satisfies proportionality without assuming synchrony. Our world-scale evaluations
of BFT-STV with 200 validators of Ethereum-PoA and Smart Redbelly Blockchain [1]
spanning 5 continents can elect 200 governors from 500 candidates with 1000 voters casting
ballots within 6-12 minutes (Section 6.4).

• The BFT-STV smart contract alone is not sufficient to action the outcome of the election
to reconfigure the blockchain. Thus, we present an automatic governance reconfiguration
protocol as a secondary contribution that rotates governor sets periodically based on
the BFT-STV smart contract election outcome. In particular, our protocol revokes the
permissions of existing governors to elect new governors periodically.

Chapter Outline: The remainder of this chapter is as follows: First, we present our model
(Section 6.1) followed by the proportional governance problem (Section 6.2). Next, we present
our solutions to this problem in Sections 6.3 along with proof that our solution solves the
proportional governance problem. In Section 6.4, we evaluate our solution show its feasibility.
Section 6.5 presents a complementary automatic reconfiguration protocol that works with our
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proportional governance solution. Section 6.6 discusses our contributions with other governance
solutions. Finally, we conclude the chapter in Section 6.7.

6.1 Model

In this section, we present our computation model including the system model and threat model.
The assumptions we make are encapsulated into these models.

6.1.1 System Model

We consider a distributed system of n governor nodes also known as a governor committee,
identified by public keys I and network identifiers A (e.g., domain names or static IP addresses).
We assume public key cryptography and that the adversary is computationally bounded. Hence,
only the issuer of a transaction can sign it and any recipient can correctly verify the signature.
Governor nodes (i) execute the consensus protocol to agree on a unique block to be appended to
the chain and (ii) execute transactions and maintain a local copy of the state of the blockchain.
Candidate nodes m are nodes eligible to become governors and are voted upon by n current
governors to be included in new governor sets periodically. As we describe in Section 6.3.2,
governors cannot vote for themselves due to a ballot verification. Proposing blocks to consensus
provides governors with a block reward. As such, a candidate has an incentive to become a
governor. We assume m >> k s.t. k is the target next governor committee size. The number
of Byzantine nodes in the candidate nodes set is assumed to be fc s.t. fc ≤ m/4.

All candidates need to go through a KYC identification process, similar to the personal
information requested from the Ethereum proof-of-authority network users before they can run
a validator node [68]. For the initial set of governors to be sufficiently diverse, we can simply
select governors from candidates based on their detailed information. A set of governors could
then be selected depending on the provided information while ensuring multiple governors are
not from the same jurisdiction, they are not employed by the same company, they represent
various ethnicities, they are of balanced genders, etc.

As we target a secure blockchain system running over an open network like the Internet, we
consider the Byzantine model [6], where nodes can fail arbitrarily by, for example, sending erro-
neous messages or delaying messages. We assume that a bound exists on the transmission delay
of messages between nodes but it is not known a priori, a property called partial synchrony [47]
(Chapter 2, Section 2.2).

6.1.2 Threat Model

As in previous blockchain works [71, 10, 30, 31], we assume a slowly adaptive adversary with
a very limited bribing power that cannot bribe governors within a committee but can only
bribe/corrupt up to fc nodes between governance reconfigurations such that fc < m/4 where
m is the candidates.

As consensus cannot be solved with f Byzantine processes among n processes where f ≥ n/3
and message delays are unknown [47], it is sufficient to bribe n/3 governors to lead correct
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governors to disagree on the next block appended to the blockchain and thus create a fork in
the blockchain. The attacker can then exploit this fork to have its transaction discarded by the
system and then re-spend the assets he supposedly transferred in what is called a double spend.
To mitigate such bribery attacks, we assume a governance reconfiguration protocol replaces
existing governors with newly elected governors (Section 6.5). More specifically, once n new
governors from m candidates are elected periodically (every X blocks) using the proportional
governance, a governance reconfiguration occurs.

Due to the assumption of a slowly adaptive adversary that bribes/corrupts at most fc candi-
date nodes s.t. fc < m/4, a governance committee k (k = n) periodically elected proportionally
from a diverse set m and reconfigured will have f < n/3 with high probability. As governors
execute consensus and consensus cannot be solved in our model with n/3 or more Byzantine
nodes [6], the assumption that at most f nodes are Byzantine s.t. f < n/3 with high probability
is essential to solve consensus. This is a reasonable assumption made in prior work given that
m >> k [71, 31]. Within the governance committee period, this f will remain static as the
slowly-adaptive adversary can only corrupt nodes between reconfigurations. Finally, we assume
that a split in the blockchain does not occur leading to multiple elections for each instance of
the blockchain.

Sybil Attacks

A Sybil attack consists of impersonating multiple identities to overwhelm a system—in the
context of votes and voters, a Sybil attack could result in an adversary voting with multiple
identities to alter the outcome of an election. In the context of candidates, a Sybil attack could
result in an adversary assuming the identities of multiple candidates to alter the outcome of an
election. Proof-of-stake-based voting approaches weigh a ballot cast by a voter based on the
coins they have staked. Thus, minimizing the impact on the election outcome if an adversary
splits its stake among multiple identities and cast ballots. However, PoS-based voting provides
more opportunities to the wealthy, inadvertently creating an oligarchy.

We adopt a solution that does not weigh votes according to stake. As mentioned previously,
the initial set of governors are elected from candidates. To receive permission to be a candidate,
a node must authenticate using know-your-customer (KYC) data. Authentication through KYC
copes with Sybil attacks by preventing the same authenticated user from assuming the iden-
tities of multiple candidates. It also prevents the current governors from voting with multiple
identities.

6.2 The Proportional Governance Problem

Our goal is to solve the proportional governance problem to mitigate a governance oligarchy in
blockchains. To put it simply, first, we offer blockchain governance that allows distributed users
(i.e., current governors) to elect a committee of governors proportionally representative of the
voters and without dictatorship, which solves the proportional governance problem ( 6.2.1). In
this section, we define the proportional governance problem ( 6.2.1).
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6.2.1 Proportional governance problem

We refer to the proportional governance problem as the problem of designing a BFT voting
protocol in which n current governors rank m candidates to elect a committee of k new governors
(k < m and m > n) to ensure non-dictatorship as defined by Arrow [140] and proportionality
as defined by Dummett [76], Woodland [79] and Elkind et al. [141]. The main distinction is
that we adapt this problem from social choice theory to the context of distributed computing.

Definition 2 (The Proportional Governance Problem). The secure governance problem is for
a distributed set of n current governors, among which f ≤ t < n/3 are Byzantine (t is an upper
bound on the number f of Byzantine governors, f ≤ t), to elect a winning committee of k new
governors among m candidates (i.e., m > k) such that the following two properties hold:

• Proportionality: if, for some whole numbers j, s, and k satisfying 0 < j ≤ s ≤ k, more
than j(n−t)/(k+1) of voters put the same s candidates (not necessarily in the same order)
as the top s candidates in their preference listings, then at least j of those s candidates
should be elected.

• Non-dictatorship: a single adversary, controlling up to f < n/3 Byzantine voters (current
governors), cannot always impose their individual preference as the election outcome.

The need for these two properties stems from our goal of guaranteeing proportional rep-
resentation (proportionality), but also disallowing a coalition of Byzantine nodes (i.e., an oli-
garchy) from imposing their decision on the rest of the system (non-dictatorship). Note that
the non-dictatorship property differs slightly from the definition in [140] that did not consider
a Byzantine coalition. In particular, our property considers coalitions and prevents them from
imposing their preference in “all” cases.

6.3 Solution: Byzantine Fault Tolerant Proportional Gover-
nance

In this section, we present how to elect, despite f Byzantine nodes where f ≤ t < n/3 (i.e.,
t = n/3− 1), a diverse set of governors to mitigate the formation of an oligarchy. The idea is to
allow a set of n blockchain nodes that are current governors to vote and elect the committee of
next governors proportionally representing the current governor votes. To this end, we propose
the Byzantine Fault Tolerant Single Transferable Vote (BFT-STV) smart contract that solves
the proportional governance problem (Def. 2).

6.3.1 Overview

In order to guarantee that the election solves the proportional governance problem (Def. 2),
we designed the BFT-STV algorithm and implemented it as a smart contract. In this section,
we present the high-level pseudo code of the BFT-STV algorithm. To bootstrap, the initial
permissions to vote are obtained by n initial governors after identification using KYC to ensure
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Figure 6.1: The smart contract that implements the BFT-STV protocol is on-chain ➊, takes as
an input a set of at least (n − t) ballots (each ranking k candidates among m) cast by (n − t)
voters among the n governors ➋ and outputs a committee of k elected nodes ➌ to play the role
of the new governors. Note that the last committee of governors elected will then vote for the
next committee of governors ➋ and so on (one can fix k = n so that the committee size never
changes).

diversity and prevent Sybil attacks (Section 6.1.2). Recall that governors cannot use the classic
STV algorithm to elect a new committee as the smart contract has to progress despite up to
t Byzantine voters not casting proper ballots and as the upper bound on the message delay
is unpredictable. As depicted in Figure 6.1, the BFT-STV smart contract takes, instead, as
an input n − t ballots cast by the voters that are governors. Each ballot consists of a rank of
all the candidates, hence the name ordinal ballot. Once the threshold n − t of cast ballots is
reached, the BFT-STV contract selects the governors based on the preference order indicated
in the n − t ballots. Traditionally, the STV algorithm consists of counting which candidates
received a number of votes that exceed the quota qD = n

k+1 where k is the size of the governance
committee to be elected. However, as there can be at most t Byzantine nodes among the voters,
we introduce the Byzantine quota qB = n−t

k+1 (denoted q when clear from the context).

6.3.2 Byzantine Fault Tolerant Single Transferable Vote

Alg. 2 presents the main functions of the BFT-STV smart contract that the governors can invoke
whereas Alg. 3 is the classic STV algorithm adapted to progress in a partially synchronous [47]
environment and despite the presence of up to t Byzantine voters, hence its name STVB.

Commit votes: Initially, the governors cast their hashed ballots by invoking the function
commitVote(·) at line 16 of Alg. 2. This prevents the ballot content of each voter from being
known to other voters until the election counting begins. This is to mitigate strategic voting.
Once governors cast n − t private votes in the form of ballot hashes, the BFT-STV smart
contract emits a broadcast notifying governors that their respective ballots can be revealed to
commence counting votes (lines 21-23).

Reveal votes: Governors/voters upon receiving the broadcast in line 23, invoke the reveal(·)
function parsing the plain ballot b and the hash of this ballot h (line 24). If (1) the hash of
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Algorithm 2 Byzantine Fault Tolerant Single Transferable Vote (BFT-STV) - Part 1
1: Initial state:
2: k, the size of the targeted committee.
3: n, the number of voters.
4: t, an upper bound on the number f of byzantine replicas, f ≤ t.
5: m, the number of candidates per ballot.
6: v, a mapping from candidates to their number of votes.
7: ballots, the set of received ordinal ballots, initially empty
8: C, the set of candidates.
9: E ⊆ C, the set of eliminated candidates, initially empty.

10: S ⊆ C, the set of winning candidates, initially empty.
11: pref [ballot] = index, a map of ballot and its current preference index.
12: voted[vAddr ] = false, a map of voter addresses and whether voted.
13: privateVotes[vAddr ] = hashVote, a map of voter addr. and priv. vote (ballot).
14: countprivate, no. of private votes.
15: Sender [vAddr ] = b, a map of voter addr. and ballot.

16: commitVote(hashVote):
17: if voted[vAddr ] == false then � prevents double voting
18: privateVotes[vAddr ]← hashVote � store priv. votes for voters
19: countprivate ← countprivate + 1 � no. priv. votes received
20: voted[vAddr ]← true � vAddr has voted
21: if countprivate == n-t then
22: votingEnded ← true
23: emit "threshold of votes reached" � notify all priv. votes are received

24: reveal(b, h):
25: if votingEnded == true then � voters reveal votes if election ended
26: if hash(b) == h & privateVotes[vAddr ] == h then � hashes eq.
27: if well-formed(b) then ballots ← ballots ∪ {b}
28: if (ballots has n− t ballots from distinct voters revealed) then
29: change-committee(ballots) � replace committee

30: change-committee(ballots): � replace committee
31: for all b ∈ ballots do � for each received ballot
32: if (b[0] = c such that c ∈ C) then
33: v[c]← v[c] + 1 � number of 1st preferences = c

34: pref [b]← 0 � assign pref. index of b to the first preference/index 0

35: round ← 0 � first round
36: while (|S| < k) do � until the new committee is full
37: S ← STVB(v, ballots, pref) � invoke classic STV
38: round ← round + 1 � increment round number
39: if (|C| − |E| = k) then break � stop eliminating

40: for all b ∈ ballots do � for each ballot
41: for (j = 0; j < m; j++) do � each candidate in decreasing pref. order
42: if (|S | < k ∧ b[j] ∈ C \ S \ E) then � if eligible
43: S ← S ∪ {c} � select c

44: emit S � explicitly emit committee
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Algorithm 3 Byzantine Fault Tolerant Single Transferable Vote (BFT-STV) - Part 2
45: Initial state:
46: k, the size of the targeted committee.
47: n, the number of voters.
48: t, an upper bound on the number f of byzantine replicas, f ≤ t.
49: qB = n−t

k+1 , the quota of votes to elect a candidate.
50: C, the set of candidates.
51: E ⊆ C, the set of eliminated candidates, initially empty.
52: S ⊆ C, the set of winning candidates, initially empty.
53: X ⊆ C, the set of excess candidates, initially empty.

54: STVB(v, ballots, pref ):
55: if ∃c | v[c] > qB then � if the quota is exceeded
56: S ← S ∪ {c} � elect candidate
57: X ← X ∪ {c} � save candidates that exceed quota in X
58: x[c]← v[c]− qB � excess vote from candidate c

59: for all b ∈ ballots do � for each ballot
60: if b[pref [b]] = c and c ∈ X then � if current ballot pref = one of X
61: count[c]← count[c] + 1 � the number of candidates c

62: pref-next[b]← pref [b] + 1 � point to next preferred candidate
63: while b[pref-next[b]] ∈ (S ∨ E) do � while not uneligible
64: pref-next[b]← pref-next[b] + 1 � try next pref. pointer

65: if b[pref-next[b]] ̸∈ (S ∪ E) then � if eligible candidate found
66: pref [b] = pref-next[b] � move the preference pointer
67: z ← b[pref-next[b]] � next preferred candidate in ballot
68: cand-next ← cand-next ∪ {⟨c, z⟩} � current&next candidates
69: count[z]← count[z] + 1 � The number of candidates z

70: for all unique ⟨c, z⟩ ∈ cand-next do � transfer excess votes
71: v[z]← v[z] + x[c] · (count[z]/count[c]) � to next candidates

72: if ∀c : v[c] ≤ qB then � if no candidates exceed the quota in the round
73: E ← (E ∪ t | t = min∀c(v[c])) � eliminate candidate with least votes
74: transfer-vote ← v[t]
75: v[t]← 0 � reset votes of least candidate to 0
76: for all b ∈ ballots do
77: while s < size do
78: if b[s] = t then � store ballot and preference index...
79: elimpointer ← elimpointer ∪ (b, s) � ...of least voted cand.

80: s← s + 1 � Increment preference

81: for all (b, s) ∈ elimpointer do
82: if b[s] = m ∧m ∈ E then � If preference s of ballot b is eliminated
83: pref-next[b]← s + 1
84: count[m]← count[m] + 1 � count of candidates m in all ballots
85: while b[pref-next[b]] ∈ (S ∨ E) do � until candidate is found
86: pref-next[b]← pref-next[b] + 1 � ...increment pref. pointer

87: if b[pref-next[b]] ̸∈ S ∪ E then
88: pref [b]← pref-next[b] � move the preference pointer
89: z ← b[pref-next[b]]
90: cand-next ← cand-next ∪ (m, z) � least voted & next cand.
91: count[z]← count[z] + 1 � the number of candidates z

92: for all unique (m, z) ∈ cand-next do � transfer from least voted cand.
93: v[z]← v[z] + transfer-vote · (count[z]/count[m])
94: X ← null

95: return S � return the set of winning candidates
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b equals h and (2) h equals the hash of the ballot previously stored in the commit phase for
the same voter, then the validity of the ballot b is checked. Upon successful validation, the
ballot b is added to the list of ballots (lines 26-27). Note that verifying the validity of a ballot
involves checking that the governors have not voted for themselves on their ballots and there
are no duplicated preferences. Once the smart contract receives n − t well-formed ballots, the
change-committee(·) function is invoked (line 29).

Count votes: The change-committee(·) function starts by computing the score of the valid
candidates as the number of votes they receive at lines 31–33. Valid candidates are initially
selected through KYC (Section 6.1.2) before being periodically voted upon by governors to be
elected as the next set of governors. A preference pointer is initialized to the first preference
of each ballot at line 34. Then a new round of the STV election process starts (lines 35–38).
This execution stops once the committee of new governors is elected (line 36). If before the
targeted committee is elected, the number of eliminated candidates has reached a maximum
and no more candidates can be eliminated to achieve the target committee size, then the STV
election stops (line 39). The remaining non-eliminated candidates are elected by decreasing
order of preferences at lines 40–43 until the target committee size is reached. Finally, the smart
contract emits the committee of elected candidates (line 44), which notifies the replicas of the
election outcome.

6.3.3 Classic STV with the Byzantine quota

Alg. 3 presents the classic STV algorithm but using the new Byzantine quota qB by electing
candidates whose number of votes exceeds qB (line 55). This algorithm executes two subsequent
phases: in the first phase (lines 54–71) the algorithm elects the candidates whose number of votes
exceed the quota qB = n−t

k+1 ; in the second phase (lines 72–94), the algorithm eliminates the least
preferred candidate if no candidates received a number of votes that exceeds the quota. In each
round of STV function call (line 37), when a candidate exceeds the quota (line 55), their excess
votes are transferred to the next eligible preferences of the ballots that contain the candidate
(line 71). In each round of ballot iteration, if no candidate has reached the quota, the candidate
with the least votes is eliminated (line 73). This candidates’ excess votes are transferred to the
next eligible preference of the ballots that contain the candidate that received the least votes
(line 93). The elimination of candidates stops when no more candidates can be eliminated to
achieve the committee size (line 39). At this point, even though the remaining candidates did
not receive enough votes to reach the quota, they are elected as part of the committee (line 43).

6.3.4 Proofs of Proportional Governance

In this section, we show that BFT-STV (Alg. 2 and 3) solves the proportional governance
problem (Def. 2). To this end, the first theorem shows that the BFT-STV protocol ensures
Proportionality. As mentioned in Section 6.2.1, recall that n, m, and k denote the number of
voting governors, the number of candidates, and the targeted committee size, respectively. Note
that the proof holds even if Byzantine voters vote in the worst possible way.
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Theorem 5. The BFT-STV multi-winner election protocol satisfies Proportionality.

Proof. By examination of the code of Alg. 2 and 3, the only difference between BFT-STV and
STV is the number of votes needed to elect a candidate. STV typically starts with n received
ballots whereas the BFT-STV starts the election as soon as (n− t) ballots are received (line 28
of Alg. 2), where t is the upper bound on the number f of Byzantine nodes and n is the total
number of governors eligible to vote. This number of BFT-STV ballots is distributed among a
larger number of candidates m. This can result in less than k candidates receiving enough votes
to reach the classic STV quota where k is the size of the committee. By the Proportionality
definition (Def. 6.2.1), we need to show that if j·(n−t)/(k+1) voters put the same s candidates as
the top s candidates in their ballot preferences, then j of those s candidates will still be elected.
The proof follows from [142, p. 48–49]: line 73 of Alg. 3 indicates that by elimination, and
lines 40-43 of Alg. 2 indicates by electing the remaining non eliminated candidates in decreasing
preference order, we elect the required k seats if k candidates cannot reach the qB quota. Thus,
we still elect the top j candidates such that j = s = k, satisfying proportionality.

The next theorem shows that the BFT-STV protocol ensures Non-dictatorship as defined
in Def. 2.

Theorem 6. The BFT-STV multi-winner election protocol satisfies Non-dicatorship.

Proof. The proof shows the existence of an input of correct nodes for which a single adversary
controlling f Byzantine nodes cannot always have its preference ba be the winning committee.
Let ba[−1] be the least preferred candidate of the adversary, we show that there exist preferences
b1, ..., bn−f from correct nodes such that the winning committee includes ba[−1]. The result then
follows from the assumption k < m.

By examination of the pseudocode, the winning committee is created only after receiving
n− t correctly formatted ballots (line 28 of Alg. 2). By assumption, there can only be at most
f ≤ t < n/3 ballots cast by Byzantine nodes. As a result, among all the n− t received ballots,
there are at least n− 2t > n/3 ballots cast from correct nodes. In any execution, an adversary
controlling all the Byzantine nodes could have at most f ballots as the adversary cannot control
the ballot cast by correct nodes. Let b1, ..., bn−f be the ballots input by correct nodes to the
protocol such that their first preference is the least preferred candidate of the adversary, i.e.,
∀i ∈ {1, n − t} : bi = ba[−1]. Because f ≤ t < n/3, we know that ba[−1] will gain more votes
than any of the other candidates, and will thus be the first to be elected (line 55 of Alg. 3).
By assumption, we have k < m, which means that there is a candidate the adversary prefers
over ba[−1] that will not be part of the winning committee. Hence, this shows the existence of
an execution where despite having an adversary controlling f Byzantine nodes, the adversary’s
preference is not in the winning governance committee.
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6.4 Evaluation of Byzantine Fault Tolerant Proportional Gov-
ernance

We evaluate our Byzantine Fault Tolerant Proportional Governance protocol on a world scale
to observe its feasibility. To this end, we integrated our solution to Ethereum PoA and Smart
Redbelly Blockchain (SRBB) [1] which are two smart contract supporting blockchains on the
slower and faster end of the blockchain spectrum. We used the Diablo blockchain benchmarking
suite [28] that evaluates blockchains against defined workloads. Our defined workload consisted
of 1000 voters (i.e., current governors) casting random ordinal ballots to 500 candidates to elect
a committee of 200 governors using our BFT-STV smart contract. We deployed 200 AWS
c5.2xlarge EC2 instances of Ethereum PoA and SRBB [1], spanning 10 AWS regions and 5
continents. Each AWS instance represented 5 governors of the respective blockchain realising
a total of 1000 governors (i.e., 200 × 5), a restriction we placed due to budgetary constraints.
Finally, we used a transaction sending rate of 1000 TPS, and considered the number of Byzantine
voters as t=333 (t < n/3).

Table 6.2 depicts the time taken in seconds for the BFT-STV smart contract to elect a
committee of 200 governors when 1000 voters (i.e., current governors) cast random ordinal
ballots to 500 candidates on Ethereum PoA and SRBB. Ethereum PoA takes 728 seconds (i.e.,
12 minutes) to elect a committee of 200 governors while SRBB [1] elected a committee of 200
governors within 358 seconds (i.e., 5.96 minutes).

Based on Table 6.2, the BFT-STV algorithm executed on a smart contract was able to elect
a committee of governors within 12 minutes in one of the slowest smart contract supported
blockchains (i.e., Ethereum) and within half that time on a faster blockchain (i.e., SRBB [1]).

Blockchain #voters #ballots #candidates #governors time (seconds)
Ethereum PoA 1000 1000 500 200 728

SRBB 1000 1000 500 200 358

Table 6.2: 200 geo-distributed nodes of Ethereum PoA and SRBB representing 1000 voters
(current governors) elects 200 new governors from 500 candidates using BFT-STV.

In the discussion (Section 6.6), we compare our governance election results against the
reported results of other governance election methods. We especially consider the impacts on
blockchain performance, availability, and security.

6.5 Automatic Governance Reconfiguration

In this section, we present a complementary governance reconfiguration protocol to elect gover-
nors periodically from the BFT-STV smart contract election outcome. The subsequent gover-
nance reconfiguration protocol assumes that all blockchain nodes in a network have the BFT-
STV smart contract deployed at bootstrap time. Finally, We prove the correctness of our
governance reconfiguration protocol (Def. 3).
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Algorithm 4 Governance reconfiguration at a blockchain node
1: initial:
2: A is a set of IP addresses.
3: BC is a set of blockchains s.t. Blockchain[start : end] ∈ BC .
4: Elected: a set s.t. S ∈ Elected.
5: count: a map between a governor sets received and its occurrences.
6: Bcount: a map between a block and its occurrences in received prefixes.
7: S : newly elected governor committee
8: S0 : current governor committee
9:

10: upon receiving S, Blockchain[start : end] from a governor in S0 :� recv. sc emits event from Alg.2, line 44
and bc prefix

11: if g ∈ S0 & received[g] == false then � prevents duplicate broadcast
12: Elected ← Elected ∪ S
13: BC ← BC ∪ Blockchain[start : end]
14: for all S ∈ Elected do
15: count[S ]← count[S ] + 1
16: if count[S ] == n− t then
17: threshold ← S � received same S from n− t

18: if threshold == S then
19: for all bc ∈ BC do
20: if valid(bc) then � if prefix is valid, e.g., no duplicate blocks, etc
21: for all B ∈ bc do
22: Bcount[B]← Bcount[B] + 1 � no. of block B in recv. prefix
23: if Bcount[B] == n− t & B.index > highestIndex then � B is in n− t gov. chains
24: highestIndex ← B.index
25: Bdecided ← B � decided block so far

26: for all ip ∈ S do � for IPs in committee
27: A← A ∪ {ip} � add the IP address

28: close-connect � stop connections with current governors
29: connect(A) � connect with elected governors in A
30: if my-ip ∈ S then � if I’m an elected governor
31: init(Bdecided) � init. governor with Bdecided and its state.

32: threshold ← NULL � reset variables
33: Bcount ← NULL
34: count ← NULL
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6.5.1 Automatic Governance Reconfiguration Protocol

Alg. 4 allows switching from the current governance committee S0 to the new governance
committee S elected with the BFT-STV smart contract (Section 6.3). Note once a governor
g : g ∈ S0 emits S (line 44 of Alg. 2), they immediately stop processing any further blocks.

Once a blockchain node (i.e., candidate, governor, client) receives from governor g : g ∈
S0 newly elected governors S and a blockchain prefix (line 10 of Alg. 4), the reconfiguration
protocol commences. Note that duplicate broadcasts received by the same governor are not
considered. First, every received S from a governor g : g ∈ S0 is added to Elected. Thus,
Elected stores all received S from current governors (line 12 of Alg. 4). Next, every blockchain
prefix Blockchain[start : end] received from a governor g : g ∈ S0 is stored in BC (line 13 of
Alg. 4). The blockchain prefix contains a chain of blocks where the start index start is the first
block decided in the blockchain of governor g when in S0 while the end index end is the last
block decided in the blockchain of g when S was emitted by g.

Once a governor broadcast event S is received n− t times (i.e., same S received n− t times)
from n − t unique governors (line 17 of Alg. 4), that means at least n − 2t of the received S

were from correct governors in the committee. Since f ≤ t < n/3, S is the correct governor
committee elected. When this condition is met, Alg. 4 executing on every blockchain node
finds the block with the highest index decided by n − t unique governors g : g ∈ S0 using the
blockchain prefixes received (lines 19-25 of Alg. 4).

Subsequently, the reconfiguration protocol closes the existing network connection with the
previous governor committee (line 28 of Alg. 4). Then, every blockchain node connects with the
new governor committee (line 29 of Alg. 4). Finally, if the blockchain node is also a governor
elected in S , these governors initialize themselves with Bdecided which is the highest indexed
block decided by n− t governors from committee S0 .

For the sake of simplicity, we consider that nodes connect to the IP addresses of the new
governors. The implementation could be easily adjusted so that nodes connect to a specific
node ID that uniquely identifies a node. Since every blockchain node connects with the newly
elected governor committee, (1) clients can send requests to the new governor committee (2)
governors can reach consensus on governance decisions, and (3) governors can elect the next set
of governors.

6.5.2 Proof of Correctness

Definition 3 (The Governance Reconfiguration Safety). The first block stored locally after
governance reconfiguration by any two correct governor nodes in the governance committee is
the same block.

Any two correct governors in the same committee starting from the same block ensures that
after the governance reconfiguration, governors start with the same block.

Theorem 7. The governance reconfiguration (Alg. 4) satisfies the Governance Reconfiguration
Safety property.
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Proof. By examination of Alg. 4 from the blockchain prefixes received from n− t governors that
sent S , each correct blockchain node finds the common block with the highest index Bdecided of
all n−t prefixes. This block is the highest confirmed/decided block by the governance committee
S0 (lines 19-25 of Alg. 4). If a correct local blockchain node is elected to the new governance
committee S, then this node initializes with Bdecided (line 31 of Alg. 4). Every newly elected
correct governor node in S initializes with the same Bdecided .

6.6 Discussion

Based on our evaluation settings, the proportional governance solution can elect a new commit-
tee of governors within 6-12 minutes. Although a new governor committee can be elected within
minutes, it is best for a blockchain to run governance elections and reconfigure after the current
governors have been active for sometime. This is important to increase the availability of the
blockchain and to lessen state downloads that can impact performance (candidates joining a gov-
ernance committee should download the latest blockchain state). In fact, enterprise blockchains
usually elect a governance committee every several hours. For example, Polkadot [54] and
Tron [143] elect a committee of governors in 24 hours and 6 hours respectively. Governance
election should strike an ideal balance between performance and blockchain security. Questions
such as (1) how long is it safe to keep a governance committee static considering the risk of
bribery? and (2) what are the service level guarantees in terms of blockchain availability and
performance?, should be considered when defining the governance election frequency. In our
blockchain proportional governance, to achieve stronger blockchain performance guarantees,
the governors could collectively decide to delay executing an election and elect governors every
24 hours or 6 hours, similar to Polkadot or Tron [54, 143].

6.7 Summary

In this chapter, we presented proportional governance to mitigate the formation of an oligarchy
of governors in blockchain governance committees. Proportional governance is the first solution
that solves the proportional governance problem (Def 2). Our solution: (1) prevents an oligarchy
among governors using proportionality (Def. 2), and (2) provides compatibility with a wide range
of smart contract supported blockchains [11, 2, 144]. We proved that proportional governance
ensures proportionality and non-dictatorship (Def. 2) and implemented proportional governance
on Ethereum-PoA and Smart Redbelly Blockchain [1] which are two smart contract supporting
blockchains. Our evaluation showed that our proportional governance solution implemented as
BFT-STV on a smart contract (Alg. 2) can elect 200 governors within 6-12 minutes when 1000
voters cast ordinal ballots to 500 candidates.



Chapter 7

Conclusion

In this thesis, we have presented various contributions that pave the way to the overall improve-
ment of Blockchain performance and security for DApp execution. As decentralized applications
integrate further into society, the security and unprecedented pressure on blockchain infrastruc-
ture come into question. Current approaches to handle this pressure include techniques such as
offloading the transaction processing off-chain (Layer 2). However, throughout this thesis, there
have been alternative mechanisms identified that provide promising performance improvements
and can be used in conjunction with these techniques. Our works presented on architecture
decoupling and message redundancy show simple measures that can be implemented in various
cases. Not only will these ideas increase the performance and overall usability of blockchains,
but they also open doors for the further integration of DApps in daily life, further materialising
the concept of Web3. Whilst we acknowledge that the work presented in this thesis is only
a stepping stone towards the realisation of Web3, we believe our contributions have helped in
improving the current state of the art.

In the remainder of this chapter, we summarize the achievements of our goals and objectives
presented in Chapter 1. We then discuss future work and directions.

7.1 Goal and Objective Outcomes

The core research goal in this thesis was to enhance blockchain performance and security for
DApp executions with the motivation of widening the adoption of Web3.

The first part of our core research goal was to enhance blockchain performance for DApp
executions, which we identified as our first objective. Thus, we presented various contributions
to enhance blockchain performance for DApp executions.

Smart Redbelly Blockchain: First, we investigated the reasons why modern blockchains
cannot support realistic DApp workloads and found blockchain congestion to be the cause of
performance degradation. Next, to reduce blockchain congestion and support real DApp work-
loads, we presented the provably secure Smart Redbelly Blockchain (SRBB). We empirically
evaluated SRBB against Algorand, Avalanche, Diem, Solana, Quorum, and Ethereum. SRBB
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not only committed all transactions of the demanding nasdaq and Uber workloads, it comfort-
ably outperformed 6 modern blockchains achieving an average throughput of 2000 TPS.

DApp-oriented Dynamic Transparent Sharding: To enhance blockchain performance for
DApp executions, we then presented a DApp-oriented dynamic transparent sharding protocol
that executed DApps concurrently in separate shards. Our sharding protocol was transparent in
that any user could query the blockchain and know the current and past sharding configurations.
The sharding protocol was dynamic in that it allowed the number of shards and the size of the
shard to be adjusted at runtime. We evaluated our sharding protocol on SRBB to empirically
show the boost in DApp performance. Our results showed that the sharded SRBB doubles the
average and peak throughputs of SRBB while reducing the transaction losses when evaluated
under an aggregated workload consisting of nasdaq, Uber, and fifa.

Collachain: To improve the performance of SRBB by other means than sharding, we pre-
sented a variant of SRBB coined Collachain that decouples the consensus and execution of
SRBB. Collachain separated the consensus and execution into two separate machines and intro-
duced RPC calls to facilitate communication between the two. Collachain improved the peak
throughput of SRBB by 33%.

With the aforementioned contributions, we showed various novel methods to improve blockchain
performance for DApp executions. The second part of our core research goal was to enhance
blockchain security for DApp executions, which was our second objective.

Blockchain Proportional Governance: We presented a novel blockchain proportional gov-
ernance protocol that mitigates an oligarchy of governors being formed in the blockchain. As an
oligarchy can impede the secure execution of DApps, our blockchain proportional governance
protocol enhanced blockchain security for DApp executions. The proportional governance proto-
col elected governors proportionally, mitigating an oligarchy in the election process. We proved
the properties offered by our proportional governance protocol and empirically evaluated its
performance. We showed that on a world-scale our blockchain proportional governance proto-
col can elect 200 governors within 6-12 minutes when 1000 voters cast ordinal ballots to 500
candidates.

7.2 Future Work

This thesis presented various contributions to improve the performance and security of blockchains
to support the execution of DApps. While completely replacing the current version of the web
with Web3 is an ongoing endeavour, our contributions have provided a foundation to build
upon. As new protocols are developed to improve the performance and security of blockchains,
it is likely that these would contribute towards further improving the performance and security
of blockchains. While our thesis focused on the blockchain layer (Layer 1 ), Layer 2 solu-
tions appear to be widely adopted in the industry to boost the performance of blockchains [29,
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145]. These Layer 2 solutions, however, trades off transparency and decentralization for perfor-
mance [29]. Ultimately, Layer 2 solutions rely on the Layer 1 to verify transaction execution
proofs.

The works presented in this thesis open several avenues for future research directions. Below,
a high-level overview of these pathways is described.

7.2.1 Mitigating Transaction Censorship

Our future work includes evaluating methods to mitigate transaction censorship in SRBB.
As mentioned in Chapter 3 Section 3.6, we explore load balancing techniques to randomly
forward each transaction from a client to different SRBB validators to mitigate censorship and
increase the probability of transactions being executed. Alternatively, another possible method
to mitigate transaction censorship is for a client to send a single transaction to f + 1 validators
where at most f validators are Byzantine such that f < n/3. However, such an approach would
require clients to know the validators prior to sending transactions, and, therefore, may not be
ideal for a permissionless environment as validators can join and leave at will.

7.2.2 Performance Evaluations

The evaluations of SRBB, sharded SRBB, and Collachain was restricted to at most 200 geo-
distributed c5.2xlarge AWS EC2 instances. This was particularly to ensure the evaluations were
consistent and comparable with the Diablo evaluations in [28]. Potential future research can
focus on evaluating the presented work at a much larger scale (e.g., 1000 AWS EC2 instances).
Other aspects in the evaluation that could be looked into as a part of future research include
(1) evaluating more DApp workloads and (2) using small instance sizes (e.g., AWS t2.micro)
to observe SRBB’s ability to perform on resource-constrained devices such as IoT (Internet-of-
Things) devices.

7.2.3 A Unified Solution

While we presented various contributions to improve blockchain performance and security, we
did not present a single overarching system that combines all the contributions and evaluates
the potential of all these aspects working together. In other words, we first presented SRBB to
improve blockchain performance for DApps and then used SRBB as a system to evaluate and
compare the other protocols we introduced later. We did not incrementally implement all the
new protocols we introduced in this thesis on SRBB to end up with a single overarching system
that encapsulates all our contributions.

Future research directions include combining the contributions in this thesis to produce
a single overarching system. More specifically, we intend to perform the following tasks in
order (1) use the presented sharding protocol to produce sharded Collachain (2) implement the
blockchain proportional governance on the sharded Collachain, and (3) evaluate the final system
against state-of-the-art.
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7.2.4 Integrating Layer 2 Solutions

As mentioned throughout this thesis, our work focused on the blockchain layer (Layer 1), and
hence Layer 2 solutions were considered orthogonal to the contributions we presented. We
believe that since Layer 2 eventually relies on the blockchain layer to include execution proofs,
the performance and security of the blockchain layer was paramount. However, there is potential
to integrate Layer 2 solutions with SRBB and Collachain presented in this thesis as a means to
further improve the performance of DApps as a part of future work. In the path to realizing
Web3, we believe there is no single path to success. Instead, appreciating existing state-of-
the-art, encouraging developments, and integrating these in a secure way can go a long way in
developing a truly decentralized web.



Glossary

Blockchain Consensus Reaching agreement on the execution order of transactions.

Blockchain Sharding Splitting blockchain tasks into separate groups of nodes known as
shards.

DApps Decentralized Applications. These applications execute on the blockchain and inherit
its decentralization.

Double spending The same coin is spent twice in a blockchain allowing an adversary to own
more goods for the price of one coin.

Governance The processes followed to make decisions that modify the blockchain protocol.

Oligarchy A privileged group of people having control over a specific task.

PoS The process of staking assets in order to propose blocks. The probability of being selected
to propose a block is proportional to the staked assets.

Smart Contract A piece of code that deterministically executes on the blockchain.

Solidity A Turing-complete smart contract language widely used to develop smart contracts.

Sybil Attacks An attack where an adversary assumes the identity of multiple users to over-
whelm a system.

Web3 An new iteration of the web that is decentralized and services users through DApps
executing on the blockchain instead of centralized web applications.

Zero-Knowledge Making a claim without revealing details about the claim.



List of Acronyms

SMR State Machine Replication

DApp Decentralized Application

BFT Byzantine Fault Tolerant

CFT Crash Fault Tolerant

RPC Remote Procedure Call

EVM Ethereum Virtual Machine

GST Global Stabilization Time

PoW Proof-of-Work

PoS Proof-of-Stake

PoA Proof-of-Authority

NFT Non Fungible Tokens

SRBB Smart Redbelly Blockchain

TVPR Transaction Validation and Propagation Reduction

RPM Reward Penalty Mechanism

TPS Transactions Per Second

KYC Know Your Customer

FPTP First-Past-The-Post

SNTV Single Non-Transferable Vote

STV Single Transferable Vote

IP Internet Protocol
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