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Abstract

Optimisation is a critical analytical technique used for quantitative decision-making in real-

world problems. In practice, many situations call for decision-making in a hierarchical setting,

called the bilevel optimisation problem. In this type of problem, we are provided with an inner-

level objective and a base domain. Interestingly, the inner-level objective may possess multiple

optimal solutions over the base domain. Hence, to select one of these solutions, one may consider

a secondary objective, referred to as the outer-level objective, and minimise this objective over

the optimal set of the inner-level objective. Typically, it is impractical to assume the optimal set

of the inner-level objective over the base domain admits a simple characterisation or is explicitly

given. Hence, solving bilevel problems requires optimisation techniques designed to account for

the generally unknown feasible set. First-order methods have gained prominence due to their

ability to efficiently solve high-dimensional optimisation problems. These techniques, for example,

projected gradient descent, typically rely on a projection oracle to handle constraints. However,

certain problems exhibit structure, which makes linear optimisation oracles much more efficient

to implement, thus giving rise to conditional gradient methods. While various projection-based

methods have been devised to solve the bilevel optimisation problems, currently, there is little work

on projection-free methods for bilevel optimisation. Thus, this thesis examines various first-order

projection-free schemes for solving bilevel problems which employ linear optimisation oracles.

Projection-free algorithms typically require a bounded domain, which restricts their application

in practice. Using a truncation technique, we first provide an extension of the conditional gradient

method to unbounded domains for single-level optimisation problems. Using this as a subroutine, we

then suggest three first-order projection-free approaches designed for bilevel problems with smooth

convex inner- and outer-level objectives and a closed convex base domain. Previously, to the best of

our knowledge, projection-free algorithms for bilevel problems require linear minimisation oracles

over complicated sets. In contrast, our approaches only require a linear optimisation oracle over



ii

the base domain, or an appropriately truncated version of it.

We provide convergence guarantees for each of our methods, highlighting the trade-off between

inner- and outer-level convergence rates, as well as the effect of truncation on unbounded domains.

We demonstrate these performances through three numerical experiments in portfolio optimisation,

low-rank matrix completion, and linear inverse problems.



Contents

1 Introduction 1

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Regularisation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Sublevel set approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Sequential averaging approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 11

2.1 Mathematical notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Assumptions on smoothness, convexity, and implications . . . . . . . . . . . . . . . . 12

2.3 Super-optimality, assumptions on the coerciveness and error bound . . . . . . . . . . 16

2.4 Strong duality and the solvability of the dual problem . . . . . . . . . . . . . . . . . 21

2.5 Conditional gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Extension of the conditional gradient method to unbounded domains 31

3.1 Approach and method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Application to solving convex bilevel problems . . . . . . . . . . . . . . . . . . . . . 35

i



CONTENTS ii

4 Sublevel linearising conditional gradient method 37

4.1 Approach and method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Iteratively regularised conditional gradient method 45

5.1 Approach and method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Primal-dual conditional gradient method 56

6.1 Approach and method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Duality gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Numerical experiments 80

7.1 Markowitz portfolio optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.3 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Low-rank matrix completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.3 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Linear inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.3 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Subroutines implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.1 Linear minimisation over the sliced probability simplex . . . . . . . . . . . . 94

7.4.2 Linear minimisation over a nuclear norm ball . . . . . . . . . . . . . . . . . . 106



CONTENTS iii

7.4.3 Linear minimisation over a sliced nuclear norm ball . . . . . . . . . . . . . . . 106

7.4.4 Projection onto a nuclear norm ball . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.5 Linear minimisation over a sliced box . . . . . . . . . . . . . . . . . . . . . . 114

8 Concluding remarks 118

Bibliography 120



List of Figures

7.1 Plot of the best inner-level objective value found by each algorithm (left) and the

corresponding outer-level objective value (right) on the Markowitz portfolio instance,

at each point in time. Note that y-axis is in logarithmic scale on the left figure. . . . 83

7.2 Plot of the best inner-level objective value found by each algorithm (left) and the

corresponding outer-level objective value (right) on the low-rank matrix completion

instance, at each point in time. Note that y-axis is in logarithmic scale on the left

figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Plot of the best inner-level objective value found by each algorithm (left) and the

corresponding outer-level objective value (right) on linear inverse problem instances

foxgood, baart, and phillips, at each point in time. Note that y-axis is in

logarithmic scale on the left figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Two examples of the points {Pi}t∈[n], the vertices of P, and Ps, Pe. . . . . . . . . . . 95

iv



List of Tables

7.1 Comparison of the number of iterations by the algorithms, on the Markowitz portfolio

instance, executed within 10 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Comparison of the number of iterations executed by the algorithms on the low-rank

matrix completion instance, within 10 minutes. . . . . . . . . . . . . . . . . . . . . . 88

7.3 Comparison of the number of iterations executed by the algorithms on linear inverse

problem instances foxgood, baart, and phillips, within 10 seconds. . . . . . . . . 93

8.1 Comparison of convergence rates of the SL-CG, IR-CG and PD-CG methods. . . . . . . 119

v



Chapter 1

Introduction

1.1 Problem description

In this thesis, we are interested in solving the following convex bilevel optimisation problem:

min
x∈X

f(x)

s.t. x ∈ Xopt, where Xopt := argmin
z∈X

g(z).

(1.1)

We refer to g as the inner-level objective function and X as the base domain, and when g and X are

convex, Xopt is also convex. We also assume f , the outer-level objective function, is convex, which

makes (1.1) a convex problem. We define the inner- and outer-level optimal values as follows:

gopt := min
x∈X

g(x), fopt := min
x∈Xopt

f(x). (1.2)

In addition, we also assume throughout this thesis that problem (1.1) is solvable. We refer to

any point x ∈ X as an inner-level feasible point and any point x∗ ∈ Xopt as an inner-level optimal

or outer-level feasible point.

Problem (1.1) is trivial if Xopt is a singleton, i.e., the inner-level objective function has a unique

1
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solution over X. However, multiple optimal solutions can arise in many practical applications, and

the bilevel problem (1.1) may be used to select a solution satisfying auxiliary desirable properties.

Below, we discuss three applications of convex bilevel optimisation problems.

Example 1.1. Consider a least squares linear regression problem where the data are feature-output

pairs (ai, bi) for i ∈ [n]. We stack the feature vectors into a matrix A ∈ Rn×d and outputs into a

vector b ∈ Rn. In this case, g(x) := 1
2∥Ax−b∥22 measures the sum of squared errors between outputs

bi and estimates a⊤i x, where x is the coefficient vector. When g is not strongly convex, which can

happen when the number of features d is larger than the number of data points n, multiple optimal

solutions may exist. Hence, a second objective f should be used to select one such solution. One

application of this can be seen in the so-called minimal norm problem, which has a closed form

solution of xopt = A†b, where A† is the pseudo-inverse of A, when the chosen outer-level objective

is f(x) := 1
2∥x∥

2
2.

Example 1.2. Consider the Markowitz portfolio optimisation problem [28], in which we are provided

with n assets numbered 1, . . . , n, and an n-vector µ, whose ith entry is the expected return of the

ith asset, and a positive semi-definite matrix Σ, whose (i, j) entry is the covariance of returns of

ith and jth assets. The goal of this problem is to minimise the portfolio variance subject to the

condition that the expected return should be at least a minimum threshold r0 > 0, i.e., the problem

is as follows:

min
x

1

2
xTΣx

s.t µTx ≥ r0, 1Tx = 1, x ≥ 0,

where variable xi represents the allocation of wealth to the asset i. Multiple optimal solutions may

exist when the covariance matrix is not full rank. In such case, Beck and Sabach [4, Section 5.1]

considered the outer-level objective f(x) := 1
2∥x− a∥22, where a = 1/n, which is chosen to obtain a

diverse portfolio. We will revisit this example in Chapter 7.

Example 1.3. The low-rank matrix completion problem seeks to find a low-rank n× p matrix X to

approximate a subset of observed entries Mi,j , for (i, j) ∈ Ω ⊂ [n]× [p]. That is, the objective is to
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minimise

g(X) :=
1

2

∑
(i,j)∈Ω

(Xi,j −Mi,j)
2,

over X ∈ Rn×p such that rank(X) ≤ δ for some small δ > 0. Due to the discrete nature of the rank

function, Fazel [15] replaced the rank function with its convex envelope, which is the nuclear norm

∥ · ∥∗, defined as the sum of singular values. Thus, the low-rank matrix completion problem is as

follows:

min
X∈Rn×p

g(X) :=
1

2

∑
(i,j)∈Ω

(Xi,j −Mi,j)
2

s.t ∥X∥∗ ≤ δ.

The objective g is not strictly convex; therefore, it is possible to have multiple minimisers, and a

second objective f should be used to select one such solution. For example, in the movie score

prediction problem, where Mi,j is the score of the jth movie from the ith customer, one can

consider f to be the sum of the variances of scores within each movie. We will revisit this example

in Chapter 7.

1.2 Main challenges

Solving the bilevel problem (1.1) is more complicated than a standard single-level problem. There

are two primary challenges in solving (1.1). First, we do not have an explicit representation of

the optimal set Xopt in general, which makes it intractable to apply the usual operations such as

projection or linear optimisation on Xopt, thus preventing the use of projected gradient descent or

conditional gradient methods. Thus, we alternatively consider the value function formulation of

problem (1.1):

min
x∈X

f(x)

s.t. g(x) ≤ gopt.

(1.3)



CHAPTER 1. INTRODUCTION 4

However, the second challenge arises because, by the definition of gopt, there exists no x ∈ X such

that g(x) < gopt. Hence, problem (1.3) does not satisfy the Slater constraint qualification, which

means that the Lagrangian dual of (1.3) may not be solvable. One may attempt to enforce Slater’s

condition by adding a small ϵg > 0 to the right-hand side of the constraint, i.e., g(x) ≤ gopt + ϵg,

but this approach does not solve the actual problem (1.3), and may introduce numerical instability

[24, Appendix D].

1.3 Literature review

Several schemes have been devised to tackle problem (1.1). These methods can be grouped into

three categories: regularisation, sublevel set, and sequential averaging.

1.3.1 Regularisation approach

This approach combines inner- and outer-level objectives via Tikhonov regularisation, i.e., we op-

timise σf(x) + g(x), where σ > 0 is the so-called regularisation parameter. Under some mild

conditions, Friedlander and Tseng [19] showed that for a sufficiently small σ > 0, the optimal set

of the regularised problem argminx∈X{σf(x) + g(x)} is the same as that of (1.1). Friedlander and

Tseng [19] showed that existence of such σ > 0 is equivalent to the Lagrangian dual of (1.3) being

solvable. However, the value σ is a priori unknown. As an alternative, if we consider a positive

sequence {σt}t≥0 converging to 0 and define

st ∈ argmin
x∈X

{σtf(x) + g(x)},

for each t ≥ 0, then it is known that any accumulation point of {st}t≥0 is a solution of (1.1). That

said, finding st for each t is expensive.

A more efficient strategy is to employ only cheap first-order updates each time we update t. To

the best of our knowledge, this idea dates back to Cabot [6], who proposed a proximal point-type

algorithm to update the solutions in case X := Rn. Cabot [6] showed that the iterates converge
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asymptotically to the optimal solution set. Dutta and Pandit [14] extended the work to a general

closed convex X. However, no convergence rates were provided by Cabot [6], Dutta and Pandit

[14].

Since proximal point updates also involve solving expensive optimisation problems each iteration,

Solodov [34] proposed the iterative regularised projected gradient (IR-PG) method, where only a

projected gradient step is taken each iteration t; we describe this in detail in Section 5.1. Solodov

[34] guaranteed asymptotic convergence when f and g are smooth, under the appropriate selection

of the regularisation parameters {σt}t≥0, but again no rates were provided. When f and g are

possibly nonsmooth, Helou and Simões [22] proposed a variation of the ϵ-subgradient method with

asymptotic convergence under Lipschitz continuity of f and g.

By choosing the relevant parameters appropriately, Amini and Yousefian [1] provided an inner-

level objective convergence rate of O
(
1/T 1/2−b

)
for any fixed b ∈ (0, 1/2) when f and g are

nonsmooth, but X is compact and f is strongly convex. Kaushik and Yousefian [25] provided an

analysis that removed the strongly convex assumption on f and admits convergence rates for both

inner- and outer-level objectives of O
(
1/T b

)
and O

(
1/T 1/2−b

)
respectively, for any b ∈ (0, 1/2).

(They also replace the inner-level objective with a variational inequality.) Malitsky [27] studied

a version of Tseng’s accelerated gradient method [35] with a convergence rate of o(1/T ) for the

inner-level objective.

Recently, Shen et al. [33] proposed two primal-dual-type algorithms in which σt is adaptively

adjusted based on how close g(xt) is to gopt. The first algorithm works with only convexity and

Lipschitz continuity assumptions and converges with the rate of O
(
1/T 1/3

)
for both inner- and

outer-level objectives. The second algorithm, which utilises more structural information on the

objective functions, including additional smoothness and strong convexity assumptions, converges

with the rate of O
(
1/T 1/2

)
for both inner- and outer-level objectives. Nevertheless, the algorithms

of Shen et al. [33] demand a tolerance parameter for the inner-level objective to be set in advance;

thus, do not enjoy asymptotic convergence guarantees.



CHAPTER 1. INTRODUCTION 6

1.3.2 Sublevel set approach

Another strategy is to replace the optimal sublevel set Xopt = {x ∈ X | g(x) ≤ gopt} in (1.1)

with an approximation. For instance, the minimal norm gradient (MNG) method [4] constructs

an outer approximation of Xopt with two half-spaces and minimises f , which is assumed to be

strongly convex and smooth, over this approximation. The MNG method converges with the rate

of O
(
1/T 1/2

)
for the inner-level objective when g is smooth convex, but no rates are provided for

the outer-level objective.

Jiang et al. [24] introduced the conditional gradient-based bilevel optimisation (CG-BiO) method

which approximates Xopt by replacing g(x) with a linear approximation. Jiang et al. [24] provided

the rate of O(1/T ) for both inner- and outer-level objectives when f, g are smooth andX is compact.

Cao et al. [7] extended this to the stochastic setting, when f(x) := Eθ[f̃(x, θ)] and g(x) := Eξ[g̃(x, ξ)]

where θ, ξ are independent random variables. When θ and ξ have finite support, Cao et al. [7]

showed a convergence rate of O(log(T )/T ) for both objectives. Otherwise, when θ and ξ satisfy a

sub-Gaussian property, the rate is O
(
1/T 1/2

)
. Both Jiang et al. [24] and Cao et al. [7] required

the predetermination of a tolerance parameter ϵg > 0, and their convergence analysis only ensures

convergence to an
ϵg
2 -suboptimal solution for the inner-level objective.

Instead of approximating Xopt, Doron and Shtern [12] provided an alternative formulation of

(1.1) which relies on sublevel sets of the outer-level objective f . Based on this, they developed

a method called the iterative approximation and level-set expansion (ITALEX) method [12], which

at each iteration t performs either two proximal gradient or two generalised conditional gradient

operations where one is overX, and the other is over a sublevel set {x | f(x) ≤ αt} of f . The sublevel

set αt of f is then updated. Doron and Shtern [12] showed the convergence rates of O(1/T ) and

O
(
1/T 1/2

)
for the inner- and outer-level objectives, respectively, when g is a composite function,

i.e., a sum of smooth convex and nonsmooth convex functions, and f satisfies an error bound

condition.
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1.3.3 Sequential averaging approach.

In this approach, the update rule for xt+1 is a weighted average of two mappings computed from

xt. For instance, the bilevel gradient sequential averaging method (BiG-SAM) [31] takes a con-

vex combination between a proximal gradient step with respect to the inner-level objective and a

gradient step with respect to the outer function from the current iterate. Sabach and Shtern [31]

showed asymptotic convergence for f without a rate, and convergence at rate O(1/T ) for g, when f

is smooth and strongly convex, and g is a composite function. Shehu et al. [32] presented the iner-

tial bilevel gradient sequential averaging method (iBiG-SAM), a variation of the BiG-SAM method

with an inertial extrapolation step. Although Shehu et al. [32] showed the asymptotic convergence

of the iBiG-SAM method without rates for both inner- and outer-level objectives under the same

assumptions of the BiG-SAM method, several numerical examples conducted in the study indicated

that the iBiG-SAM method outperformed the BiG-SAM method in those experiments.

Merchav and Sabach [29] proposed the bi-sub-gradient (Bi-SG) method for the case f is non-

smooth and g is a composite function. At each iteration, a proximal gradient step for g is calculated,

followed by a subgradient descent step for f . Merchav and Sabach [29] showed the convergence rates

of O(1/Tα) and O(1/T 1−α) for the inner- and outer-level objectives, respectively, with α ∈ (1/2, 1)

when f satisfies a quasi-Lipschitz property, and the rate of O
(
e−c(β/4)T 1−α

)
for the inner-level

objective, where c, β > 0 are some relevant parameters, when f is a composite function with

strongly convex smooth part, and the nonsmooth part of g is Lipschitz continuous.

1.4 Contributions

It is known that for certain convex base domains X, linear oracles can be implemented more

efficiently than projection operations. For example, in a low-rank matrix completion problem,

when X is a nuclear norm ball of the set of n× p matrices, projection onto X requires a complete

singular value decomposition of a matrix and projection of the vector of singular values onto the

probability simplex, i.e., {x ∈ Rmin{n,p} | x ≥ 0,1⊤x = 1} [3, Section 7.3.2], whereas the linear

oracle only requires computing the maximum singular value, and the corresponding left and right
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singular vectors [23, Section 4.2].

In light of this, in this thesis, we present three iterative methods for solving (1.1) that require

only linear optimisation oracles over the base domainX at each iteration, or appropriate truncations

of it when X is unbounded, under the assumptions that X is closed and f, g are smooth convex

functions. Our methods are derived by studying the equivalent formulation (1.3). Our contributions

are summarised as follows:

• In Chapter 3, due to the relaxation of the boundedness of domain X, which is typically

assumed by projection-free schemes, we present the unbounded conditional gradient (UCG)

method, which is an extension of the CG method [17] for unbounded domains. This serves as

a fundamental tool that we will use in our algorithms for solving problem (1.1). By proposing

a truncation scheme, we show asymptotic convergence to the optimal value of the objective

function with the rate of O
(
d2T /T

)
for any non-decreasing, divergent sequence {dt}t≥0 such

that dt = o
(
t1/2

)
, where {dt}t≥0 are parameters which control the degree of truncation at

each iteration. In case X is bounded, {dt}t≥0 can be taken to be a constant sequence.

• In Chapter 4, we propose the sublevel linearising conditional gradient (SL-CG) method, which

is an improvement upon the CG-BiO method [24]. By adopting a sequence of non-increasing

approximations {gt}t≥0 converging to gopt, we show asymptotic convergence for the algorithm

in Section 4.2. Under the assumption that the approximation sequence converges at the rate

of O
(
d2T /T

)
, we establish the convergence rate of O

(
d2T /T

)
for both inner- and outer-level

objectives for any non-decreasing, divergent sequence {dt}t≥0 such that dt = o
(
t1/2

)
when

X is unbounded. When X is bounded, the required rate for the approximations and the

convergence rates for both inner- and outer-level objectives are O (1/T ).

• In Chapter 5, we propose the iteratively regularised conditional gradient (IR-CG) method,

which uses the regularisation approach to solve (1.1). Unlike other previous regularisation

approaches, we utilise a novel averaging scheme that arises due to the analysis of the con-

ditional gradient updates. We provide conditions on the relevant parameters which ensure

asymptotic convergence, as well as convergence rates of O(1/T p) and O
(
d2T /T

1−p
)
for the
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inner- and outer-level objectives, respectively, for any p ∈ (0, 1), and for any non-decreasing,

divergent sequence {dt}t≥0 such that dt = o
(
t(1−p)/2

)
.

• In Chapter 6, we propose the primal-dual conditional gradient (PD-CG) method. This method

is an extension of a conditional gradient-type algorithm for solving single-level convex opti-

misation problems with functional constraints proposed by Lan et al. [26] to solve the bilevel

problem (1.1). As we will discuss in Section 2.4, under some mild conditions, strong La-

grangian duality for (1.3) is guaranteed to hold, yet the dual problem is not guaranteed to

be solvable. We provide a unified analysis that yields convergence guarantees when the La-

grangian dual is not solvable and also yields improved guarantees when the dual is solvable.

Our algorithm does not need knowledge of the optimal dual solution to be implemented.

Without an optimal dual solution, we prove the convergence rates of O
(
1/T (1−p)/2

)
and

O
(
max

{
1/T 1−p, d4T /T

p
})

for inner- and outer-level objectives, respectively, for any p ∈ (0, 1),

and any non-decreasing, divergent sequence {dt}t≥0 such that dt = o
(
tp/4

)
. When the dual

problem is solvable, the rate for the inner-level objective improves toO
(
max

{
1/T 1−p, d2T /T

1/2
})

.

• In Chapter 7, we investigate the numerical performance of our new algorithms via three

numerical experiments based on Examples 1.1 to 1.3, where we compare the performance of

the proposed methods to that of some existing methods including IR-PG [34], Bi-SG [29],

ITALEX [12] with projection-free customisation, CG-BiO [24].

We note that the CG-BiO method of Jiang et al. [24] as well as the projection-free customisation

of the ITALEX method of Doron and Shtern [12] also utilises linear optimisation oracles to solve

(1.1) and only work under the boundedness of the base domain X. In case X is bounded, at each

iteration, two of our methods, which are the IR-CG and PD-CG methods, only require linear oracles

over the base domain X. In contrast, CG-BiO and our variant SL-CG require at each iteration a

linear oracle over X ∩Ht where Ht is some half-space, which can be significantly more complicated

than a linear oracle over X. (We provide examples for this claim in Chapter 7) ITALEX requires a

linear oracle over a sublevel set {x : f(x) ≤ αt} in addition to one over X. While some functions

f admit simple linear oracles over their sublevel sets, another assumption required for convergence
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of ITALEX is that the sublevel sets of f are bounded, whereas our algorithms apply to any smooth

convex f . We provide an example of f with unbounded sublevel sets in Chapter 7.



Chapter 2

Preliminaries

In this chapter, we first list the notations utilised for this thesis in Section 2.1. In Section 2.2,

we describe one set of assumptions involving smoothness and convexity and their implications. In

Section 2.3, we describe how super-optimal solutions of (1.3) may often be encountered in bilevel

optimisation. We also provide results on the convergence of iterates under additional assumptions,

and bounds on the degree of super-optimality in these situations. In Section 2.4, we discuss a con-

straint qualification that ensures the solvability of the dual problem. This is used in the convergence

analysis of one of our methods discussed in Chapter 6. In Section 2.5, we review the conditional

gradient (CG) method [17], which provides a crucial foundation for our contributions.

2.1 Mathematical notation

In this thesis, we use R to denote the real numbers, Rn to denote the set of all real vectors with

n components, Rn
+ to denote the set of all real vectors with n non-negative components, Rn

++ to

denote the set of all real vectors with n positive components, Rn×m to denote the set of all real

matrices with n rows and m columns.

The set {1, 2, . . . ,m} for a positive integer m is denoted as [m], and for a real number r, we

denote [r]+ := max{r, 0}. For a matrix A, we denote the largest singular value or the spectral

11
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norm as σmax(A). Given two vectors a, b in Rn, we define the dot product between them as

a⊤b =
∑

i∈[n] aibi. We let 1 be the vector with entries equal to one, whose dimension depends on

the context. Similarly, 0 will be used flexibly as either a number or a vector or a matrix, which

depends on the context. We will use ei to denote the vector in Rn whose entries are zero except

for the ith entry whose value is 1.

Furthermore, we use the dot product as the inner product in Rn, and given an arbitrary norm

∥ · ∥ on Rn, the dual norm ∥ · ∥∗ is defined as follows:

∥x∥∗ := sup
∥y∥≤1

x⊤y, ∀x ∈ Rn.

Given a closed convex set C ⊆ Rn and a norm ∥ · ∥, the projection of x onto C is denoted by

ProjC(x) = argminy∈C ∥y − x∥, and the distance between x and C is denoted as Dist(x,C) =

miny∈C ∥y− x∥. Given a bounded set C, we can define its diameter with respect to a norm ∥ · ∥ as

DC := sup{∥x− y∥ | x, y ∈ C}. Given a norm ∥ · ∥ on Rn, a ∈ Rn, and r > 0, we use B∥·∥(a, r) to

denote the set {x ∈ Rn | ∥x − a∥ ≤ a}. Given a set C, we denote its convex hull, which is the set

containing all convex combinations of points in C, as ConvC.

Given two sequences {xt, yt}t≥0 in R, we write xt ≤ O(yt) if there exists M > 0 and a non-

negative integer tM such that for t ≥ tM , xt ≤ Myt. Additionally, we write xt = o(yt) if for any

ϵ > 0, there exists a non-negative integer tϵ such that for any t ≥ tϵ, we have |xt| ≤ ϵyt.

2.2 Assumptions on smoothness, convexity, and implications

Before discussing Assumption 1 on problem (1.1), we introduce the definition of the smoothness of

a function as stated below.

Definition 2.1. Suppose C is a subset of Rn, and ∥ ·∥ is a norm on Rn. Then a function h is called

Lh-smooth on C for some Lh > 0 if it is continuously differentiable on an open neighbourhood of

C and for any x, y ∈ C, we have ∥∇h(x)−∇h(y)∥∗ ≤ Lh∥x− y∥.
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Assumption 1. Let ∥ · ∥ be an arbitrary norm on Rn. We consider the following conditions on

f, g and X:

(a) X ⊆ Rn is a convex and closed set.

(b) f is convex, Lf -smooth on X for some Lf > 0.

(c) g is convex, Lg-smooth on X for some Lg > 0.

Remark 2.2.1. From now on, unless stated otherwise, any computation or definition involving the

knowledge of norm (e.g., the distance from a set, the magnitude of the vector, the diameter of a

set) will utilise norm ∥ · ∥ given in Assumption 1.

Before discussing frequently used results following from Assumption 1, we state without proof

the consequence of smoothness, which is crucial to obtain important implications of Assumption 1

discussed later in this section.

Lemma 2.1 ([38, Lemma 2.2]). Let h be an Lh-smooth function on X. Then we have

|h(y)− h(x)−∇h(x)⊤(y − x)| ≤ Lh

2
∥y − x∥2, ∀x, y ∈ X

Conditional gradient-type algorithms typically have an update step of the form

xt+1 = xt + αt(vt − xt), αt ∈ [0, 1], vt ∈ X, (2.1)

where αt and vt are carefully chosen to ensure convergence [23, Algorithms 1,2,3,4]. The following

lemma provides an inequality for this update, which is standard in smooth convex optimisation and

will be utilised extensively in our analysis.

Lemma 2.2. Suppose h is an Lh-smooth function on X. Then we have

h(y)− h(z) ≤ (1− α)(h(x)− h(z)) + α
(
∇h(x)T (v − x) + h(x)− h(z)

)
+

Lh∥v − x∥2

2
α2,

for any x, z, v ∈ X,α ∈ [0, 1], y = x+ α(v − x).
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Proof. By the convexity of X, we have y = (1− α)x+ αv ∈ X. By Lemma 2.1, we have that

h(y) ≤ h(x) +∇h(x)⊤(y − x) +
Lh

2
∥y − x∥2

⇐⇒ h(y) ≤ h(x) + α∇h(x)⊤(v − x) +
Lhα

2

2
∥v − x∥2.

By subtracting both sides by h(z), we have that

h(y)− h(z) ≤ h(x)− h(z) + α∇h(x)⊤(v − x) +
Lhα

2

2
∥v − x∥2

⇐⇒ h(y)− h(z) ≤ (1− α)(h(x)− h(z)) + α
(
∇h(x)T (v − x) + h(x)− h(z)

)
+

Lh∥v − x∥2

2
α2.

Suppose the sequence {xt}t≥0 generated by (2.1) given a x0 ∈ X. For any z ∈ X and t ≥ 0, if

we denote

∆t := h(xt)− h(z), ∆t+1 := h(xt+1)− h(z),

ηt := αt

(
∇h(xt)

T (vt − xt) + h(xt)− h(z)
)
+

LhD
2α2

t

2
,

(2.2)

then Lemma 2.2 shows that we have the following recursion between the function values of consec-

utive iterates:

∆t+1 ≤ (1− αt)∆t + ηt, (2.3)

for any t ≥ 0. This recursion is the key to analyse the convergence of a conditional gradient-type

algorithm with ∆t, ηt depending on the algorithm rather than being restricted to the one given in

(2.2). Due to our scheme to deal with unbounded base domains, (2.3) may not hold for any t ≥ 0

in our analysis but only for t ≥ t0 for some sufficiently large t0 ≥ 0. Therefore, in the next lemma,

we provide an upper bound on ∆t only based on {αt}t≥0 and ∆t0 .

Lemma 2.3. Let {∆t, ηt, αt}t≥0 be sequences such that (2.3) holds for t ≥ t0, and α0 ∈ [0, 1],
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αt ∈ [0, 1) for t ≥ 1. Then we have that for t > t0,

∆t ≤ H0at−1 + at−1

∑
i∈[t]

ηi−1

ai−1
, (2.4)

where

a0 := 1, at :=
∏
i∈[t]

(1− αi), ∀t ≥ 1,

H0 :=


(1− αt0)

∆t0

at0
−
∑

i∈[t0]
ηi−1

ai−1
, t0 ≥ 1

(1− α0)
∆0

a0
, t0 = 0.

Proof. Dividing both sides of (2.3) by at and noting that at = (1−αt)at−1 for any t ≥ 1, we obtain

∆t+1

at
≤ ∆t

at−1
+

ηt
at

, ∀t ≥ t0.

Hence, given t ≥ t0 + 2, we have that

∆t

at−1
− ∆t0+1

at0
=

t−1∑
i=t0+1

(
∆i+1

ai
− ∆i

ai−1

)
≤

t−1∑
i=t0+1

ηi
ai
. (2.5)

Using the fact that ∆t0+1 ≤ (1− αt0)∆t0 + ηt0 , we multiply both sides of (2.5) by at−1 to obtain

∆t ≤ (1− αt0)at−1
∆t0

at0
+ at−1

ηt0
at0

+ at−1

t−1∑
i=t0+1

ηi
ai

= (1− αt0)at−1
∆t0

at0
+ at−1

t−1∑
i=t0

ηi
ai
. (2.6)

We note that (2.6) is true for any t ≥ t0 + 1. If t0 = 0 then

∆t ≤ (1− α0)at−1
∆0

a0
+ at−1

t−1∑
i=0

ηi
ai

= (1− α0)at−1
∆0

a0
+ at−1

∑
i∈[t]

ηi−1

ai−1
.

If t0 ≥ 1 then

∆t ≤ (1− αt0)at−1
∆t0

at0
+ at−1

t−1∑
i=t0

ηi
ai
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= (1− αt0)at−1
∆t0

at0
+ at−1

(
t−1∑
i=0

ηi
ai
−

t0−1∑
i=0

ηi
ai

)

=

(1− αt0)
∆t0

at0
−
∑
i∈[t0]

ηi−1

ai−1

 at−1 + at−1

∑
i∈[t]

ηi−1

ai−1
.

Hence, (2.4) is true for any t > t0.

In fact, we follow the well-studied stepsizes αt =
2

t+2 for each t ≥ 0 in the analysis of all proposed

methods. Hence, the following corollary gives a more compact expression of the right-hand side of

(2.4).

Corollary 2.4. If αt =
2

t+2 for each t ≥ 0 then we have

at =
2

(t+ 1)(t+ 2)
, ∀t ≥ 0. (2.7)

Thus, inequality (2.4) becomes

∆t ≤
2H0

(t+ 1)t
+

1

(t+ 1)t

∑
i∈[t]

(i+ 1)iηi−1, ∀t ≥ t0 + 1. (2.8)

Proof. First, we will prove (2.7) by induction. When t = 0, the claim is true. We assume that the

claim is true up to t ≥ 0, then we have that

at+1 = (1− αt+1)at =

(
1− 2

t+ 3

)
2

(t+ 1)(t+ 2)
=

t+ 1

t+ 3

2

(t+ 1)(t+ 2)
=

2

(t+ 2)(t+ 3)
.

Inequality (2.8) follows as a consequence of (2.4) and (2.7).

2.3 Super-optimality, assumptions on the coerciveness and

error bound

The proposed methods in Chapters 4 to 6 will construct candidate solutions {zt}t≥0 ⊂ X from

convex combinations of {xt}t≥0 (where the xt-iterates are constructed using (2.1)) and our conver-
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gence analysis will show that lim supt→∞ f(zt) ≤ fopt, lim supt→∞ g(zt) ≤ gopt. Since g(zt) ≥ gopt

by definition, we have limt→∞ g(zt) = gopt. In general, it is possible to have f(zt) < fopt when

g(zt) > gopt, and in this case we say that zt is a super-optimal solution for problem (1.1). Therefore,

it is not clear a priori that we will have f(zt) → fopt. The next lemma shows that we can ensure

this under mild assumptions.

Lemma 2.5. Suppose {zt}t≥0 is a bounded sequence in X such that

lim sup
t→∞

f(zt) ≤ fopt, lim
t→∞

g(zt) = gopt. (2.9)

If X is closed and f, g are continuous on X, then any accumulation point of {zt}t≥0 is a solution

of problem (1.1), and that

lim
t→∞

f(zt) = fopt, lim
t→∞

g(zt) = gopt. (2.10)

Proof. According to the Bolzano-Weierstrass theorem, {zt}t≥0 must have at least an accumulation

point and since X is closed, all accumulation points must be in X. Given z∗ ∈ X is an accumulation

point of {zt}t≥0, there exists a subsequence {ztk}k≥0 such that ztk → z∗. By the continuity of g,

we have

gopt = lim
k→∞

g(ztk) = g

(
lim
k→∞

ztk

)
= g(z∗).

Thus, z∗ ∈ Xopt. By the continuity of f and the definition of fopt, we also have

fopt ≤ f(z∗) = lim
k→∞

f(ztk) ≤ lim sup
t→∞

f(zt) ≤ fopt.

Hence, f(z∗) = fopt. Therefore, any accumulation point of {zt}t≥0 is a solution of problem (1.1).

Since {zt}t≥0 is a bounded sequence in X, which is closed, the closure of it is a compact subset

of X. Thus, by the continuity of f on X, {f(zt)}t≥0 is a bounded sequence, which means that

lim inft→∞ f(zt), lim supt→∞ f(zt) are both finite. Let {f(zti)}i≥0 be a subsequence of {f(zt)}t≥0

that converges to lim inft→∞ f(zt). Assume that {zti}i≥0 is convergent; otherwise, we extract a con-

vergent subsequence, which must exist due to the boundedness of {zti}i≥0. Since the accumulation
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point of {zti}i≥0 is a solution of problem (1.1), we have

lim inf
t→∞

f(zt) = lim
i→∞

f(zti) = f
(
lim
i→∞

zti

)
= fopt.

Hence, limt→∞ f(zt) = fopt.

In Lemma 2.5, the assumption on the boundedness of {zt}t≥0 is critical for asymptotic conver-

gence, but may not hold in general. However, Assumption 2 stated below can ensure that {zt}t≥0

is bounded, as shown in Lemma 2.6.

Assumption 2. The pointwise maximum function ℓ(x) := max{g(x), f(x)} is coercive on X, i.e.,

ℓ(zt)→∞ for any sequence {zt}t≥0 in X such that ∥zt∥ → ∞.

Lemma 2.6. Let {zt}t≥0 be a sequence in X satisfying (2.9). If Assumption 2 holds, then {zt}t≥0

is bounded.

Proof. If (2.9) holds then we have limt→∞ g(zt), lim supt→∞ f(zt) < max{fopt +1, gopt +1}. From

the definition of limit and superior limit, there exists a positive integer t1 such that for t > t1,

g(zt), f(zt) < max{fopt + 1, gopt + 1} and hence, ℓ(zt) < max{fopt + 1, gopt + 1}. Thus, we have

lim sup
t→∞

ℓ(zt) ≤ max{fopt + 1, gopt + 1},

which implies {zt}t≥0 cannot be unbounded if Assumption 2 holds.

For the methods proposed in this study, we do not rely on Assumption 2 to establish (2.9).

Nevertheless, to ensure (2.10), Assumption 2 is sufficient and almost necessary, in the sense that

we can construct a bilevel problem satisfying Assumption 1 but not Assumption 2 and a sequence

satisfying (2.9) but not (2.10). Such construction is detailed in Example 2.1.
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Example 2.1. We consider an example where

f(x) := x2
2 − 2x2,

g(x) :=
x2
2

x1
,

X := {x ∈ R2 | x1 ≥ 1, x2
2 ≤ x1}.

(2.11)

First, we verify the problem (2.11) meets Assumption 1 with Euclidean norm ∥ · ∥2. The base

domain X is a closed convex set and hence, satisfies Assumption 1(a). Since ∇f(x) = (0, 2x2 − 2),

we have that

∥∇f(x)−∇f(y)∥2 = 2|x2 − y2| ≤ 2∥x− y∥2,

for any x, y ∈ X. Combining this result with the fact that f is convex quadratic, the outer-level

objective satisfies Assumption 1(b) with Lf = 2. We will prove that g satisfies Assumption 1(c).

Since g is a quadratic over linear function, g is indeed a convex function on X. Following Wright

and Recht [38, Lemma 2.3], we verify the smoothness of g by showing that ∇2g(x) has the spectral

norm, i.e., the largest eigenvalue, bounded above by 4 over X, i.e., Lg = 4. We observe that

∇g(x) =

−x2
2/x

2
1

2x2/x1

 =⇒ ∇2g(x) =

 2x2
2/x

3
1 −2x2/x

2
1

−2x2/x
2
1 2/x1

 =
2

x1

x2/x1

−1

[x2/x1 −1
]
.

Before moving on, we need to prove the fact that σmax(aa
⊤) = a⊤a = ∥a∥22 for any a ∈ R2. If

a = 0, then the claim trivially holds. Otherwise, we notice that a is an eigenvector of aa⊤ with

the associated eigenvalue of ∥a∥22. In addition, any non-zero vector that is orthogonal to a is also

an eigenvector of aa⊤ with the associated eigenvalue of 0. Therefore, aa⊤ only has two distinct

eigenvalues, which are ∥a∥22 and 0. Hence, the claim is true.

Using this fact, we have that

σmax(∇2g(x)) =
2

x1

(
x2
2

x2
1

+ 1

)
,
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and since x1 ≥ 1 and x2
2 ≤ x1, we obtain

σmax(∇2g(x)) ≤ 2

x1

(
1

x1
+ 1

)
≤ 4.

We can see that Xopt = {(s, 0) | s ≥ 1}, fopt = 0, and gopt = 0. Given positive integer t, we

define zt := (t, 1), which is inner-level feasible and satisfies

lim
t→∞

g(zt) = lim
t→∞

(
1

t

)
= 0 = gopt, lim

t→∞
f(zt) = −1 < 0 = fopt.

Therefore, {zt}t≥1 satisfies (2.9) but not (2.10). By noticing sequence {zt}t≥1 is unbounded, we

have a counterexample to claim that f and g do not meet Assumption 2.

Given that it is possible that f(zt) < fopt, we may wish to lower bound f(zt) − fopt for our

algorithms. In fact, a generic bound exists if g satisfies the following.

Condition 2.1 (Hölderian error bound). For some τ > 0 and r ≥ 1, g satisfies

τ Distr(x,Xopt) ≤ g(x)− gopt.

Condition 2.1 has been studied extensively in optimisation literature. When r = 1, we say that

g possesses weak sharp minima, and this holds for all solvable linear programs as well as some

classes of quadratic programs [5, Section 3.1–3.2]. The case r = 2 is known as the quadratic growth

condition [13]. The following lemma shows that under Condition 2.1, lower bounds on f(zt)− fopt

can automatically be obtained from existing upper bounds on g(zt)− gopt.

Lemma 2.7. Suppose that Assumption 1(a), Assumption 1(b) and Condition 2.1 hold. Then for

any z, x ∈ X, we have

f(z)− fopt ≥ −
∥∇f(x)∥∗ + Lf∥z − x∥

τ1/r
(g(z)− gopt)

1/r − Lf

τ2/r
(g(z)− gopt)

2/r.
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Proof. Under Condition 2.1, we have that

τ∥z − w∥r ≤ g(z)− gopt ⇐⇒ ∥z − w∥ ≤ 1

τ1/r
(g(z)− gopt)

1/r
,

where w ∈ argminu∈Xopt
∥z − u∥. Since f(w) ≥ fopt, we have that

f(z)− fopt ≥ f(z)− f(w) ≥ ∇f(w)⊤(z − w) ≥ −∥∇f(w)∥∗∥z − w∥.

By the smoothness of f and the triangle inequality, we have

∥∇f(w)∥∗ = ∥∇f(w)−∇f(x) +∇f(x)∥∗

≤ ∥∇f(x)∥∗ + ∥∇f(w)−∇f(x)∥∗

≤ ∥∇f(x)∥∗ + Lf∥w − x∥

≤ ∥∇f(x)∥∗ + Lf∥x− z∥+ Lf∥w − z∥.

Therefore, we have

f(z)− fopt ≥ − (∥∇f(x)∥∗ + Lf∥x− z∥) ∥w − z∥ − Lf∥w − z∥2

≥ −∥∇f(x)∥∗ + Lf∥x− z∥
τ1/r

(g(z)− gopt)
1/r − Lf

τ2/r
(g(z)− gopt)

2/r.

It is important to note that none of our algorithms rely on Condition 2.1 to achieve (2.9) and

(2.10).

2.4 Strong duality and the solvability of the dual problem

Interestingly, although Slater’s condition never holds for problem (1.3), by adopting Assumption 3

stated below, we can still establish strong duality between problem (1.3) and the Lagrangian dual
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defined as follows:

sup
λ≥0

{
inf
x∈X

L(x, λ)

}
, where L(x, λ) := f(x) + λ(g(x)− gopt), (2.12)

as shown in Lemma 2.8.

Assumption 3. f is bounded below over X, i.e., f := infx∈X f(x) > −∞.

Lemma 2.8. If Assumptions 1–3 hold, then we have

sup
λ≥0

{
min
x∈X

L(x, λ)

}
= min

x∈X

{
sup
λ≥0

L(x, λ)

}
. (2.13)

Proof. First, we prove that given λ > 0, minx∈X L(x, λ) is solvable. From Assumption 3, we have

that

L(x, λ) = f(x)− f + λ(g(x)− gopt) + f

≥ min{1, λ}
(
f(x)− f + g(x)− gopt

)
+ f

≥ min{1, λ}max{g(x)− gopt, f(x)− f}+ f.

By defining ξ := max{gopt, f} and recalling that ℓ(x) := max{f(x), g(x)}, we have

L(x, λ) ≥ min{1, λ}max{g(x)− ξ, f(x)− ξ}+ f

= min{1, λ}(ℓ(x)− ξ) + f.

Therefore, given λ > 0, L(x, λ) is a coercive, continuous function with respect to x ∈ X. By Dhara

and Dutta [10, Theorem 1.14], it has an attainable minimum over X.

Suppose {λt}t≥0 is a positive, increasing, divergent sequence and {xt}t≥0 is a sequence defined

as follows:

xt ∈ argmin
x∈X

L(x, λt), ∀t ≥ 0.
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For any t ≥ 0, we have that

L(xt, λt) = min
x∈X

L(x, λt) ≤ sup
λ≥0

{
min
x∈X

L(x, λ)

}
.

For any x ∈ X,λ ≥ 0, we have that minx∈X L(x, λ) ≤ L(x, λ), which implies that for any x ∈ X,

sup
λ≥0

{
min
x∈X

L(x, λ)

}
≤ sup

λ≥0
L(x, λ).

Thus, we have that

sup
λ≥0

{
min
x∈X

L(x, λ)

}
≤ inf

x∈X

{
sup
λ≥0

L(x, λ)

}
.

Given x ∈ X, we have

sup
λ≥0

L(x, λ) =


f(x), x ∈ Xopt

∞, x ∈ X \Xopt,

and therefore,

min
x∈X

{
sup
λ≥0

L(x, λ)

}
= min

x∈Xopt

f(x) = fopt. (2.14)

Hence, we have that

f(xt) + λt(g(xt)− gopt) ≤ fopt. (2.15)

Using f(xt) ≥ f and dividing both sides of (2.15) by λt, we have

f

λt
+ g(xt)− gopt ≤

fopt
λt

.

By taking t → ∞ and noting that λt → ∞, we have that g(xt) → gopt. Since λt > 0 and

g(xt) ≥ gopt, we have f(xt) ≤ fopt, which implies lim supt→∞ f(xt) ≤ fopt. By Lemmas 2.5 to 2.6,

we have that {xt}t≥0 must be bounded, limt→∞ g(xt) = gopt, and limt→∞ f(xt) = fopt.

Given λ < λ′, since g(x) ≥ gopt for any x ∈ X, we have that L(x, λ) ≤ L(x, λ′), which implies
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minx∈X L(x, λ) is a non-decreasing function with respect to λ. Hence, we have

sup
λ≥0

{
min
x∈X

L(x, λ)

}
= lim

λ→∞

(
min
x∈X

L(x, λ)

)
= lim

t→∞
(f(xt) + λt(g(xt)− gopt)) ≥ lim

t→∞
f(xt) = fopt,

(2.16)

where in the rightmost inequality, we use the fact that g(xt) ≥ gopt, λt > 0 for t ≥ 0. From (2.15),

we obtain

sup
λ≥0

{
min
x∈X

L(x, λ)

}
= lim

λ→∞

(
min
x∈X

L(x, λ)

)
= lim

t→∞
(f(xt) + λt(g(xt)− gopt)) ≤ fopt. (2.17)

Using (2.14), (2.16) and (2.17), we obtain (2.13).

Although Lemma 2.8 claims strong duality for problem (1.3) under some mild conditions, there

is no guarantee that the dual problem (2.12) is solvable. (We will point out in Example 2.3 in which

Assumptions 1–3 hold, but the dual problem is not solvable later in this section.) On the other

hand, if there exists an optimal dual λopt as in Assumption 4 stated below, then convergence rates

may be improved for some algorithms, e.g., the PD-CG algorithm from Chapter 6. We now present

a more general constraint qualification, which guarantees Assumption 4 stated below.

Assumption 4. There exists λopt ≥ 0 such that

min
x∈X
{f(x) + λopt(g(x)− gopt)} = fopt.

First, we review the concept of set-valued mapping and the definition of calmness. Given two

positive integers n1, n2, a set-valued mapping Γ : Rn1 ⇒ Rn2 maps each point u ∈ Rn1 to a subset

Γ(u) of Rn2 . Under this definition, the graph of Γ is defined to be

gphΓ := {(u, v) ∈ Rn1 × Rn2 | v ∈ Γ(u)}.

Let ∥ · ∥(1), ∥ · ∥(2) be two norms on Rn1 ,Rn2 respectively. Following Penot [30, Definition 3.1], Γ is

called calm at (u, v) ∈ gphΓ if there exists two open neighbourhoods U ,V of u, v, respectively and a



CHAPTER 2. PRELIMINARIES 25

constant c > 0 such that for any u′ ∈ U , every v′ ∈ V ∩Γ(u′) satisfies Dist (v′,Γ(u)) ≤ c∥u− u′∥(1),

where Dist is computed via norm ∥ · ∥(2) for this definition.

Example 2.2. One can consider Λ : R ⇒ Rn be defined as follows:

Λ(y) := {x ∈ X | g(x)− gopt ≤ y}, ∀y ∈ R

Suppose x∗ is a minimiser of g over X. We observe that (0, x∗) ∈ gphΛ, Λ(0) = Xopt and Λ(y) = ∅

for y < 0. Hence, Λ is calm at (0, x∗) if and only if there exists ϵ, δ > 0, and c > 0 such that for

any y ∈ [0, ϵ), every x ∈ X ∩ B∥·∥(x
∗, δ) such that g(x)− gopt ≤ y satisfies

Dist(x,Xopt) ≤ cy. (2.18)

Now, we are ready to state an optimality condition for problem (1.3), which was developed by

Franke et al. [18, Theorem 5.6].

Lemma 2.9 ([18, Theorem 5.6]). Let Λ : R ⇒ Rn and x∗ ∈ Xopt be defined as in Example 2.2.

If Assumption 1(a) holds, f, g are convex, continuously differentiable on an open neighborhood of

X, and Λ is calm at (0, x∗), then x∗ is an optimal solution solution of problem (1.3) if and only if

there exists λ∗ ≥ 0 such that

(∇f(x∗) + λ∗∇g(x∗))
⊤
(x− x∗) ≥ 0, ∀x ∈ X. (2.19)

Remark 2.4.1. From Lemma 2.9, if (2.19) holds then x∗ ∈ Xopt must minimise f(x)+λ∗(g(x)−gopt).

Therefore, x∗ must be a solution of (1.1), which implies Assumption 4 holds with λopt = λ∗.

In fact, the condition of Λ being calm at (0, x∗) holds under Condition 2.1 with r = 1.

Lemma 2.10. If Condition 2.1 holds with r = 1, then for any x∗ ∈ Xopt, the set-valued mapping

Λ as defined in Example 2.2 is calm at (0, x∗).
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Proof. Condition 2.1 holds with r = 1 means that for any x ∈ X and y ≥ g(x)− gopt, we have

Dist(x,Xopt) ≤
1

τ
(g(x)− gopt) ≤

1

τ
y.

Thus, (2.18) holds with c := 1
τ and any ϵ, δ > 0.

In addition to ensuring the solvability of the dual problem, we would like to point out that

Condition 2.1 with r = 1 is nearly a necessary condition, in the sense that even Assumptions 1–3

and Condition 2.1 hold with r > 1 cannot guarantee the solvability of the Lagrangian dual. We

justify this claim via the following example.

Example 2.3. Given s > 1, we consider an example in which:

f(x) := x2 − x1,

g(x) := x2,

X := {x ∈ R2 | 0 ≤ xs
1 ≤ x2 ≤Ms},

(2.20)

where Ms > 0 is a sufficiently large number we will choose later. We will prove that there is no

optimal dual variable for problem (2.20) despite strong duality.

First, we observe that Assumption 1 holds for problem (2.20) with Euclidean norm. Since the

base domain is compact, Assumptions 2–3 hold. We will prove that Condition 2.1 holds with r = s.

For problem (2.20), the only optimal solution for g over X is (0, 0), i.e., Xopt = {(0, 0)}. We assume

x is an inner-level feasible point with x2 > 0. We observe that

g(x)− gopt
Dists (x,Xopt)

=
x2

(x2
1 + x2

2)
s/2

=
1(

x2
1+x2

2

x
2/s
2

)s/2
=

1((
xs
1

x2

)2/s
+ x

2−2/s
2

)s/2
.

Since Ms ≥ x2 ≥ xs
1, x2 > 0 and s > 1, we have that

0 <

(
xs
1

x2

)2/s

+ x
2−2/s
2 ≤ 1 +M2−2/s

s ,
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and we also define

τs :=
1(

1 +M
2−2/s
s

)s/2 > 0.

Therefore, for any inner-level feasible x such that x2 > 0, we have

g(x)− gopt ≥ τs Dists (x,Xopt) . (2.21)

In addition, we need to prove that (2.21) also holds any inner-level feasible x with x2. However, this

is trivial since the only inner-level feasible point with x2 is (0, 0), which obviously satisfies (2.21).

Thus, (2.21) holds for any x ∈ X. Now, we prove that Condition 2.1 does not hold with r = 1. We

assume for contradiction that there is τ > 0 such that

g(x)− gopt ≥ τ Dist (x,Xopt) , ∀x ∈ X.

Given t ≥ 1, we define zt :=
(

Ms

t ,
Ms

s

ts

)
, which is inner-level feasible. We observe that

τ ≤ g(zt)− gopt
Dist (zt, Xopt)

=
(zt)2

((zt)21 + (zt)22)
1/2

=
1((

Mst−1M−s
s ts

)2
+ 1
)1/2 =

1(
(M1−s

s ts−1)2 + 1
)1/2 .

By noting ts−1 →∞ as we take t to ∞, we obtain τ ≤ 0, which is a contradiction. We consider the

Lagrangian of problem (2.20), which is as follows:

L(x, λ) = x2 − x1 + λx2 = (1 + λ)x2 − x1.

Given λ ≥ 0, for any inner-level feasible x, we have that L(x, λ) ≥ (1+λ)xs
1−x1, and (1+λ)xs

1−x1

can be uniquely minimised over x1 ≥ 0 at

x∗
1(λ) :=

(
1

s(1 + λ)

)1/(s−1)

> 0.
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To ensure x∗
1(λ) also minimises (1 + λ)xs

1 − x1 over
[
0,M

1/s
s

]
, we set

Ms :=

(
1

s(1 + λ)

)s/(s−1)

.

Thus, for any λ ≥ 0, L(x, λ) is minimised uniquely at

x∗(λ) :=

((
1

s(1 + λ)

)1/(s−1)

,

(
1

s(1 + λ)

)s/(s−1)
)
,

and

L(x∗(λ), λ) = (1 + λ)

(
1

s(1 + λ)

)s/(s−1)

−
(

1

s(1 + λ)

)1/(s−1)

=

(
1

s
− 1

)(
1

s(1 + λ)

)1/(s−1)

< 0.

Hence, given λ ≥ 0, the minimiser of L(x, λ) will never be (0, 0), which is the only solution of (2.20)

and the optimal dual value, which is 0, is not attainable.

2.5 Conditional gradient method

As we seek projection-free schemes to solve problem (1.1), the CGmethod [17] should be an appropri-

ate foundation for our methods. Instead of computing the projection onto the base domain, the CG

method can solve the following single-level smooth convex optimisation problem (for convenience,

we abuse the notations of the inner-level objective and base domain of problem (1.1)):

min
x∈X

g(x), (2.22)

To avoid computing projection ontoX, the CGmethod considers a linear Taylor series approximation

of the objective function around the current iterate xt and solves the following subproblem:

vt ∈ argmin
v∈X

{
g(xt) +∇g(xt)

⊤(v − xt)
}
= argmin

v∈X
∇g(xt)

⊤v.
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Algorithm 1: [Frank and Wolfe [17]] Conditional gradient method (CG).

Data: Stepsizes {αt}t≥0 ⊆ [0, 1], number of iterations T .
Result: sequence {xt}t∈[T ].
Initialise x0 ∈ X;
for t = 0, 1, . . . , T − 1 do

Compute

vt ∈ argmin
v∈X

∇g(xt)
⊤v

xt+1 := xt + αt(vt − xt).

Afterwards, the update step is as given in (2.1): xt+1 := xt +αt(vt− xt), for some carefully chosen

αt ∈ [0, 1]. The method is given in Algorithm 1.

Since x0 is feasible then due to the convexity of X and the definition of {vt}t≥0, {xt}t≥0 is a

sequence in X. Since the objective of the subproblem is a linear function, one may notice that this

method is advantageous when X is a polyhedron in which the exact solution can be efficiently and

exactly computed. Nevertheless, the subproblem may be unsolvable if X is unbounded. Hence, the

CG method has traditionally been used with bounded domains. Nevertheless, this thesis also deals

with unbounded domains, and therefore, we present an extension of the CG method to unbounded

domains in Chapter 3.

By [23, Theorem 1], the well-studied stepsizes αt = 2/(t + 2) for t ≥ 0 are recommended and

the CG method converges at the rate of O(1/T ).

Lemma 2.11 ([23, Theorem 1]). Suppose {xt}t∈[T ] is the sequence which is generated by Algo-

rithm 1 with that stepsizes αt =
2

t+2 for t ≥ 0. If Assumption 1(a), Assumption 1(c) hold and X

is bounded with diameter D, then

g(xT )− gopt ≤
2LgD

2

T + 2
.

In practice, one may want to directly determine an ϵg-suboptimal solution without manually

computing sufficient iterations to ensure such tolerance via Lemma 2.11. Thus, a more convenient

stopping criterion should be utilised. Fortunately, we can rely on a quantity called duality surrogate
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gap of g, which is defined by Jaggi [23, Equation 2] as follows:

S(x) := max
v∈X
∇g(x)⊤(x− v), x ∈ X. (2.23)

Under the convexity of g, given x∗ ∈ Xopt we have

S(x) ≥ g(x)⊤(x− x∗) ≥ g(x)− g(x∗) = g(x)− gopt.

Hence, if S(x) ≤ ϵg, then x must be an ϵg-suboptimal solution. Furthermore, we have the following

result.

Lemma 2.12 ([23, Theorem 2]). Suppose {xt}t∈[T ] is the sequence which is generated by Algo-

rithm 1 with that stepsizes αt = 2/(t+2) for t ≥ 0. If Assumption 1(a), Assumption 1(c) hold and

X is bounded with diameter D, then there exists kT ∈ [T ] such that

S(xkT
) ≤ 2βLgD

2

T + 2
,

where β = 27
8 = 3.375.

Given ϵg > 0, Lemma 2.12 suggests that for a sufficiently large number of iterations T , we have

S(xT ) = g(xT )
⊤(xT − vT ) < ϵg.



Chapter 3

Extension of the conditional

gradient method to unbounded

domains

In this chapter, we extend the CG method to solve problem (2.22)

min
x∈X

g(x),

without the boundedness ofX required in Lemma 2.11 and Lemma 2.12. In Section 3.1, we motivate

our approach and describe the algorithm. In Section 3.2, we discuss the convergence of the method.

In Section 3.3, we describe its implications in solving problem (1.1).

3.1 Approach and method description

From Algorithm 1 and Lemma 2.11, the boundedness of X is critical as it allows the linear sub-

problem to be solvable and makes the upper bound on the optimality gap finite. Thus, one natural

31
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move when we face the unboundedness is to “temporarily” consider a bounded truncation of X at

each iteration so that at least the linear minimisation oracle is solvable and gradually increase the

scope over iterates so that the algorithm will not miss any point in X. If we have a point x0 ∈ X

then at the iteration t, the strategy naively goes as follows:

• First, we consider a ball B∥·∥(x0, dt/2), where dt > 0.

• Second, we compute

vt ∈ argmin
v∈X∩B∥·∥(x0,dt/2)

∇g(xt)
⊤v,

and update the next iterate as xt+1 = xt + α(vt − xt), where αt ∈ [0, 1] is the stepsize.

• Third, we choose the diameter dt+1 > dt for the next iteration.

At finitely many first iterations, the balls may not be sufficiently large to intersect Xopt but after

sufficiently large iterations, we can have Dist(x0, Xopt) ≤ dt/2. In fact, it is not a must to be

a sequence of norm balls for the idea to work. We only need a sequence of sets {Bt}t≥0, whose

elements are referred to as the coverings, satisfies the following assumption.

Assumption 5. The sequence of coverings {Bt}t≥0 consists of compact convex sets with diameters

{dt}t≥0 and satisfies

Bt ⊆ Bt+1, Bt ∩X ̸= ∅, ∀t ≥ 0, X ⊆

( ∞⋃
t=0

Bt

)
.

The reason for such generalisation is that we would like to design {Bt}t≥0 so that given X,

the linear minimisation oracle over X ∩ Bt can be efficiently computed. If X is bounded, then

Assumption 5 holds trivially by setting Bt = X for all t. When X is unbounded, Assumption 5

implies that {dt}t≥0 is a non-decreasing and divergent sequence. To ensure asymptotic convergence

of the method, as shown in the next section, we may have to control the growth rate of the diameters

{dt}t≥0. To show that both tasks can be done, we provide an example of how to design the coverings

given a specific base domain X and a schedule of the diameters.
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Algorithm 2: Unbounded conditional gradient method (UCG).

Data: Parameters {αt}t≥0 ⊆ [0, 1], {Bt}t≥0 satisfying Assumption 5, number of iterations
T .

Result: sequence {xt}t∈[T ].
Initialise x0 ∈ X;
for t = 0, 1, . . . , T − 1 do

Compute

vt ∈ argmin
v∈X∩Bt

∇g(xt)
⊤v

xt+1 := xt + αt(vt − xt).

Example 3.1. We considerX := Rn
+ and the desired sequence of diameters with respect to Euclidean

norm {dt}t≥0 that is non-decreasing and diverges to ∞, then we can construct the coverings as

follows:

Bt :=

{
x ∈ Rn

∣∣∣∣ 0 ≤ x ≤ dt√
n
1

}
, ∀t ≥ 0,

whose diameters are indeed {dt}t≥0. Then it is true that Bt ⊆ Bt+1 for t ≥ 0. Given t ≥ 0,

we have that Bt ∩ X = Bt ̸= ∅. Due to the divergence of the diameters, given x ∈ R+, there

exists a sufficiently large t such that dt ≥
√
nmaxi∈[n] xi, which implies x ∈

⋃∞
t=0 Bt, and hence,

X ⊆
⋃∞

t=0 Bt. We show that a solution of the linear minimisation over X ∩ Bt can be efficiently

computed for any t ≥ 0. Given c ∈ Rn, we have that a minimiser x∗ of c⊤x over X ∩ Bt is as

follows:

x∗
i =


dt/
√
n ci < 0

0 ci ≥ 0,

∀i ∈ [n].

Now, we formally describe our extension of CG, which is the unbounded conditional gradient

(UCG) method, in Algorithm 2.
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3.2 Convergence analysis

The following lemma will show how imposing Assumption 5 on the coverings leads to convergence

of Algorithm 2.

Theorem 3.1. Suppose {xt}t∈[T ] is the sequence which is generated by Algorithm 2. If Assumption

1(a), Assumption 1(c) and Assumption 5 hold, then

g(xT )− gopt ≤ O

(
d2T
T

)
. (3.1)

Proof. From the smoothness of g and the fact that ∥vt − xt∥ ≤ dt for t ≥ 0, we have that

g(xt+1)− g(x) ≤
(
1− 2

t+ 2

)
(g(xt)− g(x)) +

2

t+ 2

(
∇g(xt)

⊤(vt − xt) + g(xt)− g(x)
)
+

2Lgd
2
t

(t+ 2)2
,

(3.2)

for any x ∈ X according to Lemma 2.2. From Assumption 5, there exists t∗ ≥ 1 such that

Xopt ∩ Bt ̸= ∅ for t ≥ t∗. Therefore, for t ≥ t∗, using the convexity of g and definition of vt, we

have that for some x∗ ∈ Xopt ∩Bt,

∇g(xt)
⊤(vt − xt) ≤ ∇g(xt)

⊤(x∗ − xt) ≤ g(x∗)− g(xt).

Therefore, we substitute x := x∗ into (3.2) and using the above result to obtain that for any t ≥ t∗

g(xt+1)− gopt ≤
(
1− 2

t+ 2

)
(g(xt)− gopt) +

2Lgd
2
t

(t+ 2)2
.

Using Corollary 2.4, if T > t∗, then there exists a constant H∗ such that

g(xT )− gopt ≤
2H∗

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

(t+ 1)t
2Lgd

2
t−1

(t+ 1)2
=

2H∗

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

2Lgd
2
t−1t

t+ 1
.
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Since dt−1 ≤ dT and t
t+1 < 1 for t ∈ [T ], we have that

g(xT )− gopt ≤
2H∗

(T + 1)T
+

2Lgd
2
T

T + 1
.

Since dT ≥ d0 > 0, we have that limT→∞(T + 1)d2T =∞, and

lim
T→∞

T

d2T

(
2H∗

(T + 1)T
+

2Lgd
2
T

T + 1

)
= lim

T→∞

(
2H∗

(T + 1)d2T
+

2LgT

T + 1

)
= 2Lg,

Hence, there exists a sufficiently large Mg such that if T > t∗ then

g(xT )− gopt ≤
2H∗

(T + 1)T
+

2Lgd
2
T

T + 1
≤ Mgd

2
T

T
.

By Theorem 3.1, we can guarantee asymptotic convergence of Algorithm 2, i.e. limT→∞ g(xT ) =

gopt, if dt = o
(
t1/2

)
.

3.3 Application to solving convex bilevel problems

In the SL-CG and PD-CG methods that we develop in Chapter 4 and Chapter 6, respectively, we

will require a sequence {gt}t≥0 which approximates gopt, in the sense that it satisfies the following

assumption.

Assumption 6. Sequence {gt}t≥0 is non-increasing, converges to gopt and there exists Q > 0 such

that

0 ≤ gt − gopt ≤
Qd2t
t+ 1

, ∀t ≥ 0.

We will use the UCGmethod to generate such a sequence in the following way. Given x0 arbitrarily

chosen in X, let {xt}t≥0 be the sequence generated by applying the UCG method to the inner-

level objective under Assumption 1(a), Assumption 1(c), Assumption 5 and dt = o
(
t1/2

)
. By
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Theorem 3.1, there exists a positive number Q1 and a positive integer t1 such that

g(xt)− gopt ≤
Q1d

2
t

t
, ∀t ≥ t1.

We observe that

Q1d
2
t

t
≤ 2Q1d

2
t

t+ 1
, ∀t ≥ t1 ≥ 1.

By defining

Q := max

{
2Q1,

1× (g(x0)− gopt)

d20
, . . . ,

t1(g(xt1−1)− gopt)

d2t1−1

}
> 0,

we have that

g(xt)− gopt ≤
Qd2t
t+ 1

, ∀t ≥ 0.

Therefore, if we define gt := min0≤i≤t g(xi) for each t ≥ 0, then gt → gopt as t→∞, and for t ≥ 0,

gt ≥ gt+1 as well as

gt − gopt ≤ g(xt)− gopt ≤
Qd2t
t+ 1

.

Furthermore, the idea of using the sequence of coverings {Bt}t≥0 satisfying Assumption 5 can be

applied in the proposed methods in Chapters 4 to 6 to account for the unbounded domain.



Chapter 4

Sublevel linearising conditional

gradient method

In this chapter, we improve the CG-BiO method [24] that employs outer approximations {Xt}t≥0

such that X ⊇ Xt ⊇ Xopt for each t ≥ 0. In Section 4.1, we describe the motivation for the

approximation strategy and provide the algorithm. In Section 4.2, we establish the convergence

rates for the method.

4.1 Approach and method description

If we viewed problem (1.3) as merely a single-level optimisation problem and had access to Xopt,

which is possibly unbounded, then the UCG method applied to problem (1.1) would compute

vt ∈ argmin
v∈Xopt∩Bt

∇f(xt)
⊤v,

then xt+1 := xt + αt(vt − xt). However, since in general we do not have an explicit description of

Xopt, at each iteration t we will replace Xopt with a tractable outer approximation Xt such that

Xopt ⊆ Xt ⊆ X, thus vt is computed as vt := argminv∈Xt∩Bt
∇f(xt)

⊤v if the intersection Xt ∩Bt

37
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Algorithm 3: Sublevel linearising conditional gradient method (SL-CG).

Data: Parameters {αt}t≥0 ⊆ [0, 1], {Bt}t≥0 satisfying Assumption 5, {Xt}t≥0 such that
X ⊇ Xt ⊇ Xopt for each t ≥ 0, number of iterations T .

Result: Sequence {xt}t∈[T ].
Initialise x0 ∈ X ∩B0;
for t = 0, 1, . . . , T − 1 do

if Xt ∩Bt = ∅ then
Compute vt := xt

else
Compute vt ∈ argminv∈Xt∩Bt

∇f(xt)
⊤v

Compute xt+1 ← xt + αt(vt − xt).

is non-empty. Otherwise, we set vt := xt. A precise description is provided in Algorithm 3.

Remark 4.1.1. By Assumption 5, given a solution xopt of problem (1.1), there exists a sufficiently

large t0 such that xopt ∈ Bt for t ≥ t0. We also have that Xopt ⊆ Xt from the assumption. Hence,

for t ≥ t0, we ensure Xt ∩Bt ̸= ∅.

4.2 Convergence analysis

We devote this section to provide the formal description of Xt and establish the convergence rates

for Algorithm 3.

First, we will motivate how certain choices ofXt can ensure convergence, as well as the differences

between our Xt and that of Jiang et al. [24]. Suppose we are at iteration t of Algorithm 3. Given

t ≥ 0, from Lemma 2.2 and the fact that ∥vt − xt∥ ≤ dt as vt, xt ∈ Bt, we have

f(xt+1)− f(x) ≤ (1− αt)(f(xt)− f(x)) + αt(∇f(xt)
⊤(vt − xt) + f(xt)− f(x)) + α2

t

Lfd
2
t

2
, (4.1)

for any x ∈ X. Since Xopt ⊆ Xt by assumption, whenever t ≥ t0, we obtain

∇f(xt)
⊤(vt − xt) + f(xt)− f(xopt) ≤ ∇f(xt)

⊤(xopt − xt) + f(xt)− f(xopt) ≤ 0, (4.2)

according to the definition of vt, the convexity of f , and Assumption 5. At this point, utilising



CHAPTER 4. SUBLEVEL LINEARISING CONDITIONAL GRADIENT METHOD 39

Corollary 2.4 enables us to prove the following bound on the outer-level objective.

Lemma 4.1. Suppose {xt}t∈[T ] is the sequence generated by Algorithm 3 with stepsizes αt =
2

t+2

for each t ≥ 0. If Assumption 1 and Assumption 5 hold, then

f(xT )− fopt ≤ O

(
d2T
T

)
.

Proof. From (4.1) and (4.2), we have

f(xt+1)− fopt ≤
(
1− 2

t+ 2

)
(f(xt)− fopt) +

2Lfd
2
t

(t+ 2)2
, ∀t ≥ t0.

By Corollary 2.4, if T > t0 then there exists a constant H0 such that

f(xT )− fopt ≤
2H0

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

(t+ 1)t
2Lfd

2
t−1

(t+ 1)2
=

2H0

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

2Lfd
2
t−1t

t+ 1
.

Since t
t+1 < 1 and dT ≥ dt−1 for t ∈ [T ], we have

f(xT )− fopt ≤
2H0

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

2Lfd
2
T =

2H0

(T + 1)T
+

2Lfd
2
T

T + 1
,

Since dT ≥ d0 > 0, we have that limT→∞(T + 1)d2T =∞ and hence,

lim
T→∞

T

d2T

(
2H0

(T + 1)T
+

2Lfd
2
T

T + 1

)
= lim

T→∞

(
2H0

(T + 1)d2T
+

2LfT

T + 1

)
= 2Lf <∞.

Thus, there exists a sufficiently large Mf such that if T > t0 then

f(xT )− fopt ≤
2H0

(T + 1)T
+

2Lfd
2
T

T + 1
≤ Mfd

2
T

T
.

To claim asymptotic convergence for Algorithm 3, Lemma 2.5 suggests we need lim supT→∞ f(xT ) ≤

fopt. To guarantee this, we impose Condition 4.1 stated below on the growth of {dt}t≥0, thus
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Lemma 4.1 ensures that it holds.

Condition 4.1. Sequence {Bt}t≥0 satisfies dt = o(t1/2).

For the inner-level objective, we obtain through Assumption 1(a), Assumption 1(c), and Lemma 2.2

the following inequality:

g(xt+1)−gopt ≤ (1−αt)(g(xt)−gopt)+αt(∇g(xt)
⊤(vt−xt)+g(xt)−gopt)+α2

t

Lgd
2
t

2
, ∀t ≥ 0. (4.3)

We define

g̃t := g(xt) +∇g(xt)
⊤(vt − xt), ∀t ≥ 0. (4.4)

The following lemma shows how these terms bound the inner-level objective.

Lemma 4.2. Suppose {xt}t∈[T ] is the sequence generated by Algorithm 3 with stepsizes αt =
2

t+2

for each t ≥ 0. If Assumption 1 and Assumption 5 hold, then

g(xT )− gopt ≤
2

(T + 1)T

∑
t∈[T ]

t(g̃t−1 − gopt) +
2Lgd

2
T

T + 1
. (4.5)

Proof. From (4.3) and (4.4), we have that

g(xt+1)− gopt ≤
(
1− 2

t+ 2

)
(g(xt)− gopt) +

[
2

t+ 2
(g̃t − gopt) +

2Lgd
2
t

(t+ 2)2

]
, ∀t ≥ 0. (4.6)

By applying Corollary 2.4 for the recursion (4.6), there exists a constant H ′
0 such that

g(xT )− gopt ≤
2H ′

0

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

(t+ 1)t

(
2

t+ 1
(g̃t−1 − gopt) +

2Lgd
2
t−1

(t+ 1)2

)

=
2H ′

0

(T + 1)T
+

2

(T + 1)T

∑
t∈[T ]

(
t(g̃t−1 − gopt) + Lgd

2
t−1

t

t+ 1

)
.

By using t
t+1 < 1 and dt−1 ≤ dT for t ∈ [T ], we have

g(xT )− gopt ≤
2H ′

0

(T + 1)T
+

2

(T + 1)T

∑
t∈[T ]

t(g̃t−1 − gopt) +
2Lgd

2
T

T + 1
.
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Since α0 = 2
0+2 = 1 then from Lemma 2.3, we can choose H ′

0 = 0.

To ensure g(xt)→ gopt as t→∞, it is sufficient to require the superior limit of the right-hand

side of (4.5) is 0. Since Condition 4.1 already implies that
2Lgd

2
T

T+1 → 0 as T →∞, we require

lim sup
T→∞

2

(T + 1)T

∑
t∈[T ]

t(g̃t−1 − gopt) ≤ 0.

This can be ensured if

lim sup
T→∞

g̃T ≤ gopt. (4.7)

To justify this claim, we first introduce to following calculus result.

Lemma 4.3. Let {ut}t≥1 and {vt}t≥1 be two sequences of real numbers. If {vt}t≥1 is strictly

increasing and divergent, then

lim sup
t→∞

ut

vt
≤ lim sup

t→∞

ut+1 − ut

vt+1 − vt
. (4.8)

Proof. If

lim sup
t→∞

ut+1 − ut

vt+1 − vt
=∞,

then (4.8) is true. Otherwise, given c ∈ R such that

lim sup
t→∞

ut+1 − ut

vt+1 − vt
< c, (4.9)

there exists a positive integer tc such that for any t ≥ tc

ut+1 − ut

vt+1 − vt
< c ⇐⇒ ut+1 − ut < c (vt+1 − vt) ,

where the equivalence is true as vt+1 > vt for t ≥ 1. Thus, for any t > tc

ut − utc =

t−1∑
i=tc

(ui+1 − ui) < c

t−1∑
i=tc

(vi+1 − vi) = c(vt − vtc).
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Using vt →∞, we that for sufficiently large t, vt > 0. Therefore, we obtain

lim sup
t→∞

ut

vt
≤ lim sup

t→∞

utc + c(vt − vtc)

vt
= c.

Since c is chosen arbitrarily as long as c satisfies (4.9), (4.8) must be true.

If (4.7) is true, then Lemma 4.3 implies that

lim sup
T→∞

2

(T + 1)T

∑
t∈[T ]

t(g̃t−1 − gopt) ≤ lim sup
T→∞

2(T + 1)(g̃T − gopt)

(T + 2)(T + 1)− (T + 1)T

= lim sup
T→∞

(g̃T − gopt)

≤ 0.

(4.10)

So far, we have shown that the conditions on the outer approximations Xt, which ensure con-

vergence of the inner- and outer-level objectives, are that Xopt ⊆ Xt ⊆ X and (4.7). We recall that

Xopt = {x ∈ X | g(x) ≤ gopt}, and the first-order Taylor expansion of g around xt, which is also a

lower bound of g by the convexity, is

g(x) ≥ g(xt) +∇g(xt)
⊤(x− xt), ∀x ∈ X.

If we choose gt to be a computable upper bound of gopt then any x ∈ X satisfies the constraint

g(x) ≤ gopt then gt must also meet the following inequality:

g(xt) +∇g(xt)
⊤(x− xt) ≤ gt.

Therefore, if we define Xt given xt as follows:

Xt := {x ∈ X | ∇g(xt) + g(xt)
T (x− xt) ≤ gt}, (4.11)

then it is true that Xopt ⊆ Xt according to the above discussion. For each t ≥ t0, since vt ∈ Xt, we
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observe that

g̃t = g(xt) +∇g(xt)
⊤(vt − xt) ≤ gt, ∀t ≥ t0.

Hence, to ensure (4.7) holds, we adopt Assumption 6 for sequence {gt}t≥0.

Remark 4.2.1. The CG-BiO method [24, Algorithm 1] solves problem (1.1) in which X is bounded

with diameter D and chooses a constant schedule for {gt}t≥0, i.e., gt = g0 for each t ≥ 0 where

g0 − gopt ≤ ϵg
2 and ϵg > 0 is a tolerance parameter. This choice does not satisfy Assumption 6 if

g0 > gopt. Hence, there is no guarantee of asymptotic convergence of their method. Due to the

boundedness of X assumed by Jiang et al. [24], t0 defined in Remark 4.1.1 is 0 for their method.

Then Lemma 4.2 implies the bound guaranteed is

g(xT )− gopt ≤
2LgD

2

T + 1
+

2

(T + 1)T

∑
t∈[T ]

t
ϵg
2

=
2LgD

2

T + 1
+

ϵg
2
,

where in the last equality, we use the fact that
∑

t∈[T ] t =
T (T+1)

2 . Thus, asymptotic convergence

for CG-BiO cannot be claimed.

Finally, the following theorem establishes convergence rates for Algorithm 3.

Theorem 4.4. Suppose {xt}t∈[T ] is the sequence generated by Algorithm 3 with stepsizes αt =

2
t+2 for each t ≥ 0 and outer approximations {Xt}t≥0 as defined in (4.11). If Assumption 1,

Assumptions 5–6 and Condition 4.1 hold, then

f(xT )− fopt ≤ O

(
d2T
T

)
, g(xT )− gopt ≤ O

(
d2T
T

)
.

Proof. From Assumption 6, we have that

gt − gopt ≤ Q
d2t

t+ 1
, ∀t ≥ 0.
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By Assumption 5, if T > t0, then

2

(T + 1)T

∑
t∈[T ]

t(g̃t−1 − gopt) ≤
2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +

T−1∑
t=t0

(t+ 1)(gt − gopt)

)

≤ 2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +Q

T−1∑
t=t0

(t+ 1)
d2t

(t+ 1)

)

≤ 2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +Q

T−1∑
t=t0

(t+ 1)
d2T

(t+ 1)

)

=
2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +Q(T − t0)d
2
T

)

Hence, by Lemma 4.2, we have that

g(xT )− gopt ≤
2Lgd

2
T

T + 1
+

2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +Q(T − t0)d
2
T

)
.

Since dT ≥ d0 > 0, we have limT→∞(T + 1)d2T =∞ and hence,

lim
T→∞

T

d2T

(
2Lgd

2
T

T + 1
+

2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +Q(T − t0)d
2
T

))

= lim
T→∞

(
2LgT

T + 1
+

2

(T + 1)d2T

t0−1∑
t=0

(t+ 1)(g̃t − gopt) +
2Q(T − t0)

T + 1

)

= 2Lg + 2Q.

Thus, there exists a sufficiently large Mg > 0 such that if T > t0, then

g(xT )− gopt ≤
2Lgd

2
T

T + 1
+

2

(T + 1)T

(
t0−1∑
t=0

(t+ 1)(g̃t − gopt) +Q(T − t0)d
2
T

)
≤ Mgd

2
T

T
.

Using this result and Lemma 4.1, we finish the proof.



Chapter 5

Iteratively regularised conditional

gradient method

In this chapter, we describe a regularisation scheme to solve problem (1.3). In Section 6.1, we

discuss the motivation for the approach and provide the algorithm. In Section 5.2, we derive the

convergence rates for the method.

5.1 Approach and method description

Since problem (1.3) is a convex optimisation problem with a functional constraint, we consider the

Lagrangian

L(x, λ) := f(x) + λ(g(x)− gopt), x ∈ X,λ ≥ 0,

and the Lagrangian dual problem (2.12).

Recall that in the proof of Lemma 2.8 in Section 2.4, we showed that if xt ∈ argminx∈X L(x, λt)

then limt→∞ g(xt) = gopt and limt→∞ f(xt) = fopt, and also consequently that strong duality holds.

Notice that, while L(x, λ) contains gopt, which generally is unknown a priori, obtaining xt does not

require knowledge of gopt at all. Since getting xt by optimising L(x, λt) may be expensive, Solodov

45
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Algorithm 4: Iteratively regularised conditional gradient method (IR-CG).

Data: Parameters {αt}t≥0 ⊆ [0, 1], {σt}t≥0 ⊆ R++, {Bt}t≥0 satisfying Assumption 5,
number of iterations T .

Result: Sequence {zt}t∈[T ].
Initialise x0 ∈ X ∩B0;
for t = 0, 1, . . . , T − 1 do

Compute

vt ∈ argmin
v∈X∩Bt

(σt∇f(xt) +∇g(xt))
⊤v

xt+1 := xt + αt(vt − xt)

St+1 := (t+ 2)(t+ 1)σt+1 +
∑

i∈[t+1]

(i+ 1)i(σi−1 − σi) (5.1)

zt+1 :=
(t+ 2)(t+ 1)σt+1xt+1 +

∑
i∈[t+1](i+ 1)i(σi−1 − σi)xi

St+1
. (5.2)

[34] proposed simply performing a single projected gradient step via Euclidean norm to obtain xt+1,

i.e.,

xt+1 = ProjX

(
xt −

αt

λt
∇xL(xt, λt)

)
= ProjX

(
xt − αt

(
1

λt
∇f(xt) +∇g(xt)

))
.

Solodov [34, Theorem 3.2] shows that if λt →∞ sufficiently slowly (in the sense that
∑∞

t=0
1
λt

=∞)

then the sequence xt converges to the optimal solution set of (1.3).

Inspired by the results of Solodov [34], we propose what we call the iteratively regularised

conditional gradient (IR-CG) method, outlined in Algorithm 4 below, which essentially replaces the

projection step with an unbounded conditional gradient-type step. To simplify the analysis, it is

convenient to define σt :=
1
λt

and

Φt(x) :=
1

λt
L(x, λt) + gopt = σtf(x) + g(x).

Based on the discussion above, we impose the following on the sequence {σt}t≥0.

Condition 5.1. The sequence {σt}t≥0 is strictly decreasing, positive, and converges to 0.
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Remark 5.1.1. From the definition of {St}t≥1 in (5.1), for any t ≥ 1, we have that

St+1 − (t+ 2)(t+ 1)σt+1 = St − (t+ 1)tσt + (t+ 2)(t+ 1)(σt − σt+1)

⇐⇒ St+1 = St + 2(t+ 1)σt.

When t = 1, we have S1 = 2σ1 + 2(σ0 − σ1) = 2σ0. In fact, by substituting t = 0 to the recursion

above, the computed S1 is S0 +2σ0, which implies we can define S0 := 0. Similarly, from (5.2), for

any t ≥ 1, we have that

St+1zt+1 − (t+ 2)(t+ 1)σt+1xt+1 = Stzt − (t+ 1)tσtxt + (t+ 2)(t+ 1)(σt − σt+1)xt+1

⇐⇒ St+1zt+1 = Stzt − (t+ 1)tσtxt + (t+ 2)(t+ 1)σtxt+1

⇐⇒ zt+1 =
Stzt − (t+ 1)tσtxt + (t+ 2)(t+ 1)σtxt+1

St+1
.

We have from the definition of z1 in (5.2) that

z1 =
1

S1
(2σ1x1 + 2(σ0 − σ1)x1) =

2σ0x1

2σ0
= x1.

When we substitute t = 0 to the recursion for {zt}t≥1 above, the computed z1 agrees with the value

computed from (5.2) for any value of z0. Thus, we can define z0 := 0 without loss of generality.

Therefore, (5.1) and (5.2) can efficiently be computed using recursive formulae as follows: for any

t ≥ 0,

S0 = 0, St+1 = St + 2(t+ 1)σt,

z0 = 0, zt+1 =
Stzt − (t+ 1)tσtxt + (t+ 2)(t+ 1)σtxt+1

St+1
.

A critical difference from a typical conditional gradient-type algorithm in the analysis is that,

instead of proving convergence for the sequence {xt}t≥0, we will show convergence for the sequence
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{zt}t≥1. The weights of the convex combination arise naturally through applying Lemmas 2.2 to 2.3

and Corollary 2.4 to the conditional gradient step in Algorithm 4. By recalling from Remark 4.1.1

that t0 ≥ 0 is an integer such that there exists an optimal solution xopt of problem (1.1) such that

xopt ∈ Bt for each t ≥ t0, we state this formally in the following lemma.

Lemma 5.1. Suppose {xt}0≤t≤T are iterates generated by Algorithm 4 with stepsizes αt =
2

t+2 for

t ≥ 0. If Assumption 1, Assumption 5, Condition 5.1 hold and T > t0, then there exists a constant

H0 such that

(T + 1)T (g(xT )− gopt) + (T + 1)TσT (f(xT )− fopt) +
∑
t∈[T ]

(t+ 1)t(σt−1 − σt)(f(xt)− fopt)

≤ 2H0 + 2(Lfσ0 + Lg)Td
2
T .

Proof. Using the convexity of Φt and the definition of vt, we have that

∇Φt(xt)
⊤(vt − xt) ≤ ∇Φt(xt)

⊤(xopt − xt) ≤ Φt(xopt)− Φt(xt), ∀t ≥ t0.

By Lemma 2.2 and the above result, we have that

Φt(xt+1)− Φt(xopt) ≤
(
1− 2

t+ 2

)
(Φt(xt)− Φt(xopt)) +

2(Lfσt + Lg)d
2
t

(t+ 2)2
, ∀t ≥ t0,

which implies

Φt+1(xt+1)− Φt+1(xopt) ≤
(
1− 2

t+ 2

)
(Φt(xt)− Φt(xopt)) +

2(Lfσt + Lg)d
2
t

(t+ 2)2

− (σt − σt+1)(f(xt+1)− fopt),

(5.3)

since

Φt(xt+1)− Φt(xopt) = σt+1(f(xt+1)− fopt) + g(xt+1)− gopt + (σt − σt+1)(f(xt+1)− fopt)

= Φt+1(xt+1)− Φt+1(xopt) + (σt − σt+1)(f(xt+1)− fopt).
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Applying Corollary 2.4 to (5.3) and using the fact that t
t+1 < 1, there exists H0 such that

ΦT (xT )− ΦT (xopt)

≤ 2H0

(T + 1)T
+

1

(T + 1)T

∑
t∈[T ]

(
2(σt−1Lf + Lg)d

2
t−1 − (t+ 1)t(σt−1 − σt)(f(xt)− fopt)

)
.

(5.4)

Given t ∈ [T ], we have that σt−1 ≤ σ0, dt−1 ≤ dT by Condition 5.1 and Assumption 5. Thus, we

obtain the inequality claimed in this lemma.

From the convexity of f , we have that

f(zT )− fopt ≤
2(Lfσ0 + Lg)Td

2
T + 2H0

ST
. (5.5)

In the next section, we will show that g(zT )→ gopt and the right-hand side term of (5.5) converges

to 0 as T →∞ under appropriate choice of {σt, Bt}t≥0, which are then sufficient to apply Lemma 2.5

to guarantee asymptotic convergence of {zt}t≥1.

5.2 Convergence analysis

To establish convergence for Algorithm 4, we need to impose further conditions on the regularisation

parameters and the coverings {σt, Bt}t≥0, which are stated below.

Condition 5.2. Sequence {(t+ 1)σt}t≥0 is strictly increasing and divergent.

Condition 5.3. There exists L ∈ R such that L := limt→∞ t
(

σt

σt+1
− 1
)
.

Condition 5.4. Sequences {Bt, σt}t≥0 satisfy
d2
t

σt
= o(t).

To prove some results in this section, which involve running sum, we utilise Lemma 5.2 stated

below.

Lemma 5.2 ([8, 2.7.1 Theorem, 2.7.2 Theorem]). Let {ut}t≥1 and {vt}t≥1 be two sequences of real
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numbers. If {vt}t≥1 is strictly increasing and divergent, and

lim
t→∞

ut+1 − ut

vt+1 − vt
= l,

for l ∈ R ∪ {±∞}, then

lim
t→∞

ut

vt
= l.

Below, we provide some consequences of Conditions 5.1–5.3, which will be used extensively in

this section to analyse Algorithm 4.

Lemma 5.3. If Conditions 5.1–5.3 hold, then we have 0 ≤ L ≤ 1,

lim
T→∞

σT

σT+1
= 1, and lim

t→∞

(t+ 2)(σt − σt+1)

(t+ 2)σt+1 − tσt
=

L

2− L
≥ 0.

Proof. From Condition 5.1, we have that L ≥ 0. If L > 1, then for sufficiently large t, we have

t

(
σt

σt+1
− 1

)
> 1 ⇐⇒ σt

σt+1
>

t+ 1

t
⇐⇒ (t+ 1)σt+1 < tσt,

which contradicts to Condition 5.2. For the second claim, we have that

lim
T→∞

(
σT

σT+1
− 1

)
= lim

T→∞

1

T
T

(
σT

σT+1
− 1

)
= 0.

Turning to the third claim, by Condition 5.3, we have that

lim
t→∞

(t+ 2)(σt − σt+1)

(t+ 2)σt+1 − tσt
= lim

t→∞

t+ 2

t

t
(

σt

σt+1
− 1
)

2− t
(

σt

σt+1
− 1
) =

L

2− L
≥ 0.

Lemma 5.4. If Conditions 5.1–5.3 hold, then we have

lim
T→∞

1

(T + 1)Tσ2
T

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt =
L

2(1− L)
≥ 0.
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When L = 1, the right-hand side is ∞.

Proof. From Conditions 5.1–5.2, {tσt}t≥0 is increasing since tσt = (t + 1)σt − σt for each t ≥ 0.

Accordingly, {(t + 1)tσ2
t }t≥0 is increasing and diverges to ∞. Using Lemmas 5.2 to 5.3, we have

that

lim
T→∞

1

(T + 1)Tσ2
T

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt

= lim
T→∞

(T + 2)(T + 1)(σT − σT+1)σT+1

(T + 2)(T + 1)σ2
T+1 − (T + 1)Tσ2

T

= lim
T→∞

(T + 2)(σT − σT+1)σT+1

(T + 2)σ2
T+1 − Tσ2

T

= lim
T→∞

(T + 2)(σT − σT+1)σT+1

(T + 2)σ2
T+1 + (T + 2)σTσT+1 − TσTσT+1 − Tσ2

T − 2σTσT+1

= lim
T→∞

(T + 2)(σT − σT+1)σT+1

((T + 2)σT+1 − TσT )(σT + σT+1)− 2σTσT+1

= lim
T→∞

(
T+2
T

)
T
(

σT

σT+1
− 1
)

(
2− T

(
σT

σT+1
− 1
))(

σT

σT+1
+ 1
)
− 2 σT

σT+1

=
L

(2− L)2− 2
=

L

2(1− L)
.

Lemma 5.5 provides an o(1) upper bound on g(xT )− gopt, which is then used in Lemma 5.6 to

bound g(zT )− gopt.

Lemma 5.5. Suppose {xt}0≤t≤T are iterates generated by Algorithm 4 with stepsizes αt =
2

t+2 for

t ≥ 0. If Assumption 1, Assumption 3, Assumption 5, and Conditions 5.1–5.4 hold, then

g(xT )− gopt ≤ CσT ,

for some constant C > 0.

Proof. Based on Assumption 3, we define F := fopt − f , which is non-negative and finite. By

Condition 5.1, and inequality (5.4), we have if T > t0, then

σT (f(xT )− fopt) + g(xT )− gopt
σT
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≤ 1

(T + 1)TσT

2H0 + 2(σ0Lf + Lg)Td
2
T + F

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)

 .

We will prove that the right-hand side term has a finite limit as T → ∞ under Condition 5.4. By

Conditions 5.2–5.3, and Lemmas 5.2 to 5.3, we observe that

lim
T→∞

1

(T + 1)TσT

∑
t∈[T ]

(t+ 1)t(σt−1 − σt) = lim
T→∞

(T + 2)(T + 1)(σT − σT+1)

(T + 2)(T + 1)σT+1 − (T + 1)TσT

= lim
T→∞

(T + 2)(σT − σT+1)

(T + 2)σT+1 − TσT

=
L

2− L
,

Using Condition 5.2 and Condition 5.4, we have

2H0 + 2(σ0Lf + Lg)Td
2
T

(T + 1)TσT
=

2H0

(T + 1)TσT
+

2(σ0Lf + Lg)d
2
T

(T + 1)σT
→ 0,

as T → ∞. Hence, we have lim supT→∞
∆T

σT
< ∞, which implies there exists a sufficiently large

U > 0 such that ∆T ≤ UσT for T ≥ 1. Since

g(xT )− gopt − FσT ≤ σT (f(xT )− fopt) + g(xT )− gopt ≤ UσT , ∀T ≥ 1,

we have g(xT )− gopt ≤ (F + U)σT for T ≥ 1. Therefore, we can set C := F + U .

Lemma 5.6. Suppose {zt}t∈[T ] is the sequence generated by Algorithm 4 with stepsizes αt =
2

t+2

for t ≥ 0. If Assumption 1, Assumption 3, Assumption 5 and Conditions 5.1–5.4 hold , then

f(zT )− fopt ≤ O

(
d2T

(T + 1)σT

)
,

g(zT )− gopt ≤
C

(T + 1)TσT

(T + 1)Tσ2
T +

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt

 ,

where C is the constant defined in Lemma 5.5.



CHAPTER 5. ITERATIVELY REGULARISED CONDITIONAL GRADIENT METHOD 53

Proof. From (5.5), if T > t0 then we have

f(zT )− fopt ≤
2H0 + 2(Lfσ0 + Lg)Td

2
T

ST
≤ 2H0 + 2(Lfσ0 + Lg)Td

2
T

(T + 1)TσT
.

Since dT ≥ d0 > 0, we have limT→∞ Td2T =∞ and hence,

lim
T→∞

(T + 1)σT

d2T

2H0 + 2(Lfσ0 + Lg)Td
2
T

(T + 1)TσT
= lim

T→∞

2H0 + 2(Lfσ0 + Lg)Td
2
T

Td2T
= 2(Lfσ0 + Lg).

Therefore, there exists a sufficiently large Mf > 0 such that if T > t0 then

f(zT )− fopt ≤
2H0 + 2(Lfσ0 + Lg)Td

2
T

(T + 1)TσT
≤Mf

d2T
(T + 1)σT

.

Using the convexity of g and the upper bound on g(xT )− gopt from Lemma 5.5, we have that

g(zT )− gopt ≤
1

ST

(T + 1)TσT (g(xT )− gopt) +
∑
t∈[T ]

(t+ 1)t(σt−1 − σt) (g(xt)− gopt)


≤ C

ST

(T + 1)Tσ2
T +

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt

 ,

which together with ST ≥ (T + 1)TσT , implies

g(zT )− gopt ≤ C

σT +
1

(T + 1)TσT

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt

 .

From Lemma 5.6, we can claim g(zT ) → gopt as stated in the following lemma. Thus, if

Assumption 2 also holds, then Lemma 2.5 implies asymptotic convergence of Algorithm 4.

Lemma 5.7. Suppose {zt}t∈[T ] is the sequence generated by Algorithm 4 with stepsizes αt =
2

t+2

for t ≥ 0. If Assumption 1, Assumption 3, Assumption 5 and Conditions 5.1–5.4 hold , then we

have limT→∞ g(zT ) = gopt.



CHAPTER 5. ITERATIVELY REGULARISED CONDITIONAL GRADIENT METHOD 54

Proof. Using Lemmas 5.2 to 5.3, we have that

lim
T→∞

1

(T + 1)TσT

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt = lim
T→∞

(T + 2)(T + 1)(σT − σT+1)σT+1

(T + 2)(T + 1)σT+1 − (T + 1)TσT

= lim
T→∞

(T + 2)(σT − σT+1)σT+1

(T + 2)σT+1 − TσT+1

=

(
L

2− L

)
× 0

= 0.

Therefore, by Condition 5.1 and Lemma 5.6, we obtain limT→∞ g(zT ) = gopt.

The following lemma simplifies the upper bound of g(zT )− gopt.

Lemma 5.8. Suppose {zt}t∈[T ] is the sequence generated by Algorithm 4 with stepsizes αt =
2

t+2

for t ≥ 0. If Assumption 1, Assumption 3, Assumption 5, Conditions 5.1–5.4 hold, and L defined

in Condition 5.3 is strictly less than 1, then we have

g(zT )− gopt ≤ O(σT ).

Proof. If L < 1, then from Lemma 5.4, we have that

1

(T + 1)TσT

∑
t∈[T ]

(t+ 1)t(σt−1 − σt)σt ≤ V σT , ∀T ≥ 1

for a sufficiently large V > 0. Using this result as well as Lemma 5.6, we have that

g(zT )− gopt ≤ C(1 + V )σT ,

for any T ≥ 1, which implies g(zT )− gopt ≤ O(σT ).

Lemma 5.9 provides a parameter choice for {σt}t≥0 which satisfies all required assumptions.

Theorem 5.10 then establishes convergence rates of O(1/T p) and O
(
d2T /T

1−p
)
for inner- and outer-

level objectives, respectively with p in (0, 1) and dt = o
(
t(1−p)/2

)
.
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Lemma 5.9. Given p ∈ (0, 1), regularisation parameters σt = (t + 1)−p for each t ≥ 0 satisfy

Conditions 5.1–5.3, and L = p.

Proof. It is true that {σt}t≥0 is strictly decreasing and converges to zero. Given p ∈ (0, 1), (t+1)σt =

(t+1)1−p increases as t increases and diverges to ∞ as t→∞. To validate Condition 5.3, we have

that

L = lim
t→∞

t

((
1 +

1

t

)p

− 1

)
= lim

∆x→0

(1 + ∆x)p − 1

∆x
= p ∈ (0, 1).

The above calculations require some justifications. Regarding the second equality, we employ the

definition of the derivative of the function xp at x = 1.

Theorem 5.10. Suppose {zt}t∈[T ] is the sequence which is generated by Algorithm 4 with stepsizes

αt = 2
t+2 for t ≥ 0, regularisation parameters {σt}t≥0 as given in Lemma 5.9. If Assumption 1,

Assumption 3, Assumption 5, and Condition 5.4 hold, then

f(zT )− fopt ≤ O

(
d2T

T 1−p

)
, g(zT )− gopt ≤ O

(
1

T p

)
.

Proof. The proof directly follows from Lemmas 5.6 to 5.9.



Chapter 6

Primal-dual conditional gradient

method

In this chapter, we develop a primal-dual method for solving (1.3) by again examining the La-

grangian

L(x, λ) := f(x) + λ(g(x)− gopt), x ∈ X,λ ≥ 0.

In Section 6.1, we motivate the approach and provide the algorithm. In Section 6.2, we analyse the

approximate Lagrangian functions, which will be the foundation to establish convergence rates in

Section 6.3.

6.1 Approach and method description

Lan et al. [26] proposed a conditional gradient-type algorithm for single-level convex optimisation

with functional constraints and provided convergence guarantees through bounds on the Lagrangian

L(x, λ). Our method (described fully in Algorithm 5) adapts the method of Lan et al. [26, Algorithm

2] to the bilevel setting. The crucial difference between single-level problems and our setting is that

the constraint bound gopt in (1.3) is not known in advance. Similar to the SL-CG method from

56
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Chapter 4, we overcome this by employing an approximating sequence {gt}t≥1 such that gt → gopt.

Consequently, we will consider approximate Lagrangian functions

Lt(x, λ) := f(x) + λ(g(x)− gt), ∀t ≥ 0, x ∈ X,λ ≥ 0, (6.1)

and derive guarantees through bounds on Lt(x, λ). Our first contribution in this chapter is to

show that the analysis of Lan et al. [26] may be extended to account for the errors gt − gopt, and

importantly, that these errors do not accumulate as the algorithm progresses. Another important

difference between the single-level and bilevel settings is the presence (or absence) of Slater’s condi-

tion: Lan et al. [26] provided guarantees under Assumption 4, i.e., that there exists a dual variable

λopt ≥ 0 for which minimising f(x) + λoptg(x) will give a solution to problem (1.3). Typically,

Slater constraint qualification is used to guarantee the existence of such a λopt; however, this is

never satisfied in the bilevel setting. That said, strong duality with a solvable dual problem may

still hold for bilevel optimisation under other (weaker) qualification conditions such as the one dis-

cussed in Section 2.4. Therefore, our second contribution in this section is to show that our method

converges both with and without Assumption 4. Naturally, the convergence rate improves when

λopt exists.

We now describe the primal-dual conditional gradient (PD-CG) method and highlight our adap-

tations to the bilevel setting. Similar to the IR-CG method, our primal updates will be of the form

xt+1 = xt + αt(vt − xt), where αt ∈ [0, 1] and

vt = argmin
v∈X∩Bt

(∇f(xt) + ut∇g(xt))
⊤
v,

for some chosen dual multiplier ut. In typical primal-dual algorithms, we update the dual multiplier

based on ∇λL(xt, ut) = g(xt)− gopt, usually through a gradient ascent step. Since we approximate

gopt with gt, we may consider instead ∇λLt(xt, ut) = g(xt)− gt. However, Lan et al. [26] proposed

a different approach, modifying this in three ways:

• First, we consider ∇λLt(vt, ut) = g(vt)− gt instead of ∇λLt(xt, ut).
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• Second, we consider the linear approximation of g(vt)− gt, taken at the point xt, namely we

replace g(vt) with g(xt) +∇g(xt)
⊤(vt − xt). To this end, we define

lt(x, y) := g(x) +∇g(x)⊤(y − x)− gt, (6.2)

and the quantity of interest is lt(xt, vt).

• Third, instead of just utilising the previous step lt(xt, vt), we consider an extrapolated term

consisting of two previous steps:

qt := (1 + βt)lt−1(xt−1, vt−1)− βtlt−2(xt−2, vt−2), (6.3)

where βt ≥ 0 are parameters to be tuned.

With these defined, the dual variable ut is chosen by performing an ascent step, starting from a

convex combination of the previous dual variable ut−1 and some fixed u−1 ≥ 0, in the direction of

qt. More precisely:

ut := max

{
0,

(
τt

τt + γt
ut−1 +

(
1− τt

τt + γt

)
u−1

)
+

1

τt + γt
qt

}
, (6.4)

where γt, τt ≥ 0 are parameters to be tuned. We note that (6.4) is equivalent to

ut := argmin
u≥0

{
−qtu+

τt
2
(u− ut−1)

2 +
γt
2
(u− u−1)

2
}
.

Finally, instead of analysing {ut}t≥0, we will construct an alternative dual sequence to analyse:

choose λ0 ≥ 0 and for each t ≥ 0 set

λt+1 = λt + αt(ut − λt).

The full description is provided in Algorithm 5.
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Algorithm 5: Primal-dual conditional gradient method (PD-CG).

Data: Parameters {αt}t≥0 ⊆ [0, 1], {βt}t≥0 ⊆ R+, {γt}t≥0 ⊆ R++, {τt}t≥0 ⊆ R++, {gt}t≥0

satisfying Assumption 6, {Bt}t≥0 satisfying Assumption 5, number of iterations T .
Result: Sequence {xt}t∈[T ].
Initialise x0 = x−1 = x−2 = v−1 = v−2 ∈ X ∩B0, λ0 ≥ 0, u−1 ≥ 0, g−2 = g−1 = g0.;
for t = 0, 1, . . . , T − 1 do

Compute

qt := (1 + βt)lt−1(xt−1, vt−1)− βtlt−2(xt−2, vt−2)

ut := argmin
u≥0

{
−qtu+

τt
2
(u− ut−1)

2 +
γt
2
(u− u−1)

2
}

vt ∈ argmin
v∈X∩Bt

(∇f(xt) + ut∇g(xt))
⊤v

xt+1 := xt + αt(vt − xt)

λt+1 := λt + αt(ut − λt).

By recalling from Remark 4.1.1 that t0 ≥ 0 is an integer such that there exists an optimal

solution xopt of problem (1.1) such that xopt ∈ Bt for each t ≥ t0, the key idea of our unified

analysis, detailed in Sections 6.2 to 6.3, is to bound the approximate duality gap as follows: for any

λ ≥ 0,

LT (xT , λ)− LT (xopt, λT ) ≤ ATλ
2 +BTλ+ CT , (6.5)

for some AT > 0, BT , CT . Given such a bound, we can derive bounds on the inner- and outer-level

optimality gaps, with and without the existence of λopt.

Lemma 6.1. If Assumption 3, Assumption 6 and (6.5) hold, then we have

f(xT )− fopt ≤ CT ,

g(xT )− gopt ≤ gT − gopt +BT + 2
√
AT

(
CT + fopt − f

)
.

(6.6)

If Assumption 4, Assumption 6 and (6.5) hold, then we have

−λopt (g(xT )− gopt) ≤ f(xT )− fopt ≤ CT ,

g(xT )− gopt ≤ gT − gopt +BT + 2

√
2ATCT + 2λoptAT (gT − gopt +BT ) + 4 (λoptAT )

2
.

(6.7)
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Proof. For any λ ≥ 0, we have

LT (xT , λ)− LT (xopt, λT ) = f(xT )− fopt + λ(g(xT )− gT )− λT (gopt − gT )

≥ f(xT )− fopt + λ(g(xT )− gT ),

where the last inequality is true since λT ≥ 0, gT ≥ gopt. Therefore, we have that

ATλ
2 − ((g(xT )− gT )−BT )λ+ (CT − (f(xT )− fopt)) ≥ 0, ∀λ ≥ 0.

Since AT > 0, we minimise the left-hand side with respect to λ ≥ 0 at

λ =
[g(xT )− gT −BT ]+

2AT
,

and obtain that

−
[(g(xT )− gT )−BT ]

2
+

4AT
+ (CT − (f(xT )− fopt)) ≥ 0.

By multiplying both sides by 4AT , we have

[(g(xT )− gT )−BT ]
2
+ ≤ 4AT (CT − (f(xT )− fopt)) ,

which implies CT − (f(xT )− fopt) ≥ 0. This establishes the upper bound on f(xT )− fopt in both

cases, noting that neither Assumption 4 nor Assumption 3 were used. Under Assumption 3, we

have that

[(g(xT )− gT )−BT ]
2
+ ≤ 4AT

(
CT + fopt − f

)
,

which implies that

g(xT )− gopt ≤ gT − gopt +BT + 2
√
AT

(
CT + fopt − f

)
.

Now, suppose only Assumption 4 holds. Then we have f(xT )−fopt ≥ −λopt (g(xT )− gopt). Hence,



CHAPTER 6. PRIMAL-DUAL CONDITIONAL GRADIENT METHOD 61

we have that

[(g(xT )− gT )−BT ]
2
+ ≤ 4AT (CT + λopt (g(xT )− gopt)) .

By using ab ≤ (a2 + b2)/2, we obtain

4λoptAT (g(xT )− gopt)

= 4λoptAT (g(xT )− gT −BT + gT − gopt +BT )

≤ (4λoptAT ) ([g(xT )− gT −BT ]+) + 4λoptAT (gT − gopt +BT )

≤ 1

2
[g(xT )− gT −BT ]

2
+ + 8 (λoptAT )

2
+ 4λoptAT (gT − gopt +BT ) .

Therefore, we have

1

2
[(g(xT )− gT )−BT ]

2
+ ≤ 4ATCT + 4λoptAT (gT − gopt +BT ) + 8 (λoptAT )

2
,

which implies

g(xT )− gopt ≤ gT − gopt +BT + 2

√
2ATCT + 2λoptAT (gT − gopt +BT ) + 4 (λoptAT )

2
.

In Section 6.2, we will show that (6.5) can be obtained under Assumption 6 and some conditions

imposed on the parameters {αt, βt, γt, τt}t≥0. We then provide specific choices of the parameters

which ensure AT , BT , CT are all o(1), thus guaranteeing convergence for inner- and outer-level

objectives.

6.2 Duality gap analysis

For the convenience of analysing Algorithm 5, we define the following functions:

ht(x) := g(x)− gt, ∀t ≥ −2,
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lf (x, y) := f(x) +∇f(x)⊤(y − x),

First, we derive the following bounds, which are utilised extensively in this section.

Lemma 6.2. If Assumption 1 and Assumptions 5–6 hold, then there exists a constant M > 0 such

that the iterates generated by Algorithm 5 satisfy

|lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2)| ≤Md2t , ∀t ≥ 0.

Proof. Given any t ≥ 0, using triangle inequality, we have that

|lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2)|

= |g(xt−1)− g(xt−2) +∇g(xt−1)
⊤(vt−1 − xt−1)−∇g(xt−2)

⊤(vt−2 − xt−2) + gt−2 − gt−1|

≤ |g(xt−1)− g(xt−2)|+ |∇g(xt−1)
⊤(vt−1 − xt−1)|+ |∇g(xt−2)

⊤(vt−2 − xt−2)|+ |gt−2 − gt−1|.
(6.8)

Using mean value theorem, there exists ct lies in segment formed by xt−2, xt−1 satisfying

g(xt−1)− g(xt−2) = ∇g(ct)⊤(xt−1 − xt−2).

Using this result, Cauchy-Schwartz inequality and the fact that ct, xt−1, xt−2, vt−1, vt−2 ∈ Bt, (6.8)

becomes

|lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2)|

≤ |∇g(ct)⊤(xt−1 − xt−2)|+ |∇g(xt−1)
⊤(vt−1 − xt−1)|+ |∇g(xt−2)

⊤(vt−2 − xt−2)|+ |gt−2 − gt−1|

≤ ∥∇g(ct)∥∗∥xt − xt−1∥+ ∥∇g(xt−1)∥∗∥vt−1 − xt−1∥+ ∥∇g(xt−2)∥∗∥vt−2 − xt−2∥+ |gt−2 − gt−1|

≤ (∥∇g(ct)∥∗ + ∥∇g(xt−1)∥∗ + ∥∇g(xt−2)∥∗) dt + |gt−2 − gt−1|

≤ 3

(
max

x∈X∩Bt

∥∇g(x)∥∗
)
dt + |gt−2 − gt−1|.
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Given x ∈ X ∩Bt, using the smoothness of g and the triangle inequality, we have that

∥∇g(x)∥∗ = ∥∇g(x0) + (∇g(x)−∇g(x0)) ∥∗

≤ ∥∇g(x0)∥∗ + ∥∇g(x)−∇g(x0)∥∗

≤ ∥∇g(x0)∥∗ + Lg∥x− x0∥

≤ ∥∇g(x0)∥∗ + Lgdt.

Since {gt}t≥0 is non-increasing, gt ≥ gopt for each t ≥ 0, and g−1 = g−2 = g0, we have that

|gt−2 − gt−1| = gt−2 − gt−1 ≤ g0 − gopt, ∀t ≥ 0.

Therefore, we have that

|lt(xt, vt)− lt−1(xt−1, vt−1)| ≤ 3 (∥∇g(x0)∥∗ + Lgdt) dt + g0 − gopt. (6.9)

If sequence {dt}t≥0 is unbounded, we have

lim sup
t→∞

|lt(xt, vt)− lt−1(xt−1, vt−1)|
d2t

≤ lim sup
t→∞

3 (∥∇g(x0)∥∗ + Lgdt) dt + g0 − gopt
d2t

= 3Lg <∞.

If {dt}t≥0 is bounded, then since the sequence is always non-decreasing, there exists d := limt→∞ dt,

which is positive and finite. This implies

lim sup
t→∞

|lt(xt, vt)− lt−1(xt−1, vt−1)|
d2t

≤ lim sup
t→∞

3 (∥∇g(x0)∥∗ + Lgdt) dt + g0 − gopt
d2t

=
3 (∥∇g(x0)∥∗ + Lgd) d+ g0 − gopt

d2
<∞.

In both cases, there exists a positive constant M > 0 as claimed.

We state the following lemma, which directly results from the definition of ut from Algorithm 5.

From that, Lemma 6.4 establishes a critical recursive rule for the primal-dual gap terms given as
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Lt(xt, λ)− Lt(x, λt) for t ≥ 0.

Lemma 6.3. Given λ ≥ 0, the sequences {ut, qt}0≤t<T generated by Algorithm 5, we have

−qt(ut−λ)+
τt
2
(ut−ut−1)

2+
γt
2
(ut−u−1)

2 ≤ τt
2
(λ−ut−1)

2− τt + γt
2

(λ−ut)
2+

γt
2
(λ−u−1)

2. (6.10)

Proof. From the optimality condition for ut, we have that

(τt(ut − ut−1) + γt(ut − u−1)− qt) (λ− ut) ≥ 0

⇐⇒ (τt(ut − ut−1) + γt(ut − u−1)) (λ− ut) ≥ −qt(ut − λ),

(6.11)

for any λ ≥ 0. We also obtain that

τt
2
(λ− ut−1)

2 − τt
2
(ut − ut−1)

2 − τt
2
(λ− ut)

2

=
τt
2
(2λ− ut−1 − ut)(ut − ut−1)−

τt
2
(ut − ut−1)

2

=
τt
2
(2λ− ut−1 − ut − ut + ut−1)(ut − ut−1)

= τt(λ− ut)(ut − ut−1),

(6.12)

and
γt
2
(λ− u−1)

2 − γt
2
(λ− ut)

2 − γt
2
(ut − u−1)

2

=
γt
2
(2λ− u−1 − ut)(ut − u−1)−

γt
2
(ut − u−1)

2

=
γt
2
(2λ− u−1 − ut − ut + u−1)(ut − u−1)

= γt(λ− ut)(ut − u−1)

(6.13)

By summing (6.11), (6.12) and (6.13), we have (6.10).

Lemma 6.4. If Assumption 1 and Assumptions 5–6 hold, then the iterates generated by Algorithm 5

satisfy

Lt+1(xt+1, λ)− Lt+1(x, λt+1) ≤ (1− αt) (Lt(xt, λ)− Lt(x, λt))

+ δ1,t(λ) + δ2,t(λ) + δ3,t(λ) + λ(gt − gt+1), ∀t ≥ 0.

(6.14)
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for any x ∈ X ∩Bt, λ ≥ 0, where

δ1,t(λ) := αt(λ− ut)(lt(xt, vt)− lt−1(xt−1, vt−1)− αtβt(λ− ut−1)(lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2)),

δ2,t(λ) :=
αtτt
2

(λ− ut−1)
2 − αt(τt + γt)

2
(λ− ut)

2,

δ3,t(λ) := M2αtβ
2
t d

4
t

2τt
+

(Lf + λLg)α
2
td

2
t

2
+

αtγt
2

(λ− u−1)
2.

Proof. By the smoothness of g and f , we have that

f(xt+1) ≤ f(xt) + αt∇f(xt)
⊤(vt − xt) +

Lfα
2
t

2
∥vt − xt∥2

= (1− αt)f(xt) + αtlf (xt, vt) +
Lfα

2
t

2
∥vt − xt∥2,

ht(xt+1) ≤ ht(xt) + αt∇ht(xt)
⊤(vt − xt) +

Lgα
2
t

2
∥vt − xt∥2

⇐⇒ ht+1(xt+1) ≤ (1− αt)ht(xt) + αtlt(xt, vt) +
Lgα

2
t

2
∥vt − xt∥2 + gt − gt+1.

By the above results, We obtain the bound on the approximate duality gap as follows:

Lt+1(xt+1, λ)− Lt+1(x, λt+1)

= f(xt+1)− f(x) + λht+1(xt+1)− λt+1ht+1(x)

≤ (1− αt)f(xt) + αtlf (xt, vt) +
Lfα

2
t

2
∥vt − xt∥2 − f(x)

+ λ

(
(1− αt)ht(xt) + αtlt(xt, vt) +

Lgα
2
t

2
∥vt − xt∥2 + gt − gt+1

)
− λt+1ht+1(x)

= (1− αt) (f(xt)− f(x) + λht(xt)) + αt [lf (xt, vt)− f(x) + λlt(xt, vt)]

− λt+1ht+1(x) +
(Lf + λLg)α

2
t

2
∥vt − xt∥2 + λ(gt − gt+1),

(6.15)

for any x ∈ X,λ ≥ 0. Using the monotonicity of {gt}t≥0 from Assumption 6, we observe

−λt+1ht+1(x) = −λt+1(g(x)− gt+1)

= λt+1(gt+1 − g(x))
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≤ λt+1(gt − g(x))

= −(1− αt)λtht(x)− αtutht(x),

which together with (6.15), implies that

Lt+1(xt+1, λ)− Lt+1(x, λt+1) ≤ (1− αt) (Lt(xt, λ)− Lt(x, λt))

+ αt [lf (xt, vt)− f(x) + λlt(xt, vt)− utht(x)]

+
(Lf + λLg)α

2
t

2
∥vt − xt∥2 + λ(gt − gt+1).

By the convexity of ht, f and the definition of vt, if x ∈ Bt ∩X, we have that

lf (xt, vt) + utlt(xt, vt) = f(xt) + utht(xt) + (∇f(xt) + ut∇g(xt))
⊤(vt − xt)

≤ f(xt) + utht(xt) + (∇f(xt) + ut∇g(xt))
⊤(x− xt)

= f(xt) +∇f(xt)
⊤(x− xt) + ut

(
ht(xt) +∇ht(xt)

⊤(x− xt)
)

≤ f(x) + utht(x),

which implies that for any x ∈ Bt ∩X,

Lt+1(xt+1, λ)− Lt+1(x, λt+1) ≤ (1− αt) (Lt(xt, λ)− Lt(x, λt))

+ αt(λ− ut)lt(xt, vt) +
(Lf + λLg)α

2
t

2
∥vt − xt∥2 + λ(gt − gt+1).

(6.16)
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By multiplying both sides of (6.10) by αt and summing them up with (6.16), we obtain

Lt+1(xt+1, λ)− Lt+1(x, λt+1)

≤ (1− αt) (Lt(xt, λ)− Lt(x, λt)) + αt(λ− ut)(lt(xt, vt)− qt)

+
αtτt
2

[
(λ− ut−1)

2 − (ut − ut−1)
2
]
− αt(τt + γt)

2
(λ− ut)

2

+
αtγt
2

[
(λ− u−1)

2 − (ut − u−1)
2
]
+

(Lf + λLg)α
2
t

2
∥vt − xt∥2 + λ(gt − gt+1)

≤ (1− αt) (Lt(xt, λ)− Lt(x, λt)) + αt(λ− ut)(lt(xt, vt)− qt)−
αtτt
2

(ut − ut−1)
2

δ2,t(λ) +
αtγt
2

(λ− u−1)
2 +

(Lf + λLg)α
2
td

2
t

2
+ λ(gt − gt+1),

(6.17)

where in the second inequality, we use the fact that αtγt

2 (ut − u−1)
2 ≥ 0 and ∥xt − vt∥ ≤ dt. By

using the definition of qt, we have

(λ− ut)(lt(xt, vt)− qt)−
τt
2
(ut − ut−1)

2

= (λ− ut)(lt(xt, vt)− lt−1(xt−1, vt−1)− βt(lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2)))−
τt
2
(ut − ut−1)

2

= (λ− ut)(lt(xt, vt)− lt−1(xt−1, vt−1))

− βt(λ− ut−1 + ut−1 − ut)(lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2))−
τt
2
(ut − ut−1)

2

=
δ1,t(λ)

αt
+ βt(ut − ut−1)(lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2))−

τt
2
(ut − ut−1)

2.

(6.18)

Using ab− a2c
2 ≤

b2

2c with c > 0 and Lemma 6.2, we have that

βt(ut − ut−1)(lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2))−
τt
2
(ut − ut−1)

2

≤ β2
t

2τt
(lt−1(xt−1, vt−1)− lt−2(xt−2, vt−2))

2

≤ M2β2
t d

4
t

2τt
.

(6.19)

By adding (6.19) to (6.18), we obtain

(λ− ut)(lt(xt, vt)− qt)−
τt
2
(ut − ut−1)

2 ≤ δ1,t(λ)

αt
+M2 β

2
t d

4
t

2τt
. (6.20)
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Multiplying both sides of (6.20) by αt and adding to (6.17), we observe

Lt+1(xt+1, λ)− Lt+1(x, λt+1)

≤ (1− αt) (Lt(xt, λ)− Lt(x, λt)) + δ1,t(λ) + δ2,t(λ)

+M2αtβ
2
t d

4
t

2τt
+

(Lf + λLg)α
2
td

2
t

2
+

αtγt
2

(λ− u−1)
2 + λ(gt − gt+1)

= (1− αt) (Lt(xt, λ)− Lt(x, λt)) + δ1,t(λ) + δ2,t(λ) + δ3,t(λ) + λ(gt − gt+1).

If T > t0 and αt < 1 for t ≥ 1, using Corollary 2.4 for (6.14) and substituting x := xopt, we

obtain the following bound on the duality gap:

LT (xT , λ)− LT (xopt, λT )

≤ H0aT−1 + aT−1

∑
t∈[T ]

(
δ1,t−1(λ) + δ2,t−1(λ) + δ3,t−1(λ) + λ(gt−1 − gt)

at−1

)
,

(6.21)

for any λ ≥ 0 and constant H0 defined as in Lemma 2.3. The following lemma simplifies the first

two δ-terms in (6.21).

Lemma 6.5. If T > 1 and αt < 1 for t ≥ 1, then the iterates generated by Algorithm 5 satisfy

∑
t∈[T ]

δ1,t−1(λ)

at−1
=

αT−1ρT−1(λ)

aT−1
+

∑
t∈[T−1]

(
αt−1 −

αtβt

1− αt

)
ρt−1(λ)

at−1
, (6.22)

and ∑
t∈[T ]

δ2,t−1(λ)

at−1
=

α0τ0
2

(λ− u−1)
2 − αT−1(τT−1 + γT−1)

2aT−1
(λ− uT−1)

2

+
∑

t∈[T−1]

(
αtτt
1− αt

− αt−1(τt−1 + γt−1)

)
(λ− ut−1)

2

2at−1
,

(6.23)

where δ1,t(λ), δ2,t(λ) are defined as in Lemma 6.4 and ρt(λ) := (λ−ut)(lt(xt, vt)− lt−1(xt−1, vt−1))

for t ≥ 0.
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Proof. Using definition of δ1,t(λ), we obtain

∑
t∈[T ]

δ1,t−1(λ)

at−1
=
∑
t∈[T ]

αt−1ρt−1(λ)− αt−1βt−1ρt−2(λ)

at−1

=
αT−1ρT−1(λ)

aT−1
+

∑
t∈[T−1]

(
αt−1

at−1
− αtβt

at

)
ρt−1(λ)−

α0β0ρ−1(λ)

a0

=
αT−1ρT−1(λ)

aT−1
+

∑
t∈[T−1]

(
αt−1 −

αtβt

1− αt

)
ρt−1(λ)

at−1
,

where in the last equality, we use at = (1 − αt)at−1 for each t ≥ 1 and ρ−1(λ) = 0 by v−1 = v−2,

x−2 = x−1, g−2 = g−1. To prove (6.23), we observe

∑
t∈[T ]

δ2,t−1(λ)

at−1
=
∑
t∈[T ]

(
αt−1τt−1

2at−1
(λ− ut−2)

2 − αt−1(τt−1 + γt−1)

2at−1
(λ− ut−1)

2

)

=
α0τ0
2

(λ− u−1)
2 − αT−1(τT−1 + γT−1)

2aT−1
(λ− uT−1)

2

+
∑

t∈[T−1]

(
αtτt
2at
− αt−1(τt−1 + γt−1)

2at−1

)
(λ− ut−1)

2

=
α0τ0
2

(λ− u−1)
2 − αT−1(τT−1 + γT−1)

2aT−1
(λ− uT−1)

2

+
∑

t∈[T−1]

(
αtτt
1− αt

− αt−1(τt−1 + γt−1)

)
(λ− ut−1)

2

2at−1
.

To simplify (6.22)–(6.23), we will choose the parameters {αt, βt, γt, τt}t≥0 to make the sums on

the right-hand sides equal to 0. Therefore, we impose the following condition on the parameters.

Condition 6.1. Sequences {αt, βt, γt, τt}t≥0 satisfy that for any t ≥ 1, we have

α0 = 1, αt < 1,
βtαt

1− αt
= αt−1,

αtτt
1− αt

= αt−1(τt−1 + γt−1).

From (6.22), we can see that if βt = 0 (i.e., there is no extrapolation term in defining qt in

Algorithm 5) then we would not be able to remove the sum term in (6.22). Under Condition 6.1,
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(6.21) can be simplified as follows.

Lemma 6.6. Suppose {xt, λt}t∈[T ] are the sequences generated by Algorithm 5. If Assumption 1,

Assumptions 5–6, Condition 6.1 hold, and T > max{t0, 1}, then for any λ ≥ 0, we have

LT (xT , λ)− LT (xopt, λT ) ≤ ATλ
2 +B′

Tλ+ C ′
T , (6.24)

where

AT := aT−1

∑
t∈[T ]

αt−1γt−1

2at−1
+

α0τ0aT−1

2
,

B′
T := −2u−1

aT−1

∑
t∈[T ]

αt−1γt−1

2at−1
+

α0τ0aT−1

2

+ aT−1

∑
t∈[T ]

Lgd
2
t−1α

2
t−1

2at−1

+ aT−1

g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt)

 ,

C ′
T := aT−1

∑
t∈[T ]

(
M2αt−1β

2
t−1d

4
t−1

2τt−1at−1
+

Lfd
2
t−1α

2
t−1

2at−1

)
+ (u−1)

2

aT−1

∑
t∈[T ]

αt−1γt−1

2at−1
+

α0τ0aT−1

2


+

M2αT−1d
4
T

2(τT−1 + γT−1)
+H0aT−1.

(6.25)

Proof. Under Condition 6.1, (6.22) and (6.23) become

∑
t∈[T ]

(
δ1,t−1(λ)

at−1

)
=

αT−1ρT−1(λ)

aT−1
,

∑
t∈[T ]

(
δ2,t−1(λ)

at−1

)
=

α0τ0
2

(λ− u−1)
2 − αT−1(τT−1 + γT−1)(λ− uT−1)

2

2aT−1
.
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Thus, (6.21) becomes

LT (xT , λ)− LT (xopt, λT )

≤ aT−1

∑
t∈[T ]

(
δ3,t−1(λ) + λ(gt−1 − gt)

at−1

)

+ αT−1ρT−1(λ)−
αT−1(τT−1 + γT−1)

2
(λ− uT−1)

2 +
α0τ0aT−1

2
(λ− u−1)

2 +H0aT−1.

(6.26)

Using ab− a2c
2 ≤

b2

2c with c > 0, we have

αT−1ρT−1(λ)−
αT−1(τT−1 + γT−1)

2
(λ− uT−1)

2

= αT−1(λ− uT−1)(lT−1(xT−1, vT−1)− lT−2(xT−2, vT−2))−
αT−1(τT−1 + γT−1)

2
(λ− uT−1)

2

≤ αT−1(lT−1(xT−1, vT−1)− lT−2(xT−2, vT−2))
2

2 (τT−1 + γT−1)

≤ M2αT−1d
4
T

2(τT−1 + γT−1)
.

(6.27)

In addition, we have that

∑
t∈[T ]

gt−1 − gt
at−1

=

T−1∑
t=0

gt − gopt − (gt+1 − gopt)

at

=

T−1∑
t=0

gt − gopt
at

−
T∑

t=1

gt − gopt
at−1

= g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt)−

gT − gopt
aT

≤ g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt).
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Hence, we have that

∑
t∈[T ]

δ3,t−1(λ) + λ(gt−1 − gt)

at−1

≤
∑
t∈[T ]

(
M2αt−1β

2
t−1d

4
t−1

2τt−1at−1
+

(Lf + λLg)d
2
t−1α

2
t−1

2at−1
+

αt−1γt−1(λ− u−1)
2

2at−1

)

+ λ

g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt)

 .

(6.28)

Summing (6.27), (6.28) to (6.26), we obtain

LT (xT , λ)− LT (xopt, λT )

≤ aT−1

∑
t∈[T ]

(
M2αt−1β

2
t−1d

4
t−1

2τt−1at−1
+

(Lf + λLg)d
2
t−1α

2
t−1

2at−1
+

αt−1γt−1(λ− u−1)
2

2at−1

)

+ aT−1

g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt)

λ

+
M2αT−1d

4
T

2(τT−1 + γT−1)
+

α0τ0aT−1

2
(λ− u−1)

2 +H0aT−1.

(6.29)

6.3 Convergence analysis

Using the analysis on the duality gap conducted in Section 6.2, we now provide specific conver-

gence rates for the PD-CG method. First of all, Lemma 6.7 provides a choice of parameters for

{αt, βt, γt, τt}t≥0 satisfying Condition 6.1. Based on that choice, Corollary 6.8 establishes a more

specific upper bound on the duality gap.

Lemma 6.7. The following choice of sequences {αt, βt, γt, τt}t≥0 satisfy Condition 6.1.

αt =
2

t+ 2
, βt =

t

t+ 1
, τt = R(t+ 1)p, γt =

R(t+ 2)1+p

t+ 1
− τt, ∀t ≥ 0,
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given p ∈ (0, 1) and R > 0.

Proof. Given t ≥ 1, we have αt =
2

t+2 < 2
0+2 = 1 and

βtαt

1− αt
=

(
t

t+1

)(
2

t+2

)
t

t+2

=
2

t+ 1
= αt−1,

αtτt
1− αt

=

(
2

t+2

)
R(t+ 1)p

t
t+2

= 2R
(t+ 1)p

t
,

αt−1(τt−1 + γt−1) =
2

t+ 1

R(t+ 1)1+p

t
= 2R

(t+ 1)p

t
.

Corollary 6.8. Suppose {xt, λt}t∈[T ] are the sequences generated by Algorithm 5 with parame-

ters {αt, βt, γt, τt}t≥0 as given in Lemma 6.7 and AT , BT , CT are defined as in Lemma 6.1. If

Assumption 1, Assumptions 5–6 hold and T > max{t0, 1}, then

AT =
R(T + 1)p

T
,

B′
T ≤ BT := −2u−1R(T + 1)p

T
+

2(Lg +Q)d2T
T + 1

,

C ′
T ≤ CT :=

M2

R(2− p)

T 1−pd4T
T + 1

+
2Lfd

2
T

T + 1
+

(u−1)
2R(T + 1)p

T
+

M2

R

Td4T
(T + 1)2+p

+
2H0

(T + 1)T
,

(6.30)

and hence, for any λ ≥ 0, we have

LT (xT , λ)− LT (xopt, λT ) ≤ ATλ
2 +BTλ+ CT . (6.31)

Proof. From Corollary 2.4, we have that

at =
∏
i∈[t]

(1− αi) =
2

(t+ 1)(t+ 2)
, ∀t ≥ 0.
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Now, we simplify the running sums from (6.25) as follows:

∑
t∈[T ]

α2
t−1d

2
t−1

at−1
=
∑
t∈[T ]

(
2

t+1

)2
d2t−1

2
t(t+1)

≤ 2d2T
∑
t∈[T ]

t

t+ 1
≤ 2Td2T

∑
t∈[T ]

αt−1γt−1

at−1
= R

∑
t∈[T ]

(
(t+ 1)1+p − t1+p

)
= R

(
(T + 1)1+p − 1

)
∑
t∈[T ]

αt−1β
2
t−1d

4
t−1

τt−1at−1
≤ d4T

T−1∑
t=0

(
2

t+1

) (
t−1
t

)2
Rtp 2

t(t+1)

=
d4T
R

∑
t∈[T ]

(t− 1)2

t1+p

≤ d4T
R

∑
t∈[T ]

(t− 1)1−p

≤ d4T
R

∫ T

0

s1−pds

=
T 2−pd4T
R(2− p)

.

We also have that

M2αT−1d
4
T

2(τT−1 + γT−1)
=

M2
(

2
T+1

)
d4T

2R (T+1)1+p

T

=
M2

R

Td4T
(T + 1)2+p

,

α0τ0aT−1

2
=

R

2

2

T (T + 1)
=

R

(T + 1)T
.

From Assumption 6, we have

gt − gopt ≤
Qd2t
t+ 1

, ∀t ≤ T,

and hence,

g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt) =

T−1∑
t=0

(t+ 1)(gt − gopt) ≤
T−1∑
t=0

(t+ 1)
Qd2t
t+ 1

≤ QTd2T .
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Therefore, from (6.25), we observe that

AT = aT−1

∑
t∈[T ]

αt−1γt−1

2at−1
+

α0τ0aT−1

2
=

2

(T + 1)T

R
(
(T + 1)1+p − 1

)
2

+
R

(T + 1)T
=

R(T + 1)p

T
,

B′
T = −2u−1

aT−1

∑
t∈[T ]

αt−1γt−1

2at−1
+

α0τ0aT−1

2

+ aT−1

∑
t∈[T ]

Lgd
2
t−1α

2
t−1

2at−1

+ aT−1

g0 − gopt +
∑

t∈[T−1]

(
1

at
− 1

at−1

)
(gt − gopt)


≤ −2u−1

R(T + 1)p

T
+

2

(T + 1)T

Lg2Td
2
T

2
+

2QTd2T
(T + 1)T

= −2u−1R(T + 1)p

T
+

2(Lg +Q)d2T
T + 1

,

C ′
T = aT−1

∑
t∈[T ]

(
M2αt−1β

2
t−1d

4
t−1

2τt−1at−1
+

Lfd
2
t−1α

2
t−1

2at−1

)
+ (u−1)

2

aT−1

∑
t∈[T ]

αt−1γt−1

2at−1
+

α0τ0aT−1

2


+

M2αT−1d
4
T

2(τT−1 + γT−1)
+H0aT−1

≤ 2

(T + 1)T

(
M2

2

T 2−pd4T
R(2− p)

+
Lf2Td

2
T

2

)
+ (u−1)

2R(T + 1)p

T
+

M2

R

Td4T
(T + 1)2+p

+
2H0

(T + 1)T

=
M2

R(2− p)

T 1−pd4T
T + 1

+
2Lfd

2
T

T + 1
+

(u−1)
2R(T + 1)p

T
+

M2

R

Td4T
(T + 1)2+p

+
2H0

(T + 1)T
.

Before establishing convergence rates of Algorithm 5, we impose Condition 6.2 on the growth

of {dt}t≥0. From there, we establish convergence rates and asymptotic convergence guaranteed by

Algorithm 5, shown in Theorem 6.9. Moreover, we also prove that if Assumption 4 holds, we have

improved convergence rates and super-optimality bounds for Algorithm 5 in Theorem 6.10.

Condition 6.2. Sequence {Bt}t≥0 satisfies dt = o
(
tp/4

)
, where p is defined as in Lemma 6.7.

Theorem 6.9. Suppose {xt}t∈[T ] is the sequence generated by Algorithm 5 with parameters {αt, βt, γt, τt}t≥0

as given in Lemma 6.7. If Assumption 1, Assumption 3, Assumptions 5–6 and Condition 6.2 hold,
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then

g(xT )− gopt ≤ O

(
1

T (1−p)/2

)
,

f(xT )− fopt ≤ O

(
max

{
1

T 1−p
,
d4T
T p

})
.

(6.32)

Proof. By Lemma 6.1 and Corollary 6.8, for T > max{t0, 1}, we have

f(xT )− fopt ≤ CT , g(xT )− gopt ≤ gT − gopt +BT + 2
√
AT

(
CT + fopt − f

)
.

By Assumption 6 and (6.30), we have

gT − gopt +BT ≤
Qd2T
T + 1

− 2u−1R(T + 1)p

T
+

2(Lg +Q)d2T
T + 1

≤ (2Lg + 3Q)d2T
T + 1

. (6.33)

Since dT ≥ d0 > 0, we have that limT→∞ T 1−pd2T =∞. Thus, we have that

lim
T→∞

T p

d4T

(
M2

R(2− p)

T 1−pd4T
T + 1

+
2Lfd

2
T

T + 1
+

M2

R

Td4T
(T + 1)2+p

)
= lim

T→∞

(
M2

R(2− p)

T

T + 1
+ 2Lf

T

T + 1

1

T 1−pd2T
+

M2

R

T 1+p

(T + 1)2+p

)
=

M2

R(2− p)
,

lim
T→∞

T 1−p

(
(u−1)

2R(T + 1)p

T
+

2H0

(T + 1)T

)
= lim

T→∞

(
(u−1)

2R(T + 1)p

T p
+

2H0

(T + 1)T p

)
= (u−1)

2R.

Hence, there exists M1,M2 > 0 such that if T > max{t0, 1}, then

M2

R(2− p)

T 1−pd4T
T + 1

+
2Lfd

2
T

T + 1
+

M2

R

Td4T
(T + 1)2+p

≤M1
d4T
T p

,

(u−1)
2R(T + 1)p

T
+

2H0

(T + 1)T
≤M2

1

T 1−p
,
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which implies

f(xT )− fopt ≤ CT ≤M1
d4T
T p

+M2
1

T 1−p
≤ (M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
. (6.34)

We observe that

AT

(
CT + fopt − f

)
≤ R(T + 1)p

T

(
(M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
+ fopt − f

)
.

By Condition 6.2, we have

lim
T→∞

T 1−pR(T + 1)p

T

(
(M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
+ fopt − f

)
= lim

T→∞

R(T + 1)p

T p

(
(M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
+ fopt − f

)
= R

(
fopt − f

)
,

which implies there exists M3 > 0 such that if T > max{t0, 1}, then

AT

(
CT + fopt − f

)
≤M2

3

1

T 1−p
.

Thus, we obtain

g(xT )− gopt ≤ gT − gopt +BT + 2
√
AT

(
CT + fopt − f

)
≤ (2Lg + 3Q)d2T

T + 1
+

2M3

T (1−p)/2
.

By Condition 6.2, we observe that

lim
T→∞

T (1−p)/2

(
(2Lg + 3Q)d2T

T + 1
+

2M3

T (1−p)/2

)
= lim

T→∞

(
(2Lg + 3Q)

(
dT
T p/4

)2
T 1/2

T + 1
+ 2M3

)
= 2M3,

which implies there exists M4 > 0 such that if T > max{t0, 1}, then

g(xT )− gopt ≤
(2Lg + 3Q)d2T

T + 1
+

2M3

T (1−p)/2
≤ M4

T (1−p)/2
.
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Thus, we finish the proof.

Theorem 6.10. Suppose {xt}t∈[T ] is the sequence generated by Algorithm 5 with parameters

{αt, βt, γt, τt}t≥0 as given in Lemma 6.7. If Assumption 1, Assumptions 4–6 and Condition 6.2

hold, then

g(xT )− gopt ≤ O

(
max

{
1

T 1−p
,
d2T
T 1/2

})
,

−O
(
max

{
1

T 1−p
,
d2T
T 1/2

})
≤ f(xT )− fopt ≤ O

(
max

{
1

T 1−p
,
d4T
T p

})
.

(6.35)

Proof. By Lemma 6.1 and Corollary 6.8, if T > max{t0, 1}, we have

−λopt (g(xT )− gopt) ≤ f(xT )− fopt ≤ CT ,

g(xT )− gopt ≤ gT − gopt +BT + 2

√
2ATCT + 2λoptAT (gT − gopt +BT ) + 4 (λoptAT )

2
.

By (6.33), (6.34), (we note that Assumption 3 was not used to prove these two results) the fact

that d4T ≥ d2T d
2
0 and T + 1 > T ≥ T p, we observe that

2ATCT + 2λoptAT (gT − gopt +BT ) + 4 (λoptAT )
2

≤ 2
R(T + 1)p

T

(
(M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
+ λopt

(2Lg + 3Q)d2T
T + 1

+ 2λ2
opt

R(T + 1)p

T

)
≤ 2

R(2T )p

T

(
(M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
+

λopt(2Lg + 3Q)

d20

d4T
T + 1

+ 2λ2
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R(2T )p

T

)
≤ R2p+1

T 1−p

(
(M1 +M2)max

{
d4T
T p

,
1

T 1−p

}
+

λopt(2Lg + 3Q)

d20

d4T
T p

+
λ2
optR2p+1

T 1−p

)

≤ R2p+1

T 1−p

(
M1 +M2 +

λopt(2Lg + 3Q)

d20
+ λ2

optR2p+1

)
max

{
d4T
T p

,
1

T 1−p

}
.

By defining M5 > 0 such that M2
5 = R2p+1

(
M1 +M2 +

λopt(2Lg+3Q)

d2
0

+ λ2
optR2p+1

)
, we have that

if T > max{t0, 1}, then

2ATCT + 2λoptAT (gT − gopt +BT ) + 4 (λoptAT )
2 ≤M2

5 max

{
d4T
T

,
1

T 2−2p

}
.
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Hence, by (6.33) and the fact that T + 1 > T ≥ T 1/2, we have that if T > max{t0, 1}, then

g(xT )− gopt ≤ gT − gopt +BT + 2

√
2ATCT + 2λoptAT (gT − gopt +BT ) + 4 (λoptAT )

2

≤ (2Lg + 3Q)d2T
T + 1

+ 2M5 max

{
d2T
T 1/2

,
1

T 1−p

}
≤ (2Lg + 3Q)d2T

T 1/2
+ 2M5 max

{
d2T
T 1/2

,
1

T 1−p

}
≤ (2Lg + 3Q+ 2M5)max

{
d2T
T 1/2

,
1

T 1−p

}
.

Therefore, (6.35) is true.



Chapter 7

Numerical experiments

7.1 Markowitz portfolio optimisation

We revisit the bilevel variant of the Markowitz portfolio optimisation problem described in Exam-

ple 1.2, originally considered by Beck and Sabach [4, Section 5.1], which is formulated as follows:

min
x

1

2
∥x− a∥22

s.t x ∈ argmin
z

{
1

2
zTΣz

∣∣∣∣ µT z ≥ r0,1
T z = 1, z ≥ 0

}
,

(7.1)

where a,Σ, µ, r0 are defined as in Example 1.2. It is easy to verify that (7.1) satisfies Assumption

1 with Lg = σmax(Σ) and Lf = 1 with respect to the Euclidean norm. Since the base domain of

this instance is bounded, Assumptions 2–3 are true.

7.1.1 Data description

Following [4, Section 5.1], we utilised a real data set from Vanderbei [36], which stores the yearly

returns from 1973 to 1994 of n = 8 types of assets, including US 3-month treasury bills, US

government long bonds, SP 500, Wilshire 500, NASDAQ composite, corporate bond index, EAFE

80



CHAPTER 7. NUMERICAL EXPERIMENTS 81

and Gold. The data between the years 1974 and 1977 were utilised to estimate µ and Σ as follows:

µ =
1

T
R1, Σ =

1

T − 1
R

(
IT −

1

T
11T

)
RT ,

where T = 4 and R is an 8× 4 matrix containing the assets’ returns for each of the 4 years. Since

the rank of RT is at most 4, the rank of Σ cannot be greater than 4, which implies Σ is singular

and hence not positive definite. To induce multiple solutions for the inner-level objective over the

base domain, we set r0 = 1.05 as recommended in [4, Section 5.1].

7.1.2 Algorithms

Using frameworks in Chapters 4 to 6, we implemented Algorithms 3 to 5 to solve problem (7.2).

As the base domain is bounded, we set Bt := X for each t ≥ 0.

For SL-CG, we adopted the stepsizes {αt}t≥0 as in Theorem 4.4 and generated {gt}t≥0 as outlined

in Section 3.3.

For IR-CG, we adopted the recommended schedule for stepsizes {αt}t≥0 as in Theorem 5.10 but

for regularisation parameters σt = 0.1(t + 1)1/2 for each t ≥ 0, which ensures inner- and outer-

level objectives converge at rate O(1/T 1/2). We note that this parameter choice for regularisation

parameters does not violate Conditions 5.1–5.3 since they are invariant under positive scaling.

For PD-CG, we chose the parameters {αt, βt, γt, τt, gt}t≥0 as provided in Lemma 6.7 and strategy

outlined in Section 3.3, where u−1 = 300, R = 300, and p was chosen to be 1
3 to ensure rates for

both inner- and outer-level objectives are O(1/T 1/3).

For performance comparison, we also implemented IR-PG [34], Bi-SG [29], CG-BiO [24], and

ITALEX (projection-free version) [12] . We chose the parameters for the implementation of these

algorithms based on the criteria described in the corresponding papers. Specifically, for CG-BiO, we

set the stepsizes to be αt = 2
t+2 for t ≥ 0 and ϵg = 10−3. Following the notation in the original

papers: for IR-PG, we set θ = α̃ = η = 1
3 and regularisation parameters σt = 0.1(t+ 1)1/2 for each

t ≥ 0; for Bi-SG, we set c = min
{

1
Lf

, 1
}

= 1 and α = 1
2−0.01 to ensure the convergence rates of

both inner- and outer-level objectives close to O
(
1/T 1/2

)
, for ITALEX, we set ϵ1 = 10−2, α0 = 0,
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z0 = 0 ∈ Rn, and u0 to be the same as the starting point x0, which was generated as discussed

below.

The starting points for all algorithms except the CG-BiO method were set the be the point x0

constructed by the following procedure. First, we determined the set K := {i ∈ [n] | µi ≥ r0},

which must be non-empty since otherwise, for any inner feasible x, µ⊤x ≤ (maxi∈[n] µi)1
⊤x < r0.

Second, for any i ∈ [n], we set (x0)i =
1
|K| , where |K| is the number of elements in K, if i ∈ K and

(x0)i = 0 otherwise.

Initialising CG-BiO required an inner feasible x′
0 that satisfies g(x′

0) − gopt ≤ ϵg
2 . To generate

this point, we ran the CG method [17] for the inner-level objective with stepsizes αt =
2

t+2 for t ≥ 0

which terminated when the surrogate gap S(xt) as defined in (2.23) was not greater than
ϵg
2 . We

initialised this step with the starting point x0 of other algorithms.

For the IR-CG and PD-CG methods, we solved the linear minimisation subproblem over the

base domain of (7.1), which is discussed in Section 7.4.1. For the ITALEX with projection-free

customisation method, we solved two linear minimisation subproblems: one over the base domain,

which is similar to that of IR-CG and PD-CG, and one over a sublevel set of the outer-level objective.

Specifically, we computed a minimiser x∗ of a linear function c⊤x over a sublevel set of outer-level

objective, i.e.,
{
x ∈ Rn | 12∥x− a∥22 ≤ α

}
for some α ≥ 0 as follows:

x∗ =


0 c = 0

−
√
2α

∥c∥2
c+ a c ̸= 0.

For the SL-CG and CG-BiO methods, we solved the linear minimisation oracle over the base domain

intersecting with a half-space by the MOSEK solver (version 10.0.40) [2] via CVXPY package

(version 1.3.1) [11]. To compute the projection under the Euclidean norm onto the base domain,

which was required for the IR-PG and Bi-SG methods, we used the MOSEK solver (version 10.0.40)

[2] via CVXPY package (version 1.3.1) [11].

To approximate the value of gopt, we numerically optimised the inner-level objective over the

base domain by the MOSEK solver (version 10.0.40) [2] via CVXPY package (version 1.3.1) [11].
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Figure 7.1: Plot of the best inner-level objective value found by each algorithm (left) and the
corresponding outer-level objective value (right) on the Markowitz portfolio instance, at each point
in time. Note that y-axis is in logarithmic scale on the left figure.

Method Number of iterations executed

SL-CG 496
IR-CG 4453
PD-CG 4225
IR-PG 1026
Bi-SG 1051
CG-BiO 1014
ITALEX 5

Table 7.1: Comparison of the number of iterations by the algorithms, on the Markowitz portfolio
instance, executed within 10 seconds.

We set a time limit of 10 seconds for all algorithms. All experiments were run on a server

with a 2.4GHz processor and 32 GB memory, using Python 3.10.9. For certain subroutines, we

also used the MOSEK solver (version 10.0.40) [2] via CVXPY package (version 1.3.1) [11] and

scipy.spatial.ConvexHull package.

7.1.3 Results comparison

Fig. 7.1 illustrates the values of inner optimality gap (on the left) and outer-level objective (on

the right) generated by SL-CG, IR-CG, PD-CG, IR-PG, Bi-SG, CG-BiO, ITALEX within 10 seconds.
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Table 7.1 shows the number of iterations executed by SL-CG, IR-CG, PD-CG, IR-PG, Bi-SG, CG-BiO,

ITALEX within 10 seconds. In terms of the inner optimality gap, we observe that IR-CG performs

the best and is followed by PD-CG. We highlight that the relatively poor performance of ITALEX

for this instance is indeed anticipated due to the fact that the method needs an inner loop, whose

iteration also contains another loop, at each iteration. Hence, it may be time-consuming to com-

plete an iteration, which explains only 5 iterations performed by ITALEX. Although the theoretical

convergence rates for SL-CG and CG-BiO for this instance are both O(1/T ), their complicated linear

minimisation oracle as compared to that of IR-CG and PD-CG lead to their relatively poorer per-

formance via fewer executed iterations. We would like to point out that the inner optimality gaps

generated CG-BiO seem to not go below the level of 5× 10−4, which matches our discussion about

the lack of asymptotic convergence of this method in Remark 4.2.1. Fig. 7.1 also highlights that

the outer-level objective values of these algorithms are directly correlated to the inner optimality

gaps. We note that some methods converge from below in terms of the outer-level objective due to

the super-optimality phenomenon as discussed in Section 2.3.

7.2 Low-rank matrix completion

We perform numerical experiments on the bilevel variant of the low-rank matrix completion problem

described in Example 1.3, which is formulated as follows:

min
X∈Rn×p

1

2

∑
j∈[p]

∑
i∈[n]

(
Xi,j −Xj

)2
s.t X ∈ argmin

∥Z∥∗≤δ

1

2

∑
(i,j)∈Ω

(Zi,j −Mi,j)
2

 ,

(7.2)

where

Xj :=
1

n

∑
i∈[n]

Xi,j , ∀j ∈ [p].

First, it is easy to see that the base domain and g satisfy Assumption 1(a) and Assumption 1(c)

with Lg = 1 in the Frobenius norm ∥ · ∥F , defined as the square root of the sum of squared entries.
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Since the base domain is also bounded and f is continuous, Assumption 2 and Assumption 3 hold.

To verify Assumption 1(b), we rewrite f as

f(X) =
1

2
∥UX∥2F , (7.3)

where

U := In −
1

n
11⊤.

As f is the sum of the square of linear functions of entries of X, it is a convex quadratic function.

We can see that U⊤U = U , which implies U is positive semi-definite and has the largest eigenvalue

of 1. In addition, the gradient of f is

∇f(X) = U⊤UX = UX.

Given any X,Y ∈ Rn×p, we let z1, . . . , zp be the columns of (X − Y ) and observe that

∥∇f(X)−∇f(Y )∥2F = ∥U(X − Y )∥2F =
∑
j∈[p]

∥Uzj∥22 ≤
∑
j∈[p]

∥zj∥22 = ∥X − Y ∥2F .

By using the fact that the Frobenius norm is self-dual, f satisfies the smoothness assumption with

Lf = 1.

7.2.1 Data description

We used the MovieLens 1M data set [21]. This data set contains ratings of 3952 movies from 6040

users, made on a 5-star scale. Therefore n = 6040, p = 3952, and each Mi,j ∈ [5] for (i, j) ∈ Ω. In

the dataset, there are |Ω| = 1, 000, 209 observed entries, which is ≈ 4.19% of total possible entries.

In our experiments, we set the nuclear norm radius to be δ = 5.
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7.2.2 Algorithms

Using frameworks in Chapters 4 to 6, we implemented Algorithms 3 to 5 to solve problem (7.2).

We set Bt to be the base domain of problem (7.2) for t ≥ 0.

For SL-CG, we adopted the stepsizes {αt}t≥0 as in Theorem 4.4 and generate {gt}t≥0 as outlined

in Section 3.3.

For IR-CG, we adopted the recommended schedule for stepsizes {αt}t≥0 as in Theorem 5.10 but

for regularisation parameters σt = 0.05(t + 1)1/2 for each t ≥ 0, which ensures inner- and outer-

level objectives converge at rate O(1/T 1/2). We note that this parameter choice for regularisation

parameters does not violate Conditions 5.1–5.3 since they are invariant under positive scaling.

For PD-CG, we chose the parameters {αt, βt, γt, τt, gt}t≥0 as provided in Lemma 6.7 and strategy

outlined in Section 3.3, where u−1 = 50, R = 10, and p was chosen to be 1
3 to ensure rates for both

inner- and outer-level objectives are both O(1/T 1/3).

Since f(X) attains it minimum over Rn×p at any matrix of the form α11⊤ for α ∈ R, sublevel

sets of f are not compact. Hence, a critical assumption of the ITALEX method with projection-

free customisation [12] is violated. As a result, for performance comparison, we only implemented

CG-BiO [24], IR-PG [34], and Bi-SG [29]. We chose the parameters for the implementation of these

algorithms based on the criteria described in the corresponding papers. Specifically, for CG-BiO, we

set the stepsizes to be αt = 2
t+2 for t ≥ 0 and ϵg = 10−4. Following the notation in the original

papers: for IR-PG, we set θ = α̃ = η = 1
3 and regularisation parameters σt = 0.05(t+1)1/2 for each

t ≥ 0; or Bi-SG, we set c = min
{

1
Lf

, 1
}

= 1 and α = 1
2−0.01 to ensure the convergence rates of

both inner- and outer-level objectives close to O
(
1/T 1/2

)
.

The starting points for all algorithms except CG-BiO were set to be the following matrix:

X0 := 0.01× δ

[
Ip/p 0p×(n−p)

]⊤
.

For CG-BiO, we required an inner feasible point X ′
0 that satisfies g(X ′

0)− gopt ≤ ϵg/2. To generate

such point, we ran CG [17] for the inner-level objective with stepsizes αt =
2

t+2 for t ≥ 0 until the

surrogate gap S(xt) as defined in (2.23) was not greater than
ϵg
2 . We initialised this phase with X0
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Figure 7.2: Plot of the best inner-level objective value found by each algorithm (left) and the
corresponding outer-level objective value (right) on the low-rank matrix completion instance, at
each point in time. Note that y-axis is in logarithmic scale on the left figure.

given above.

For the IR-CG and PD-CG methods, we solved the linear minimisation subproblem over the

nuclear norm ball, whose solution is discussed in Section 7.4.2. For the SL-CG and CG-BiO methods,

we solved the linear minimisation subproblem over the nuclear norm ball intersecting with a half-

space, which is discussed in Section 7.4.3. To compute the projection onto the nuclear norm ball

required for the IR-PG and Bi-SG methods, we followed the steps given in Section 7.4.4.

To approximate the inner optimal value gopt, we implemented CG [17] starting from X0 with

stepsizes αt = 2
t+2 for t ≥ 0 to retrieve a 10−5-sub-optimal solution using duality surrogate gap

as stopping criterion. Then we used this suboptimal solution as a starting point for the imple-

mentation of another CG [17] to obtain a 10−12-suboptimal solution and gopt was approximated by

the corresponding inner-level objective value. We found that this warm-up approximation scheme

saved time significantly compared to running CG [17] only once.

We set a time limit of 10 minutes (600 seconds) for all algorithms. All experiments were run on a

server with a 2.4GHz processor and 32 GB memory, using Python 3.10.9. For certain subroutines, we

also used the bounded Brent method [16] via package scipy.optimize.minimize-scalar (version

1.11.3) [37].
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Method Number of iterations executed

SL-CG 4
IR-CG 164
PD-CG 71
CG-BiO 3
IR-PG 20
Bi-SG 33

Table 7.2: Comparison of the number of iterations executed by the algorithms on the low-rank
matrix completion instance, within 10 minutes.

7.2.3 Results comparison

Fig. 7.2 illustrates the values of the inner optimality gap (on the left) and outer-level objective (on

the right) generated by SL-CG, IR-CG, PD-CG, CG-BiO, IR-PG, Bi-SG within 10 minutes. Table 7.2

shows the number of iterations executed by SL-CG, IR-CG, PD-CG, CG-BiO, IR-PG, Bi-SG within

10 minutes. Regarding the inner optimality gap, we observe that IR-CG and IR-PG perform the

best and are followed by PD-CG. According to Table 7.2, despite only performing 20 iterations as

compared to 164 iterations, the last iteration of IR-PG is comparable to that of IR-CG, which can

be anticipated because the former method exploits somewhat adaptive stepsizes selection scheme

via an inner loop which guarantees a sufficient improvement in the current regularised objective

while IR-CG adopts a schedule of stepsizes that only depends on t. CG-BiO makes only a modest

improvement compared to the initialised pointX ′
0 since it can only perform 3 iterations. This can be

explained by the complicated structure of the linear minimisation subproblem as compared to that

of IR-CG and PD-CG. This is also the justification for the poor performance of SL-CG, which can only

perform a total of 4 iterations. The quality of the sequence {gt}t∈[T ] generated for SL-CG in parallel

with the iterates within this time limit is inferior to g(X ′
0) generated by the initialisation phase of

CG-BiO, which demands 10 iterations. Although Bi-SG is known to have a theoretical convergence

rate of O(1/T 1/(2−0.01)) for the inner-level objective in this particular problem class, the fact that

the total number of iterations executed is 33 leads to its inferior performance as compared to IR-CG

and PD-CG, which run 164 and 71 iterations, respectively. Fig. 7.2 also highlights that the outer-level

objective values of these algorithms are directly correlated to the inner optimality gaps. The reason
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we observe the outer-level objective values increase over time for some methods can be explained

by the super-optimality of the iterates as discussed in Section 2.3.

7.3 Linear inverse problem

Given data A ∈ Rm×n, b ∈ Rn, the goal of the linear inverse problem is to obtain a solution x ∈ Rn

to the linear system of equations Ax = b. If A is rank-deficient, there can be either multiple

solutions or no exact solution. To deal with the potential nonexistence of a solution, the inner-level

objective is selected to minimise the squared residuals:

min
x∈X

1

2
∥Ax− b∥22. (7.4)

In case A is rank-deficient, (7.4) may not have a unique solution. Thus, the second criterion is used

to select a single solution out of the optimal set:

min
x∈Xopt

1

2
x⊤Qx, (7.5)

where Q ∈ Rn×n is a positive definite matrix. To test the performance of the SL-CG, IR-CG,

and PD-CG methods on an unbounded domain, we let X? := Rn
+. We note that (7.5) satisfies

Assumption 1 with Lg = σ2
max(A) and Lf = σmax(Q) in the Euclidean norm. Since for any x ∈ Rn,

f(x) ≥ 1
2σmin(Q)∥x∥22, where σmin(Q) is the smallest eigenvalue of Q, Assumptions 2–3 hold.

7.3.1 Data description

For this problem class, there are three standard test problems foxgood, baart and phillips that

originate from the MATLAB package “regularisation tools”. Based on parameters such as the

problem dimension, this MATLAB package follows a deterministic scheme to generate the problem

instances with the specific problem characteristics. More specifically, for each of the test problems,

there is a corresponding function that generates a tuple of data A+ ∈ Rn×n, b+ ∈ Rn, x+ ∈ Rn

that satisfy A+x+ = b+. We constructed our instances using these functions by letting m = n =
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1000, A := A+, b := b+ + ρϵ, where ϵ ∈ Rn is a random vector sampled from the standard normal

distribution to model additive noise, and ρ = 10−2 determines the magnitude of the noise. We set

Q := L+L
⊤
+ + In, where L+ ∈ R(n+1)×n is generated by the function get-l from the same package.

7.3.2 Algorithms

Using frameworks in Chapters 4 to 6, we implemented Algorithms 3 to 5 to solve problem (7.2).

As suggested by Example 3.1, Condition 4.1, Condition 5.4, Lemma 5.9 and Condition 6.2, we set

the coverings as follows:

Bt := {x ∈ Rn | 0 ≤ x ≤ (log(t+ 2))1}, ∀t ≥ 0.

For SL-CG, we adopted the stepsizes {αt}t≥0 as in Theorem 4.4 and generate {gt}t≥0 as outlined

in Section 3.3.

For IR-CG, we adopted the recommended schedule for stepsizes {αt}t≥0 as in Theorem 5.10 but

for regularisation parameters σt = 0.01(t + 1)1/2 for each t ≥ 0, which ensures inner- and outer-

level objectives converge at rates O(1/T 1/2) and O(log2(T )/T 1/2) respectively. We note that this

parameter choice for regularisation parameters does not violate Conditions 5.1–5.3 since they are

invariant under positive scaling.

For PD-CG, we chose the parameters {αt, βt, γt, τt, gt}t≥0 as provided in Lemma 6.7 and strategy

outlined in Section 3.3, where u−1 = 200, R = 100, and p was chosen to be 1
3 to ensure rates for

inner- and outer-level objectives are O(1/T 1/3) and O(log4(T )/T 1/3) respectively.

Since X is unbounded, and to the best of our knowledge, there is no first-order projection-free

method that is provided with a feasible starting point and a tolerance ϵ > 0 and returns a ϵ-sub-

optimal solution of minimising g over X. Hence, a critical assumption of the ITALEX method with

projection-free customisation [12] is violated. Moreover, as the base domain is unbounded, CG-BiO

[24] is not applicable. As a result, for performance comparison, we only implemented IR-PG [34],

and Bi-SG [29]. We chose the parameters for the implementation of these algorithms based on the

criteria described in the corresponding papers. Following the notation in the original papers: for
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IR-PG, we set θ = α̃ = η = 1
3 and regularisation parameters σt = 0.01(t + 1)1/2 for each t ≥ 0; or

Bi-SG, we set c = min
{

1
Lf

, 1
}
and α = 1/(2− 0.01) to ensure the convergence rates of both inner-

and outer-level objectives close to O
(
1/T 1/2

)
.

The starting points for all algorithms were set to be x0 = 1. For the IR-CG and PD-CG methods,

we solved the linear minimisation subproblem over a high-dimensional box. That is, we have to

solve a linear problem of the form

min
x∈Rn

c⊤x

s.t. 0 ≤ x ≤ r1,

(7.6)

where c ∈ Rn, d ∈ R, r > 0 are given. A solution x∗ of (7.6) is as follows:

(x∗)i =


0 ci ≥ 0

r ci < 0,

∀i ∈ [n].

For the SL-CG method, we solved the linear minimisation subproblem over a high-dimensional box

intersecting with a half-space, which is discussed in Section 7.4.5. To compute the projection of a

point x onto the base domain required for the IR-PG and Bi-SG method, we used the well-known

result

ProjRn
+
(x) = ([x1]+, . . . , [xn]+).

To approximate the inner optimal value gopt, we numerically optimised the inner-level objective

over the base domain by the MOSEK solver (version 10.0.40) [2] via CVXPY package (version

1.3.1) [11].

We set a time limit of 10 seconds for all algorithms. All experiments were run on a server with

a 2.4GHz processor and 32 GB memory, using Python 3.10.9. For certain subroutines, we also used

the MOSEK solver (version 10.0.40) [2] via CVXPY package (version 1.3.1) [11].
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Figure 7.3: Plot of the best inner-level objective value found by each algorithm (left) and the cor-
responding outer-level objective value (right) on linear inverse problem instances foxgood, baart,
and phillips, at each point in time. Note that y-axis is in logarithmic scale on the left figures.
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Method
Number of iterations executed
foxgood baart phillips

SL-CG 1509 1720 2790
IR-CG 7927 7362 8170
PD-CG 3545 4331 3867
IR-PG 5802 6086 6405
Bi-SG 12634 11869 11849

Table 7.3: Comparison of the number of iterations executed by the algorithms on linear inverse
problem instances foxgood, baart, and phillips, within 10 seconds.

7.3.3 Results comparison

Fig. 7.3 illustrates the values of the inner optimality gap (on the left) and outer-level objective (on

the right) generated by SL-CG, IR-CG, PD-CG,IR-PG, Bi-SG within 10 seconds. Table 7.3 shows the

number of iterations executed by SL-CG, IR-CG, PD-CG, IR-PG, Bi-SG within 10 seconds. Regarding

the inner optimality gap, we observe that IR-PG performs the best and is followed by IR-CG and

Bi-SG. We highlight that the better performance of projection-based methods for these instances

is indeed anticipated since the projection onto Rn
+ is simpler to compute as compared to the linear

minimisation over the truncations. This observation can be confirmed by examining Table 7.2,

which shows that the number of iterations executed by IR-CG is nearly a quarter of that of IR-PG

over three instances. The complicated structure of the linear minimisation subproblem over a high-

dimensional box intersecting with a half-space justifies the relatively poor performance of SL-CG on

foxgood and phillips, where the total of iterations are 1509 and 2790. Despite having a simple

linear subproblem over a high-dimension box, PD-CG has to call two oracles at each iteration: one

for generating gt and one for computing the primal variable xt, which explains for lower number of

iterations as compared to most methods. Although Bi-SG is known to have a theoretical convergence

rate of O(1/T 1/(2−0.01)) for the inner-level objective in this particular problem class, the fact that

the total number of iterations executed is twice the other methods on three instance leads to

its superior performance as compared to SL-CG, IR-CG, PD-CG. Fig. 7.3 also highlights that the

outer-level objective values of these algorithms are directly correlated to the inner optimality gaps.

The reason we observe the outer-level objective values of some methods increase over time is the
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super-optimality of the iterates as discussed in Section 2.3.

7.4 Subroutines implementation

7.4.1 Linear minimisation over the sliced probability simplex

In this subsection, we provide a scheme to tackle the subproblem of the IR-CG and PD-CG methods

and a part of the subproblem of the ITALEX method with projection-free customisation in solving

problem (7.1). That is, we are solving

min
x

c⊤x

s.t. µ⊤x ≥ r0, 1⊤x = 1, x ≥ 0,

(7.7)

where c ∈ Rn is given. We note that we only consider the case problem (7.7) is feasible, which

happens if and only if there exists i ∈ [n] such that µi ≥ r0. The dual problem is

max
λ,η

− λ+ r0η

s.t. ci ≥ −λ+ µiη, ∀i ∈ [n],

η ≥ 0.

(7.8)

Geometrically, problem (7.8) can be interpreted as follows:

• We are given points {Pi}i∈[n] ⊂ R2 where Pi := (µi, ci) for each i ∈ [n].

• Let λ ∈ R, η ≥ 0 be two numbers such that the half-space {(µ, c) ∈ R2 | c ≥ −λ+ηµ} contains

{Pi}i∈[n].

• Find λ, η satisfying the above conditions such that −λ+ ηr0 is maximised.

We denote P := Conv
(
{Pi}i∈[n]

)
, and two points

Ps := (µs, cs), where cs = min
k∈[n]

ck, µs = max
j∈[n]

{µj | cj = cs} , (7.9)
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(a) Ps = Pe

(b) Ps ̸= Pe

Figure 7.4: Two examples of the points {Pi}t∈[n], the vertices of P, and Ps, Pe.

and

Pe := (µe, ce) where µe = max
k∈[n]

µk, ce = min
j∈[n]

{cj | µj = µe} . (7.10)

We note that Ps and Pe can be the same point; see Fig. 7.4a. When Pe = Ps, the solution of

problem (7.7) is given in the below lemma.

Lemma 7.1. Suppose Ps = Pe and t1 ∈ [n] is an integer such that Pt1 = Ps = Pe. Then x∗ = et1

is an optimal solution to problem (7.7).

Proof. Since Ps = Pe, we have r0 ≤ µs, µe. We also have that for each i ∈ [n], ci ≤ cs = ce and
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µi ≥ µs = µe. Given a feasible λ, µ, we have

−λ+ ηr0 ≤ −λ+ ηµt1 ≤ ct1 .

Thus, the optimal dual value is ct1 = cs, and one optimal dual solution is (λ∗, η∗) = (−cs, 0) (the

feasibility of this solution can be easily checked by the definition of cs).

Let x∗ be an optimal solution of (7.7). Since x∗ must minimise the Lagrangian L(x, λ∗, η∗) =

(c + λ∗1 − η∗µ)⊤x − λ∗ + r0η
∗ over x ≥ 0, we have that if (c + 1λ∗ − µη∗)k = ck − cs = 0 then

(x∗)k ≥ 0, and if (c + 1λ∗ − µη∗)k = ck − cs > 0 then (x∗)k = 0 for each k ∈ [n]. Therefore, x∗

must satisfy ∑
k∈[n]:ck=cs

(x∗)k = 1,
∑

k∈[n]:ck=cs

µk(x
∗)k ≥ r0.

To ensure the feasibility of x∗ for problem (7.7), we set x∗ = et1 since Pt1 is the point with largest

x coordinate among points with y coordinate of ct1 = cs.

Now, we consider when Ps ̸= Pe, i.e., cs < ce, µs < µe. We let I ⊆ [n] be a set such that

Conv ({Pi}i∈I) = P and that there exists no j ∈ I such that Pj can be written as a convex

combination of {Pi}i∈I\{j}. That is, I is the index set of the vertices of P.

By definition, Ps, Pe are vertices of P, which implies that Ps, Pe ∈ {Pi}i∈I . Indeed, we assume

that Ps is a convex combination of some points in {Pi}i∈I . By Caratheodory’s theorem, we can

find three such points Pi1 , Pi2 , Pi3 with i1, i2, i3 ∈ I (since the dimension is 2). Then there exists

λ1, λ2, λ3 ≥ 0 such that

λ1ci1 + λ2ci2 + λ3ci1 = cs, λ1µi1 + λ2µi2 + λ3µi1 = µs, λ1 + λ2 + λ3 = 1.

However cs is the minimum of the ci’s, so we must have ci1 = ci2 = ci3 = cs. In addition, µs is

the maximum of the ci’s such that ci = cs, so we must have µi1 = µi2 = µi3 = µs. Hence, Ps is a

vertice. Following the similar reasoning, Pe is also a vertice.
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We denote a set J ⊆ I such that

∀i ∈ J , Pi = Ps or Pi = Pe or ci <
ce − cs
µe − µs

(µi − µs) + cS . (7.11)

That is, sequence {Pi}i∈J includes vertices that are either Ps, Pe or strictly below the line defined

by Ps, Pe.

Remark 7.4.1. To compute I, we can compute the index of vertices ofP via package scipy.spatial.ConvexHull

(version 1.11.3) [37]. From the definition given in (7.11), we can compute J by iterating over I.

In case Ps = Pe, we can define J is the index set of Ps = Pe.

Before continuing, we present the following result, which is a foundation for establishing an

ordering in {Pi}i∈J .

Lemma 7.2. For any i, j ∈ J , µi > µj if and only if ci > cj.

Proof. For any i ∈ J , since ci ≥ cs, µi ≤ µe, we must have

ci ≤
ce − cs
µe − µs

(µi − µs) + cs ≤
ce − cs
µe − µs

(µe − µs) + cs =⇒ ci ≤ ce,

cs ≤ ci ≤
ce − cs
µe − µs

(µi − µs) + cs =⇒ µi ≥ µs.

Now, we prove that for any i ∈ J , if ci = cs or µi = µs then Pi = Ps. If ci = cs and µi ̸= µs, then

from (7.11), we have

ci <
ce − cs
µe − µs

(µi − µs) + cs =⇒ µi > µs,

but this is contrary to the definition of µs. If µi = µs and ci ̸= cs, then from (7.11), we have

ci <
ce − cs
µe − µs

(µi − µs) + cs =⇒ ci < cs,

but this is contrary to the definition of cs. Follow similar reasoning, we can prove that for any

i ∈ J , if ci = ce or µi = µe then Pi = Pe. According to the above observations, the claim is true if

ci = cs or µi = µs or ci = ce or µi = µe. Hence, from now on, we only need to prove the claim for
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the case cs < ci, cj < ce and µs < µi, µj < µe, if any.

We assume for contradiction that there exists i, j ∈ J such that ci > cj , µj ≥ µi. We note that

the triangle defined by Ps, Pe, Pj can be described as the intersection of three closed half-spaces as

follows: [Ps, Pj ] ∩ [Pe, Pj ] ∩ [Ps, Pe] where

[Ps, Pj ] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≥ cj − cs
µj − µs

(x− µs) + cs

}
,

[Pe, Pj ] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≥ ce − cj
µe − µj

(x− µe) + ce

}
,

[Ps, Pe] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≤ ce − cs
µe − µs

(x− µe) + ce

}
.

Now, we will prove that Pi is in the interior of [Ps, Pj ], [Pe, Pj ], [Ps, Pe]. Considering [Ps, Pj ], we

have that

cj − cs
µj − µs

(µi − µs) + cs ≤
cj − cs
µj − µs

(µj − µs) + cs = cj − cs + cs < ci,

which implies Pi is in the interior of [Ps, Pj ]. Considering [Pe, Pj ], we observe that

ce − cj
µe − µj

(µi − µe) + ce ≤
ce − cj
µe − µj

(µj − µe) + ce = −ce + cj + ce < ci,

which implies Pi is in the interior of [Pe, Pj ]. Since we only consider cs < ci < ce, then by (7.11),

Pi is in the interior of [Ps, Pe]. Thus, Pi is a convex combination of Ps, Pj , Pe, and this is contrary

to the definition of set I. By interchanging the roles of the x and y axes and following similar

reasoning, we can prove that there does not exist any i, j ∈ J such that ci ≥ cj and µi < µj .

From Lemma 7.2, we can define an ordering (t1, . . . , t|J |) of J such that

µs = µt1 < . . . , µt|J | = µe and cs = ct1 < . . . , ct|J | = ce (7.12)
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Lemma 7.3. Suppose |J | ≥ 3. Then we have that

cti+1 − cti
µti+1 − µti

<
cti+2 − cti+1

µti+2 − µti+1

,

for any i ∈ [|J | − 2].

Proof. We assume for contradiction that there exists i ∈ [|J | − 2] such that

cti+1
− cti

µti+1
− µti

≥
cti+2

− cti+1

µti+2
− µti+1

. (7.13)

If the equality holds for (7.13), then

cti+1 =
µti+2 − µti+1

µti+2 − µti

cti +
µti+1 − µti

µti+2 − µti

cti+2 .

We also have that

µti+1
=

µti+2
− µti+1

µti+2
− µti

µti +
µti+1

− µti

µti+2
− µti

µti+2
.

Hence, Pti+1
is a convex combination of Pti , Pti+2

, which is contrary to the definition of I. Thus,

(7.13) holds with strict inequality.

If (7.13) holds with strict inequality, then we show that Pti+1
is in the interior of the triangle

P defined by Pti , Pti+2
, (µti , cti+2

). We note that P can be described as the intersection of three

closed half-spaces as follows:

[Pti , Pti+2 ] ∩ [Pti+2 , (µti , cti+2)] ∩ [(µti , cti+2), Pti ],

where

[Pti , Pti+2 ] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≥ cti+2 − cti
µti+2 − µti

(x− µti) + cti

}
,

[Pti+2
, (µti , cti+2

)] :=
{
(x, y) ∈ R2

∣∣ y ≤ cti+2

}
,

[(µti , cti+2
), Pti ] :=

{
(x, y) ∈ R2

∣∣ x ≥ µti

}
.
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Since cti+1 < cti+2 and µti+1 > µti , Pti+1 is in the interior of [Pti+2 , (µti , cti+2)]∩ [(µti , cti+2), Pti ].

Since (7.13) strictly holds, we observe that

cti+1
− cti

µti+1
− µti

>
cti+2

− cti+1

µti+2
− µti+1

⇐⇒
µti+2

− µti+1

µti+1
− µti

>
cti+2

− cti+1

cti+1
− cti

⇐⇒
µti+2 − µti

µti+1 − µti

>
cti+2 − cti
cti+1 − cti

⇐⇒ cti+1
>

cti+2 − cti
µti+2

− µti

(µti+1
− µti) + cti ,

which implies Pti+1
is in the interior of [Pti , Pti+2

]. Hence, Pti+1
is in the interior of the triangle P.

In addition, Pti+1 is also in the interior of the half-space

[Ps, Pe] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≤ ce − cs
µe − µs

(x− µs) + cs

}
.

Hence, Pti+1
is in the interior of [Pe, Ps] ∩ P.

If (µti , cti+2
) ∈ [Ps, Pe], then Pti+2

̸= Pe since otherwise we have cti+2
= ce, and

cti+2
≤ ce − cs

µe − µs
(µti − µs) + cs =⇒ ce ≤

ce − cs
µe − µs

(µti − µs) + cs =⇒ 1 ≤ µti − µs

µe − µs
=⇒ µti ≥ µe,

which is contrary to the fact that µe ≥ µti+1 > µti . Similarly, we observe that Pti ̸= Ps since

otherwise, we have µti = µs and

cti+2
≤ ce − cs

µe − µs
(µti − µs) + cs =

ce − cs
µe − µs

(µs − µs) + cs = cs,

which is contrary to the fact that cs ≤ cti+1
< cti+2

.

Since Pti , Pti+2 ∈ [Ps, Pe] by (7.11), we have [Ps, Pe] ∩ P = P and hence, Pti+1 is a convex

combination of Pti , (µti , cti+2
), Pti+2

. Since µti ∈ [µs, µe], (µti , cti+2
) is either in the interior of

[Ps, Pe] ∩ [µs, µe] ∩ [cs, ce] or on the segment defined by Ps, Pe. If (µti , cti+2
) is in the interior of

[Ps, Pe], then we will prove that (µti , cti+2) is in the interior of the triangle defined by Ps, Pti+2 , Pe.
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We note that this triangle is the intersection of three closed half-spaces as follows: [Ps, Pe] ∩

[Ps, Pti+2
] ∩ [Pe, Pti+2

], where

[Ps, Pti+2
] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≥ cti+2
− cs

µti+2
− µs

(x− µs) + cs

}
,

[Pe, Pti+2
] :=

{
(x, y) ∈ R2

∣∣∣∣ y ≥ ce − cti+2

µe − µti+2

(x− µe) + ce

}
.

Considering [Ps, Pti+2
], we have that

cti+2
− cs

µti+2
− µs

(µti − µs) + cs <
cti+2

− cs

µti+2
− µs

(µti+2
− µs) + cs = cti+2

,

which implies (µti , cti+2
) is in the interior of [Ps, Pti+2

]. Considering [Pe, Pti+2
], we have that

ce − cti+2

µe − µti+2

(µti − µe) + ce <
ce − cti+2

µe − µti+2

(µti+1 − µe) + ce = cti+2 ,

which implies (µti , cti+2) is in the interior of [Pe, Pti+2 ]. Thus, (µti , cti+2) is in the interior of the

triangle defined by Ps, Pti+2
, Pe. If (µti , cti+2

) is on the segment defined by Ps, Pe, then (µti , cti+2
)

is a convex combination of Ps and Pe. Therefore, we have Pti+1
is a convex combination of

Ps,Pti , Pti+2 , Pe, which is contrary to the definition of I.

If (µti , cti+2
) /∈ [Pe, Ps], i.e., cti+2

> ce−cs
µe−µs

(µti − µs) + cs, then the segment defined by Pti ,

(µti , cti+2
), and the segment defined by Pti+2

, (µti , cti+2
) intersect the boundary of [Ps, Pe], i.e., the

line {
(x, y) ∈ R2

∣∣∣∣ y =
ce − cs
µe − µs

(x− µs) + cs

}
,

at two points

P̃ti :=

(
µti ,

ce − cs
µe − µs

(µti − µs) + cs

)
,

P̃ti+2
:=

(
µe − µs

ce − cs
(cti+2

− cs) + µs, cti+2

)
,

respectively, which are in the segment defined by Ps, Pe. Since Pti , Pti+2
∈ [Ps, Pe] by (7.11),
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[Pe, Ps] ∩ P is the convex hull of P̃ti , P̃ti+2 , Pti , Pti+2 . Thus, Pti+1 is in the interior point of the

convex hull of P̃ti , P̃ti+2
, Pti , Pti+2

. Since P̃ti , P̃ti+2
are two convex combinations of Ps and Pe, Pti+1

is a convex combination of Ps, Pti , Pti+2
, Pe, which is in contrary to the definition of I.

For each 1 ≤ i < |J |, we define

ℓi(x) :=
cti+1 − cti
µti+1 − µti

(x− µti) + cti , ∀x ∈ R.

Then, we observe the following result.

Lemma 7.4. Suppose function S is defined as follows

S(x) := max
1≤i<|J |

ℓi(x), ∀x ∈ R.

Then we have that

S(x) =


ℓ1(x) x ≤ µt1 ,

ℓi(x) x ∈ [µti , µti+1 ], ∀1 ≤ i < |J |,

ℓ|J |−1(x) x ≥ µt|J | .

Proof. If |J | = 2, the claim is true. If |J | ≥ 3, for any i ∈ [|J | − 2], by Lemma 7.3 we have

ℓi(x) =
cti+1

− cti
µti+1

− µti

(x− µti+1
) + cti+1

≤
cti+2

− cti+1

µti+2
− µti+1

(x− µti+1
) + cti+1

= ℓi+1(x), ∀x ≥ µti+1
,

ℓi(x) =
cti+1 − cti
µti+1 − µti

(x− µti+1) + cti+1 ≥
cti+2 − cti+1

µti+2 − µti+1

(x− µti+1) + cti+1 = ℓi+1(x), ∀x ≤ µti+1 .

Thus, the claim is true.

From Lemma 7.4, for any i ∈ [|J | − 1], and j ∈ J , we have ℓi(µj) ≤ S(µj) = cj . Hence, the

closed half-spaces above the lines defined by ℓi for each i ∈ [|J |− 1] contain {Pi}i∈J . Additionally,
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we would like to note that for any i ∈ I \ J , if any, Pi belongs to the set

{
(x, y) ∈ R2

∣∣∣∣ x ≤ µe, y ≥ cs, y ≥
ce − cs
µe − µs

(x− µs) + cs

}
.

Hence, to show that each of those half-spaces contains P, we devote the next lemma to show a

result implying that those half-spaces also contain {Pi}i∈I\J , if any.

Lemma 7.5. Suppose S is defined as in Lemma 7.4. Then we have S(x) ≤ y, for any x, y such

that x ≤ µe, y ≥ cs and

y ≥ ce − cs
µe − µs

(x− µs) + cs.

Proof. For µs ≤ x ≤ µe and

y ≥ ce − cs
µe − µs

(x− µs) + cs,

using Lemma 7.4 and convexity of S, we have that

S(x) = S
(

µe − x

µe − µs
µs +

x− µs

µe − µs
µe

)
≤ µe − x

µe − µs
S(µs) +

x− µs

µe − µs
S(µe)

= cs
µe − x

µe − µs
+ ce

x− µs

µe − µs

=
ce − cs
µe − µs

(x− µs) + cs

≤ y.

Since for each 1 ≤ i < |J | we have cti+1
−cti

µti+1
−µti

> 0, S is an increasing function. Thus, for x ≤ µs and

y ≥ cs, we have that

S(x) ≤ S(µs) = cs ≤ y.

Hence, we finish the proof.

Now, we present a critical result, which gives an exact solution to problem (7.7).

Lemma 7.6. When r0 ≤ µt1 , et1 is a solution of (7.7). When there exists 1 ≤ i < |J | such that
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µti ≤ r0 ≤ µti+1 , xtieti + xti+1eti+1 is a solution of (7.7), where

xti =
µti+1 − r0

µti+1 − µti

, xti+1 =
r0 − µti

µti+1 − µti

. (7.14)

Proof. When r0 ≤ µt1 = µs, given a feasible λ, µ, we have

−λ+ ηr0 ≤ −λ+ ηµt1 ≤ ct1 .

Thus, one dual optimal solution is λ∗ = −ct1 and η∗ = 0 (the feasibility of this solution can be

easily checked by the definition of cs). Since x∗ must minimise the Lagrangian L(x, λ∗, η∗) =

(c+ λ∗1− η∗µ)⊤x− λ∗ + r0η
∗ over x ≥ 0, if (c+ 1λ∗ − µη∗)k = ck − cs = 0 then (x∗)k ≥ 0 and if

(c+ 1λ∗ − µη∗)k = ck − cs > 0 then (x∗)k = 0 for each k ∈ [n]. Therefore, x∗ must satisfy

∑
k∈[n]:ck=cs

(x∗)k = 1,
∑

k∈[n]:ck=cs

µk(x
∗)k ≥ r0.

To ensure the feasibility of x∗, we set x∗ = et1 since Pt1 is the point with largest x coordinate

among points with y coordinate of ct1 = cs.

When there is 1 ≤ i < |J | such that µti ≤ r0 ≤ µti+1
, we have that for any feasible λ, η

−λ+ ηr0 =
µti+1

− r0

µti+1 − µti

(−λ+ ηµti) +
r0 − µti

µti+1 − µti

(−λ+ ηµti+1
)

≤
µti+1

− r0

µti+1
− µti

cti +
r0 − µti

µti+1
− µti

cti+1

=
cti+1

− cti
µti+1

− µti

(r0 − µti) + cti

= S(r0).

In fact, this upper bound is attainable with an optimal dual variable (λ∗, η∗) satisfies −λ∗ + η∗x =

ℓi(x) for any x ∈ R. We will prove that (λ∗, η∗) is feasible for problem (7.8). For any j ∈ I \J , we

have −λ∗ + η∗µj = ℓi(xj) ≤ S(µj) ≤ cj by Lemma 7.5 and for any j ∈ J , we have −λ∗ + η∗µj ≤

S(µi) = ci. This implies λ∗, η∗ are feasible. By definition and Lemma 7.4, S(x) = −λ∗ + η∗x for
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Algorithm 6: Linear oracle over a sliced probability simplex

Data: c ∈ Rn.
Result: Solution of problem (7.7).
Compute Ps and Pe as defined in (7.9) and (7.10);
Compute set J as defined in (7.11);
Compute integers t1, . . . , t|J | satisfying (7.12);
if r0 ≤ µt1 then

Return et1 .
else

Compute i, xti , xti+1
satisfying (7.14);

Return xtieti + xti+1eti+1

any x ∈ [µti , µti+1
], which implies the upper bound is attainable.

Since x∗ must minimise the Lagrangian L(x, λ∗, η∗) = (c+λ∗1−η∗µ)⊤x−λ∗+r0η
∗ over x ≥ 0,

if (c+ 1λ∗−µη∗)k = 0 then (x∗)k ≥ 0, and if (c+ 1λ∗−µη∗)k > 0 then (x∗)k = 0 for each k ∈ [n].

Therefore, x∗ must satisfy

∑
k∈[n]:ℓi(µk)=ck

(x∗)k = 1,
∑

k∈[n]:ℓi(µk)=ck

µk(x
∗)k ≥ r0.

To ensure the feasibility of x∗, we set x∗ := xtieti + xti+1
eti+1

where


µtixti + µti+1xti+1 = r0

xti + xti+1
= 1

⇐⇒


xti =

µti+1
−r0

µti+1
−µti

≥ 0

xti+1 =
r0−µti

µti+1
−µti

≥ 0.

(7.15)

Now, we have enough tools to construct a finite algorithm to find a solution for problem (7.7)

as provided in Algorithm 6.
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7.4.2 Linear minimisation over a nuclear norm ball

In this subsection, we provide a scheme to tackle the subproblem of the IR-CG and PD-CG methods

in solving problem (7.2). The corresponding linear subproblem is as follows:

min
V

Trace(C⊤V )

s.t. ∥V ∥∗ ≤ δ

(7.16)

Let u(1), v(1) are left and right leading singular vectors of C. Jaggi [23, Section 4.2] provided an

optimal solution to (7.16) which is V ∗ := −δu(1)
(
v(1)

)⊤
. To compute this solution, we compute

a leading eigenvalue v(1) with length 1 and largest eigenvalue σ2
max(C) of C⊤C with the Lanczos

process [20, Section 10.1] via package scipy.linalg.eigh (version 1.11.3) [37]. Vector u(1) is

computed as − 1
σmax(C)Cv(1).

7.4.3 Linear minimisation over a sliced nuclear norm ball

In this subsection, we provide a scheme to tackle the subproblem of the SL-CG and CG-BiO methods

in solving problem (7.2). The problem is as follows:

min
V

Trace(C⊤V )

s.t. ∥V ∥∗ ≤ δ

Trace(A⊤V ) ≤ b.

(7.17)

Since the size of V is large, it is impractical to use off-the-shelf conic optimisation solvers for

problem (7.17). Therefore we provide an efficient custom algorithm. We note that we will consider

the case when (7.17) is feasible, since they are generated from outer approximations of Xopt, which

we assume to be non-empty. This implies that

b ≥ min
∥V ∥∗≤δ

Trace(A⊤V ) = −δσmax(A).
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Before continuing, we have the following observation.

Lemma 7.7. If b > −δσmax(A), then Slater’s condition holds for problem (7.17). If A ̸= 0, then

the reverse is true.

Proof. If b > −δσmax(A) = min∥V ∥∗≤δ Trace(A
⊤V ), we let V ∗ be a minimiser of Trace(A⊤V ) over

∥V ∥∗ ≤ δ such that ∥V ∗∥∗ = δ (this minimiser always exists according to Section 7.4.2). Since

limU→V ∗ Trace(A⊤U) = Trace(A⊤V ∗) < b, there exists a sufficiently small ϵ > 0 such that for any

U such that ∥U − V ∗∥∗ < ϵ, we have Trace(A⊤U) < b. Since V ∗ is on the boundary of the nuclear

norm ball, there must exist an U satisfies ∥U − V ∗∥∗ < ϵ and is in the interior of the nuclear norm

ball, i.e., ∥U∥∗ < δ. Thus, Slater’s condition holds for problem (7.17).

Now, we assume A ̸= 0. If Slater’s condition holds for problem (7.17), there exists U such that

∥U∥∗ < δ, Trace(A⊤U) ≤ b.

Since A ̸= 0 and ∥U∥∗ < δ, we have that

b ≥ Trace(A⊤U) ≥ −σmax(A)∥U∥∗ > −δσmax(A),

where in the second inequality, we use the fact that the spectral norm is the dual norm of the

nuclear norm.

First, we consider the case in which Slater’s condition does not hold. In this case, by Lemma 7.7,

we have

min
∥V ∥∗≤δ

Trace(A⊤V ) = b,

and

{V ∈ Rn×p | Trace(ATV ) ≥ b, ∥V ∥∗ ≤ δ} = argmin
∥U∥∗≤δ

Trace(A⊤U).

Therefore, a solution to (7.17) in this case is

V ∗ ∈ argmin
V

{
Trace(C⊤V )

∣∣∣∣∣ V ∈ argmin
∥U∥∗≤δ

Trace(A⊤U)

}
.
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When Slater’s condition holds for problem (7.17), we consider the Lagrangian

L(V, λ, µ) = Trace((C + λA)⊤V )− λb+ µ (∥V ∥∗ − δ) , V ∈ Rn×p, λ, µ ≥ 0,

then the dual function is

D(λ, µ) = inf
V ∈Rn×p

L(V, λ, µ) =


−bλ− δµ σmax(C + λA) ≤ µ

−∞ otherwise.

Thus, the dual problem is

max
λ,µ≥0

− bλ− δµ

s.t. σmax(C + λA) ≤ µ,

(7.18)

which is equivalent to

min
λ≥0

δσmax(C + λA) + bλ. (7.19)

We also note that in case Slater’s condition holds, we have b > −δσmax(A) if A ̸= 0 by Lemma 7.7.

At any optimal solution λ∗ of problem (7.19), the objective must not be greater than that at λ = 0.

Therefore, we can obtain an upper bound for λ∗ as follows:

δσmax(C) ≥ δσmax(C + λ∗A) + bλ∗

≥ δ (σmax(λ
∗A)− σmax(−C)) + bλ∗,

=⇒ 2δσmax(C) ≥ (b+ δσmax(A))λ∗,

=⇒ 2δσmax(C)

b+ δσmax(A)
≥ λ∗,

where we use the triangle inequality for the spectral norm in the second inequality. Given an optimal

dual variable λ∗ by solving (7.19), the optimal solution of problem (7.17) is also the solution of

minimising Trace((C + λ∗A)⊤V ) over the nuclear ball. If A = 0, we observe that λ∗ = 0 minimises

problem (7.19) since b ≥ −δσmax(A) = 0.
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Remark 7.4.2. To solve problem (7.19), if A ̸= 0, we compute λ∗ by conducting line search of

function δσmax(C + λA) + bλ over the interval

[
0,

2δσmax(C)

b+ δσmax(A)

]
,

with the bounded Brent method [16] via package scipy.optimize.minimize-scalar (version

1.11.3) [37]. If A = 0, we set λ∗ := 0.

Given λ∗, we need to ensure the solution V ∗ we get from minimising Trace((C + λ∗A)⊤V ) over

the nuclear ball satisfies the linear inequality constraint Trace(A⊤V ∗) ≤ b. Hence, we can compute

such a solution as follows:

V ∗ ∈ argmin
V

{
Trace(A⊤V )

∣∣∣∣∣ V ∈ argmin
∥U∥∗≤δ

Trace((C + λ∗A)⊤U)

}
.

Therefore, both cases require us to solve bilevel linear problems over the nuclear norm ball. To

do this, we need the following results.

Lemma 7.8. Given a matrix P ∈ Rn×p, let E1 be the eigenspace associated with the leading

eigenvalue of matrix P⊤P and

E1 :=

{
−δ

σmax(P )
Pvv⊤

∣∣∣∣ v ∈ E1, ∥v∥2 = 1

}
.

Then

argmin
∥Z∥∗≤δ

Trace(P⊤Z) = Conv(E1).

Proof. Note that the optimal value is−δσmax(P ). First, we prove that argmin∥Z∥∗≤δ Trace(P
⊤Z) ⊇

Conv(E1) holds. Given X ∈ E1, there exists v ∈ E1, ∥v∥2 = 1, such that

X =
−δ

σmax(P )
Pvv⊤.

Observe that X⊤X = δ2

σ2
max(P )vv

⊤P⊤Pvv⊤ = δ2vv⊤. Note that there is only one non-zero eigen-
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value δ2 of X⊤X with eigenvector v. Any vector that is orthogonal to v has eigenvalue 0. Therefore

(X⊤X)1/2 = δvv⊤, and ∥X∥∗ = Tr((X⊤X)1/2) = δ, thus X is feasible. This implies that any point

in Conv(E1) is also feasible since the nuclear norm ball is a convex set. We have that

Trace(P⊤X) =
−δ

σmax(P )
Trace(v⊤P⊤Pv) = −δσmax(P ),

thus X is optimal, which implies E1 ⊆ argmin∥Z∥∗≤δ Trace(P
⊤Z). Taking convex hulls of both

sets, we obtain the required result.

Now, we prove argmin∥Z∥∗≤δ Trace(P
⊤Z) ⊆ Conv(E1) holds. Given a feasible X, let a singular

value decomposition of X be

X =
∑

i∈[min{n,p}]

σiuiv
⊤
i ,

where σ1 ≥ · · · ≥ σmin{n,p} ≥ 0. Since ∥X∥∗ ≤ δ, we have
∑

i∈[min{n,p}] σi ≤ δ.

By using the Cauchy-Schwarz inequality and the fact that {ui}i∈[min{n,p}] and {vi}i∈[min{n,p}]

are two sets orthonormal vectors, we have that

Trace(P⊤X) =
∑

i∈[min{n,p}]

σiv
⊤
i P

⊤ui

≥
∑

i∈[min{n,p}]

σi (−∥ui∥2∥Pvi∥2)

= −
∑

i∈[min{n,p}]

σi∥Pvi∥2

≥ −σmax(P )
∑

i∈[min{n,p}]

σi

≥ −δσmax(P )

The first inequality becomes equality if and only if given i ∈ [min{n, p}], we have that σi = 0

or Pvi = kiui for some ki ≤ 0. The second inequality becomes equality if and only if given
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i ∈ [min{n, p}], σi = 0 or vi is a leading eigenvector of P⊤P . Hence, in order to have

X ∈ argmin
∥Z∥∗≤δ

Trace(P⊤Z),

given i ∈ [min{n, p}], we have that σi = 0 or vi is a leading eigenvector of P⊤P . In summary, in

order for X to be optimal (i.e., all inequalities above hold with equality), we need vi to be a leading

eigenvector of P⊤P , Pvi = −σmax(P )ui whenever σi ̸= 0, and
∑

i∈[min{n,p}] σi = δ. Furthermore,

note that if we define ui = − 1
σmax(P )Pvi whenever vi ∈ E1, then u⊤

i uj = 1
σmax(P )2 v

⊤
i P

⊤Pvj =

v⊤i vj = 0 for any other j ∈ [min{n, p}]. On the other hand, u⊤
i ui = v⊤i vi = 1. Therefore

{ui}i∈[min{n,p}] defined in this way is also an orthonormal set of vectors. Since {vi}i∈[min{n,p}] is a

set of orthonormal vectors in E1, we must have σi = 0,∀i > dim (E1). Thus, if X is a minimiser of

Trace(P⊤Z) over ∥Z∥∗ ≤ δ then

X =
∑

i∈[dim (E1)]

σiuiv
⊤
i = − 1

σmax(P )

∑
i∈[dim (E1)]

σiPviv
⊤
i ,

where {v1, . . . , vdim (E1)} is an orthonormal basis of E1 and σi ≥ 0,
∑

i∈[dim (E1)]
σi = δ. Therefore,

X ∈ Conv(E1) as required.

Lemma 7.9. Given Q ∈ Rn×p, let P,E1 be defined as in Lemma 7.8, R ∈ Rp×dim (E1) be a matrix

whose columns form an orthonormal basis of E1, S ∈ Rdim (E1)×dim (E1) be a symmetric matrix

defined as follows:

S := R⊤
(
Q⊤P + P⊤Q

2

)
R,

and s1 ∈ Rd1 be a leading eigenvector of S with length 1. Then we have that

− δ

σmax(P )
P (Rs1)(Rs1)

⊤ ∈ argmin
X

{
Trace(Q⊤X)

∣∣∣∣∣ X ∈ argmin
∥Z∥∗≤δ

Trace(P⊤Z)

}
.

Proof. By Lemma 7.8, we have that

argmin
X

{
Trace(Q⊤X)

∣∣∣∣∣ X ∈ argmin
∥Z∥∗≤δ

Trace(P⊤Z)

}
⊇ argmin

X∈E1

Trace(Q⊤X).
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Let X ∈ E1, there exists v ∈ E1, ∥v∥2 = 1 such that

X =
−δ

σmax(P )
Pvv⊤.

Then we have

Trace(Q⊤X) = − −δ
σmax(P )

v⊤(Q⊤P )v

≥ − δ

σmax(P )
max

∥u∥2=1,u∈E1

u⊤(Q⊤P )u.

Such lower bound can be obtained when we set

v ∈ argmax
∥u∥2=1,u∈E1

u⊤(Q⊤P )u.

Given ∥u∥2 = 1, u ∈ E1, we have u = Rs, where s ∈ Rdim (E1) is a vector with length 1. Hence, we

have

argmax
∥u∥2=1,u∈E1

u⊤(Q⊤P )u = argmax
∥s∥2=1

s⊤(R⊤Q⊤PR)s = argmax
∥s∥2=1

s⊤Ss,

where in the last equality, we use the fact that s⊤(R⊤Q⊤PR)s = s⊤(R⊤P⊤QR)s. Thus, we can

choose v = Rs1.

Remark 7.4.3. To compute R as defined in Lemma 7.9, we used package scipy.linalg.eigh

(version 1.11.3) [37] to compute leading eigenvalue of matrix P⊤P and the associated eigenvectors

whose lengths are 1.

Now, we have enough tools to address problem (7.17), which are shown in Algorithms 7 to 8.

7.4.4 Projection onto a nuclear norm ball

In this subsection, we provide a scheme to compute the projection onto the base domain required

by the IR-PG and Bi-SG methods in solving (7.1). Given a matrix X, let its singular value decom-
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Algorithm 7: Bilevel linear oracle over a nuclear norm ball - NB-BLO

Data: P,Q ∈ Rn×p, δ > 0.

Result: V ∗ ∈ argminV

{
Trace(Q⊤V )

∣∣∣ V ∈ argmin∥U∥∗≤δ Trace(P
⊤U)

}
.

Compute

R as defined in Lemma 7.9

S :=
1

2
R⊤(Q⊤P + P⊤Q)R

s1 ∈ argmax
∥s∥2=1

s⊤Ss

V ∗ :=
−δ

σmax(P )
P (Rs1)(Rs1)

⊤.

Algorithm 8: Linear oracle over a sliced nuclear norm ball

Data: C ∈ Rn×p, A ∈ Rn×p, b ∈ R, δ > 0.
Result: V ∗- a solution of (7.17).
if b = −δσmax(A) then

Compute
V ∗ := NB-BLO(A,C, δ).

else
Compute

λ∗ ∈ argmin
λ≥0

{δσmax(C + λA) + bλ}

V ∗ := NB-BLO(C + λ∗A,A, δ).

position be as follows:

X =
∑
i∈[k]

σiuiv
⊤
i ,

in which k = min{n, p} and σ1 ≥ · · · ≥ σk ≥ 0. Let s ∈ Rk be the Euclidean projection of

(σ1, . . . , σk) onto the simplex Sδ := {x ∈ Rk | 1⊤x ≤ δ, x ≥ 0}. Beck [3, Section 7.3.2] provides

the following expression for the Frobenius norm projection of X onto the nuclear ball {V ∈ Rn×p |

∥V ∥∗ ≤ δ} is ∑
i∈[k]

siuiv
⊤
i .
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Now we discuss how the projection onto Sδ can be computed. Given x ∈ Rk, we have that the

projection onto Sδ can be computed as follows:

ProjSδ
(x) = δ ProjS1

(x
δ

)
,

where the projection onto the probability simplex S1 can be efficiently computed via [9, Algorithm

1].

7.4.5 Linear minimisation over a sliced box

In this subsection, we provide a solution to the linear minimisation subproblem required for SL-CG

in solving (7.5), which is formulated as follows:

min
x∈Rn

c⊤x

s.t. a⊤x ≤ d, 0 ≤ x ≤ r1,

(7.20)

where a, c ∈ Rn, d ∈ R, r > 0 are given. Before solving problem (7.20), we need to determine when

this problem is infeasible. This issue can be addressed by the following result.

Lemma 7.10. Given p ∈ Rn and r > 0, let Γ1 : R ⇒ R be a set-valued mapping such that

Γ1(x) :=


{0} x > 0

{r} x < 0

[0, r] x = 0.

Then we have that

X
(p)
opt := argmin

0≤x≤r1
p⊤x = Γ1(p1)× · · · × Γ1(pn), (7.21)

and the optimal value is
∑

i∈[n] rmin{0, pi}.
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Proof. Given x such that 0 ≤ x ≤ r1, we have that

p⊤x =
∑
i∈[n]

pixi.

If pi > 0 then pixi ≥ 0 and if pi < 0 then pixi ≥ pir. Hence, we have pixi ≥ rmin{0, pi} with the

equality happens if and only if pi = 0 or xi = 0, pi > 0 or xi = r, pi < 0. Therefore, we obtain

p⊤x ≥
∑
i∈[n]

rmin{0, pi},

and the equality holds if and only if for any i ∈ [n], pi = 0, 0 ≤ xi ≤ r or xi = 0, pi > 0 or

xi = r, pi < 0. Thus, (7.21) is true.

By Lemma 7.10, problem (7.20) is infeasible if and only if

d < min
0≤x≤r1

a⊤x = r
∑
i∈[n]

min{ai, 0}. (7.22)

When (7.20) is feasible, Slater’s condition holds. Thus, we consider the Lagrangian

L(x, λ) := c⊤x+ λ(a⊤x− d) = (c+ λa)⊤x− dλ, 0 ≤ x ≤ r1, λ ≥ 0.

Therefore, the dual function can be written as

D(λ) = min
0≤x≤r1

{(c+ λa)⊤x− dλ} = r
∑
i∈[n]

min{ci + λai, 0} − dλ, ∀λ ≥ 0.

Since D(λ) is a piecewise linear function with respect to λ ≥ 0, its attainable maximum can be

obtained at either λ = 0 or some positive knot(s) of D(λ). Thus, a maximiser of D(λ) over λ ≥ 0

should be in the set {
− ci
ai

∣∣∣∣ i ∈ [n], ai ̸= 0,− ci
ai

> 0

}
∪ {0}.

Given a optimal dual variable λ∗ ≥ 0, any solution of (7.20) is also a solution of minimising
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(c + λ∗a)⊤x over 0 ≤ x ≤ r1. Since the latter problem might have multiple solutions, some of

which may be infeasible for (7.20), it is sufficient to compute a solution of (7.20) by solving

min
x∈Rn

a⊤x

s.t. x ∈ argmin
0≤z≤r1

{
(c+ λ∗a)⊤z

}
.

(7.23)

To solve (7.23), we need the following lemma.

Lemma 7.11. Given q ∈ Rn, let p ∈ Rn, r > 0, X
(p)
opt,Γ1 : R ⇒ R be defined as in Lemma 7.10,

and Γ2 : R2 ⇒ R be a set-valued mapping such that

Γ2(x, y) :=


{0} x > 0 or x = 0, y > 0

{r} x < 0 or x = 0, y < 0

[0, r] x = 0, y = 0.

Then we have that

argmin
x∈X

(p)
opt

q⊤x = Γ2(p1, q1)× · · · × Γ2(pn, qn). (7.24)

Proof. Given x ∈ X
(p)
opt, by Lemma 7.10, we have that xi = 0 if pi > 0, xi = r if pi < 0, and

xi ∈ [0, r] if pi = 0 for each i ∈ [n]. We define I = {i ∈ [n] | pi = 0} then minimising q⊤x over

x ∈ X
(p)
opt is equivalent to solving

min
{xi}i∈I

∑
i∈I

qixi

s.t. xi ∈ [0, r], ∀i ∈ I.

(7.25)

We apply Lemma 7.10 for problem (7.25) to have that x∗ is a minimiser of q⊤x over x ∈ X
(p)
opt if

and only if (x∗)i ∈ Γ1(pi) for each i /∈ I, and (x∗)i ∈ Γ1(qi) for each i ∈ I. We notice that this is

equivalent to that (x∗)i ∈ Γ1(pi, qi), for each i ∈ [n].

From Lemma 7.11, a solution of (7.20), if the problem is feasible, can be computed via Algo-
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Algorithm 9: Linear oracle over a sliced box

Data: a, c ∈ Rn, d ∈ R, r > 0 unsatisfying (7.22).
Result: x∗ - a solution of (7.20)
Compute

C :=
{
− ci
ai

∣∣∣∣ i ∈ [n], ai ̸= 0,− ci
ai

> 0

}
∪ {0}

λ∗ ∈ argmax
λ∈C

r
∑
i∈[n]

min{ci + λai, 0} − dλ


(x∗)i :=

{
0 , ci + λ∗ai > 0 or ci + λ∗ai = 0, ai ≥ 0

r , ci + λ∗ai < 0 or ci + λ∗ai = 0, ai < 0
, ∀i ∈ [n].

rithm 9, as shown below.



Chapter 8

Concluding remarks

Technological innovation and development have led to efficiency gains in all aspects of decision-

making science; however, many practical problems are still tasked with determining solutions to

bilevel (more generally, hierarchical) optimisation problems. Along with the rise of the interde-

pendent economy, where more capital resources are being shared amongst multiple agents with

competing interests, businesses in these markets must model multiple objectives with clear pri-

orities to ensure efficiency gains over time to maintain a competitive advantage in their market.

Although bilevel optimisation problems have been independently studied in the existing literature,

a simple first-order projection-free scheme to solve such problems has not been considered.

This thesis addresses the smooth convex bilevel optimisation problems numerically via three

projection-free methods. We assume that the base domain is convex and closed, both objective

functions are smooth convex on an open subset of the base domain, and the pointwise maximum

of the inner- and outer- objectives is coercive over the base domain. We solve the bilevel problem

via three approaches: inner-level optimal set approximation, regularisation and primal-dual-type

update. Other than the assumptions mentioned above, we also require the outer objective to be

bounded from below over the base domain to ensure the convergence of the regularisation- and

primal-dual-based methods. A critical difference in assumptions between our methods and other

projection-free algorithms is the boundedness of the base domain. To account for such relaxation,

118
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Method SL-CG IR-CG

PD-CG

without with
Assumption 4 Assumption 4

Inner-level rate O
(
d2T /T

)
O (1/T p) O

(
1/T (1−p)/2

)
O
(
max

{
1/T 1−p, d2T /T

1/2
})

Outer-level rate O
(
d2T /T

)
O
(
d2T /T

1−p
)

O
(
max

{
1/T 1−p, d4T /T

p
})

Diameters’ growth o
(
t1/2

)
o
(
t(1−p)/2

)
o
(
tp/4

)
Reference Theorem 4.4 Theorem 5.10 Theorem 6.9 Theorem 6.10

Table 8.1: Comparison of convergence rates of the SL-CG, IR-CG and PD-CG methods.

we introduce a sequence of coverings with the intuition of enforcing the boundedness for each

iteration but still maintaining the unboundedness in the long term. Furthermore, to measure of

the super-optimality of the methods, we adopt a global error condition on the inner-level objective

over the base domain.

A summary of the proposed algorithms’ convergence rates is shown in Table 8.1. While the

SL-CG method has the fastest theoretical convergence rates, the corresponding linear minimisation

oracle tends to be more complicated due to the linear inequality constraint from approximating the

gopt-sublevel set and, hence, may not perform better than IR-CG and PD-CG given a time limit as

shown in the experiments discussed in Chapter 7. The IR-CG method is the projection-free method

that can balance the simplicity in the implementation when only minimising linear objective over

the base domain is required and the quality of convergence rates.

A natural extension of the methods studied in this thesis is to explore the stochastic version of

SL-CG, IR-CG, and PD-CG, which may be helpful in large-scale data fitting problems in which exact

gradient computation should be expensive. Another possible research direction is considering a

non-smooth version of the proposed methods. Additionally, for unbounded base domains, it would

be interesting to provide a theory on designing the coverings {Bt}t≥0 given the base domain X.
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lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,

E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,

https://arxiv.org/pdf/2307.08245.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://vanderbei.princeton.edu/ampl/nlmodels/markowitz/


BIBLIOGRAPHY 124

and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[38] S. J. Wright and B. Recht. Optimization for data analysis. Cambridge University Press, 2022.

ISBN 9781009004282.


	Introduction
	Problem description
	Main challenges
	Literature review
	Regularisation approach
	Sublevel set approach
	Sequential averaging approach.

	Contributions

	Preliminaries
	Mathematical notation
	Assumptions on smoothness, convexity, and implications
	Super-optimality, assumptions on the coerciveness and error bound
	Strong duality and the solvability of the dual problem
	Conditional gradient method

	Extension of the conditional gradient method to unbounded domains
	Approach and method description
	Convergence analysis
	Application to solving convex bilevel problems

	Sublevel linearising conditional gradient method
	Approach and method description
	Convergence analysis

	Iteratively regularised conditional gradient method
	Approach and method description
	Convergence analysis

	Primal-dual conditional gradient method
	Approach and method description
	Duality gap analysis
	Convergence analysis

	Numerical experiments
	Markowitz portfolio optimisation
	Data description
	Algorithms
	Results comparison

	Low-rank matrix completion
	Data description
	Algorithms
	Results comparison

	Linear inverse problem
	Data description
	Algorithms
	Results comparison

	Subroutines implementation
	Linear minimisation over the sliced probability simplex
	Linear minimisation over a nuclear norm ball
	Linear minimisation over a sliced nuclear norm ball
	Projection onto a nuclear norm ball
	Linear minimisation over a sliced box


	Concluding remarks
	Bibliography

