
The University Of Sydney
School of Aerospace, Mechanical

and Mechatronic Engineering

Doctoral Thesis

Radial Basis Function Methods in
Fluid-Structure Interaction

Author:
Adam James Murray

Supervisors:
Dr. Gareth A. Vio

Prof. Benjamin Thornber

2023

Statement of Originality

I certify that to the best of my knowledge, the content of this thesis is my own work.
This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work,
and that all the assistance received in preparing this thesis and sources have been
acknowledged.

Adam James Murray, June 2023

Authorship Attribution Statement

Appendix B of this thesis includes the conference paper Catastrophe Theoretic Mod-
elling of Hysteresis in Transonic Shock Buffet, delivered at the AIAA Scitech Forum,
2020.

I completed the modelling of the buffet hysteresis phenomenon from the 2D buffet
simulations by Nicholas Giannelis. I wrote sections I, II, IV, and V, while Nicholas
Giannelis wrote section III. The paper was presented at the 2020 AIAA SciTech
Forum by Nicholas Giannelis.

No other material in this thesis has been previously published.

Adam James Murray, June 2023

As supervisor for the candidature upon which this thesis is based, I can confirm that
the authorship attribution statements above are correct.

Gareth A. Vio, June 2023

I wish to thank Dr. Gareth Vio for his dedication and guidance over the course of
this work. His calm and thoughtful supervision was a much-needed antidote to the
various internal and external challenges faced during candidature.

I would also like to thank Prof. Ben Thornber, whose guidance and wisdom at some
critical moments always provided great insight, Dr. Markus Flaig, whose help with
the various aspects of the cavity-store simulations was greatly appreciated, and my
colleagues Dr. Nicholas Giannelis and Dr. David Munk, whose support and good
humour over the years has pulled me through some difficult times.

Lastly I wish to thank my wife Carol for her unending patience and support over
these past years. It simply would not have been possible without her.

CONTENTS

List of Figures . v

List of Tables . vii

Notation & Nomenclature . ix

1. Introduction . 1
1.1 Novelty & Contributions . 1
1.2 Background . 2

1.2.1 Mesh Motion . 2
1.2.2 Radial Basis Functions . 4
1.2.3 RBF Finite Difference Methods 5

1.3 Thesis Outline . 6
1.3.1 Multistage Mesh Motion 6
1.3.2 Cavity-Store Simulation 7
1.3.3 Meshless RBF-FD Fluid Solver 7
1.3.4 Meshless RBF-FD FSI Solver 8

1.4 Appendices . 8

2. Multistage Mesh Motion . 9
2.1 Introduction . 9

2.1.1 Mesh Motion . 9
2.2 Single Stage . 16

2.2.1 General Mesh Motion . 16
2.2.2 RBF Mesh Motion . 18
2.2.3 Polynomial Term . 22
2.2.4 Multiscale Mesh Motion 24

2.3 Multistage . 25
2.3.1 Partitioned Domain Hierarchy 26
2.3.2 Elementary Example . 28
2.3.3 General Estimates . 30

2.4 Examples . 35
2.5 Conclusions . 40

3. Cavity-Store Simulation . 41
3.1 Introduction . 41
3.2 Simulation Setup & Tests . 42

ii Contents

3.2.1 FLAMENCO Fluid Solver 42
3.2.2 Modal Structural Solver 42
3.2.3 Bending Beam Test . 44
3.2.4 Turek-Hron Benchmark 47
3.2.5 Cavity Store Setup . 49

3.3 Results . 50
3.3.1 Estimated Savings From Multistage Mesh Motion 52

3.4 Conclusions & Future Work . 53

4. RBF-based Meshless Fluid Solver . 55
4.1 Introduction . 55

4.1.1 Background . 56
4.2 Approximation of Derivatives Using RBFs 58

4.2.1 Standard Method . 58
4.2.2 Lagrange/Variational Method 59
4.2.3 Example . 60
4.2.4 Stencil . 62
4.2.5 Choice of Basis Function 62

4.3 Streamfunction-Vorticity Formulation for Unsteady Flow 64
4.3.1 Vorticity Transport Equation 64
4.3.2 Streamfunction . 66
4.3.3 Poisson Equation . 66
4.3.4 Boundary Conditions . 67
4.3.5 Hyperviscosity Term . 72
4.3.6 Solver Structure . 73
4.3.7 Validation . 76

4.4 Conclusions & Future Work . 83
4.4.1 Domain Corners . 83
4.4.2 Automated Meshing . 83

5. Unified RBF Fluid Flow and FSI . 89
5.1 Introduction . 89

5.1.1 Background . 89
5.2 Formulation . 90

5.2.1 Structural Solver . 91
5.2.2 Moving Wall Boundary Condition 93
5.2.3 Motion of Grid Points . 94
5.2.4 Interpolation of Vorticity 95
5.2.5 Recalculation of RBF-FD Weights 95
5.2.6 Final Solver Structure . 97

5.3 Simulations . 97
5.3.1 Streamwise Motion . 97
5.3.2 Perpendicular Motion . 99
5.3.3 Streamwise & Perpendicular Motion 100
5.3.4 Wake-Induced Vibration 101

Contents iii

5.4 Scalability of Solver . 105
5.5 Conclusions & Future Work . 107

5.5.1 Application to Other Flow Regimes 107
5.5.2 Further Optimisation . 107
5.5.3 Application to Complex Structures 108
5.5.4 Unification of RBF Methods 108

6. Conclusions . 109
6.1 Future Work . 109

6.1.1 Domain Corners in RBF-FD Method 110
6.1.2 Automated Meshing . 110
6.1.3 Optimisations to RBF-FD FSI Solver 110
6.1.4 Application to Complex Structures 110
6.1.5 Unification of RBF Methods 111

6.2 Closing Remarks . 111

Appendix 113

A. RBF-FD FSI Solver . 115
A.1 User Guide . 115
A.2 Example Input . 116
A.3 Source Code . 118

B. AIAA SciTech 2020 Forum Paper . 127

iv Contents

LIST OF FIGURES

1.1 Flows over an oscillating cylinder. 3
1.2 Explicit vs. implicit adjacency. 3

2.1 Various spring analogy techniques for mesh motion. 11
2.2 Deforming a rectangular sponge. 12
2.3 Laplacian-isoparametric method for grid generation. 13
2.4 Quaternion vs. integral method for mesh motion/deformation. . . 16
2.5 Point cloud around cylinder, with detail. 18
2.6 Control point and interpolation point motion. 18
2.7 Motion of volume determined by motion of its boundary. 26
2.8 Example of the acyclic digraph dependency structure. 27
2.9 Basic domain with 4 subdomains. 28
2.10 α and β definitions for the 5 stages in 4-subdomain example. . . . 29
2.11 Acyclic digraph dependency structure for 4-subdomain example. . 29
2.12 Two stages of the multistage method. 31
2.13 Domain with additional subdomains. 32
2.14 Cost of interpolation after splitting a 2D domain. 33
2.15 Detail of final subdomain splits for NACA0012 mesh. 36
2.16 Hierarchy for NACA0012 mesh. 37
2.17 Exaggerated differences in near-field mesh quality. 38
2.18 8 blocks of MDO wing mesh . 39
2.19 Mesh detail of MDO wing. 40

3.1 Comparison of FEA and modal models 44
3.2 Modeshapes for the cantilevered beam. 45
3.3 Pressure distribution over bending beam. 46
3.4 Displacement vs. force at beam tip. 46
3.5 Structured domain mesh for Turek-Hron benchmark problem. . . 47
3.6 Structural nodes and mode for Turek-Hron benchmark. 48
3.7 Velocity magnitude plots for Turek-Hron test case. 48
3.8 Geometry details for cavity and store (not to scale). 49
3.9 18 million node mesh (with detail) for cavity store case. 50
3.10 Structural model (vertically inverted) of store in cavity store case. 51
3.11 Power spectrum for cavity store. 52
3.12 Digraph structure for multiscale mesh motion in cavity store. . . . 53

4.1 Example cardinal basis function 60
4.2 Approximation of derivatives using RBF method. 62

vi List of Figures

4.3 Stencil of ns nearest neighbours centred at the point x. 63
4.4 Thom’s method for meshed solver. 68
4.5 Thom’s method for meshless solver. 70
4.6 Flow diagram for fluid solver with non-moving boundaries. 74
4.7 Freestream test case setup. 77
4.8 Streamlines for freestream test case. 77
4.9 Boundary conditions for 2D pipe flow. 78
4.10 Streamlines for 2D pipe flow. 78
4.11 Horizontal velocity profiles for 2D pipe flow. 79
4.12 Lid-driven cavity setup. 80
4.13 Contours for lid-driven cavity with Re = 1000, 50× 50 grid. . . . 80
4.14 Comparison of LDC velocities to previous results. 81
4.15 Setup for square cylinder in a freestream flow. 82
4.16 Streamfunction contours of flow past a square cylinder. 84
4.17 Vorticity contours of flow past a square cylinder 85
4.18 Vorticity contours of flow past a square cylinder for varying Reynolds 86
4.19 Grid convergence study of Strouhal and average amplitude 87
4.20 Strouhal number variation with Reynolds number 88

5.1 Domain overlap between meshed and meshless solvers 90
5.2 Benchmark for structural solver with detail at t = 95. 93
5.3 Example of Dirichlet conditions for a moving square. 95
5.4 Method of motion. 96
5.5 Flow diagram for solver loop with FSI enabled. 98
5.6 Domain with boundary conditions and spring configuration. . . . 99
5.7 Response of moving square constrained to x motion. 99
5.8 Power spectrums for x and y displacements. 100
5.9 Response of moving square constrained to y motion. 100
5.10 Power spectrums for x and y displacements coupled case. 101
5.11 Vorticity contours and mesh displacement. 101
5.12 Computational domain for wake-induced vibration case. 102
5.13 Structured vs. unstructured domain comparison. 103
5.14 Vortex shedding process from downstream cylinder. 104
5.15 Wake cylinder response. 105
5.16 Scaling behaviour of solver for square flow case. 106

LIST OF TABLES

2.1 Surface-to-volume cost ratios of multistage vs. single stage. 36
2.2 Details of splitting of first 40 layers of MDO mesh from wing surface. 38

3.1 Flow conditions for cavity store case. 49

viii List of Tables

NOTATION & NOMENCLATURE

CFD
Computational Fluid Dynamics

CSD
Computational Structural Dynamics

FEA
Finite Element Analysis

FSI
Fluid-Structure Interface

FSC
Fluid-Structure Coupling

FtS
Fluid-to-Structure

IIM
Inverse Isoparametric Mapping

PHS
Polyharmonic Spline

StF
Structure-to-Fluid

RBF
Radial Basis Function(s)

RBF-FD
Radial Basis Function Finite Difference

VLM
Vortex Lattice Method

c
Control node in RBF interpolation

v
Volume node in RBF interpolation

x Notation & Nomenclature

nc
Number of control nodes

nv
Number of volume nodes

t0
Initial time, taken to be before any mesh deformation has occured, i.e.
during the preprocessing phase

st, at
Position of structural/aerodynamic nodes at time t

d
Normalised distance, a measure of the difference between two point clouds

crad
Coefficient of radius, a measure of the RBF radius required for a wing

deg(p)
Degree of the polynomial p

|=
End of proof

Fi
General function Rn → R

pi

Polynomial Rn → R

q
Polynomial Rn → R of restricted degree, or mesh quality measure (orthog-
onal)

γij
Polynomial coefficient

αij
Polynomial coefficient

H
RBF coupling matrix

ψ
Radially symmetric basis function (RBF)

Acc
Control-Control coupling matrix

Notation & Nomenclature xi

Acv
Control-Volume coupling matrix

Abb
Base-Base coupling matrix (Kedward’s method)

Abr
Base-Refinement coupling matrix (Kedward’s method)

Arr
Refinement-Refinement coupling matrix (Kedward’s method)

Nb, Nv

Number of base/volume nodes (Kedward’s method)

α
Proportion of volume nodes captured within the radii of the base set of
control nodes

Si

Control node vector with additional zeros for polynomial solution

bi

Control node coefficients augmented with polynomial coefficients

P
Sub-block matrix of Acc

M
Sub-block matrix of Acc

I
Identity matrix, or integral operator on radial basis functions

C1− C6
Wendland-type basis functions

V
Volume for a control surface to act upon

∂V
Boundary of V

C
Control surface, or cost of multistage motion algorithm

S
Collection of vertices of graph

si, si,j
Stage of multistage mesh motion algorithm (vertex in graph)

xii Notation & Nomenclature

(αi, βi, γi)
Tuple describing single stage of a multistage mesh motion algorithm

M,C,K
Mass, damping, stiffness matrices

Ui
Modeshape of structural system

δij
Kronecker delta

Φ
Modal matrix

ηi
Modal amplitudes

L
General linear operator

ψi
Cardinal basis function

wi
Linear operator applied to cardinal basis function

D
Differentiation matrix

rs
Support radius for RBF-FD method

S
Stencil

ns
Number of nodes in stencil for RBF-FD method

v0
Freestream velocity

ν
Kinematic viscosity

ρ
Density

ω
Vorticity

Notation & Nomenclature xiii

ψ
Streamfunction

u, v
Components of 2D streamfunction

h
Perpendicular distance from boundary/wall

vt, vn
Tangential/normal velocity to boundary/wall

∆
Laplacian operator, or general difference symbol

APoisson

Differentiation matrix for Poisson equation

Ax, Ay
Partial differentiation matrices in x and y directions

ki
Coefficients in Runge-Kutta method

St
Strouhal number

CD
Drag coefficient

CL
Lift coefficient

β
Blockage ratio for object in flow domain

ζ
Damping ratio

ωn
Natural frequency

xiv Notation & Nomenclature

1. INTRODUCTION

This work is broadly split into two areas of focus within the application of radial
basis function (RBF) methods to fluid-structure interaction problems:

1. A multistage method to augment existing mesh motion methods for the
problem of smoothly interpolating boundary movement to surrounding dis-
cretised domains.

2. A meshless, partitioned fluid-structure solver using RBF finite difference
(RBF-FD) approximations coupled with structural dynamics via RBFmesh
motion methods.

1.1 Novelty & Contributions

The primary novel contributions of this thesis are:

1. A multistage mesh motion framework for further reducing costs of a broad
range of existing mesh motion algorithms;

2. Adaptation of traditional mesh-based Thom/Jensen style boundary condi-
tions to the meshless case, for the streamline-vorticity formulation of the
incompressible Navier Stokes equations;

3. A method of coupling structural and fluid dynamics via moving boundary
conditions for the streamline-vorticity formulation;

4. Development of a partitioned FSI solver based on the RBF-FD method,
able to handle arbitrary body motions.

2 1. INTRODUCTION

1.2 Background

1.2.1 Mesh Motion

As an introductory note on terminology, it should be observed that while the areas
of study in this work are often referred to as ‘mesh motion’, the RBF methods
presented here require no adjacency information on nodes, hence are inherently
meshless. However, as the work is equally applicable to traditional mesh-based
methods, and in keeping with most of the existing of literature, we will use the
term mesh motion.

In numerical simulation of dynamical systems, the computational domain itself
is often also required to be dynamic to account for changes in the physical sys-
tem being modelled. Most methods of numerical simulation require the domain
of interest to be discretised in some fashion1 - as physical quantities can only
be calculated at some discrete set of points within the (physically) continuous
domain. Once the domain has been discretised, there are various methods to
dynamically treat these discrete points with a changing domain of interest.

In the realm of the simulation of fluid flow, and fluid-structure interactions, we
are most often interested in how to change this set of discretised points in re-
sponse to a boundary that is moving. In some cases, it may be possible to model
the changes of a boundary through changes in the flow itself - e.g. a vertically
oscillating cylinder can be described by changing the angle of the incoming flow,
rather than moving the cylinder itself, as shown in fig. 1.1a and fig. 1.1b. Simi-
larly, a horizontally oscillating cylinder can be described by increasing/decreasing
the flow speed. However in cases where flow boundaries are physical, and are
in motion relative to each other (or themselves), we must deform the points of
the computational domain to account for this motion. Imagine now that the
cylinder is oscillating vertically between a horizontal walls as shown in fig. 1.1c
- the distance between the cylinder and the walls is not something that can be
described purely by the properties of the flow itself. In these cases, methods
that transfer motions of domain boundaries to the discretised flow domain are
of great importance.

In these cases where the motion of boundaries cannot be accounted for by mod-
ifying flow properties, we must deform the discretised points in the domain in a
sensible way, one that maintains any internal coherence. In the case of a classical
mesh, either structured or unstructured, this coherence is explicit - the adjacency
of points is described by the edges in the mesh that make up the cells, and the
local structure of the points is straightforward, as in fig. 1.2a. In cases of more
general point clouds, i.e. those that don’t necessarily have any explicit adjacency

1Not all numerical methods require discretisation of the domain, at least not in space.
The nature of digital computation, however, requires discretisation somewhere in the solution
process.

1.2. BACKGROUND 3

(a) (b) (c)

Fig. 1.1: Flows over an oscillating cylinder. Here the upwards motion of the cylinder
in fig. 1.1a can be described by modifying the angle of the incoming flow,
and leaving the cylinder stationary, as in fig. 1.1b. However the addition of
walls means that the cylinder now moves relative to another fixed boundary,
hence the upwards motion of the cylinder cannot be effectively described
by modifying the properties of the flow alone, and some form of domain
deformation is required.

information, as in fig. 1.2b, the maintaining of this coherence is somewhat more
difficult to measure, hence the mathematical underpinnings the methods of any
point motion must be carefully considered and tested. Often methods that are
applicable in the latter case are equally applicable to the former, while methods
requiring explicit structural information are often more specific in the use-cases.

(a) (b)

Fig. 1.2: Explicit vs. implicit adjacency. In fig. 1.2a, a classical mesh is shown, where
m1 is next to m2 in an explicit sense - they are connected via the mesh edge,
while m1 is not next to m3. In fig. 1.2b, n1 is next to n2 in an implicit
sense - they are close to each other, while n1 is far from n3, but maintaining
and quantifying these relationships can be difficult, as distances change when
deforming the mesh.

In this work we present methods in RBF mesh motion (see note on the term
‘mesh motion’ at the beginning of this section), which is a class of techniques
using the mathematical framework of radial basis functions, and is applicable
to any point cloud - either the points contained within a classical mesh, or the

4 1. INTRODUCTION

more general case. Specifically, we present a method by which to improve their
efficiency.

A primary limiting factor in the application of numerical methods to physical
problems is computational cost. With Moore’s Law in decline, the optimisation
and simplification of existing algorithms, as well as the development of faster,
more efficient methods is of significant interest in engineering and scientific com-
puting.

During the early development of RBF-based mesh motion algorithms, much at-
tention was given to their computational cost, which at first was prohibitive for
all but the simplest of cases. In the intervening years, numerous solutions have
been developed to improve the scalability of the methods, unlocking the ability
to simulate more and more complex problems. As such, the broad applicability
of the method of cost reduction presented here will hopefully provide a further
boost to a great variety of existing methods.

A more detailed discussion on mesh motion, its various methods, their history,
and the current state of the art can be found in section 2.1.1.

1.2.2 Radial Basis Functions

Radial basis functions are a powerful framework for interpolation and approxi-
mation. In the context of mesh motion, RBFs allow displacements at a boundary
to be interpolated to the rest of the domain.

A radial basis function is any function Rn → R that is radially symmetric, that
is, its value only depends on the distance of its input from some fixed point. In
a manner similar to a Taylor series that expresses a function in terms of a sum
of its derivatives, or a Fourier series that expresses a function in terms of simple
trigonometric functions, a function can be expressed via a weighted sum of radial
basis functions:

f(x) ≈
n∑
i=1

αiϕi(x). (1.1)

Here ψi represents a set of n basis functions, with their fixed points at n known
values of f , while αi represents their corresponding weights. The weights can
be determined by using the known values of f and requiring that these values
be reconstructed exactly, resulting in a simple linear system that can be solved.
Once the weights are determined, f can be approximated at any x, by using the
representation in eq. (1.1).

1.2. BACKGROUND 5

In the mesh motion case, we often want to approximate a function describing
a smooth displacement field. In this case we have a number of known displace-
ments, usually at the boundaries, which can be used to obtain the weights in
eq. (1.1). Once obtained, those weights can be used to determine the displace-
ments at the remaining points in the domain, and the mesh can be deformed
appropriately.

For a more detailed description of how RBFs are used in mesh motion, see
section 2.2.2.

1.2.3 RBF Finite Difference Methods (RBF-FD)

The importance of finite difference methods in numerical analysis and simulation
cannot be understated. The give the ability to transform general continuous,
non-linear differential equations into a discrete linear system that can be solved
using standard techniques in linear algebra. One of the simplest forms of a finite
difference approximation can be seen in the definition of a derivative:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

If we remove the limit, this gives a finite difference expression that approximates
f ′ at x0 in terms of f itself:

f ′(x0) ≈
f(x0 + h)− f(x0)

h
. (1.2)

Note that we must know the value of f at both x0 and x0+h (note the similarity
of this requirement to the discussion of RBF approximation in section 1.2.2 when
calculating the weights). In practice, it is more common to know the value of f
at a discrete set of points x0, x1, ... that are a distance h apart, and eq. (1.2) is
expressed as

f ′(xn) ≈
f(xn+1)− f(xn)

h
.

However the difficulty in this traditional approach is that we introduce a hidden
adjacency requirement - given a point xn, we now need to know which point is
xn+1. In the 1D case, this is rather unconcerning - we can simply determine xn+1

by moving to the right along the numberline. But in a 2D domain, which may
not necessarily have this adjacency information, it is not clear how xn+1 may be
determined from the point set itself.

RBF finite differences alleviate this problem, by having the approximation rely
purely on distances between points, rather than any adjacency information. From

6 1. INTRODUCTION

the basic RBF approximation expression of eq. (1.1), we can take the derivative
of each side to obtain

f ′(x) ≈
n∑
i=1

αiϕ
′
i(x).

Hence we now have an approximation of f ′ expressed in terms of the derivatives
of radial basis functions, which we often have an explicit expression for, and can
calculate ahead of time.

Further background on the RBF-FD method is given in section 4.1.1, with tech-
nical details and more examples given in section 4.2.

In the current work, we develop a fluid-structure coupling method for an RBF-
FD based fluid flow solver to enable its use in the simulation of FSI problems.
The application of RBF-FD methods to FSI problems appears to be limited in
the current literature, but due to the strengths of the RBF-FD method, the
development of such solvers is desirable, as it provides a simple framework for
meshless simulation of FSI problems, with one of the primary advantages of
RBF-FD methods being their simplicity in implementation [1].

Until now, most meshless FSI solvers have focused on particle based methods.
Approaches to moving boundaries in particle methods are often tightly coupled,
often making the FSI aspect complex from an implementation point of view
[2]. Section 4.1.1 provides an overview of the history and current state of mesh-
less solvers and FSI, while section 5.1.1. In this work we demonstrate that the
RBF-FD method can be coupled with structural dynamics to develop a novel,
partitioned FSI solver.

1.3 Thesis Outline

This thesis comprises four main chapters. To keep the chapters as self-contained
as possible, each contains its own detailed introduction and background.

1.3.1 Multistage Mesh Motion (Chapter 2)

This chapter develops a framework for reducing computational costs when inter-
polating the motion of a fluid-structure interface into a large fluid domain point
cloud. This framework can be applied to a number of existing methods. The
framework involves partitioning of the point cloud of the domain into a hierar-
chy of subdomains and their boundaries, a structure often inherited from the
subdomains or blocks of the chosen CFD solver. In this way, an interpolation

1.3. THESIS OUTLINE 7

can be applied iteratively through the hierarchy, treating each stage as a new in-
terpolation problem, allowing existing methods to be applied at each individual
stage. This results in a modest but non-negligible reduction in the computational
cost (given some mild restrictions) of large scale matrix multiplications when up-
dating the volume mesh, both as constant proportional reduction, as well as a
reduction in asymptotic complexity, leading to the best savings in dense domains
with large deformations and complex interfaces. Examples are given using the
existing mesh motion methods of Rendall & Allen [3], and Kedward [4], and some
more generally applicable estimates on the maximal reductions are developed for
2D and 3D cases.

1.3.2 Cavity-Store Simulation (Chapter 3)

The multistage point motion of the previous chapter is applied to the simulation
of a real-world FSI problem of a vibrating store in an aircraft cavity. The method
is implemented in the University of Sydney’s in-house CFD solver FLAMENCO
coupled with a modal structural solver. The underlying interpolation used is
that of Kedward [4]. The simulation is a recreation of wind tunnel experiments
conducted at Sandia National Labs, and was funded by the Australian Defence
Science and Technology Group (DSTG). The simulation matched well with the
experiments, both in the static (non-FSI) case and the coupled (FSI) cases, with
the coupled case predicting additional higher order modes seen in the experi-
mental data. The results show that the coupling of fluid and structural solvers is
important for the simulation of high fidelity vibrational behaviours. Estimates of
the cost of the multistage method over the standard mesh motion show a saving
of approximately 64.57% on the volume update step.

1.3.3 Meshless RBF-FD Fluid Solver (Chapter 4)

An RBF-FD solver is developed in MATLAB to simulate unsteady, incompress-
ible, viscous flow using the streamfunction-vorticity formulation of the Navier-
Stokes equations, using methods adapted from Flyer et al. [5]. A somewhat novel
approach to Dirichlet boundary conditions for vorticity is presented, relying only
on boundary normals and using the formulas of Thom and Jensen from tradi-
tional (meshed) finite difference methods. This reduces complexity compared to
existing methods, e.g. where additional ghost cells are used outside the domain,
or structure/adjacency information is required in the near-wall point cloud. A
number of test cases are presented to validate the simulation against basic the-
ory as well as cases from the literature, including a lid-driven cavity and square
cylinder.

8 1. INTRODUCTION

1.3.4 Meshless RBF-FD FSI Solver (Chapter 5)

The meshless RBF-FD fluid solver of the previous chapter is augmented with
moving boundaries and structural dynamics to produce a partitioned FSI solver.
The solver uses dynamic Dirichlet boundary conditions on the streamfunction
coupled with RBF point motion to trace moving boundaries through the domain.
Expensive recalculation of RBF-FD coefficients at each time step is required,
however with the naturally parallel nature of these computations, the simulation
is shown to be able to be reasonably run on modest desktop hardware for domains
of sizes comparable to many static cases in the current literature. The square
cylinder case is recreated with motion enabled.

1.4 Appendices

In addition to the main chapters, this thesis contains two appendices.

The first (appendix A) contains a brief user guide and some sample inputs for
the RBF-FD FSI solver developed in chapters 4 and 5, as well as a full listing of
the source code2.

The second (appendix B) contains a conference paper, Catastrophe Theoretic
Modelling of Hysteresis in Transonic Shock Buffet, delivered at SciTech2020 [6],
wherein RBF neural nets are used to predict the onset and offset of buffet be-
haviour in aircraft wings. It is provided merely for interest, as it is unrelated to
the current work, but highlights the use of RBFs in an alternate context.

2Also available at https://gitlab.com/ajmurra/rbf-fd-fsi

https://gitlab.com/ajmurra/rbf-fd-fsi

2. MULTISTAGE MESH MOTION

2.1 Introduction

In this chapter, we present a framework to provide savings when applying mesh
motion methods to a moving point mesh, coined Multistage Mesh Motion1. The
chapter is structured as follows:

Section 2.1 gives some background on the mesh motion problem with previous
and current solutions.

Section 2.2 introduces a general description of interpolation-based mesh motion,
and describes the RBF method of Rendall and Allen [3], as well as the work
of Kedward [4], which was significant in removing difficult scalability barriers
traditionally associated with RBF methods.

Section 2.3 gives a framework for applying the methods of section 2.2 in a re-
cursive manner by subdividing domains, which is then shown to have further
runtime cost savings, especially for dense meshes and large motions. Some esti-
mates for approximate cost reductions are given, which also provide a guide for
subdivisioning technique. A simple toy example to inform the estimates is given.

Section 2.4 gives two more realistic examples, a 2D aerofoil mesh, and a 3D wing
mesh, described in [4], and uses them to benchmark the multistage approach
against the single stage. Resulting mesh quality is investigated, and some addi-
tional caveats are discussed.

2.1.1 Mesh Motion

In many areas of science and engineering, the simulations of dynamic domains
and/or boundaries are of great importance. Dynamic problems in fluids, struc-
tures, and their combination (fluid-structure interaction), are present in almost
every major field of engineering, and broader dynamic PDE problems perme-
ate the physical sciences near completely. As such, the study of techniques for
simulating dynamic domains has received much attention in recent decades.

1An early description of the Multistage Mesh Motion method was presented at SciTech2019
[7], though the method has progressed significantly since.

10 2. MULTISTAGE MESH MOTION

Various approaches have looked to leverage mesh generation techniques, with the
view to regenerate new meshes as the boundaries moved etc., however in appli-
cations where the regeneration must happen frequently (e.g. at every timestep of
an FSI problem), it was recognised that the cost, and difficulty of automation, of
mesh regeneration was often prohibitive. As such mesh deformation techniques
were found to be more promising in these dynamic cases [8].

Although generally cheaper than mesh generation, the issue of computational ef-
ficiency is still a priority in mesh deformation techniques, and has been a major
driving factor in the development of such methods [9]. Other significant chal-
lenges in mesh deformation techniques have been related to robustness - how
the quality of the mesh is maintained under various deformation regimes ranging
from basic rigid-body motions, to highly complex non-linear deformations [9].

In much of the existing literature, mesh deformation techniques are separated
into two types - physical analogy, and interpolation. Physical analogy methods
rely on interpreting the domain dynamics as some kind of physical phenomenon,
which is then able to be solved by techniques specific to the approach (numeri-
cal or otherwise), such as regarding the entire domain as a soft-body structure.
Interpolation methods apply displacements across the domain by approximating
them from known displacements, e.g. taking displacement inversely proportional
to distance. The line between the approaches is often not particularly distinct,
both at a conceptual level, where the specific physical analogy used can be some-
what removed from the physical presentation of the domain, and at a practical
level, since both can often be reduced to similar computational steps (e.g. solving
a linear system).

Physical Analogy Methods

An enduring and popular technique firmly within the physical analogy category
is that of linear springs, originally developed by Batina [10]. In this method,
mesh edges are taken to be linear springs with stiffness inversely proportional to
edge length, and connected at the corner points of the mesh elements as shown in
fig. 2.1a. Deformation at a boundary corresponds to initial displacement of the
springs, and the entire mesh can be deformed by solving the connected system.
The conceptual elegance of this approach is quite appealing, however it comes
with two major issues. Firstly scalability, since the solution of the connected sys-
tem will generally have cubic complexity in the number of edges, which becomes
quickly intractable. Secondly, robustness or mesh quality, since the solution in
3D and higher dimensions can produce overlapping or inverted elements. Much
work has been done to overcome these limitations, particularly the issues around
mesh quality, including: adding torsional springs between elements themselves
[11]; a semi-torsional method in which the original linear springs are used but
with a different method of computing the stiffness [12] (extended to 3D in [13]);

2.1. INTRODUCTION 11

a ball-vertex method (fig. 2.1b) where additional springs are added between each
vertex and the opposite face [14]; an ortho-semi-torsional approach where addi-
tional springs are added temporarily to inform the stiffness calculation on the
original springs [15]; a cell-centre method (fig. 2.1c) where additional springs are
added from the centre of each element to its vertices [16].

(a) Basic spring analogy - each node is
connected to its neighbours as de-
fined by the mesh structure.

(b) Ball-vertex method - each vertex of
the cell is connected to an opposing
face.

(c) Cell-center method - within each
cell, a virtual node is added with
springs connected to each vertex.

(d) Mesh-free method - each vertex is
connected to all others within a de-
fined radius.

Fig. 2.1: Various spring analogy techniques for mesh motion.

A common theme in modern spring analogy methods is augmenting the original
method via additional springs, adjusting the stiffness definition in the original
springs, or a combination of the two. Although the significant work done since
the original paper has addressed many of the quality and scalability issues of the
approach, they often require connectivity information, or are only pertinent to
a particular type of mesh or domain discretisation (tets/quads, structured/un-
structured etc.), and hence not all methods are universally applicable. More
recently a spring analogy method has been applied for adaptive meshless domain
refinement by Lashkariani and Firoozjaee [17] wherein they add springs between
each element and its neighbours within some predefined radius (see fig. 2.1d), and
calculate stiffnesses depending on a test solution. Modifications of this approach
may prove useful for motion in both meshed and meshless cases.

Another (possibly even more elemental, at least conceptually) approach is to
consider the domain as an elastic material, with potentially varying elasticity

12 2. MULTISTAGE MESH MOTION

properties throughout. Again using appropriate forcing and/or displacement
terms, the elasticity equations can be discretised (usually using an FEA model)
and solved to determine the overall displacements. A physical demonstration
of the concept can be seen in fig. 2.2, where a dish sponge is marked with a
cartesian grid and deformed in different ways. These approaches have the ad-
vantage of being able to leverage the massive body of knowledge surrounding
structural FEA methods. The methods have been in use in various forms since
the early 1990s [18], with a large focus of work since then concerned with the
selection of the material properties E (modulus of elasticity) and ν (Poisson’s ra-
tio) appearing in the elasticity equations. One approach is to choose a physically
valid constant ν and set E inversely proportional to wall distance, or element
volume [19]. An alternate approach includes holding E constant and choosing ν
as a function of the aspect ratio of the cell [20]. Other authors have proposed
constrained optimisation be performed on either E or ν, though this often re-
sults in higher computational costs [21]. One significant issue is that of mesh
distortion accumulation introduced by the history and path dependent nature of
solving the FEA problem using only information at the latest timesteps. This
has been studied and addressed more recently by Takizawa [22] via the so-called
back-cycle-based mesh moving (BCBMM) method.

(a) Undeformed sponge
with cartesian grid
marked.

(b) Deforming the top
and bottom bound-
aries of the sponge.
Note that the internal
grid deforms accord-
ingly.

(c) Even for more com-
plex deformations of
the sponge bound-
aries, the internal
grid is still relatively
smooth and coherent.

Fig. 2.2: Deforming a rectangular sponge to demonstrate mesh deformation through
an elastic material. A standard dish sponge is marked with a cartesian grid,
then deformed at the boundaries. Deformations at the sponge boundaries
are carried into the internal grid via the material properties of the sponge.
Treating a computational domain as an elastic material allows mesh defor-
mation techniques to leverage well-studied structural simulation methods.

A somewhat less studied physical analogy is the use of Laplacian smoothing, in
which a modified Laplacian ∇(γp∇) is used, where γ is a diffusion coefficient
(compare this to the hyperviscosity damping term of section 4.3.5). Laplacian
smoothing was generalised for mesh applications in a paper by Herrmann [23],
who originally used it for grid generation rather than mesh motion (see fig. 2.3),
but it has now been applied in various geometric smoothing applications over a

2.1. INTRODUCTION 13

long period of time. Roughly speaking, solutions of this equation seek to minimise
the distance of a point from the average position of its neighbours. Much of the
study into this method with regard to mesh motion concerns the selection of γ,
though the method appears to have seen little use due to practical limitations
with the dissipation of higher order modes of deformation, i.e. beyond rigid body
motions [9].

(a) (b)

Fig. 2.3: Laplacian-isoparametric method for grid generation, from [23]. In fig. 2.3a, a
basic Laplacian method is applied to generate an internal grid with points on
the boundary specified. Here we see that the cells close to the boundary are
poorly formed, and are heavily skewed. By generalising the equations and
introducing an additional parameter, a more desirable result can be seen in
fig. 2.3b, where the cells have a much more uniform shape. This particular
instance of the general method is referred to as the isoparametric scheme.
Such grid generation techniques can be applied to mesh motion by regener-
ating the mesh at each time step.

Interpolation Methods

The other type of mesh motion methods are interpolation methods. One of
the main advantages of interpolation methods is that they are broadly appli-
cable across different domain discretisation strategies, as they generally do not
rely on any explicit connectivity information between points in the domain. In
addition, interpolation strategies are also often computationally cheaper than
physical analogy methods, making them very appealing for many applications.
However, the lack of connectivity information means that it can be difficult to
enforce direct constraints on mesh quality, and as such the methods often require
some level of case-by-case parameter tuning.

An early interpolation method was transfinite interpolation (TFI), originally
applied to geometric problems in computer aided design, and first introduced in
relation to mesh generation by Gordon and Hall [24]. The method constructs
functions on a domain that match a given function on a boundary. In this
way, interpolation of boundary displacements can be carried into the interior of
the domain, however as no restraints are placed on element integrity, the original
method has problems with mesh quality, especially near boundaries and for large
deformations. The method is generally only applicable to structured meshes,

14 2. MULTISTAGE MESH MOTION

and more recently TFI has been applied in combination with other interpolation
methods to alleviate some of the mesh quality difficulties while leveraging the
lower costs [25, 26]. The work by Ding [25] is of particular interest with regard
to the current work, as it is a specific case that can be reinterpreted into the
more general multistage mesh motion framework, though the use of TFI limits
it to structured Cartesian block meshes.

A number of interpolation methods calculate the displacement at an interior
point as some function of distance to the boundary. One such method, known
as inverse distance weighting (IDW), was developed by Barier and Keller [27],
based on previous work in the geosciences [28]. The method sets the displacement
at each interior domain node as a weighted average of displacements at bound-
ary control nodes using a given weighting function (often an inverse squared
distance). In this way, the mesh is more rigid at the boundary and more flexi-
ble further away. Another boundary distance method (referred to as algebraic
damping in [9]) was introduced by Zhao and Forhad [29]. In this method each
interior node is assigned the closest boundary node using a modified distance
function, based on exponential damping functions, which is bound between 1
at the boundary and 0 far from the boundary. This again gives rigid mesh be-
haviour close to boundaries, becoming more flexible towards the interior of the
mesh. Skewing and overlap is addressed by using what amounts to a Laplacian
smoothing method, where node positions are averaged to that of their neigh-
bours [23]. Optimisations to distance based methods were proposed by Luke
[30], whereby using a specific form of the distance function similar to those used
in n-body problems, tree-code algorithms could be applied to significantly reduce
the costs of the method to O(n log n) or even O(n).

An approach using Delaunay triangulation was developed by Liu et al. [31] in
which an intermediate mesh can be constructed from the original boundaries and
used to interpolate boundary displacements to interior nodes. In this method, a
Delaunay triangulation of the boundary nodes is constructed, with each interior
node being assigned to a specific element in the triangulation, and its triangu-
lar coordinates calculated. The boundaries are then moved, and the interior
points are moved in relation to their containing Delaunay element. The method
was shown to have reasonable robustness characteristics, since the interior mesh
points will not overlap as long as the triangulation remains intact. In cases where
the triangulation becomes degenerate, the stage can be divided into smaller and
smaller motions, and the triangulation regenerated at each step, to avoid the de-
generacy. This splitting and regeneration has the obvious downside of additional
runtime costs, as well as requiring some care to apply the splitting part of the
algorithm efficiently.

The final and perhaps most used interpolation method in recent years is that of
radial basis functions. RBFs have been an important construct for generalising
interpolation schemes since they were first developed in the 1970s, and were first
applied to the mesh motion problem in 2007 by de Boer and van der Schoot

2.1. INTRODUCTION 15

[32]. The approach was extended by Rendall and Allen [3] to unify mesh motion
with the reverse problem of fluid-to-structure interpolation. One of the main
drawbacks of RBFs in the original method was the prohibitive cost of calculating
the matrix connecting the surface to the volume, which included the requirement
to invert an ns×ns matrix where ns was the number of surface points. Not only
was this matrix often large in many cases, but also poorly conditioned due to
the scales of node separation vs the global surface geometry. This meant that
the interpolations in complex cases could suffer from numerical artifacting. This
problem was addressed by a number of works using reduced subsets of surface
nodes and localised implementations [33, 34] with the work of Kedward, Allen,
and Rendall [4] providing a highly scalable approach where the radii on the
surface mesh were modified to give the offending matrix structural properties so
that solving the system was reduced to a small inversion plus a back substitution.
As further cost savings to RBF methods are the focus of the current work, the
methods are described in more detail in section 2.2.

Meta Methods

A number of other developments in mesh motion are not necessarily mechanisms
for computing mesh deformations directly, rather they use the physical analogy
and interpolation methods in a novel way to improve performance or robustness,
which here we will refer to as meta methods. As the current work is essentially
a meta method - a general multistage scheme that could feasibly be applied to
a good proportion of the mesh motion methods discussed here - we distinguish
these techniques from the direct methods.

In a 2002 NASA technical note [35], Samareh noted the lack of use of bound-
ary rotation information in existing deformation schemes. To address this, he
proposed the addition of quaternions that could trace boundary rotation in addi-
tion to displacement. These quaternions could be propagated in a similar fashion
to displacements, and hence either interpolated (e.g. TFI) or physical analogy
methods (e.g. springs) could be used to apply the rotations. The cost of prop-
agating the quaternions is of course dependent on the chosen method. Further
work on the calculation of the quaternions was done by Maruyama [36], where
a Laplacian smoothing was used to propagate both translation and rotational
information into the domain. It is still not common to use boundary rotations
in mesh motion schemes, however for high fidelity cases where mesh quality is
of crucial importance, it may improve the results of various other methods us-
ing translation alone. An example of complex mesh deformation is given by
Maruyama [36], in which the mesh around a standard NACA23012 aerofoil is
mapped to a complex surface representing ice-accretion at the leading edge. In
the example, the quaternion method is seen to be superior in maintaining or-
thogonality near the boundary compared to translation only methods, as seen
in fig. 2.4 when compared to an integral method. Mesh orthogonality is critical

16 2. MULTISTAGE MESH MOTION

for the accurate calculation of near-wall effects in CFD, hence any method that
provides advantage in this area is of great interest.

Fig. 2.4: Quaternion vs. integral method for mesh motion/deformation taken from
[36]. This shows global and detail of ice-accretion on the leading edge of a
NACA23012 aerofoil. Note that the quaternion method is superior in main-
taining orthogonality in the near-boundary cells, with the integral method
even producing an overlapping mesh (i.e. inverted cells) in one portion of the
surface.

To maintain mesh quality in detailed viscous boundary meshes, where aspect
ratios may be on the order of 106, McDaniel and Morton [37] proposed a two
phased approach where the boundary layer mesh was deformed rigidly with the
moving surface, and the displacements carried to the outer regions using any
chosen mesh motion scheme. In their study, they investigated the use of the
Delaunay triangulation method of Liu [31], as well as a custom hybrid of works
by Melville [38] and Allen [39], although the method could reasonably be applied
using a number of other mesh motion schemes.

2.2 Single Stage

In this section we give a brief, general example of mesh motion, and introduce
the RBF mesh motion schemes that we will use for the remainder of the thesis.

2.2.1 General Mesh Motion

In their most general form, point-cloud based mesh motion interpolation schemes
operate on two subsets of the domain - a set of points with known displacements
prescribed by the simulation (e.g. static boundary points or points on a struc-
tural model), and a set of points at which the displacement is to be approximated.
Specific mesh motion algorithms may call for further subdivisions of these sets,
but for clarity when describing the method, we work in the more general frame-
work.

We refer to the points with prescribed displacement as the control points, de-
noted xi, and the points at which the displacement is to be calculated as the

2.2. SINGLE STAGE 17

interpolation points, denoted yi. A single stage of the mesh motion algorithm
consists of

1. calculating or gathering the displacements ∆xi at the control points

2. moving the control points, i.e. xi → xi +∆xi,

3. calculating the displacements ∆yi at the interpolation points,

4. moving the interpolated points, i.e. yi → yi +∆yi.

In practice, steps 2 and 4 are often trivial, and step 1 is usually the result of a
structural solver. Each step may have a number of sub-steps, most notably the
calculation of the displacements ∆yi in step 3. The calculation of ∆yi is usually
the main concern of any given interpolation method, and will be the focus here.

Interpolation schemes operate on the known quantities xi, yi and ∆xi to produce
a function (implicit or explicit) f : Rn → Rn, usually with the restriction f(xi) =
∆xi, that generates interpolated displacements at each yi, i.e. f(yi) = ∆yi.
Clearly f is not unique without additional restrictions, which will vary depending
on the interpolation scheme used and the problem at hand.

As an example, consider the case of an oscillating 2D cylinder with a surrounding
mesh shown in fig. 2.5. Assume that the boundary points of the cylinder are being
moved as a single rigid body in a predictable sinusoidal motion, and that the
points at the exterior boundary of the mesh are to be fixed in space. In this case,
the boundary points of the cylinder, as well as those at the exterior boundary
of the mesh, are the control points xi, as we can calculate their displacements
directly. The remaining points are the interpolation points yi at which we wish
to calculate the corresponding displacement, given the motion of the control
points. The exact requirements of this interpolation will usually be problem
specific, but for the case of this example, assume that we have the intuitive (but
surprisingly illusive and at times ill-defined) idea that the overall structure of the
point cloud should not change in any significant way - points above the cylinder
should remain above it, points fore and aft should stay that way etc.

We begin by moving each point xi of the cylinder by a corresponding ∆xi, as
per fig. 2.6a. That is, we set xi → xi+∆xi. After this is complete, we move the
internal domain nodes yi in a corresponding manner, as shown in fig. 2.6b. As
we can see, the domain nodes have maintained an intuitively ‘similar’ structure
to the original domain.

18 2. MULTISTAGE MESH MOTION

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2.5: Point cloud around cylinder, with detail. Control points (xi) are highlighted
blue, interpolation points (yi) are in black.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

(a) Movement of cylinder.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

(b) Movement of domain nodes.

Fig. 2.6: Control point and interpolation point motion.

2.2.2 RBF Mesh Motion (de Boer et al. [40], Rendall & Allen [3])

General RBF mesh motion was first described by de Boer et al. in [40], with
significant work on the topic done by Rendall and Allen [3], who extended the
method to include fluid-to-structure interpolation with no additional complexity.
It should be noted that as many splining methods can be framed in terms of
RBFs, there does exist a number of works that can be considered much earlier
examples of RBF mesh motion, e.g. Hounjet and Meijer [41] or Spekreijse et al.
[42].

Here we follow the detailed derivation of [3], which includes some additional use
of the matrix structure to aid in solving the resulting system.

The problem is to find a function F : R3 → R3 that maps displacements at the

2.2. SINGLE STAGE 19

control nodes to displacements at the volume nodes. In this case, we assume
that each direction can be handled individually, and that it can be represented
as a sum of radial basis functions, i.e.

F (x) =

Fx(x)Fy(x)
Fz(x)

where each of Fx, Fy and Fz are given by

Fi(x) =
nc∑
j=1

αijϕ(∥x− xj∥) + pi(x) (2.1)

where nc is the number of control nodes. Here ∥ · ∥ is the chosen norm on R3

and pi : R3 → R is a polynomial which allows for exact reconstruction of rigid
body motions and guarantees uniqueness of the interpolation. For purposes of
clear exposition, we consider the pi to be linear (degree 1, or deg(p) = 1), i.e.

pi(x) = γi0 + γi1x+ γi2y + γi3z,

but the same derivation can be used with polynomials of arbitrary degree.

From above, we see that the coupling problem involves three individual interpo-
lation problems - one in each of x, y and z coordinates.

Given the structure of eq. (2.1), the problem is now to determine the coefficients
αij as well as the coefficients of the polynomial pi. Hence we have nc+deg(p)+1
unknowns. We obtain the first nc equations by requiring the exact reconstruction
of the control node positions, i.e.

F (c) = c (2.2)

for every control node c. The remaining deg(p) + 1 equations are obtained by
the condition

nc∑
j=1

αijq(xj) = 0 (2.3)

for all polynomials q with deg(q) ≤ deg(p). This condition is discussed in more
detail in section 2.2.3. Looking more closely at eq. (2.2), we have

cik = αi1ϕ(∥ck − c1∥) + pi(c1) + · · ·+ αinc
ϕ(∥ck − cnc∥) + pi(cnc)

20 2. MULTISTAGE MESH MOTION

for 1 ≤ k ≤ nc. Hence

 ci1
...

cinc

 =

1 cx1 cy1 cz1 ϕ1,1 · · · ϕ1,nc

...
...

...
...

...
. . .

...
1 cxnc

cync
cznc

ϕnc,1 · · · ϕnc,nc

γi0
...
γi3
αi1
...
αinc

(2.4)

where ϕm,n = ϕ(∥cm − cn∥). Turning then to the condition of eq. (2.3), we have
0
0
0
0

 =

1 · · · 1
cx1 · · · cxnc

cy1 · · · cync

cz1 · · · cznc

 αi1

...
αinc

 . (2.5)

Combining eqs. (2.4) and (2.5) into a single equation gives

0
0
0
0
ci1
...

cinc

=

0 0 0 0 1 · · · 1
0 0 0 0 cx1 · · · cxnc

0 0 0 0 cy1 · · · cync

0 0 0 0 cz1 · · · cznc

1 cx1 cy1 cz1 ϕ1,1 · · · ϕ1,nc

...
...

...
...

...
. . .

...
1 cxnc

cync
cznc

ϕnc,1 · · · ϕnc,nc

γi0
...
γi3
αi1
...
αinc

. (2.6)

Using similar notation to existing literature [3, 43], we will write eq. (2.6) as

Si = Accb
i.

The subscript in Acc indicates a control-to-control matrix. Since the augmented
control node vector Si is known, we can now solve for the unknown coefficient
vector bi, which is given by

bi = A−1
cc S

i.

We have now determined all the unknown coefficients of eq. (2.1), and have
an effective interpolation function F . However the computation of F for every
node at runtime is not ideal. It is also not clear exactly how to interpolate the
displacements of nv volume nodes from the displacements of nc control nodes.
As such, we now wish to develop a structure to fluid coupling matrix H, such
that we can map from the displacements at control nodes to displacements at

2.2. SINGLE STAGE 21

volume nodes by v1
...

vnv

 = H

 c1
...

cnc

 . (2.7)

To determine H, we first calculate the matrix of the positions of the volume
points as given by eq. (2.1), i.e.

Fi(v) = αi1ϕ(∥vk − c1∥) + pi(c1) + · · ·+ αinc
ϕ(∥vk − cnc∥) + pi(cnc)

which we can write as

 vi1
...

vina

 =

1 cx1 cy1 cz1 ϕ1,1 · · · ϕ1,nc

...
...

...
...

...
. . .

...
1 cxna

cyna
czna

ϕna,1 · · · ϕna,nc

γi0
...
γi3
αi1
...
αinc

where here ϕm,n = ϕ(∥vm − cn∥). We call this matrix Avc. We see then that

vi = Avcb
i = AvcA

−1
cc S

i = HSi.

At this point, we have completely determined the coupling matrix H, however
since Acc has a zero block in the top left, we can reduce computations involved
in calculating the inverse of Acc. We subdivide Acc into the block matrices P
and M such that

Acc =

(
0 P
P T M

)
.

Then using a Schur complement method [44], we find

A−1
cc =

(
(PM−1P T)−1PM−1

M−1 −M−1P T (PM−1P T)−1PM−1

)
.

In general, the Schur complement reduces complexity of inverting a block ma-
trix to the complexity of inverting the major diagonal blocks individually. As
Acc contains a zero block on the major diagonal, the complexity is reduced to
inverting M .

We can then write the coupling matrix H as

H = AvcA
−1
cc = Avc

(
(PM−1P T)−1PM−1

M−1 −M−1P T (PM−1P T)−1PM−1

)

22 2. MULTISTAGE MESH MOTION

with the interpolation from structural displacements to aerodynamic displace-
ments given by eq. (2.7). At this stage, the construction of H has made it clear
that it is the correct coupling matrix in the control to volume direction.

2.2.3 Polynomial Term

The role of polynomial terms in RBF interpolation techniques is a complex topic
(e.g. an excellent 3-part series of papers by Flyer et al. [45, 46, 47] is available on
their role with regards to RBF finite difference methods), and differs somewhat
depending on application. For the case of mesh motion, the purpose of the
polynomial term in eq. (2.1) is twofold.

Firstly, the additional requirement of eq. (2.3) ensures that simple transforma-
tions such as translations and rotations can be reconstructed exactly. This is
especially important in cases with large displacements. Equation (2.3) also en-
sures that total forces and moments are conserved when applying the method in
the fluid-to-structure direction in an FSI solver [3]. To see this, consider the thin
plate spline of Harder and Desmarais [48], which has its roots in aeroelasticity.
In their interpretation, the interpolation is found by fitting a flat plate to a given
set of points by applying a number of point loads to gain the appropriate de-
flections. Then eq. (2.3) is simply an equilibrium condition relative to the fitted
points, i.e. any balanced (unbalanced) forces applied to the known points will
continue to be balanced (unbalanced) over the entire interpolation.

Secondly, in the case that our basis function ϕ has the additional property of
conditional positive definiteness (definition 2.1), it serves to ensure uniqueness of
the interpolation. This result is not obvious, and comes from a result of Madych
and Nelson [49]. To begin, we give a definition and subsequent result related to
the structure of our basis functions ϕ.

Definition 2.1 (Conditionally Positive Definite Function)

A radially symmetric function ϕ : Rn → R is called conditionally posi-
tive definite of order m if for all N ∈ N, sets of points {x1, . . . , xN} ⊂
Rn, and α ∈ RN \ {0} that satisfy eq. (2.3) for all polynomials q of
degree ≤ m, we have

N∑
i=1

N∑
j=1

αiαjϕ(xi − xj) > 0. (2.8)

The theorem of Madych and Nelson is then stated as follows.

2.2. SINGLE STAGE 23

Theorem 2.1 (Uniqueness of RBF Interpolation)

Let ϕ : Rn → R be conditionally positive definite of order m and X =
{x1, . . . , xN} ⊂ RN be such that the only polynomial of degree < m
that vanishes on X is the zero polynomial. Then there exists a unique
function Fi of the form eq. (2.1) that satisfies eqs. (2.2) and (2.3).

A more gentle proof of this result can be found in Chapter 8 of Wendland’s text
Scattered Data Interpolation[50].

An important property of conditionally positive definite functions is that a con-
ditionally positive definite function of degree m is also conditionally positive
definite of degree n for any n > m. This fact follows almost immediately from
definition 2.1.

Proposition 2.1 (Increased Degree of Conditional Positive Definite
Functions)

Suppose ϕ is conditionally positive definite of order m. Then ϕ is
conditionally positive definite of order n for all n > m.

Proof. Since ϕ is already conditionally positive definite of order m, let the set of
α ∈ RN that uphold eq. (2.3) be given by Am. Increasing the allowable degree
of the polynomials in eq. (2.3) reduces the number of permissible α to a set
An ⊂ Am. Then since eq. (2.8) is true for all α ∈ Am, then it clearly continues
to hold for all α ∈ An. Hence ϕ is conditionally positive definite of degree n. |=

In particular, given theorem 2.1, this means that we can increase the degree of the
polynomial term in eq. (2.1) to arbitrary degree so as to exactly capture higher
order polynomial transformations. The only restriction on this increase is the
number of structural points we are interpolating from, which must be sufficient
to ensure we can solve for the appropriate coefficients. For the applications
presented here, we consider the space of polynomials in R3 with degree at most
m. This space has dimension

(
m+3
m

)
, hence we need at least this many structural

points to ensure our interpolation is solvable.

Conditional positive definiteness has been verified for Wendland’s basis functions,
which were generated by repeated applications of an integral operator I to the
truncated power function (xn set to zero for x < 0) [50], where I is defined on
radial functions by

I(ϕ)(r) :=

∫ ∞

r

ϕ(x) dx.

Wendland shows in [51] that these basis functions are in fact of minimal degree,
hence are in a some sense amongst the best candidates for the RBF mesh mo-
tion method. As such, for mesh motion in the current work, we prefer to use

24 2. MULTISTAGE MESH MOTION

Wendland’s functions (usually C2), as do many other works on the subject. In
later chapters using RBF methods for approximating derivatives, we will prefer
polyharmonic spline bases, which are also (strictly) conditionally positive definite
[45].

2.2.4 Multiscale Mesh Motion (Kedward [4])

The primary limiting factor of the method of section 2.2.2 has been the inversion
of the Acc matrix. The problem can be slightly reduced using the Schur com-
plement method as described, however the size of the M block is still usually
considerable, with dimension on the order of the number of control nodes. The
conditioning of this matrix is often poor, and even when conditioned correctly
via preconditioning methods or otherwise, the computation of the inverse is of-
ten prohibitively expensive, and/or numerical limitations produced poor results.
A number of techniques were developed using reduced sets of control nodes to
shrink the M matrix, however the methods still required significant preprocess-
ing and at each timestep, and an additional corrective step to reduce error from
the displacements from the reduced set of control nodes.

Kedward addresses the issues of both conditioning of the matrix and the inex-
actness of using a reduced set approximation by beginning with a significantly
reduced set of control nodes, then adjusting the radii of each of the remaining
control nodes to give a lower diagonal structure to the remainder of the matrix.
This then allows the system to be solved first by a small matrix inversion for the
base set (as few as 1% of the original control set), followed by forward substi-
tution for the remainder of the control nodes. The algorithm for doing so is as
follows:

1. Add the sparse base set of control nodes to an active set, with a predeter-
mined radius, and all remaining control nodes to an inactive set.

2. Determine inactive node with greatest distance to active set.

3. Remove node from inactive set and add to active set, setting its radius to
the distance calculated in step 2.

4. If inactive set is non-empty, return to step 2, otherwise, stop.

Once this procedure has been completed, the matrix Acc from section 2.2.2 now
has the structure

Acc =

(
Abb 0
Abr Arr

)

2.3. MULTISTAGE 25

where subscript b refers to base points and r refers to the refinement points added
from the inactive set. Here Abb is typically a full, small, symmetric matrix, Abr
is a full rectangular matrix, and Arr is lower triangular. The inverse of Abb can
then be calculated ahead of time, and the relatively cheap forward substitution
can be completed per timestep to solve the remainder of the system. The ill-
conditioning and prohibitive size of the matrix inversion is avoided by selecting
an appropriate base set, and the approximation error of using a reduced set of
control nodes is avoided by including all remaining points included in the system,
hence recovering the exact displacements at all control nodes.

From [4], the computational cost for updating the volume mesh using this method
is

αNvNb,

where α is the proportion of volume points that are captured within the radii of
the base set of control nodes. This cost is indicative of interpolation methods in
general, as the update step will usually involve the calculation of displacement
at each volume point as a function of the control nodes. For large deforma-
tions, or those contained within more complex geometry (e.g. the cavity store
of chapter 3), αNv can still be large, and although the surface-to-volume update
step is perfectly parallelisable in the RBF case, the costs can still be significant,
especially over the course of long simulations.

As such, the next section will present a general framework for applying mesh
motion methods in a multistage fashion to reduce this cost further, without
sacrificing the ability to parallelise, or having any adverse effects on mesh quality.
We will use both the full RBF method and the multiscale method described here
as exemplary methods to benchmark the multistage concept.

2.3 Multistage

We now turn to combining multiple single stages into a mesh motion framework.
This method can yield savings in both the storage and computational costs of
applying mesh displacements. The focus of this work is to reduce the costs of
applying existing mesh motion methods outright, rather than to address other
limiting factors, e.g. parallelisation (often already a built-in feature of modern
interpolation methods), or mesh quality. We use the RBF methods described
in section 2.2 as our techniques at each individual stage, as these methods are
state-of-the art, and are the most widely applicable methods currently available.

Previous work by Wong et al. [52] has alluded to a similar procedure for parallel
mesh motion on multiblock grids, where the motion of a control set is translated
firstly to block corners, then to block surfaces, and finally to block volumes.
This work was completed prior to the advent of modern interpolation (RBF and

26 2. MULTISTAGE MESH MOTION

otherwise) methods, and used a combination of spring analogy and transfinite
interpolation methods to complete the grid displacement, leveraging the rela-
tive advantages of each. Although it presented an effective means by which to
parallelise a structured, multiblock mesh, it required a number of blending and
smoothing operations to deal with arbitrary motions at block interfaces, irregu-
lar surface deformations, as well as requiring adjacency information on both the
point cloud and block structure. As such, the method was not readily general-
isable to arbitrary mesh motion applications. Similar early work was done by
Jones et al. [53]. The current method alleviates such issues.

The method presented here relies on recursively dividing the domain into a hier-
archy of subdomains, with the motion of points in each subdomain determined
by a reduced set of points above it in the hierarchy. In practice, the reduced set
of points will generally consist of the boundary of the subdomain, and in this
way, the method is conceptually similar to the Craig-Bampton method [54] for
reducing costs of solving FEA systems by treating a structure as a collection of
substructures, whose behaviours are completely determined by the substructure
boundaries. Figure 2.7 demonstrates this concept adapted to the mesh motion
case - the effect of the motion of a control surface C on a volume V can be
determined entirely by the effect of the control surface on the boundary ∂V of
V .

Fig. 2.7: The effect of motion of the control surface C on the domain volume V can
be determined by the effect of C on the boundary ∂V of V .

2.3.1 Partitioned Domain Hierarchy

In this method, each single stage (see section 2.2) of the mesh motion algorithm
now exists within an acyclic digraph structure, describing the dependencies of
the stages. Each vertex represents a single stage pass, and each edge represents
a dependency, with the direction showing the program flow. A stage cannot
be computed until all the stages above it are complete. Figure 2.8 shows an

2.3. MULTISTAGE 27

example structure with 13 stages. In this example, stage 1 must be completed
before stages 3 and 4, which can be computed in parallel; stage 5 must wait for
both stage 1 and 2 to complete, and so on.

s1 s2

s3 s4 s5 s6

s7 s8 s9 s10 s11 s12 s13

Fig. 2.8: Example of the acyclic digraph dependency structure.

Let this digraph structure be denoted in a somewhat non-standard way by using
a single set S of vertices {s1, ..., sn}. Since the vertices here represent stages,
we prefer S over the standard V . Building some additional structure into the
graph S, define a vertex/stage si to be a 3-tuple si := (αi, βi, γi), with αi and βi
the sets of points in the domain that we are interpolating values from/to2, and
γi := {sj|αi ∩ βj ̸= ∅}, i.e. γi is the set of stages whose output contains points in
the input of si. This defines γi as the set of parent stages of si, e.g. γ5 = {s1, s2}
in fig. 2.8.

This construction is clearly useful for exposition, but is also useful in a practical
sense - ordering the domain in this way presents a straightforward method to
determine the order of the stages by traversing the digraph structure from root
nodes (stages without parents), and in particular, it determines which stages can
be completed in parallel. As such, a further practical requirement is⋂

si∈S

βi = ∅

which is the property that no two stages should output an interpolation at the
same point. This avoids the potential for conflicting parallel calculations.

In the simplest case where S consists of a single stage, i.e. S = {s}, it would
be usual that α is the set of all points with known displacements, and β is the
volume points at which we wish to interpolate the displacements to.

2Note that αi and βi are not the input and output displacements of the mesh motion stage,
rather the points at which these displacements occur.

28 2. MULTISTAGE MESH MOTION

2.3.2 Elementary Example

To give an initial demonstration of how the graph of section 2.3.1 is constructed,
and how a multistage approach can provide savings on the storage and calculation
of displacements within a domain, we present the following toy example as a
building block towards more general cases.

Consider a square, 2D domain consisting of 4 subdomains and their boundaries
as shown in fig. 2.9.

Fig. 2.9: Basic domain with 4 subdomains.

Let n be the number of points along one side of the domain, thus each subdomain
has a perimeter and volume approximately 2n and n2/4 points respectively, with
the total domain having perimeter and volume of 4n and n2.

For ease of computation, we take a geometric approach and ignore zeroth and
first order terms, e.g. a domain with n points along each side will in reality
have closer to n2 − 4n+4 points on the interior rather than simply n2. However
as we will see, cost savings will generally only appear as factors on the highest
order terms, so it is reasonable to ignore lower orders for n above some sensible
threshold, and indeed the estimates obtained by doing so are conservative.

In the single stage approach, using a simple RBF interpolation method for sim-
plicity, the interpolation of a value on the exterior boundary of the domain to
the entire volume will require the storage of an n2 × 4n = 4n3 element matrix
linking the boundary to the interior. Assuming the value we want to interpolate
is a single scalar (e.g. deformation in a single direction), then the computational

2.3. MULTISTAGE 29

cost of applying the interpolation will require the multiplication of this matrix
by a 1D vector, which requires n2 × 4n × 1 = 4n3 each of multiplication and
addition floating point operations3. Since this aligns with the storage costs, we
can consider the two as direct proxies of each other.

If we instead apply the interpolation in stages we find the cost to be reduced.

Beginning by constructing the domain hierarchy, the various α and β of sec-
tion 2.3.1 are shown in fig. 2.10. Constructing the γ sets, this results in the

Fig. 2.10: α and β definitions for the 5 stages in 4-subdomain example.

straightforward hierarchy as shown in fig. 2.11. We see that we must perform 5
individual stages of mesh motion, with stages 2-5 able to be performed in parallel
after the completion of stage 1.

s1

s2 s3 s4 s5

Fig. 2.11: Acyclic digraph dependency structure for 4-subdomain example.

Stage s1: The interpolation is performed from the 4n points on the exterior
perimeter to the 2n points on the remaining interior perimeters, which has a
cost of 2n× 4n = 8n2.

Stages s2 − s5: For each subdomain, the interpolation is performed from the
2n points on the perimeter to the n2/4 points on the interior, with a cost of
n2/4× 2n = n3/2. This is repeated 4 times for a cost of 4× n3/2 = 2n3.

3Again some computational liberty is taken here with lower order terms, in reality only
n2 × (4n− 1)× 1 additions are required.

30 2. MULTISTAGE MESH MOTION

Hence the total cost of performing the multistage interpolation is 8n2+2n3. This
is a halving of the cost in the dominant term compared to the single stage (4n3),
hence although the asymptotic complexity remains unchanged, i.e. O(n3), the
cost is reduced for practical n. Of course this case serves only to provide example,
and is not necessarily indicative of more complex cases, but as is demonstrated
in the next section, it will be possible to choose subdivisioning in such a way
that we not only will see a constant factor saving, but a reduction in order of
complexity as well.

2.3.3 General Estimates

In studying savings in both storage and computation more generally, it is useful
to look at two modes of application of the multistage interpolation described in
section 2.3:

1. Widening the graph by splitting the domain into additional independent
subdomains

2. Deepening the graph by recursively splitting subdomains into further sub-
domains.

Here we extend the example of the previous section to provide some rough in-
dications of expected cost savings more generally. Of course each practical ap-
plication is unique and is difficult to estimate exactly, but for initial estimates,
these will suffice.

Condition for Cost Reductions

As a first step, we establish a condition on when a multistage approach will yield
any savings, before proceeding to give estimates on the actual savings themselves.
Assume we have a two stage graph as shown in fig. 2.12. This model will give us
generality, as any graph (beyond the trivial single stage graph) can be considered
two stages at a time for the purposes of cost estimates.

For the two stage model to be more cost-efficient than the single stage, we have
the condition

|α1||β1|+ |α2||β2| < |α1||β2|. (2.9)

This uses the assumption that the update cost of a single stage si is proportional
to |αi||βi|, which is the case for both the base method and the multiscale (does
not include initial costs, see section 2.3.3).

2.3. MULTISTAGE 31

s1

s2

Fig. 2.12: Two stages of the multistage method.

For most cases, a simplifying assumption can be made that |α2| < |β1|, i.e. that
the output of a parent stage will be larger than the inputs of its child stages. In
this case, eq. (2.9) has the weaker form

|β1| <
|α1||β2|

|α1|+ |β2|
.

Independent Subdivisions (Widening the Graph)

Here we adapt the domain from section 2.3.2 to include a greater number of sub-
divisions as shown in fig. 2.13. Again taking n to be the number of points along
one side of the whole domain, let s be a splitting parameter denoting the number
of divisions along a boundary (length n), i.e. we split the domain into approxi-
mately s2 subdomains. Assuming the domain and therefore its subdomains are
approximately square, the subdomains have perimeter 4n/s and volume n2/s2

(see note on lower order terms in section 2.3.2).

The length of all internal boundaries is 2ns, hence interpolating from the exterior
boundary to the subdomain boundaries requires a 2sn × 4n = 8sn2 element
matrix. The interpolation on each subdomain requires a 4n/s× n2/s2 = 4n3/s3

element matrix, and this is repeated s2 times for a total of 4n3/s elements.
Therefore the total cost is approximately

C = 8n2s+
4

s
n3. (2.10)

Minimising this with respect to s gives

∂

∂s

(
8n2s+

4

s
n3

)
= 8n2 − 4

s2
n3 = 0 =⇒ s2 =

n

2
. (2.11)

32 2. MULTISTAGE MESH MOTION

Fig. 2.13: Domain with additional subdomains.

Given the liberties with lower order terms as discussed in section 2.3.2, and the
assumptions of a square domain and that n, s ∈ R, this estimate is clearly not
exact, but gives a good starting guide as to the optimal number of splits to
minimise storage and computational requirements when splitting a domain into
subdomains for a single stage.

Applying this to our example in section 2.3.2, this would indicate we should split
the domain into approximately 100/2 = 50 subdomains, i.e. 7 along each side
would appear to be the optimum and would give an estimated total saving of
approximately 73%. Due to the relatively low resolution of the example (n =
100), a real world implementation shows a saving closer to 78% (since lower order
terms are dropped for the estimate), however for larger domains (increased n),
the error in the estimate is reduced.

Substituting the optimal splitting parameter s from eq. (2.11) into eq. (2.10), we
get

Cmin =

(
8√
2
+ 4

√
2

)
n5/2.

Here we see that we have actually reduced the asymptotic complexity from O(n3)
to O(n2.5) by choosing an optimal s for each n, which implies that continuously
greater benefits are seen as n increases. Figure 2.14 shows the estimated and
actual as-implemented cost savings (as compared to the max cost 4n3) for varying
side lengths n, as well as the optimal splitting parameter s used in each case.

2.3. MULTISTAGE 33

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
m

in
/4

n
3

0

5

10

15

20

25

s

Estimated
Actual
Optimal s

Fig. 2.14: Cost of interpolation after splitting a 2D domain as a proportion of the base
cost 4n3. The optimal s of eq. (2.11) is also displayed.

Recursive Subdivisions (Deepening the Graph)

Let I be the total number of stages (i.e. levels in the digraph), with n as before,
and s the number of subdivisions made at each stage, rather than in total. After
some careful calculation we find that the total cost is approximately

I∑
i=0

s2i
(
8s
n2

s2i

)
+ 4

n3

sI
= 8Isn2 + 4

n3

sI

Comparing this to eq. (2.10), we find the factor on the n3 term is equivalent,
which is to be expected, since splitting the side of each domain by s at each
of I stages is the same as splitting it into sI in the first instance. The only
saving here is the factor on the lower order n2 term, which now scales as Is
compared to sI in eq. (2.10), however this saving is caveated by the fact that
the recursive approach introduces longer dependency chains in the dependency
graph, and as such puts limitations on parallelism. As such, the choice between
using either a pure domain splitting approach, or recursive application of the
interpolation method should likely be dictated by other factors including ease of
implementation, as the cost savings are approximately equivalent. However as
we will see in section 2.4 it appears that a combination of the two may be the
optimal solution from a pure cost point of view.

34 2. MULTISTAGE MESH MOTION

3D Case

So far we have only treated the cost reduction in 2 dimensions. Of course in
practical applications in FSI problems, the 3D case is also of interest. If we
again take n as the number of points along a single edge of our domain, in
this case a 3D cubic volume, then the total cost of interpolating a value from
the external surface of the domain to its interior without domain splitting is
approximately 6n5. By similar calculation to the 2D case, we find that the cost
when each edge is split into s parts is given by

C = 18sn4 +
6

s2
n5.

Again minimising and applying the optimal s we find

Cmin = 18
3

√
2

3
n13/3 +

6

3

√
2
3

n14/3 ≈ 22.68n4.33 + 4.76n4.67.

We see that in the 3D case, we do not get the same asymptotic reduction of the
highest order term, with the power reduction only 1/3, instead of 1/2 as in the
2D case. This lower reduction is reflected in the 3D cases presented in section 2.4
and section 3.3. Higher dimensional (> 3) cases continue to show reduced power
reductions, however 2D and 3D are the primary dimensions of interest for FSI
applications.

Non-Runtime Costs

Implementation Complexity

An important aspect of any new method is of course the complexity of its imple-
mentation, an issue that is particularly pervasive yet difficult to quantify exactly.
The major task of the method is in the dividing of a given domain into a sensible
array of subdomains and placing them in the digraph hierarchy as described. In
many modern applications, it is certainly usual for a basic single layer hierarchy
to exist already due to the splitting of a domain into individual elements to be
processed in parallel, and leveraging this existing structure is obviously desirable.
With some care, additional divisions are then able to be automated reasonably
well given a few parameters based on the estimates given in previous sections.

The other aspect of implementation is applying the method at each node of the
hierarchy, though this is hopefully more straightforward, as it is largely a case
of recursively applying the chosen interpolation method to each domain/subdo-
main.

Preprocessing Costs

2.4. EXAMPLES 35

RBF interpolation techniques usually require at least one matrix inversion in the
initialisation phase when constructing the interpolation matrix. Although some
reductions can be made given the structure of the matrix (generally symmetric
positive definite), the most significant reduction thus far has been the multiscale
technique of [4] as described in section 2.2.4. When using the multistage method,
an additional matrix must be inverted for each vertex in the digraph fig. 2.8.
However two factors serve to mitigate these costs. Firstly, for each layer in the
digraph, the size of the matrices decreases exponentially, and secondly, as these
matrices are essentially a property of the domain itself (a function of chosen RBF
parameters and geometry), they can be calculated once ahead of time and reused
across multiple applications. The size of these matrices is also small compared to
the volume matrices, hence the additional storage costs do not adversely affect
the stated savings.

2.4 Examples

Here we demonstrate savings on a number of more complex cases. We use the
same benchmark cases as [4] so as to be able to compare mesh quality metrics and
ensure that the multiscale approach does not adversely affect the mesh quality.

NACA0012 Aerofoil

Even 2D meshes can have sizes significant enough to warrant the multistage
method - simulations run at NASA Ames for the 4th AIAA CFD High Lift
Prediction Workshop included a number of refinement levels for 2D meshes of a
CRM-HL aerofoil, up to a mesh containing a boundary layer of 4.5 million points,
and a total domain of approximately 64 million points. Due to hardware limi-
tations, we do not attempt that case here, but instead opt for a 2D NACA0012
O-grid with 1025 surface points and a total of 58,425 points (1025 × 257) as in
[4].

As the domain is 1025 points along the surface of the aerofoil, and 257 deep in the
normal direction, we opt for a multistage approach where we first split the domain
into 4 subdomains consisting of approx 256× 257 points each. From fig. 2.14 for
n = 256, we find that the optimal splitting parameter is approximately 11, hence
we further split each of the 4 subdomains into a further 112 = 121 subdomains
of dimensions approximately 24 × 24 points each, as shown in fig. 2.15. This
splitting yields the hierarchy shown in fig. 2.16.

36 2. MULTISTAGE MESH MOTION

Fig. 2.15: Detail of final subdomain splits for NACA0012 mesh.

In this instance we have combined both the independent and recursive subdivi-
sion methods to maintain approximately square subdomains, though a purely in-
dependent subdivisioning approach is also possible. Table 2.1 shows the surface-
to-volume cost savings compared with a single stage method for full and multi-
scale methods. As we can see, savings range between 80-90%, with the combined
recursive and independent subdivisioning approach markedly cheaper, suggesting
that a combined approach may be optimal.

Full Multiscale 10% Multiscale 5% Multiscale 2.5%
I 0.1793 0.1778 0.1896 0.2096

R + I 0.0975 0.0960 0.1077 0.1277

Tab. 2.1: Surface-to-volume cost ratios of multistage vs. single stage for full and mul-
tiscale mesh motion methods. Both purely independent subdivisioning (I)
and combined recursive and independent subdivision (R + I) methods are
compared. Multiscale methods are listed with % of surface points used as
base points.

To compare grid quality to single stage methods, the aerofoil was pitched at 30
degrees angle of attack. As in [4], we use an orthogonality measure and compare
it against the original grid. For a structured grid, the orthogonality measure for
a point takes the 4 direction vectors v1, ..., v4 from the point to its 4 neighbouring

2.4. EXAMPLES 37

s0

s1 s2 s3 s4

s1,1 s1,121... s2,1 s2,121... s3,1 s3,121... s4,1 s4,121...

Fig. 2.16: Hierarchy for NACA0012 mesh.

points (in a clockwise or anticlockwise fashion), then calculates the quality of the
grid at that point as

q =
1

4

(
v1 · v2

|v1|2|v2|2
+

v2 · v3
|v2|2|v3|2

+
v3 · v4

|v3|2|v4|2
+

v4 · v1
|v4|2|v1|2

)
. (2.12)

This tracks any skewing of the grid at each point via the angles between neigh-
bouring points. In this way measuring changes in orthogonality is akin to a
discrete measure of how close to conformal the motion transform is, or how
much it changes angles locally. From eq. (2.12), a measure of q = 0 is perfectly
orthogonal (each angle 90 degrees), while 1 is fully degenerate (each angle 0 or
180 degrees).

Comparing mesh quality differences between the single and multistage approaches,
it was found that mesh quality was largely static, with some very minor varia-
tions (±1%) between a single stage approach (with the same underlying method -
full or multiscale). These differences are likely to do with the RBF parameter se-
lection for the individual subdomains, and could be further reduced. Figure 2.17
shows an exaggerated view of the differences between the single and multistage
approach using a full RBF mesh motion scheme. As can be seen, the differ-
ences are primarily clustered around subdomain boundaries, with fig. 2.17a and
fig. 2.17b together producing a clear outline of the subdomains.

MDO Wing

A series of meshes developed by Allen [55] for the Brite-Euram MDO (multidis-
ciplinary optimisation) wing has featured as a standard test case in a number of
works related to RBF mesh motion. Here we use the 8.62 million point mesh as
described in [4]. The mesh consists of 8 blocks/domains as shown in fig. 2.18,
with the density increasing greatly towards the surface of the wing itself, as
shown in fig. 2.19. The surface of the wing contains 61,601 points.

38 2. MULTISTAGE MESH MOTION

(a) Quality decrease (b) Quality increase

Fig. 2.17: Exaggerated differences in near-field mesh quality between multistage and
single stage approach with full RBF mesh motion. White and black repre-
sent minimum/maximum differences of 0 and 1% respectively. Differences
are primarily clustered around subdomain boundaries.

We begin by only taking the first 40 layers of the mesh from the surface, which
corresponds approximately to 1 root chord, as indicative of a situation in which
a limited deflection is expected. We then split the 8 blocks up into subdomains
as close to cubes as possible, resulting in 84 cubic subdomains approximately
40× 40× 40 = 64, 000 points each. Table 2.2 gives additional details.

Block # Dimensions Cubic Subdomains Total Points
1 81× 40× 193 10 625,320
2 161× 40× 193 20 1,242,920
3 161× 40× 193 20 1,242,920
4 81× 40× 193 10 625,320
5 81× 40× 81 4 262,440
6 161× 40× 81 8 521,640
7 161× 40× 81 8 521,640
8 81× 40× 81 4 262,440

Total 84 5,304,640

Tab. 2.2: Details of splitting of first 40 layers of MDO mesh from wing surface.

Using the multiscale mesh motion method of section 2.2.4 with approximately
600 or 1% of the 61,601 surface mesh as base points, as recommended in [4].
Hence the base method requires on the order of approximately 600×5, 304, 640 =
3.2× 109 operations/storage to complete the interpolation/store the matrix. We
now apply a multistage approach:

1. Interpolate motion on the surface of the wing by interpolating from the
600 base points to the surfaces of each of the 8 main blocks.

2.4. EXAMPLES 39

Fig. 2.18: 8 blocks of MDO wing mesh

2. Again apply the multiscale approach by taking 1% of the surface point of
each main block and interpolating it to the surfaces of the interior cubic
subdomains.

3. Interpolate from 1% of the surface points of each cubic subdomain to the
403 volume points on the interior.

Completing these computations, we find the total update cost to be 8.51× 108,
for a total saving of approximately 67.8%. This is a significantly smaller saving
than section 2.4 due to the non-optimal subdomain splitting, as well as being a
3D problem (see section 2.3.3). It is expected that a more optimal subdivision
scheme would yield considerably better results. Mesh quality results were similar
to that of section 2.4, with no significant differences being found between the
multistage and single stage approaches.

40 2. MULTISTAGE MESH MOTION

Fig. 2.19: Mesh detail of MDO wing.

2.5 Conclusions

In this chapter we have described a multistage structure in the context of RBF
mesh motion methods, although it is possible that the multistage approach can
be applied to somewhat arbitrary mesh motion methods, since it does not rely
on any particular aspect of the methods used in the examples here, and makes
very conservative assumptions about the costs of volume update steps. It is
shown that the surface-to-volume computations of mesh motion can be greatly
reduced, with not only constant factor improvements, but also modest gains
in asymptotic complexity. Some estimates were given on expected cost savings
in scenarios with square/cubic domains, with examples using real world CFD
meshes provided. The examples showed that with the correct subdivisioning
approach, costs of surface-to-volume computations and storage can potentially
be reduced by over 90%. Cost savings for coarse grids were found to be neg-
ligible, but for finer grids the costs savings were seen outweigh the additional
startup costs and implementation complexity. A multistage approach was not
seen to have significantly different mesh quality characteristics from single stage
methods, with differences less than 1%.

After a number of significant advances in the field in recent years, a multistage
approach further reduces traditional costs associated with RBF mesh motion,
removing another potential barrier for full-scale mesh motion schemes in FSI
applications.

3. CAVITY-STORE SIMULATION

3.1 Introduction

Here we present a case study using the methods of chapter 2 in a large scale mesh
to simulate flow induced vibrations of a cylindrical store within a box cavity1.
The simulations mirror experiments performed at Sandia National Laboratories
to better understand complex fluid-structure interactions that occur in aircraft
bays during flight [56]. Previous simulations have been completed by Sandia
using a rigid store, as well as 1-way coupling (fluid to structure), and quali-
tative agreement with the experiments was found for low frequency structural
modes, however simulations showed poor agreement at higher frequency modes
[56]. The main purpose of the work in this chapter is to demonstrate that FSI-
enabled flow simulation could better match the experiments, proving that the
modeling of a dynamic structure within the flow is necessary to capture detailed
physical phenomena. A secondary goal was to show the use of the multistage
mesh motion methods of chapter 2 in practical numerical simulations, with large
domains and complex geometry. As no baseline mesh motion implementation
was available in FLAMENCO (i.e. non-multistage), the gains in efficiency can
only be estimated, however the results of this chapter demonstrate that the mul-
tistage mesh motion methods perform excellently in a high fidelity simulation,
and are computationally feasible.

This study is a demonstration of the applicability of the method of chapter 2 to
practical FSI cases, and utilises the University of Sydney in-house FLAMENCO
(Flow Analysis and Modelling Environment with Combustion) CFD tool2, which
contains algorithms up to 5th/3rd-order accurate in space and time respectively.
FLAMENCO is a massively parallel, fully compressible, structured multi-block
solver with RANS, LES, and DES models. The underlying algorithms have
been validated extensively in complex flows such as turbulent mixing problems,
scramjet intakes, aero-acoustics of cavity flows, shock-boundary layer interaction,
rocket nozzles, ship airwakes, and combustion [57, 58, 59, 60, 61].

For the FSI implementation in this chapter to remain largely independent of the
FLAMENCO algorithms, a partitioned approach was necessary, a strength of

1Initial cavity-store simulation results were presented by the author at SciTech2019 [7].
2FLAMENCO is maintained by Professor Ben Thorner with contributions from a number

of staff and students, see https://fluids.eng.sydney.edu.au/computer-codes/ for more detail.

42 3. CAVITY-STORE SIMULATION

RBF-based FSI methods. A previous implementation of FSI within the FLA-
MENCO code base, based on finite-element ‘super blocks’, although successful in
initial tests (and especially so with large deformations), was identified as having
future roadblocks. These included requirements for complex and case-specific
grid generation code to integrate the structural components with the existing
code base, and a limit of a single finite-element per CFD block. It was deter-
mined that overcoming these limitations would include a monolithic approach
and would be against the requirement of method independence.

Section 3.2 gives details on the configuration of the FLAMENCO fluid solver, the
FSI implementation, as well as the development of a modal structural solver to
perform structural calculations, with accompanying benchmarks for validation.
Section 3.3 presents the results and conclusions of the cavity-store FSI simulation,
comparing them to the Sandia experiments and rigid/1-way simulations.

The calculations of this chapter were completed primarily on the National Com-
putational Infrastructure (NCI) and the University of Sydney’s Artemis HPC

3.2 Simulation Setup & Tests

3.2.1 FLAMENCO Fluid Solver

FLAMENCO is a CFD solver that has been adapted for various research appli-
cations since its development, written in FORTRAN and using MPI for parallel
computations. It has been used extensively on various HPC clusters. The two-
way RBF FSI coupling was implemented within the same codebase, but as a mod-
ular component that relied as little as possible on the surrounding code, so that
the implementation was able to be adapted easily in the future. FLAMENCO
is written in FORTRAN, and uses MPI for parallel computations, making it
particularly well-suited to running on HPCs.

3.2.2 Modal Structural Solver

For this work, a modal structural solver was also implemented to perform the
structural solve at each time step. This was implemented within the FLA-
MENCO code base for efficiency, but was functionally independent, retaining
the required partitioned approach.

To begin we take the equations of motion to be a coupled system of damped
oscillators

Mẍ+ Cẋ+Kx = F (3.1)

3.2. SIMULATION SETUP & TESTS 43

where M , C, and K are the mass, damping, and stiffness matrices respectively,
and F is the applied force. To obtain the natural frequencies ωi and mode shapes
Ui of the system, we set C = 0 and apply no load then solve the eigenproblem

KUi = ω2
iMUi. (3.2)

Once the mode shapes/eigenvectors are found, we can define an inner-product
using the mass matrix M and use our preferred algorithm to convert the eigen-
vectors Ui to an orthonormal basis ϕi with respect to this inner product, i.e.

ϕTi Mϕi = δij (3.3)

where δij is the Kronecker delta. This gives a modal matrix Φ consisting of
mode shapes such that ΦTMΦ = I. We can now describe the system using
linear combinations of these mode shapes combined with amplitudes ηi known
as generalised coordinates, i.e.

x = Φη.

Applying this to eq. (3.1) it becomes

MΦη̈ + CΦη̇ +KΦη = F.

Multiplying through by ΦT , from eq. (3.2) and eq. (3.3), we can see that the
system in generalised coordinates becomes

η̈ + ΦTCΦη̇ + ω2η = ΦTF

where ω2 is the diagonal matrix containing the eigenvalues ω2
i along the diagonal.

Unfortunately in general we have few guarantees on the structure of C, in par-
ticular, it is not necessarily diagonal, which introduces coupling to an otherwise
uncoupled system. There are a number of methods for dealing with non-diagonal
C, including diagonalisation, modal projection, and educated guessing - all of
which we conveniently avoid by assuming the system is undamped - a reasonable
enough assumption given the relatively light damping of the rigid store. Hence
we have the final equation of motion in modal coordinates

η̈ + ω2η = ΦTF.

Boundary conditions in spatial coordinates are related to generalised modal co-
ordinates via x(0) = Φη(0). To obtain boundary conditions in modal coordinates
directly, we can avoid inverting Φ by exploiting eq. (3.3) to find

η(0) = ΦTMx(0)

η̇(0) = ΦTMẋ(0).

Since Φ will ordinarily have the n columns (mode shapes) equal to the number

44 3. CAVITY-STORE SIMULATION

of points in the original (spatial) system, there is no immediate advantage in
converting between the two. The benefits appear in cases where the structural
motion can be sufficiently described via selection of a reduced set of m modes,
i.e.

x ≈
m∑
i=1

ϕiηi

where m < n. This can reduce the computational complexity significantly. Next
we perform a benchmark using 3 modes of a 10-mode system and find minimal
loss of accuracy.

A benchmark of the modal solver was performed on a 10-point, 3-mode, can-
tilevered beam and compared to a 10-element FEA model run in the Strand7
software. Figure 3.1 shows the comparison of the cantilevered beam with a sinu-
soidal driving force applied at the tip. Each wave represents one of the 10 points
along the beam. The displacement at the end of the beam match exactly, with
the models differing through the body of the beam by a maximum of approx. 3%
of maximum deflection. This error was found to be a global maximum across all
frequencies tested (1Hz-300kHz), with the error completely disappearing at the
resonant (modal) frequencies of the beam.

Displacement @ tip

Displacement @ base

Fig. 3.1: Comparison of response to single period forcing of FEA and modal models.
Each wave represents an individual point along the beam.

3.2.3 Bending Beam Test

The first coupled test completed was a 2D cantilevered beam. A 10 × 5 com-
putational domain was constructed with a 0.32 × 2.5 beam anchored at x = 5

3.2. SIMULATION SETUP & TESTS 45

on the bottom wall. The beam had a single mode with frequency ω = 106.8Hz,
with a mode shape as shown in fig. 3.2b. As FLAMENCO is a 3D solver, the
implementation of the RBF coupling is 3D, and hence the structure was given a
baseplate to eliminate singularities caused by a reduced dimension model. The
initial fluid conditions were set to a constant density ρ0 = 1.2kg/m3, pressure
p0 = 101325Pa, and constant horizontal velocity vx0 = 22.7m/s.

(a) Undeformed (b) First mode shape

Fig. 3.2: Undeformed beam with 4 additional supporting points at the base, and the
(exaggerated) first mode shape used in the benchmark of section 3.2.3.

The simulation was run over 0.3s to test the coupling behaviour of the imple-
mentation. Figure 3.3 shows a snapshot of the pressure and velocity fields at
t = 0.27. The complex force history at the tip of the beam shown in fig. 3.4
shows the transient behaviour as the flow is developing. These transient fluc-
tuations are generated in part by non-perfect initial conditions of the flow. As
the flow develops, these small, non-periodic effects would be expected to largely
disappear, but as this test was only designed to test the coupling between the
structural and fluid solvers, it was not necessary to develop the flow fully. The
modal structure is seen to be interacting with the flow appropriately - reacting
predictably with the calculated forces, with a small lag behind the forcing, as
shown in fig. 3.4.

46 3. CAVITY-STORE SIMULATION

Fig. 3.3: Pressure distribution (in Pa) for t = 0.27. The velocity field, indicated by
the black arrows, ranges from a maximum of 126.7 m/s near the beam tip,
to a minimum of 0 at the downstream vortices.

−0.5

 0

 0.5

 1

 1.5

 0 0.05 0.1 0.15 0.2 0.25 0.3
−10

−5

 0

 5

 10

 15

 20

 25

d
is

p
la

c
e
m

e
n
t

[m
]

fo
rc

e
 [

N
]

time t [s]

beam tip displacement
force on beam tip

Fig. 3.4: Displacement vs. force at beam tip. Here the complex, high frequency tran-
sient forces of the flow field are damped out by the structure, resulting in a
relatively smooth motion of the beam tip.

3.2. SIMULATION SETUP & TESTS 47

3.2.4 Turek-Hron Benchmark

Following the basic bending beam test, the Turek-Hron test case [62] was imple-
mented for further validation. This test considers a laminar, viscous flow over an
elastic bar. This test has been used successfully to benchmark various discreti-
sation and solution methods. The overview given by Turek et al. [63], highlights
the efficacy of the benchmark in establishing grid independent results, regardless
of the solution scheme.

The computational mesh is shown in fig. 3.5. The domain measures 2.5 m in
length and 0.41 m in height. A cylinder of radius r = 0.05 m is positioned
at point (0.2, 0.2) measured from the left bottom corner of the channel. The
position of the cylinder is kept fixed. An elastic bar of length l = 0.35 m and
height h = 0.02 m is positioned with the right bottom corner at (0.6, 0.19). The
left end is fully attached to the fixed cylinder. The mesh is intentionally non-
symmetric (see fig. 3.5) to prevent the dependence of the onset of oscillation on
the precision of the computation.

Fig. 3.5: Structured domain mesh for Turek-Hron benchmark problem. Vertical asym-
metry has been included to encourage oscillation.

A parabolic velocity profile of the form

v = 35.7y(0.41− y)v0

is prescribed at the left channel inflow. At the right end, outflow boundary
conditions are prescribed with a gauge pressure of zero. At all other boundaries,
the no-slip condition is applied.

The initial conditions are constant density ρ = 1000 kg/m3, zero velocity and
pressure 1 bar. The dynamic viscosity is assumed to be constant and set to µ = 1
kg/ms. The velocity profile at the inlet is increased smoothly from v0 = 0 until
v0 = 2 m/s. The Reynolds number, defined as Re = 2rvmean/ν is set to 200
once v0 has been increased to its maximum value. These settings correspond the
case labelled FSI3 in [62]. For simplicity, a very simple structural model with
26 structural points and one mode is used. The position of the structural points
and the mode shape is shown in fig. 3.6. The beam (referred to as a flag in [62])
is divided into 4 sections, with the sections closer to the base shorter than those
closer to the tip. This is to capture to the greater expected bending closer to the

48 3. CAVITY-STORE SIMULATION

base, especially in the low order modes (e.g. first mode shown in fig. 3.6b). The
mode shapes of the points were generated using modal beam analysis in MSC
NASTRAN.

(a) Structural nodes (b) Structural mode shape.

Fig. 3.6: Structural nodes and mode for Turek-Hron benchmark.

Figure 3.7 shows flow visualisations at t = 6.2 s and t = 6.8 s, from a fully
coupled simulation, after the onset of flow oscillations. The structure responds
with the flow oscillations, and carries the deformations into the mesh, with the
flag of the test oscillating at approximately 8.5% of the total channel width.

(a) t = 6.2s

(b) t = 6.8s

Fig. 3.7: Velocity magnitude plots for Turek-Hron test case. Velocities are given in
m/s.

3.2. SIMULATION SETUP & TESTS 49

3.2.5 Cavity Store Setup

The cavity store case mirrors wind tunnel experiments conducted at Sandia Na-
tional Laboratories. In these experiments, a square cavity of 127 mm length (L)
and 38.1 mm depth was fitted with a two-legged cylindrical store model measur-
ing 108 mm in length (0.85L) with a diameter of 19.1 mm. The two cylindrical
supporting legs had a diameter of 12.7 mm. The geometry of the cavity with
store is shown in fig. 3.8. The volume of the store geometry was approximately
6% of the cavity.

Ø

Fig. 3.8: Geometry details for cavity and store (not to scale).

The computational mesh for the cavity store case was made up of 534 subdo-
mains, ranging in size from 1,430 to 117,649 nodes, with the total mesh size
approximately 18 million nodes. Figure 3.9 shows the mesh, with detail of the
store and surrounding cavity. As can be seen, the nodes are primarily clustered
within the cavity and near the upper wall of the tunnel. The remaining tunnel
walls are located 0.7 m away from the cavity in their respective directions. The
grid size in the regions furthest away from the cavity at the entrance, exit and
other walls of the wind tunnel is sufficiently large that numerical dissipation sig-
nificantly damps out reflections. Symmetry boundary conditions are used at all
tunnel boundaries except for the upper wall, which uses a wall boundary condi-
tion, and the inlet and outlet, which use inflow and outflow boundary conditions
respectively. The initial flow conditions are given in table 3.1.

Mach Number (M) 0.79
Stagnation Pressure (P0) 111 kPa
Dynamic pressure (q) 32.1 kPa
Temperature (T0) 324 K
Velocity (u∞) 270.02 m/s

Tab. 3.1: Flow conditions for cavity store case as detailed in [56].

For the store structural model, a simple (locally) 1D stick model was constructed
with 10 modes. The model is shown in fig. 3.10. Again a baseplate has been

50 3. CAVITY-STORE SIMULATION

Fig. 3.9: 18 million node mesh (with detail) for cavity store case. Random colouring
of the individual subdomains is used for ease of visualisation, and has no
bearing on the structure of the mesh overall.

used to make the model 3D and avoid any of the singularities when using the 3D
mesh motion routines on a lower dimensional point set. The baseplate consists
of 4 points in the horizontal plane, perpendicular to the remaining points of the
structural model, as can be seen in fig. 3.10.

3.3 Results

The simulation was run in both static and FSI configurations3. Pressure mea-
surements were taken from a point directly behind the store in the streamwise
direction (referred to as AWP1 in [56]). The power spectrum of the pressure
in the cavity is shown in fig. 3.11 for both static and FSI simulations, as well
as the original data from the Sandia experiments. Given the vibrations of the

3A video showing exaggerated motion (x5000) of the store can be found at https://youtu.
be/4mmX_MBq3fE

https://youtu.be/4mmX_MBq3fE
https://youtu.be/4mmX_MBq3fE

3.3. RESULTS 51

0.1

0.08

0.06

0.040

0.01

0.01
0.02

0.02

0
-0.01 0

Fig. 3.10: Structural model (vertically inverted) of store in cavity store case. Note the
4 baseplate points below the model on the horizontal plane to ensure the
resulting linear system is of correct rank.

store are small (approximately 10−6 m), the static case shows clearly the first
two major aeroacoustic modes from the experiment. The FSI case gives similar
results for the first two modes, but additionally reveals the 3rd, 4th, 5th modes,
matching closely with those found in the experimental data. This shows that the
interactions the vibrating store with the flow is important in predicting resonant
behaviour, and cannot be faithfully recreated with the same fidelity with a static
simulation.

The primary difference in the simulations compared to the experimental data is
the increased noise floor, particularly above the second mode. This is seen in
fig. 3.11 in both the static and FSI simulations where the power floor is above the
experiments for frequencies above approximately 2000Hz. This is likely due to
the short simulation time (0.17 s) compared to the time of the Sandia experiments
(5 s). This shorter timescale means that the smoothing effect of sampling over
a longer period is not as pronounced, and various transient flow features from
the beginning of the simulation may still be in effect. In order to partially
mitigate these effects, the sampling frequency used in the calculation of the
power spectrum was increased from 10 Hz in the experiments, to 50 Hz in the
simulations. While this increase in sampling frequency aided in the resolution of
the modal frequencies, it was not able to fully eliminate the increased noise floor
at the higher (> 2000 Hz) frequencies. It is expected that a longer simulation
time would further lower the high frequency noise floor, as well as smooth the
power spectrum at those frequencies, helping to eliminate discrepancies between
the simulation and experiment.

52 3. CAVITY-STORE SIMULATION

Fig. 3.11: Power spectrum for pressure measured on wall of cavity directly behind
store. The first 5 modes are indicated. Both static and FSI simulations
are able to accurately reproduce modes 1 and 2, while the FSI simulation
additionally reproduces modes 3, 4 and 5 from the simulation, showing the
advantages of the FSI simulation over the static.

3.3.1 Estimated Savings From Multistage Mesh Motion

Multistage mesh motion was implemented using the existing subdivisioning of
the domain mesh (534 subdomains) to construct the acyclic digraph structure
of section 2.3. The subdivisions were not all cubes, hence were not necessarily
optimal, however the majority had low ratio of surface nodes to volume nodes
(i.e. not too ‘thin’ in any direction), ensuring reasonable savings in the vol-
ume update step. The implementation used the multiscale method of Kedward
[4] for the mesh motion at the individual stages, with approximately 10% of
the control nodes at each stage being used as base points. As the goal of this
work is to show the efficacy of FSI methods more generally to the problem of
reproducing the experimental frequencies, the multistage mesh motion method
was implemented directly, hence there exists no reference implementation of the
mesh motion algorithm within FLAMENCO. This means it we can only approx-
imate the reduction in cost of the volume update using the geometry of the mesh
and its subdivisioning, using the methods of section 2.3.3.

For the set of control points, the structural nodes and the walls of the cavity are
used. The walls of the cavity are used as control points, as we must ensure that
the walls of the cavity do not flex with the motion of the store. The motion of
the control nodes is then transferred to the individual faces of the subdomains
(in parallel), then from the subdomain faces to the corresponding volume nodes,

3.4. CONCLUSIONS & FUTURE WORK 53

using the principle shown in fig. 2.7. The resulting digraph is shown in fig. 3.12.

s0

s1 s534...

...s1,1 s534,1

Fig. 3.12: Digraph structure for multiscale mesh motion in cavity store simulation.
Motion is transferred from the base points to the subdomain faces (s0 →
s1 . . . s534), then from the subdomain faces to the subdomain volumes
(s1 . . . s534 → s1,1 . . . s534,1).

Overall, the estimated savings for the volume update step (in both storage/mem-
ory and operations) from use of the multistage mesh motion algorithm in this
case is 64.57%. This is similar to the results of section 2.4, and like that case,
the savings are reduced by the suboptimal (non-cube) shape of the domains, but
are still significant. A proxy for mesh quality, the cell Jacobians, is monitored
during the running of FLAMENCO, which triggers warnings when cells begin
to become degenerate. As such, it was found that no adverse decrease in abso-
lute mesh quality was caused by either the multistage or multiscale mesh motion
algorithms.

3.4 Conclusions & Future Work

In this chapter we have described the implementation of FSI functionality into
the FLAMENCO fluid solver, using a modal structural solver, as well as the
multistage mesh motion method of chapter 2. The solver was then used to
replicate physical experiments conducted by Sandia National Labs. The results of
the solver with FSI enabled out-performed both the static and one-way coupling
simulations, and better matched the experimental data, accurately predicting all
five modes seen in the experimental data, compared to the two modes predicted
by the other simulations. This demonstrates that even for vibrational problems
where motion is exceedingly small, FSI is necessary to accurately predict detailed
aeroacoustic phenomena.

The size of the mesh (18×106 nodes) also shows that the multistage mesh mo-
tion method has favourable computational properties, and that it is able to be

54 3. CAVITY-STORE SIMULATION

successfully employed in large ‘real world’ FSI simulations. Unfortunately the
lack of a baseline implementation meant that it was difficult to quantify the ex-
act efficiency gains by using the multistage mesh motion method beyond general
estimates, though the estimates line up well with the theory and experiments
described in chapter 2.

4. RBF-BASED MESHLESS FLUID SOLVER

4.1 Introduction

The previous two chapters have dealt with methods and applications in the mo-
tion of arbitrary point clouds. Although these methods are themselves meshfree,
they are equally applicable to almost any method in the solution to PDEs in
which the domain has been discretised, independent of the actual mode of dis-
cretisation. In particular, it can be applied to structured, unstructured, meshed,
or meshless domains. In this chapter we turn to a meshless method of solving
flow equations on the point cloud alone, with no reliance on additional informa-
tion about connectivity of points. We develop a solver based on the RBF finite
difference (RBF-FD) method and apply it to the solution of unsteady, viscous
flow expressed via the streamfunction-vorticity formulation of the incompressible
Navier-Stokes equations. We describe a technique for easily establishing bound-
ary conditions at non-slip walls on vorticity in the meshfree case. A number of
studies are conducted on some common benchmark cases.

The chapter is structured as follows:

Section 4.1 gives some background of meshless vs. meshless solvers for in-
compressible flow, with particular attention to the RBF-FD method and the
streamfunction-vorticity formulation.

Section 4.2 introduces two equivalent formulations for approximating derivatives
of functions approximated by RBFs that will be used going forward in the re-
maining chapters, and provides a simple example of the method for 1D functions.

Section 4.3 then introduces the streamfunction-vorticity formulation for the in-
compressible Navier-Stokes equations. The derivation of the governing equations
is gone through in detail, and various boundary conditions are described, includ-
ing an adaptation of boundary conditions from meshed solvers to the meshless
case. The solver is then benchmarked against the cases of freestream, flow in a
pipe, lid driven cavity, and flow past a square cylinder.

56 4. RBF-BASED MESHLESS FLUID SOLVER

4.1.1 Background

Meshfree or meshless methods for the solution of PDE are currently an area of
great interest. One of the primary benefits of meshless methods is that they
reduce or eliminate many of the complex mesh generation tasks involved in more
traditional solution methods such as finite difference/volume/element or spec-
tral methods. These issues are particularly prevalent when modelling complex,
irregular, or very high resolution domains, especially when a structured mesh is
necessary for the given solver. Even in cases where a meshless method requires,
or performs better, on a ‘structured’ point cloud (e.g. when points are arranged
on a Cartesian grid), the lack of a need to generate adjacency or grid connectivity
information will often greatly reduce the complexity (manual or computational)
of generation, as well as having benefits for processing and memory requirements,
which can be significant in the meshed case. However these simplifications and
considerable benefits in the setup phase of a solution have often come at the
cost of increased runtime computational complexity as well as implementation
complexity. Historically, these additional complexities have been found to be
significant and difficult to overcome, and as such have limited the applicability
of meshless methods in many cases. Other practical issues with meshless meth-
ods have traditionally been in relation to the application of boundary conditions,
and the need for higher order numerical integration.

More recently, great advances have been made in meshless methods to reduce or
eliminate many of these issues [64], and meshless methods are more and more
being applied to model complex real world phenomena [5].

Some of the earliest meshfree methods came in the form of smoothed-particle hy-
drodynamics (SPH), which was developed by Lucy [65], and Gingold and Mon-
aghan [66], to solve problems in astrophysics, and has since found significant
applications in solid mechanics [67] and computer graphics [68]. Difficulties arise
in imposing boundary conditions with SPH [69], as the boundary is in some sense
virtual when compared to the very physical simulation of the particles. A number
of methods have been proposed to deal with boundaries in SPH, yet it remains
an active and significant area of research within the field. Another early form
of meshless PDE solution was the so called generalised finite difference (GFD)
method pioneered by Jensen [70]. GFD methods originally had many difficulties
including selection of neighbouring points in such a way that avoided singular
systems when solving. Many of these issues have since been resolved by intro-
ducing algorithms for neighbour selection, and using a least-squares techniques
to determine the solution to the resulting over-constrained system.

Meshfree methods were then developed from the Galerkin framework, and were
notably some of the first to address the difficulties with the application of bound-
ary conditions. The diffuse-element method (DEM) in which derivatives of the

4.1. INTRODUCTION 57

basis functions are approximated directly, rather than by differentiating the ap-
proximation of the primary variable, was one of the early successes of Galerkin
formulated meshless methods [71]. Improvements were made to the DEMmethod
to address accuracy at boundaries and discontinuities in the domain, namely
element-free Galerkin (EFG) [72] and reproducing kernel particle (RKP) [73]
methods. EFG introduced Lagrange multipliers and higher order quadrature
based on a background mesh to improve accuracy, while RKP was a discretisa-
tion of existing kernel methods and could also serve as a correction to SPH meth-
ods. Even with these improvements, numerical integration in Galerkin methods
proved to be difficult, with both direct integration and quadrature methods pro-
ducing significant errors. These issues were addressed by the development of
stabilised conforming nodal integration (SCNI) by Chen et al. [64] which em-
ploys a gradient smoothing to satisfy a divergence constraint on the numerical
integration. This avoided the errors of the quadrature method, and was also able
to serve as a correction to the direct method.

The foundational theory for RBF based methods for solving PDEs was estab-
lished by Franke and Schaback [74], although RBFs of course had almost 3
decades of already established work as a framework for interpolation beginning
with Hardy in 1971 [75], and practical examples of RBFs for numerically solving
PDEs can be seen as early as 1990, e.g. Kansa [76]. RBFs are a popular method
in the broad class known as collocation methods, in which an approximating
finite basis for the typically infinite-dimensional solution space is chosen, along
with a discrete set of points at which the relevant equations are to be satisfied.
Much of the work in RBF collocation methods has been related to the condi-
tioning of the resulting systems, with various methods proposed to alleviate the
difficulties. Domain decomposition methods such as Wong et al. [77] and Kansa
& Hon [78] were shown to improve condition numbers for the relevant systems,
while Hon and Schaback [79] investigated the influence from the choice of ba-
sis function and related parameters. Localised methods for RBF interpolation
more generally were introduced by Wendland [51], using compactly supported
basis functions, which have been incredibly important in all areas of RBF inter-
polation. These ideas were also adapted by a number of authors by truncating
(i.e. artificially enforcing compact support) multiquadric basis functions, among
others. Partitions of unity were also introduced in conjunction with compact
support to improve conditioning while retaining certain desirable convergence
properties. More recently, significant development of RBF methods for PDEs,
namely RBF-FD methods, especially in the context of fluid flows, have been
completed by Flyer and Fornberg et al.[80]. We present more detail on these
methods later in this chapter.

There are also examples of mixed methods, in which meshless and meshfree
solvers are coupled in an attempt to leverage the advantages of each. Once
such example is from Javed [81] in which flow over a cylinder is simulated using
an RBF-FD solver close to the cylinder, with a conventional finite difference

58 4. RBF-BASED MESHLESS FLUID SOLVER

solver used in the rest of the domain. Particular attention must be paid to the
interface between the meshed and meshfree solvers, where the points must align,
so boundary conditions can be more readily transferred between the meshed and
meshfree solvers. As this method has been used for FSI applications, more detail
is available in section 5.1.1.

4.2 Approximation of Derivatives Using RBFs

The goal of this section is to detail methods of generating derivatives of an
RBF-approximated function. This is most commonly done by generating a dif-
ferentiation matrix D such that a derivative can be approximated through a
single matrix multiplication.

There are two main methods of approximating derivatives with RBF interpo-
lation: a standard method in which the interpolation equation is differentiated
directly, and a so-called Lagrange method, in which RBF interpolation is refor-
mulated in a form using cardinal basis functions. Both methods are equivalent,
although one may be preferred over the other depending on application and im-
plementation. Although in the current work differentiation is the focus, these
methods apply equally to any linear operator, hence we prefer a more general
notation for the time being.

4.2.1 Standard Method

Given the form of standard RBF interpolation, we can approximate the appli-
cation of a linear operator L by simply applying it directly to the interpolation
expression. That is, given

f(x) =
∑
i

αiϕ(ri) (4.1)

where ri = ∥x− xi∥, we apply L to each side and exploit linearity to obtain

Lf(x) =
∑
i

αiLϕ(ri). (4.2)

Hence calculating the result of applying the operator to f is reduced to applying
it to the basis functions ϕ, which for most practical cases will have a simple
closed form expression. Note also that the interpolation coefficients αi remain
unchanged between eq. (4.1) and eq. (4.2), and so when applying the approxi-
mation, we need only use the appropriate ϕij matrix, and a single solve for αi
from eq. (4.1) suffices for any linear operator. For practical purposes, this means

4.2. APPROXIMATION OF DERIVATIVES USING RBFS 59

that coefficients can be calculated once and reused for derivatives of all orders
and variables.

Since eq. (4.2) is determined for a specific point x, solving the equation over
all desired points of interpolation yields a matrix which can be applied to the
vectors of the basis functions and their derivatives. In practice, it can be more
convenient to develop a differentiation matrix that can be applied directly to f
itself. As such, the Lagrange formulation described in section 4.2.2 is more often
seen, and forms the basis of RBF-FD methods.

4.2.2 Lagrange/Variational Method

The Lagrange formulation (also referred to as the variational formulation), is
an equivalent formulation of the method presented in section 4.2.1, and is the
more commonly used approach when applying RBF approximations in RBF-
FD methods in PDE. The equivalence was first shown by Madych and Nelson
[49, 82] who posed the variational problem in an infinite-dimension Hilbert space,
while a more practical result by Wu and Shaback [83] showed that there exists
a solution to the corresponding finite-dimensional minimisation problem, and
hence an equivalent Lagrange-type representation of eq. (4.1) given by

f(x) =
∑
j

ψj(x)f(xj) (4.3)

where ψi(xj) = δij are cardinal basis functions. Cardinal basis functions on a set
of interpolation points xj, j = 1, ..., N , have the property

ψj(xi) =

{
1, i = j

0, i ̸= j
.

It should be noted that these cardinal functions are distinct from the Kronecker
delta itself, because although our approximation is computed at discrete points,
the domain of interest is still continuous, and no restrictions are placed on the
value of ψj away from the interpolation points. Figure 4.1 gives an example of
the normalised sinc function, often seen in wavelet approximations, defined on a
1D grid. Such a function clearly satisfies eq. (4.3) at integer points, but still has
expressive power on the entire domain.

Applying the linear operator to eq. (4.3), we obtain

f(x) =
∑
i

Lψi(x)f(xi).

It so happens that there is a very neat closed-form expression for these cardinal
function terms, given as a ratio of determinants of matrices of the RBFs [84], and

60 4. RBF-BASED MESHLESS FLUID SOLVER

-3 -2 -1 1 2 3

0.5

1

Fig. 4.1: Example cardinal basis function sinc(r) = sin(πr)/πr, r ̸= 0, on 1D unit grid.

in some situations it may be possible to calculate the action of the linear operator
directly, however for practical purposes, the calculation of such determinants is
difficult and generally unnecessary. As such, we prefer to simply compute the
values of Lψi at a given approximation point x.

Letting wi = Lψi(x), and using eq. (4.2), we obtain a linear system

Aw = LB,

where Aij = ϕ(rij) = ϕ(∥xi − xj∥) and Bi = ϕ(ri) = ϕ(∥x − xi∥). Once solved
for wi, the approximation is given at each x by

Lf(x) =
∑
i

wif(xi). (4.4)

The primary advantage of this method is that the weights wij are related to the
original function itself, evaluated at the points xi, rather than the underlying
RBFs, hence a differentiation matrix D = A−1LB can be constructed such that

Lf = Df. (4.5)

Both the standard and the variation formulations are readily localised, as the
approximation at each point can be restricted in various ways to an appropriate
number of neighbouring points, eliminating the need to invert a global matrix
containing all points. In the RBF-FD method, this is generally done by way of
a stencil, described in section 4.2.4.

4.2.3 Example

As a reasonably contrived example to demonstrate the machinery of section 4.2,
consider the 1D function f(x) = sin(x). We wish to approximate the derivatives
of f using RBF approximation. First let us choose a discrete set of points
at which to anchor our approximations - 100 evenly spaced points across the

4.2. APPROXIMATION OF DERIVATIVES USING RBFS 61

interval [−2π, 2π], which we will denote xi. Here we will use Wendland’s C2
basis function, given by

ϕi(x) = (1− ri)
4(4ri + 1)

where ri(x) is the distance from x to the point xi, normalised by a chosen support
radius rs using ri(x) = ∥x−xi∥r−1

s . The first two derivatives of this basis function
are given by

ϕ′(ri) = 20(x− xi)(ri − 1)3r−2
s

ϕ′′(ri) = 20(ri − 1)2(4ri − 1)r−2
s .

Evaluating eq. (4.1) at each interpolation point we get the linear system

f(xj) =
∑
i

αiϕ(ri(xj))

which we can solve for αi. These αi can then be used for all subsequent calcu-
lations. To approximate the derivatives of f at the point x, we then simply use
eq. (4.2), i.e.

f ′(x) =
∑
i

αiϕ
′(ri(x))

f ′′(x) =
∑
i

αiϕ
′′(ri(x)).

Figure 4.2 shows the results of an RBF approximation compared to the exact
derivatives. Here we can clearly see that for a large support radius (generally
much greater than the domain) in fig. 4.2b, this approximation is quite accurate
for both first and second order derivatives, even at the boundary, compared to
the smaller radius of fig. 4.2a. This supports the notion that compact support
generally detracts from smoothness of approximation [85], as extending the ra-
dius beyond the domain in essence removes compact support. In reality, care
should be taken using large support radii (as well as non-compactly supported
basis functions) in naive implementations of RBF methods, as they can result
in a dense or ill conditioned linear system when solving for the α coefficients.
Although compact support provides a natural localisation for the interpolation,
that is, any given point is controlled by proximal points only, the reduction
in smoothness can quickly become a limiting factor in approximating higher
order derivatives. As such, the stencil method of localisation discussed in sec-
tion 4.2.4 is more often employed in RBF-FD implementations, where accuracy
and smoothness of derivatives is critical.

62 4. RBF-BASED MESHLESS FLUID SOLVER

-6 -4 -2 0 2 4 6

-2

-1

0

1

2

(a) rs = 1

-6 -4 -2 0 2 4 6

-2

-1

0

1

2

(b) rs = 1000

Fig. 4.2: Approximation of derivatives using RBF method.

4.2.4 Stencil

To localise the approximation of RBF interpolations, RBF-FD methods often
employ a stencil at each point. The most common approach of constructing
stencils is a nearest neighbour approach, selecting the ns nearest points to each
point x in the domain as shown in fig. 4.3.

Once the stencils have been generated, we calculate the weights at each point
by using eq. (4.4), which in general requires the inversion of the ns × ns RBF
matrix for each stencil, hence for a domain of size N , the cost of this method
is approximately O(Nn3

s). For each point we then have a differentiation matrix
Dx, which can be stacked together into a global differentiation matrix, allowing
derivatives to be calculated on the domain with a single matrix multiplication.
Since ns << N , the resulting differentiation matrix is sparse, with approximately
Nns non-zero elements. This helps greatly when required to solve linear systems
in the approximation of PDE (e.g. Poisson’s equation in section 4.3).

4.2.5 Choice of Basis Function

One of the main difficulties in any RBF method is the conditioning of the matrices
involved, e.g. the differentiation matrix D in eq. (4.5), or the interpolation

4.2. APPROXIMATION OF DERIVATIVES USING RBFS 63

Fig. 4.3: Stencil of ns nearest neighbours centred at the point x.

matrix H in eq. (2.7). In the case of general interpolation, the conditioning is
important for accuracy, however when applying the approximations to derivatives
for numerically solving PDEs, convergence of the numerical method must also be
taken into account, which is significantly more sensitive to the conditioning of the
matrices, as approximations are applied repeatedly. For infinitely smooth RBFs
in the RBF-FD method, conditioning can be upheld for increasing resolution
(shrinking radius) by increasing a shape parameter ϵ. The issue is that this causes
convergence failure, as the more peaked the RBFs become, the less accurate the
approximation is. To avoid this, it is possible to keep ϵ small and instead use a
stabilisation algorithm [86]. However, as ϵ → 0, the function space spanned by
the infinitely smooth RBFs is close to the space spanned by polynomials, hence
adding polynomials in these cases provides little benefit [80]. In the case of PHS
basis functions augmented with polynomials, it has been found that they provide
a higher order algebraic convergence than the various infinitely smooth RBFs,
and in fact numerical studies by Flyer et al. [80] have shown that the convergence
is dominated by the higher order polynomial terms. In addition, PHS require
no shape parameter optimisation, with the only significant parameter requiring
selection is the order of the PHS itself. This order generally must be at least
d + 1, where d is the order of the derivative to be approximated. In the cases
of order d or less, the PHS reduces firstly to a constant, then to zero, and the
method reduces to polynomial interpolation.

For these reasons, we have opted to use PHS for our RBF-FD method. The

64 4. RBF-BASED MESHLESS FLUID SOLVER

polyharmonic spline [87] basis functions are given by

ϕ(r) =

{
rk if k odd
rk log r if k even

4.3 Streamfunction-Vorticity Formulation for Unsteady,
Incompressible, Viscous Flow

The formulation of the unsteady, incompressible Navier-Stokes equations in terms
of a streamfunction and vorticity terms has considerable history, and was first
used in a finite difference algorithm by Fromm [88] at Los Alamos laboratory.
The formulation relies on introducing two scalar fields - a stream function ψ
and the vorticity ω. In this way we are able to eliminate pressure and force
terms (assuming their fields are conservative), resulting in a simple but powerful
formulation.

4.3.1 Vorticity Transport Equation

To obtain the vorticity-transport equation, we begin with the incompressible
Navier-Stokes equation

∂V

∂t
+ (V · ∇)V = ν∇2V − 1

ρ
∇p+ F. (4.6)

Here V is velocity, ν is the kinematic viscosity, ρ is the density, p is the pressure,
and F contains any body accelerations acting on the flow field, e.g. gravity. Next
we take the curl of eq. (4.6) and apply the definition of vorticity, i.e. ω = ∇×V .
Since we assume variables and solutions have sufficient smoothness, we apply
Schwarz’s theorem allowing us to switch the order of the various linear operators
to obtain

∂ω

∂t
+ (V · ∇)ω = ∇×

(
ν∇2V − 1

ρ
∇p+ F

)
.

Assuming constant density and dynamic viscosity throughout the domain we get

∂ω

∂t
+ (V · ∇)ω = ν∇×∇2V − 1

ρ
∇×∇p+∇× F. (4.7)

For conservative body forces, i.e. when F is the gradient of some sufficiently
smooth scalar field ϕ, ∇ × F = ∇ × ∇ϕ = 0, and since pressure is already a

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 65

scalar field (smooth from previous assumption) we also have ∇×∇p = 0, hence
eq. (4.7) becomes

∂ω

∂t
+ (V · ∇)ω = ν∇×∇2V.

Finally, again switching the order of linear operations and applying the definition
of vorticity we arrive at vorticity-transport equation

∂ω

∂t
+ V · ∇ω = ν∇2ω. (4.8)

This transport equation is for the general (3D) case. In two dimensions, we can
simplify further. Expanding eq. (4.8) we obtain the equations

∂ωx
∂t

+ u
∂ωx
∂x

+ v
∂ωx
∂y

+ w
∂ωx
∂z

= ν

(
∂2ωx
∂x2

+
∂2ωx
∂y2

+
∂2ωx
∂z2

)
∂ωy
∂t

+ u
∂ωy
∂x

+ v
∂ωy
∂y

+ w
∂ωy
∂z

= ν

(
∂2ωy
∂x2

+
∂2ωy
∂y2

+
∂2ωy
∂z2

)
∂ωz
∂t

+ u
∂ωz
∂x

+ v
∂ωz
∂y

+ w
∂ωz
∂z

= ν

(
∂2ωz
∂x2

+
∂2ωz
∂y2

+
∂2ωz
∂z2

)
.

Fortunately, we can eliminate two of these equations and simplify the third.
From the definition of vorticity, ω = ∇× V , we also have the equations

ωx =
∂w

∂y
− ∂v

∂z

ωy =
∂w

∂x
− ∂u

∂z

ωz =
∂v

∂x
− ∂u

∂y
. (4.9)

Since we are now in two dimensions, w = 0, and any derivatives in the z direction
vanish. Hence we have ωx = ωy = 0 and the expanded equations reduce to the
single equation. We can further simplify by ensuring that our simulations have
unit freestream velocity and characteristic length, in which case we now have

∂ωz
∂t

+ u
∂ωz
∂x

+ v
∂ωz
∂y

=
1

Re

(
∂2ωz
∂x2

+
∂2ωz
∂y2

)
. (4.10)

Combined with the stream function in section 4.3.2, this is the form of the
vorticity transport that we will solve numerically.

66 4. RBF-BASED MESHLESS FLUID SOLVER

4.3.2 Streamfunction

Since eq. (4.10) still has 3 unknowns u, v, and ωz, we need more equations for
a solution. Given our previous assumptions of smoothness on the velocity field
components u and v, the velocity vector field itself is smooth (enough), and we
can safely posit the existence of a scalar field ψ such that

u =
∂ψ

∂y
(4.11)

v = −∂ψ
∂x

. (4.12)

Substituting this into eq. (4.10) we obtain

∂ωz
∂t

+
∂ψ

∂y

∂ωz
∂x

− ∂ψ

∂x

∂ωz
∂y

= ν

(
∂2ωz
∂x2

+
∂2ωz
∂y2

)
,

and we have now reduced our unknowns and required equations to two. It should
be noted that continuity of the flow using the stream function is automatically
satisfied since

∇ · V =
∂u

∂x
+
∂v

∂y
=

∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0. (4.13)

4.3.3 Poisson Equation

We still require an additional equation to be able to solve eq. (4.10). Recall
eq. (4.9) defining the vorticity in terms of derivatives of the velocity. Now that
we have defined the stream function ψ, we can express eq. (4.9) as

ωz =
∂v

∂x
− ∂u

∂y
= −

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
.

Switching signs and dropping the z subscript for simplicity, we obtain the Poisson
equation

∆ψ = −ω.

We now have the following coupled equations, which are collectively known as the
(non-dimensional) stream-function vorticity formulation for 2D incompressible
flow:

∂ωz
∂t

+
∂ψ

∂y

∂ωz
∂x

− ∂ψ

∂x

∂ωz
∂y

=
1

Re

(
∂2ωz
∂x2

+
∂2ωz
∂y2

)
(4.14)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω.

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 67

4.3.4 Boundary Conditions

An area of great interest when simulating the NS equations in stream-vorticity
formulation is the determination of an appropriate boundary condition for vor-
ticity. For some boundaries, the condition is obvious and/or simple to enforce,
e.g. at a farfield freestream boundary, one would expect that ω = 0 uniformly.
However in the case of a solid wall, the boundary condition is either not apparent,
or not easily applied.

In the case of the stream-vorticity formulation, the boundary conditions at an
impermeable, no-slip wall are often stated as

ψ = 0,
∂ψ

∂n
= 0.

The first of these conditions could be equivalently stated as requiring zero tangen-
tial derivative, and as such gives vanishing normal velocity, and hence imperme-
ability. The second, vanishing normal derivative, gives zero tangential velocity,
and hence provides a no-slip condition.

Unfortunately, as these are both conditions on the stream function ψ, i.e. a
Cauchy-type boundary condition, the Poisson equation ∆ψ = −ω often becomes
ill-posed, and existence/uniqueness of a solution is no longer guaranteed. In
addition, multiple conditions on a single boundary are difficult to apply in the
RBF-FD case. Basic experiments with alternating Dirichlet/Neumann boundary
points in an attempt to force the Cauchy conditions via mixed conditions, as well
as least-squares approximation of the over-constrained problem, were largely
unsuccessful. Hence it is desirable to use a method which provides a direct
condition on ω.

Basic Formulation of Vorticity Boundary Condition

The most easily derivable boundary condition for ω, and likely the most natural,
is to simply enforce the governing equations at the boundary using the Poisson
equation, i.e. once the Poisson equation has been solved in the update loop, in
can be used in reverse to specify ω at the boundary, i.e.

−ω = ∆ψ =
∂v

∂x
− ∂u

∂y
.

This condition is natural and has been used with some success in various CFD
configurations [89]. However, it may be more or less useful, or difficult to apply,
depending on the method chosen to approximate the velocity derivatives, or
indeed the overall method of solution of the governing equations. As such, some

68 4. RBF-BASED MESHLESS FLUID SOLVER

further consideration must be given to the solution method when choosing a
boundary condition for ω.

Vorticity Boundary Conditions for Meshless Methods

For meshed solvers, two common methods for obtaining boundary conditions for
ω are that of Thom [90], and one attributed to Jensen1 by Roache [92]. As we
will see, Jensen’s formula can be derived in a similar manner to Thom’s, with a
higher order starting approximation. Although these methods are not directly
applicable to the current meshless case, we will introduce them, then discuss how
they can be adapted to the meshless case.

In Thom’s method, we first consider a wall of arbitrary orientation with normal
n and moving at velocity vt as shown in fig. 4.4, where ψint is the value of the
streamfunction at some interior point at distance h, and ψwall is the value of the
streamfunction at the wall. Note that both these quantities for ψ are known, ψint

from the solve on the Poisson equation, and ψwall from the Dirichlet boundary
conditions.

Fig. 4.4: Thom’s method for arbitrary moving wall in meshed solver.

Taking a second order Taylor approximation for the streamfunction ψ at the wall
in terms of ψint, we obtain

ψint = ψwall + h
∂ψ

∂n

∣∣∣∣
wall

+
h2

2

∂2ψ

∂n2

∣∣∣∣
wall

+O(h3).

1Roache appears to have misspelt V.G. Jenson’s name as ‘Jensen’ when referencing the
original 1959 work [91]. Unfortunately for Jenson, this error has been replicated throughout
almost all of the literature on the subject - a tradition I have elected not to break.

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 69

Observe from the interpretation of the streamfunction that ∂ψ
∂n

∣∣
wall

= vt. Also,

by the definition of vorticity, ∂2ψ
∂n2

∣∣∣
wall

= −ωwall. Hence we have

ψint = ψwall + hvwall −
h2

2
ωwall +O(h3).

Solving for ωwall then gives a Dirichlet condition on the vorticity at a moving
wall:

ωwall =
2

h2
(ψwall − ψint) +

2

h
vwall +O(h). (4.15)

Note that eq. (4.15) now has a first order truncation error. It is also interesting
to note that although the error is first order, the convergence remains second
order, as shown by Huang and Wetton [93]. The error can also be reduced to
second order by using an additional interior point for ψ and a higher order Taylor
approximation (Jensen’s method) which results in:

ωwall =
1

2h2
(7ψwall − 8ψint1 + ψint2 + 6hvwall) +O(h2). (4.16)

It should also be noted that we have never assumed zero normal velocity (vn = 0)
at the wall - the term simply never appears in the expression, since velocity
normal to the wall does not produce any local vorticity. As such, this boundary
condition is the general vorticity condition for non-slip walls, moving (normally
and/or tangentially) or otherwise, and can be directly applied in the FSI case of
chapter 5.

Turning to the meshless case, we have no adjacency information, hence no specific
concept of the first or second interior points normal to the boundary. This is
especially true if the point cloud is scattered, rather than in an organised grid.
A number of ways have been proposed to solve this issue, including the use of
locally orthogonal nodes near boundaries, or methods using ghost nodes external
to the domain [94].

Here we propose a new method for the calculation of Dirichlet conditions, using
only the normal direction of each boundary node. This method simplifies the
calculations and eliminates the need for any complex near-boundary mesh-like
structure, or the calculation of field values at external ghost nodes. We make
use of a local approximation of ψ internal to the boundary, which we can then
use in eq. (4.15) or eq. (4.16) directly, rather than having to discretise the more
complex Poisson equation. Since most of the machinery (stencils, normals, basis
functions, etc.) for interpolation is already setup from the construction of the

70 4. RBF-BASED MESHLESS FLUID SOLVER

domain, the approximation of ψ at the appropriate interior points is reasonably
straightforward. The basic geometry is shown in fig. 4.5.

Fig. 4.5: Thom’s method for arbitrary moving wall in meshless solver where ψint is
approximated from ψ at the surrounding points.

As is usual for RBF methods, most of the calculation involved in the interpolation
can be done prior to runtime. First, we must determine the location of the
point at which we wish to approximate ψ. This is done using the normal of the
boundary point, specified when creating the domain, combined with a distance h
which is akin to the grid spacing parameter in the meshed case. This parameter
can be specified manually (globally or locally), or calculated on the fly using a
local density measure. In cases where the density of the boundary points vary
significantly, a local density measure is preferred. An approximation for ψint can
then be obtained using a stencil S about the interior point(s), either by nearest
neighbour or radius. The stream function is then approximated in the standard
way by

ψint =
∑
i∈S

αiϕi(r)

where αi can be determined ahead of time.

Of course RBF approximation is not the only possible means of determining ψint,
any suitable meshless interpolation method can be used.

Below we give a summary of boundary conditions for geometrically stationary
boundaries, both streamfunction and vorticity. Streamfunction boundary condi-
tions for moving walls (normal motion) are discussed in chapter 5.

Wall (slip)

A slipping wall is perhaps the simplest boundary condition, as it generates no
vorticity (the fluid does not get ‘stuck’ to the wall). The conditions on ψ and ω

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 71

are

ψ = C , for some constant C

ω = 0.

Wall (non-slip)

A non-slip wall has the same condition on ψ as the slipping case (no fluid should
be moving tangentially through the wall), and the vorticity produced is described
by Taylor approximations normal to the wall, given in section 4.3.4 by either
Thom’s or Jensen’s formulas. The conditions are

ψ = C, for some constant C

ω =
2

h2
(ψwall − ψint) +

2

h
vwall (Thom)

ω =
1

2h2
(7ψwall − 8ψint1 + ψint2 + 6hvwall) (Jensen).

Inlet/Outlet

Assuming we have steady flow at a vertical inlet or outlet with a known (defined)
normal velocity distribution u = u(xwall, ywall), v = 0, we have ∂xu = ∂xv = 0,
hence by the continuity equation eq. (4.13), we also have ∂yv = 0. Then by the
definition of vorticity, the vorticity boundary condition is given by

ω = −∂u
∂y
.

Since we have defined the inlet/outlet velocity distribution, we can calculate the
condition on ψ along the vertical as

ψ =

∫
u dy.

This condition can be adapted as required to horizontal inlets and outlets by
switching u and v. For arbitrarily oriented inlets/outlets, the definition of vor-
ticity can be used directly, since both u and v may be non-zero.

72 4. RBF-BASED MESHLESS FLUID SOLVER

Corners

One issue of concern in using mesh-based finite difference methods with the
stream-vorticity formulation, is that the vorticity produces a singularity at non-
smooth boundary corners. A number of solutions have been proposed for this,
including a small displacement of the computational domain from the physical
surface to avoid the singularity [95], and an analytic solution applied over the
computation solution [96]. In the current work, these issues are considered to
be generally overcome by two features inherent in the RBF-FD method. Firstly,
there is a smoothing effect of the RBFs, and hence the effect of the singularity
can be somewhat mitigated by the numerics of the solution. Secondly, corners
can easily be further artificially smoothed out by adjusting the normal at the
corner point, often set to be an intermediate normal determined by normals of
the two adjacent points when generating the domain. That said, as there is no
adjacency or connectivity information between points, the notion of a ‘corner’ is
somewhat non-existent in the meshless case, which may be reflected by the lack
of discussion of the issue in the literature. See section 4.4.1 for comments on
potential future work.

4.3.5 Hyperviscosity Term

One issue that arises in using the RBF-FD approach is that of instabilities caused
by high frequency modes, often introduced by numerical artifacts. In the case
of PDE without dissipative terms, this phenomenon is not limited to RBF-FD
methods, but methods used in traditional FD solutions to deal with the issue
are not generally applicable in the RBF-FD case. It has since been seen that
the natural scattering of RBF-FD stencils can cause high frequency modes to
grow even in PDEs with dissipative terms [80]. This is especially relevant to the
current work, where at low Re, the dissipative viscosity can be relatively small.

To solve this issue, a number of methods were proposed by Fornberg and Lehto
[97]. Firstly, on a 1D grid, a Laplacian can be approximated with regular FD
methods. The maximum order of the Laplacian is dependent on the size of the
stencil and the required accuracy - as order increases, accuracy necessarily de-
creases. Secondly, a global method in which the inverse of the RBF matrix A
is used to filter high frequency oscillations. Since A−1 has the same eigenvec-
tors with inverse eigenvalues, which have been shown experimentally to grow
quickly [97], the effect of applying A−1 to the RHS of the equations is to damp
low frequency eigenmodes slowly, but high frequency eigenmodes quickly. With
appropriate scaling, the damping of the low frequency modes is negligible. This
method also has advantage of being exceedingly simple, but does inherit some
of the cost issues of global methods.

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 73

The most successful method, at least for fluid flows, has been shown to be that
of a hyperviscosity operator applied at the stencil level, also proposed in [97].
This takes the form of a higher order Laplacian, γ∆k, added to the RHS (i.e.
with terms not explicit in time) of the equation, with γ a constant that is often
exceedingly small, usually on the order N−k where N is the number of nodes in
the entire domain. For large domains, this constant can be well beyond machine
precision. Methods of choosing the parameters k and γ are given in the appendix
of [80]. That work also proposed improvements to the method that reduced the
reliance on parameters that were often difficult to tune. Care must be taken to
choose a sufficiently high k so as to only damp out frequencies beyond those of
interest in the solution, however, depending on choice of RBF, k may be limited.
For example, in the case of polyharmonic splines where ϕ(r) = rm, derivatives
beyond m− 1 are only piecewise smooth, and eventually zero, and we have the
general restriction m ≥ 2k + 1.

Adding the hyperviscosity term to eq. (4.14) gives

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+ γ

(
∂2kω

∂x2k
+
∂2kω

∂y2k

)
(4.17)

The calculation of the higher order derivatives required in eq. (4.17) will depend
on the choice of basis function. Since our basis functions are radially symmetric,
the Laplacian operator in dimension d is given by

∆ =
∂2

∂r2
+
d− 1

r

∂

∂r
.

For PHS of order m in dimension 2, i.e. ϕ(r) = rm, the calculation is reasonably
straightforward, with the Laplacian given by

∆rm =

(
∂2

∂r2
− r−1 ∂

∂r

)
rm = m2rm−2.

This formula can then be repeatedly applied to obtain a direct expression for the
hyperviscosity operator of order k as applied to a PHS basis function:

∆krm = m2krm−2k.

4.3.6 Solver Structure

We now must solve the coupled equations

Dω

Dt
= ν∇2ω + γ∆kω

∇2ϕ = −ω

74 4. RBF-BASED MESHLESS FLUID SOLVER

At the highest level, we simply repeat a two-step process: solve the vorticity
transport equation for ω, use the result to solve the Poisson equation for ψ, then
use this result to again solve the vorticity transport, and so on. Of course there
are a number of significant details that must be considered when implementing
the process.

Figure 4.6 shows the general steps involved in the solution of the 2D streamfunction-
vorticity formulation. Each step is detailed below.

Load/Initialise

Yes

No

Is final time
reached?

Apply Dirichlet conditions
on streamfunction

End

Solve Poisson equation to
obtain streamfunction

Calculate velocities from
streamfunction

Step vorticity in time

Apply Thom/Jensen
boundary conditions on

vorticity

Fig. 4.6: Flow diagram for fluid solver with non-moving boundaries.

Step 0: Initialise Simulation

As ψ on the interior is determined explicitly before it is required by the vorticity
transport equation (via velocity terms), there is no need to initialise ψ on the
interior. For ω, we initialise the interior of the domain to zero. Dirichlet con-
ditions on ψ and ω are set during the main loop as required, so do not require
initialisation. Time is initialised to zero.

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 75

The main computational cost of initialisation is the calculation of the RBF-FD
weights, although there are some significant savings to be made. These points
are discussed further in section 5.2.5, as this cost is very much relevant in the
FSI case, where it must not only be computed at initialisation, but at each time
step.

Step 1: Apply Dirichlet Boundary Conditions

We begin the main loop by initialising ψ to be 0 inside the domain, and equal
to the prescribed Dirichlet conditions at the boundaries. This is followed by
initialising ω in a similar manner. For non-slip boundaries, i.e. boundaries
where we intend to use eq. (4.15) to determine vorticity, the initial value will
be overwritten immediately after solving the Poisson equation, and hence never
used. For this reason, the initial ω at these boundaries can be arbitrary. Time
is initialised to 0.

Step 2: Solve Poisson Equation

The stream function ψ on the interior is determined by solving

∇2ψ = −ω

using the differentiation matrix APoisson, that is, solving the linear system

APoissonψ = −ω.

Step 3: Apply Thom’s Equation for Dirichlet Condition on Vorticity

For each boundary point, ψ is approximated at an internal point in the normal
direction as per section 4.3.4. This can be achieved using any interpolation
method available.

Step 4: Calculate Velocities

The velocities are calculated by taking the directional derivatives of the stream-
function ψ using the RBF-FD derivative matrices Ax and Ay, i.e.

vx = Ayψ

vy = −Axψ

Step 5: Step Vorticity Transport Equation in Time

The current solver uses a standard RK4 algorithm to step eq. (4.17) in time,
preferred for its relative simplicity and stability. RK4 methods have been used

76 4. RBF-BASED MESHLESS FLUID SOLVER

with success in RBF-FD solutions for Navier-Stokes equations, e.g. [80]. Given
the equation

dy

dt
= f(t, y),

where f(t, y) is known for all t, and yn = y(tn) is known at some time tn, we can
estimate yn+1 = y(tn +∆t) by

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = f (tn, yn)

k2 = f (tn +∆t/2, yn +∆tk1/2)

k3 = f (tn +∆t/2, yn +∆tk2/2)

k4 = f (tn +∆t, yn +∆tk3) .

4.3.7 Validation

Here we benchmark the solver against some standard test cases found in the
literature.

Free Stream

As an initial sanity test, we use perhaps the most basic case possible, an empty
horizontal freestream of velocity v0 on a rectangular domain of unit height and
length 2. This example demonstrates the setting of inlet/outlet boundary veloc-
ities (i.e. velocities normal to the boundary). In this case we have a very basic
set of Dirichlet conditions for both the streamfunction ψ and the vorticity ω.
As we are in a straight flowing freestream, ω = 0 uniformly across the domain,
including all boundaries. An impermeability condition on the top and bottom
boundaries is given by

∂ψ

∂x

∣∣∣∣
top

=
∂ψ

∂x

∣∣∣∣
bottom

= 0.

This is achieved by choosing ψ to be constant along these boundaries.

The inlet/outlet velocities are set by requiring that

∂ψ

∂y

∣∣∣∣
inlet

=
∂ψ

∂y

∣∣∣∣
outlet

= v0.

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 77

We integrate to obtain the Dirichlet condition

ψ|inlet = ψ|outlet = v0y + C

where we are of course free to set the integration constant as we please. Noting
the additional restriction that ψ must be continuous around the boundary, the
choice of constant for ψ on the top and bottom boundaries are set as v0 and 0
respectively. These Dirichlet conditions are summarised in fig. 4.7a.

(a) Boundary conditions

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Computational domain
(50× 100)

Fig. 4.7: Freestream test case setup.

Given that the vorticity is uniformly zero on the entire domain, this cases reduces
to solving the Poisson equation with Dirichlet conditions, and hence converges
after a single timestep. The results are as expected, and the velocity at the
inlet/outlet is replicated throughout the domain. The streamlines are shown
in fig. 4.8, showing the expected inclined plane solution. The maximum error
between the result of the RBF-FD Poisson solver and the analytic solution is
found to be 5.18× 10−4.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0.1 0.1
0.2 0.2
0.3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8
0.9 0.9
1 1

0.2

0.4

0.6

0.8

1

Fig. 4.8: Streamlines for freestream test case.

78 4. RBF-BASED MESHLESS FLUID SOLVER

Pipe Flow

Flow in a pipe is modelled in a rectangular domain with unit height and length
4, with a computational grid of 25 × 100. The velocity is fixed at the left and
right boundaries, with an impermeable wall condition on the top and bottom
boundaries. The vorticity at the top and bottom walls is ωwall given by eq. (4.15).
The setup is shown in fig. 4.9.

Fig. 4.9: Boundary conditions for 2D pipe flow.

Figure 4.10 shows the horizontal velocity is most developed at approximately
x = 3. Figure 4.11 shows the velocity profile of the flow at regular intervals along
the pipe. As the flow becomes fully developed, this profile is as expected for 2D
turbulent pipe flow. Total flow through the midpoint at the most developed stage
is approximately 0.9949, indicating that the mass conservation is captured.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

0.1 0.10.2 0.20.3 0.30.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8
0.9 0.9
1 1

0.2

0.4

0.6

0.8

Fig. 4.10: Streamlines for 2D pipe flow.

Lid-Driven Cavity

Here we show the results of a standard square lid-driven cavity simulation. The
domain is the region [0, 1]× [0, 1], and has been modelled with a 50× 50 grid of
points.

Since there is no flow in or out of the cavity, the entire boundary is a streamline,
that is, a level set of the stream function, and can be set to an arbitrary constant,
so for ease of calculation we choose ψ = 0 at all boundaries. The velocities at
the left and right walls, as well as the floor, are also zero, corresponding to the
non-slip condition. The velocity along the top is v0. The velocity boundary

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 79

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 4.11: Horizontal velocity profiles for 2D pipe flow.

conditions are given by specifying ∂ψ
∂x

or ∂ψ
∂y

at each boundary, depending on the
normal. The boundary conditions are summarised as follows:

ψ = 0,
∂ψ

∂x
= 0 (left wall) (4.18)

ψ = 0,
∂ψ

∂x
= 0 (right wall)

ψ = 0,
∂ψ

∂y
= 0 (bottom wall)

ψ = 0,
∂ψ

∂y
= v0 (top wall)

Figure 4.12 shows both the domain with the boundary conditions of eq. (4.18),
and the computational domain.

The simulation was run until t = 30s, with ∆t = 0.0005. The resulting velocity
and vorticity contours are shown in fig. 4.13. Both the primary and secondary
vortices are captured well.

Figure 4.14 show the perpendicular velocities along vertical and horizontal cross-
section through the geometric centres of the domain. These results are in close
agreement with Ghia et al. [98] and Chinchapatnam et al.[94].

80 4. RBF-BASED MESHLESS FLUID SOLVER

(a) Boundary conditions

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Computational domain (50× 50)

Fig. 4.12: Lid-driven cavity setup.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.11

-0.1

-0.1

-0.09

-0.09

-0
.0

9

-0.08

-0.08

-0.08

-0.07

-0
.0

7

-0.07

-0
.0

7

-0.06

-0
.0

6

-0.06

-0
.0

6

-0.05

-0.05

-0.05

-0
.0

5

-0.05

-0.04

-0
.0

4

-0.04

-0.04

-0
.0

4

-0.03

-0.03

-0.03 -0.03

-0
.0

3

-0.02

-0.02

-0
.0

2

-0.02

-0
.0

2

-0.02

-0.01

-0.01

-0
.0

1

-0.01

-0
.0

1

-0
.0

1

0

0

0

0 0

0
0

-0.005

-0.005
-0.005

-0.005 -0.005

-0
.0

05

-0.0025

-0.0025

-0
.0

02
5

-0.0025 -0.0025

-0
.0

02
5

-0.0025

-1e-05

-1e-05

-1
e-

05

-1e-05 -1e-05

-1
e-

05

-1
e-

05

0.00050.001

0.0015

1.5e-05
1.5e-05

1.5e-05

5e-05

5e
-0

5

5e-05
-0.1

-0.08

-0.06

-0.04

-0.02

0

(a) Velocity

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5-5
-5

-4
.5-4.5

-4.5 -4

-4

-4-4

-3
.5

-3
.5

-3.5
-3.5

-3

-3

-3
-3

-2
.5

-2
.5

-2
.5

-2.5
-2.5

-2

-2

-2

-2

-2

-2
-2

-1
.5

-1
.5

-1.5

-1
.5

-1.5
-1.5

-1

-1

-1

-1

-1

-1

-0.5

-0.5

-0
.5

-0
.5

-0.5

-0
.5

-0.5

0

0

0

0

0

0

0

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

1

1

1

1

1

1

1

1.5

1.
5

1.
5

1.5

1.
5

1.
5

1.5
1.5 2

2

2

2

2 2

2

2
2.5

2.
5

2.
5

2.
5

2.5

3

3
3

3

3

3

-5

-4

-3

-2

-1

0

1

2

3

(b) Vorticity

Fig. 4.13: Contours for lid-driven cavity with Re = 1000, 50× 50 grid.

Flow Past a Square Cylinder

The final example we give is flow past a square cylinder. The setup is shown
in fig. 4.15. We model the farfield as we did in the case of the freestream in
section 4.3.7 with inlet and outlet having prescribed velocity, and impermeable
top and bottom boundaries. We then add to this a non-slip unit square with
blockage ratio 1/5. The grid density is set to a density of 20 points per unit
length, resulting in a grid approximately 300 × 100. The flow was run at Re =
40, 60, 80, 100.

When the Reynolds number reaches a critical value (Re ≊ 60), the flow behind
the cylinder becomes unsteady, exhibiting the well known von Kármán vortex
street structure, where alternating vortices are shed from the trailing edges of the
cylinder. These vortices can be clearly seen in both the velocity magnitude field
of fig. 4.16, and the vorticity fields of fig. 4.17 and fig. 4.18. To quantify the flow,

4.3. STREAMFUNCTION-VORTICITY FORMULATION FORUNSTEADY FLOW 81

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ghia et al.
50 x 50 grid

(a) x velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Ghia et al.
50 x 50 grid

(b) y velocity

Fig. 4.14: Comparison of velocities to previous results [98] along vertical and horizontal
cross-sections through the geometric centres of the domain.

we use two calculated values, the Strouhal number St and the time-averaged
drag coefficient CD.

The Strouhal number is a measure of the vortex shedding, which is calculated
based on the shedding velocity by

St =
fD

u0
.

Since we have previously set the freestream velocity u0 and the characteristic dis-
tance D to be 1 (so as to maintain the non-dimensional properties of eq. (4.14)),
the Strouhal number reduces to the shedding frequency.

The time-averaged drag coefficient is a measure of the mean drag once the vortex
shedding is fully developed. It is defined by

CD =
1

tb − ta

∫
T

CDdt

where T = [ta, tb] is a sufficiently long time period during the fully developed
vortex shedding.

Figure 4.19 shows a grid convergence study of Strouhal number St and average
amplitude of CL for Re = 100 at varying point cloud densities. Simulations were
also run ∆t = 0.005, 0.001, 0.0005 with similar results. Note that no variation
was found in St as it can only be computed with accuracy proportional to ∆t, i.e.
5 × 10−4. Previous experiments and simulations of flow past a square cylinder
have shown that St is expected to vary between 0.15 for sharp cornered squares,
and 0.2 for chamfered squares (approaching a circle) [99, 100]. As the normals
at the corners of the square have been set to point diagonally away from the
square, this square can be considered slightly chamfered, and as such, we expect

82 4. RBF-BASED MESHLESS FLUID SOLVER

(a) Boundary conditions.

0 5 10 15
0

1

2

3

4

5

(b) Computational domain 300× 100

Fig. 4.15: Setup for square cylinder in a freestream flow.

St to be between the two cases. As seen in fig. 4.19, we have St = 0.186, which
is in agreement with the range presented by Vikram [99], and in close agreement
with similar simulations of Sahu et al. [101], although slightly different blockage
ratios have been used.

Figure 4.20 shows the variation of the Strouhal number with Reynolds num-
ber. The results are compared against some similar simulations by Sahu et al.
[101], although for slightly different blockage ratios β = 1/4, 1/6. The results
show good qualitative agreement (increasing St with increasing Re), and show
reasonable quantitative agreement with the β = 1/6 case. Differences are to
be expected given the difference in blockage ratio, as well as a slightly different
domain geometry.

4.4. CONCLUSIONS & FUTURE WORK 83

4.4 Conclusions & Future Work

This chapter has described how RBF interpolation and approximation can be
used to estimate derivatives via the RBF-FD method. The solution of the in-
compressible Navier Stokes equations in the streamfunction-vorticity formula-
tion has been demonstrated and agrees well with existing literature, capturing
the phenomenon of von Kármán vortex streets. A novel method of applying
boundary conditions on vorticity was also presented, based on the traditional
meshed methods of Thom and Jensen. It is hoped that this method can sim-
plify existing implementations, and inform the development of other methods, as
the application of boundary conditions in meshless methods is an ongoing chal-
lenge. Although the validations presented here have used primarily Cartesian
point clouds, the RBF-FD method has been shown to apply equally well to less
structured point clouds [94, 97, 80]2.

The primary goal of this chapter was to validate the fluid solver for use in the
next chapter, where we couple it with a structural dynamics solver and a mesh
motion algorithm to produce a partitioned FSI solver.

4.4.1 Domain Corners

The handling of sharp corners in the domain is currently somewhat unsatis-
factory, both in this work and in the broader literature. The best method at
the moment appears to be to soften corners via a spanning normal, i.e. a vec-
tor halfway between two adjacent wall normals. At sufficient resolutions, this
approach appears to be reasonably robust, at least for the examples presented
here, however, in coarse domains, the accuracy of this approximation may be-
come problematic, and even for high fidelity applications, it may not be sufficient.
The development of additional methods to handle sharp domain corners would
be an important improvement to RBF-FD based methods.

4.4.2 Automated Meshing

Mesh generation and adaptive meshing techniques are currently an active area of
study for meshless PDE solvers, including RBF-FD based solvers [102, 103, 104].
Although meshless methods greatly reduce the difficulty of domain generation,
it can still be a non-trivial task, even for simple geometry. Integrating these
generative and adaptive techniques into the current RBF-FD solver would enable
cases to be developed and solved with greater ease.

2In fact, in many cases, results have been shown to be ‘more’ accurate on non-Cartesian
point clouds, e.g. by clustering nodes at corners, and around areas of complex flow.

84 4. RBF-BASED MESHLESS FLUID SOLVER

0 5 10 15
0

1

2

3

4

5

0

1

2

3

4

5

(a) t = 10s

0 5 10 15
0

1

2

3

4

5

0

1

2

3

4

5

(b) t = 20s

0 5 10 15
0

1

2

3

4

5

0

1

2

3

4

5

(c) t = 30s

0 5 10 15
0

1

2

3

4

5

0

1

2

3

4

5

(d) t = 40s

0 5 10 15
0

1

2

3

4

5

0

1

2

3

4

5

(e) t = 50s

Fig. 4.16: Streamfunction contours of flow past a square cylinder at Re = 100, von
Kármán vortex street is fully developed by t = 50s.

4.4. CONCLUSIONS & FUTURE WORK 85

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(a) t = 10s

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(b) t = 20s

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(c) t = 30s

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(d) t = 40s

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(e) t = 50s

Fig. 4.17: Vorticity contours of flow past a square cylinder at Re = 100, von Kármán
vortex street is fully developed by t = 50s.

86 4. RBF-BASED MESHLESS FLUID SOLVER

0 5 10 15
0

1

2

3

4

5

-20

-10

0

10

20

(a) Re = 40

0 5 10 15
0

1

2

3

4

5

-20

-10

0

10

20

30

(b) Re = 60

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(c) Re = 80

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(d) Re = 100

0 5 10 15
0

1

2

3

4

5

-30

-20

-10

0

10

20

30

(e) Re = 120

Fig. 4.18: Vorticity contours of flow past a square cylinder for varying Reynolds num-
bers at t = 50s when von Kármán vortex street is fully developed.

4.4. CONCLUSIONS & FUTURE WORK 87

10 15 20 25 30 35 40 45 50

Point density

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Strouhl number
 C

L

Fig. 4.19: Grid convergence study of Strouhal number and total average amplitude of
CL for Re = 100 with respect to point density per unit length.

88 4. RBF-BASED MESHLESS FLUID SOLVER

60 70 80 90 100 110 120 130 140 150 160

Re

0.14

0.15

0.16

0.17

0.18

0.19

0.2

S
t

Current =1/5

Sahu et al. =1/6

Sahu et al. =1/4

Fig. 4.20: Strouhal number variation with Reynolds number compared to similar sim-
ulations from Sahu et al. [101].

5. UNIFIED RBF FLUID FLOW AND FSI

5.1 Introduction

In this chapter we augment the RBF-FD fluid solver of the previous chapter
with a mesh motion algorithm and integrate moving-wall boundary conditions
to demonstrate a technique for the simulation of fluid-structure interactions.
The result is a 2D partitioned, meshless FSI solver. The code for this solver and
instructions for its use are available in appendix A. A description and examples
of inputs are also provided1.

We apply this new procedure to the benchmark case of section 4.3.7 in which a
square cylinder is exposed to a horizontal flow.

5.1.1 Background

Overall, there appears to have been limited study into coupling the RBF-FD
method with structural dynamics and moving boundaries. In particular, no
study of the RBF-FD method for a locally deforming mesh is forthcoming in the
literature, with locally deforming bodies still a relatively unexplored area more
generally in meshless FSI methods [2].

Work by Chinchapatnam et al. [94] demonstrated that the RBF-FD method
could be used both for both incompressible flow and structural dynamics in-
dependently, but stopped short of coupling the two, opting to use a simplified
expression devised by Lam [105] to calculate directly the fluid forces on a near-
wall cylinder in a flow.

The concept of a hybrid meshed/meshless scheme for body motion was originally
developed by Ang et al. [106]. In such methods, a meshless method is used near
moving bodies, while a meshed or Cartesian method is used for the farfield
computations, with a region of overlap between them as seen in fig. 5.1. In
this way, these methods leverage the power of meshless methods for complex
boundary shapes, with the efficiency of meshed methods. RBF-FD was used as

1The code is provided in full in the appendix, but is also available online at https://

gitlab.com/ajmurra/rbf-fd-fsi.

https://gitlab.com/ajmurra/rbf-fd-fsi
https://gitlab.com/ajmurra/rbf-fd-fsi

90 5. UNIFIED RBF FLUID FLOW AND FSI

Fig. 5.1: Domain overlap between meshed and meshless solvers in hybrid method of
[108]. A traditional meshed solver is used on the farfield (red) points, with
RBF-FD employed on the nearfield (black) points around the moving body.

the meshless component by Javed [107]. The moving body along with the RBF-
FD nodes are moved as a whole, with the overlapping region between the meshed
and meshless methods absorbing the motion. In this way, no mesh deformation
is necessary, but motions are limited to rigid body motions, and are required to
remain within the near-field envelope. This method has since been successfully
applied to vibrational problems for energy harvesters [108, 109].

More generally, although traditionally hindered by high costs, meshfree methods
for FSI are gaining popularity. Han [110] coupled a Lattice-Boltzman fluid solver
with a discrete element method solver for particle interaction, using an immersed
boundary condition to handle the hydrodynamic interactions. The most popular
approach to meshless FSI is currently partitioned approached using smoothed
particle hydrodynamics (SPH) [2]. The SPH method of fluid flow is discussed
in more detail in the introduction to chapter 4. The difficulties of boundary
conditions in the SPH methods are still present in the FSI cases, and indeed are
somewhat exacerbated by motion. A detailed overview of recent developments
in SPH-based FSI are given by Zhang et al. [111].

Given the relative dearth of work on more general meshless FSI, the develop-
ment of solvers and methods that can handle both rigid and soft body motions
while leveraging the advantages of meshfree methods would appear to be highly
desirable.

5.2 Formulation

Adapting the RBF-FD solver of chapter 4, we add a structural simulation, a
mesh motion algorithm, and a coupling procedure to produce the partitioned
solver. Each of these components are described in more detail below.

5.2. FORMULATION 91

5.2.1 Structural Solver

In the current formulation, we loosely couple the RBF-FD fluid solver with a
simple 2D mass-spring-damper system for simulation the structural dynamics.
This allows rigid-body translation within the 2D plane. As the coupling is loose
(i.e. partitioned solver), this structural solve can readily be substituted with
structural dynamics as necessary for the problem at hand (e.g. see section 5.5.3
for discussion on non-rigid structural dynamics). As the pressure near each
boundary point can be calculated from the velocity (via the streamfunction),
we can in effect obtain normal force distributions along each boundary, as well
as moments about a chosen centre, which can be then input as necessary to
structural solvers as desired.

Calculation of Normal Forces at Walls

As the flow is separated from the cylinder, we assume frictional/shear forces
are negligible compared to pressure forces, and it remains to compute the nor-
mal forces. To determine the normal force at each point along the wall, as in
section 4.3.4 when applying formulas to calculate vorticity at the boundary, we
make use of the normal information for each point on the moving wall, but this
time approximate the velocity at a point a distance h from the wall instead of
ψ. As we have already calculated the velocity field (required when iterating the
vorticity-transport equation eq. (4.10)), this approximation can again be done
relatively cheaply via RBF or other interpolation methods. The calculation of
pressure is straightforward since due to the various normalisations applied to the
governing equations and geometry, p ∝ v2. Once the pressure is known at each
boundary point, overall forces and moments can be calculated by integrating
(summing, in the discrete case) around the nb boundary points:

Ftotal ∝
n∑
i=1

pi

Mtotal ∝
n∑
i=1

pi∆x

where ∆x is the perpendicular distance to the rotational centre of the moving
object.

Mass-Spring-Damper

As a simple method of producing rigid body dynamics, we can model a cantilever
cylinder as a single point mass with dynamics described by uncoupled spring-
mass-damper systems describing translation x and y, and rotation θ about a

92 5. UNIFIED RBF FLUID FLOW AND FSI

chosen centre. This simplifies the fluid-to-structure coupling, as the forces and
moments can be applied directly to the point mass.

For translation, the standard formulation of the mass-spring-damper begins with
summation of forces at the mass node:

Ftotal = −kx− cẋ+ Fexternal = mẍ.

Here k, c, and m are the spring constant, damping factor, and mass respectively.
Fexternal is the time varying force from the fluid solver obtained as described in
section 4.3.7. Assuming unit mass and rearranging we obtain the usual form

ẍ+ 2ζωnẋ+ ω2
nx = Fexternal (5.1)

where ωn =
√
k is the (undamped) natural frequency (not to be confused with

vorticity ω used throughout) and ζ = c
2ωn

is the damping ratio. Assuming that
the dynamics are all uncoupled, applying in both x and y directions gives:

ẍ+ 2ζxωn,xẋ+ ω2
n,xx = Fx

ÿ + 2ζyωn,yẏ + ω2
n,yy = Fy.

For rotational motion, the mathematical formulation is the same, with mass
replaced by rotational inertia, and force replaced by moment, yielding

θ̈ + 2ζθωn,θθ̇ + ω2
n,θy =Mθ.

This gives an uncoupled system of 3 equations (ultimately the system is some-
what loosely coupled via the fluid). Since the solver is loosely coupled, the
dynamics can be readily modified or replaced as desired.

Discretising the equations using an explicit second order central difference scheme
gives

xt+ = (1 + 2∆tζxωn,x)
−1 [∆t2F t

x + (2∆tζxωn,x − 1)xt− +
(
2−∆t2ω2

n,x

)
xt
]

yt+ = (1 + 2∆tζyωn,y)
−1 [∆t2F t

y + (2∆tζyωn,y − 1) yt− +
(
2−∆t2ω2

n,y

)
yt
]

θt+ = (1 + 2∆tζθωn,θ)
−1 [∆t2M t

θ + (2∆tζθωn,θ − 1) θt− +
(
2−∆t2ω2

n,θ

)
θt
]
.

This allows us to easily step the structural solution in time in line with the fluid
solve. As a benchmark, the structural solver was compared against the analytical
solution for the case ωn = 0.2 with ζ = 0.03. The natural frequency was chosen
to approximate to the shedding frequency seen in the static case of section 4.3.7.
Time stepping ∆t = 0.005 and total time was also chosen to match the coupled
simulation. Figure 5.2 shows the results of the benchmark, with a maximum
phase error of less than 0.1% (< ∆t). As there is no approximation error of the

5.2. FORMULATION 93

external forcing term Fexternal, it is sufficient to observe the homogeneous case of
eq. (5.1), as long as all time derivative terms are exercised.

Fig. 5.2: Benchmark for structural solver (top) with detail (bottom) at t = 95. Phase
error is less than 0.1% at t = 100.

5.2.2 Moving Wall Boundary Condition

Next we wish to determine appropriate boundary conditions at the moving sur-
faces. In section 4.3.4, we described the way in which we can apply boundary con-
ditions on both the streamfunction ψ and the vorticity ω in the streamfunction-
vorticity formulation of the incompressible Navier Stokes equations. To describe
an object moving through the domain, we use both conditions.

A solid object moving through the domain is treated as a combination of wall
points with non-zero velocities. From section 4.3.4 we recall that the way in
which non-zero velocities at walls contribute to the fluid is twofold - the tan-
gential component of velocities contribute via the vorticity boundary condition
(Thom or Jensen formulas, eq. (4.15) and eq. (4.16) respectively), and normal
components of velocities contribute via the Dirichlet boundary condition on the
streamfunction ψ. The moving walls are comprised of a series of boundary points
with their specified normal directions. For a rigid body motion (translation and
rotation), these points and normals will stay in the same spatial configuration
relative to each other, and any velocity of the object from the structural solver
should be applied uniformly to all boundary points. At each point, we decom-
pose this velocity vector into tangential and normal components (dictated by the

94 5. UNIFIED RBF FLUID FLOW AND FSI

individual point normals). This allows us to apply the boundary conditions as
described.

Applying the formulas of Thom or Jensen on vorticity using the tangential ve-
locity is straightforward, and the boundary condition on ω is readily determined
by direct calculation. Note that this boundary condition has already been ap-
plied in this manner on the lid of the (geometrically) static lid driven cavity case
described in section 4.3.7, i.e. a wall moving parallel to itself.

Applying the Dirichlet condition on the streamfunction ψ requires some addi-
tional care. From section 4.3.7, recall that applying a non-zero Dirichlet condition
on ψ was required at the inlet and outlet of the domain. An inlet or outlet is, in
essence, a permeable wall with prescribed flux velocity in the normal direction.
In the case of a moving wall however, we wish the wall to remain impermeable,
even with a flux velocity across it. In this case, the impermeability is recovered
by the motion of the wall itself in the same direction as the flux, i.e. fluid flows
across the boundary, but the boundary then moves an equal amount to cancel
out this flux. This has the overall effect of an impermeable wall applying a ve-
locity directly to the fluid in the normal direction. In practice, to apply such
a condition requires a pair of skew transformations of the boundary in the ψ
direction about the x and y axes. As these transformations are linear, it suffices
to apply them individually and sum the results, i.e.

ψb = ψb0 − vyx+ vxy (5.2)

where ψb0 is an initial baseline boundary condition, which, given the imperme-
ability of the moving boundary, is typically a constant. Here we assume that x
and y coordinates are centred about a chosen centre of the object, ensuring that
the offset in the ψ direction is minimised. Differentiating eq. (5.2) and restricting
to the boundary, we can see that we recover the definitions of velocity via the
stream function in eq. (4.12) and eq. (4.11). Figure 5.3 shows an example of
applying this boundary condition to a moving square.

5.2.3 Motion of Grid Points

To move the points in the domain, we first move the points at the moving bound-
ary manually given the displacements calculated from the structural solver, then
interpolate the displacements to the domain using the method described in sec-
tion 2.2.2. Figure 5.4 shows the process in more detail.

5.2. FORMULATION 95

(a) Motion in x direction. (b) Motion in y direction.

(c) Motion in x and y directions.

Fig. 5.3: Example of Dirichlet conditions of eq. (5.2) on ψ for a moving square.

5.2.4 Interpolation of Vorticity

At each timestep, once the nodes of the domain have been displaced, the stream-
function and the vorticity must be interpolated to the new positions. This can be
achieved using a number of interpolation schemes. At time t, after displacement
of the nodes, i.e. once we are at the point of fig. 5.4d, we must use the latest
value of ω to calculate vorticity at the new node positions to be used in the next
time step (as the inhomogeneous term in the Poisson equation).

5.2.5 Recalculation of RBF-FD Weights

Once moving the points in the domain after the structural solve, the RBF-FD
structure is invalidated for any point whose stencil includes a displaced node. As
such, we must recalculate the RBF-FD weights at each timestep (see section 4.2).
Unfortunately, this is an expensive operation, as it involves the solution of a
number of linear systems, with a total cost O(Nn3) in the naive case, where N is
the total number of points in the domain, and n is the number of points in each
stencil. More fortunately, there are a number of factors that aid us in performing
these calculations reasonably efficiently:

96 5. UNIFIED RBF FLUID FLOW AND FSI

(a) Point cloud at boundary prior
to motion.

(b) Move boundary points per re-
sults from structural simula-
tion.

(c) Interpolate boundary motion
to domain internals using RBF
interpolation matrix H.

(d) Final boundary and point po-
sitions (filled circles).

Fig. 5.4: Method of motion.

1. Each stencil can be handled independently, hence the N individual n3

calculations are perfectly parallelisable.

2. n is not large, and certainly n << N , hence the cost (n3) of solving the
linear system for the weights of each individual stencil is small (and can
potentially be further reduced by observation of the structural properties
of the linear system, e.g. it will often be symmetric).

3. As N increases, it is not required that n also increases, hence for increasing
domain size or point density, the cost only scales linearly with N .

4. Only points that are affected by the mesh motion are required to be re-
calculated, that is, only points that have themselves been moved, or had a

5.3. SIMULATIONS 97

point in their stencil move, are required to be recalculated2. In particular,
this will usually mean that far field points do not require recalculation.

In addition to these, the RBF-FD method requires no special treatment of the
moved nodes, compared to the initialisation calculations made for the original
domain, as the weights are a function only of their absolute position. As such,
from an implementation perspective, no additional effort is required in this re-
calculation.

5.2.6 Final Solver Structure

Figure 5.5 shows the final structure of the flow solver with FSI enabled. In
practice, the static and FSI solvers are the same code base, with a flag to enable
the FSI functionality.

5.3 Simulations

The following section details results for the square cylinder case of section 4.3.7
with motion enabled, as well as a wake-induced vibration test case, similar to
that by Bhatt and Alam [112]. In the single square cylinder case, we demonstrate
x and y structural motion individually, then show a coupled case. The domain
setup for the single square cylinder is shown in fig. 5.6, with the wake-induced
vibration case shown in fig. 5.12.

5.3.1 Streamwise Motion

Here we constrain the structural motion to only the x direction, i.e. in the di-
rection of the flow. The structural solver is configured with a natural frequency
ωn = 2.236 and a damping ratio ζ = 0.03. Figure 5.7 shows the response in
the x (streamwise) direction of the square. As is expected, the square is forced
steadily downstream by the oncoming flow, with the behaviour dominated by
non-oscillatory motion towards a resting position approximately 1.5 units from
the starting position. An oscillatory mode can be observed in fig. 5.7b, caused
by the changing pressure distribution on the back of the square as vortices are

2In actual fact, a further distinction is that only points that move or have a point in their
stencil move relative to the other points in the stencil, are required to be recalculated. However
it is unusual that points in the cloud would move completely uniformly with their stencil, hence
this is not a particularly helpful observation, as the cost of determining the condition would
likely outweigh the savings.

98 5. UNIFIED RBF FLUID FLOW AND FSI

FSI

Load/Initialise

Yes

No

Is final time
reached?

Apply Dirichlet conditions
on streamfunction

End

Solve Poisson equation to
obtain streamfunction

Calculate velocities from
streamfunction

Step vorticity in time

Calculate forces at
moving walls

Perform structural solve

Move boundary + domain
points

Interpolate vorticity to
new domain points

Set normal and tangential
velocities at walls

Add Dirichlet boundary
conditions to

streamfunction

Recalculate derivative
matrices

Apply Thom/Jensen
boundary conditions on

vorticity

Fig. 5.5: Flow diagram for solver loop with FSI enabled.

shed. We see from the power spectrum in fig. 5.8a that these oscillations corre-
spond exactly to vibrational modes of the Strouhal number 0.186 of the vortex
shedding found in section 4.3.7, with most of the power centred around the sec-
ond mode. This is likely due to two factors. Primarily, the interactions of the
drag (pressure) forces with the forces from the shedding vortices. Since the drag
force is greater when the square is travelling upstream (in the negative x direc-
tion), and is non-linear in the velocity of the square, this causes an asymmetric
forcing to interact with existing shedding forces to excite the second mode more
than the first. Secondly, there is additional (effective) velocity when the square
is travelling upstream, which will affect the shedding frequency. This effect is
likely less influential than the first. The lack of y motion prevents any other
significant interplay between the moving square on the shedding frequency, and
hence although the natural frequency of the structure is significantly different
from St, the structure is excited close to (multiples of) the shedding frequency.

5.3. SIMULATIONS 99

Fig. 5.6: Domain with boundary conditions and spring configuration for FSI case.

0 100 200 300 400 500
0

0.5

1

1.5

2

(a) x

395 400 405 410 415 420 425

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

(b) y

Fig. 5.7: Response of moving square when constrained to allow only streamwise (x)
motion, compared to unconstrained response (with detail).

5.3.2 Perpendicular Motion

Here we constrain the structural motion to only the y direction, i.e. perpendicular
to the flow. The structural solver is configured with a natural frequency ωn = 0.2
close, but not equal, to the Strouhal number of the vortex shedding (0.186).
The damping ratio is again set to ζ = 0.03. Figure 5.9 shows the expected
oscillatory behaviour, as well as a slow, non-oscillatory motion towards a steady
position. This non-oscillatory behaviour is likely due to asymmetries in the
flow caused by the sudden application of the uniform flow to the system at the
beginning of the simulation, as some brief large forces are observed in the first few
timesteps. This behaviour could potentially be avoided by running the simulation
to a steady state before enabling the FSI, and fading in the structural forces
and responses over multiple timesteps. The power spectrum for the oscillatory
behaviour is given in fig. 5.8b. This response has a clear peak at 0.19347Hz,
slightly higher than the Strouhal number in the static case, which is also reflected
in the forces directly from the flow. This indicates that the vertical oscillations

100 5. UNIFIED RBF FLUID FLOW AND FSI

0 0.5 1 1.5 2 2.5 3
-90

-80

-70

-60

-50

-40

-30

-20

(a)

0 0.5 1 1.5 2 2.5 3
-80

-70

-60

-50

-40

-30

-20

(b)

Fig. 5.8: Power spectrums for x and y displacements between t = 250 and t = 500 in
the respective constrained cases. (a) shows power spectrum of x motion with
y constrained, while (b) shows power spectrum of y with x constrained.

of the square interact with the vortex shedding regime to bring St towards the
natural frequency of the structure.

0 100 200 300 400 500
0

0.05

0.1

0.15

350 400 450 500

0.08

0.09

0.1

0.11

0.12

Fig. 5.9: Response of moving square when constrained to allow only perpendicular (y)
motion, compared to unconstrained response (with detail).

5.3.3 Streamwise & Perpendicular Motion

We now allow both motion in the x and y directions, with structural properties in
the respective directions as described in section 5.3.1 and section 5.3.2. Overall
spatial responses in the x and y directions were similar to the constrained cases
(again the y direction had a non-oscillatory motion), however fig. 5.10 shows a
marked difference in the power spectrum. The x response is significantly more
concentrated around the modes of the shedding frequency, while the y response
now has additional modes that were no present in the constrained case. In
both cases, the modes are again at the higher frequency of 0.193 observed in
section 5.3.2, compared to the static shedding frequency of 0.186.

5.3. SIMULATIONS 101

0 0.5 1 1.5 2
-90

-80

-70

-60

-50

-40

-30

-20

(a) x

0 0.5 1 1.5 2
-90

-80

-70

-60

-50

-40

-30

-20

(b) y

Fig. 5.10: Power spectrums for x and y displacements coupled case.

Figure 5.11 shows the nodal positions of the domain after the square has reached
its stationary position downstream. This shows clearly the RBF mesh motion
using Wendland’s compactly supported C2 function (r = 5), with the interpo-
lation fixed at all boundaries, including the square. From the starting position
(x = 2.5), the radius can clearly be seen, as the domain points accumulate at
approximately half the radius downstream, corresponding to the steepest point
on the basis function.

0 5 10 15
0

1

2

3

4

5

-40

-20

0

20

Fig. 5.11: Vorticity contours and mesh displacement for the FSI simulation at t = 100
with x and y motion enabled.

5.3.4 Wake-Induced Vibration

Here we describe a wake-induced vibration case, replicating the simulations of
Bhatt and Alam [112]. The computational domain is shown in fig. 5.12. Here we
have two unit cylinders, with the upstream cylinder fixed, and the downstream
cylinder allowed to move in the vertical direction. The inlet, upper, and lower
walls are a distance of 15 units from the center of the upstream cylinder, while

102 5. UNIFIED RBF FLUID FLOW AND FSI

the outlet is a distance of 30 units from the same point. The downstream unit
cylinder is L units from the center of the upstream cylinder.

Fig. 5.12: Computational domain for wake-induced vibration case. The upstream
cylinder is fixed, while the downstream cylinder is free to move in the y
direction as per the structural solver, i.e. a mass-spring-damper model.

In [112], a structured cartesian mesh was used, as necessitated by the solver - An-
sys Fluent 15, for unsteady, incompressible flow using the finite-volume method.
In their study, a second-order upwind scheme is used for the convective com-
ponents, with a central-difference scheme used for diffusive terms. The time is
stepped using a first-order implicit formulation due to its unconditional stability
and compatibility with the dynamic aspects of the solver. A pressure correction
step is completed using a SIMPLE (semi-implicit method for pressure linked
equations) to couple the velocity and pressure fields. This pressure correction
step is similar to the solution of the Poisson equation in the streamfunction-
vorticity formulation employed in this work, in that it couples the vorticity and
the velocity fields.

One of the immediate advantages of the RBF-FD method is the ability to use a
meshless domain to model the problem. Since we now have the freedom to place
points in a more uniform manner, it is possible the drastically reduce the point
count of the domain in the farfield, while maintaining the appropriate density in
the nearfield at the boundaries of the cylinders. In the original work, a density
of 125 points per unit length was used, with an expansion rate of 1.05 in the
normal direction towards the edges of the domain. This resulted in a domain
of 163,568 points for L = 6. The limitation of the cartesian mesh means that
the high density at the cylinder walls must be carried through all the way to
the farfield edge in at least 1 dimension, that is, the expansion rate can only be
applied in a single direction, in this case the normal direction. This results not
only in significantly more cells that necessary at the domain edges, but cells of
a much poorer quality, as they are only expanded in one direction, hence their
aspect ratio becomes large.

5.3. SIMULATIONS 103

In the meshless case, we use the same density at the cylinder boundaries, and the
same expansion rate, however we can expand in all directions at once, creating
not only a much more uniform set of points, but one with fewer points overall,
since without need for structured cells, the density at the cylinder surface can
be resolved continuously towards the farfield boundary. In addition to this, as
there is no adjacency information required in the point cloud, it can be gener-
ated with relative ease3. Since the farfield required significantly fewer points,
additional points can be added between the cylinders to aid in the resolution
of vortices. Here we have maintained the boundary density in the entire area
between the cylinders as shown in fig. 5.13b. Even with this added density, for
L = 6 this results in a domain of 149,568, a reduction of approximately 9%. In
cases where the distance between the cylinders is reduced, the difference is even
more drastic, with an almost 50% reduction when L = 2. The difference between
the approaches is demonstrated in fig. 5.13.

(a) Structured mesh as used in [112]. (b) Current unstructured point cloud.

Fig. 5.13: A comparison of the structured mesh and unstructured point cloud in the
area between the cylinders for L = 2. Since the density at the cylinder must
be carried through to the domain edge in the structured case, significantly
more points are required, and high mesh quality is difficult to achieve. In the
unstructured case, the expansion can be done in all directions, maintaining
a uniform distribution of points, while using fewer points overall. Savings in
the far field can be used to increase density between the squares to better
resolve complex flow phenomena.

To demonstrate the fidelity of the simulation, we can observe closely the vortex
shedding process over a single period of vibration as described by Bhatt and
Alam [112]. Here we have set the natural frequency of the wake cylinder to
fn = 0.125, which corresponds to the case of reduced velocity Ur = 8 in [112].

Figure 5.14 shows the process by which vortices are shed from the wake cylinder.
Here we retain the notation from [112] for ease of reference, where they refer to
vortices from the upstream cylinder as B, and vortices from the wake cylinder as
C. At the start of the cycle, fig. 5.14a, the cylinder is in the bottom position, with

3For a handy utility function to help in the generation of such point clouds, see the method
FillTrap in appendix A.

104 5. UNIFIED RBF FLUID FLOW AND FSI

a high-vorticity layer along the top side of the cylinder. The incoming vortex
B1 from the upstream cylinder is beginning to impinge on the flow around the
wake cylinder. As B1 moves over the top edge of the wake cylinder, the lower
pressure from increased velocity causes the vorticity shear layer to separate at
the leading edge, and reattach at the trailing edge, resulting in a bubble along
the top edge, as can clearly be seen in the detail inset of fig. 5.14b. This bubble
causes a large region of low pressure above the cylinder, producing lift to move the
cylinder upwards. As this bubble grows however, it collides with the impinging
B1 vortex, causing a weakening of the growth in the bubble, and a corresponding
kink in the lift. As B1 then passes over the trailing edge, it mixes with C1 to
create a binary vortex that is then shed downstream. The process then repeats
on the lower edge, as can be seen in figs. 5.14d to 5.14f, with the vortices B2 and
C2.

(a) (b) (c)

(d) (e) (f)

Fig. 5.14: Vortex shedding process from downstream cylinder. Vorticity contours are
shown, with inset details of vorticity field close to the cylinder. The top and
bottom rows of figures show the vortex shedding from the top and bottom
surface of the cylinder respectively, with the subsequent mixing with vortices
from the upstream cylinder.

The described process occurs on both the up and downstrokes of the cylinder,
the kink in the lift causes the response of the cylinder to be periodic, but non-
sinusoidal. Since the lift is almost exactly 180◦ out of phase with the response, as

5.4. SCALABILITY OF SOLVER 105

it occurring at twice the frequency, the kink occurs during both the downstroke
and upstrokes, interrupting the otherwise sinusoidal forcing. This causes the
modified response as seen in fig. 5.15.

30 35 40 45 50

-0.1

-0.05

0

0.05

0.1

Fig. 5.15: Wake cylinder response demonstrating the effect of the interrupted lift
caused by the impinging upstream vortices.

5.4 Scalability of Solver

All simulations in the current work were completed using a combination of the
University of Sydney’s Artemis HPC cluster, as well as a desktop computer. Here
we perform some scalability tests on the desktop4. This study was run on an
8-core AMD Ryzen 7 5700X CPU @ 3.4GHz with 32 GB RAM. The study was
conducted across the three mesh densities used for the validation of the RBF-FD
solver in section 4.3.7.

Figure 5.16 shows the results of the tests, varying both the number of processor
cores and the domain point density. The increase in speed of a given workload
with scaling hardware is given by Amdahl’s law:

S =
1

α + 1−α
P

, (5.3)

where S is the total speedup compared to a single processor, P is the num-
ber of processors, and α is the proportion of the workload that is serial, i.e.
not parallelisable. In the optimal case, all parts of the workload are perfectly
parallelisable, i.e. α = 0, and the speedup is equal to the number of processors.

In fig. 5.16, the dashed lines show this theoretical limit for scalability given by
Amdahl’s law. Solving eq. (5.3) for α and substituting the results from the

4Unfortunately, at time of writing, Artemis in in a degraded state, and has high variability
of performance when under heavy load. This has meant that obtaining consistent timing
measurements is difficult, hence we have opted to use the more stable desktop hardware, even
though it only extends to 8 cores.

106 5. UNIFIED RBF FLUID FLOW AND FSI

1 2 3 4 5 6 7 8
0

5

10

15

20

25

(a)

28,880 65,520 116,960
0

5

10

15

20

25

(b)

Fig. 5.16: Scaling behaviour of solver for square flow case with varying processor count
and domain point density on system with 8-core AMD Ryzen 7 5700X CPU
@ 3.4GHz and 32 GB RAM. The dashed lines show the theoretical optimum
scaling if all elements of the solver were perfectly parallel. Timesteps pre-
sented are taken as the average over 5 timesteps after the MATLAB worker
pool has stabilised.

scalability tests of fig. 5.16a, we find across all core counts and domain densi-
ties that α ≈ 0.096, i.e. approximately 90% of the total workload for the FSI
solver is parallelisable. This confirms that the expensive recalculation of the
RBF-FD weights scales well due to the parallel nature of the calculations, as
discussed in section 5.2.5. It is important to note that the optimal (dashed) lines
in fig. 5.16 are approaching zero asymptotically in a 1/x manner, as predicted
by Amdahl’s law, rather than reaching a non-zero stagnation point. In the case
of the real world solver’s results however, these are asymptotically approaching
the timestep size of the serial (non-parallelisable) elements of the solver, which is
approximately 10% of the original single processor timestep (as α ≈ 0.096), i.e.
approximately 2.5, 1.4, 0.6 seconds for mesh densities of 40, 30, and 20 points per
unit length respectively. This accounts for the discrepancy between the optimal
and the real world results in fig. 5.16a.

Further to the parallelisable nature of the computations, the linear scaling dis-
cussed in section 5.2.5 (i.e. that the cost scales linearly with the domain size N ,
since the n3 cost of the stencil inversion is independent of domain size) is also
confirmed in the results of fig. 5.16b, with the cost scaling linearly with mesh
density for all numbers of processors.

5.5. CONCLUSIONS & FUTURE WORK 107

5.5 Conclusions & Future Work

This chapter has presented a novel method of coupling an RBF-FD solver with
structural dynamics. Results show that the solver is viable for small scale ap-
plications on relatively modest commercial hardware, and demonstrated that
the scaling properties are favourable, allowing the method to be extended the
method to larger scale applications in the future. The results of section 5.3.4
show that the current meshless FSI method can successfully reproduce detailed
and complex flow phenomena as effectively as commercial FSI software (in this
case, Ansys Fluent as used in [112]). Further to that, the advantages provided
by the reduction in domain size and ease of mesh generation add to the utility
of the current solver.

Here we comment on some possible directions for future improvements and ap-
plications of the method.

5.5.1 Application to Other Flow Regimes

In the current work, the coupling of the RBF-FD method with a simple but
arbitrary structural solver has demonstrated that RBF-FD methods are able to
be coupled with any structural solver of choice. As this coupling depends on
no particular flow characteristics, and only on the RBF-FD solver itself, the
method is applicable to any flow regime able to be modeled by RBF-FD meth-
ods. Work such as [113] has shown that RBF-FD methods are applicable to
complex regimes with strong discontinuities and shocks, hence the application of
the current method to transonic, supersonic, and hypersonic regimes is possible.

5.5.2 Further Optimisation

The current implementation in MATLAB 2022b, while concise, is not necessarily
optimal. As an interpreted language, MATLAB overheads can sometimes be
significant. Dynamic memory allocation, external library calls, cache misses, etc.
are areas which could be improved upon if the solver were to be implemented
in a lower level language. Of course MATLAB has many important strengths in
relation to development time and the robustness of its routines, strengths that
are particularly significant during the development of novel methods within the
time constraints of the current work.

From section 5.4, the remaining 10% of the workload could likely be at least
partially parallelised, e.g. at the time of writing, MATLAB does not appear to
support (CPU-based) parallel matrix multiplication, which would seem to make
up a significant proportion of the remaining serial workload. This would further

108 5. UNIFIED RBF FLUID FLOW AND FSI

improve the scaling characteristics of the implementation. In addition to this,
many aspects of the solver could be greatly enhanced through the use of GPU
processing. Although this would likely only give a proportional performance in-
crease, rather than a scaling improvement, it could still be significant, and would
appear to be able to be done with relative ease within the current MATLAB
implementation (hardware limitations restricted the use of GPU processing in
the current implementation).

5.5.3 Application to Complex Structures

The rigid body translations presented here are merely demonstrative of the solver
for more general FSI problems. Since neither the RBF-FD, mesh motion, nor
fluid-structure coupling methods rely explicitly on these rigid-body dynamics,
the methods are equally applicable to more general body motions, such as those
resulting from flexible structures. Coupling the current work a higher fidelity
structural solver, e.g. FEA or modal, would allow the study of more complex
real world problems.

5.5.4 Unification of RBF Methods

In the current work, the mesh motion, the interpolation of the field to the new
points, and the RBF-FD methods are all essentially separate. Since all are based
on similar underlying RBF principles, it would seem that it may be possible to
unify the calculations to some degree. This would both simplify the implemen-
tation, and provide additional performance benefits.

6. CONCLUSIONS

This thesis aimed to explore applications of radial basis functions to various
aspects of the simulation of fluid-structure interaction problems. It has detailed
two main applications of RBFs.

Firstly, applying RBFs to interpolation problems in mesh motion, and demon-
strating a new framework in which to apply existing mesh motion solutions. This
framework was found to reduce the costs of some large scale matrix operations
required when applying motions to large numbers of domain volume points, on
the order of 65% for a large scale simulation of physical experiments. RBF appli-
cations in numerical methods have been seen to provide great promise for many
decades, with simple and robust formulations, but have often been hampered
by high resource costs, with significant work dedicated to reducing computa-
tional overheads. The multistage method described in this thesis provides new
avenues by which to explore the reduction of computational costs related to RBF
interpolation.

Secondly, RBFs were applied in a meshless finite difference technique, known
as RBF-FD, to approximate derivatives in order to numerically simulate PDEs.
Here we developed a fluid solver, using a novel method to determine vorticity
boundary conditions, and coupled it with a structural dynamics solver to produce
a partitioned FSI solver, capable of arbitrary body and mesh motions. This ap-
pears to be the first RBF-FD based solver of this kind. Through the development
and optimisation of this solver and its methods, new capabilities in simulating
evermore complex FSI problems will be revealed.

6.1 Future Work

Here we provide a summary of potential directions for future research in the
methods presented in this thesis. For more detail, see the conclusions section at
the end of each individual chapter. The future work comments contained within
the paper of appendix B may also be of interest.

110 6. CONCLUSIONS

6.1.1 Domain Corners in RBF-FD Method

The handling of sharp corners in the RBF-FD method may be of interest for
both particularly coarse, and particularly fine-grained domains. Currently higher
fidelity is achieved through increasing the resolution significantly at the corners,
at significant cost. However, special handling methods may be able to improve
the solution around corners without associated increases in computational costs.

6.1.2 Automated Meshing

One of the great benefits of meshless methods is that no connectivity information
is required within the computational domain, hence points can be distributed
in a much more uniform fashion, with smooth expansion factors. This avoids
many of the issues of mesh generation, particularly in structured cases where
detailed near-field meshes must be resolved into simpler far field grids. Auto-
mated meshing and mesh refinement techniques are a large field of study on their
own, however the integration of existing techniques into the FSI solver developed
in this thesis would be an excellent step in reducing case/domain development
overheads. The method FillTrap included in appendix A is a utility function to
generate a smoothly varying set of points within a symmetric trapezoid using a
given expansion rate. Such a method could provide the basis for a simple mesh-
less domain generation tool, and has been used with great success in the current
work.

6.1.3 Optimisations to RBF-FD FSI Solver

The current implementation of the FSI solver (MATLAB 2022b) is likely sub-
optimal, as discussed in section 5.5.2. An implementation in a language more
suited to high performance compute hardware would be desirable, e.g. FOR-
TRAN, C++, etc. Further gains could be made by leveraging GPU hardware,
particularly for some of the linear solves of the Poisson equations, which currently
make up a significant proportion of the serial processing within the code. Care
must be taken however, as data transfers between GPU and host architectures
can incur significant overheads, eliminating any potential gains.

6.1.4 Application to Complex Structures

Since neither the mesh motion scheme nor handling of boundary conditions in
the FSI solver presented in this thesis relies on motion of the body being rigid,
replacing the current simple structural dynamics with a more comprehensive
solver would allow for the simulation of more complex FSI problems.

6.2. CLOSING REMARKS 111

More complex boundaries are also able to be handled with the RBF-FD method,
though there are some additional practical considerations with domain and sten-
cil generation. One of the primary concerns would be the stability of the stencil
matrices for low-density point clouds around complex boundaries, where care
would needed to ensure that both the stencils were picking points appropriately
(e.g. not picking points across structural domains), as well as resolving the
boundary appropriately within the stencil. Variable size stencils may be neces-
sary for these cases, where greatly varying point cloud density would often be
required to resolve complex boundary features.

6.1.5 Unification of RBF Methods

The FSI solver here makes use of a number of RBF-based methods. As such,
exploring ways in which the underlying RBF structures could be exploited to
unify and simplify various aspects of the solver would be another excellent way
to progress towards the ability to simulate increasingly complex FSI problems.

6.2 Closing Remarks

This thesis provides the latest increment in a long line of methods, formulations,
optimisations, and innovations for meshless numerical methods over the last
century. It is hoped that the developments here are a small but worthy addition
to the work of the countless individuals that have come before it.

112 6. CONCLUSIONS

APPENDIX

A. RBF-FD FSI SOLVER

A.1 User Guide

The source code for the RBF-FD FSI solver is provided in appendix A.3, or is
also available at https://gitlab.com/ajmurra/rbf-fd-fsi.

In the directory containing the source code, create a directory ./cases/ alongside
the .m files provided in the source code below. In the ./cases/ directory, create
another directory with the case name to be run, e.g. ./cases/case123/. Inside
the case directory, place three files - sets.txt, dom.txt, and bcs.txt.

An example of sets.txt is shown in appendix A.2. It contains the various param-
eters for the simulation itself.

The dom.txt file contains information about the nodes in the domain, with each
line having the format

<index> <x position> <y position>

where the index is an integer, and the x and y positions are floating point num-
bers.

The bcs.txt file contains information about the boundary and initial conditions
of the case, with each line having the format

<index> <type> <normx> <normy> <velx> <vely> <psi> <veln> <velt>,

with each of the tags described below.

<index> - a reference to the point in dom.txt

<type> - the type of boundary, 1 = wall, 2 = inlet, 3 = free, 4 = moving

<normx>,<normy> - direction of the normal vector (normalised on load)

<velx>,<vely> - x and y velocities

<psi> - fixed streamfunction value

<veln>,<velt> - normal and tangential velocities

https://gitlab.com/ajmurra/rbf-fd-fsi

116 A. RBF-FD FSI SOLVER

The velocity terms are legacy, and are now overwritten by the streamfunction
value <psi>, which is used to determine fixed velocities at boundaries. Hence
these can generally be set to 0.

Once all the above files have been created and placed in the correct directories,
the simulation can be run using the command

MeshlessSolver(‘case123’)

The output data will be written to ./output/case123/<timestamp>.

A.2 Example Input

Below is the settings file for the square flow case of chapter 5. The domain and
boundary conditions can be generated using the script provided.

../meshless–fsi/cases/fsi square20Re100/sets.txt
1 #restartFile output/fsi_square20Re100 /22-11-29 _1709 .23/ restart_tstep15000.mat # name of restart file ,

comment out to start new sim

2 fsi 1 # 0 = no fsi , 1 = fsi

3 fsi_start 2 # time at which to start fsi

4 ord_phs 3 # order of polyharmonic spline to use

5 ord_pol 1 # order of polynomial terms

6 ord_hyp 0 # order of hyperviscosity term

7 sten 30 # stencil size

8 T 100 # the final simulation time

9 tout 0.05 # data output interval

10 dt 0.005 # time delta

11 h 0.05 # delta from wall for vorticity approximation at boundary

12 hv 0.05 # delta from wall for velocity approximation for pressure force calculation

13 r 5.0 # rbf radius for point motion

14 Re 100 # Reynolds number

15
16 # coordinates for centroid of moving points

17 cenx 2.5

18 ceny 2.5

19
20 # spring properties for structural solver

21 fsi_x 1

22 freq_x 2.236

23 damp_x 0.030

24 fsi_y 1

25 freq_y 0.200

26 damp_y 0.030

../meshless–fsi/gen square.m
1 % generate a square in a flow

2
3 close all

4 clear all

5
6 % global settings

7 density = 20; % density - approx number of points along a unit length

8 fpref = ’SQUARE ’; % filename prefix

9 vel = 1; % freestream velocity

10
11 % generate points

12 % left of square

13 xv1 = linspace (0,2,round(density *2));

14 yv1 = linspace (2,3,density);

15 [x1 ,y1] = meshgrid(xv1 ,yv1);

16 x1 = x1(:);

17 y1 = y1(:);

18 %right of square

19 xv2 = linspace (3,15, round(density *12));

20 yv2 = linspace (2,3,density);

21 [x2 ,y2] = meshgrid(xv2 ,yv2);

22 x2 = x2(:);

23 y2 = y2(:);

24 %above square

A.2. EXAMPLE INPUT 117

25 xv3 = linspace (2,3,density);

26 yv3 = linspace (3,5,round(density *2));

27 [x3 ,y3] = meshgrid(xv3 ,yv3);

28 x3 = x3(:);

29 y3 = y3(:);

30 %below square

31 xv4 = linspace (2,3,density);

32 yv4 = linspace (0,2,round(density *2));

33 [x4 ,y4] = meshgrid(xv4 ,yv4);

34 x4 = x4(:);

35 y4 = y4(:);

36 %top left

37 xv5 = linspace (0,2,round(density *2));

38 yv5 = linspace (3,5,round(density *2));

39 [x5 ,y5] = meshgrid(xv5 ,yv5);

40 x5 = x5(:);

41 y5 = y5(:);

42 %top right

43 xv6 = linspace (3,15, round(density *12));

44 yv6 = linspace (3,5,round(density *2));

45 [x6 ,y6] = meshgrid(xv6 ,yv6);

46 x6 = x6(:);

47 y6 = y6(:);

48 %bottom left

49 xv7 = linspace (0,2,round(density *2));

50 yv7 = linspace (0,2,round(density *2));

51 [x7 ,y7] = meshgrid(xv7 ,yv7);

52 x7 = x7(:);

53 y7 = y7(:);

54 %bottom right

55 xv8 = linspace (3,15, round(density *12));

56 yv8 = linspace (0,2,round(density *2));

57 [x8 ,y8] = meshgrid(xv8 ,yv8);

58 x8 = x8(:);

59 y8 = y8(:);

60
61 x = [x1;x2;x3;x4;x5;x6;x7;x8];

62 y = [y1;y2;y3;y4;y5;y6;y7;y8];

63
64 % remove duplicates

65 xy = unique ([x,y],’rows’);

66 x = xy(:,1);

67 y = xy(:,2);

68
69
70
71 pts = [];

72 for i = 1: length(x)

73 pt = [i,x(i),y(i)];

74 pts = [pts;pt];

75 end

76
77 fid = fopen(strcat(fpref ,’_dom.txt’),’w’);

78 fprintf(fid ,’%i %f %f\n’,pts ’);

79 fclose(fid);

80
81 % psi at square

82 ps = 2.5;

83
84 % do boundary conditions

85 bcs = [];

86 for i = 1: length(x)

87
88 % square

89 if (pts(i,2) == 2 && pts(i,3) == 3) % top left

90 bcs = [bcs; i,1,-1,1,0,0,ps];

91 elseif (pts(i,2) == 3 && pts(i,3) == 3) % top right

92 bcs = [bcs; i,1,1,1,0,0,ps];

93 elseif (pts(i,2) == 2 && pts(i,3) == 2) % bottom left

94 bcs = [bcs; i,1,-1,-1,0,0,ps];

95 elseif (pts(i,2) == 3 && pts(i,3) == 2) % bottom right

96 bcs = [bcs; i,1,1,-1,0,0,ps];

97 elseif (pts(i,3) == 3 && pts(i,2) > 2 && pts(i,2) < 3) % top

98 bcs = [bcs; i,1,0,1,0,0,ps];

99 elseif (pts(i,3) == 2 && pts(i,2) > 2 && pts(i,2) < 3) % bottom

100 bcs = [bcs; i,1,0,-1,0,0,ps];

101 elseif (pts(i,2) == 2 && pts(i,3) > 2 && pts(i,3) < 3) % left

102 bcs = [bcs; i,1,-1,0,0,0,ps];

103 elseif (pts(i,2) == 3 && pts(i,3) > 2 && pts(i,3) < 3) % right

104 bcs = [bcs; i,1,1,0,0,0,ps];

105
106 % domain

107 elseif (pts(i,2) == 0) % inlet

108 bcs = [bcs; i,3,1,0,0,0,pts(i,3)];

109 elseif (pts(i,2) == 15) % outlet

110 bcs = [bcs; i,3,-1,0,0,0,pts(i,3)];

111 elseif (pts(i,3) == 5) % top

112 bcs = [bcs; i,3,0,-1,0,0,5];

113 elseif (pts(i,3) == 0) % bottom

114 bcs = [bcs; i,3,0,1,0,0,0];

115 end

116
117

118 A. RBF-FD FSI SOLVER

118 end

119
120 fid = fopen(strcat(fpref ,’_bcs.txt’),’w’);

121 fprintf(fid ,’%i %i %f %f %f %f %f\n’,bcs ’);

122 fclose(fid);

123
124
125 figure

126 hold on

127 plot(x,y,’k.’);

128 quiver(x(bcs(:,1)),y(bcs(:,1)),bcs(:,3),bcs(:,4));

129 axis equal

130
131 figure

132 plot3(pts(bcs(:,1) ,2),pts(bcs(:,1) ,3),bcs(:,7),’k.’);

133 axis equal

A.3 Source Code

../rbf–fd–fsi/MeshlessSolver.m
1 function MeshlessSolver(caseName)

2
3
4 fprintf("-----------------\nRBF -FD FSI SOLVER\n-----------------\n")

5 % load settings

6 %

7 % we load up the text file using text scan

8 % since this allows comments on lines with variable definitions ,

9 % but then we have to run through each variable and decide

10 % if it’s a number or not

11 fid = fopen(sprintf ("cases/%s/sets.txt",caseName),’r’);

12 set = textscan(fid ,’%s %s’,’CommentStyle ’,’#’);

13 fclose(fid);

14 set = cell2struct(set{:,2},set{:,1},1);

15 fn = fieldnames(set);

16 for i=1: numel(fn)

17 if all(ismember(set.(fn{i}),’0123456789+ -. eEdD’))

18 set.(fn{i}) = str2double(set.(fn{i}));

19 end

20 end

21
22 fprintf (" SETTINGS\n")

23 disp(set);

24
25 fprintf("--------------\nINITIALISATION\n--------------\n")

26
27 % start the parallel pool

28 tic

29 gcp;

30 fprintf ("%fs\n",toc)

31
32 % if this is a restart , just load the file

33 restart = 0;

34 if isfield(set ,’restartFile ’)

35 % it may be necessary to change the output directory if we ’ve

36 % changed the directory name since the simulation ran

37 [outDirTmp ,~,~] = fileparts(set.restartFile);

38 restart = 1;

39 % save a copy of the settings file to compare to what is in the

40 % restart file , in case settings have changed and we need to

41 % recalculate things

42 tmpSet = set;

43
44 % load in the restart file

45 fprintf (" Loading restart file %s... ",set.restartFile)

46 tic

47 load(set.restartFile)

48 fprintf ("%fs\n",toc)

49 outDir = strcat(outDirTmp ,’/’);

50 clear outDirTmp

51 else

52 % create the directory to output files to

53 timestamp = datestr(datetime(’now’),’yy-mm-dd_HHMM.SS’);

54 outDir = strcat(sprintf (" output/%s/%s/",caseName ,timestamp));

55 mkdir(outDir);

56
57 % load domain

58 %

59 % similar trick to the settings file , but no need to check

60 % if things are numbers , since the data is more rigid , can convert

61 % straight to an array

62 fid = fopen(sprintf ("cases/%s/dom.txt",caseName),’r’);

63 dom = cell2mat(textscan(fid ,’%f %f %f’,’CommentStyle ’,’#’));

A.3. SOURCE CODE 119

64 fclose(fid);

65
66 % load boundary conditions

67 %

68 % similar to domain , but some extra columns

69
70 % define where to find the various things inside the bcs array

71 bciID = 1;

72 bciIND = 1;

73 bciTYPE = 2;

74 bciNORMx = 3;

75 bciNORMy = 4;

76 bciNORMxy = 3:4;

77 bciVELx = 5;

78 bciVELy = 6;

79 bciVELxy = 5:6;

80 bciPSI = 7;

81 bciVELn = 8;

82 bciVELt = 9;

83
84 % define some globals to enumerate the condition types

85 bcWALL = 1;

86 bcINLET = 2;

87 bcFREE = 3;

88 bcMOVING = 4;

89
90 fid = fopen(sprintf ("cases/%s/bcs.txt",caseName),’r’);

91 bcs = cell2mat(textscan(fid , ’%f %f %f %f %f %f %f’,’CommentStyle ’,’#’));

92 fclose(fid);

93
94 % normalise normals

95 bcs(:,bciNORMxy) = bcs(:,bciNORMxy)./sqrt(sum(bcs(:, bciNORMxy).^2,2));

96
97 % calculate normal and tangential velocity components

98 tangents = [bcs(:,bciNORMy),-bcs(:,bciNORMx)];

99 bcs = [bcs , dot(bcs(:,bciVELxy),bcs(:,bciNORMxy) ,2),dot(bcs(:,bciVELxy),tangents ,2)];

100
101 % now that we ’re done loading everything and matching boundary

102 % conditions to points , replace point ids with indices in the boundary

103 % conditions and delete ids from domain , since indexed access is faster

104 inds = [];

105 for i = 1: length(bcs)

106 ind = find(dom(:,1)==bcs(i,bciID));

107 inds = [inds;ind];

108 end

109 bcs(:,bciID) = inds;

110 dom = dom (: ,2:3);

111 end

112
113 % display some warnings if necessary

114 if (mod(set.tout ,set.dt) ~= 0)

115 warning ("Data output delta is not divisible by time delta , output may be irregular .")

116 end

117
118 if (restart && tstep*tmpSet.dt == tmpSet.T)

119 warning (" Restart time equals final time , no simulation will be run .")

120 end

121
122 if (set.ord_phs < 2*set.ord_hyp +1)

123 warning (" Should have ord_phs >= 2* ord_hyp +1.")

124 end

125
126
127 % run the simulation

128
129 % if this isn ’t a restart , do all the initial setup , pulling out indices etc.

130 if ~restart

131
132 % get the total number of points in the domain

133 N = length(dom);

134
135 % get indices and number of boundary points

136 bpts = bcs(:,bciIND);

137
138 % indices of the individual bcs within the bcs array

139 bcs_w = find(bcs(:,bciTYPE)== bcWALL);

140 bcs_i = find(bcs(:,bciTYPE)== bcINLET);

141 bcs_f = find(bcs(:,bciTYPE)== bcFREE);

142 bcs_m = find(bcs(:,bciTYPE)== bcMOVING);

143
144 % indices of the individual bcs within the full domain

145 bpts_w = bcs(bcs_w ,bciIND);

146 bpts_i = bcs(bcs_i ,bciIND);

147 bpts_f = bcs(bcs_f ,bciIND);

148 bpts_m = bcs(bcs_m ,bciIND);

149
150 % find indices of all volume points

151 pts_vol = 1:size(dom ,1);

152 pts_vol ([bpts_w;bpts_i;bpts_f;bpts_m]) = [];

153
154 % store the dirichlet bcs for psi so we don ’t have to pull it out every

155 % loop

156 psi_w = bcs(bcs_w ,bciPSI);

120 A. RBF-FD FSI SOLVER

157 psi_i = bcs(bcs_i ,bciPSI);

158 psi_f = bcs(bcs_f ,bciPSI);

159 psi_m0 = bcs(bcs_m ,bciPSI);

160 psi_m1 = zeros(size(psi_m0));

161
162 if (length(bpts_w)+length(bpts_i)+length(bpts_f)+length(bpts_m) ~= length(bpts))

163 warning (" individual boundaries do to not sum to total");

164 end

165 end

166
167 % if new sim , or the stencil size has changed

168 if ~restart || (tmpSet.sten ~= set.sten)

169 % calculate stencils

170 if restart

171 set.sten = tmpSet.sten;

172 end

173 stencils = GetNearest(dom ,set.sten);

174 end

175
176 % if new sim , or any of the RBF -FD settings have changed

177 if ~restart || (tmpSet.ord_phs ~= set.ord_phs) ...

178 || (tmpSet.ord_pol ~= set.ord_pol) ...

179 || (tmpSet.ord_hyp ~= set.ord_hyp)

180 % calculate derivative matrices / RBF -FD weights

181 fprintf (" Calculating RBF -FD weights ... ")

182 tic

183 CalcDerivMatrix;

184 fprintf ("%fs\n",toc)

185 end

186
187 % if new sim with fsi , or restart where we have switched on fsi

188 if (~ restart && set.fsi == 1) || (restart && set.fsi == 0 && tmpSet.fsi == 1)

189 % take a copy of domain at time 0 for keeping track of motion

190 dom0 = dom;

191
192 % setup motion matrix H

193
194 % stack the boundary points in order

195 bpts_ordered = [bpts_m;bpts_w;bpts_f;bpts_i];

196 nCtl = length(bpts);

197 nVol = size(dom ,1) - length(bpts);

198 Css = zeros(nCtl);

199 Csv = zeros(nVol ,nCtl);

200
201 % generate Css matrix

202 fprintf (" Generating Css matrix for point motion ... ")

203 tic

204 for i = 1:nCtl

205 for j = 1:nCtl

206 indi = bpts_ordered(i);

207 indj = bpts_ordered(j);

208 Css(i,j) = RBF(’C2’,set.r,dom(indi ,:),dom(indj ,:));

209 end

210 end

211 fprintf ("%fs\n",toc)

212
213 fprintf (" Generating Csv matrix for point motion ... ")

214 tic

215 parfor i = 1:nVol

216 for j = 1:nCtl

217 indi = pts_vol(i);

218 indj = bpts_ordered(j);

219 Csv(i,j) = RBF(’C2’,set.r,dom(indi ,:),dom(indj ,:));

220 end

221 end

222 fprintf ("%fs\n",toc)

223
224 fprintf (" Inverting Css matrix ... ")

225 tic

226 H = Csv*inv(Css);

227 fprintf ("%fs\n",toc)

228
229 % initial variables for structural solve

230 xt = 0;

231 xtm1 = 0;

232 yt = 0;

233 ytm1 = 0;

234 end

235
236 % if we’re restarting , overwrite the settings in the restart file with the ones in the

237 % configuration file , and delete the temp settings

238 % otherwise , set up all the initial conds etc.

239 if restart

240 clear tmpSet.restartFile; % don ’t want a restart file in a restart file

241 set = tmpSet;

242 clear tmpSet restart;

243 else

244 % STEP 0: initialise the simulation

245
246 % set psi to be zero everywhere to begin , boundary conditions will be

247 % applied once the sim is running

248 psi = zeros(N,1);

249

A.3. SOURCE CODE 121

250 % set omega to be zero everywhere except at walls , where we use

251 % the boundary velocities to calculate vorticity , which then will

252 % carry the boundary velocity into the domain

253 omega = zeros(N,1);

254
255 % set initial velocities zero everywhere , boundaries get set during loop

256 vel = zeros(N,2);

257
258 % create an identity matrix for the velocity transport equations so we

259 % don ’t have to generate every loop

260 eye4vte = eye(length(bpts));

261
262 % start at time = 0

263 tstep = 0;

264
265 % write a file with the initial settings , so we always know

266 % what settings this file was run with , and we don ’t have to

267 % recalculate everything above

268 clear set.restartFile;

269 clear restart;

270 filename = strcat(outDir ,’restart_tstep0.mat’);

271 fprintf (" Writing initial data to %s... ",filename)

272 tic

273 save(filename);

274 fprintf ("%fs\n",toc)

275 end

276
277 % if we’re on a desktop , create a plot

278 if ispc

279 figure

280 end

281
282 fprintf("----------------\nSIMULATION START\n----------------\n")

283 while tstep*set.dt < set.T

284
285 % solve poisson equation for psi , setting psi @ boundary.

286 % note that the dirichlet boundary condition for psi is in omega for

287 % the poisson equation , i.e. this is NOT a vorticity boundary condition

288 % since the Apoiss matrix is modified to be identity at these points.

289 % the vorticity boundary condition is calculated in the NEXT step.

290 om = -omega;

291 psi_m = psi_m0 + psi_m1;

292 om(bpts_w) = psi_w;

293 om(bpts_i) = psi_i;

294 om(bpts_f) = psi_f;

295 om(bpts_m) = psi_m;

296 % solve the equation

297 psi = Apoiss\om;

298 % set psi on the boundary again for good measure

299 psi(bpts_w) = psi_w;

300 psi(bpts_i) = psi_i;

301 psi(bpts_f) = psi_f;

302 psi(bpts_m) = psi_m;

303
304 % calculate omega at walls from psi , use Jensen ’s approximation

305 qpts1 = dom([bpts_w;bpts_m],:)+set.h*bcs([bcs_w;bcs_m],bciNORMxy);

306 qpts2 = dom([bpts_w;bpts_m],:)+2* set.h*bcs([bcs_w;bcs_m],bciNORMxy);

307 si = scatteredInterpolant(dom(:,1),dom(:,2),psi);

308 si.Method = ’natural ’;

309 psi_int1 = si(qpts1 (:,1),qpts1 (:,2));

310 psi_int2 = si(qpts2 (:,1),qpts2 (:,2));

311 % thom

312 omega([bpts_w;bpts_m]) = 2/set.h^2*([psi_w;psi_m] - psi_int1 + set.h*bcs([bcs_w;bcs_m],bciVELt));

313 % jensen

314 %omega([bpts_w;bpts_m]) = 1/2/ set.h^2*(7*[psi_w;psi_m]-8* psi_int1 + psi_int2 + 6*set.h*bcs([bcs_w;

bcs_m],bciVELt));

315 omega([bpts_i;bpts_f]) = 0;

316
317 % calculate velocities

318 vel(:,1) = Ay*psi;

319 vel(:,2) = -Ax*psi;

320
321 % set velocities at moving walls

322 vel(bpts_m ,:) = bcs(bcs_m ,bciVELxy);

323
324 % create diagonal velocity matrices

325 dx = spdiags(vel(:,1) ,0,N,N);

326 dy = spdiags(vel(:,2) ,0,N,N);

327
328 % build velocity transport equation matrix

329 vte = 1/set.Re*Alap - dx*Ax - dy*Ay - N^-set.ord_hyp*Ahyp;

330
331 % set boundaries in matrix

332 vte(bpts ,bpts) = eye4vte;

333
334 % step in time using RK4

335 k1 = vte*omega;

336 k2 = vte*(omega+set.dt*k1/2);

337 k3 = vte*(omega+set.dt*k2/2);

338 k4 = vte*(omega+set.dt*k3);

339 omega = omega + set.dt/6*(k1 + 2*k2 + 2*k3 + k4);

340 tstep = tstep + 1;

341 t = tstep*set.dt;

122 A. RBF-FD FSI SOLVER

342
343 % if fsi is enabled , move the boundary

344 if (set.fsi == 1 && t >= set.fsi_start)

345
346 % create interpolator before we move the points

347 si_omega = scatteredInterpolant(dom(:,1),dom(:,2),omega ,’natural ’);

348
349 % calculate pressure around moving walls

350 qpts = dom(bpts_m ,:)+set.hv*bcs(bcs_m ,bciNORMxy);

351 si_velx = scatteredInterpolant(dom(:,1),dom(:,2),vel(:,1),’natural ’);

352 si_vely = scatteredInterpolant(dom(:,1),dom(:,2),vel(:,2),’natural ’);

353 velx = si_velx(qpts (:,1),qpts (:,2));

354 vely = si_vely(qpts (:,1),qpts (:,2));

355
356 % calculate forces by summing pressures in normal directions

357 % (negative since pressure force works against normal)

358 F = -sum((velx .^2+ vely .^2).*bcs(bcs_m ,bciNORMxy));

359
360 % step the structural solver

361 xtp1 = set.fsi_x*StructuralSolve(xt,xtm1 ,set.freq_x ,set.damp_x ,set.dt,F(1));

362 ytp1 = set.fsi_y*StructuralSolve(yt,ytm1 ,set.freq_y ,set.damp_y ,set.dt,F(2));

363
364 xtm1 = xt;

365 ytm1 = yt;

366 xt = xtp1;

367 yt = ytp1;

368
369 % calculate velocities of moving points

370 vx = (xt -xtm1)/set.dt;

371 vy = (yt -ytm1)/set.dt;

372
373 % move points

374 dom(bpts_m ,:) = dom0(bpts_m ,:) + [xt,yt];

375 displacements = [repmat ([xt ,yt],length(bpts_m) ,1);zeros(length(bpts)-length(bpts_m) ,2)];

376 dom(pts_vol ,:) = dom0(pts_vol ,:) + H*displacements;

377
378 % interpolate omega to new points

379 omega = si_omega(dom(:,1),dom(:,2));

380
381 % recalculate derivative matrices

382 CalcDerivMatrix;

383
384 % set tangential and normal velocity at the walls

385 bcs(bcs_m ,bciVELxy) = repmat ([vx,vy],length(bcs_m) ,1);

386 bcs(bcs_m ,bciVELn) = dot(bcs(bcs_m ,bciVELxy),bcs(bcs_m ,bciNORMxy) ,2);

387 bcs(bcs_m ,bciVELt) = dot(bcs(bcs_m ,bciVELxy),tangents(bcs_m ,:) ,2);

388
389 % shift moving points to origin and skew in z direction to

390 % calculate boundary condition for psi

391 pts = dom(bpts_m ,:) - [set.cenx+xt,set.ceny+yt];

392 psi_m1 = vy*pts(:,1) + vx*pts(:,2);

393
394 fprintf ("step = %i \tt = %f \tforce = [%d,%d] \tdisplacement = [%d,%d]\n",tstep ,t,F(1),F(2),xt,

yt);

395 else

396 fprintf ("step = %i \tt = %f\n",tstep ,t);

397 end

398
399 % if we’re on desktop , plot the streamfunction and vorticity

400 if (ispc && mod(t,set.tout) < set.dt/2)

401 subplot (1,2,1)

402 plot3(dom(:,1),dom(:,2),omega ,’k.’)

403
404 subplot (1,2,2)

405 plot3(dom(:,1),dom(:,2),psi ,’k.’)

406
407 pause (0)

408 end

409
410 % output data

411 if (mod(t,set.tout) < set.dt/2)

412 filename = strcat(outDir ,num2str(tstep),’.dat’);

413 fprintf (" Writing output to %s... ",filename)

414 fileID = fopen(filename ,’w’);

415 fprintf(fileID ,’%f %f %f %f %f %f\n’,[dom ,vel(:,1),vel(:,2),omega ,psi]’);

416 fclose(fileID);

417 fprintf ("%fs\n",toc)

418 if exist(’F’,’var’)

419 fileID = fopen(strcat(outDir ," structural.dat") ,"a+");

420 fprintf(fileID ,"%i %f %f %f %f %f\n",[tstep t F(1) F(2) xt, yt]);

421 fclose(fileID);

422 end

423 end

424
425 % check for nan

426 if isnan(omega+psi)

427 fprintf (" Solution contains NaN\n")

428 break;

429 end

430 end

431 fprintf("--------------\nSIMULATION END\n--------------\n")

432
433 % create a restart file at end of simulation

A.3. SOURCE CODE 123

434 clear set.restartFile;

435 clear restart;

436 filename = strcat(outDir ,’restart_tstep ’, string(tstep) ,".mat");

437 fprintf (" Writing restart data to %s... ",filename)

438 tic

439 save(filename);

440 fprintf ("%fs\n",toc)

441 end

../rbf–fd–fsi/CalcDerivMatrix.m
1 % preallocate i,j,v arrays for use with sparse(i,j,v), we reshape these below

2 A_i = zeros(N,set.sten); % indices for matrices (all have the same sparsity pattern)

3 A_j = zeros(N,set.sten);

4 Ax_v = zeros(N,set.sten); % first deriv , x direction

5 Ay_v = zeros(N,set.sten); % first deriv , y direction

6 Alap_v = zeros(N,set.sten); % laplacian operator

7 Ahyp_v = zeros(N,set.sten); % second deriv , cross term

8
9 % extract the x and y coordinates of each stencil and store in matrix

10 % to ensure we can access quickly in the parallel step (i.e. sliced arrays)

11 sx = reshape(dom(stencils ,1) ,[N set.sten]);

12 sy = reshape(dom(stencils ,2) ,[N set.sten]);

13
14 % parallel loop through and calculate weights at each point/stencil and write to derivative matrices

15 parfor i = 1:N

16
17 % extract x and y coords for current stencil

18 stenx = sx(i,:) ’;

19 steny = sy(i,:) ’;

20
21 % find index of center point

22 [tf , ind_cent] = ismember(dom(i,:) ,[stenx , steny],’rows’);

23
24 if tf

25
26 j = stencils(i,:);

27 w = RBFFDWeights(ind_cent ,stenx ,steny ,set.ord_phs ,set.ord_pol ,set.ord_hyp);

28
29 % write weights to appropriate arrays

30 A_i(i,:) = i;

31 A_j(i,:) = j;

32 Ax_v(i,:) = w(:,1);

33 Ay_v(i,:) = w(:,2);

34 Alap_v(i,:) = w(:,3);

35 if set.ord_hyp > 0

36 Ahyp_v(i,:) = w(:,end);

37 else

38 Ahyp_v(i,:) = 0;

39 end

40 else

41 warning ("couldn ’t find stencil center in stencil ");

42 end

43 end

44
45 % reshape the matrices into columns

46 sz = [1 N*set.sten];

47 A_i = reshape(A_i ,sz) ’;

48 A_j = reshape(A_j ,sz) ’;

49 Ax_v = reshape(Ax_v ,sz) ’;

50 Ay_v = reshape(Ay_v ,sz) ’;

51 Alap_v = reshape(Alap_v ,sz)’;

52 Ahyp_v = reshape(Ahyp_v ,sz)’;

53
54 % create sparse matrices

55 Ax = sparse(A_i ,A_j ,Ax_v);

56 Ay = sparse(A_i ,A_j ,Ay_v);

57 Alap = sparse(A_i ,A_j ,Alap_v);

58 Ahyp = sparse(A_i ,A_j ,Ahyp_v);

59
60 % set up matrix for solving poisson equation with built in boundary cond

61 Apoiss = Alap;

62
63 % set the rows to zero , since coupling should only be 1-way , i.e. from

64 % boundary to domain

65 Apoiss(bpts_w ,:) = 0;

66 Apoiss(bpts_i ,:) = 0;

67 Apoiss(bpts_f ,:) = 0;

68 Apoiss(bpts_m ,:) = 0;

69
70 % set identities to setup dirichlet condition equations

71 Apoiss(bpts_w ,bpts_w) = eye(length(bpts_w));

72 Apoiss(bpts_i ,bpts_i) = eye(length(bpts_i));

73 Apoiss(bpts_f ,bpts_f) = eye(length(bpts_f));

74 Apoiss(bpts_m ,bpts_m) = eye(length(bpts_m));

../rbf–fd–fsi/StructuralSolve.m
1 % returns the displacement of mass -spring -damper system at x^(t+1) when

124 A. RBF-FD FSI SOLVER

2 % given the current displacment x^t

3 % and displacement at last timestep x^(t-1)

4 % uses second order central difference scheme

5
6 % xtp1 = x^(t+1), return value for new displacement

7 % xt = x^t, current displacement

8 % xtm1 = x^(t-1), displacement at last timestep

9 % dt = time delta

10 % omega_n = natural frequency

11 % zeta = damping ratio

12 % F = external force

13
14 function xtp1 = StructuralSolve(xt ,xtm1 ,omega_n ,zeta ,dt,F)

15 c0 = 1 + dt*zeta*omega_n;

16 c1 = dt*dt;

17 c2 = dt*zeta*omega_n - 1;

18 c3 = 2 - dt*dt*omega_n*omega_n;

19 xtp1 = (c1*F + c2*xtm1 + c3*xt)/c0;

20 end

../rbf–fd–fsi/RBFFDWeights.m
1 function w = RBFFDWeights (i,x,y,m,d,k)

2
3 % this function is adapted from

4 %

5 % "Enhancing finite differences with radial basis functions:

6 % Experiments on the Navier -Stokes equations"

7 %

8 % by Natasha Flyer , Gregory A. Barnett , Louis J. Wicker , 2016

9
10 % Input parameters

11 % x,y Column vectors with stencil node locations; approximation to

12 % be accurate at x(1),y(1)

13 % m Power of r in RBF fi(r) = r^m, with m odd , >= 3.

14 % d Degree of supplementary polynomials (d = -1 no polynomials)

15 % k Degree of hyperviscosity term

16 %

17 % Output parameter

18 % w Matrix with three columns , containing weights for d/dx, d/dy ,

19 % and the Laplacian d2/dx2+d2/dy2 , respectively.

20
21 % Shift nodes so stencil centered at origin

22 x = x-x(i);

23 y = y-y(i);

24 n = length(x);

25
26
27 % ------ RBF part --

28 % calculate matrix of distances from each point to each other point

29 % note this is invariant under the translation to the origin above

30 dists = hypot(bsxfun(@minus ,x,x’),bsxfun(@minus ,y,y’));

31
32 % calculate matrix of r^m

33 A0 = dists .^m;

34
35 % RBF matrix

36
37 % radius is just distance to origin , which is the center of the stencil

38 % since we translated above , so use that rather than recalculate

39 r = dists (:,1);

40
41 L0 = m*(bsxfun(@times ,r.^(m-2) ,...

42 [...

43 -x,... % dx

44 -y,... % dy

45 m*ones(n,1) ,... % laplacian

46])); % RHSs

47
48 if k > 0

49 hyperv = 1;

50 for i=1:k

51 hyperv = hyperv *(m-(2*i-1)).^2;

52 end

53 hyperv = hyperv .*r.^(m-2*k);

54 L0 = [L0 ,hyperv];

55 end

56 % we can get a divide by zero above , but these should be zero

57 L0(isnan(L0))=0;

58
59 % ------ Polynomial part ---

60 if d == -1

61 % Special case; no polynomial terms ,

62 % i.e. pure RBF

63 A = A0;

64 L = L0;

65 else

66 % Create matrix with polynomial terms and matching constraints

67 X = x(:,ones(1,d+1));

68 X(:,1) = 1;

69 X = cumprod(X,2);

A.3. SOURCE CODE 125

70 Y = y(:,ones(1,d+1));

71 Y(:,1) = 1;

72 Y = cumprod(Y,2);

73 np = (d+1)*(d+2)/2; % Number of polynomial terms

74
75 XY = zeros(n,np); col = 1; % Assemble polynomial matrix block

76
77 for k = 0:d

78 XY(:,col:col+k) = X(:,k+1: -1:1).*Y(:,1:k+1);

79 col = col+k+1;

80 end

81
82 L1 = zeros(np ,length(L0(1,:))); % Create matching RHSs

83
84 if d >= 1

85 L1(2,1) = 1;

86 L1(3,2) = 1;

87 end

88 if d >= 2

89 L1(4,3) = 2;

90 L1(6,3) = 2;

91 end

92
93 A = [A0,XY;XY’,zeros(col -1)]; % Assemble linear system to be solved

94 L = [L0;L1]; % Assemble RHSs

95
96 end

97 % ------ Solve for weights ---

98 W = A\L;

99 w = W(1:n,:); % Extract the RBF -FD weights

100 end

../rbf–fd–fsi/RBF.m
1 function out = RBF(rbf ,r,X,Xc)

2 %Xnorm = sqrt((X(:,1) - Xc(:,1)).^2 + (X(:,2) - Xc(:,2)).^2 + (X(:,3) - Xc(:,3)).^2);

3 Xnorm = norm(X-Xc);

4 x = Xnorm/r;

5 switch rbf

6 case ’C0’

7 out = (1-x).^2;

8 if Xnorm > r

9 out = 0;

10 end

11 case ’C2’

12 out = (1 - x).^4.*(4*x + 1);

13 if Xnorm > r

14 out = 0;

15 end

16 case ’C4’

17 out = (1-x).^6.*(35*x.^2+18*x+3)/3;

18 if Xnorm > r

19 out = 0;

20 end

21 case ’C6’

22 out = (1-x).^8.*(32*x.^3+25*x.^2+8*x+1);

23 if Xnorm > r

24 out = 0;

25 end

26 case ’Euclid ’

27 out = pi *((1/12*x.^3) -0.5^2*x+4/3*0.5^3) /(pi *(-0.5^2*0+4/3*0.5^3));

28 if Xnorm > r

29 out = 0;

30 end

31 case ’Multiquadric ’

32 out = sqrt (1+x.^2);

33 case ’InverseMulti ’

34 out = 1./ sqrt (1+x.^2);

35 case ’TPS’

36 out = x.^2* log(x);

37 case ’Gaussian ’

38 out = exp(-x.^2);

39 otherwise

40 error(’RBF not recognised.’);

41 end

42 if isnan(out)

43 out = 0;

44 end

45 end

../rbf–fd–fsi/GetNearest.m
1 function out = get_nearest(pts ,k)

2 kdts = KDTreeSearcher(pts);

3 out = knnsearch(kdts ,pts ,’k’,k);

4 end

126 A. RBF-FD FSI SOLVER

../rbf–fd–fsi/FillTrap.m
1 % fills a trapezoid with smoothly spaced points

2 %

3 % s1 = length of bottom side

4 % s2 = length of top side

5 % h = height of trapezoid

6 % ptCnt = number of points along bottom size of trapezoid

7 % er = expansion rate

8
9 function [x,y] = FillTrap(s1 ,s2,h,ptCnt ,er)

10
11 rise = h;

12 run = (s2-s1)/2;

13 slope = rise/run;

14
15 % calculate initial spacing

16 x = linspace(-s1/2,s1/2,ptCnt);

17 spc = (x(2)-x(1));

18
19 % calculate y spacing

20 y = 0;

21 ex = er;

22 while max(y) <= h

23 y = [y,max(y)+spc*ex];

24 ex = ex*er;

25 end

26
27
28
29 % if removing a row would get us closer to the height , do it

30 if y(end)-h > h-y(end -1)

31 y = y(1:end -1);

32 end

33
34 % rescale y

35 y = y/max(y)*h;

36
37 % now go through generate the points

38 x = linspace(-s1/2,s1/2,ptCnt)’;

39 out = [x,x*0+y(1)];

40 for i = 2: length(y)

41 len = s1+2*y(i)/slope;

42 spc = y(i)-y(i-1);

43 num = round(len/spc)+1;

44 x = linspace(-len/2,len/2,num)’;

45 out = [out;x,x*0+y(i)];

46 end

47
48 out = uniquetol(out ,’ByRows ’,true);

49 x = out(:,1);

50 y = out(:,2);

51
52 end

B. AIAA SCITECH 2020 FORUM PAPER

The following paper [6] was delivered at SciTech2020. It is provided for interest,
as an example of broader applications of RBFs.

Catastrophe Theoretic Modelling of Hysteresis in Transonic
Shock Buffet

Adam Murray∗, Nicholas Giannelis†, and Gareth A. Vio‡

School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, Australia

Given particular flow conditions within the transonic flow regime, undesirable dynamic
lift and pitch profiles are produced due to the emergence of self sustaining oscillating shock
waves known as shock buffet. Shock buffet onset has been observed to exhibit hysteresis
with changes in angle of attack both experimentally and numerically. Here we model this
hysteresis in the onset phase by way of catastrophe theory, a sub-branch of bifurcation theory
in which bifurcations are studied using the geometry of a sufficiently smooth Lyapanov function.
Numerical simulations are conducted for 2D flow over a thin aerofoil in the transonic regime
and the nominal buffet response is discussed. The hysteresis behaviour is modelled using a
cusp-catastrophic model of the interactions between Mach number, angle of attack, and lift
coefficient, with buffet onset determined to be when the lift coefficient becomes oscillatory. The
hysteresis boundary and cusp (bifurcation) points of the cusp-catastrophic model is then fit
using a subset of the numerical data (including the cusp point) as a training set. The remaining
numerical data is compared to the model predictions for the hysteresis boundary, both interior
and exterior to the training set. The model is found to agree with numerical results within
3%. Future work will include investigating a dual cusp treatment for entry/exit into the buffet
regime, expansion of the model to describe additional aspects of the buffet phenomenon, and
the applicability of the model in the three dimensional case, which has clear importance for
transonic applications.

I. Introduction
Catastrophe theory to model hysteretic aerodynamic phenomenon has recently been used by Li et al.[1], in which

they predict intermediate values on the stall boundary for the 2D simulation of aerofoils. The stall boundary exhibits
hysteresis with respect to angle of attack and their work highlights the success that can be achieved in the use of a simple
mathematical model to predict aerodynamic phenomenon. Here we use the underlying mathematical theory to model
transitions in and out of transonic shock buffet, a phenomenon which exhibits hysteresis with respect to Mach number
and angle of attack.

A. Transonic Shock Buffet
In a transonic flowfield, variations in flight condition may induce large-scale unsteadiness in the form of oscillating

shock waves and intermittently separated shear layers. Such autonomous shock oscillations, denoted as transonic shock
buffet, are problematic for civil and military aircraft alike and often impose limitations on the flight envelope. Although
the phenomenon evolves as a purely aerodynamic instability [2], the low frequencies of shock oscillation are typically
of the same order as the fundamental structural modes, and in an aeroelastic system, may be a contributing factor to
transonic limit cycle oscillations [3–8]; a detriment to both structural fatigue life and platform handling qualities [9].

The origin of the shock buffet instability remains contentious in the literature, with early works proposing onset due to
shock-induced separation bubble bursting [10], an acoustic wave-propagation feedback mechanism [11] and an unstable
shock wave/separation bubble interaction [12]. More recent works, however, support onset as a consequence of a global
aerodynamic mode instability arising from a Hopf bifurcation [13–15]. Nonetheless, reliable and computationally cheap
methods of buffet onset prediction remain elusive, with onset envelopes predicted either through empirical correlations
with conservative safety margins or high-order CFD simulation.

Recent research in the field has also identified similarities between buffet cell propagation for three-dimensional
swept wings and stall cells observed in subsonic flows [16, 17]. Even in a two-dimensional sense, the onset boundaries

∗PhD Researcher
†PhD Researcher
‡Senior Lecturer

1

128 B. AIAA SCITECH 2020 FORUM PAPER

for the two phenomena are remarkably similar. An increase in angle of attack yields unsteady flow characteristics above
a threshold (the onset condition), with hysteresis present in the response [18]. In this study, we draw on the presence
of hysteresis and similarities to stall to develop an analytical model founded in Catastrophe theory for buffet onset
prediction.

B. Catastrophe Theory
Catastrophe theory has its origins in Whitney’s work on singularities of smooth mappings, and the work of Poincare

and Andronov on bifurcations. The theory was first codified by Rene Thom in the 1960s, and soon became a popular
method for exploring complex dynamical systems [19]. Similar to the theory of normal forms, the theory uses the
geometry of potential functions around singularities to generalise nonlinear behaviour as part of a smooth, well-defined
Lyapanov function. In this way, we can use familiar notions from geometry and calculus to shed light on the behaviour
of badly behaved systems, e.g. discontinuous. The theory examines smooth Lyapanov functions and their degenerate
critical points, i.e. those points and which not only the first, but higher order derivatives vanish. Since the potential
function is smooth and well defined in the areas of interest, it is possible to generalise and classify behaviours of systems
around such degenerate points through diffeomorphisms: smooth mappings of the specific Lyapanov function of the
system to a simpler geometric form.

II. Cusp-Catastrophic Model
The canonical form for potential function of a cusp-catastrophic model with parameters x and y is given by

V(ϕ) = ϕ4 + xϕ2 + yϕ. (1)

The critical points of V are given when V ′ = 0, i.e.

V ′(ϕ) = 0 = 4ϕ3 + 2xϕ + y, (2)

with degenerate critical points being when higher derivatives of the potential function are also zero. To calculate the
degenerate critical points of the cusp catastrophe potential function, we take the second derivative to find

V ′′(ϕ) = 0 = 12ϕ2 + 2x, (3)

the parabolic nature of which can be seen in fig. 1 on the upper surface. These degenerate critical points are seen appear
along the local extrema of the critical surface as expected. Projecting the degenerate points into local (parameter)
coordinates, the catastrophe points produce the cusp geometry shown below the surface. To achieve this projection, we
use V ′′ to eliminate the dependence on the variable ϕ in V ′ and find that the equation for hysteresis boundary with cusp
point is given by

8x3 + 27y2 = 0. (4)

Note that as parameter x passing over the cusp point corresponds to a change in the qualitative behaviour of the system,
i.e. the transfer from non-history dependent behaviour to behaviour exhibiting hysteresis, while the two curves of the
boundary correspond to onset and offset of shock-buffet in the hysteretic region (x < 0).

Although this standard form is only expected in general to produce qualitative behaviour of the system around the
cusp point (i.e. local behaviour), we can perform a regression on the data in combination with a fixed smooth mapping
to fit the simulation points to the standard cusp, and hence provide a qualitative physical model away from the cusp
point as in the case of Li et al [1]. The detailed development and fitting of the model is discussed in section IV.

III. Buffet Modelling

A. Test case
The test case considered in this study is that of the thin NACA 64A204. This aerofoil was employed on the main

wing of the F-16 fighter; a platform known to exhibit transonic limit cycle instabilities [20]. It must be stressed that to
the authors’ knowledge, no wind tunnel studies of shock buffet on this profile are available in open literature. Further, the
findings of the computational studies related to this aerofoil are somewhat contradictory. Iovnovich & Raveh [21] have

2

129

found characteristic Type A shock motion at a flow condition of M = 0.75, Re = 10 × 106 and α = 5.5◦. Bhamidipati
et. al. [22] found that while they were able to produce shock buffet at this condition in an early study [23], a damped
response was observed at higher levels of spatial resolution and spanwise extent. Ultimately, the difficulty in assessing
the buffet response of this aerofoil is the lack of experimental data. Herein, methods that have effectively reproduced the
shock buffet phenomenon in preceding studies by the authors [24, 25] are employed on the NACA 64A204 at equivalent
conditions to Iovnovich & Raveh [21].

Fig. 1 Projection of cusp catastrophe [19]

B. Numerical method
Simulations throughout this study have been performed with the cell-centred finite volume code ANSYS Fluent

R18.2 [26]. Transonic flow over the NACA 64A204 profile is considered, with the two-dimensional pressure-based
implicit solver used to formulate the coupled set of continuity and momentum equations, with the energy equation
solved in a segregated manner. The inviscid fluxes are resolved with an upwind Roe flux difference splitting scheme,
and second-order upwind differencing is used for extrapolation of the convective quantities. The diffusive fluxes are
treated with a second-order accurate central-difference scheme. Gradients for the convective and diffusive terms are
computed at cell faces through a Green-Gauss reconstruction scheme, in addition to a differentiable gradient limiter to
mitigate spurious shock oscillations. Viscous closure of the Navier-Stokes equations is achieved with the Stress-Omega
Reynolds Stress Model (SORSM), derived from the omega equations and the Launder-Reece-Rodi (LRR) model [27].
All turbulent transport equations are solved segregated from the coupled set of continuity, momentum and energy
equations, with second-order accurate upwind discretisation of the turbulent quantities. Regarding the computational
domain, a two-dimensional, CH-type grid is used with an upstream through to wall-normal boundary of 40 chords
and downstream domain length of 60 chords. All computations presented in this paper are performed on a grid of
approximately 67000 grid points with a nondimensional time-step (with respect to the speed of sound) of τ = 0.008, as
determined through the spatial and temporal convergence study provided in Giannelis et. al. [28].

C. Nominal buffet response
For the nominal buffet condition, fig. 2 shows the root-mean-square pressure coefficient and lift coefficient time-

history during a buffet cycle. At this condition, the shock traverses 20% of the aerofoil chord, with the aerodynamic
coefficients fluctuating in an approximately sinusoidal manner. Such a response is typical of Type A Tijdeman [29]
shock motion, observed in the vicinity of buffet onset on two-dimensional profiles [25].

In fig. 3, Mach number contours are provided at time instances during the buffet cycle corresponding to the data
points in fig. 2(b). Figure 3(a) shows the shock travelling downstream and gaining strength. With the shock at its most
aft position in fig. 3(b), the high pressure imparted aft of the shock foot by the separation bubble causes the shock shift

3

130 B. AIAA SCITECH 2020 FORUM PAPER

0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

(a) Root-mean-square pressure coefficient

0 5 10 15 20 25
0.9

1.0

1.1

1.2

a

b c

d

(b) Lift coefficient time-history

Fig. 2 RMS pressure coefficient and lift time-history at nominal buffet conditions M = 0.75, α = 5.5◦ &
Re = 10 × 106. Data points correspond to Mach number contour snapshot presented in fig. 3.

upstream. As identified by Iovnovich & Raveh [21], the shock-induced separation produced by the pressure rise through
the shock behaves as a geometric wedge, increasing the shock strength with an increase in separation. This is evident in
fig. 3(c), where a pronounced slanting of the shock is observed during its upstream excursion. As the shock reaches
its most upstream position in fig. 3(d), the separated region encompasses approximately 70% of aerofoil chord. A
weakening of the shock results in reattachment of the flow immediately aft of the sonic region. This reattachment point
progresses aft towards the trailing edge as the shock begins moving downstream, repeating the cycle.

(a) (b)

(c) (d)

Fig. 3 NACA 64A204 Mach contours over a single buffet cycle (M = 0.75, α = 5.5◦, Re = 10 × 106).

4

131

D. Buffet boundary
Building from the nominal buffet condition, a test matrix within Mach number (M) and angle of attack (α) space has

been investigated to determine the extent of freestream conditions for which shock buffet is evident. fig. 4 provides this
test space, in addition to the conditions where large-scale shock motion has been observed. In fig. 4(b), the computed
onset boundary for the NACA 64A204 is compared with the onset boundaries of two thicker profiles for a corresponding
Mach number range; the OAT15A supercritical aerofoil [25] and the symmetric NACA 0012 [24]. While the present
work is not intended to provide an extensive comparison of onset conditions between different profiles, an interesting
distinction is noted between the thick and thin aerofoils. For the OAT15A and NACA 0012, the onset incidence is shown
to increase with a reduction in Mach number. Although this is also observed at lower Mach numbers for the NACA
64A204, a local minimum onset angle of attack is found at M = 0.75, with onset incidence increasing at higher Mach
numbers. The unique onset behaviour of the thin profile may be representative of a distinct buffet response, warranting
further investigation in a future study.

0.70 0.72 0.74 0.76 0.78 0.80
4.0

4.5

5.0

5.5

6.0

6.5

Test points Buffet

(a) NACA 64A204 buffet envelope.

0.70 0.72 0.74 0.76 0.78 0.80
2

3

4

5

6

NACA 64A204
NACA 0012
OAT15A

(b) Comparison of onset boundary of various profiles.

Fig. 4 NACA 64A204 buffet envelope and comparison of onset boundary with the OAT15A [25] and NACA
0012 [24].

Having identified the test conditions for which shock buffet occurs, angle of attack sweeps are then performed for
Mach numbers between 0.71 < M < 0.78. Both increasing and decreasing sweeps are conducted, with the sweeps
beginning at a minimum of ∆α = ±0.5◦ from the corresponding onset condition in fig. 4(a). The angle of attack
sweeps are performed in a quasi-steady manner, with an angular velocity of ±0.002◦ per travelled chord length. Similar
to Nitzsche [18], these sweeps identify a hysteretic region of incidence, with large-scale unsteadiness continuing to
lower angles of attack on the downward sweep. The extent of this hysteretic zone varies with Mach number, generally
increasing from M = 0.71 with an increase in Mach number as shown in fig. 5.

5 5.2 5.4 5.6 5.8 6
0.6

0.8

1.0

1.2

Sweep up
Sweep down

(a) M = 0.71

4 4.5 5 5.5
0.8

0.9

1.0

1.1

1.2

1.3

Sweep up
Sweep down

(b) M = 0.74

4.5 5 5.5 6
0.6

0.8

1.0

1.2

1.4

Sweep up
Sweep down

(c) M = 0.76

Fig. 5 Onset and offset of oscillatory shock behaviour as a function of angle of attack with increasing Mach
number.

5

132 B. AIAA SCITECH 2020 FORUM PAPER

Figure 5(a) indicates the at M = 0.71 the hysteretic region has effectively dissipated, with the shock buffet onset
condition coincident between the upward and downward sweeps. A representation of the hysteretic region across each of
the Mach numbers considered is also shown in fig. 6. The hysteretic zone is clearly seen to diminish with a decrease in
Mach number, forming a cusp at the M = 0.71 condition. In subsequent sections, this data will be employed to explore
the efficacy of a cusp-catastrophe model on capturing this shock buffet hysteresis.

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78
4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0
Sweep up
Sweep down

Fig. 6 NACA 64A204 shock buffet hysteretic region with incidence sweeps.

IV. Modeling of Buffet Hysteresis
Table 1 summarises the angles of attack at which shock buffet begins during the increasing sweep (onset) and ceases

during the decreasing sweep (offset) as found by the numerical simulation of the previous section.

Mach Sweep Up Sweep Down
0.71 5.492 5.492
0.72 5.358 5.293
0.73 5.160 5.022
0.74 5.118 4.870
0.75 5.075 4.695
0.76 5.249 4.726
0.77 6.000 5.33

Table 1 Points of shock buffet on/offset during angle of attack sweeps with varying Mach number.

Figure 6 shows clearly the natural cusp behaviour of the system as it approaches Mach 0.71. Currently the behaviour
at higher speeds (M > 0.77) is outside of consideration, but will be the topic of future work, both modeling the behaviour
separately and unifying the overall system with the single cusp model as presented here. The envelope is highly
non-linear, both up and downward sweeps, although both the upper and lower boundaries mimic each other’s geometry.

The task of fitting the numerical data to the projected cusp model geometry of fig. 1 can be achieved in 3 individual
coordinate transforms as shown in fig. 7. As the topology of the data and the cusp model of equation 1 is the same, the
mappings are constructed to be continuous and invertible, and hence it is not necessary to calculate them all in the
same direction. This reduces the mathematical complexity of calculating the mappings. In the following we use the
coordinate notation of fig. 7, i.e. (x, y), (η, ξ), (γ, ζ) and (X,Y) for the cusp, symmetric linear, asymmetric linear, and
numerical results respectively.

6

133

Fig. 7 Steps to transform between canonical cusp model and numerical data.

1. Transform 1: Cusp Model to Symmetric Linear Model
By making use of eq. (4), we note that the expressions for the cusp and linear symmetric models respectively are

given by

y = −3x
2
3 , ξ = −|η |, (5)

the mapping of points between the cusp model and the linear model follows trivially. It is possible to state the expression
for the symmetric linear model in more generality by introducing further parameters, e.g. a slope, however as the model
serves as an interim space between the cusp model and the simulation data, the simplest expression is preferred.

2. Transform 2: Symmetric Linear Model to Asymmetric Linear Model
The transform from the symmetric linear model to asymmetric linear model is affine, and hence can easily be split

into a linear transform and a translation. Once the translation is calculated by matching the cusp points (here we assume
both are translated to the origin for simplicity), the linear transform is able to be calculated from the action of the
transform on two points. The equation to be solved is then simply

[
a b
c d

] [
η1 η2

ξ1 ξ2

]
=

[
γ1 γ2

ζ1 ζ2

]
(6)

with a, b, c, d unknown. The solution given by[
a b
c d

]
=

[
γ1 γ2

ζ1 ζ2

] [
η1 η2

ξ1 ξ2

]−1

=
1

η1ξ2 − η2ξ1

[
γ1 γ2

ζ1 ζ2

] [
ξ2 −η2
−ξ1 η1

]
. (7)

As in the case of the previous transform, the asymmetric linear model is an interim space, and hence the two target
points (γi, ζi) can be chosen somewhat arbitrarily. However it is usually helpful at this stage to choose target points to
match the extremities of numerical data, reducing the need for scaling in the final transform.

3. Transform 3: Asymmetric Linear Model to Data
While the previous two transformations have been determined completely, mapping the asymmetric linear model

to the numerical results necessarily requires a data fitting method. Li et al. have used a powerful data fitting tool in
RBF based neural nets. This allows capture of non-linear aspects to the data, and provides a more generally applicable
method for more complex hysteresis envelope geometry. An RBF neural net implementation (newrb or newrbe) is
available in MATLAB via the Deep Learning Toolbox.

To map between the data and the straight line of the asymmetric linear model, we use the neural net to find fit on the
difference between the numerical results and the linear model as a function of Mach number, i.e. ∆i = ζi − Yi . Using a

7

134 B. AIAA SCITECH 2020 FORUM PAPER

difference rather than a direct fit also has the advantage of providing an invertible transform, when assuming that the
cusp point is fixed (at the origin or otherwise). As discussed in the previous transform, the selection of the lines (i.e.
slopes) of the asymmetric model are somewhat arbitrary, however it is best practice to match at least the cusp.

A. Model Results
Figure 8 shows the results of the RBF neural net fitting. Now that three transforms above have been constructed, we

have a continuous, invertible map between the canonical cusp model and the numerical data.

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78
4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0
Up (Simulation)
Up (RBF fit)
Down (Siulation)
Down (RBF fit)

Fig. 8 Results of RBF neural net fitting.

Passing a test Mach numbers through the cusp model and comparing to additional numerical simulations (fig. 9), we
see that the model predicts the hysteresis boundary to within 3%.

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

Numerical Results

Fig. 9 Testing the model at interim Mach numbers.

8

135

V. Conclusions and Future Work
This work has shown that the hysteresis of transonic shock buffet over an aerofoil exhibits cusp catastrophic behaviour.

Using simple mathematical modeling techniques, it has been shown that accurate predictions of the onset and offset of
shock buffet can be determined interior to numerical data, eliminating at least some need for computationally expensive
CFD simulations or experimentation.

A. Applicability to 3D Wings
It should be noted that the method is generic and applies to any cusp catastrophic behaviour observed in physical

phenomena. However the exploration of hysteresis envelopes for transonic shock buffet has been so far limited. As
such it is unknown as to whether cusps exist in all cases. Further investigation of the hysteresis envelopes of various
aerofoils/wing configurations is necessary to determine the overall efficacy of the method to the wider problem of
transonic shock buffet.

B. Prediction of Cusp Point
It was initially hoped that the method could provide some means to predict the cusp point of a shock buffet envelope,

however due to the highly non-linear nature of the hysteresis envelope, it is expected that this will ultimately prove
impossible in any general sense. However, with more extensive study on a range of aerofoils and/or wing types, it may
be possible to give accounts of cusp points in certain sub cases.

C. Full Buffet Characteristics
As seen in fig. 1, the cusp boundary of degenerate points is a single curve within a 3D manifold sitting in R3. A

mapping method similar in theme to the one presented here may be able to be developed to capture certain aspects
of the buffet regime using the full surface as a model, however additional mathematical machinery may need to be
employed due to the additional dimension.

D. Dual Cusp
To describe the boundary of the full transonic shock buffet hysteresis envelope, it may be possible to unify two cusp

models into a single model. This would allow a cohesive description of both the entry (M < 1) and exit (M > 1) of the
buffet phenomenon in a single model. Towards this purpose, the following Lyapanov function is proposed:

V(ϕ) = ϕ4 + zϕ2 + yϕ. (8)

Here z is a new parameter that depends smoothly on the original parameter x from eq. (1) by

z(x) = ex
2 − 2. (9)

Following the derivation of section II, the degenerate points and hence model for the hysteresis boundary is given
implicitly by

8
(
ex

2 − 2
)3
+ 27y2 = 0. (10)

Figure 10 shows the above model, which is locally similar to the single cusp model at each extremity, but globally
distinct, as it now is able to model the entire envelope. It is hoped that this model will provide a more complete picture
of the hysteresis boundary for the transonic shock phenomenon.

References
[1] Li, Z., Peng, Z., Pan, T., Li, Q., Zhang, J., and H. Dowell, E., “Catastrophe-Theory-Based Modeling of Airfoil-Stall Boundary

at Low Reynolds Numbers,” AIAA Journal, Vol. 56, 2017, pp. 1–10. doi:10.2514/1.J056048.

[2] Lee, B. H. K., “Self-sustained shock oscillations on airfoils at transonic speeds,” Progress in Aerospace Sciences, Vol. 37,
No. 2, 2001, pp. 147–196.

[3] Giannelis, N. F., Murray, A. J., and Vio, G. A., “Application of the Hilbert-Huang Transform in the identification of frequency
synchronisation in transonic aeroelastic systems,” in: AIAA Scitech 2019 Forum, AIAA Paper 2019-1341, San Diego, CA, 2019.

9

136 B. AIAA SCITECH 2020 FORUM PAPER

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 10 Hysteresis boundary in double cusp model.

[4] Raveh, D. E., and Dowell, E. H., “Aeroelastic Responses of Elastically Suspended Airfoil Systems in Transonic Buffeting
Flows,” AIAA Journal, Vol. 52, No. 5, 2014, pp. 926–934.

[5] Giannelis, N. F., and Vio, G. A., “Investigation of frequency lock-in phenomena on a supercritical aerofoil in the presence of
transonic shock oscillations,” Proceedings of the 17th International Forum on Aeroelasticity and Structural Dynamics, Como,
Italy, 2017.

[6] Gao, C., Zhang, W., Li, X., Liu, Y., Quan, J., Ye, Z., and Jiang, Y., “Mechanism of frequency lock-in in transonic buffeting
flow,” Journal of Fluid Mechanics, Vol. 818, 2017, pp. 528–561.

[7] Giannelis, N. F., Vio, G. A., and Dimitriadis, G., “Dynamic Interactions of a Supercritical Aerofoil in the Presence of Transonic
Shock Buffet,” Proceedings of the 27th International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2016.

[8] Giannelis, N. F., Geoghegan, J. A., and Vio, G. A., “Gust Response of a Supercritical Aerofoil in the Vicinity of Transonic
Shock Buffet,” Proceedings of the 20th Australasian Fluid Mechanics Conference, Perth, Western Australia, 2016.

[9] Giannelis, N. F., Vio, G. A., and Levinski, O., “A review of recent developments in the understanding of transonic shock buffet,”
Progress in Aerospace Sciences, Vol. 92, 2017, pp. 39–84. doi:10.1016/j.paerosci.2017.05.004.

[10] Pearcey, H. H., and Holder, D. W., “Simple methods for the prediction of wing buffeting resulting from bubble type separation,”
NPL AERO-REP-1024, National Physics Laboratory, 1962.

[11] Lee, B. H. K., “Oscillatory shock motion caused by transonic shock boundary-layer interaction,” AIAA Journal, Vol. 28, No. 5,
1990, pp. 942–944.

[12] Raghunathan, S., Mitchell, R. D., and Gillan, M. A., “Transonic shock oscillations on NACA0012 aerofoil,” Shock Waves,
Vol. 8, No. 4, 1998, pp. 191–202.

[13] Crouch, J. D., Garbaruk, A., Magidov, D., and Travin, A., “Origin of transonic buffet on aerofoils,” Journal of Fluid Mechanics,
Vol. 628, 2009, pp. 357–369.

[14] Sartor, F., Mettot, C., and Sipp, D., “Stability, Receptivity, and Sensitivity Analyses of Buffeting Transonic Flow over a Profile,”
AIAA Journal, Vol. 53, No. 7, 2014, pp. 1980–1993.

[15] Timme, S., and Thormann, R., “Towards three-dimensional global stability analysis of transonic shock buffet,” Proceedings of
the AIAA Atmospheric Flight Mechanics Conference, Washington, D.C., 2016, pp. 2016–3848.

[16] Iovnovich, M., and Raveh, D. E., “Numerical study of shock buffet on three-dimensional wings,” AIAA Journal, Vol. 53, No. 2,
2015, pp. 449–463.

10

137

[17] Plante, F., Dandois, J., Beneddine, S., Sipp, D., and Laurendeau, É., “Numerical simulations and global stability analyses of
transonic buffet and subsonic stall,” AAAF AERO2019, PARIS, France., 2019.

[18] Nitzsche, J., “A numerical study on aerodynamic resonance in transonic separated flow,” Proceedings of the International
Forum on Aeroelasticity and Structural Dynamics, Seattle, WA, 2009.

[19] Arnold, V., Catastrophe Theory, Springer-Verlag, 1992.

[20] Denegri, C. M., “Limit cycle oscillation flight test results of a fighter with external stores,” Journal of Aircraft, Vol. 37, No. 5,
2000, pp. 761–769.

[21] Iovnovich, M., and Raveh, D. E., “Reynolds-averaged Navier-Stokes study of the shock-buffet instability mechanism,” AIAA
Journal, Vol. 50, No. 4, 2012, pp. 880–890.

[22] Bhamidipati, K. K., Reasor, D. A., and Pasiliao, C. L., “Unstructured Grid Simulations of Transonic Shockwave-Boundary
Layer Interaction-Induced Oscillations,” Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas,
TX, 2015.

[23] Bhamidipati, K. K., Reasor, D. A., Lechniak, J. A., Pasiliao, C. L., and Kielb, R., “Unsteady Reynolds-averaged Navier–Stokes
simulation of shock-buffet instability on the NACA 64A204 using unstructured meshes,” Proceedings of USNCCM12-975:
Symposium on Advances in Nonlinear Unsteady Aerodynamic Flows, Raleigh, NC, 2013.

[24] Giannelis, N. F., and Vio, G. A., “On the effect of control surface deflections on the aeroelastic response of an aerofoil at
transonic buffet conditions,” Proceedings of the 28th International Conference on Noise and Vibration Engineering, Leuven,
Belgium, September 2018.

[25] Giannelis, N. F., Levinski, O., and Vio, G. A., “Influence of Mach number and angle of attack on the two-dimensional transonic
buffet phenomenon,” Aerospace Science and Technology, Vol. 78, 2018, pp. 89–101.

[26] ANSYS, Fluent 18.2 Theory Guide, ANSYS Inc, 2017.

[27] Launder, B. E., Reece Jr, G., and Rodi, W., “Progress in the development of a Reynolds-stress turbulence closure,” Journal of
Fluid Mechanics, Vol. 68, No. 03, 1975, pp. 537–566.

[28] Giannelis, N. F., Murray, A. J., and Vio, G. A., “Influence of control surface deflections on a thin aerofoil at transonic buffet
conditions,” Proceedings of the AIAA Scitech 2019 Forum, AIAA Paper 2019-1339, San Diego, CA, January 2019.

[29] Tijdeman, H., “Investigations of the transonic flow around oscillating airfoils,” PhD Thesis, TU Delft, Delft University of
Technology, 1977.

11

138 B. AIAA SCITECH 2020 FORUM PAPER

BIBLIOGRAPHY

[1] S. Le Borne and W. Leinen, “Guidelines for RBF-FD Discretization:
Numerical Experiments on the Interplay of a Multitude of Parameter
Choices,” J. Sci. Comput., vol. 95, feb 2023.

[2] F. Mazhar, A. Javed, J. T. Xing, A. Shahzad, M. Mansoor, A. Maqsood,
S. I. A. Shah, and K. Asim, “On the meshfree particle methods for fluid-
structure interaction problems,” Engineering Analysis with Boundary Ele-
ments, vol. 124, pp. 14–40, 2021.

[3] T. C. S. Rendall and C. B. Allen, “Unified fluid-structure interpolation
and mesh motion using radial basis functions,” International Journal for
Numerical Methods in Engineering, vol. 74, pp. 1519–1559, jun 2008.

[4] L. Kedward, C. B. Allen, and T. C. Rendall, “Efficient and exact mesh de-
formation using multiscale RBF interpolation,” Journal of Computational
Physics, vol. 345, pp. 732–751, 2017.

[5] N. Flyer, G. B. Wright, and B. Fornberg, Radial Basis Function-Generated
Finite Differences: A Mesh-Free Method for Computational Geosciences,
pp. 2635–2669. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[6] A. Murray, N. Giannelis, and G. Vio, “Catastrophe Theoretic Modelling
of Hysteresis in Transonic Shock Buffet,” in AIAA Scitech Forum, 2020.

[7] A. Murray, B. Thornber, M. Flaig, and G. Vio, “Highly Parallel, Multi-
stage Mesh Motion using Radial Basis Functions for Fluid-Structure Inter-
action,” in AIAA Scitech Forum, 2019.

[8] R. W. Douglass, G. F. Carey, D. R. White, G. A. Hansen, Y. Kallinderis,
and N. P. Weatherill, “Current views on grid generation: Summaries of a
panel discussion,” Numerical Heat Transfer, Part B: Fundamentals, vol. 41,
no. 3-4, pp. 211–237, 2002.

[9] S. MM and K. RP, “Mesh Deformation Approaches – A Survey,” Journal
of Physical Mathematics, vol. 7, no. 2, 2016.

[10] J. T. Batina, “Using Unstructured Dynamic Meshes,” AIAA Journal,
vol. 28, no. 8, pp. 1381–1388, 1990.

140 Bibliography

[11] C. Farhat, C. Degand, B. Koobus, and M. Lesoinne, “Torsional springs for
two-dimensional dynamic unstructured fluid meshes,” Computer Methods
in Applied Mechanics and Engineering, vol. 163, no. 1-4, pp. 231–245, 1998.

[12] F. J. Blom, “Considerations on the spring analogy,” International Journal
for Numerical Methods in Fluids, vol. 32, no. 6, pp. 647–668, 2000.

[13] D. Zeng and C. R. Ethier, “A semi-torsional spring analogy model for
updating unstructured meshes in 3D moving domains,” Finite Elements in
Analysis and Design, vol. 41, no. 11-12, pp. 1118–1139, 2005.

[14] C. L. Bottasso, D. Detomi, and R. Serra, “The ball-vertex method: A new
simple spring analogy method for unstructured dynamic meshes,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 194, no. 39-41,
pp. 4244–4264, 2005.

[15] G. A. Markou, Z. S. Mouroutis, D. C. Charmpis, and M. Papadrakakis,
“The ortho-semi-torsional (OST) spring analogy method for 3D mesh mov-
ing boundary problems,” Computer Methods in Applied Mechanics and
Engineering, vol. 196, no. 4-6, pp. 747–765, 2007.

[16] Y. Yang, S. Özgen, and H. Kim, “Improvement in the spring analogy mesh
deformation method through the cell-center concept,” Aerospace Science
and Technology, vol. 115, p. 106832, 2021.

[17] M. R. Lashkariani and A. R. Firoozjaee, “An improved node moving tech-
nique for adaptive analysis using collocated discrete least squares meshless
method,” Engineering Analysis with Boundary Elements, vol. 130, no. May,
pp. 322–331, 2021.

[18] A. A. Johnson and T. E. Tezduyar, “Mesh update strategies in paral-
lel finite element computations of flow problems with moving boundaries
and interfaces,” Computer Methods in Applied Mechanics and Engineering,
vol. 119, no. 1-2, pp. 73–94, 1994.

[19] Z. Yang and D. J. Mavriplis, “Unstructured dynamic meshes with higher-
order time integration schemes for the unsteady Navier-Stokes equations,”
43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers,
no. January, pp. 15051–15063, 2005.

[20] E. J. Nielsen and W. K. Anderson, “Recent improvements in aerodynamic
design optimization on unstructured meshes,” 39th Aerospace Sciences
Meeting and Exhibit, vol. 40, no. 6, 2001.

[21] Z. Yang and D. J. Mavriplis, “Mesh deformation strategy optimized by the
adjoint method on unstructured meshes,” AIAA Journal, vol. 45, no. 12,
pp. 2885–2896, 2007.

Bibliography 141

[22] K. Takizawa, T. E. Tezduyar, and R. Avsar, “A low-distortion mesh moving
method based on fiber-reinforced hyperelasticity and optimized zero-stress
state,” Computational Mechanics, vol. 65, no. 6, pp. 1567–1591, 2020.

[23] L. R. Herrmann, “Laplacian-Isoparametric Grid Generation Scheme,”
Journal of Engineering Mechanics-asce, vol. 102, pp. 749–907, 1976.

[24] W. J. Gordon and C. A. Hall, “Construction of curvilinear co-ordinate
systems and applications to mesh generation,” International Journal for
Numerical Methods in Engineering, vol. 7, no. 4, pp. 461–477, 1973.

[25] L. Ding, Z. Lu, and T. Guo, “An efficient dynamicmesh generationmethod
for complex multi-block structured grid,” Advances in Applied Mathematics
and Mechanics, vol. 6, no. 1, pp. 120–134, 2014.

[26] A. Garon and M. Delfour, Chapter 6: Explicit Moving Mesh Computations,
pp. 107–131. Society for Industrial and Applied Mathematics, 2007.

[27] P. M. Bartier and C. P. Keller, “Multivariate interpolation to incorporate
thematic surface data using inverse distance weighting (IDW),” Computers
and Geosciences, vol. 22, no. 7, pp. 795–799, 1996.

[28] C. Ware, W. Knight, and D. Wells, “Memory intensive statistical algo-
rithms for multibeam bathymetric data,” Computers and Geosciences,
vol. 17, no. 7, pp. 985–993, 1991.

[29] Y. Zhao and A. Forhad, “A general method for simulation of fluid flows
with moving and compliant boundaries on unstructured grids,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 192, no. 39-40,
pp. 4439–4466, 2003.

[30] E. Luke, E. Collins, and E. Blades, “A fast mesh deformation method using
explicit interpolation,” Journal of Computational Physics, vol. 231, no. 2,
pp. 586–601, 2012.

[31] X. Liu, N. Qin, and H. Xia, “Fast dynamic grid deformation based on
Delaunay graph mapping,” Journal of Computational Physics, vol. 211,
no. 2, pp. 405–423, 2006.

[32] A. de Boer, A. H. van Zuijlen, and H. Bijl, “Review of coupling methods
for non-matching meshes,” Computer Methods in Applied Mechanics and
Engineering, vol. 196, no. 8, pp. 1515–1525, 2007.

[33] T. Rendall and C. Allen, “Improved Radial Basis Function Fluid-Structure
Coupling via Efficient Localised Implementation,” in 38th Fluid Dynamics
Conference and Exhibit, (Reston, Virigina), American Institute of Aero-
nautics and Astronautics, jun 2008.

142 Bibliography

[34] T. C. S. Rendall and C. B. Allen, “Efficient mesh motion using radial
basis functions with data reduction algorithms,” Journal of Computational
Physics, vol. 228, no. 17, pp. 6231–6249, 2009.

[35] A. Samareh, “Application Deformation of Quaternions for Mesh Deforma-
tion,” NASA TM, no. April, pp. TM–2002–211646, 2002.

[36] D. Maruyama, D. Bailly, and G. Carrier, “High-quality mesh deformation
using quaternions for orthogonality preservation,” AIAA Journal, vol. 52,
no. 12, pp. 2712–2729, 2014.

[37] D. R. Mcdaniel and S. A. Morton, “Efficient mesh deformation for com-
putational stability and control analyses on unstructured viscous meshes,”
47th AIAA Aerospace Sciences Meeting including the New Horizons Forum
and Aerospace Exposition, no. January, pp. 1–21, 2009.

[38] R. Melville, “Nonlinear Simulation of F-16,” 39th AIAA Aerospace Sciences
Meeting & Exhibit, 2001.

[39] C. B. Allen, “Parallel universal approach to mesh motion and application
to rotors in forward fligh,” International, no. 69, pp. 2126–2149, 2007.

[40] A. de Boer, M. S. van der Schoot, and H. Bijl, “Mesh deformation based
on radial basis function interpolation,” Computers and Structures, vol. 85,
no. 11-14, pp. 784–795, 2007.

[41] M. Hounjet and J. Meijer, “Evaluation of elastomechanical and aerody-
namic data transfer methods for non-planar configurations in computa-
tional aeroelastic analysis,” tech. rep., NLR, 1994.

[42] S. Spekreijse, B. B. Prananta, and J. C. Kok, “A Simple, Robust and Fast
Algorithm to Compute Deformations of Multi-Block Structured Grids,” in
National Aerospace Laboratory NLR, 2002.

[43] A. Beckert and H. Wendland, “Multivariate interpolation for fluid-
structure-interaction problems using radial basis functions,” Aerospace Sci-
ence and Technology, vol. 5, no. 2, pp. 125–134, 2001.

[44] F. Zhang, The Schur complement and its applications, vol. 4. Springer,
2005.

[45] N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett, “On the role of
polynomials in RBF-FD approximations: I. Interpolation and accuracy,”
Journal of Computational Physics, vol. 321, pp. 21–38, 2016.

[46] V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett, “On the role of
polynomials in RBF-FD approximations: II. Numerical solution of ellip-
tic PDEs,” Journal of Computational Physics, vol. 332, no. December,
pp. 257–273, 2017.

Bibliography 143

[47] V. Bayona, N. Flyer, and B. Fornberg, “On the role of polynomials in
RBF-FD approximations: III. Behavior near domain boundaries,” Journal
of Computational Physics, vol. 380, pp. 378–399, 2019.

[48] R. L. Harder and R. N. Desmarais, “Interpolation using surface splines.,”
Journal of Aircraft, vol. 9, no. 2, pp. 189–191, 1972.

[49] W. R. Madych and S. A. Nelson, “Multivariate Interpolation and Condi-
tionally Positive Definite Functions,” Approximation Theory and its Ap-
plications, vol. 4, pp. 77–89, 1988.

[50] H. Wendland, Scattered Data Approximation. Cambridge: Cambridge Uni-
versity Press, 2004.

[51] H. Wendland, “Piecewise polynomial, positive definite and compactly sup-
ported radial functions of minimal degree,” Advances in Computational
Mathematics, vol. 4, no. 1, pp. 389–396, 1995.

[52] A. S. F. Wong, H. M. Tsai, S. P. Drive, J. Cai, Y. Zhu, and F. Liu, “Un-
steady Flow Calculations with a Multi-Block Moving Mesh Algorithm,”
38th Aerospace Sciences Meeting 81 Exhibit, no. c, 2000.

[53] D. P. Jones and A. L. Gaitonde, “Moving mesh generation for unsteady
flows about deforming complex configurations using multiblock methods,”
Japan Society of CFD/CFD Journal, pp. 430–439, 2001.

[54] R. Craig and M. Bampton, “Coupling of Substructures for Dynamic Analy-
ses To cite this version : HAL Id : hal-01537654 Coupling of Substructures
for Dynamic Analyses,” AIAA Journal, vol. 6, no. 7, pp. 1313–1319, 1968.

[55] C. B. Allen, “Towards automatic structured multiblock mesh generation
using improved transfinite interpolation,” International Methods for Nu-
merical Metrhods in Engineering, no. 74, pp. 697–733, 2008.

[56] J. L. Wagner, K. M. Casper, S. J. Beresh, P. S. Hunter, R. W. Spillers, J. F.
Henfling, and R. L. Mayes, “Fluid-structure interactions in compressible
cavity flows,” Physics of Fluids, vol. 27, no. 6, 2015.

[57] B. Thornber and D. Drikakis, “Large-Eddy Simulation of Shock-Wave-
Induced Turbulent Mixing,” Journal of Fluids Engineering, vol. 129, no. 12,
pp. 1504–1513, 2007.

[58] Z. A. Rana, B. Thornber, and D. Drikakis, “Dynamics of Sonic Hydro-
gen Jet Injection and Mixing Inside Scramjet Combustor,” Engineering
Applications of Computational Fluid Mechanics, vol. 7, no. 1, pp. 13–39,
2013.

[59] D. Linton, B. Thornber, and R. Widjaja, A Study of LES Methods for
Simulation of Ship Airwakes, pp. 1–14. AIAA, 2016.

144 Bibliography

[60] D. L. Youngs and B. Thornber, “Buoyancy–Drag modelling of bubble and
spike distances for single-shock Richtmyer–Meshkov mixing,” Physica D:
Nonlinear Phenomena, vol. 410, p. 132517, 2020.

[61] H. S. Park, D. Linton, and B. Thornber, “Rotorcraft fuselage and ship
airwakes simulations using an immersed boundary method,” International
Journal of Heat and Fluid Flow, vol. 93, p. 108916, 2022.

[62] S. Turek and J. Hron, “Proposal for numerical benchmarking of fluid-
structure interaction between an elastic object and laminar incompressible
flow,” Lecture Notes in Computational Science and Engineering, vol. 53,
pp. 371–385, 2006.

[63] S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer, “Numerical
Benchmarking of Fluid-Structure Interaction: A Comparison of Different
Discretization and Solution Approaches,” Fluid Structure Interaction II,
vol. 73, 2010.

[64] J.-S. Chen, M. Hillman, and S.-W. Chi, “Meshfree Methods: Progress
Made after 20 Years,” Journal of Engineering Mechanics, vol. 143, no. 4,
2017.

[65] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis.,”
Astron. J., vol. 82, pp. 1013–1024, dec 1977.

[66] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics:
theory and application to non-spherical stars,” Monthly Notices of the
Royal Astronomical Society, vol. 181, no. 3, pp. 375–389, 1977.

[67] L. D. Libersky and A. G. Petschek, “Smooth particle hydrodynamics with
strength of materials,” in Advances in the Free-Lagrange Method Including
Contributions on Adaptive Gridding and the Smooth Particle Hydrodynam-
ics Method (H. E. Trease, M. F. Fritts, and W. P. Crowley, eds.), (Berlin,
Heidelberg), pp. 248–257, Springer Berlin Heidelberg, 1991.

[68] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner, “SPH
Fluids in Computer Graphics,” in Eurographics 2014 - State of the Art Re-
ports (S. Lefebvre and M. Spagnuolo, eds.), The Eurographics Association,
2014.

[69] M. S. Shadloo, G. Oger, and D. Le Touzé, “Smoothed particle hydrody-
namics method for fluid flows, towards industrial applications: Motiva-
tions, Current state, And challenges,” Computers and Fluids, vol. 136,
pp. 11–34, 2016.

[70] P. S. Jensen, “Finite difference techniques for variable grids,” Computers
& Structures, vol. 2, no. 1, pp. 17–29, 1972.

Bibliography 145

[71] B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element
method: Diffuse approximation and diffuse elements,” Computational Me-
chanics, vol. 10, pp. 307–318, sep 1992.

[72] T. Belytschko, Y. Y. Lu, and L. Gu, “Element-Free Galerkin Meth-
ods,” International Journal for Numerical Methods in Engineering, vol. 37,
pp. 229–256, 1994.

[73] L. Wing Kam, J. Sukky, and Z. Yi Fei, “Reproducing kernel particle meth-
ods,” International Journal for Numerical Methods in Fluids, vol. 20, no. 8-
9, pp. 1081–1106, 1995.

[74] C. Franke and R. Schaback, “Solving partial differential equations by col-
location using radial basis functions,” Applied Mathematics and Computa-
tion, vol. 93, no. 1, pp. 73–82, 1998.

[75] R. L. Hardy, “Multiquadric equations of topography and other irregular
surfaces,” Journal of Geophysical Research, vol. 76, no. 8, pp. 1905–1915,
1971.

[76] E. J. Kansa, “Multiquadrics-A scattered data approximation scheme with
applications to computational fluid-dynamics-I surface approximations and
partial derivative estimates,” Computers and Mathematics with Applica-
tions, vol. 19, no. 8-9, pp. 127–145, 1990.

[77] A. S. M. Wong, Y. C. Hon, T. S. Li, S. L. Chung, and E. J. Kansa,
“Multizone decomposition for simulation of time-dependent problems using
the multiquadric scheme,” Computers & Mathematics with Applications,
vol. 37, no. 8, pp. 23–43, 1999.

[78] E. J. Kansa and Y. C. Hon, “Circumventing the ill-conditioning problem
with multiquadric radial basis functions: Applications to elliptic partial dif-
ferential equations,” Computers & Mathematics with Applications, vol. 39,
no. 7, pp. 123–137, 2000.

[79] Y. C. Hon and R. Schaback, “On unsymmetric collocation by radial basis
functions,” Applied Mathematics and Computation, vol. 119, no. 2, pp. 177–
186, 2001.

[80] N. Flyer, G. A. Barnett, and L. J. Wicker, “Enhancing finite differences
with radial basis functions: Experiments on the Navier-Stokes equations,”
Journal of Computational Physics, vol. 316, pp. 39–62, 2016.

[81] A. Javed, K. Djidjeli, J. T. Xing, and S. Cox, “A Hybrid Mesh Free Local
RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies,”
International Journal of Computational Engineering, vol. 7, no. 10, pp. 60–
70, 2013.

146 Bibliography

[82] W. R. Madych and S. A. Nelson, “Multivariate Interpolation and Con-
ditionally Positive Definite Functions II,” Mathematics of Computation,
vol. 54, no. 189, pp. 211–230, 1990.

[83] Z.-m. Wu and R. Schaback, “Local error estimates for radial basis func-
tion interpolation of scattered data,” IMA Journal of Numerical Analysis,
vol. 0, pp. 13–27, 1993.

[84] B. Fornberg, G. Wright, and E. Larsson, “Some Observations Regarding
Interpolants in the Limit of Flat Radial Basis Functions,” Computers and
Mathematics with Applications, vol. 47, no. 1, pp. 37–55, 2004.

[85] M. E. Biancolini, A. Chiappa, U. Cella, E. Costa, C. Groth, and S. Porziani,
“Radial Basis Functions Mesh Morphing,” in Computational Science –
ICCS 2020 (V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Don-
garra, P. M. A. Sloot, S. Brissos, and J. Teixeira, eds.), (Cham), pp. 294–
308, Springer International Publishing, 2020.

[86] B. Fornberg, E. Lehto, and C. Powell, “Stable calculation of Gaussian-
based RBF-FD stencils,” Computers & Mathematics with Applications,
vol. 65, no. 4, pp. 627–637, 2013.

[87] J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev
spaces,” in Constructive Theory of Functions of Several Variables: Pro-
ceedings of a Conference Held at Oberwolfach April 25 – May 1, 1976
(W. Schempp and K. Zeller, eds.), pp. 85–100, Berlin, Heidelberg: Springer
Berlin Heidelberg, 1977.

[88] J. Fromm, “The time dependent flow of an incompressible viscous fluid,”
Methods in Computational Physics, vol. 3, pp. 345–382, 1964.

[89] L. Carnevale, G. Anjos, and N. Mangiavacchi, “Stream Function-Vorticity
Formulation Applied in the Conjugated Heat Problem Using the FEM
With Unstructured Mesh,” in Brazilian Congress of Thermal Sciences and
Engineering, 2018.

[90] A. S. Thom, “The flow past circular cylinders at low speeds,” Proceedings
of The Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 141, pp. 651–669, 1933.

[91] V. G. Jenson, “Viscous flow round a sphere at low Reynolds numbers
(<40),” Proceedings of the Royal Society of London. Series A. Mathemat-
ical and Physical Sciences, vol. 249, pp. 346–366, 1959.

[92] P. J. Roache, Computational Fluid Dynamics. Lecture Series, Hermosa
Publishers, 1976.

[93] H. Huang and B. R. Wetton, “Discrete compatibility in finite difference
methods for viscous incompressible fluid flow,” Journal of Computational
Physics, vol. 126, no. 2, pp. 468–478, 1996.

Bibliography 147

[94] P. P. Chinchapatnam, K. Djidjeli, P. B. Nair, and M. Tan, “A com-
pact RBF-FD based meshless method for the incompressible Navier-Stokes
equations,” Proceedings of the Institution of Mechanical Engineers Part
M: Journal of Engineering for the Maritime Environment, vol. 223, no. 3,
pp. 275–290, 2009.

[95] C. Fletcher and K. Srinivas, “Stream Function Vorticity Revisited,” Com-
puter Methods in Applied Mechanics and Engineering, 1983.

[96] H. J. Lugt and E. W. Schwiderski, “II. Analysis of regular and singular mo-
tions,” Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, vol. 285, no. 1402, pp. 400–412, 1965.

[97] B. Fornberg and E. Lehto, “Stabilization of RBF-generated finite difference
methods for convective PDEs,” Journal of Computational Physics, vol. 230,
no. 6, pp. 2270–2285, 2011.

[98] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method,” Journal
of Computational Physics, vol. 48, no. 3, pp. 387–411, 1982.

[99] H. V. R. Vikram C. K, Y. T. Krishne Gowda, “Numerical investigation
on flow past square cylinders with different corner shapes,” International
Journal of Scientific & Engineering Research, vol. 5, no. 10, pp. 479–486,
2014.

[100] Y. G. Zhitian Zhang, Xianxiong Zhang, “Motion-induced vortex shedding
and lock-in phenomena of a rectangular section,” Nonlinear Dynamics,
vol. 102, pp. 2267–2280, 2020.

[101] A. K. Sahu, R. P. Chhabra, and V. Eswaran, “Two-dimensional laminar
flow of a power-law fluid across a confined square cylinder,” Journal of
Non-Newtonian Fluid Mechanics, vol. 165, no. 13-14, pp. 752–763, 2010.

[102] B. Tóth and A. Düster, “h-Adaptive radial basis function finite difference
method for linear elasticity problems,” Computational Mechanics, vol. 71,
pp. 1–20, 2022.

[103] J. Li, S. Zhai, Z. Weng, and X. Feng, “H-adaptive RBF-FD method for the
high-dimensional convection-diffusion equation,” International Communi-
cations in Heat and Mass Transfer, vol. 89, pp. 139–146, 2017.

[104] D. T. Oanh and N. M. Tuong, “An approach to adaptive refinement for
the RBF-FD method for 2D elliptic equations,” Applied Numerical Math-
ematics, vol. 178, pp. 123–154, 2022.

[105] K. Y. Lam, Q. X. Wang, and Z. Zong, “A Nonlinear Fluid-Structure Inter-
action Analysis of a Near-bed Submarine Pipeline in a Current,” Journal
of Fluids and Structures, vol. 16, no. 8, pp. 1177–1191, 2002.

148 Bibliography

[106] S. J. Ang, K. S. Yeo, C. S. Chew, and C. Shu, “A singular-value de-
composition (SVD)-based generalized finite difference (GFD) method for
close-interaction moving boundary flow problems,” International Journal
for Numerical Methods in Engineering, vol. 76, no. 12, pp. 1892–1929, 2008.

[107] A. Javed, Investigation on meshfree particle methods for fluid structure
interaction problems. PhD thesis, University of Southampton, sep 2015.

[108] A. Javed, K. Djijdeli, and J. T. Xing, “A coupled meshfree-mesh-based so-
lution scheme on hybrid grid for flow-induced vibrations,” Acta Mechanica,
vol. 227, 2016.

[109] M. Jamil, A. Javed, S. Shah, M. Mansoor, A. Hameed, and K. Djidjeli,
“Performance Analysis of Flapping Foil Flow Energy Harvester Mounted
on Piezoelectric Transducer using Meshfree Particle Method,” Journal of
Applied Fluid Mechanics, vol. 13, pp. 1759–1872, 2020.

[110] K. Han, Y. T. Feng, and D. R. J. Owen, “Numerical Simulations of Irreg-
ular Particle Transport in Turbulent Flows Using Coupled LBM-DEM,”
Computer Modeling in Engineering & Sciences, vol. 18, no. 2, pp. 87–100,
2007.

[111] A.-m. Zhang, P.-n. Sun, F.-r. Ming, and A. Colagrossi, “Smoothed par-
ticle hydrodynamics and its applications in fluid-structure interactions,”
Journal of Hydrodynamics, Ser. B, vol. 29, no. 2, pp. 187–216, 2017.

[112] R. Bhatt and M. M. Alam, “Vibrations of a square cylinder submerged in
a wake,” Journal of Fluid Mechanics, vol. 853, 2018.

[113] I. Tominec and M. Nazarov, “Residual Viscosity Stabilized RBF-FD Meth-
ods for Solving Nonlinear Conservation Laws,” International Journal of
Heat and Fluid Flow, vol. 94, 2022.

	List of Figures
	List of Tables
	Notation & Nomenclature
	Introduction
	Novelty & Contributions
	Background
	Mesh Motion
	Radial Basis Functions
	RBF Finite Difference Methods

	Thesis Outline
	Multistage Mesh Motion
	Cavity-Store Simulation
	Meshless RBF-FD Fluid Solver
	Meshless RBF-FD FSI Solver

	Appendices

	Multistage Mesh Motion
	Introduction
	Mesh Motion

	Single Stage
	General Mesh Motion
	RBF Mesh Motion
	Polynomial Term
	Multiscale Mesh Motion

	Multistage
	Partitioned Domain Hierarchy
	Elementary Example
	General Estimates

	Examples
	Conclusions

	Cavity-Store Simulation
	Introduction
	Simulation Setup & Tests
	FLAMENCO Fluid Solver
	Modal Structural Solver
	Bending Beam Test
	Turek-Hron Benchmark
	Cavity Store Setup

	Results
	Estimated Savings From Multistage Mesh Motion

	Conclusions & Future Work

	RBF-based Meshless Fluid Solver
	Introduction
	Background

	Approximation of Derivatives Using RBFs
	Standard Method
	Lagrange/Variational Method
	Example
	Stencil
	Choice of Basis Function

	Streamfunction-Vorticity Formulation for Unsteady Flow
	Vorticity Transport Equation
	Streamfunction
	Poisson Equation
	Boundary Conditions
	Hyperviscosity Term
	Solver Structure
	Validation

	Conclusions & Future Work
	Domain Corners
	Automated Meshing

	Unified RBF Fluid Flow and FSI
	Introduction
	Background

	Formulation
	Structural Solver
	Moving Wall Boundary Condition
	Motion of Grid Points
	Interpolation of Vorticity
	Recalculation of RBF-FD Weights
	Final Solver Structure

	Simulations
	Streamwise Motion
	Perpendicular Motion
	Streamwise & Perpendicular Motion
	Wake-Induced Vibration

	Scalability of Solver
	Conclusions & Future Work
	Application to Other Flow Regimes
	Further Optimisation
	Application to Complex Structures
	Unification of RBF Methods

	Conclusions
	Future Work
	Domain Corners in RBF-FD Method
	Automated Meshing
	Optimisations to RBF-FD FSI Solver
	Application to Complex Structures
	Unification of RBF Methods

	Closing Remarks

	Appendix
	RBF-FD FSI Solver
	User Guide
	Example Input
	Source Code

	AIAA SciTech 2020 Forum Paper

