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In the era of big data, the volume of data is growing at a tremendous
rate as data has been generated from multifarious sources, but without
reasonable supervision. Consequently, the generated data are primarily
imperfect, such as inaccurate, biased, and even invading privacy. However,
modern machine learning systems heavily rely on the quality of data. Noisy
labels (inaccurate data) can be easily memorized by deep neural networks
and thereby leads to overfitting and poor generalization problems; biased
data guide models to give unfair predictions toward certain groups; privacy-
invasion data are inherently harmful to the machine learning community.

Recent works address such issues in different subdomains. To deal
with noisy labels, two principal methodologies have been developed: (1)
learning the noise generating mechanism, i.e., a transition matrix T (X)

defining the mapping between clean label Y and noisy label Ỹ such that
P (Ỹ | X) = T⊤(X)P (Y | X), where P (· | X) denotes the posterior vector,
and then using it to build statistically consistent classifiers; (2) detecting
confident samples (X, Ỹ ) with correct labels, i.e., Ỹ = Y , and using them to
train a clean classifier. Within this scope, we propose two solutions to this
problem from diverse perspectives. The first one from a noise reduction
perspective transforms data points with noisy class labels to data pairs
with noisy similarity labels, which reduces the noise rate with a theoretical
guarantee and thus makes the noise easier to handle. The second one from



a curriculum learning perspective designs a curriculum selecting training
data based on their dynamics over the course of training to learn the clean
classifier and the transition matrix simultaneously.

To mitigate the unfairness in machine learning algorithms, plenty of
fairness notions and methods have been proposed. The methods focusing
on statistical metrics discover the discrepancy of statistical metrics and
give an equal probability of statistical metrics between individuals or sub-
populations. The methods focusing on the causality-based fairness notions
additionally employ causal graphs to take knowledge about the structure of
real-world data into consideration and make causally fair predictions. To
protect personal privacy, the indirect questioning method is commonly used
to collect data when surveying sensitive topics such as sexual misconduct.
Then the data with indirect supervision can be processed by similarity
learning methods. However, noisy labels are ubiquitous, which makes some
fairness-aware algorithms even more prejudiced than fairness-unaware ones,
and similarity learning methods fail to learn optimal models.

To tackle these problems, we provide general frameworks for learning
fair classifiers with noisy labels. For statistical fairness notions, we rewrite
the classification risk and the fairness metric in terms of noisy data and
thereby build robust classifiers. For the causality-based fairness notion, we
exploit the internal causal structure of data to model the label noise and
counterfactual fairness simultaneously; we propose a denoised and unbiased
estimator for the classification risk with respect to the accurately labeled
data by employing the noisy data with indirect supervision and then learn
the optimal model under the empirical risk minimization framework.
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Chapter 1

Introduction

The volume of data is growing at a tremendous rate as data has been
generated from multifarious sources but without proper supervision. As a
result, these data are primarily imperfect, such as inaccurate, biased, and
privacy-invasion. It is usually challenging to control the labeling quality
of large-scale datasets because the labels were generated by complicated
mechanisms such as non-expert workers [36]. An average of 3.3% noisy
labels is identified in the test/validation sets of 10 of the most commonly-
used datasets in computer vision, natural language, and audio analysis [84].
Besides, data, especially large-scale data, is often heterogeneous, generated
by subgroups with their own characteristics and behaviors, and the hetero-
geneities can bias the data [74]. Moreover, many machine learning systems
require private data. Hundreds of ethical issues regarding private data
collection have been raised [101].

Notably, the quality of data is crucial to the success of modern machine
learning systems. The training of neural networks easily fails in the presence
of even the simple instance-independent noisy labels since they quickly
lead to model overfitting of the noises [138], and thereby degenerate the
generalization ability of the model. Besides, machine learning algorithms
are very sensitive to biases that render their decisions unfair, i.e., having
prejudice or favoritism toward an individual or a group based on their
inherent or acquired characteristics [96], which is unacceptable as they are
entrusted with important tasks, i.e., making high-stakes decisions in loan
applications [80], dating and hiring [14, 21], and even parole [26]. Moreover,
collecting and utilizing private data could be unethical and illegal [101].
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Previous works tackle these problems in separate domains. However,
since the label noise is ubiquitous in real-world datasets, this problem is en-
tangled with fairness and privacy problems. Specifically, plenty of fairness
metrics and methods have been proposed to mitigate the bias in machine
learning algorithms, but label noise makes fairness-aware algorithms exhibit
even more prejudice than fairness-unaware ones; the indirect questioning
method is commonly employed in gathering data on sensitive topics, but
label noise makes it struggling to learn optimal models from data collected
with indirect supervision.

Therefore, in this thesis, we not only investigate the pure label noise
problem focusing on generalization issues but also incorporate fairness and
privacy concerns, which bring new insights and challenges as well.

To address the label noise problem, two principal methodologies have
been developed: (1) learning the noise generating mechanism, i.e., a transi-
tion matrix T defining the mapping between clean label Y and noisy label
Ỹ , which is employed to construct statistically consistent classifiers [64,
88, 129]. (2) detecting samples (X, Ỹ ) with correct labels Ỹ = Y and
using them to train a clean classifier [37, 133]; Despite the promising re-
sults achieved by both methodologies in some simplified scenarios, they
encounter significant challenges when applied to practical and more com-
plex settings, e.g., high noise rate, and instance-dependent label noise.

To address the fairness problem, numerous fairness notions and meth-
ods have been proposed. Statistical metric-focused methods aim to identify
and rectify disparities in statistical metrics, ensuring equal probabilities
across individuals or sub-populations [28, 38, 20]. On the other hand, fair-
ness notions based on causality take into account the underlying causal re-
lationships in real-world data by utilizing causal graphs, enabling the gener-
ation of causally fair predictions [50, 56, 141]. To preserve personal privacy,
the indirect questioning method is commonly employed in gathering data
on sensitive topics such as sexual misconduct that reduces the social desir-
ability bias and increases data reliability [114, 29]. Then data collected with
indirect supervision can be processed using similarity learning methods [5].
However, the presence of noisy labels severely damages the effectiveness of
previous methods and brings new challenges as discussed above.



Chapter 1. Introduction 3

Targeting the aforementioned challenges, in this thesis we propose
novel methods for the pure label noise problem in Chapters 3 and 4, the
fairness-incorporated one in Chapter 5, and the privacy-incorporated one
in Chapter 6, which are organized as follows:

Chapter 2. Preliminaries. In this chapter, we formulate the prob-
lem of learning with noisy labels (LNL) incorporating fairness and privacy
concerns.

Chapter 3. LNL from a Noise Reduction Perspective. In this
chapter, we propose a method from a noise reduction perspective on deal-
ing with class label noise by transforming training data with noisy class
labels into data pairs with noisy similarity labels. This approach effec-
tively reduces the noise rate with a theoretical guarantee, thereby making
the noise more manageable.

Chapter 4. LNL from a Curriculum Learning Perspective. In
this chapter, we propose a novel time-consistency metric, i.e., TCP for the
instance-dependent label noise problem. Based on TCP, we can detect ex-
amples with clean labels or correct pseudo labels better than the existing
measures, and allocate reliable triplets for learning the transition matrix.
Then we design an assumption-free curriculum that learns the clean clas-
sifier, as well as the transition matrix simultaneously.

Chapter 5. LNL incorporating Fairness Concerns. In this chapter,
we provide general frameworks for learning fair classifiers with noisy labels.
For statistical fairness notions, we rewrite the classification risk and the
fairness metric in terms of noisy data and thereby build robust classifiers.
For the causality-based fairness notion, We exploit the internal causal struc-
ture of data to effectively model both the label noise and counterfactual
fairness.

Chapter 6. LNL incorporating Privacy Concerns. In this chapter,
we propose a novel weakly supervised learning setting, which considers the
case where similar data pairs collected from the indirect questioning survey
method are corrupted with the mutually contaminated distributions model,
and a robust risk-consistent estimator to solve this problem.

Chapter 7. Conclusion. In this chapter, we conclude this thesis.
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Chapter 2

Preliminaries

In this chapter, we introduce the problem of learning with noisy labels
incorporating fairness and privacy concerns.

General Settings. Let (X, Y ) ∈ X×{1, . . . , c} be the random variables
for instances and clean labels, where X denotes the variable of instances,
Y the variable of labels, X the instance space and c the number of classes.

Label Noise. In many real-world applications, the observed labels are
not always correct but contain some noise. Let Ỹ be the random variable
for the noisy label. The label noise structure is usually formulated by
a c × c transition matrix, where c is the number of classes. The ij-th
element of a transition matrix is Tij(x) = P (Ỹ = j | Y = i,X = x),
which represents the probability that the instance x with the clean label
Y = i actually has a noisy label Ỹ = j. It can establish the connection
between noisy posterior and clean posterior, i.e., P (Ỹ | X) = T⊤P (Y | X).
Utilizing a transition matrix, consistent algorithms can be built [81, 97, 64,
88, 61]. Currently, there are three typical models for handling label noise,
which are the random classification noise (RCN) model [12, 81, 73], the
class-dependent label noise (CDN) model [88, 125, 143], and the instance-
dependent label noise (IDN) model [10, 18]. Specifically, RCN assumes that
clean labels flip randomly with a constant rate; CDN assumes that the flip
rate only depends on the true class; IDN considers the most general case
of label noise, where the flip rate depends on its instance.
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Fairness. Generally, fairness is the absence of any prejudice or favoritism
towards an individual or a group based on their intrinsic or acquired traits
in the context of decision-making [96]. Before computer science delved
into exploring fairness, philosophy and psychology had already attempted
to define this concept. However, the lack of a universal definition of fair-
ness highlights the complexity of solving this problem [74]. Different cul-
tural backgrounds and perspectives lead to varying definitions of fairness.
Principally, these definitions involve a protected attribute, e.g., race and
gender, and a metric that is supposed to be equal with respect to the pro-
tected attribute. For example, The definition of equalized odds [38], states
that “A predictor Y satisfies equalized odds with respect to protected at-
tribute A and outcome Y , if Ŷ and A are independent conditional on Y .
P (Ŷ = 1|A = 0, Y = y) = P (Ŷ = 1|A = 1, Y = y), y ∈ 0, 1”.

Privacy. Data reliability is a common concern especially when ask-
ing about sensitive topics such as sexual misconduct, or drug and alcohol
abuse. Sensitive topics might cause refusals in surveys due to privacy con-
cerns of the subjects [86]. This nonresponse reduces sample size and study
power and increases bias. Various indirect questioning methods have been
developed to reduce social desirability bias and increase data reliability.
Questions in the form of ‘With whom do you share the same opinion on is-
sue I?’ is one type of randomized response technique, which is a commonly
used indirect questioning survey method [114, 29]. In this manner, similar
data pairs (x, x′) are collected [5]. A pair of instances are said to be similar
if they are from the same class.

Given the presence of noisy labels, the fairness metric becomes im-
precise. Due to the sensitivity of the questions, respondents might answer
them in a manner that will be viewed favorably by others instead of answer-
ing truthfully [86], which makes the sampled examples contain dissimilar
data pairs. Our aim is to learn robust classifiers that could assign clean
labels to test data by exploiting the sample with noisy labels in compliance
with fairness and privacy requirements.
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Chapter 3

LNL from a Noise Reduction
Perspective

Learning with noisy labels has attracted a lot of attention in recent years,
where the mainstream approaches are in pointwise manners. Meanwhile,
pairwise manners have shown great potential in supervised metric learning
and unsupervised contrastive learning. Thus, a natural question is raised:
does learning in a pairwise manner mitigate label noise? To give an affir-
mative answer, in this chapter, we propose a framework called Class2Simi :
it transforms data points with noisy class labels to data pairs with noisy
similarity labels, where a similarity label denotes whether a pair shares the
class label or not. Through this transformation, the reduction of the noise
rate is theoretically guaranteed, and hence it is in principle easier to han-
dle noisy similarity labels. Amazingly, DNNs that predict the clean class
labels can be trained from noisy data pairs if they are first pretrained from
noisy data points. Class2Simi is computationally efficient because not only
this transformation is on-the-fly in mini-batches, but also it just changes
loss computation on top of model prediction into a pairwise manner. Its
effectiveness is verified by extensive experiments.

3.1 Motivations and Contributions

Intuitively, the pairwise manners require less pointwise supervision informa-
tion, i.e., class labels, and might be robust to label noise, which motivates
us to introduce a pairwise manner to deal with noisy labels. Specifically, we
propose Class2Simi, i.e., transforming training data with noisy class labels
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Figure 3.1: An illustration of the transformation from class labels to
similarity labels. Note that ỹ stands for the noisy class label and y for
the latent clean class label. The labels marked in red are incorrect. If we
assume the class label noise is generated according to the transition matrix
presented in the upper part of the right column, it can be calculated that the
noise rate for the noisy class labels is 0.5 while the noise rate for the noisy
similarity labels is 0.25. Note that the transition matrix for similarity labels
can be calculated by exploiting the class transition matrix as in Theorem
3.3.1.

into data pairs with noisy similarity labels. A class label shows the class
that an instance belongs to, while a similarity label indicates whether or
not two instances belong to the same class. We theoretically prove that
through this transformation, the noise rate becomes lower (see Theorem
3.3.2). This is because, given a data pair, of which if one point has an
incorrect class label or even if both points have incorrect class labels, the
similarity label could be correct. Moreover, this transformation also reduces
a multi-class classification problem into a binary classification problem. In
label noise learning, the binary problem is easier to handle and a lower
noise rate usually results in higher classification performance [88].

We illustrate the transformation and the robustness of similarity labels
in Figure 3.1. In the middle column, we can see the noisy similarity labels
of example-pairs (x2, x5) and (x2, x4) are correct, although there is one mis-
labeled point in (x2, x5), and two mislabeled points in (x2, x4). Moreover, if
we assume that the noisy class labels in Figure 3.1 are generated according
to the latent clean class labels and the class transition matrix (the ij-th
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entry of this matrix denotes the probability that the clean class label i flips
into the noisy class label j), the noise rate of class labels is 0.5. Mean-
while, the corresponding similarity transition matrix can be derived from
the class transition matrix with the class-priors (see Theorem 3.3.1). The
noise rate of similarity labels is 0.25, which is the proportion of the number
of incorrect similarity labels to the number of total similarity labels.

To handle the transformed data pairs with noisy similarity labels,
the connection between noisy similarity posterior and clean class poste-
rior should be established. Intuitively, noisy similarity posterior can be
linked to clean similarity posterior, and then clean class posterior can be
inferred from clean similarity posterior. For the first part, we can draw
on the philosophy of dealing with noisy class labels, e.g., selecting reliable
data pairs for training, and correcting the similarity loss to learn a robust
similarity classifier. For the second part, plenty of similarity metrics can be
adopted. As an example, we could adapt the Forward [88] to learn clean
similarity posterior from data with noisy similarity labels. Then, by using
the inner product of the clean class posterior [44] to approximate clean sim-
ilarity posterior, the clean class posterior (and thus the robust classifier)
can thereby be learned. It is obvious that Class2Simi suffers information
loss because we can not recover the class labels from similarity labels, which
implies that learning only from similarity labels can only cluster data points
but can not identify the semantic classes of clusters. In [44], a pointwise
cluster can be learned from similarity labels.

However, in our case, the pairs with similarity labels are constructed
from points with class labels, and we could acquire the semantic class in-
formation of clusters by pretraining the model from points with class labels
without any additional information. Note that when class labels of points
are corrupted, leading to noisy similarity labels, the proposed pretraining
still works because the noisy class is assumed to be dominated by its clean
class in label noise learning. Thus we do not suffer the major information
loss in noisy similarity learning.

It is worthwhile to mention Class2Simi increases the computation cost
very slightly, compared with the standard pointwise training. It will be
shown in Figure 3.2 that most computation is still pointwise. Only the
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computation of the pairwise enumeration layer [43] and the loss are pair-
wise, while both the forward and backward propagation are pointwise. The
pairwise enumeration layer was verified to only introduce a negligible over-
head to the training time [44]. Moreover, the transformation is on-the-fly in
mini-batches, which means the pairs are quadratic on the batch size other
than the whole sample size.

3.2 Related Work

Existing methods for learning with noisy labels can be divided into two
categories: algorithms that result in statistically inconsistent or consistent
classifiers. Methods in the first category usually employ heuristics to reduce
the side-effect of noisy labels, e.g., selecting reliable samples [37, 133, 115,
118, 122], reweighting samples [95, 48, 68, 53, 94], correcting labels [106,
144], designing robust loss functions [143, 128, 65, 67], employing side in-
formation [109, 62], and (implicitly) adding regularization [61, 62, 111, 109,
35, 140, 33, 45, 142, 34]. Those methods empirically work well in many
settings. Methods in the second category aim to learn robust classifiers
that could converge to the optimal ones defined by using clean data. They
utilize the transition matrix, which denotes the probabilities that the clean
labels flip into noisy labels, to build consistent algorithms [81, 97, 64, 88,
83, 135, 53, 42, 65, 132, 123]. The idea is that given the noisy class posterior
probability and the transition matrix, the clean class posterior probability
can be inferred.

Note that the noisy class posterior and the transition matrix can be
estimated by exploiting the noisy data, where the transition matrix addi-
tionally needs anchor points [64, 88]. Some methods assume anchor points
have already been given [135]. There are also methods showing how to
identify anchor points from the noisy training data [64].
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3.3 Methodology

3.3.1 Transformation on Labels and Transition Matrix

As in Figure 3.1, we combine every 2 instances in pairs, and if the two
instances have the same class label, we assign this pair a similarity label
1, otherwise 0. If the class labels are corrupted, the generated similarity
labels also contain noise.

The definition of the similarity transition matrix is similar to the class
transition matrix. The elements in a similarity transition matrix denote
probabilities that clean similarity labels H flip into noisy similarity labels
H̃, i.e., Ts,mn := P (H̃ = n|H = m). The dimension of the similarity transi-
tion matrix is always 2× 2. Since the similarity labels are generated from
class labels, the similarity noise is determined and, thus can be calculated,
by the class transition matrix.

Theorem 3.3.1. Assume that the dataset is balanced (each class has the
same amount of instances, and c classes in total), and the noise is class-
dependent. Given a class transition matrix Tc, such that Tc,ij = P (Ỹ =

j|Y = i). The elements of the corresponding similarity transition matrix
Ts can be calculated as

Ts,00 =
c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

,

Ts,01 =

∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

c2 − c
,

Ts,10 =
c− ||Tc||2Fro

c
, Ts,11 =

||Tc||2Fro
c

.

A detailed proof is provided in Appendix A.1.

Remark 3.3.1. Theorem 3.3.1 can easily extend to the setting where the
dataset is unbalanced in classes by multiplying each Tc,ij by a coefficient ni.
ni is the number of instances from the i-th class.

Note that the similarity labels are only dependent on class labels. If the
class noise is class-dependent, the similarity noise is also ‘class-dependent’
(class means similar and dissimilar). Under class-dependent label noise,
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a binary classification is learnable as long as T00 + T11 > 1 [76], where T
is the corresponding binary transition matrix; a multi-class classification
is learnable if the corresponding transition matrix Tc is invertible. For
Class2Simi, in the most general sense, i.e., Tc is invertible, Ts,00 + Ts,11 > 1

holds. Namely, the learnability of the pointwise classification implies the
learnability of the reduced pairwise classification. A proof is provided in
Appendix A.2. However, the latter cannot imply the former: As shown in
Figure 3.1, the class transition matrix is not invertible, and thus the point-
wise classification is not learnable while the reduced pairwise classification
is learnable. Note that this ‘learnable’ is only for the binary pairwise clas-
sification in this case. Technically, two conditions must be met to learn a
pointwise classifier from pairwise data: (1) The reduced pairwise classifica-
tion is learnable; (2) The semantic class information is learnable. Generally,
the second condition is equivalent to the learnability of the pointwise classi-
fication. Thus the learnability for a pointwise classifier of the two learning
manners is consistent.

Theorem 3.3.2. Assume that the dataset is balanced (each class has the
same amount of samples), and the noise is class-dependent. When the
number of classes c ≥ 8, the noise rate of noisy similarity labels is lower
than that of the noisy class labels.

A detailed proof is provided in Appendix A.3.

In multi-class classification problems, the number of classes is usually
larger than 8. As c becomes larger, the range of ‘dissimilarity’ of data
pairs becomes larger, which is conducive to the reduction of the noise rate.
Through Class2Simi, the number of d-pairs (with similarity label 0) is
(c−1) times as much as that of s-pairs (with similarity label 1). Meanwhile,
compared with the original noise rate of noisy class labels, the noise rate of
noisy similarity labels of s-pairs is higher and that of d-pairs is lower, while
the overall noise rate of data pairs is lower, which partially reflects that
the impact of label noise is less bad. Notably, the flip from ‘dissimilar’ to
‘similar’ should be more adversarial and thus more important. In practice,
it is common that one class has more than one clusters, while it is rare that
two or more classes are in the same cluster. If there is a flip from ‘similar’
to ‘dissimilar’ and based on it we split a (latent) cluster into two (latent)
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Figure 3.2: An overview of the proposed method. We add a pairwise
enumeration layer and similarity transition matrix to calculate and correct
the predicted similarity posterior. By minimizing the proposed loss Lc2s, a
classifier f can be learned for assigning clean labels. The detailed structures
of the Neural Network are provided in Section 4.

clusters, we still have a high chance to label these two clusters correctly
later. If there is a flip from ‘dissimilar’ to ‘similar’ and based on it we
join two clusters belonging to two classes into a single cluster, we nearly
have zero chance to label this cluster correctly later. As a consequence, the
flip from ‘dissimilar’ to ‘similar’ is more adversarial and important, thus
deserving a larger weight when calculating the noise rate. Here we assign
all data pairs the same weight, otherwise, there would be a more reduction
in the noise rate. On balance, considering the reduction of the overall noise
rate is meaningful.

When dealing with label noise, a low noise rate has many benefits.
The most important one is that the noise-robust algorithms will consis-
tently achieve higher performance when the noise rate is lower [37, 125, 88].
Another benefit is that, when the noise rate is low, the complex instance-
dependent label noise can be well approximated by class-dependent label
noise [19], which is easier to handle.

3.3.2 Learning with Noisy Similarity Labels

In order to learn a multi-class classifier from similarity labeled data, we
should establish relationships between class posterior probability and sim-
ilarity posterior probability. Here we employ the relationship established
in [44], which is derived from a likelihood model. As in Figure 3.2, we denote
the predicted clean similarity posterior by the inner product between two
categorical distributions: Ŝij = f (Xi)

⊤ f (Xj). Intuitively, f(X) outputs
the predicted categorical distribution of input data X and f(Xi)

⊤f(Xj)

can measure how similar the two distributions are. For clarity, we visualize
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(a) Similar example (b) Dissimilar example

Figure 3.3: Examples of predicted noisy similarity. Assume the class
number is 10; f(Xi) and f(Xj) are categorical distributions of Xi and
Xj respectively, which are shown above in the form of area charts. Ŝij is
the predicted similarity posterior between two instances, calculated by the
inner product between two categorical distributions.

the predicted similarity posterior in Figure 3.3. If Xi and Xj are predicted
belonging to the same class, i.e., argmaxm∈c fm(Xi) = argmaxn∈c fn(Xj),
the predicted similarity posterior should be relatively high (Ŝij = 0.30 in
Figure 3.3(a)). By contrast, if Xi and Xj are predicted belonging to dif-
ferent classes, the predicted similarity posterior should be relatively low
(Ŝij = 0.0654 in Figure 3.3(b)). Note that the noisy similarity posterior
P (H̃ij|Xi, Xj) and clean similarity posterior P (Hij|Xi, Xj) satisfy

P (H̃ij|Xi, Xj) = T⊤s P (Hij|Xi, Xj). (3.1)

Therefore, we can infer the predicted noisy similarity posterior ˆ̃Sij from the
predicted clean similarity posterior Ŝij with the similarity transition ma-
trix. To measure the error between the predicted noisy similarity posterior
ˆ̃Sij and noisy similarity label H̃ij, we employ a binary cross-entropy loss
function. The final optimization function is

Lc2s(H̃ij,
ˆ̃Sij) = −

∑
i,j

H̃ij log
ˆ̃Sij + (1− H̃ij) log(1− ˆ̃Sij).

The pipeline of the proposed Class2Simi is summarized in Figure 3.2.
The softmax function outputs an estimation for the clean class posterior,
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Algorithm 1 Class2Simi
Input: training data with noisy class labels; validation data with noisy
class labels.
Stage 1: Learn T̂s
1: Learn g(X) = P̂ (Ỹ |X) by training data with noisy class labels, and save
the model for Stage 2;
2: Estimate T̂c following the optimization method in [88];
3: Transform T̂c to T̂s.
Stage 2: Learn the classifier f(X) = P̂ (Y |X)
4: Load the model saved in Stage 1, and train the whole pipeline shown in
Figure 3.2.
Output: classifier f .

i.e., f(X) = P̂ (Y |X), where P̂ (Y |X) denotes the estimated class poste-
rior. Then a pairwise enumeration layer is added to calculate the predicted
clean similarity posterior Ŝij of every two instances. According to Eq. (3.1),
by pre-multiplying the transpose of the noise similarity transition matrix,
we can obtain the predicted noisy similarity posterior ˆ̃Sij. Therefore, by
minimizing Lc2s, we can learn a classifier for predicting noisy similarity
labels. Meanwhile, before the transition matrix layer, the pairwise enumer-
ation layer will output a prediction for the clean similarity posterior, which
guides f(X) to predict clean class labels.

Remark 3.3.2. For a better understanding, we formulate Class2Simi in the
form combined with Forward as an illustration. However, Class2Simi is a
meta method that can be applied on top of sample selection, loss correction,
label correction, and many other label noise learning methods. We provide
another implementation with Reweight in Appendix A.4.

3.3.3 Implementation

The proposed algorithm is summarized in Algorithm 1. Since learning only
from similarity labels will lose the semantic class information, we load the
model trained on the data with noisy class labels to provide the semantic
class information for similarity learning in Stage 2.
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3.3.4 Generalization Error Bound

We formulate the above problem in the traditional risk minimization frame-
work [79]. The expected and empirical risks of employing estimator f can
be defined as

R(f) = E(Xi,Xj ,Ỹi,Ỹj ,H̃ij ,Ts)∼Dρ
[ℓ(f(Xi), f(Xj), Ts, H̃ij)],

and

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

ℓ(f(Xi), f(Xj), Ts, H̃ij),

where n is the training sample size of the noisy data. Assume that the neu-
ral network has d layers with parameter matrices W1, . . . ,Wd, and the acti-
vation functions σ1, . . . , σd−1 are Lipschitz continuous, satisfying σj(0) = 0.
We denote by H : X 7→ Wdσd−1(Wd−1σd−2(. . . σ1(W1X))) ∈ R the standard
form of the neural network. h = argmaxi∈{1,...,c} hi. Then the output of the
softmax function is defined as fi(X) = exp (hi(X))/

∑c
j=1 exp (hj(X)), i =

1, . . . , c. We can then obtain the following generalization error bound.

Theorem 3.3.3. Assume the parameter matrices W1, . . . ,Wd have Frobe-
nius norm at most M1, . . . ,Md, and the activation functions are 1-Lipschitz,
positive-homogeneous, and applied element-wise (such as the ReLU). As-
sume the transition matrix is given, and the instances X are upper bounded
by B, i.e., ∥X∥ ≤ B for all X, and the loss function ℓ is upper bounded by
M . Then, for any δ > 0, with probability at least 1− δ,

R(f̂)−Rn(f̂) ≤M

√
log 1/δ

2n
+

(Ts,11 − Ts,01)2Bc(
√
2d log 2 + 1)Πd

i=1Mi

Ts,11
√
n

.

(3.2)

A detailed proof is provided in Appendix A.5.

Theorem 3.3.3 implies that if the training error is small and the train-
ing sample size is large, the expected risk R(f̂) of the representations for
noisy similarity posterior will be small. If the transition matrix is well es-
timated, the clean similarity posterior as well as the classifier for the clean
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class will also have a small risk according to Eq. (3.1) and the Class2Simi
relations. This theoretically justifies why the proposed method works well.
In the experiment section, we will show that the transition matrices are
well estimated and that the proposed method significantly outperforms the
baselines.

In Class2Simi, a multi-class classification is reduced to a pairwise bi-
nary classification. For data pairs, if a surrogate loss is classification-
calibrated, minimizing it leads to minimizing the zero-one loss on the point-
wise random variables in the limit case. Otherwise, we cannot guarantee the
worst-case learnability of learning pointwise labels from pairwise labels, but
it cannot imply the average-case non-learnability either. Theoretically, [6]
proved that when the pairwise labels are all correct, for the special case
c = 2, a good model for predicting s-/d-pairs must also be a good model
for predicting the original classes, under mild assumptions. In practice, it
seems fine to use non-classification-calibrated losses. According to [107],
the multi-class margin loss (i.e., one-vs-rest loss) and the pairwise compar-
ison loss (i.e., one-vs-one loss) are proved to be non-calibrated, but they
are still the main multi-class losses in [79, 99].

3.4 Experiments

Experiment setup. We employ three widely used image datasets, i.e.,
MNIST [57], CIFAR-10, and CIFAR-100 [54], one text dataset News20,
and one real-world noisy dataset Clothing1M [127]. News20 is a collection
of approximately 20,000 newsgroup documents, partitioned nearly evenly
across 20 different newsgroups. Clothing1M has 1M images with real-world
noisy labels and additional 50k, 14k, 10k images with clean labels for train-
ing, validation and test, and we only use noisy training set in the training
phase. Note that the similarity learning method of Class2Simi is based on
clustering because there is no class information. Intuitively, for a noisy
class, if most instances in it belong to another specific class, we can hardly
identify it. For example, assume that a class with noisy labels ĩ contains
ni instances with ground-truth labels i and nj instances with ground-truth
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labels j. If nj is bigger than ni, the model will cluster class i into j. Un-
fortunately, in Clothing1M, most instances with label ‘5’ belong to class
‘3’ actually. Therefore, we merge the two classes and denote the modified
dataset by Clothing1M* which contains 13 classes. For all the datasets, we
leave out 10% of the training data as a validation set, which is for model
selection.

For MNIST, CIFAR-10, and CIFAR-100, we use LeNet [58], ResNet-26
with shake-shake regularization [30], and ResNet-56 with pre-activation [41],
respectively. For News20, we first use GloVe [91] to obtain vector represen-
tations for the raw text data, and employ a 3-layer MLP with the Softsign
active function. For Clothing1M*, we use pre-trained ResNet-50 [40]. Fur-
ther details for the experiments are provided in Appendix A.6.1.

Noisy labels generation. For clean datasets, we artificially corrupt
the class labels of training and validation sets according to the class transi-
tion matrix. Specifically, for each instance with clean label i, we replace its
label by j with a probability of Tc,ij. In this chapter, we consider both sym-
metric and asymmetric noise settings which are defined in Appendix A.6.2.
Sym-0.2 means symmetric noise type with a 0.2 noise rate and Asym-0.2
means asymmetric noise type with a 0.2 noise rate.

Baselines. In this chapter, we compare our method with the follow-
ing baselines: Reweight [64], Forward [88], and Revision [125], which utilize
a class-dependent transition matrix to model the noise, and learn a robust
classifier. Besides, we externally conduct experiments on Co-teaching [37],
which is a representative algorithm of selecting reliable samples for train-
ing; JoCoR [115], which employs a joint loss function to select small-loss
samples; PHuber-CE [77], which introduces gradient clipping to mitigate
the effects of noise; APL [67], which applies simple normalization on loss
functions and makes them robust to noisy labels; S2E [130], which prop-
erly controls the sample selection process so that deep networks can benefit
from the memorization effect. Besides, we conduct experiments on another
implementation of the proposed method, which employs Reweight (More
details are provided in Appendix A.4). To distinguish these two methods,
we call them ‘F-Class2Simi’ and ‘R-Class2Simi’.
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Table 3.1: Means and Standard Deviations of Classification Accuracy over
5 trials on image datasets.

MNIST Sym-0.2 Sym-0.4 Sym-0.6 Asym-0.2 Asym-0.4 Asym-0.6

Co-teaching 97.34±0.26 94.68±0.52 93.36±0.47 97.37±0.20 96.63±0.41 91.33±0.38

JoCor 97.48±0.12 96.31±0.20 93.18±0.27 97.31±0.09 95.73±0.29 91.43±0.28

PHuber-CE 98.65±0.18 98.17±0.15 97.63±0.36 98.73±0.09 98.36±0.25 97.37±0.41

APL 98.77±0.21 97.06±0.37 97.67±0.35 98.72±0.10 98.45±0.29 97.58±0.25

S2E 98.96±0.27 93.27±2.18 89.37±0.70 99.19±0.05 94.47±1.08 92.36±2.40

Revision 98.92±0.09 98.42±0.50 98.10±0.37 98.97±0.06 98.58±0.19 98.21±0.19

Reweight 98.78±0.16 98.26±0.22 97.02±0.58 98.62±0.19 98.12±0.31 96.98±0.29

Forward 98.76±0.03 98.37±0.25 96.89±0.49 98.61±0.22 98.08±0.33 97.43±0.25

R-Class2Simi 99.04±0.06 98.87±0.06 98.40±0.17 99.06±0.05 98.75±0.08 98.23±0.20

F-Class2Simi 99.26±0.07 99.18±0.06 98.91±0.09 99.26±0.05 99.08±0.07 98.91±0.07

CIFAR10 Sym-0.2 Sym-0.4 Sym-0.6 Asym-0.2 Asym-0.4 Asym-0.6

Co-teaching 88.92±0.45 85.97±1.02 75.97±1.33 89.14±0.36 84.77±1.08 76.07±1.27

JoCor 88.46±0.25 85.19±0.75 77.03±0.92 88.96±0.70 85.19±0.58 75.76±1.31

PHuber-CE 90.37±0.26 86.05±0.37 74.06±0.92 90.73±0.22 86.06±0.53 73.25±1.04

APL 89.07±0.92 85.77±0.84 70.06±1.06 89.97±0.19 85.60±0.91 72.33±1.68

S2E 90.04±1.22 82.05±1.95 57.96±4.70 90.12±0.97 83.16±1.58 64.77±3.06

Revision 90.02±0.48 85.47±0.71 73.92±2.02 89.77±0.28 85.32±1.36 75.24±1.87

Reweight 89.05±0.32 84.60±0.45 74.87±1.18 89.28±0.26 84.61±0.62 72.77±1.91

Forward 89.63±0.20 87.08±0.31 73.24±1.33 90.03±0.41 86.64±0.71 77.41±0.43

R-Class2Simi 90.91±0.26 87.80±0.23 79.19±1.65 91.07±0.21 87.78±0.33 78.56±0.63

F-Class2Simi 91.38±0.19 88.22±0.19 79.45±0.53 91.24±0.27 87.79±0.36 79.05±0.56

CIFAR100 Sym-0.2 Sym-0.4 Sym-0.6 Asym-0.2 Asym-0.4 Asym-0.6

Co-teaching 57.14±0.49 52.62±1.03 37.32±1.67 57.82±0.37 51.32±0.83 35.32±1.68

JoCoR 58.32±0.71 51.76±1.07 37.02±1.33 58.61±0.30 49.18±1.05 37.09±1.82

PHuber-CE 57.90±0.31 52.36±0.77 37.93±0.86 57.33±0.71 51.29±0.96 36.03±1.34

APL 54.03±0.92 49.06±0.93 36.06±2.02 55.62±0.92 48.37±0.94 35.02±1.72

S2E 59.37±1.09 43.29±1.94 30.08±3.91 58.92±1.21 42.88±2.16 29.93±4.05

Revision 59.62±0.97 53.26±0.84 35.82±2.06 58.77±0.93 52.72±1.38 37.72±1.75

Reweight 49.59±0.74 39.72±0.57 22.79±1.35 48.87±0.96 36.65±0.90 17.24±1.97

Forward 48.68±0.57 39.78±1.23 27.01±0.89 47.90±0.23 37.89±0.57 21.71±1.53

R-Class2Simi 55.45±0.55 50.38±0.49 35.57±0.75 54.95±0.65 47.56±0.72 34.82±0.58

F-Class2Simi 60.26±0.18 54.85±0.60 40.38±0.58 59.10±0.13 52.99±0.78 38.69±2.84

Results on noisy image datasets. The results in Table 3.1 and
Figure 3.4 demonstrate that Class2Simi achieves distinguished classifica-
tion accuracy and is robust against the estimation errors on the transition
matrix.



20 Chapter 3. LNL from a Noise Reduction Perspective

Table 3.2: Means and Standard Deviations of Classification Accuracy over
5 trials on text datasets.

NEWS20 Sym-0.2 Sym-0.4 Sym-0.6 Asym-0.2 Asym-0.4 Asym-0.6

Co-teaching 55.32±0.28 51.09±1.06 47.07±0.83 55.29±0.41 53.08±0.26 45.63±0.75

JoCor 52.21±0.70 49.84±0.92 48.83±0.43 55.58±0.27 49.35±0.62 46.21±0.73

PHuber-CE 55.73±0.38 54.33±0.92 45.05±0.49 56.76±0.26 51.15±0.65 41.59±1.05

APL 56.91±0.21 53.12±1.21 43.60±1.28 56.11±0.23 50.93±1.05 43.60±1.28

S2E 57.93±0.37 47.16±1.32 28.53±5.04 54.89±1.92 50.42±1.71 30.67±3.12

Revision 58.06±0.19 52.30±1.73 46.84±1.09 56.41±0.77 53.44±0.83 43.77±1.08

Reweight 53.34±1.08 50.15±1.33 44.73±0.79 53.37±0.66 49.82±0.44 39.46±1.27

Forward 57.30±0.32 53.94±0.42 46.91±1.48 53.58±0.54 49.90±1.44 42.55±3.81

R-Class2Simi 58.67±0.38 56.59±0.74 50.48±0.97 58.44±0.66 55.03±1.55 47.75±2.17

F-Class2Simi 58.27±0.47 56.70±1.13 50.18±0.89 58.46±0.68 54.92±1.66 46.07±3.54

Table 3.3: Classification Accuracy on Clothing1M*.

Co-teaching 74.70 JoCoR 74.98

PHuber-CE 73.16 APL 58.93

S2E 72.30 Revision 74.65

Forward 73.88 F-Class2Simi 75.41

Reweight 74.44 R-Class2Simi 75.76

From Table 3.1, overall, we can see that after the transformation, bet-
ter performance are achieved due to a lower noise rate and the similarity
transition matrix being robust to noise. Even for challenging noise rates of
0.6, Class2Simi achieves good accuracy, uplifting about 5 and 10 points on
CIFAR-10 and CIFAR-100 respectively, compared with the corresponding
pointwise methods.

In Figure 3.4, we show that the similarity transition matrix is robust
against estimation errors. To verify this, we add some random noise to
the ground-truth Tc through multiplying every element in class Tc by a
random variable αij. We control the noise rate on the Tc by sampling αij in
different intervals, i.e., 0.1 noise means that αij is uniformly sampled from
±[1.1, 1.2]. Then we normalize Tc to make its row sums equal to 1. From
Figure 3.4, we can see that the accuracy of Forward drops dramatically
with the increase of the noise on Tc. By contrast, there is only a slight
fluctuation of F-Class2Simi, indicating Class2Simi is robust against the
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Figure 3.4: Means and Standard Deviations of Classification Accuracy
over 5 trials on MNIST and CIFAR10 with perturbational ground-truth
T̂c.

Table 3.4: Classification Accuracy on clean datasets. CE uses class labels
and the cross-entropy loss function. C2S refers to Class2Simi.

Dataset MNIST CIFAR10 CIFAR100 News20

CE 99.30±0.02 94.03±0.14 58.74±0.51 59.86±0.39

C2S 99.24±0.05 94.05±0.27 60.36±0.89 59.74±0.20

estimation errors on the transition matrix.

Results on the noisy text dataset. Results in Table 3.2 show that
the proposed method works well on the text dataset under both symmetric
and asymmetric noise settings.

Results on the real-world noisy dataset. Results in Table 3.3
show that the proposed method also performs well against agnostic noise.

Ablation study. To investigate how the similarity loss function in-
fluences the classification accuracy, we conduct experiments with the cross-
entropy loss function and the similarity loss function on clean datasets over
3 trials, where the Tc is set to an identity matrix. All other settings are
kept the same. As shown in Table 3.4, on MNIST, CIFAR10, and News20,
the similarity loss function does not improve the classification accuracy on
clean data, and on CIFAR100, the improvement is marginal. However, in
Table 3.1 and 3.2, the improvements are significant, which reflects the im-
provements are mainly benefited from the lower noise rate and the reduced
noisy binary paradigm.
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3.5 Summary

This chapter proposes a noise reduction perspective on dealing with class
label noise by transforming training data with noisy class labels into data
pairs with noisy similarity labels. We establish the connection between
noisy similarity posterior and clean class posterior and propose a deep
learning framework to learn classifiers from the transformed noisy similarity
labels. The core idea is to transform pointwise information into pairwise
information, which makes the noise rate lower. We also prove that not
only the similarity labels but the similarity transition matrix is robust to
noise. Experiments are conducted on benchmark datasets, demonstrating
the effectiveness of our method.
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Chapter 4

LNL from a Curriculum
Learning Perspective

Many machine learning algorithms are known to be fragile on simple instance-
independent noisy labels. However, noisy labels in real-world data are more
devastating since they are produced by more complicated mechanisms in an
instance-dependent manner. In this chapter, we target this practical chal-
lenge of Instance-Dependent Noisy Labels by jointly training (1) a model
reversely engineering the noise generating mechanism, which produces an
instance-dependent mapping between the clean label posterior and the ob-
served noisy label; and (2) a robust classifier that produces clean label
posteriors. Compared to previous methods, the former model is novel and
enables end-to-end learning of the latter directly from noisy labels. An
extensive empirical study indicates that the time-consistency of data is
critical to the success of training both models and motivates us to develop
a curriculum selecting training data based on their dynamics on the two
models’ outputs over the course of training. We show that the curriculum-
selected data provide both clean labels and high-quality input-output pairs
for training the two models. Therefore, it leads to promising and robust
classification performance even in notably challenging settings of instance-
dependent noisy labels where many SoTA methods could easily fail. Exten-
sive experimental comparisons and ablation studies further demonstrate the
advantages and significance of the time-consistency curriculum in learning
from instance-dependent noisy labels on multiple benchmark datasets.
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4.1 Motivations and Contributions

Two principal methodologies have been developed to address the label
noises: (1) detecting samples (X, Ỹ ) with correct labels Ỹ = Y (empir-
ically, they are the ones with the smallest loss values) and using them to
train a clean classifier [37, 133]; (2) learning the noise generating mecha-
nism, i.e., a transition matrix T defining the mapping between clean label
Y and noisy label Ỹ such that P (Ỹ | X) = T⊤P (Y | X), where P (· | X)

denotes the posterior vector, and then using it to build statistically consis-
tent classifiers [64, 88, 129]. Although both methodologies have achieved
promising results in the simplified instance-independent (class-dependent)
setting, they have non-trivial drawbacks when applied to the more practi-
cal but complicated instance-dependent noises: (1) the “small loss” trick is
no longer effective in detecting correct labels [18] because the loss thresh-
old drastically varies across instances and is determined by each transition
matrix T (X); (2) the instance-dependent transition matrix T (X) is not
identifiable given only the noisy sample and it heavily relies on the esti-
mation of clean label Y in the triple (X, Y, Ỹ ) [129], which is an unsolved
challenge in (1).

Therefore, the two learning problems are entangled, i.e., the training of
a clean label predictor and the transition matrix estimator depends on each
other’s accuracy, which substantially relies on the quality of training data
(X, Y, Ỹ ). Specifically, the “small loss” trick cannot provide a high-quality
estimation of Y due to the instance-specific threshold of loss. Moreover, the
estimation of Y can change rapidly due to the non-stationary loss, which
can fluctuate during training and provide inconsistent training signals over
time for both models if selected for training. Furthermore, the data subset
selection inevitably introduces biases toward easy-to-fit samples and de-
grades the data diversity [129, 18, 10, 19], which in fact is critical to the
training and the accuracy of both models, especially the transition ma-
trix estimator, because easy-to-fit samples usually have extremely sparse
transition matrices.

To tackle the above issues, we propose a novel metric “Time-Consistency
of Prediction (TCP)” to select high-quality data to train both models. TCP
measures the consistency of model prediction for an instance over the course
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of training, which reflects whether its given label results in gradients con-
sistent with the majority of other instances, and this criterion turns out
to be a more reliable identifier of clean labels. When applied to the train-
ing of clean label predictor, TCP is more accurate in clean label detection
than “small loss” (or high confidence) criterion, because it avoids the com-
parison of confidence for samples with instance-dependent loss/confidence
thresholds. Moreover, when applied to the training of the transition matrix
estimator, TCP measures the time-consistency of predicted noisy labels Ỹ .
Surprisingly, it also faithfully reflects the correctness of the predicted clean
label Y . Since the objective to estimate the transition matrix is defined
by both Y and Ỹ , selecting samples with high TCP considerably improves
the training of the transition matrix estimator. In addition, to exploit the
data diversity in training the two models, we apply a curriculum that starts
from selecting only a few high TCP data for early-stage training but pro-
gressively includes more training data once the two models become maturer
and more consistent.

In this chapter, we develop a three-stage training strategy with the
TCP curriculum embedded. In every training step, we first update the
clean label predictor using selected data with high TCP on this model
(Sec.4.3.2). Then, we train the transition matrix estimator given the pre-
dicted clean label posterior and the noisy labels on selected data with high
TCP on the estimator (Sec.4.3.2). Finally, we fine-tune the clean label pre-
dictor directly using the noisy label and the estimated transition matrix
(Sec.4.3.3). It is worth noting that the TCP metrics for the two models
are updated using the model outputs collected from this dynamic training
process without causing additional cost. As demonstrated by extensive em-
pirical studies and experimental comparisons, our method leads to efficient
joint training of the two models that mutually benefits from each other
and produces an accurate estimation of both the clean label and instance-
dependent transition matrix. On multiple benchmark datasets with either
synthetic or real-world noises, our method achieves state-of-the-art perfor-
mance with significant improvements.
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4.2 Related Work

To estimate the transition matrix, a cross-validation method can be applied
for the binary classification task [81]. For CDN, the transition matrix could
be learned by exploiting anchor points [88, 134]. For IDN, the transition
matrix for an instance could be approximated by a combination of the
transition matrices for the parts of the instance [124] or a Bayes label
transition matrix [129]. [131] exploited the causal graph to estimate the
transition relations between clean and noisy labels.

Curriculum learning was first proposed by [9], which describes a learn-
ing paradigm in which a model is learned by gradually introducing samples
of increasing hardness to training. Its effectiveness has been empirically
verified in a wide range of applications, e.g., computer vision [17], nat-
ural language processing [108], and multitask learning [32]. Curriculum
for label-noise learning has been also investigated. MentorNet [48] pre-
trains an extra network producing a data-driven curriculum selecting data
instances to guide the training. When the clean validation data is not
available, MentorNet has to use a predefined curriculum. RoCL [145] de-
velops a curriculum learning strategy that smoothly transitions between
(1) detection and supervised training on clean data; and (2) relabeling and
self-supervision on noisy data. Nevertheless, RoCL has no convergence
guarantee and needs extra data augmentations to collect spatial-consistent
pseudo labels.

4.3 Methodology

4.3.1 Examples Selection Criterion: Time-Consistency

of Prediction

According to the observation that the loss on instances with clean labels
is usually smaller than instances with noisy labels, the loss computed at
an instantaneous step has been widely adopted as a selection criterion for
confident examples [37, 133, 113]. It is because instances with clean labels
are mutually consistent with each other in producing gradient updates,
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allowing the model to fit them better and thereby make the loss smaller
than instances with noisy labels.

Unfortunately, the instantaneous loss was found only work well on the
instance-independent label noise [18]. For a deep neural network, because of
the non-smooth nature of the loss and the randomness of stochastic gradient
descent, the instantaneous loss of each instance can change dramatically
between consecutive epochs, leading to a huge gap between training sets
selected over consecutive epochs. Therefore, it is necessary to take the
training history of each instance into consideration. [146] proposed a robust
version of the instantaneous loss as the exponential moving average of it
over the course of training. Nevertheless, in the IDN case, each instance
with its noisy label is a unique pattern, which is more complex and thereby
requires a more robust selection criterion. Apparently, at the instance level,
the one-hot prediction of an instance is a more robust metric than the loss
because the former has a tolerance to the change of predicted class posterior
while the latter has not, i.e., the one-hot prediction remains unchanged if
the position of the max element in the predicted class posterior vector
is maintained but the cross-entropy loss changes once the predicted class
posterior changes.

Inspired by the above insights, we propose a time-consistency of pre-
diction (TCP) metric as follows:

TCPt+1(x) =
t

t+ 1
TCPt(x) +

1

t+ 1
InPt+1(x), (4.1)

where InPt+1(x) = 1[ŷt+1 = ŷt] and ŷt is the predicted label at epoch t.
This metric considers the prediction consistency over the course of training,
which can better describe the IDN data and select confident examples than
the previous ones.

To see this, we first manually add IDN at 0.4 noise rate (see Section 4.4
for the noise generation method) onto a benchmark dataset CIFAR10 and
train a ResNet34 [40] for 100 epochs with a constant learning rate. Since
no curriculum strategy is applied here, we select confident examples at
every epoch t with a fixed number 5,000 according to four types of se-
lection criterion, i.e., instantaneous prediction InPt(x), instantaneous loss
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ℓ(x), time-consistency of prediction TCPt(x), and time-consistency of loss
(defined in the same way as TCP).

Figure 4.1: Clean ratios of the se-
lected top 5000 instances ranked by
four kinds of instance hardness mea-
sures, respectively, during a standard
training for 100 epochs. The clean ra-
tio of randomly selected instances is
0.6 since the noise rate is 0.4.

Then we count the number of
instances with clean labels from
the selected confident examples and
calculate the clean ratios (ratio
of clean instances to selected in-
stances). As shown in Figure 4.1,
we can find that the two instan-
taneous metrics have clean ratios
lower than 0.6, which are worse
than random selection. As for time-
consistency of loss, the clean ratio
is slightly higher than the random
selection. Those three metrics are
basically not discriminative to the
noisy data. By contrast, the proposed TCP metric has a distinguishable
performance, uplifting more than 20 percent of the clean ratio of the se-
lected confident examples. More empirical studies are provided in Ap-
pendix B.1 to support our claims.

Moreover, we partition the whole data into three groups (high TCP
(10%), middle TCP (80%), and low TCP (10%)) by the TCP calculated
at the start stage (epoch 5), early stage (epoch 30), and end stage (epoch
95). We visualize the mean and variance of the groups through the whole
training epochs. As shown in Figure 4.2 and B.3, the start-stage partition
fails at the end stage as three groups are entangled together while the early-
stage partition shares the almost same pattern as the end-stage partition.
Thus, we can conclude that the early-stage TCP is reflective of the property
of each instance in the future, which means the time-consistent examples
selected in the early stage will not mislead the classifier because their TCP
are still high and thus they will still be selected as time-consistent examples
in the rest training epochs. Besides, a warmup for the TCP is proved to
be necessary.
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(a) Partitioned at a start
stage.

(b) Partitioned at an
early stage.

(c) Partitioned at an end
stage.

Figure 4.2: TCP (mean and std.) of three groups (high TCP (10%),
middle TCP (80%), and low TCP (10%)) partitioned by the TCP calculated
at the start stage (epoch 5), early stage (epoch 30), and end stage (epoch
95) during training a ResNet34 on CIFAR10 with IDN-0.4 for 100 epochs.

(a) Partitioned at a start
stage.

(b) Partitioned at an
early stage.

(c) Partitioned at an end
stage.

Figure 4.3: TCP (mean and std.) of three groups (high TCP (10%),
middle TCP (80%), and low TCP (10%)) partitioned by the TCP calculated
at the start stage (epoch 5), early stage (epoch 30), and end stage (epoch
95) during training a ResNet50 on CIFAR100 with IDN-0.4 for 100 epochs.

4.3.2 TCP Guided Curriculum Learning for Instance-

Dependent Noisy Labels

Our curriculum contains two sub-curriculum corresponding to two main
challenges for solving the IDN problem: (1) detecting examples with clean
labels; (2) learning the transition matrix. In this section, we elaborate on
how to use TCP to design curriculum to achieve these goals. Below we use
clean- and noisy-TCP to refer to time consistency of clean label predictions
(argmax P̂ (y | x)) and noisy label predictions (argmax P̂ (ỹ | x)) over
historical training steps, respectively.
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Learning a Primary Clean Classifier with High Clean-TCP In-
stances

In Section 4.3.1, we demonstrate that clean-TCP can be used to select
examples with clean labels because they are mutually consistent with each
other in producing gradient updates and easy to be learned to have high
clean-TCP. However, as shown in Figure 4.1, not all of the selected high
clean-TCP instances have clean labels. The reason why those instances
have high clean-TCP but not clean labels is because they are far away
from the classification boundary and inherently hard to be misclassified
even though their given labels are wrong. Namely, their labels get corrected
by the classifier, and high clean-TCP indicates the pseudo labels assigned
by the classifier are correct.

Therefore, with clean-TCP, we design a curriculum which exploits both
examples with clean labels and instances with correct pseudo labels to learn
a clean classifier. We theoretically prove that introducing high clean-TCP
instance with its pseudo label does not cause catastrophic forgetting1 of
the learned confident examples. Consider the situation we have a labeled
set L (in practice it can be the selected confident examples set) and one
unlabeled instance x′. By training on L for one step, we have θt+1 =

θt − η
∑

x∈L∇θℓ (x; θt); and by training on L and x′ for one step, we have
θ
′
t+1 = θt−η

(∑
x∈L∇θℓ (x; θt) +∇θℓ (x

′; θt)
)
, where θt denotes the network

parameters at step t and η denotes the learning rate. Then we have

1

η

∣∣∣∣∣∑
x∈L

[
ℓ (x; θt+1)− ℓ

(
x; θ

′

t+1

)]∣∣∣∣∣ =
∣∣∣∣∣p
ŷ′t
t+1(x

′)

p
ŷ′t
t (x

′)
− 1

∣∣∣∣∣ ,
where pŷ

′
t
t (x

′) is the probability of x′ belonging to ŷ′t at step t, and ŷ′t is the
prediction (pseudo label) of x′ at step t. The detailed derivation is provided
in Appendix B.2. If x′ is selected with high clean-TCP, pŷ

′
t
t (x

′) is very close
to p

ŷ′t
t+1(x

′) because it has been verified in Figure 4.2 that instances with
high clean-TCP in the early stage maintain their high clean-TCP in the
future, which means the loss change can be bounded with a very small
value. As a result, changes of the gradient and thereby the parameter

1Catastrophic forgetting denotes the tendency of DNNs to forget previously learned
information upon learning new information.
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of the DNN are also small. If the new data is not properly selected, it
will cause catastrophic forgetting as the DNN forgets previously learned
information upon learning new information. Therefore, exploiting high
clean-TCP instances with pseudo labels helps to correct corrupted labels
and learn a clean classifier without causing catastrophic forgetting of the
learned examples with correct labels.

Figure 4.4: Clean ratios of selected
high clean-TCP examples w.r.t. their
original noisy labels and pseudo
labels with linear growth of the se-
lected number during our curriculum
learning on CIFAR10 with IDN-0.4
for 100 epochs.

In Figure 4.4, we show the
clean ratios of the original noisy la-
bels and pseudo labels of instances
selected with our curriculum dur-
ing the whole training process. The
clean ratio for pseudo labels main-
tains an amazing high value, much
better than the original clean ra-
tio. Therefore, the clean classi-
fier can be learned by minimizing∑N

n=1 L (f(xn), y∗n), where y∗ can be
the original noisy label or pseudo la-
bel in different learning phases. Im-
plementation details can be found in Section 4.3.3.

Learning a Transition Matrix with High Noisy-TCP Instances

The transition matrix is not identifiable by only exploiting noisy data with-
out introducing additional assumptions, therefore we formulate the ob-
jective function for learning the transition matrix based on the equation
P (Ỹ | X) = T⊤(X)P (Y | X) as follow:

min
T

1

N

N∑
n=1

L
(
T⊤(xn)f(xn), ỹn

)
, where f(xn) = P̂ (y | xn) . (4.2)

To select the high-quality triplets (X, Y, Ỹ ) for the above objective, two
conditions should be considered. First, it is necessary for f(·) to output a
precise clean class posterior, otherwise, T cannot be optimized in the correct
direction, in the case ỹ is given and f(·) has been learned in advance and is
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fixed. As we discussed above, instances with high clean-TCP tend to have
the correct pseudo label, and thereby a precise clean class posterior, which
satisfies this necessary condition. Second, the noisy-TCP should be high.
By treating T⊤(x)f(x) as a whole predictor for ỹ, the corresponding new
objective is to predict ỹ. Therefore, high noisy-TCP instances naturally
indicate the instance is learned better and faster for predicting ỹ, leading
to stable and fast learning.

(a) Epoch 10. (b) Epoch 30.

(c) Epoch 50. (d) Epoch 80.

Figure 4.5: Data distribution in terms of noisy- and clean-TCP at epoch
10/30/50/80 during our curriculum learning on CIFAR10 with IDN-0.4
for 100 epochs.

We discover that the noisy-TCP inherently has a strong correlation
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with clean-TCP so we can use it to select triplets fulfilling both conditions
above. To see this, at each epoch, we calculate the Spearman rank-order
correlation coefficient2 between the noisy-TCP and clean-TCP of the whole
dataset. Besides, we calculate the clean ratio of the selected high noisy-TCP
instances w.r.t. their pseudo labels. In Figure 4.5, we show the data distri-
bution in terms of clean- and noisy-TCP at epochs 10/30/50/80 through
the training procedure. The green regression line partially implies the linear
correlation between the clean- and noisy-TCP. Also, instances with correct
pseudo labels are mainly distributed in the high TCP area, and vice versa.

Figure 4.6: Clean ratios of se-
lected high noisy-TCP examples
w.r.t. their pseudo labels with expo-
nential growth of the selected num-
ber and Spearman rank-order corre-
lation coefficient between the noisy-
and clean-TCP during our curriculum
learning on CIFAR10 with IDN-0.4
for 100 epochs.

As shown in 4.6, the Spearman
rank-order correlation coefficient is
above 0.6 after 10 epochs with a
consistent 0 p-value, roughly indi-
cating that noisy-TCP is strongly
Spearman rank-order correlated
with clean-TCP for 100% sure.
Meanwhile, the clean ratio is con-
sistently above 0.8, which means
those high noisy-TCP instances
also have correct clean predictions
and thereby probably precise clean
class posterior. Note that the clean
ratio decreases at the late stage be-
cause the curriculum selects almost
all the data at the end. Overall, high noisy-TCP instances not only are
naturally stable for the new objective to predict ỹ but also satisfy the nec-
essary condition to have precise clean class posterior, which makes them
perfect examples for learning the transition matrix.

4.3.3 TCP Guided Curriculum Learning Algorithm

The main steps of our algorithm are summarized in Algorithm 3. First,
we warm up the feature extractor ϕ, classification layer c by minimizing a
standard cross-entropy (CE) loss on noisy data, and meanwhile compute

2The Spearman rank-order correlation coefficient is a nonparametric measure of the
monotonicity of the relationship between two sets [137].
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Figure 4.7: An overview of the proposed method. The second image of
cat has a noisy label as “dog”. The transition matrix T (·) = t(ϕ(·)) and
classifier f(·) = c(ϕ(·)) share a common feature extractor.

the clean-TCP for every instance. Then, we warm up the transition ma-
trix layer t with high clean-TCP instances and obtain the noisy-TCP for
every instance. From now on, iteratively, high clean-TCP instances are fed
to the clean classifier (green part in Figure 4.7) to train a primary clean
classifier with the clean CE loss, and based on the primary clean classifier,
instances with high noisy-TCP are fed to the transition matrix (blue part
in Figure 4.7) to train a transition matrix with the noisy CE loss while
the parameters of the primary clean classifier are frozen. Then the clean
classifier gets improved by being fine-tuned on the whole data with the
fixed transition matrix. The clean- and noisy-TCP of every instance are
updated at the end of each epoch. Finally, a transition matrix with a small
estimation error and a clean classifier with a performance improvement can
be obtained.

4.4 Experiments

Dataset. We employ three widely used datasets, i.e., F-MNIST [126],
SVHN [82], and CIFAR10/100 [54], and four versions of the real-world
noisy dataset CIFAR10N [117], CIFAR100N [117], and Clothing1M [127].
F-MNIST contains 60,000 training images and 10,000 test images with 10
classes. SVHN and CIFAR10 both have 10 classes of images, but the for-
mer contains 73,257 training images and 26,032 test images, and the latter
contains 50,000 training images and 10,000 test images while CIFAR100
has 100 classes. CIFAR10N (CIFAR100N) provides CIFAR10 (CIFAR100)
images with human-annotated noisy labels obtained from Amazon Mechan-
ical Turk. Four versions of CIFAR10N label sets are employed here, three
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Algorithm 2 TCP Guided Curriculum Learning Algorithm.
Input: Noisy training sample D.
Modules and Hyperparameters: feature extractor ϕ, classification
layer c, transition matrix layer t, f(·) = c(ϕ(·)),
T (·) = t(ϕ(·)), number sequences Nc and Nt, training epoch e1, e2, and
e3.
Warmup clean-TCP:
for e in {1, · · · , e1} do

Train ϕ and c on D by minimizing a standard CE loss∑N
n=1 L (f(xn), ỹn).
Record the clean prediction and calculate the clean-TCP.

end for
Warmup noisy-TCP:
for e in {1, · · · , e2} do

Select Nc[e] high clean-TCP instances as Dc.
Train ϕ, c and t on Dc by minimizing

∑N
n=1 Ln (f(xn), ỹn) +∑N

n=1 L
(
T⊤(xn)f(xn), ỹn

)
.

Record the clean and noisy prediction and calculate the clean- and
noisy-TCP.
end for
Curriculum training:
for e in {1, · · · , e3} do

Select Nt[e2 + e] high noisy-TCP instances as Dt.
Train t while fixing ϕ and c on Dt by minimizing∑N

n=1 Ln
(
T⊤(xn)f(xn), ỹn

)
.

Select Nc[e2 + e] high clean-TCP instances as Dc.
Train ϕ and c on Dc by minimizing

∑N
n=1 Lc (f(xn), y∗n), where y∗ is

the pseudo label.
Fix t and fine-tune ϕ and c on D by minimizing∑N

n=1 Ln
(
T⊤(xn)f(xn), ỹn

)
.

Record the clean and noisy prediction and calculate the clean- and
noisy-TCP by Eq. (4.1).
end for
Output: Optimized feature extractor ϕ, classification layer c, transition
matrix layer t.

of which are labeled by three independent workers (named CIFAR10N-
1/2/3 ) and one of which is negatively aggregated from the above three sets
(named CIFAR10N-W ). Clothing1M has 1M images with real-world noisy
labels and additional 50k, 14k, 10k images with clean labels for training,
validation and test, and we only use noisy training set in the training phase.
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For all the datasets, we leave out 10% of the training data as a validation
set, which is for model selection. The final test model is selected with the
highest validation accuracy.

Noisy labels generation. For clean datasets, we artificially cor-
rupt the class labels of training and validation sets following the instance-
dependent noisy labels generalization method in [124]. We generate noisy
datasets of {0.1, 0.2, 0.3, 0.4, 0.5} five noise rates.

Baselines and measurements. On synthetic noisy datasets, with-
out introducing data augmentation techniques and semi-supervised learn-
ing, we compare the proposed method TCP with the following baselines:
(i). CE, which optimizes the standard cross-entropy loss on noisy datasets.
(ii). Decoupling [72], which trains two networks on samples whose pre-
dictions are different. (iii). MentorNet [48], Co-teaching [37], and Co-
teaching+ [133], that mainly handle noisy labels by training on instances
with small loss. (iv). Joint [106], which jointly optimizes labels and net-
work parameters. (v). DMI [128], which uses a novel information-theoretic
loss function to learn a robust classifier. (vi). Forward [88], Reweight [64],
and T-Revision [125], that utilize a class-dependent transition matrix T

to correct the loss function. (vii). PTD [124] and Bayes [129], estimate
instance-dependent transition matrix under some additional assumptions;
CRUST [78] iteratively selects subsets of clean data points that provide
an approximately low-rank Jacobian matrix; CausalINL [131] exploits the
causal graph to estimate the transition relations between clean and noisy
labels. On real-world noisy datasets, we apply the transition matrix learn-
ing and fine-tuning parts to the SoTA method Dividemix [60], i.e., at each
epoch, in addition to the Dividemix training, we select high noisy-TCP
data to learn the transition matrix and use it to fine-tune the whole data.
Then we compare this combined method TCP-D with the following SoTA
methods: (i). PES [4]. (ii). Dividemix [60]. (iii). CORES [18]. (iv).
ELR+ [63]. (v). JoCoR [116]. (vi). CAL [147]. We use a ResNet18
network for F-MNIST, a ResNet34 network for SVHN and CIFAR10, a
ResNet50 network for CIFAR100, a PreAct-ResNet18 for CIFAR10N and
CIFAR100N, and a pre-trained ResNet50 network for Clothing1M. Classi-
fication accuracy is employed to evaluate the performance of each model on
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the clean test set. Results over 5 trials on all datasets except Clothing1M,
for which the result is over 1 trial, are reported.

Implementation details. We use a ResNet18 network for F-
MNIST, a ResNet34 network for SVHN and CIFAR10, a ResNet50 net-
work for CIFAR100, a PreAct-ResNet18 for CIFAR10N and CIFAR100N,
and a pre-trained ResNet50 network for Clothing1M. The transition ma-
trix is modeled by a linear layer which transforms the latent representation
vector to a c2 vector, and then reshaped to a c × c matrix. The batchsize
is set to 32 for Clothing1M and 128 for others. The weight decay is set
to 1e−4, 5e−4, 0, 5e−4, and 0.001 for F-MNIST, SVHN, CIFAR10/100, CI-
FAR10N/CIFAR100N, and Clothing1M, respectively. For synthetic noisy
datasets, we use the Adam optimizer. At the warmup clean-TCP stage,
the learning rate is initialized to 0.001 and decayed every 5 epochs with 50
epochs in total by a factor of 0.1, 1/3, and 1 for F-MNIST, SVHN, and
CIFAR10/100, respectively. In the rest of 100-epoch training, the leaning
rate of the feature extractor ϕ and classification layer c is 1e−4 and di-
vided by 10 at epoch 30 and 80; the leaning rate of the transition matrix
layer t is 3e−4 before epoch 30 and 1e−5 otherwise. The learning rate for
fine-tuning is 1e−6. For real-world noisy dataset CIFAR10N/CIFAR100N
and Clothing1M, we follow the optimization method as Dividemix. For CI-
FAR10N/CIFAR100N, in the warmup clean-TCP stage, the learning rate
is initialized to 0.001 and decayed every 5 epochs with 50 epochs in total
by a factor of 1/3. In the rest of 300-epoch training, the leaning rate of the
transition matrix layer t is 6e−3 before epoch 80 and 2e−4 between epoch
80 and 150, and 2e−4 otherwise. The learning rate for fine-tuning is 2e−3

before epoch 80, and 6e−4 between epoch 80 and 150, and 2e−4 between
epoch 150 and 250, and 2e−5 otherwise. For Clothing1M, in the warmup
clean-TCP stage, the learning rate is initialized to 0.002 and decayed every
2 epochs with 5 epochs in total by a factor of 1/3. In the rest of 20-epoch
training, the leaning rate of the transition matrix layer t is 6e−4 before
epoch 8 and 2e−5 between epoch 8 and 12, and 5e−6 otherwise. The learn-
ing rate for fine-tuning is 2e−4 before epoch 10, and 6e−5 between epoch 10
and 14, and 2e−5 between epoch 14 and 17, and 2e−6 otherwise.

Comparison with the State-of-the-Arts. We compare TCP with
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Table 4.1: Means and stds of classification accuracy on CIFAR10 with
different label noise rates.

IDN-0.1 IDN-0.2 IDN-0.3 IDN-0.4 IDN-0.5

CE 74.49±0.29 68.21±0.72 60.48±0.62 49.84±1.27 38.86±2.71
Decoupling 74.09±0.78 70.01±0.66 63.05±0.65 44.27±1.91 38.63±2.32
MentorNet 74.45±0.66 70.56±0.34 65.42±0.79 46.22±0.98 39.89±2.62
Co-teaching 76.99±0.17 72.99±0.45 67.22±0.64 49.25±1.77 42.77±3.41
Co-teaching+ 74.27±1.20 71.07±0.77 64.77±0.58 47.73±2.32 39.47±2.14
Joint 76.89±0.37 73.89±0.34 69.03±0.79 54.75±5.98 44.72±7.72
DMI 75.02±0.45 69.89±0.33 61.88±0.64 51.23±1.18 41.45±1.97
Forward 73.45±0.23 68.99±0.62 60.21±0.75 47.17±2.96 40.75±2.09
Reweight 74.55±0.23 68.42±0.75 62.58±0.46 50.12±0.96 41.08±2.45
T-Revision 74.61±0.39 69.32±0.64 64.09±0.37 50.38±0.87 42.57±3.27

CRUST 76.20±0.90 76.41±1.56 71.06±2.21 64.59±3.32 52.50±0.81
CausalINL 79.08±0.40 75.65±1.04 67.70±0.82 49.19±0.82 47.83±1.58
PTD 78.71±0.22 75.02±0.73 71.86±0.42 56.15±0.45 49.07±2.56
Bayes 80.17±1.32 79.51±1.21 76.43±1.99 69.53±3.24 57.42±4.37

TCP 82.49±0.51 80.88±0.90 79.32±1.59 76.03±2.58 60.66±5.71

Table 4.2: Means and stds of classification accuracy on F-MNIST with
different label noise rates.

IDN-0.1 IDN-0.2 IDN-0.3 IDN-0.4 IDN-0.5

CE 88.54±0.31 88.38±0.42 84.22±0.35 68.86±0.78 51.42±0.66
Decoupling 89.27±0.31 86.50±0.35 85.33±0.47 78.54±0.53 57.32±2.11
MentorNet 90.00±0.34 87.02±0.41 86.02±0.82 80.12±0.76 58.62±1.36
Co-teaching 90.82±0.33 87.89±0.41 86.88±0.32 82.78±0.95 63.22±1.58
Co-teaching+ 90.92±0.51 89.77±0.45 88.52±0.45 83.57±1.77 59.32±2.77
Joint 70.24±0.99 56.83±0.45 51.27±0.67 44.24±0.78 30.45±0.45
DMI 91.98±0.62 90.33±0.21 84.81±0.44 69.01±1.87 51.64±1.78
Forward 89.05±0.43 88.61±0.43 84.27±0.46 70.25±1.28 57.33±3.75
Reweight 90.33±0.27 89.70±0.35 87.04±0.35 80.29±0.89 65.27±1.33
T-Revision 91.56±0.31 90.68±0.66 89.46±0.45 84.01±1.24 68.99±1.04

CRUST 89.53±0.55 89.20±0.58 86.68±0.92 83.48±1.55 69.59±3.60
CausalINL 90.14±0.31 88.83±0.37 85.38±1.49 83.82±2.29 69.55±4.11
PTD 91.01±0.22 90.03±0.32 87.68±0.42 84.03±0.52 72.43±1.76
Bayes 92.01±0.22 91.42±0.71 89.64±0.41 81.21±1.13 74.62±2.47

TCP 92.64±0.22 92.15±0.38 91.62±0.59 90.56±0.79 77.49±2.88

multiple baselines using the same network architecture. Table 4.1 show the
results on CIFAR10 with different rates of IDN from 0.1 to 0.5, respec-
tively. TCP outperforms baselines across all datasets and noise rates. The
improvement is significant when the noise rate is large. Tables 4.2, 4.3,
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Table 4.3: Means and stds of classification accuracy on SVHN with dif-
ferent label noise rates.

IDN-0.1 IDN-0.2 IDN-0.3 IDN-0.4 IDN-0.5

CE 90.77±0.45 90.23±0.62 86.33±1.34 65.66±1.65 48.01±4.59
Decoupling 90.49±0.15 90.47±0.66 85.27±0.34 82.57±1.45 42.56±2.79
MentorNet 90.28±0.12 90.37±0.37 86.49±0.49 83.75±0.75 40.27±3.14
Co-teaching 91.33±0.31 90.56±0.67 88.93±0.78 85.47±0.64 45.90±2.31
Co-teaching+ 93.05±1.20 91.05±0.82 85.33±2.71 57.24±3.77 42.56±3.65
Joint 86.01±0.34 78.58±0.72 76.34±0.56 65.14±1.72 46.78±3.77
DMI 93.51±1.09 93.22±0.62 91.78±1.54 69.34±2.45 48.93±2.34
Forward 90.89±0.63 90.65±0.27 87.32±0.59 78.46±2.58 46.27±3.90
Reweight 92.49±0.44 91.09±0.34 90.25±0.77 84.48±0.86 45.46±3.56
T-Revision 94.24±0.53 94.00±0.88 93.01±0.83 88.63±1.37 49.02±4.33

CRUST 93.22±1.32 91.55±0.36 88.64±1.43 80.75±2.78 58.30±2.77
CausalINL 92.38±0.44 91.40±0.86 90.23±1.60 84.50±1.71 68.06±5.12
PTD 93.21±0.45 92.36±0.68 90.57±0.42 86.78±0.63 55.88±3.73
Bayes 94.71±0.44 94.02±1.32 91.38±1.94 85.55±3.17 75.46±3.79

TCP 94.90±0.11 94.60±0.20 93.92±1.37 94.09±0.34 84.92±8.40

and 4.4 show the results on F-MNIST, SVHN, and CIFAR100. Table 4.5
shows the results on real-world noisy datasets CIFAR10N-1/2/3/W, CI-
FAR100N, and Clothing1M. Overall, TCP-D achieves the best test accu-
racy on real-world noisy datasets. Note that the results of baselines on
CIFAR10N and CIFAR100N are taken from the official leaderboard http:

//www.noisylabels.com/.

Figure 4.8: Transition matrix esti-
mation errors of four methods on CI-
FAR10 with noise from IDN-0.1 to
IDN-0.4.

Comparison on the transi-
tion matrix estimation error.
We compare the transition matrix
estimation error of our method with
the instance-independent method
Forward [88], and two instance-
dependent methods PTD [124] and
Bayes [129]. As shown in Fig-
ure 4.8, our method achieves the
consistent best estimation error on
CIFAR10 with different noise rates.

Ablation study. We study the effect of removing different compo-
nents of our methods to provide insights into what makes TCP successful

http://www.noisylabels.com/
http://www.noisylabels.com/


40 Chapter 4. LNL from a Curriculum Learning Perspective

Table 4.4: Means and stds of classification accuracy on CIFAR100 with
different label noise rates. Note that PTD is not applicable to CIFAR100
which has large classes due to its matrix factorization component.

IDN-0.1 IDN-0.2 IDN-0.3 IDN-0.4 IDN-0.5

CE 36.80±1.62 31.64±1.04 30.67±2.67 24.00±1.76 20.24±1.49
Decoupling 37.16±0.86 33.01±1.61 31.65±2.62 24.72±2.51 20.13±2.72
MentorNet 37.95±0.93 33.72±1.03 32.04±1.97 26.93±2.35 21.86±2.30
Co-teaching 38.57±0.95 35.60±1.49 33.77±1.91 26.17±2.35 21.96±2.51
Co-teaching+ 37.92±1.04 34.51±1.43 33.13±2.04 25.98±2.12 21.88±2.43
Joint 38.96±0.73 35.91±1.22 34.23±1.47 28.75±3.69 23.89±3.93
DMI 37.60±0.84 34.72±1.38 32.87±1.60 28.60±2.16 23.25±2.81
Forward 37.00±1.55 32.72±2.67 31.60±2.84 27.24±2.89 21.13±2.46
Reweight 37.11±0.98 33.98±1.68 32.60±1.22 27.83±1.27 22.01±3.26
T-Revision 38.03±1.05 34.42±2.32 33.60±1.98 28.15±3.69 22.12±3.67

CRUST 43.96±1.25 41.75±1.32 38.60±2.01 32.42±5.23 24.41±2.12
CausalINL 38.02±0.78 36.31±1.23 32.23±9.23 27.63±4.38 22.42±2.16
Bayes 40.76±1.98 36.56±1.20 29.26±1.67 24.38±1.39 17.66±0.94

TCP 49.65±0.43 46.28±2.56 44.12±1.92 39.88±0.62 29.45±2.35

Table 4.5: Means and stds of classification accuracy on real-world noisy
datasets.

CIFAR10N-1 CIFAR10N-2 CIFAR10N-3 CIFAR10N-W CIFAR100N Clothing1M

PES (semi) 95.06±0.15 95.19±0.23 95.22±0.13 92.68±0.22 70.36±0.33 74.29
DivideMix 95.16±0.19 95.23±0.07 95.21±0.14 92.56±0.42 71.13±0.48 74.30
CORES 94.45±0.14 94.88±0.31 94.74±0.03 91.66±0.09 61.15±0.73 73.24
ELR+ 94.43±0.41 94.20±0.24 94.34±0.22 91.09±1.60 66.72±0.07 74.31
JoCoR 90.30±0.20 90.21±0.19 90.11±0.21 83.37±0.30 59.97±0.24 70.30
CAL 90.93±0.31 90.75±0.30 90.74±0.24 85.36±0.16 61.73±0.42 74.21

TCP-D 95.51±0.06 95.37±0.08 95.43±0.04 93.36±0.09 70.09±0.13 74.41

in Table 4.6. TCP w/o Dc indicates that we do not select high clean-TCP
data Dc to learn the clean classifier while TCP w/o Dt indicates that we do
not select high noisy-TCP data Dt to learn the transition matrix and use
it to fine-tune the clean classifier. Results show that the performances of
both reduced methods decrease. Without Dc, the primary clean classifier
cannot be learned, and thus the transition matrix cannot be learned well.
Without Dt, the transition matrix is not learned, and thus the whole noisy
data cannot be fully exploited to build a consistent classifier. To sum up,
the learning of the clean classifier and the transition matrix benefit and
boost each other.
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Table 4.6: Ablation study results on CIFAR10 and CIFAR100.

CIFAR10 CIFAR10
IDN-0.2 IDN-0.4 IDN-0.2 IDN-0.4

TCP 80.88±0.90 76.03±2.58 46.28±2.56 39.88±0.62

TCP w/o Dc 79.94±0.86 75.28±2.26 45.26±0.50 35.99±0.71
TCP w/o Dt 79.08±0.70 74.98±1.64 43.02±0.56 35.50±1.53

Training cost. Due to the light-weight and simple network archi-
tecture, our method is more time-efficient and scalable than those meth-
ods, which employs dual networks or requires data augmentations for semi-
supervised learning. We report the time costs below to demonstrate this
advantage.

Table 4.7: The average time of training each component on CIFAR10 and
CIFAR100 with ResNet34 on NVIDIA 3090.

Standard training Fine-tune Estimating T

CIFAR10 38.42s 46.19s 1.34s
CIFAR100 37.37s 47.06s 1.57s

The additional cost caused by estimating T and fine-tune is small. For
each epoch, the additional time cost of estimating-T part is neglectable
when compared with the cost of one standard training epoch minimizing
the cross-entropy loss. This is because estimating T only updates the pa-
rameters of a c× c linear layer, where c is the number of classes. The time
cost of fine-tune part is slightly bigger than one standard training epoch.
Fortunately, both parts are not necessary to be applied in every epoch. In
our experiments, we only apply them at the last 50 epochs. Moreover, since
traning clean classifier part (line 7 in Algorithm 3) and estimating T part
only involves the high clean-TCP and high noisy-TCP data rather than the
whole data, which save plenty of time for the fine-tune part. Therefore, in
practice, our method can easily adapt and scale to meet realistic settings.
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4.5 Summary

In this chapter, we study the instance-dependent label noise (IDN) problem,
which is a more general and practical setting than the previously addressed
instance-independent label noise problem. Targeting the main challenges,
we propose a novel time-consistency metric, i.e., TCP for the IDN problem.
Based on TCP, we can detect examples with clean labels or correct pseudo
labels better than the existing measures, and allocate reliable triplets for
learning the transition matrix. Then we design an assumption-free curricu-
lum that learns the clean classifier, as well as the transition matrix simulta-
neously. Through extensive experiments, we empirically demonstrate that
the proposed method remarkably surpasses the baselines on many datasets
with both synthetic noise and real-world noise, and achieves the smallest
transition matrix estimation error than existing methods.
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Chapter 5

LNL incorporating Fairness
Concerns

With the widespread use of machine learning systems in our daily lives,
it is important to consider fairness as a basic requirement when designing
these systems, especially when the systems make life-changing decisions,
e.g., COMPAS algorithm helps judges decide whether to release an of-
fender. For another thing, due to the cheap but imperfect data collection
methods, such as crowdsourcing and web crawling, label noise is ubiqui-
tous, which unfortunately makes fairness-aware algorithms even more prej-
udiced than fairness-unaware ones, and thereby harmful. To tackle these
problems, we provide general frameworks for learning fair classifiers with
instance-dependent label noise. For statistical fairness notions, we rewrite
the classification risk and the fairness metric in terms of noisy data and
thereby build robust classifiers. For the causality-based fairness notion, we
exploit the internal causal structure of data to model the label noise and
counterfactual fairness simultaneously. Experimental results demonstrate
the effectiveness of the proposed methods on real-world datasets with con-
trollable synthetic label noise.

5.1 Motivations and Contributions

Machine learning systems have been widely adopted in our daily life. The
overwhelming advantages of these systems are that they never get tired,
and they approach (and sometimes surpass) human-level benchmarks on a
wide array of tasks [24, 100]. Thereby, they are entrusted with important
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tasks, i.e., making high-stakes decisions in loan applications [80], dating and
hiring [14, 21], and even parole [26]. Nevertheless, machine learning algo-
rithms are very sensitive to biases which render their decisions unfair [74,
3, 85]. One canonical example is a decision support tool used by U.S. courts
to assess the likelihood of a defendant becoming a recidivist, called COM-
PAS [26]. A bias against African-Americans was found with this software
in an analysis performed by the news organization ProPublica: COMPAS
is more likely to assign a higher risk score to African-American offenders
than to Caucasians with the same profile.

To mitigate the bias in machine learning algorithms, plenty of fairness
metrics and methods have been proposed. However, label noise degenerates
these fairness metrics and could make some fairness-aware algorithms even
more prejudiced than fairness-unaware ones. To see this, first, we add two
types of label noise, i.e., class-dependent label noise (CDLN) and instance-
dependent label noise (IDLN), onto a benchmark dataset ADULT 1 [27].
For class-dependent label noise, given clean label Y , the noisy label Ỹ is
conditionally independent of the instance X, i.e., P (Ỹ | Y,X) = P (Ỹ | Y ).
Instance-dependent label noise is more complex and can capture the true
structure of real-world datasets better. The noise rates are set to 0.3

and 0.4:

P (Ỹ = −1 | Y = 1, X) = P (Ỹ = 1 | Y = −1, X) = 0.3 (0.4). (5.1)

Then we implement the algorithm (p-Fair) in [136] to learn a fair classifier.
[136] considered two distinct notions: disparate treatment and disparate
impact [7], and employed p%-rule:

min

P
(
Ŷ = 1 | A = 1

)
P
(
Ŷ = 1 | A = 0

) , P
(
Ŷ = 1 | A = 0

)
P
(
Ŷ = 1 | A = 1

)
 ≥ p

100
, (5.2)

as a constraint in the objective function, where Ŷ is the predicted label
and A is the protected attribute. As shown in Table 5.1, the fairness-aware
method (p-Fair) gives more unfair and misleading decisions than the vanilla

1The ADULT dataset is from UCI ML Repository with gender as the sensitive at-
tribute
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Table 5.1: Means and Stds of classification accuracy and fairness score (p
value. The higher the value, the better the fairness.) on ADULT dataset
with two kinds of label noise over 5 trials. UC denotes the method which
optimizes the training loss unconstrainedly.

CDLN-0.3 CDLN-0.4 IDLN-0.3 IDLN-0.4

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

p-Fair 80.46±0.35 28.37±4.28 79.90±0.33 31.44±7.42 80.35±0.26 24.18±6.14 79.86±0.29 25.07±9.87

UC 83.47±0.30 28.89±4.14 82.76±0.42 32.03±6.20 83.38±0.24 25.93±5.46 82.84±0.45 26.37±8.23

unconstrained method (UC) under the influence of both kinds of label noise.
At the same noise rate, IDLN is more harmful and thus more challenging.

Figure 5.1: Means of classification
accuracy on ADULT dataset over 5
trials.

For fairness-aware algorithms
employing causality-based fairness
notions, the fairness metrics could
be robust to label noise to some ex-
tent. For example, counterfactual
fairness [56] requires that changing
the value of protected attribute A,
while holding things that are not
causally dependent on A constant,
will not change the distribution of
the predicted label. One straight-
forward strategy to achieve counterfactual fairness is to build a classifier
only consisting of the non-descendants of A. From Figure 5.2, we can see
that the label noise does not change the internal causal structure of in-
stances. The original non-descendant Z is still the non-descendant of A,
which means the classifier built only with Z is robust to label noise with
respect to the counterfactual fairness. Although the fairness is maintained,
the decline in accuracy is unavoidable. Figure 5.1 shows that the classi-
fication accuracy of the classifier only using non-descendants Z decreases
as the noise rate increases. Especially when the data are clean, the gap
between the counterfactually fair classifier and the unconstrained classifier
is huge, indicating there is a huge information loss of the counterfactually
fair classifier.
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Figure 5.2: Postulated causal graph. Label noise does not change the
internal structure of (A,W,Z).

In this chapter, we provide general frameworks for learning fair classi-
fiers with instance-dependent label noise. For statistical fairness notions, we
rewrite the classification risk and the fairness metric in terms of noisy data
and thereby build robust classifiers. For the causality-based fairness notion,
we exploit the internal causal structure of data to model the label noise
and counterfactual fairness [56] simultaneously. Specifically, we postulate a
general causal graph as shown in Figure2 5.2 and employ the variational au-
toencoder (VAE) framework [52] to make full use of the causal graph which
can infer latent variables U and Y by maximizing the joint likelihood of
observable variables. In this way, our method also compensates for the in-
formation loss, because W contains information from its parents A and U ,
and we extract the U -part information in W by reconstructing W with U .

5.2 Related Work

To mitigate the bias in machine learning algorithms, plenty of methods,
that can be roughly divided into two broad groups, have been proposed.
The first group of methods focuses on the statistical fairness notions, which
discover the discrepancy of statistical metrics between individuals or sub-
populations, e.g., statistical parity [28], equalized odds [38], and predic-
tive parity [20]. This group of methods only considers the correlation but
ignores causal effect relations within the data, which can hardly assess
the fairness sufficiently [46]. The second group of methods focuses on the
causality-based fairness notions, which additionally employs causal graphs

2We will take benchmark dataset ADULT [27] as an example to demonstrate how
this causal graph interprets the data in Section 5.3.2.
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to take knowledge about the structure of real-world datasets into considera-
tion [71], e.g., fair on average causal effect [50], counterfactual fairness [56],
and counterfactual error rates [141].

5.3 Methodology

We consider the binary fair classification problem. Let D be the distribu-
tion of a pair of random variables (X, Y ) ∈ X × {−1, 1}, where X ⊂ Rd

and d represents the feature dimension. X can be denoted in detail as a
triple (A,Z,W ), where A is a protected attribute; Z is a non-descendant
variable of A, denoting some root-level attributes; W is the low-level at-
tributes. In real-world datasets, the clean label cannot be observed. In-
stead, we can only observe the noisy label Ỹ . In this case, we have a sample
{(a1, z1, w1, ỹ1), . . . , (an, zn, wn, ỹn)} drawn from a noisy distribution Dρ of
the random variables (A,Z,W, Ỹ ) as shown in Figure 5.2.

We follow [89] to use the Directed Acyclic Graph (DAG) with arrows
pointing from the parent (direct cause) node to the child (direct effect)
node as a formalism to represent causal relationships. Based on the DAG,
we use structural causal models (SCMs) to represent the causal mechanism
underlying the data distribution: variables can be expressed by a function
of their parents with exogenous noise. For Figure 5.2, the corresponding
structural causal model can be written as

Z = f(U, εZ), Y = f(U,Z, εY ),W = f(U,A, Z, Y, εW ), Ỹ = f(A,Z, Y,W, εỸ ).

(5.3)

Each equation captures a conditional distribution of the term on the left
side, conditioned on terms on the right side (excluding the exogenous vari-
able). Note that the last equation is exactly representing the transition
relationship P (Ỹ |A,Z, Y,W ) we want to identify.



48 Chapter 5. LNL incorporating Fairness Concerns

5.3.1 Statistically Fair Classification with

Instance-dependent Label Noise

Almost all statistically fair classification problems can be formulated by
a constrained optimization problem. Generally, we minimize the classifi-
cation error L(·) on training data subject to a specific statistical fairness
constraint Fair(·):

minimize
N∑
n=1

L(f(xn), yn) subject to Fair(X, Y, f) = 0. (5.4)

The clean optimization problem can be statistically linked to the noisy
optimization problem with the transition relationship. Next, we propose
two general methods and for illustration, we specialize them for two repre-
sentative fairness notions: equalized odds and p-Fair, respectively. Methods
designed for them can be easily extended to equal opportunity and demo-
graphic parity [38, 28, 112].

Equalized Odds [38]. The definition of equalized odds states that “A
predictor Ŷ satisfies equalized odds with respect to protected attribute A
and outcome Y , if Ŷ and A are independent conditional on Y : P (Ŷ =

1|A = 0, Y ) = P (Ŷ = 1|A = 1, Y ), y ∈ 0, 1”.

For the classification error part, we show how to use the importance
reweighting technique [15, 64] to consistently estimate it:

E(X,Y )∼D[L(f(X), Y )]

=

∫
PD(X, Y )L(f(X), Y )dX dY

=

∫
PDρ(X, Y )

PD(X, Y )

PDρ(X, Y )
L(f(X), Y )dX dY

= E(X,Y )∼Dρ

[
PD(X, Y )

PDρ(X, Y )
L(f(X), Y )

]
= E(X,Y )∼Dρ [β(X, Y )L(f(X), Y )],

(5.5)
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where β(x, y) = PD(X=x,Y=y)
PDρ (X=x,Y=y)

. To calculate β(x, y), we only need noisy data
and the noise rate. Let

T−1(x) = P (Ỹ = +1 | Y = −1, X = x), T+1(x) = P (Ỹ = −1 | Y = +1, X = x),

then we have

P (Ỹ = y | X = x) = (1− T−1(x)− T+1(x))P (Y = y | X = x) + T−y(x)

and

β(x, y) =
P (Ỹ = y | X = x)− T−y(x)

(1− T−1(x)− T+1(x))P (Ỹ = y | X = x)
. (5.6)

For the equalized odds constraint part, the original one is |γ0
(
Ŷ
)
−

γ1

(
Ŷ
)
| = 0, where γa(Ŷ ) ≜ {P (Ŷ = 1 | A = a, Y = 1), P (Ŷ = 1 | A =

a, Y = 0)}. Now we rewrite the first term of γ0
(
Ŷ
)
:

P (Ŷ = 1 | A = a, Y = 1)

=
P (Ŷ = 1, A = a, Y = 1)

P (A = a, Y = 1)

=
P (Ŷ = 1, A = a, Y = 1)P (A = a, Ŷ = 1)

P (A = a, Y = 1)P (A = a, Ŷ = 1)

=
P (Y = 1 | A = a, Ŷ = 1)P (A = a, Ŷ = 1)

P (A = a, Y = 1)

=

(
P (Ỹ = 1 | A = a, Ŷ = 1)− T−1(a)

)
P (A = a, Ŷ = 1) (1− T−1(a)− T+1(a))

(1− T−1(a)− T+1(a))
(
P (Ỹ = 1, A = a)− T−1(a)

)
=

(
P (Ỹ = 1 | A = a, Ŷ = 1)− T−1(a)

)
P (A = a, Ŷ = 1)

P (Ỹ = 1, A = a)− T−1(a)
,

(5.7)
where all variables are accessible, either observable or learnable, and

T−1(a) = P (Ỹ = +1 | Y = −1, A = a), T+1(a) = P (Ỹ = −1 | Y = +1, A = a).

Note that this group transition relation Ty(a) can be derived from the
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individual one Ty(x). The detailed derivation process is provided in Ap-
pendix C.1.

The rest three terms can be rewritten in a similar way. At this point,
we can use noisy data to learn a robust classifier with equalized odds.

p-Fair [136]. For the classification error part, we show how to employ
a transition matrix to learn a consistent classifier [88]. Let f(X) output
the posterior of Y ∈ {−1, 1}, i.e., f(X) = P (Y | X), then P (Ỹ | X) =

T⊤(X)f(X). Therefore, by minimizing L(T⊤(X)f(X), Ỹ ), the learned f

is consistent with the one learned on clean data.

For the p-Fair fairness constraint, the original one is Demographic
Parity |P (Ŷ |A = 0) − P (Ŷ |A = 1)| = 0. In practice, they use a soft one
| 1
N

∑N
i=1 (ai − a) f(x)| ≤ c, where c is a threshold. Note that the consis-

tent classifier f is for clean data, which means we can directly substitute it
to the constraint. We name this modified method Robust-p-Fair (R-p-Fair).

In practical implementation, we employ the Lagrange multipliers method [11]
to transfer a constraint to a regularization term. If the instance-dependent
transition matrix is not given, we can approximate it for one instance by
a combination of the transition matrices for the parts of the instance. Es-
timating the transition matrix will be much easier if a small clean set is
given [125, 124].

5.3.2 Counterfactually Fair Classification with Instance-

dependent Label Noise

In this section, we consider the causality-based fairness notion. We elab-
orate on how to make full use of the causal graph to design a robust and
counterfactually fair classifier. Then we showcase how to implement the
algorithm in practice.

Counterfactual Fairness

Intuitively, counterfactual fairness requires that changing A, while holding
things that are not causally dependent on A constant, will not change the
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distribution of the predictor h:

Definition 5.3.1. [56] Predictor h is counterfactually fair if under any
context X = x and A = a,

P (hA←a(U) = y | X = x,A = a) = P (hA←a′(U) = y | X = x,A = a)

for all y and for any value a a′ attainable by A.

One straightforward strategy to achieve counterfactual fairness is the
following:

Lemma 5.3.1. [56] Let G be the causal graph of the given model. Then
classifier will be counterfactually fair if it is a function of the non-descendants
of A.

A major concern of this strategy is that it totally discards W and loses
much information. W inherently contains information from its parents A
and U , and we extract the U -part information in W by reconstructing W
with U .

How the Causal Graph Interprets the Data

Here we take the benchmark dataset ADULT [27] as an example to demon-
strate how this causal graph (Figure 5.2) interprets the data:

• A represents the protected attribute ‘Gender’.

• Z represents the other root-level attributes, i.e., ‘Age’, ‘Race’, and
‘Native country’, which are not affected by the protected attribute A.

• W represents the low-level attributes, e.g., ‘Workclass’, ‘Capital-gain’,
and ‘Marital-status’, which are caused by the background variable U
and root-level attributes A and Z: U → W ← (A,Z).

• U is a latent variable and can be seen as ‘Background’ of people,
which causes those non-protected attributes, making U a confounder
of W and Z: W ← U → Z.

• Y represents the clean but latent label, the annual income, which
is influenced by the background and root-level attributes of people:
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U,Z → Y . Note that, to fulfill counterfactual fairness, we inten-
tionally block the path from A to Y . Meanwhile, annual income
(not the salary of a job) acts as a cause of the low-level attributes:
Y → W . For example, people with lower annual income are less
willing to do ‘Without-pay’ work, which is one kind of ‘Workclass’.
For another example, people with higher annual income pay more
attention to investment and wealth management and thereby have
a larger ‘Capital-gain’. Besides, annual income can obviously affect
‘Marital-status’.

• Ỹ represents the noisy label, which is a common child of the observ-
able variables and clean label: (A,Z,W, Y )→ Ỹ .

Based on this causal graph, we can only feed U and Z to the classifier
f to infer the clean label Y , which, according to the Lemma 5.3.1, makes f
counterfactually fair. Specifically, we employ the variational autoencoder
(VAE) framework [52] to make full use of the causal graph which can infer
latent variables U and Y by maximizing the joint likelihood of observable
variables. Moreover, exploiting the causal graph contributes to the identi-
fiability of the transition relationship between clean and noisy labels [131].

VAE based Causal Inference

The joint distribution p(U,A, Z,W, Ỹ , Y ) specified by the causal graph in
Figure 5.2 and the structural causal model Eq. (5.3) can be factorized as
follows:

p(U,A, Z,W, Ỹ , Y )

= p(A)p(U)p(Z | U,A)p(Y | U,A, Z)p(W | U,A, Z, Y )p(Ỹ | U,A, Z, Y,W )

= p(A)p(U)p(Z | U)p(Y | U,Z)p(W | U,A, Z, Y )p(Ỹ | A,Z, Y,W ).

(5.8)
Note that although A is involved in the reconstruction of W and Ỹ , it
does not causally affect how U and Z infer Y . Namely, the counterfactual
fairness still holds.

In the encoding phase, we infer the latent variable U and Y from
observable variables Z. Without loss of generality, we choose prior p(U) to
be simple, i.e., Gaussian. We use an encoder with a learnable parameter ϕ
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to model the distribution p(U, Y | A,Z,W, Ỹ ). Since A and its descendant
W are not allowed to build the classifier, and given its all parents U and
Z, Y is independent on (A,W, Ỹ ), the encoder can be simplified as:

qϕ(U, Y | A,Z,W, Ỹ ) = qϕ1(U | A,Z,W, Ỹ )qϕ2(Y | U,A, Z,W, Ỹ )

= qϕ1(U | Z)qϕ2(Y | U,Z),
(5.9)

where qϕ2(Y | U,Z) can be employed as a counterfactually fair classifier f .

In the decoding phase, given that p(U) is Gaussian, we need four
decoders corresponding to the rest four terms on the right side of Eq. (5.8),
as:

pθ(U,A, Z,W, Ỹ , Y ) =

p(A)p(U)pθ1(Z | U)pθ2(Y | U,Z)pθ3(W | U,A, Z, Y )pθ4(Ỹ | A,Z, Y,W ).

(5.10)

We denote Θ = {ϕ1, ϕ2, θ1, θ2, θ3, θ4} the parameter set of this VAE
network. In the evaluation phase, we first sample U from qϕ1(U | Z) and
then use (U,Z) to infer Y with qϕ2(Y | U,Z). Note that ϕ2 and θ2 are
the same, which both model the generation process of Y . It is because Y
is a latent intermediate variable such that modeling Y can be treated as
either encoding or decoding. Hereinafter we refer to them collectively using
classifier f .

Then, because the data likelihood pΘ(A,Z,W, Ỹ ) is intractable, in-
stead of maximizing the data likelihood, we learn Θ by minimizing the
negative evidence lower bound (ELBO) [52]. ELBO is a lower bound of the
likelihood, which is preferred for optimization because it can be calculated
efficiently.

Starting with maximizing the data likelihood pΘ(A,Z,W, Ỹ ), we can
derive the negative ELBO as follows (the detailed derivation process is
provided in Appendix C.2):



54 Chapter 5. LNL incorporating Fairness Concerns

−ELBO ≜ −E(u,y)∼qϕ(u,y|z) [log pθ1(z | u)]− E(u,y)∼qϕ(u,y|z) [log pθ3(w | u, a, z, y)]
(5.11)

− E(u,y)∼qϕ(u,y|z) [log pθ4(ỹ | a, z, y, w)] + DKL(qϕ1(u | z)∥p(u)),
(5.12)

where DKL is the Kullback–Leibler divergence function. Although the above
ELBO does not explicitly involve the counterfactually fair classifier f , the
prediction Y plays an important role in the second and third terms of
ELBO, which pushes f to be optimized.

So far, the classifier outputs a counterfactually fair prediction Y , which
can be treated as cluster numbers but not clean class labels. Since Y is a
latent intermediate variable, the map between the value of Y (+1 or −1)
to the semantic class (positive or negative) is lost. To map Y to semantic
clean labels, noisy labels Ỹ are the only thing we have that could help. In
case f is severely misled by Ỹ , we introduce a data augmentation technique
Mixup [139], which generates a weighted combination of random instance
pairs from the training data:

x̂ = λxi + (1− λ)xj, (5.13)

ŷ = λyi + (1− λ)yj, (5.14)

where weights λ are independently sampled from a Beta distribution for
each augmented example. Mixup prevents f from overfitting noisy labels
in two aspects. First, it increases the complexity of the training data, which
makes it difficult for a network to learn. Second, by combining different
features (labels) with one another, a network does not get overconfident
about the relationship between the features and their labels.

Practical Implementation

The proposed algorithm is summarized in Algorithm 3.

For the negative ELBO part, the first three terms are exactly recon-
struction errors [52]. Therefore, in practice, we use mean squared error to
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Algorithm 3 Robust Counterfactually Fair Classification (RCFC).

Input: A training sample of observable variables (A,Z,W, Ỹ ).
Encode U :

µ, σ = qϕ1(Z) ▷reparameterization trick
U = µ+ σϵ ▷where ϵ is an auxiliary noise variable ϵ ∼ N (0, 1)

Encode Y :
Y = qϕ2(U,Z)

Decode (Reconstruct) Z,W, Ỹ :
Ẑ = pθ1(U) ▷where Ẑ is the predicted value of Z
Ŵ = pθ3(U,A, Z, Y ) ▷where Ŵ is the predicted value of W
Ỹ ⋄ = pθ4(A,Z, Y,W ) ▷where Ỹ ⋄ is the predicted value of Ỹ

Update parameter set Θ by minimizing −ELBO and the Mixup loss.
Output: Encoder qϕ1(Z); Classifier f (Encoder qϕ2(U,Z)).

measure the reconstruction errors for (Ẑ, Ŵ ) with respect to (Z,W ), and
we use cross-entropy loss to measure the reconstruction errors for ˆ̃Y with
respect to Ỹ . As for the last DKL term, first we use the reparameterization
trick [52] to sample U once from qϕ1(u | z), and µ, σ are continuous vari-
ables with gradients. Note that U can also be the average value of several
sampling results to decrease the variance. Then, we calculate DKL term
with the closed-form solution provided by [52]:

DKL(qϕ1(u | z)∥p(u)) = −
1

2

J∑
j=1

(
1 + log

((
σ
(i)
j

)2)
−
(
µ
(i)
j

)2
−
(
σ
(i)
j

)2)
,

(5.15)

where J is the dimension of U .

For the mixup loss part, we first concatenate U and Z as input I, and
then apply the mixup technique to classifier f with pairs (I, Ỹ ). Here, we
use cross-entropy loss.

5.4 Experiments

Dataset. We employ two widely used benchmark datasets:

• ADULT [27]. The prediction task is to determine whether a person
makes over $50K a year, with gender as the protected attribute. The
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detailed information for this dataset and how it complies with the
causal graph have been elaborated in Section 5.3.2.

• BANK [27]. The prediction task is to determine whether a client
subscribes to a term deposit, with gender as the protected attribute.
We select personal attributes except gender and the credit history
attributes as the other root-level attribute Z. Those loan-relevant and
property-relevant attributes are selected as the low-level attributes
W . We drop social and economic context attributes because they are
irrelevant.

For all datasets, of which 10% are split as test data. The rest 90% is
for training, of which 10% are split as validation data. We use validation
data for model selection. The final output model is selected with the high-
est validation accuracy.

Noisy labels generation. For clean datasets, we artificially corrupt the
class labels of training and validation sets following the instance-dependent
label noise generalization method in [124]. We generate noisy datasets of
{0.1, 0.2, 0.3, 0.4} four noise levels.

Network structure and optimization. For a fair comparison, all exper-
iments are conducted on NVIDIA GeForce RTX 2080 Ti, and all methods
are implemented by PyTorch. The dimension of background variable U is
set to 2. We employ a three-layer MLP with the Softsign activation func-
tion for every single model. The batch size is set to 128. We use SGD
optimizer with momentum 0.9 and an initial learning rate 0.001. Learning
rate is updated by ReduceLROnPlateau, which reduces learning rate when
a metric (here we choose training loss as the metric) has stopped improving.

Baselines. We compare our methods R-p-Fair and RCFC with six base-
lines of four types:

• Standard supervised learning (SSL). It takes all the features as input and
noisy labels as the target, which is not fair.

• p-Fair [136]. It takes all the features except A as input and noisy la-
bels as the target, which is softly fair with fairness metric p value. We
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reimplement this method with Pytorch.

• Ablation-U (Ab-U). It postulates background variable U but does not
model the label noise.

• Ablation-N (Ab-N). It models the label noise but does not postulate
background variable U .

• Counterfactual fairness learning (CFL) [56] . It only uses non-descendants
to make predictions, which is counterfactually fair.

• Counterfactual fairness learning with Mixup (CFL-M). Based on CFL,
it additionally applies mixup technique, which is both counterfactually
fair and kind of robust to label noise.

Table 5.2: Means and Standard deviations of classification accuracy and
fairness score (p value) on ADULT dataset over 5 trials.

ADULT IDLN-0.1 IDLN-0.2 IDLN-0.3 IDLN-0.4

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

SSL 71.63±5.16 14.22±5.48 63.68±5.02 21.24±6.87 58.80±4.17 25.90±5.09 51.20±8.13 34.45±6.05

p-Fair 69.46±6.83 30.08±7.19 61.89±4.96 32.85±5.92 58.50±4.42 35.10±5.53 49.85±7.83 40.43±4.97

R-p-Fair 69.97±7.18 41.78±1.02 63.27±3.94 38.35±3.69 59.46±4.67 39.74±5.08 51.42±8.78 41.02±4.47

Table 5.3: Means and Standard deviations of classification accuracy on
ADULT dataset over 5 trials.

ADULT 0.1 0.2 0.3 0.4

Ab-U 65.13±1.97 65.16±2.39 64.10±3.98 61.03±9.97

Ab-N 73.07±2.46 73.30±2.08 70.61±2.44 61.41±9.27

CFL 66.17±1.22 67.20±3.24 63.27±5.67 61.11±8.69

CFL-M 69.07±2.86 64.65±3.79 64.42±4.04 63.90±4.29

RCFC 74.69±0.42 74.65±0.42 74.30±0.44 72.96±1.91

Results. The results in Table 5.2 and Table 5.4 show that there is a
steady lift of our method on the classification accuracy and fairness score,
compared with baseline methods. However, all statistical methods suffer
from label noise to a great extent. It is because IDLN is ill-defined and
handling it with purely statistical relations is not sufficient.

The results in Table 5.3 and Table 5.5 demonstrate that our method
achieves distinguished classification accuracy and is counterfactually fair.
Compared with counterfactually fair methods CFL-M and CFL, our method
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Table 5.4: Means and Standard deviations of classification accuracy and
fairness score (p value) on BANK dataset over 5 trials.

BANK IDLN-0.1 IDLN-0.2 IDLN-0.3 IDLN-0.4

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

SSL 84.54±4.23 35.49±15.27 66.60±12.87 19.49±5.63 58.69±4.92 18.51±5.95 56.31±4.90 17.80±5.64

p-Fair 87.22±1.80 43.08±21.69 67.00±13.00 18.65±5.34 58.62±5.04 18.53±5.69 57.16±5.20 17.90±5.54

R-p-Fair 87.18±2.33 49.57±27.26 76.02±7.08 25.20±7.08 60.43±4.90 18.54±4.88 60.71±6.36 19.32±5.02

Table 5.5: Means and Standard deviations of classification accuracy on
BANK dataset over 5 trials.

BANK 0.1 0.2 0.3 0.4

Ab-U 87.19±1.78 85.86±2.19 81.48±4.93 68.43±11.35

Ab-N 87.51±0.71 86.75±1.37 85.52±4.08 76.74±9.81

CFL 84.09±7.23 72.09±14.92 58.29±16.08 55.42±14.11

CFL-M 80.40±7.70 74.09±12.35 64.98±8.41 58.85±8.32

RCFC 88.77±0.61 88.76±0.62 88.72±0.61 86.40±1.88

additionally extracts as much as possible knowledge from the data in the
precondition of satisfying a fairness requirement. These credits should go
to the postulated causal graph which captures the data structure well. The
results of ablation studies Ab-U and Ab-N show that exploiting causal re-
lations and modeling label noise are both significant.

As the noise rate increases, the accuracy of all baselines decreases
significantly while there is just a slight drop for our method. Even for
challenging noise rates of 0.4, our method achieves good accuracy, uplifting
about 15 and 30 points on ADULT and BANK, respectively. CFL-M and
CFL have similar performances on both datasets, which means the mixup
technique itself does not handle the instance-dependent label noise effec-
tively. It also reflects the improvements of our method are mainly benefited
from the proposed causal model which contributes to the identifiability of
the transition relationship between clean and noisy labels.
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5.5 Summary

This chapter proposed general frameworks for learning fair classifiers with
instance-dependent label noise. We notice that label noise not only degen-
erates the classification accuracy but misleads the fairness-aware algorithms
even more prejudiced than fairness-unaware ones. We adapt statistically
fair methods to the label noise setting and build consistent classifiers. Then
we postulate a general causal graph, which can interpret the real-world
datasets well. By exploiting the causal graph, we design an algorithm that
both strictly achieves counterfactual fairness and identifies the transition
relationship between clean and noisy labels. Experiments conducted on
benchmark datasets demonstrate the effectiveness of our method.
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Chapter 6

LNL incorporating Privacy
Concerns

SU classification employs similar (S) data pairs (two examples belong to
the same class) and unlabeled (U) data points to build a classifier, which
can serve as an alternative to the standard supervised trained classifiers
requiring data points with class labels. SU classification is advantageous
because in the era of big data, more attention has been paid to data privacy.
Datasets with specific class labels are often difficult to obtain in real-world
classification applications regarding privacy-sensitive matters, such as pol-
itics and religion, which can be a bottleneck in supervised classification.
Fortunately, similarity labels do not reveal the explicit information and in-
herently protect the privacy, e.g., collecting answers to “With whom do you
share the same opinion on issue I?" instead of “What is your opinion on
issue I?". Nevertheless, SU classification still has an obvious limitation:
respondents might answer these questions in a manner that is viewed fa-
vorably by others instead of answering truthfully. Therefore, there exist
some dissimilar data pairs labeled as similar, which significantly degener-
ates the performance of SU classification. In this chapter, we study how
to learn from noisy similar (nS) data pairs and unlabeled (U) data, which
is called nSU classification. Specifically, we model the similarity noise and
estimate the noise rate by using the mixture proportion estimation tech-
nique. Then, a clean classifier can be learned by minimizing a denoised
and unbiased classification risk estimator. Moreover, we further derive a
theoretical generalization error bound for the proposed method.
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6.1 Motivations and Contributions

When it comes to privacy-sensitive matters, such as politics and religion,
people often hesitate to directly answer questions like “What is your opinion
on issue I?" and prefer to answer questions like “With whom do you share
the same opinion on issue I?". Questions in this form can be regarded
as one type of randomized response technique, which is a commonly used
indirect questioning survey method that reduces the social desirability bias
and increases data reliability [114, 29, 5]. To some degree, similarity infor-
mation avoids embarrassment and protects personal privacy. Nevertheless,
in practice, respondents might answer these questions in a manner that is
viewed favorably by others instead of answering truthfully [86]. As a re-
sult, the collected similarity data not only contain similar but also dissimilar
data pairs. This kind of noise is random noise rather than adversarial noise
because adversarial noise is often designed by considering the properties
of algorithms so that it can confuse the algorithm [105, 70]; however, the
noise induced by humans is independent of machine learning algorithms.
In this case, if we directly employ the existing algorithms for clean simi-
larity learning to deal with noisy similarity supervision, the classification
performance will inevitably degenerate because the model will overfit the
noisy data [138]. For example, if we directly employ the estimator designed
for SU classification [5], an estimation bias would be introduced, and the
learned classifier would thereby no longer be optimal.

In this chapter, we study the problem of how to learn a robust con-
sistent classifier from noisy similar data pairs and unlabeled (nSU) data,
which is called nSU classification. As shown in Figure 6.1, there is no
class supervision in SU or nSU classification. In addition, there are some
wrong links of dissimilar data pairs in nSU classification, which makes the
problem more difficult. To this end, we propose an empirical risk mini-
mization (ERM) [110] framework to learn classifiers from only nSU data.
Although the unbiased classification risk estimator for SU data has been
studied, how to properly model the noise is a significant bottleneck for
solving the nSU problem. There are two widely-used noise models, i.e., the
class-conditional label noise (CCN) model [2] and mutually contaminated
distributions (MCD) model [98]. We employ MCD to model the noise: the
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Figure 6.1: The illustration of supervised classification, SU classification,
and nSU classification. SU classification learns from similar data pairs and
unlabeled data while nSU classification learns from noisy similar data pairs
and unlabeled data.

distribution of noisy similar data pairs is a mixture proportion of the similar
and dissimilar data pairs, where the noise rate is defined as the proportion
of dissimilar data pairs in noisy similar data pairs. We choose MCD be-
cause CCN is a noise model for labeling noise and MCD is a noise model
for sampling noise, which is why MCD is more suitable for the scenario of
surveying sensitive topics with indirect questioning (more discussion can
be found in Appendix D.1). To estimate the noise rate, we decompose the
nSU data distributions and convert them to a standard mixture proportion
estimation (MPE)1 format. We prove that our MPE problem is well defined
such that the noise rate is identifiable and can be consistently estimated
using MPE methods. Then we theoretically build an unbiased estimator for
the classification risk with respect to the fully and accurately labeled data.

6.2 Related Work

There are a few works regarding the label noise issue on similarity learning.
However, the employed noise model, the essential parameter estimation
method, and the classifier models of our work are all different from the
related works.

1Let F,G, and H be distributions on (X ,S) such that F = (1 − κ)G + κH, where
0 ≤ κ ≤ 1. MPE is to estimate κ, given i.i.d. samples from both F and H [13].
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First, [23] studied a similar but different problem of how to learn a
binary classifier from noisy similar data pairs and dissimilar data pairs.
The noise model [23] employed is CCN, where the clean labels are assumed
to flip into other classes with a certain probability. Specifically, in [23],
similar data pairs are corrupted into dissimilar data pairs with probability
α, and dissimilar data pairs are corrupted into similar data pairs with
probability β:[

p(S̄ = 0|x,x′)
p(S̄ = 1|x,x′)

]
=

[
1− β α

β 1− α

][
p(S = 0|x,x′)
p(S = 1|x,x′)

]
, (6.1)

where S and S̄ denote the similarity label and noisy similarity label2.

This model is different from the MCD model, where the noise distri-
bution is a mixture proportion of the clean distributions. Specifically, for
the MCD model, in p̃s (p̃d), a proportion ρd (ρs) of data pairs are contami-
nated by dissimilar (similar) data pairs, while the remaining 1−ρd (1−ρs)
proportion remains similar (dissimilar):[

p(x,x′|S̄ = 0)

p(x,x′|S̄ = 1)

]
=

[
1− ρs ρs

ρd 1− ρd

][
p(x,x′|S = 0)

p(x,x′|S = 1)

]
. (6.2)

It is notable that the middle matrix in Eq. (6.1) is column normalized while
the middle matrix in Eq. (6.2) is row normalized. Moreover, the CCN model
is a strict special case of the MCD model [76]. It has been studied in [66]
that p(S̄) is fixed in the CCN model once p(S̄|x,x′) is specified while p(S̄)
is free in the MCD model after p(x,x′|S̄) is specified. Furthermore, for
p̃(x) being the distribution of noisy x, p̃(x) = p(x) holds in the CCN
model but p̃(x) ̸= p(x) holds in the MCD model. Due to this covariate
shift [104], CCN methods do not fit the MCD problem setting, while the
MCD methods fit the CCN problem setting conversely.

For our nSU contamination model, we only have the noisy similar
data pairs, and Eq. (6.9) is consistent with part of Eq. (6.2). Besides,
there is no restriction on the noisy dissimilar data pairs. Namely, we can

2[23] called this noise model pairing corruption. They also discussed another noise
model called labeling corruption, where labels Y and Y ′ are corrupted in an instance-
independent manner.
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set the imaginary noisy dissimilar data pairs to obey the distribution in
Eq. (6.2). Moreover, the distribution of the unlabeled data is free to label
noise. Therefore, the MCD model, as well as the CCN model, is a special
case of the nSU contamination model.

Second, to build an unbiased classification risk framework from the
observation, there are some essential parameters to estimate. [23] roughly
tuned the noise rate parameter by cross-validation on the noisy data. Then,
based on the tuned parameter, the prior was empirically estimated. [5] used
an MPE method to solve the estimation problem. However, the solution
of that MPE problem is not guaranteed to be identifiable. By contrast,
we prove that the new MPE problem in this work is irreducible [97], and
thereby can be solved with a theoretical guarantee (see Section 6.3.4 for
details).

Third, [23] used a neural network to approximately learn the classifier.
However, we use not only the neural network but also the linear model, of
which there exist analytical solutions to the latter model.

6.3 Methodology

We consider the binary classification problem. Let D be the distribution
of a pair of random variables (x, y) ∈ X × {−1, 1}, where X ⊂ Rd and d

represents the dimension. Let f : Rd → R be a hypothesized classifier in the
predefined hypothesis class F , and ℓ : R × {±1} → R be the loss function
measuring how well the true class label Y is estimated by the prediction of a
hypothesis. The optimal classifier f ∗ is therefore defined by the hypothesis
that minimizes the expected classification risk :

R(f) = E
(x,y)∼D

[ℓ(f(x), y)], (6.3)

i.e.,
f ∗ = argmin

f∈F
R(f). (6.4)

Often, the distribution of data is unknown. The standard supervised binary
classification method utilizes positive and negative training data drawn
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i.i.d. from D to learn the optimal classifier by minimizing the empiri-
cal classification risk, which is an approximation of the expected risk in
Eq. (6.3). While in our setting, we only have noisy similar (nS) data pairs,
i.e., {(xS,1,x

′
S,1), . . . , (xS,nnS

,x′S,nnS
)}, and some unlabeled (U) data, i.e.,

{xU,1, . . . ,xU,nU
}, which are called the nSU data. A pair of instances is

said to be similar if they are from the same class. Noisy similar data pairs
mean that the data may come from different classes but are treated as sim-
ilar data pairs. Therefore, our research problem in this chapter is to build
an empirical classification risk by only employing the nSU data that will
approximate the expected risk in Eq. (6.3).

6.3.1 Noisy Pairwise Similarity and Unlabeled Data

Below, we provide detailed definitions and assumptions in the nSU classi-
fication.

Assumption 6.3.1 ([5]). Data independence. Without any assumptions,
the pairwise data cannot effectively be used to approximate the risk. We
assume that each instance is independently drawn from joint distribution
D. For example, for every data pair (x,x′), if two instances are similar,
they follow the probability density as

ps(x,x
′) = p(x,x′|y = y′ = +1 ∨ y = y′ = −1)

=
π2
+p+(x)p+(x

′) + π2
−p−(x)p−(x

′)

π2
+ + π2

−
, (6.5)

where p(A∨B) represents the probability density that either A or B occurs,
and

• π+ = p(y = +1) and π− = p(y = −1) are the class-prior probabilities,
which satisfy π+ + π− = 1,

• p+(x) = p(x|y = +1) and p−(x) = p(x|y = −1) are the class-
condition probability density.

More discussion about this assumption can be found in Appendix D.2.

Eq. (6.5) shows that two instances are drawn independently following
p(x, y), which corresponds to the density of D, and they belong to the
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similar data pairs if they have the same label. In contrast, if the two
instances of a data pair belong to the different classes, they follow the
probability density as

pd(x,x
′) = p(x,x′|(y = +1 ∧ y′ = −1) ∨ (y = −1 ∧ y′ = +1))

=
π+π−p+(x)p−(x

′) + π+π−p−(x)p+(x
′)

2π+π−

=
p+(x)p−(x

′) + p−(x)p+(x
′)

2
, (6.6)

where p(A∧B) represents the probability density that both A and B occur.

For the unlabeled data, we assume that they are independently drawn
from the marginal density p(x), which can be decomposed as

p(x) = π+p+(x) + π−p−(x). (6.7)

Lemma 6.3.1. Assume that Assumption I holds. If two instances x and
x′ are drawn independently from the unlabeled data density, Eq. (6.7) can
easily convert to a pairwise marginal version such that

p(x,x′) = πsps(x,x
′) + πdpd(x,x

′), (6.8)

where πs = π2
+ + π2

− and πd = 2π+π−.

A detailed proof is provided in Appendix D.3.

Assumption 6.3.2. Contamination model. To handle the noise, we con-
sider the contamination model proposed by [47], which has been widely used
in the label noise learning community [76, 98]. Specifically, the noisy sim-
ilarity data consist of both similar data pairs and dissimilar data pairs:

p̃s(x,x
′) = (1− ρd)ps(x,x′) + ρdpd(x,x

′), (6.9)

where ρd ∈ [0, 1) is regarded as the noise rate and p̃s denotes the density of
noisy similar data pairs. More specifically, in p̃s, a proportion ρd of data
pairs are contaminated by dissimilar data pairs, while the (1−ρd) proportion
remains similar.
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We employ the contamination model rather than the CCN model be-
cause the former is more suitable to describe the noise pattern of nSU data.
We take the “opinion-on-issue-I" case as an example: In practice, the data
generation procedure is to collect answers to the question “With whom do
you share the same opinion on issue I?". In statistics, it is to sample exam-
ples of similar data pairs from ps(x,x

′). However, some people give wrong
answers, which makes the selected examples contain dissimilar data pairs
from pd(x,x

′). Overall, the data generation procedure is an imbalanced
sample from both ps(x,x′) and pd(x,x′), which can be exactly formulated
by a contamination model in Eq. (6.9).

The above two assumptions overlook the data-dependence in pairwise
data (i.e., pairwise data are independently sampled from ps(x,x

′)) and
the instance-dependence of noise (i.e., (1−ρd) is independent of x and x′).
However, this simplification has been widely accepted in statistical learning
theory and the label-noise learning communities, and the empirical results
on benchmark datasets verify the efficiency of the assumptions [88, 125].
We could then build a denoised and unbiased estimator for the classification
risk with respect to the latent clean data with the nSU data and provide a
theoretical error bound for the proposed method.

We denote the noisy similar data pairs and the unlabeled data by D̃s

and Du, respectively.

D̃s ≜ {(xS,1,x
′
S,1), . . . , (xS,nnS

,x′S,nnS
)} i.i.d.∼ p̃s(x,x

′), (6.10)

Du ≜ {xU,1, . . . ,xU,nU
} i.i.d.∼ p(x), (6.11)

where nnS is the size of D̃s and nU is the size of Du. We show that a
consistent classifier could be learned with a theoretical guarantee.

6.3.2 Risk Expression with nSU Data

Theorem 6.3.1. Assume that π+ ̸= 0.5. The classification risk in Eq. (6.3)
can be equivalently expressed only in terms of nSU data as follows:

RnSU,ℓ(f) = E
(x,x′)∼p̃s

[LnS(x,x
′)] + E

x∼p
[LU(x)], (6.12)
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where

LnS(x,x
′) =

πs(1− πs)
2(1− ρd − πs)(2π+ − 1)

[l̃(x) + l̃(x′)],

l̃(x) = ℓ(f(x),+1)− ℓ(f(x),−1),

LU(x) =
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),+1)

− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),−1).

A detailed proof and discussion are provided in Appendix D.4.

Theorem 6.3.1 immediately leads to an unbiased risk estimator:

R̂nSU,ℓ(f) =
1

nnS

nnS∑
i=1

LnS(xS,i,x
′
S,i) +

1

nU

nU∑
i=1

LU(xU,i). (6.13)

6.3.3 Practical Implementation

Here, we employ the linear-in-parameter-model f(x) = w⊤ϕ(x), where
w and ϕ are vectors of parameters and basis functions with the same
dimension. Then employing Eq. (6.13) with the ℓ2 regularization, the nSU
classification can be formulated as the following regularized empirical risk
minimization problem:

ŵ = min
w

Ĵℓ(w), (6.14)

where

Ĵℓ(w) =
1

nnS

nnS∑
i=1

LnS(xS,i,x
′
S,i) +

1

nU

nU∑
i=1

LU(xU,i) +
λ

2
∥w∥2

=
A

2nnS

2nnS∑
i=1

[ℓ(w⊤ϕ(xS,i),+1)− ℓ(w⊤ϕ(xS,i),−1)]

+
B

nU

nU∑
i=1

[ℓ(w⊤ϕ(xU,i),+1)]− C

nU

nU∑
i=1

[ℓ(w⊤ϕ(xU,i),−1)] +
λ

2
∥w∥2,

(6.15)
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and

A =
πs(1− πs)

(1− ρd − πs)(2π+ − 1)
, (6.16)

B =
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
, (6.17)

C =
πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
, (6.18)

and λ (≥ 0) in Eq. (6.15) is the regularization parameter. Note that
since the loss form is symmetric to xS,i and x′S,i, we use xS,i uniformly
in Eq. (6.15). To solve this optimization problem, we need the knowledge
of class-prior π+ (πs can be calculated from π+) and the noise rate ρd. In
Section 6.3.4, we discuss how to estimate them from nSU data.

Inspired by [5], [81], and [92], we surprisingly find that adopting certain
loss functions, i.e., the margin loss function3 [79], will result in a convex
objective function.

Theorem 6.3.2. Assume that the loss function ℓ(z, t) is a convex margin
loss function, and for every fixed t ∈ {±1}, ℓ(z, t) is twice differentiable
with respect to z. If ℓ(z, t) satisfies the condition

ℓ(z,+1)− ℓ(z,−1) = −z,

then Ĵℓ(w) is convex.

A detailed proof and more discussion are provided in Appendix D.5.

Below, we consider the squared loss function, which satisfies the con-
ditions in Theorem 6.3.2.

The squared loss function is defined as ℓSQ(z, t) = 1
4
(tz − 1)2. Substi-

tuting ℓSQ into Eq. (6.15), we have

ĴSQ(w) = w⊤
(

1

4nU

X⊤UXU +
λ

2
I

)
w −

(
A

2nnS

1⊤XS +
B + C

2nU

1⊤XU

)
w,

3ℓ is said to be a margin loss function if there exists ψ : R → R+ such that ℓ(z, t) =
ψ(tz).
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where I is the identity matrix, 1 represents the vector whose elements are all
ones, XS = [ϕ(xs,1) · · · ϕ(xs,2nnS

)]⊤, and XU = [ϕ(xu,1) · · · ϕ(xu,nU)]
⊤.

Then we have the analytical solution of this minimization problem as

w = nU ·
(
X⊤UXU + 2λnUI

)−1( A

nnS

X⊤S 1+
B + C

nU

X⊤U1

)
. (6.19)

Besides, we provide a deep learning method where we can obtain an
approximation to the optimal solution. Specifically, we employ a deep
model f with logistic loss: ℓLG(z, t) = log(1+ exp(−tz)). Then we directly
optimize the objective function Eq. (6.13), into which ℓLG substituted:

f̂ = argmin
f∈F

R̂nSU,ℓLG
(f). (6.20)

6.3.4 Estimating π+, πs, and ρd with the MPE method

In the aforementioned method, similar rate πs, class-prior π+, and noise
rate ρd are assumed to be given in advance, which is not always true. Here,
we thus provide a practical method to estimate them. Mixture propor-
tion estimation (MPE) [13] is the following problem: Let F,G, and H be
probability distributions on (X ,S) such that

F = (1− κ)G+ κH, (6.21)

where 0 ≤ κ ≤ 1. Given random samples from F and H, estimate κ.

Similarly, the distributions of bothDu and D̃s (see Eqs. (6.10) and (6.11))
have mixture representations according to Eq. (6.8) and Eq. (6.9). By sub-
stituting (1− πs) for πd, we obtain

P (x,x′) = (1− πs)Pd(x,x
′) + πsPs(x,x

′), (6.22)

P̃s(x,x
′) = (1− ρd)Ps(x,x

′) + ρdPd(x,x
′). (6.23)

The above equations are similar to the standard MPE format but the acces-
sible samples are not from the corresponding F and H. Therefore, by fur-
ther calculating [(6.22)×(1−ρd)− (6.23)×πs], [(6.22)×ρd − (6.23)×(1−πs)]
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respectively and organizing, we obtain

P (x,x′) = (1− πs
1− ρd

)Pd(x,x
′) +

πs
1− ρd

P̃s(x,x
′), (6.24)

P̃s(x,x
′) = (1− ρd

1− πs
)Ps(x,x

′) +
ρd

1− πs
P (x,x′). (6.25)

According to these mixture representations, i.e., Eq. (6.22) and Eq. (6.23),
we assume that 1− ρd > πs, which can easily be held because the propor-
tion of similar data pairs in D̃s (denoted by 1 − ρd) which it collects the
similar data pairs purposely, is apparently bigger than that in unlabeled
data (denoted by πs). More discussion can be found in Appendix D.6.

Based on this reasonable assumption, we have the following lemma:

Lemma 6.3.2. Assume 1 − ρd > πs. Eq. (6.24) and Eq. (6.25) can be
equivalently rewritten as a standard MPE format such that

P (x,x′) = (1− γ)Pd(x,x
′) + γP̃s(x,x

′), (6.26)

P̃s(x,x
′) = (1− κ)Ps(x,x

′) + κP (x,x′). (6.27)

where γ = πs
1−ρd

∈ [0, 1), κ = ρd
1−πs ∈ [0, 1).

Proof. Lemma 6.3.2 directly follows from Eq. (6.24) and Eq. (6.25) under
the assumption 1− ρd > πs.

Note that since we have no information about G in the original MPE
problem, without additional assumptions, MPE is ill-defined and the mix-
ture proportion κ is not identifiable.

The weakest and most common assumption to yield the identifiability
of the mixture proportion κ is the irreducibility assumption [13]:

Definition 6.3.1 ([97]). Let G, and H be probability distributions. We say
that G is irreducible with respect to H if there exists no decomposition of
the form G = γH+(1−γ)F ′, where F ′ is some probability distribution and
0 < γ ≤ 1. We say that G and H are mutually irreducible if G is irreducible
with respect to H and vice versa.
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The irreducibility assumption states that the maximum proportion of
H in G approaches to 0, otherwise there would exist such an F ′. Consider
S is the set of measurable sets in X and above discussion straightforwardly
implies the following fact [98, 13]: G being irreducible with respect to H is
equivalent to supp(H) ̸⊂ supp(G), i.e.,

inf
S∈S,H(S)>0

G(S)

H(S)
= 0.

In general, the distributions of positive data and negative data are
assumed to be mutually irreducible [98], which leads to the following the-
orem.

Theorem 6.3.3. Assume that the positive data distribution P+ and the
negative data distribution P− are mutually irreducible, then Pd is irreducible
with respect to P̃s, and Ps is irreducible with respect to P . Thus, the mixture
proportions γ and κ in Lemma 6.3.2 is identifiable.

A detailed proof is provided in Appendix D.7.

Based on Lemma 6.3.2 and Theorem 3, we can effectively estimate
γ and κ by the MPE method [93]. After estimating γ and κ, we can
reversely calculate πs, ρd, and π+ according to the definitions of γ and κ in
Lemma 6.3.2 as follows:

• Similar rate: πs = γ(1−κ)
1−γκ ,

• Noise rate: ρd = κ(1−γ)
1−γκ ,

• Class-prior4: π+ =

√
2
γ(1−κ)
1−γκ

−1+1

2
..

Overall, our method for nSU classification is summarized in Algo-
rithm 4.

6.3.5 Error Bound Analysis

In this section, we derive a generalization error bound for the nSU classifi-
cation.

42πs − 1 = πs − πd = (π+ − π−)2 = (2π+ − 1)2, such that π+ =

√
2

γ(1−κ)
1−γκ −1+1

2
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Algorithm 4 nSU classification.

Input: Noisy similar data pairs D̃s and unlabeled data Du;
Output: The classifier f̂ ;
Stage 1. Estimate the similar rate πs and noise rate ρd
Intermediate parameters (γ, κ) = MPE (D̃s, Du);
Compute (πs, ρd, π+, π−) from (γ, κ);
Stage 2. Obtain classifier f̂
if Squared loss then

Compute the analytical solution ŵ by Eq. (6.19);
end if
if Logistic loss then

Approximate the optimal classifier f ∗ by the SGD;
end if
return f̂ ;

Let F ⊂ RX be a function class of the linear-in-parameter model, and
f ∗ = argmin

f∈F
R(f) be the true risk minimizer, and f̂ = argmin

f∈F
R̂nSU,ℓ(f)

be the empirical risk minimizer. By introducing a Rademacher Complexity
bound assumption [5], i.e., for any probability density µ, R(F ;n, µ) ≤ CF√

n

for some constant CF > 0, then we can obtain the following theorem.

Theorem 6.3.4. Assume the loss function ℓ is ρ-Lipschitz with respect
to the input instance x (ρ ∈ (0,∞)), and all functions in the hypothesis
class F are bounded by Cb, i.e., ∥f∥∞ ≤ Cb for any f ∈ F . Let Cℓ =

supt∈{±1} ℓ(Cb, t). For any δ > 0, with probability at least 1− δ,

R(f̂)−R(f ∗) ≤
4AρCF + A

√
2C2

ℓ log
4
δ√

2nnS

+
2(−B − C)ρCF + (−B − C)

√
1
2
C2
ℓ log

4
δ

√
nU

, (6.28)

where A, B, and C are defined in Eqs. (6.16), (6.17), and (6.18).

A detailed proof is provided in Appendix D.8.

Theorem 6.3.4 implies that the expected risk of the classifier learned
from nSU data is consistent with that of the classifier learned from stan-
dard positive and negative data if we have π+ and ρd in advance. The
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convergence rate is Op(1/
√
nnS+1/

√
nU), which achieves the optimal para-

metric rate for the empirical risk minimization without additional assump-
tions [75].

6.4 Experiments

6.4.1 Data Generation and Common Setup

To obtain nSU data, first, we collected raw binary classification datasets
which consist of positive and negative data, while leaving 10% of the data as
test data. Then we converted the labeled data to noisy similar data pairs
according to class-prior π+ and noise rate ρd. Specifically, we randomly
subsampled similar data and dissimilar data pairs following the ratio of
1−ρd and ρd. The similar data pairs consisted of positive and negative pairs
with a ratio of π2

+ and π2
−. After that, we randomly selected unlabeled data

samples from positive data and negative data with a ratio of π+ and π−.

For all the experiments, the sample size of the noisy similar data pairs
was fixed to 4000, while the sample size of the unlabeled data was fixed
to 2000. The class-prior π+ and noise rate ρd were estimated by the MPE
method [93]. For the first MPE for γ, we used the default parameters. For
the second MPE for κ, to ensure the term in the square root in the formula

π+ =

√
2
γ(1−κ)
1−γκ

−1+1

2
to be greater than zero, we set λright = 2 − 1/γ̂ while

kept all other parameters as default, where λright is a parameter in the MPE
method [93] and γ̂ is the estimated value.

We used the linear basis functions and the regularization parameter
λ was fixed to 10−4. For the deep model, we employed a 3-layer MLP
(multilayer perceptron) with the softsign active function (Saf(x) = x/(1 +

|x|)). We used the stochastic gradient descent (SGD) optimizer with an
initial learning rate of 0.002, which decays every 40 epochs by a factor of
0.1 with 200 epochs in total.

6.4.2 Baselines

We implemented our method with two models. In Stage 1, we employed
the KM2 algorithm [93] to estimate the class-prior and noise rate. In Stage
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2, for the linear model, we obtained the analytical solution by Eq. (6.19)
(denoted by -LC (Linear Classifier)); for the deep neural network, we used
the SGD to optimize the model (denoted by -DC (Deep Classifier)). We
compared our proposed method with state-of-the-art methods:

• SU classification [5], which is the state-of-the-art method for learning
from similarity and unlabeled data. This method was also imple-
mented with two models, i.e., linear and deep models.

• nSD classification [23], which learns a classifier from noisy similarity
and dissimilarity data pairs. To make it compatible with the nSU
data, we treated the unlabeled data as the noisy dissimilarity data
and fed the ground-truth class-prior and noises rates to the nSD al-
gorithm.

• Information-theoretic metric learning (ITML) [25], which utilizes pair-
wise similarity and dissimilarity as constraints to learn a metric.
Then, k-means clustering is applied on test data with the learned
metric.

Moreover, we also implemented some unsupervised learning methods, i.e.,
k-means (KM) [69] and hierarchical clustering schemes (HC) [49]. For
unsupervised learning methods, we directly used the implementations on
scikit-learn [90]. We also employed a support vector classifier (SVC) [22]
with a linear kernel learned from fully-supervised data as a benchmark.
Note that learning a classifier without class information will lose the map-
ping between the cluster nodes and the semantic classes. The semantic
classes can be identified with some prior knowledge, e.g., the exact π+ or
the sign of (π+ − π−). Here, we employed the Hungarian algorithm [55],
which is a commonly used method for evaluating the clustering accuracy,
to assign the output nodes to the dominant semantic classes by using some
training examples with class labels.

6.4.3 Experiments on Synthetic Datasets

We generated synthetic data drawn from two-dimension normal distribu-
tions. Settings with various combinations of parameters were tested. The
results are shown in Figures 6.2 and 6.3. For the first case, the positive



6.4. Experiments 77

(a) syn1: {π+ = 0.7, ρd = 0.2}. (b) syn1: {π+ = 0.7, ρd = 0.3}.

(c) syn2: {π+ = 0.7, ρd = 0.2}. (d) syn2: {π+ = 0.7, ρd = 0.3}.

Figure 6.2: Illustrations based on a single trail of the four setups. The
green and pink lines are decision boundaries learned by nSU and SU clas-
sification from nSU data respectively. The orange boundary is obtained by
SVC with a linear kernel using the fully-supervised data.

data follows the Gaussian distribution N

((
1

1

)
,

(
1 0

0 1

))
, and the nega-

tive data follows N

((
−1
−1

)
,

(
1 0

0 1

))
, which we called the syn1 dataset.

For another case, the positive data follows N

((
1

1

)
,

(
1 0

0 2

))
, and the

negative data follows N

((
−1
−1

)
,

(
2 0

0 1

))
, having more overlap, which

we called the syn2 dataset. From such two binary datasets, we gener-
ated the nSU data with {π+ = 0.7, ρd = 0.2} (Figures 2.a & 2.c) and
{π+ = 0.7, ρd = 0.3} (Figures 2.b & 2.d). Here we employed an SVC with
a linear kernel learned from fully-supervised data as a benchmark. The
class-prior and noise rate were assumed to be known.

In Figure 6.2, we see that nSU classifier is closer to SVC classifier than
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(a) syn1 with stepwise noise. (b) syn2 with stepwise noise.

Figure 6.3: Means and Standard Deviations (Percentage) of Classification
Accuracy over 5 trials on syn1 and syn2 with stepwise noise. The class-prior
π+ is fixed at 0.7. When the noise rate is higher than 0.3, the SU classifier
even loses the identification ability, and assigns all the test instances the
same label, which leads to a steady 0.5 accuracy.

SU classifier in all four setups. As the noise rate increases from 0.2 to 0.3,
the SU classifier moves further away from the SVC classifier, while the nSU
classifier is hardly affected. From Figure 6.3, we see that the accuracy of
the SU classifier drops dramatically with the increased noise rate on both
datasets. Meanwhile, there is only a slight fluctuation of the nSU classifier.
The gap between the accuracy of the nSU classifier and the SVC classifier
trained on clean data is small, i.e., within two percentage points.

6.4.4 Experiments on UCI and LIBSVM Datasets

Here datasets were obtained from the LIBSVM data [16] and UCI Machine
Learning Repository [27]. Then we generated the corresponding nSU data
following the data generation method. Tables 6.1 and 6.2 demonstrate
the remarkable superiority of the nSU classifier over the SU classifier and
nSD classifier on all the benchmark-simulated datasets. For some datasets,
ITML also achieved comparable accuracy. It is because ITML is a cluster-
based method, whose performance is closely associated with the natural
structure of the dataset, i.e., whether the low density separation5 condition
holds.

5The decision boundary should lie in a low-density region.
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Table 6.1: Means and Standard Deviations (Percentage) of Classifi-
cation Accuracy over 5 trials on the UCI and LIBSVM datasets with
{π+ = 0.7, ρd = 0.2}. The best (except SVC) and comparable methods
(paired t-test at significance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC

australian 83.1±4.4 68.0±8.8 63.7±5.4 54.3±2.9 60.0±2.9 69.1±4.2 82.2±4.4 75.4±11.3 84.9±4.1
breast-cancer 93.6±1.7 85.8±7.2 84.1±3.8 79.4±4.0 93.0±1.2 95.9±2.4 64.1±1.3 95.7±2.0 96.2±1.3

fourclass 71.5±6.7 64.8±6.2 63.7±1.5 63.4±2.1 64.7±4.8 64.8±5.0 80.6±5.8 63.4±15.8 98.2±1.0
magic 76.2±1.5 66.2±2.6 69.5±3.5 64.5±4.1 70.5±3.2 61.8±2.3 68.8±5.9 64.7±1.1 80.3±1.0

cod-rna 89.8±2.7 85.6±3.6 62.1±12.0 63.3±3.7 72.3±7.9 76.8±0.5 83.2±0.3 76.5±2.8 77.2±0.6
adult 67.9±1.0 59.1±6.8 63.6±4.2 58.6±3.0 75.7±0.3 71.1±0.6 84.4±4.2 72.6±2.3 70.5±1.0

banknote 98.0±1.1 62.2±8.2 94.9±5.6 60.6±8.9 62.6±3.9 62.9±2.9 59.1±7.0 66.1±2.0 100.0±0.0
heart 83.3±3.7 61.5±12.7 58.3±7.6 56.3±4.8 70.4±6.4 63.7±6.6 80.0±10.0 62.2±8.4 60.0±5.5

svmguide1 76.1±7.0 56.1±4.3 52.8±3.4 56.6±6.6 71.1±0.6 72.6±1.0 80.3±1.3 75.5±12.0 93.5±1.2
htru_2 96.4±1.3 81.1±8.4 96.1±1.2 86.3±5.7 92.0±1.6 73.4±2.3 86.0±5.0 71.0±8.5 97.1±0.2

Table 6.2: Means and Standard Deviations (Percentage) of Classifi-
cation Accuracy over 5 trials on the UCI and LIBSVM datasets with
{π+ = 0.8, ρd = 0.1}. The best (except SVC) and comparable methods
(paired t-test at significance level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC

australian 85.4±3.1 55.1±2.4 82.6±3.6 54.6±2.9 64.6±6.7 69.1±4.2 80.8±5.2 78.9±4.1 86.7±4.2
breast-cancer 94.8±1.7 66.7±3.7 93.0±2.4 64.9±2.6 89.0±3.3 95.9±2.4 67.7±8.0 94.8±1.9 95.4±2.4

fourclass 70.8±5.9 61.8±5.2 57.5±5.3 62.1±5.1 64.3±4.9 62.3±6.4 80.9±5.7 55.2±5.2 97.5±1.0
magic 75.6±2.2 63.2±7.4 71.4±1.6 65.9±1.4 68.5±3.0 58.3±0.6 71.7±19.2 63.4±3.6 75.9±0.7

cod-rna 90.1±0.9 58.7±10.9 71.9±7.0 66.7±0.1 66.7±7.8 77.2±0.5 83.2±0.3 77.8±0.3 59.2±0.3
adult 74.0±2.2 60.9±5.7 73.2±2.2 57.7±3.4 71.1±0.6 75.8±0.1 84.4±4.2 65.3±8.2 65.5±0.8

banknote 97.9±0.7 66.7±6.4 96.7±2.3 63.2±9.5 94.1±7.6 63.8±3.4 83.4±13.5 64.1±4.3 100.0±0.0
heart 77.0±8.4 63.0±9.4 61.5±10.0 55.6±2.6 63.7±4.1 63.7±6.6 80.7±8.8 63.0±10.1 56.6±0.0

svmguide1 73.5±2.5 65.4±1.8 67.3±4.1 57.0±4.6 67.8±3.5 73.3±1.0 81.5±2.3 70.6±13.1 91.1±1.4
htru_2 97.8±0.2 76.4±9.5 97.1±0.5 84.0±7.2 87.5±3.8 77.2±1.5 81.3±13.2 82.2±7.3 97.2±0.3

Table 6.3: Means and Standard Deviations (Percentage) of Classification
Accuracy over 5 trials on text datasets with {π+ = 0.7, ρd = 0.2}. The best
(except SVC) and comparable methods (paired t-test at significance level
5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC

SMS Spam 72.4±2.3 71.1±5.3 56.5±4.4 70.4±2.9 86.5±0.1 69.3±0.7 93.1±4.4 58.6±9.4 84.2±1.5
News_05 82.9±2.0 59.4±4.9 72.4±5.3 54.3±1.9 56.6±2.3 62.7±3.7 72.9±8.0 61.0±3.6 92.4±1.9
News_16 77.7±1.9 56.8±4.6 64.7±2.0 52.2±1.4 60.0±9.4 75.6±3.1 71.3±9.2 69.3±4.8 90.2±2.3
News_27 82.9±2.8 52.1±1.1 78.1±6.3 54.3±1.8 57.6±8.0 62.8±2.9 80.7±14.5 61.3±3.7 96.5±1.7
News_38 75.7±3.3 55.3±5.0 65.4±5.1 51.9±1.5 55.5±7.0 59.2±1.7 76.6±4.3 59.3±5.5 85.4±3.3
News_49 84.0±2.2 53.4±4.4 74.0±5.7 54.3±3.9 54.1±3.8 67.6±5.1 75.8±9.4 66.3±9.9 92.4±1.0

6.4.5 Experiments on Text Datasets

SMS Spam [1] is a public set of short message service (SMS) labeled mes-
sages that have been collected for mobile phone spam research, which is
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Table 6.4: Means and Standard Deviations (Percentage) of Classification
Accuracy over 5 trials on text datasets with {π+ = 0.8, ρd = 0.1}. The best
(except SVC) and comparable methods (paired t-test at significance level
5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC

SMS Spam 75.9±2.2 63.0±6.4 58.1±3.1 70.3±1.5 86.5±0.1 70.0±1.0 93.3±1.4 74.3±3.7 79.0±1.4
News_05 88.5±1.7 54.9±3.6 83.4±3.5 56.6±3.8 59.2±5.0 63.4±3.3 76.0±3.6 63.1±2.9 89.2±2.4
News_16 83.2±2.4 53.6±3.6 74.7±3.2 55.9±7.0 53.5±5.9 74.5±3.1 71.4±5.4 67.0±5.4 85.3±1.7
News_27 92.8±3.0 64.6±13.6 88.3±1.7 60.6±8.8 64.4±9.5 62.6±2.9 74.0±9.4 61.5±9.2 94.7±1.0
News_38 80.6±4.0 55.3±2.4 75.9±3.5 55.4±4.1 55.8±9.2 58.2±1.8 71.7±5.9 53.4±2.3 81.8±2.0
News_49 87.1±3.2 58.1±8.6 83.8±4.1 51.7±1.1 59.8±8.7 67.7±4.4 74.1±4.5 65.2±5.8 87.8±2.6

Table 6.5: Means and Standard Deviations (Percentage) of Classification
Accuracy over 5 trials on image datasets with {π+ = 0.7, ρd = 0.2}. The
best (except SVC) and comparable methods (paired t-test at significance
level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC

Cifar_03 70.4±2.9 57.8±6.5 64.8±4.1 51.9±1.5 58.6±8.2 67.1±1.1 64.9±2.6 68.7±2.1 84.7±1.0
Cifar_14 75.0±3.0 65.0±3.1 73.2±3.3 54.0±2.2 56.3±7.6 63.1±1.9 67.3±9.8 69.3±4.8 88.7±1.0
Cifar_25 72.6±1.6 56.6±3.9 68.0±3.4 54.0±2.6 62.6±5.4 62.8±2.9 70.1±9.1 61.3±3.7 87.3±0.8

composed of 5,574 English, real, and non-encoded messages, tagged ac-
cording to being legitimate or spam. News20 is a collection of approxi-
mately 20,000 newsgroup documents, partitioned nearly evenly across 20
different newsgroups. We selected ten newsgroups and paired them into
five datasets, i.e., News_05, . . ., News_49. The specific class information
is provided in Appendix D.9. For these two datasets, we used GloVe [91] to
extract vector representations from raw text data. Tables 6.3 and 6.4 show
the consistent superiority of the nSU classifier over the SU classifier and
nSD classifier on all the benchmark-simulated datasets. Due to the natural
structure of the dataset, the clustering methods occasionally achieved the
best performance. However, the clustering methods were not stable, with
larger standard deviations.

6.4.6 Experiments on Image Datasets

CIFAR-10 [54] has 32×32×3 color images including 50,000 training images
and 10,000 test images of 10 classes. Similarly, we selected six classes and
paired them into three datasets, i.e., Cifar_03, Cifar_14, and Cifar_25.
The specific class information is provided in Appendix D.9. Since the raw
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Table 6.6: Means and Standard Deviations (Percentage) of Classification
Accuracy over 5 trials on image datasets with {π+ = 0.8, ρd = 0.1}. The
best (except SVC) and comparable methods (paired t-test at significance
level 5%) are highlighted in bold.

Dataset nSU-LC nSU-DC SU-LC SU-DC nSD KM ITML HC SVC

Cifar_03 72.7±2.2 59.0±6.6 69.6±2.5 51.2±0.7 57.0±4.4 66.2±0.9 65.6±1.4 67.2±3.5 77.2±1.4
Cifar_14 76.7±1.4 60.2±7.2 75.6±2.6 54.7±2.1 59.5±4.7 62.0±1.4 71.3±9.2 57.4±4.3 85.2±1.8
Cifar_25 76.9±1.9 64.8±4.0 75.1±2.1 53.6±2.1 65.1±6.3 66.4±2.0 66.8±3.2 66.1±3.3 84.1±0.6

feature of CIFAR-10 is far from a good representation, we extracted the
32-dimensional features of images by a deep variational autoencoder [52].
Namely, both linear methods (-LC) and deep methods (-DC) in our exper-
iment are fitted on top of the same pre-trained embedding, and take the
same advantage of deep models extracting good representations. Besides,
the linear methods (-LC) have the analytical solution for the objective
Eq (6.14) while the deep methods (-DC) use the SGD method to obtain an
approximation to the optimal solution, which introduces additional opti-
mization errors. Therefore, the linear methods (-LC) could outperform the
deep methods (-DC) in our experiment, which is not conflict with the fact
that generally deep models do better than purely linear models on image
datasets like CIFAR-10. Tables 6.5 and 6.6 show the consistent superior-
ity of the nSU classifier over the SU classifier, the nSD classifier, and the
clutering methods on all the benchmark-simulated datasets.

6.5 Summary

In this chapter, we proposed a novel weakly supervised learning (WSL)
problem named nSU classification, which considers the case where the
privacy-preserve data, i.e., similar data pairs are corrupted with the mu-
tually contaminated distributions model. To tackle this problem, nSU
classification provided a robust risk-consistent estimator for learning from
nSU data. The mixture proportion estimation method was employed to
estimate the noise rate and the class-prior probabilities. When utilizing
proper models and loss functions, we showed that our optimization prob-
lem becomes convex. Specifically, there exists a closed-form solution to
the objective function with a linear-in-parameter model combined with the
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squared loss. We also established a generalization error bound for the
proposed method. Experiments conducted on benchmark datasets demon-
strated that our method can excellently solve the aforementioned WSL
problem and showed superiority over the baseline methods.
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Chapter 7

Conclusion

In this thesis, motivated by the phenomenon that machine learning sys-
tems have been widely adopted and entrusted with important tasks in our
daily life yet acquiring high-quality data is challenging, we investigate the
problem of learning with noisy labels incorporating fairness and privacy
concerns. First, We propose a method that transforms data points with
noisy class labels to data pairs with noisy similarity labels, which reduces
the noise rate with a theoretical guarantee and thus makes the noise easier
to handle. Second, we design an assumption-free curriculum that learns
the clean classifier, as well as the transition matrix simultaneously by allo-
cating reliable triplets in the training curriculum based on the novel TCP
metric. Third, we provide general frameworks for learning fair classifiers
with noisy labels. For statistical fairness notions, we rewrite the classifica-
tion risk and the fairness metric in terms of noisy data and thereby build
robust classifiers. For the causality-based fairness notion, We exploit the
internal causal structure of data to effectively model both the label noise
and counterfactual fairness. Finally, we propose a denoised and unbiased
estimator for the classification risk with respect to the accurately labeled
data by employing the noisy data with indirect supervision and then learn
the optimal model under the empirical risk minimization framework.
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Appendix A

Supplementary for Chapter 3

A.1 Proof of Theorem 1

Theorem A.1.1. Assume that the dataset is balanced (each class has the
same amount of instances, and c classes in total), and the noise is class-
dependent. Given a class transition matrix Tc, such that Tc,ij = P (Ỹ =

j|Y = i). The elements of the corresponding similarity transition matrix
Ts can be calculated as

Ts,00 =
c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

, Ts,10 =
c− ||Tc||2Fro

c
,

Ts,01 =

∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

c2 − c
, Ts,11 =

||Tc||2Fro
c

.

Proof. Assume each class has n samples. n2Tc,ijTc,i′j′ represents the number
the kind of data pairs composed by points of (Ỹ = j|Y = i) and (Ỹ =

j′|Y = i′). For the first element Ts,00, n2
∑

i ̸=i′ Tc,ijTc,i′j′ is the number of
data pairs with clean similarity labels H = 0, while n2

∑
i ̸=i′,j ̸=j′ Tc,ijTc,i′j′

is the number of data pairs with clean similarity labels H = 0 and noisy
similarity labels H̃ = 0. Thus the proportion of these two terms is exact the
Ts,00 = P (H̃ = 0|H = 0). The remaining three elements can be represented
in the same way. The primal representations are as follows,

Ts,00 =

∑
i ̸=i′,j ̸=j′ Tc,ijTc,i′j′∑
i ̸=i′ Tc,ijTc,i′j′

, Ts,10 =

∑
i=i′,j ̸=j′ Tc,ijTc,i′j′∑
i=i′ Tc,ijTc,i′j′

,

Ts,01 =

∑
i ̸=i′,j=j′ Tc,ijTc,i′j′∑
i ̸=i′ Tc,ijTc,i′j′

, Ts,11 =

∑
i=i′,j=j′ Tc,ijTc,i′j′∑
i=i′ Tc,ijTc,i′j′

.
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Further, note that∑
i=i′

Tc,i,jTc,i′,j′ =
∑
i,j,j′

Tc,i,jTc,i,j′ =
∑
i

(
∑
j

Tc,i,j)(
∑
j′

Tc,i,j′) = c,∑
i ̸=i′

Tc,i,jTc,i′,j′ =
∑

i ̸=i′,j,j′
Tc,i,jTc,i′,j′ =

∑
i ̸=i′

(
∑
j

Tc,i,j)(
∑
j′

Tc,i,j′) = (c− 1)c,∑
i=i′,j=j′

Tc,ijTc,i′j′ = ||Tc||2Fro,∑
i ̸=i′,j=j′

Tc,ijTc,i′j′ =
∑
j

(
∑
i

Tc,ij)
2 − ||Tc||2Fro.

Substituting above equations to the primal representations, we have the
Theorem 1 proved.

A.2 Pointwise implies pairwise

For an invertible Tc, denote by vj the j-th column of Tc and 1 the all-one
vector. Then,∑

j

(
∑
i

Tc,ij)
2 =

∑
j

⟨vj,1⟩2 ≤
∑
j

||vj||2||1||2 = c||Tc||2Fro,

where we use the Cauchy–Schwarz inequality [102] in the second step. Fur-
ther, we have

Ts,11 + Ts,00 =
||Tc||2Fro

c
+
c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

=
(c− 1)||Tc||2Fro + c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

=
(c− 1)||Tc||2Fro + c2 − c−

(∑
j⟨vj,1⟩2 − ||Tc||2Fro

)
c2 − c

≥
(c− 1)||Tc||2Fro + c2 − c−

(
c||Tc||2Fro − ||Tc||2Fro

)
c2 − c

= 1.

Thus the learnability of the pointwise classification implies the learnability
of the reduced pairwise classification.
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A.3 Proof of Theorem 2

Theorem A.3.1. Assume that the dataset is balanced (each class has the
same amount of samples), and the noise is class-dependent. When the
number of classes c ≥ 8, the noise rate of noisy similarity labels is lower
than that of the noisy class labels.

Proof. Assume each class has n points. As we state in the proof of Theorem
A.1.1, the number of data pairs with clean similarity labels H = 0 and
noisy similarity labels H̃ = 0 is n2

∑
i ̸=i′,j ̸=j′ Tc,ijTc,i′j′ . We denote it by

N00. Similarly, we have,

N00 = n2
∑

i ̸=i′,j ̸=j′
Tc,ijTc,i′j′ , N10 = n2

∑
i=i′,j ̸=j′

Tc,ijTc,i′j′ ,

N01 = n2
∑

i ̸=i′,j=j′
Tc,ijTc,i′j′ , N11 = n2

∑
i=i′,j=j′

Tc,ijTc,i′j′ .

The noise rate is the proportion of the number of noisy labels to the number
of total labels. Assume that the number of classes is c. We have

Snoise =
N01 +N10

N00 +N01 +N10 +N11

=
N01 +N10

c2n2
,

Cnoise =
n
∑

i ̸=j Tc,ij

cn
.

Let Snoise minus Cnoise, we have

Snoise − Cnoise =
n2
∑

i ̸=i′,j=j′ Tc,ijTc,i′j′ + n2
∑

i=i′,j ̸=j′ Tc,ijTc,i′j′

c2n2
−
n
∑

i ̸=j Tc,ij

cn

=

∑
i ̸=i′,j=j′ Tc,ijTc,i′j′ +

∑
i=i′,j ̸=j′ Tc,ijTc,i′j′ − c

∑
i ̸=j Tc,ij

c2
.
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Let A =
∑

i ̸=i′,j=j′ Tc,ijTc,i′j′ +
∑

i=i′,j ̸=j′ Tc,ijTc,i′j′ − c
∑

i ̸=j Tc,ij, we have

A =
∑

i ̸=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j ̸=j′

Tc,ijTc,i′j′ − c
∑
i ̸=j

Tc,ij

=
∑

i ̸=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j ̸=j′

Tc,ijTc,i′j′ − c(
∑
i,j

Tc,ij −
∑
i=j

Tc,ij)

=
∑

i ̸=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j ̸=j′

Tc,ijTc,i′j′ − c2 + c
∑
i=j

Tc,ij.

The second equation holds because the row sum of Tc is 1.

For the first term
∑

i ̸=i′,j=j′ Tc,ijTc,i′j′ , notice that:∑
i ̸=i′,j=j′

Tc,ijTc,i′j′ =
∑
j

∑
i

Tc,ij(
∑
i′ ̸=i

Tc,i′j)

=
∑
j

∑
i

Tc,ij(
∑
i′ ̸=i

Tc,i′j + Tc,ij − Tc,ij)

=
∑
j

∑
i

Tc,ij(
∑
i′

Tc,i′j − Tc,ij)

=
∑
j

∑
i

Tc,ij(Sj − Tc,ij)

(Sj is the column sum of the j − th column)

=
∑
j

∑
i

Tc,ijSj − T 2
c,ij

=
∑
j

Sj
∑
i

Tc,ij −
∑
j

∑
i

T 2
c,ij

=
∑
j

S2
j −

∑
j

∑
i

T 2
c,ij. (A.1)

Due to the symmetry of i and j, for the second term
∑

i=i′,j ̸=j′ Tc,ijTc,i′j′ ,
we have∑

i=i′,j ̸=j′
Tc,ijTc,i′j′ =

∑
j

∑
i

Tc,ij(Ri − Tc,ij)

(Ri is the row sum of the i− th row, and Ri = 1)

=
∑
j

∑
i

Tc,ij − T 2
c,ij

= c−
∑
j

∑
i

T 2
c,ij. (A.2)
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Therefore, substituting Equation (A.1) and (A.2) into A, we have

A =
∑
j

S2
j −

∑
j

∑
i

T 2
c,ij + c−

∑
j

∑
i

T 2
c,ij − c2 + c

∑
i=j

Tc,ij.

To prove Snoise − Cnoise ≤ 0 is equivalent to prove A ≤ 0.

Let M = c2 − c, N =
∑

j S
2
j − 2

∑
j

∑
i T

2
ij + c

∑
i=j Tij (we drop the

subscript c in Tc,ij), and A = N − M . Now we utilize the Adjustment
method [103] to scale N . For every iteration, we denote the original N by
No, and the adjusted N by Na.

Since c ≥ 8, there can not exist three columns with column sum bigger
than c/2− 1. Otherwise, the sum of the three columns will be bigger than
c, which is impossible because the sum of the whole matrix is c.

Therefore, first, we assume that the j, k−th columns have column sum
bigger than c/2− 1. Then, for the row i, we add the elements l, which are
not in j, k − th columns, to the diagonal element. We have

Na −No = (Si + Til)
2 + (Sl + Til)

2 + cTil − 2(Tii + Til)
2

− S2
i − S2

l + 2(T 2
ii + T 2

il)

= Til(2Til + 2Si − 2Sl + c− 4Tii)

≥ Til(2Til − 2Sl + c− 2Tii) (∵ Si ≥ Tii)

> Til(2Til − c+ 2 + c− 2Tii) (∵ Sl < c/2− 1)

≥ 0. (∵ Tii ≤ 1)

We do such adjustment to every rows, then Na is getting bigger and the
adjusted matrix will only have values on diagonal elements and the j, k−th
columns. Since the diagonal elements are dominant in the row, Sj + Sk <

2c/3 + 2/3 (because for i ̸= j, k, Tij + Tik < 2/3).

Assume that the column sum of k − th column is no bigger than that
of the j − th column, and thus Sk < c/3 + 1/3. Then, for a row i, we add
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the Tik to Tii. We have

Na −No = (Si + Tik)
2 + (Sk + Tik)

2 + cTik − 2(Tii + Tik)
2

− S2
i − S2

k + 2(T 2
ii + T 2

ik)

= Tik(2Tik + 2Si − 2Sk + c− 4Tii)

≥ Tik(2Tik − 2Sk + c− 2Tii) (∵ Si ≥ Tii)

> Tik(2Tik + c/3− 2/3− 2Tii) (∵ Sk < c/3 + 1/3)

≥ 0. (∵ c ≥ 8, and Tii ≤ 1)

We do such adjustment to every rows, then Na is getting bigger and the
adjusted matrix will only have values on diagonal elements and the j − th
column, which is called final matrix.

Note that if there is only one column with a column sum bigger than
c/2− 1, we can adjust the rest c− 1 columns as above and then obtain the
final matrix as well. If there is no column with a column sum bigger than
c/2 − 1, we can adjust all the elements as above and then obtain a unit
matrix. For the unit matrix, A = N −M < Na −M = 0, the Theorem
A.3.1 is proved.

Now we process the final matrix. For simplification, we assume j = 0 in
the final matrix. We denote the Tij by bi and Tii by ai, for i = {1, . . . , c−1}.
We have

Na =
∑
i

a2i + (1 +
∑
i

bi)
2 + c(

∑
i

ai + 1)− 2(
∑
i

a2i +
∑
i

b2i + 1)

= (1 +
∑
i

bi)
2 + c

∑
i

ai + c−
∑
i

a2i − 2
∑
i

b2i − 2

= 1 + (
∑
i

bi)
2 + 2

∑
i

bi + c
∑
i

ai + c−
∑
i

a2i − 2
∑
i

b2i − 2

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2i + c
∑
i

ai −
∑
i

a2i + c− 1

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2i + c
∑
i

(1− bi)−
∑
i

(1− bi)2 + c− 1

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2i + c2 − c− c
∑
i

bi −
∑
i

(1− 2bi + b2i ) + c− 1

= (
∑
i

bi)
2 + 4

∑
i

bi − 3
∑
i

b2i − c
∑
i

bi + c2 − c.
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Now we prove A = N −M ≤ Na −M ≤ 0. Note that

Na −M = (
∑
i

bi)
2 + 4

∑
i

bi − 3
∑
i

b2i − c
∑
i

bi

= (
∑
i

bi)
2 + 3

∑
i

bi − 3
∑
i

b2i − (c− 1)
∑
i

bi

= (
∑
i

bi)
2 + 3

∑
i

bi − 3
∑
i

b2i − (
∑
i

(1− bi) +
∑
i

bi)
∑
i

bi

= 3
∑
i

bi − 3
∑
i

b2i −
∑
i

(1− bi)
∑
i

bi

= 3
∑
i

bi(1− bi)−
∑
i

(1− bi)
∑
i

bi.

According to the rearrangement inequality[39], we have∑
i

(1− bi)
∑
i

bi ≥ (c− 1)
∑
i

bi(1− bi).

Note that c ≥ 8, thus 3
∑

i bi(1 − bi) −
∑

i(1 − bi)
∑

i bi ≤ 0, and A ≤ 0.
Therefore Snoise−Cnoise ≤ 0, and the equation holds if and only if the noise
rate is 0 or every instances have the same noisy class label (i.e., there is
one column in the Tc, of which every elements are 1, and the rest elements
of the Tc are 0). Above two extreme situations are not considered in this
paper. Namely, the noise rate of the noisy similarity labels is lower than
that of the noisy class labels. Theorem A.3.1 is proved.

A.4 Implementation of Class2Simi with Reweight

The expected risk for clean pairwise data is

R(f) = E(Xi,Xj ,Hij)∼D[ℓ(⟨f(Xi), f(Xj)⟩, Hij)],
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where

ℓ(⟨f(Xi), f(Xj)⟩, Hij) =−
∑
i,j

Hij log(⟨f(Xi), f(Xj)⟩)

+ (1−Hij) log(1− ⟨f(Xi), f(Xj)⟩),

−
∑
i,j

Hij log Ŝij + (1−Hij) log(1− Ŝij).

Here, we employ the importance reweighting technique to build a risk-
consistent algorithms. Specifically,

R(f) = E(Xi,Xj ,Hij)∼D[ℓ(⟨f(Xi), f(Xj)⟩, Hij)]

=

∫
(xi,xj)

∑
k

PD(Xi = xi, Xj = xj, Hij = k)ℓ(⟨f(Xi), f(Xj)⟩, Hij)d(xi, xj)

=

∫
(xi,xj)

∑
k

PDρ(Xi, Xj, H̃ij = k)
PD(Xi, Xj, Hij = k)

PDρ(Xi, Xj, H̃ij = k)
ℓ(⟨f(Xi), f(Xj)⟩, Hij = k)d(xi, xj)

=

∫
(xi,xj)

∑
k

PDρ(Xi, Xj, H̃ij = k)
PD(Hij = k|Xi, Xj)

PDρ(H̃ij = k|Xi, Xj)
ℓ(⟨f(Xi), f(Xj)⟩, Hij = k)d(xi, xj)

= E(Xi,Xj ,H̃ij)∼Dρ
[ℓ̃(⟨f(Xi), f(Xj)⟩, H̃ij)],

where D denotes the distribution of clean data; D denotes the distribution
of noisy data, and

ℓ̃(⟨f(Xi), f(Xj)⟩, H̃ij) =
PD(Hij = H̃ij|Xi, Xj)

PDρ(H̃ij|Xi, Xj)
ℓ(⟨f(Xi), f(Xj)⟩, H̃ij).

Empirically, as shown in Figrue A.1, we use Ŝij = f (Xi)
⊤ f (Xj) to mea-

sure the similarity of two points in a pair. P (Hij = 1|Xi, Xj) and P (Hij =

0|Xi, Xj) are approximated by Ŝij and 1−Ŝij, respectively. Then P
(
H̃ij | Xi, Xj

)
can be approximated according to P

(
H̃ij | Xi, Xj

)
= T⊤s P (Hij | Xi, Xj).

Thus a risk-consistent estimator can be built:

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

αℓ(⟨f(Xi), f(Xj)⟩, H̃ij),
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Figure A.1: Pipeline of Class2Simi with Reweight.

where

α =

{
H̃ij

Ŝij

Ts,11Ŝij + Ts,01(1− Ŝij)
+ (1− H̃ij)

1− Ŝij
Ts,10Ŝij + Ts,00(1− Ŝij)

}
.

A.5 Proof of Theorem 3

Theorem A.5.1. Assume the parameter matrices W1, . . . ,Wd have Frobe-
nius norm at most M1, . . . ,Md, and the activation functions are 1-Lipschitz,
positive-homogeneous, and applied element-wise (such as the ReLU). As-
sume the transition matrix is given, and the instances X are upper bounded
by B, i.e., ∥X∥ ≤ B for all X, and the loss function ℓ is upper bounded by
M . Then, for any δ > 0, with probability at least 1− δ,

R(f̂)−Rn(f̂) ≤
(Ts,11 − Ts,01)2Bc(

√
2d log 2 + 1)Πd

i=1Mi

Ts,11
√
n

+M

√
log 1/δ

2n
.

(A.3)

Proof. We have defined

R(f) = E(Xi,Xj ,Ỹi,Ỹj ,H̃ij ,Ts)∼Dρ
[ℓ(f(Xi), f(Xj), Ts, H̃ij)], (A.4)

and

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

ℓ(f(Xi), f(Xj), Ts, H̃ij), (A.5)

where n is training sample size of the noisy data.

First, we bound the generalization error with Rademacher complex-
ity [8].
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Theorem A.5.2 ([8]). Let the loss function be upper bounded by M . Then,
for any δ > 0, with the probability 1− δ, we have

sup
f∈F
|R(f)−Rn(f)| ≤ 2Rn(ℓ ◦ F) +M

√
log 1/δ

2n
, (A.6)

where Rn(ℓ ◦ F) is the Rademacher complexity defined by

Rn(ℓ ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]
, (A.7)

and {σ1, · · · , σn} are Rademacher variables uniformly distributed from {−1, 1}.

Before further upper bound the Rademacher complexity Rn(ℓ◦F), we
discuss the special loss function and its Lipschitz continuity w.r.t hk(Xi), k =

{1, . . . , c}.

Lemma A.5.1. Given similarity transition matrix Ts, the loss function
ℓ(f(Xi), f(Xj), Ts, H̃ij) is µ-Lipschitz with respect to hk(Xi), k = {1, . . . , c},
and µ = (Ts,11 − Ts,01)/Ts,11∣∣∣∣∣∂ℓ(f(Xi), f(Xj), Ts, H̃ij)

∂hk(Xi)

∣∣∣∣∣ < Ts,11 − Ts,01
Ts,11

. (A.8)

Detailed proof of Lemma A.5.1 can be found in Section A.5.1.

Lemma A.5.1 shows that the loss function is µ-Lipschitz with respect
to hk(Xi), k = {1, . . . , c}.

Based on Lemma A.5.1, we can further upper bound the Rademacher
complexity Rn(ℓ ◦ F) by the following lemma.

Lemma A.5.2. Given similarity transition matrix Ts and assume that loss
function ℓ(f(Xi), f(Xj), Ts, H̃ij) is µ-Lipschitz with respect to hk(Xi), k =
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{1, . . . , c}, we have

Rn(ℓ ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

≤ µcE

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
, (A.9)

where H is the function class induced by the deep neural network.

Detailed proof of Lemma A.5.2 can be found in Section A.5.2.

The right-hand side of the above inequality, indicating the hypothesis
complexity of deep neural networks and bounding the Rademacher com-
plexity, can be bounded by the following theorem.

Theorem A.5.3. [31] Assume the Frobenius norm of the weight matri-
ces W1, . . . ,Wd are at most M1, . . . ,Md. Let the activation functions be
1-Lipschitz, positive-homogeneous, and applied element-wise (such as the
ReLU). Let X is upper bounded by B, i.e., for any X, ∥X∥ ≤ B. Then,

E

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
≤ B(

√
2d log 2 + 1)Πd

i=1Mi√
n

. (A.10)

Combining Lemma A.5.1,A.5.2, and Theorem A.5.2, A.5.3, Theorem
A.5.1 is proved.

A.5.1 Proof of Lemma 1

Recall that

ℓ(f(Xi), f(Xj), Ts, H̃ij = 1)

= − log( ˆ̃Sij)

= − log(Ŝij × Ts,11 + (1− Ŝij)× Ts,01)

= − log(f(Xi)
⊤f(Xj)× Ts,11 + (1− f(Xi)

⊤f(Xj))× Ts,01), (A.11)
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where

f(Xi) = [f1(Xi), . . . , fc(Xi)]
⊤

=

[(
exp(h1(X))∑c
k=1 exp(hk(X))

)
, . . . ,

(
exp(hc(X))∑c
k=1 exp(hk(X))

)]⊤
. (A.12)

Take the derivative of ℓ(f(Xi), f(Xj), Ts, H̃ij = 1) w.r.t. hk(Xi), we
have

∂ℓ(f(Xi), f(Xj), Ts, H̃ij = 1)

∂hk(Xi)

=
∂ℓ(f(Xi), f(Xj), Ts, H̃ij = 1)

∂ ˆ̃Sij

[ ∂f(Xi)

∂hk(Xi)

]⊤ ∂ ˆ̃Sij
∂f(Xi)

,

where

∂ℓ(f(Xi), f(Xj), Ts, H̃ij = 1)

∂ ˆ̃Sij

= − 1

f(Xi)⊤f(Xj)× Ts,11 + (1− f(Xi)⊤f(Xj))× Ts,01
,

∂ ˆ̃Sij
∂f(Xi)

= f(Xj)× Ts,11 − f(Xj)× Ts,01,

∂f(Xi)

∂hk(Xi)
= f ′(Xi) = [f ′1(Xi), . . . , f

′
c(Xi)]

⊤.

Note that the derivative of the softmax function has some properties,
i.e., if m ̸= k, f ′m(Xi) = −fm(Xi)fk(Xi) and if m = k, f ′k(Xi) = (1 −
fk(Xi))fk(Xi).

We denote by V ectorm the m−th element in V ector for those complex
vectors. Because 0 < fm(Xi) < 1,∀m ∈ {1, . . . , c}, we have

f ′m(Xi) ≤ |f ′m(Xi)| < fm(Xi), ∀m ∈ {1, . . . , c}; (A.13)

f ′(Xi)
⊤f(Xj) < f(Xi)

⊤f(Xj). (A.14)
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Therefore, ∣∣∣∣∣∂ℓ(f(Xi), f(Xj), Ts, H̃ij = 1)

∂hk(Xi)

∣∣∣∣∣
=

∣∣∣∣∣∂ℓ(f(Xi), f(Xj), Ts, H̃ij = 1)

∂ ˆ̃Sij

[ ∂f(Xi)

∂hk(Xi)

]⊤ ∂ ˆ̃Sij
∂f(Xi)

∣∣∣∣∣
=

∣∣∣∣ f ′(Xi)
⊤f(Xj)× Ts,11 − f ′(Xi)

⊤f(Xj)× Ts,01
f(Xi)⊤f(Xj)× Ts,11 + (1− f(Xi)⊤f(Xj))× Ts,01

∣∣∣∣
<

∣∣∣∣ f(Xi)
⊤f(Xj)× Ts,11 − f(Xi)

⊤f(Xj)× Ts,01
f(Xi)⊤f(Xj)× Ts,11 + (1− f(Xi)⊤f(Xj))× Ts,01

∣∣∣∣
<

∣∣∣∣Ts,11 − Ts,01Ts,11

∣∣∣∣
=
Ts,11 − Ts,01

Ts,11
. (A.15)

The second inequality holds because of Ts,11 > Ts,01 (Detailed proof can
be found in Section A.5.1) and Equation (20). The third inequality holds
because of f(Xi)

⊤f(Xj) < 1.

Similarly, we can prove∣∣∣∣∣∂ℓ(f(Xi), f(Xj), Ts, H̃ij = 0)

∂hk(Xi)

∣∣∣∣∣ < Ts,11 − Ts,01
Ts,11

. (A.16)

Combining Equation (A.15) and Equation (A.16), we obtain∣∣∣∣∣∂ℓ(f(Xi), f(Xj), Ts, H̃ij)

∂hk(Xi)

∣∣∣∣∣ < Ts,11 − Ts,01
Ts,11

. (A.17)
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Proof of Ts,11 > Ts,01

As we mentioned in Section A.3, we have,

N00 = n2
∑

i ̸=i′,j ̸=j′
Tc,ijTc,i′j′ , N01 = n2

∑
i ̸=i′,j=j′

Tc,ijTc,i′j′ ,

N10 = n2
∑

i=i′,j ̸=j′
Tc,ijTc,i′j′ , N11 = n2

∑
i=i′,j=j′

Tc,ijTc,i′j′ ,

Ts,01 =
N01

N00 +N01

, Ts,11 =
N11

N10 +N11

,

Ts,11 − Ts,01 =
N11N00 +N11N01 −N01N10 −N01N11

(N00 +N01)(N10 +N11)
.

Let us review the definition of similarity labels: if two instances belong to
the same class, they will have similarity label S = 1, otherwise S = 0.
That is to say, for a k-class dataset, only 1

k
of similarity data has similarity

labels S = 1, and the rest 1 − 1
k

has similarity labels S = 0. We denote
the number of data with similarity labels S = 1 by N1, otherwise N0.
Therefore, for the balanced dataset with n samples of each class, N1 = cn2,
and N0 = c(c− 1)n2. Let A = Ts,11 − Ts,01, we have

A = N11N00 −N01N10

= N11N00 − (N0 −N00)(N1 −N11)

= N11N00 −N0N1 −N11N00 +N11N0 +N1N00

= N11N0 −N01N1

= c(c− 1)n2N11 − cn2N01

> 0.

The last equation holds because of (c − 1)N11 − N01 > 0 according to the
rearrangement inequality [39].



A.6. Further Details on Experiments 99

A.5.2 Proof of Lemma 2

E

[
sup
f∈F

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

= E

[
sup
g

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

= E

[
sup

argmax{h1,...,hc}

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

= E

[
sup

max{h1,...,hc}

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

≤ E

[
c∑

k=1

sup
hk∈H

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

=
c∑

k=1

E

[
sup
hk∈H

1

n

n∑
i=1

σiℓ(f(Xi), f(Xj), Ts, H̃ij)

]

≤ µcE

[
sup
hk∈H

1

n

n∑
i=1

σihk(Xi)

]

= µcE

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
,

where the first three equations hold because given Ts, f and max{h1, . . . , hc}
give the same constraint on hj(Xi), j = {1, . . . , c}; the sixth inequality holds
because of the Talagrand Contraction Lemma [59].

A.6 Further Details on Experiments

A.6.1 Network Structure and Optimization

Note that for CIFAR-10, we use ResNet-26 with shake-shake regulariza-
tion [30] except the experiment on noisy Tc in Figure 4, where we use
ResNet-32 with pre-activation [41] for shorter training time. In stage 1,
We use the same optimization method as Forward to learn the transition
matrix T̂c. In stage 2, we use Adam optimizer with an initial learning rate
0.001. On MNIST, the batch size is 128 and the learning rate decays every
5 epochs by a factor of 0.1 with 30 epochs in total. On CIFAR-10, the
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batch size is 512 and the learning rate decays every 40 epochs by a factor
of 0.1 with 200 epochs in total. On CIFAR-100, the batch size is 512 and
the learning rate decays every 40 epochs by a factor of 0.1 with 120 epochs
in total. On News20, the batch size is 128 and the learning rate decays
every 5 epochs by a factor of 0.1 with 30 epochs in total. On Clothing1M*,
the batch size is 32 and the learning rate drops every 5 epochs by a factor
of 0.1 with 10 epochs in total.

A.6.2 Symmetric and Asymmetric Noise Settings

Symmetric noise setting is defined as follow, where c is the number of
classes.

Sym-ρ: T =



1− ρ ρ
C−1 . . . ρ

C−1
ρ

C−1
ρ

C−1 1− ρ ρ
C−1 . . . ρ

C−1
... . . . ...
ρ

C−1 . . . ρ
C−1 1− ρ ρ

C−1
ρ

C−1
ρ

C−1 . . . ρ
C−1 1− ρ


. (A.18)

The asymmetric noise setting is set as follow,

Listing A.1: Asymmetric noise (transition matrix) generation.

1 def AsymTransitionMatrixGenerate(NoiseRate=0.3,

NumClasses=10, seed=1):

2 np.random.seed(seed)

3 t = np.random.rand(NumClasses, NumClasses)

4 i = np.eye(NumClasses)

5 t = t + Coef * NumClasses * i

6 for a in range(NumClasses):

7 t[a] = t[a] / t[a].sum()

8 return t

Coef is set to 1.70, 1.20, 0.60, 0.24 at the rate 0.2, 0.3, 0.4, 0.6, respectively.
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Supplementary for Chapter 4

B.1 More Empirical Studies

B.1.1 More Empirical Study regarding Figure. 1

(a) Partitioned at a
start stage.

(b) Partitioned at an
early stage.

(c) Partitioned at an
end stage.

(d) Partitioned at a
start stage.

(e) Partitioned at an
early stage.

(f) Partitioned at an
end stage.

Figure B.1: TCP (mean and std.) of three groups partitioned by TCP
calculated at the start stage (epoch 5), early stage (epoch 30), and end
stage (epoch 95) during training a ResNet50 on CIFAR100 with IDN-0.4
for 100 epochs. The first row is partitioned by high TCP (10%), middle
TCP (80%), and low TCP (10%). The second row is partitioned by high
TCP (20%), middle TCP (60%), and low TCP (20%).

Figures B.1 and B.2 show the results on more practical dataset CI-
FAR100 and IDN noise 0.4 higher IDN noise 0.6 with different partitions
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(a) Partitioned at a
start stage.

(b) Partitioned at an
early stage.

(c) Partitioned at an
end stage.

(d) Partitioned at a
start stage.

(e) Partitioned at an
early stage.

(f) Partitioned at an
end stage.

Figure B.2: TCP (mean and std.) of three groups partitioned by TCP
calculated at the start stage (epoch 5), early stage (epoch 30), and end
stage (epoch 95) during training a ResNet50 on CIFAR100 with IDN-0.6
for 100 epochs. The first row is partitioned by high TCP (10%), middle
TCP (80%), and low TCP (10%). The second row is partitioned by high
TCP (20%), middle TCP (60%), and low TCP (20%).

(2:6:2), which demonstrate that our claims hold in general and do not
change sensitively with the partition ratios.

(a) Partitioned at a
start stage.

(b) Partitioned at an
early stage.

(c) Partitioned at an
end stage.

Figure B.3: TCP (mean and std.) of three groups (high TCP (10%),
middle TCP (80%), and low TCP (10%)) partitioned by the TCP calculated
at the start stage (epoch 5), early stage (epoch 30), and end stage (epoch
95) during training a ResNet50 on CIFAR100 with IDN-0.4 for 100 epochs.

Figures B.3 and B.4 show the results on datasets CIFAR100 and
SVHN with different model architectures. Conclusions from Section 3 are
based on the memorization effect of overparameterized DNNs. Therefore,
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(a) Partitioned at a
start stage.

(b) Partitioned at an
early stage.

(c) Partitioned at an
end stage.

Figure B.4: TCP (mean and std.) of three groups (high TCP (10%),
middle TCP (80%), and low TCP (10%)) partitioned by the TCP calculated
at the start stage (epoch 5), early stage (epoch 30), and end stage (epoch
95) during training a AlexNet on SVHN with IDN-0.4 for 100 epochs.

(a) Clean ratios of the selected top
5000 instances ranked by six kinds of
instance hardness measures.

(b) Clean ratios of the selected top
5000 instances ranked by EMA with
fixed discount factors.

Figure B.5: Clean ratios of the selected top 5000 instances ranked by
different instance hardness measures, respectively. The clean ratio of ran-
domly selected instances is 0.6 since the noise rate is 0.4.

they hold better for deeper DNNs (ResNet50) than the shallower DNNs
(AlexNet). Moreover, for AlexNet on SVHN, the high TCP group parti-
tioned at an early stage has no overlap with the middle TCP group. Over-
all, the results demonstrate that our conclusions in the paper hold true and
generalize to other architectures and datasets.

B.1.2 Comparison with SOTA Selection Methods

Following the same setting as Figure 2, we select 5,000 confident exam-
ples at every epoch t according to six types of selection criterion, i.e., in-
stantaneous prediction InPt(x), instantaneous loss ℓ(x), time-consistency



104 Appendix B. Supplementary for Chapter 4

of prediction TCPt(x), time-consistency of loss, and two SOTA confident
sample selection methods: FINE [51] and Topological Filter [118]. Besides,
we replace t

t+1
in Eq. (1) with fixed discount factors λ and name the cor-

responding measure as EMA− λ. Then we count the number of instances
with clean labels and calculate the clean ratios. As shown in Figure B.5,
at the starting stage, when the model just learns the clean data while has
not fit the noisy data, FINE and Topological Filter perform well. As the
training goes and the model fits the noisy data, our method achieves the
best selection clean ratio. Compared with fixed discount EMA measures,
our method achieves the best AUC (Area Under Curve).

B.2 Analysis on Introducing Instances with

Pseudo Labels

Consider the situation we have a labeled set L (in practice it can be the
selected confident examples set) and one unlabeled instance x′. By training
on L for one step, we have

θt+1 = θt − η
∑
x∈L

∇θℓ (x; θt) ,

and by training on L and x′ for one step, we have

θ
′

t+1 = θt − η

(∑
x∈L

∇θℓ (x; θt) +∇θℓ (x
′; θt)

)
,

where θt denotes the network parameters at step t and η denotes the learn-
ing rate.

The Taylor expansion of loss ℓ (x; θ) at the point θ = θ0 is:

gθ0 (θ) =

[∑
x∈L

ℓ (x; θ0) +∇θℓ (x; θ0) (θ − θ0)

]
+ o

(
(θ − θ0)2

)
. (B.1)

Then we evaluate the forgetting effect of introducing instances x′ with
its pseudo label to the training set by checking the change of loss over the
labeled set L with x′ added or not. If adding x′ does not cause a vital
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change, we can conclude that it does not lead to catastrophic forgetting
of the learned examples with correct labels. Therefore, we calculate the
change of loss over the labeled set by

1

η

∣∣∣∣∣∑
x∈L

[
ℓ (x; θt+1)− ℓ

(
x; θ̂t+1

)]∣∣∣∣∣ =1

η

∣∣∣gθt (θt+1)− gθt
(
θ̂t+1

)∣∣∣
≈

∣∣∣∣∣∇θℓ (x
′; θt)

∑
x∈L

∇θℓ (x; θt)

∣∣∣∣∣
=

∣∣∣∣∂ℓ (x′; θt)∂θt

∂θt
∂t

∣∣∣∣
=

∣∣∣∣∂ℓ (x′; θt)∂t

∣∣∣∣
=

∣∣∣∣∣∂ℓ (x′; θt)∂p
ŷ′t
t (x′)

∂p
ŷ′t
t (x′)

∂t

∣∣∣∣∣ ,
where pŷ

′
t
t (x

′) is the probability of x′ belonging to ŷ′t at step t, and ŷ′t is the
prediction (pseudo label) of x′ at step t. The second line holds because we
omit the second and higher order terms of the Taylor expansion in Eq (B.1).
Then, with cross-entropy loss employed, we have

∂ℓ (x′; θt)

∂p
ŷ′t
t (x′)

=
∂ log(p

ŷ′t
t (x′))

∂p
ŷ′t
t (x′)

= − 1

p
ŷ′t
t (x′)

.

Next, by using
(
p
ŷ′t
t+1(x

′)− pŷ
′
t
t (x

′)
)

to approximate ∂p
ŷ′t
t (x′)
∂t

, we have

1

η

∣∣∣∣∣∑
x∈L

[
ℓ (x; θt+1)− ℓ

(
x; θ

′

t+1

)]∣∣∣∣∣ ≈
∣∣∣∣∣p
ŷ′t
t+1(x

′)

p
ŷ′t
t (x

′)
− 1

∣∣∣∣∣ . (B.2)

Since x′ is selected with high clean-TCP, pŷ
′
t
t (x

′) is very close to pŷ
′
t
t+1(x

′)

because it has been verified in Figure 1 that instances with high clean-TCP
in the early stage maintain their high clean-TCP in the future, which means
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the loss change can be bounded with a very small value. Therefore, exploit-
ing high clean-TCP instances with pseudo labels helps to correct corrupted
labels and learn a clean classifier without causing catastrophic forgetting
of the learned examples with correct labels.
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Supplementary for Chapter 5

C.1 Derivation of Getting Ty(a) from Ty(x)

Here we take T−1(a) as an example. Let X ′ ≜ (Z,W ) and Xa ≜ (A =

a, Z,W ):

T−1(a) = P (Ỹ = +1 | Y = −1, A = a)

=

∫
P (X ′ = x′, Ỹ = +1, Y = −1, A = a) dx′∫

P (X ′ = x′, Y = −1, A = a) dx′

=

∫
P (Ỹ = +1 | X = xa, Y = −1)P (Y = −1 | X = xa)P (xa) dxa∫

P (Y = −1 | X = xa, )P (xa) dxa

=

∫
T−1(xa)P (Y = −1 | X = xa)P (xa) dxa∫

P (Y = −1 | X = xa)P (xa) dxa
,

(C.1)
where P (Y = −1 | X = x) = P (Ỹ=−1|X=x)−T+1(x)

(1−T−1(x)−T+1(x))
. In practice, we can use

the above equation to consistently estimate T−1(a).

C.2 Derivation of the Negative ELBO

To derive the ELBO, we start with maximizing the data likelihood pΘ(A,Z,W, Ỹ ):
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log pΘ(a, z, w, ỹ) (C.2)

= log

∫
u

∫
y

pΘ(a, z, w, ỹ, y, u)dy du (C.3)

= log

∫
u

∫
y

pΘ(a, z, w, ỹ, y, u)

qϕ1(u | z)qϕ2(y | u, z)
qϕ1(u | z)qϕ2(y | u, z)dy du (C.4)

= log E(u,y)∼qϕ(u,y|z)

[
pΘ(a, z, w, ỹ, y, u)

qϕ1(u | z)qϕ2(y | u, z)

]
(C.5)

≥ E(u,y)∼qϕ(u,y|z)

[
log

pΘ(a, z, w, ỹ, y, u)

qϕ1(u | z)qϕ2(y | u, z)

]
≜ ELBO (Jensen’s Inequality)

(C.6)

= E(u,y)∼qϕ(u,y|z)

[
log

p(a)p(u)pθ1(z | u)pθ2(y | u, z)pθ3(w | u, a, z, y)pθ4(ỹ | a, z, y, w)
qϕ1(u | z)qϕ2(y | u, z)

]
(C.7)

= E(u,y)∼qϕ(u,y|z) [log pθ1(z | u)] + E(u,y)∼qϕ(u,y|z) [log pθ3(w | u, a, z, y)]
(C.8)

+ E(u,y)∼qϕ(u,y|z) [log pθ4(ỹ | a, z, y, w)] (C.9)

+ E(u,y)∼qϕ(u,y|z)

[
log

p(u)

qϕ1(u | z)

]
+ E(u,y)∼qϕ(u,y|z) [log p(a)] (C.10)

= E(u,y)∼qϕ(u,y|z) [log pθ1(z | u)] + E(u,y)∼qϕ(u,y|z) [log pθ3(w | u, a, z, y)]
(C.11)

+ E(u,y)∼qϕ(u,y|z) [log pθ4(ỹ | a, z, y, w)]−DKL(qϕ1(u | z)∥p(u)) + log p(a).

(C.12)

Since log p(a) is a constant, we drop it in ELBO. Then, the final negative
ELBO can be defined as:

−ELBO ≜ −E(u,y)∼qϕ(u,y|z) [log pθ1(z | u)]− E(u,y)∼qϕ(u,y|z) [log pθ3(w | u, a, z, y)]
(C.13)

− E(u,y)∼qϕ(u,y|z) [log pθ4(ỹ | a, z, y, w)] + DKL(qϕ1(u | z)∥p(u)).
(C.14)
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Appendix D

Supplementary for Chapter 6

D.1 Motivation for the Noise Model

The class-conditional noise model is compelling for the setting that the label
of a pair of examples (x,x′) is annotated by human who can inevitably
make mistakes, i.e., the corruption is in P (S|x,x′). However, this setting
is not very suitable for our problem because we only collect similar data
pairs. Therefore, we do not have seeming dissimilar data pairs and only
modelling the corruption of P (S|x,x′) cannot solve our problem. Besides,
as we discuss in the related work, the CCN model is a special case of
the MCD model [76]. CCN model does not fit the MCD setting problem,
though the MCD model fits the CCN setting problem conversely. Namely,
our method, which is developed under the MCD model, can also solve the
CCN problem.

In addition to its good generality, we employ the MCD model because
CCN is a noise model for labeling noise and MCD is a noise model for sam-
pling noise, which is why MCD is more suitable for the scenario of survey-
ing sensitive topics with indirect questioning. Data reliability is a common
concern especially when asking about sensitive topics such as sexual mis-
conduct, or drug and alcohol abuse. Sensitive topics might cause refusals
in surveys due to privacy concerns of the subjects [86]. This nonresponse
reduces sample size and study power and increases bias. Various indirect
questioning methods have been developed to reduce the social desirability
bias and increase data reliability. Questions in the form of ‘With whom do
you share the same opinion on issue I?’ can be regarded as one type of
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randomized response technique, which is a commonly used indirect ques-
tioning survey method [114, 29, 5]. Such questioning is to sample examples
of similar data pairs from ps(x,x

′). Besides, due to the sensitivity of the
questions, respondents might answer them in a manner that will be viewed
favorably by others instead of answering truthfully [86], which makes the
selected examples contain dissimilar data pairs from pd(x,x

′). These phe-
nomena motivate us to employ the contamination model to describe the
noisy similar data pairs, i.e., p̃s(x,x′) = (1− ρd)ps(x,x′) + ρdpd(x,x

′).

D.2 Discussion about the Data Independence

Assumption

Following [5], we assume that each instance is independently drawn from
the joint distribution, i.e.,

ps(x,x
′) = p(x,x′|y = y′ = +1 ∨ y = y′ = −1)

=
π2
+p+(x)p+(x

′) + π2
−p−(x)p−(x

′)

π2
+ + π2

−
.

However, in real-world surveys, a given positive example might occur
very frequently with a few positive examples and very in-frequently with
other positive examples. Then the distribution of similar pairs is shifted
from the original one. We denote the shifted distribution by p′s(x,x′) and
let p′s(x,x′) = w(x,x′) ps(x,x

′). Then we have

p(x,x′) = πsp
′
s(x,x

′) + πdpd(x,x
′), (D.1)

p̃s(x,x
′) = (1− ρd)p′s(x,x′) + ρdpd(x,x

′), (D.2)

ps(x,x
′) =

1− πs
(1− ρd − πs)w(x,x′)

p̃s(x,x
′)− ρd

(1− ρd − πs)w(x,x′)
p(x,x′).

(D.3)

Then, by substituting Eq.(D.3) into Eq.(D.4), the original risk can be
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equivalently expressed in terms of data sampled from the shifted distribu-
tion p′s(x,x′) and the unlabeled data as

E
(x,y)∼p

[ℓ(f(x), y)] =
πs(1− πs)

(1− ρd − πs)(2π+ − 1)
E

(x,x′)∼p̃s

[
l̃(x) + l̃(x′)

2w(x,x′)

]

− πsρd
(1− ρd − πs)(2π+ − 1)

E
(x,x′)∼p

[
l̃(x) + l̃(x′)

2w(x,x′)

]
− π−

(2π+ − 1)
E

x∼p
[ℓ(f(x),+1)]

+
π+

(2π+ − 1)
E

x∼p
[ℓ(f(x),−1)] .

Therefore, given the weight w(x,x′), we can design an unbiased risk
estimator according to the above equation. To validate this setting exper-
imentally, we assign w(x,x′) to every pair, and the new data is sampled
from p′s(x,x

′). We compare the weighted-nSU (wnSU-DC) with the origi-
nal nSU-DC and SU-DC on UCI and LIBSVM datasets. From Table D.1,
we can see that in this shifted setting, wnSU-DC outperforms the original
nSU-DC and SU-DC. The weight function w(x,x′) must be away from 0,
and this gap can affect both the optimization stability and the generaliza-
tion bound where 1/min(w) will also be in the convergence rate. Another
implication of having a weight function is that the unbiased risk estimator
should be no longer very good to use in practice because we need to round
up too small w which leads to a benign bias (benign in both optimization
stability and generalization bound).

Table D.1: Means and Standard Deviations (Percentage) of Classification
Accuracy on the UCI and LIBSVM datasets with {π+ = 0.7, ρd = 0.2} and
{π+ = 0.8, ρd = 0.1}.

Dataset australian breast-cancer fourclass magic cod-rna adult banknote heart svmguide1 htru_2

{0.7, 0.2}

wnSU-DC 63.4±9.2 93.6±4.7 73.6±8.4 66.2±1.1 78.6±8.8 58.6±6.4 81.2±5.8 72.2±2.6 64.4±10.4 90.8±4.0

nSU-DC 62.9±8.7 82.9±4.3 72.6±8.3 64.2±5.2 74.0±7.0 58.7±7.1 67.6±4.6 70.4±10.5 64.1±8.0 86.8±7.0

SU-DC 55.7±4.8 88.7±7.6 71.0±5.7 64.1±4.4 72.9±6.6 63.8±4.5 68.1±3.1 63.0±5.2 54.9±3.9 90.0±0.7

{0.8, 0.1}

wnSU-DC 61.4±8.6 90.1±9.6 73.2±6.2 68.1±4.2 78.2±4.0 73.8±2.3 75.8±9.9 71.1±8.0 65.0±12.3 93.7±2.3

nSU-DC 60.9±5.2 71.0±6.2 72.6±6.6 64.7±4.8 77.4±10.2 72.9±3.3 75.1±9.1 65.9±4.1 60.6±4.4 85.9±7.7

SU-DC 58.0±4.5 81.4±12.8 72.6±9.6 66.6±1.8 73.9±8.1 75.0±0.9 75.1±6.4 61.5±4.2 61.3±3.5 85.5±5.1
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D.3 Proof of Lemma 1

Proof. Since x and x′ are drawn independently, we have

p(x,x′) = p(x)p(x′)

= π2
+p+(x)p+(x

′) + π2
−p−(x)p−(x

′)

+ π+π−p+(x)p−(x
′) + π+π−p−(x)p+(x

′)

= πsps(x,x
′) + πdpd(x,x

′).

D.4 Proof and Discussion about Theorem 1

Proof. To begin with, we introduce the following lemma:

Lemma D.4.1 ([5]). The classification risk (6.3) can be equivalently ex-
pressed as

RSU(f) = E
(x,x′)∼ps

[LS(x,x
′)] + E

x∼p
[L′U(x)], (D.4)

where

LS(x,x
′) =

πs
2(2π+ − 1)

[l̃(x) + l̃(x′)],

l̃(x) = ℓ(f(x),+1)− ℓ(f(x),−1),

L′U(x) =
−π−

2π+ − 1
ℓ(f(x),+1) +

π+
2π+ − 1

ℓ(f(x),−1).

Combining Eq. (6.8) and Eq. (6.9) and organizing, we have

ps(x,x
′) =

1− πs
1− ρd − πs

p̃s(x,x
′)− ρd

1− ρd − πs
p(x,x′). (D.5)
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Substituting Eq.(D.5) into Eq.(D.4) we have

R(f) = RSU(f)

= E
(x,x′)∼p̃s

[
πs(1− πs)[ℓ(f(x),+1)− ℓ(f(x),−1) + ℓ(f(x′),+1)− ℓ(f(x′),−1)]

2(1− ρd − πs)(2π+ − 1)

]
+ E

x∼p

[
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),+1)− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),−1)

]
= E

(x,x′)∼p̃s

[
πs(1− πs)

2(1− ρd − πs)(2π+ − 1)
[l̃(x) + l̃(x′)]

]
+ E

x∼p

[
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),+1)− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),−1)

]
= E

(x,x′)∼p̃s
[LnS(x,x

′)] + E
x∼p

[LU(x)]

= RnSU(f),

where

LnS(x,x
′) =

πs(1− πs)
2(1− ρd − πs)(2π+ − 1)

[l̃(x) + l̃(x′)],

l̃(x) = ℓ(f(x),+1)− ℓ(f(x),−1),

LU(x) =
πsρd − π−(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),+1)

− πsρd − π+(ρd + πs − 1)

(ρd + πs − 1)(2π+ − 1)
ℓ(f(x),−1).

D.4.1 Discussion about π+ ̸= 0.5

The direct cause of this requirement π+ ̸= 0.5 is that the denominator of the
risk contains the term (2π+−1), which cannot be zero. The intuitive and ul-
timate cause is that if π+ = 0.5, the marginal distributions of similarity data
and unlabeled data are the same, i.e., ps(x) = p(x) = 0.5p+(x)+0.5p−(x),
but at least 2 marginals with different class priors are required to make
comparison and extract contrastive information to make the prediction [66].
Technically, if π+ = 0.5, those terms in the original risk expression, e.g.,

E
x,x′∼p+

[
ℓ(f(x),+1)+ℓ(f(x′),+1)

2

]
cannot be rewritten as a linear combination of
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E
(x,x′)∼ps

[
ℓ(f(x),+1)+ℓ(f(x′),+1)

2

]
and E

x∼p
[ℓ(f(x),+1)].

A π+ value close to 0.5 makes the marginal distributions of ps and p

more similar and makes ps and p more entangled. Thus, it becomes more
difficult to solve the MPE problem and thereby leads to a poor estimation of
the parameters. We investigate the effect of π+ by conducting experiments
on UCI and LIBSVM datasets with π+ = [0.55, 0.6, 0.7] and a constant
noise rate ρd = 0.2. From Table D.2, we can see that the classification
accuracy of nSU-LC decreases as the class prior approaches 0.5, indicating
the parameters are poorly estimated. Most of SU-LC’s results decrease
while some of them get increased. The reason could be that the poorly
estimated parameters accidentally are close to the true values for SU-LC.
Overall, our method nSU-LC performs better than the baseline with a π+
value close to 0.5.

Table D.2: Means and Standard Deviations (Percentage) of Classification
Accuracy on the UCI and LIBSVM datasets with π+ = [0.55, 0.6, 0.7] and
ρd = 0.2.

Dataset australian breast-cancer fourclass magic cod-rna adult banknote heart svmguide1 htru_2

{0.7, 0.2}

nSU-LC 83.1±4.2 93.6±1.7 71.5±6.7 76.2±1.5 89.8±2.7 67.9±1.0 98.0±1.1 83.3±3.7 76.1±7.0 96.4±1.3

SU-LC 63.7±5.4 84.1±3.8 63.7±1.5 69.5±3.5 62.1±12.0 63.6±4.2 94.9±5.6 58.3±7.6 52.8±3.4 96.1±1.2

{0.6, 0.2}

nSU-LC 75.1±6.1 91.3±3.4 69.9±7.5 72.4±0.8 87.7±2.4 62.3±3.1 97.3±1.4 81.5±6.8 75.1±6.3 92.5±4.6

SU-LC 59.7±5.5 85.2±3.3 62.4±0.5 69.6±3.2 61.2±3.5 59.8±3.3 93.7±7.5 53.1±2.1 54.6±6.8 95.6±0.5

{0.55, 0.2}

nSU-LC 66.9±9.2 86.4±4.9 69.4±9.4 67.1±4.3 78.4±5.3 54.4±4.5 90.9±3.6 74.1±6.8 69.7±8.8 86.4±6.3

SU-LC 55.7±0.4 79.4±3.3 64.2±0.1 66.3±3.6 65.4±2.7 52.4±3.0 90.3±5.6 54.6±1.9 58.8±7.7 93.1±1.9

D.5 Proof and Discussion about Theorem 2

Proof. There exists a twice differentiable function ψ : R → R+ such that
ℓ(z, t) = ψ(tz), because ℓ is a twice differentiable margin loss function.
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Taking the derivative of

Ĵℓ(w) =
1

nnS

nnS∑
i=1

LnS(xS,i,x
′
S,i) +

1

nU

nU∑
i=1

LU(xU,i) +
λ

2
∥w∥2

=
A

2nnS

2nnS∑
i=1

[ℓ(w⊤ϕ(xS,i),+1)− ℓ(w⊤ϕ(xS,i),−1)]

+
B

nU

nU∑
i=1

[ℓ(w⊤ϕ(xU,i),+1)]− C

nU

nU∑
i=1

[ℓ(w⊤ϕ(xU,i),−1)] +
λ

2
∥w∥2

=
λ

2
w⊤w − A

2nnS

2nnS∑
i=1

w⊤ϕ(xS,i)

+
B

nU

nU∑
i=1

[ℓ(w⊤ϕ(xU,i),+1)]− C

nU

nU∑
i=1

[ℓ(w⊤ϕ(xU,i),−1)],

with respect to w,

∂

∂w
Ĵℓ(w) = λw − A

2nnS

2nnS∑
i=1

ϕ(xS,i)

+
1

nU

nU∑
i=1

{
B
∂ℓ(ξi,+1)

∂ξi
− C∂ℓ(ξi,−1)

∂ξi

}
ϕ(xU,i),

where ξi = w⊤ϕ(xU,i).

Note that the second-order derivative of ℓ(z, t) with respect to z is

∂2ℓ(z, t)

∂z2
=
∂2ψ(tz)

∂z2
=

∂

∂z

(
t
∂ψ(ξ)

∂ξ

)
= t2

∂2ψ(ξ)

∂ξ2
=
∂2ψ(ξ)

∂ξ2
,

where ξ = tz is employed in the second equality and the last equality holds
because t ∈ {+1,−1}.

The Hessian matrix is a square matrix of second-order partial deriva-
tives of a scalar-valued function. A twice continuously differentiable func-
tion of several variables is convex on a convex set if and only if its Hessian
matrix of second partial derivatives is positive semidefinite on the interior



116 Appendix D. Supplementary for Chapter 6

of the convex set. For Ĵℓ, its Hessian matrix is

H Ĵℓ(w) = λI +
1

nU

nU∑
i=1

{
B
∂

∂w

∂ℓ(ξi,+1)

∂ξi
− C ∂

∂w

∂ℓ(ξi,−1)
∂ξi

}
ϕ(xU,i)

⊤

= λI +
1

nU

nU∑
i=1

{
B
∂2ℓ(ξi,+1)

∂ξ2i

∂ξi
∂w
− C∂

2ℓ(ξi,−1)
∂ξ2i

∂ξi
∂w

}
ϕ(xU,i)

⊤

= λI +
1

nU

nU∑
i=1

{
B
∂2ℓ(ξi,+1)

∂ξ2i
− C∂

2ℓ(ξi,−1)
∂ξ2i

}
ϕ(xU,i)ϕ(xU,i)

⊤

= λI +
1

nU

nU∑
i=1

(B − C)∂
2ψ(ξ)

∂ξ2
ϕ(xU,i)ϕ(xU,i)

⊤

= λI +
1

nU

∂2ψ(ξ)

∂ξ2

nU∑
i=1

ϕ(xU,i)ϕ(xU,i)
⊤.

Since ℓ is convex, ∂2ψ(ξ)
∂ξ2
≥ 0. Besides, ϕ(xU,i)ϕ(xU,i)

⊤ ⪰ 0. Therefore
H Ĵℓ(w) ⪰ 0, and Ĵℓ(w) is convex.

Examples of marginal loss functions other than the squared loss func-
tion that satisfy the condition in Theorem 2 are logistic loss and double
hinge loss.

If we focus on the margin loss function ψ, the condition in Theo-
rem 2 can be relaxed to that the corresponding loss ℓ is α-linear-odd:
ℓ(x, 1) − ℓ(x,−1) = αx, for any α ∈ R [87]. This condition is both suf-
ficient and necessary for the composite loss to be convex. The sufficiency
can be proved in the same way above. Below we prove this condition is
necessary. Without additional assumptions, the objective function can be
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decomposed as follows

Ĵℓ(w) ≜
πS
2nS

2nS∑
i=1

LS,ℓ

(
w⊤ϕ(xS,i)

)
+

1

nU

nU∑
i=1

LU,ℓ

(
w⊤ϕ(xU,i)

)
+
λ

2
∥w∥2

=
λ

2
w⊤w +

πS
2nS (2π+ − 1)

2nS∑
i=1

{
ℓ
(
w⊤ϕ(xS,i),+1

)
− ℓ
(
w⊤ϕ(xS,i),−1

)}
+

1

nU (2π+ − 1)

nU∑
i=1

{
−π−ℓ

(
w⊤ϕ(xU,i),+1

)
+ π+ℓ

(
w⊤ϕ(xU,i),−1

)}
=
λ

2
w⊤w +

πS
2nS (2π+ − 1)

2nS∑
i=1

{
ℓ
(
w⊤ϕ(xS,i),+1

)
− ℓ
(
w⊤ϕ(xS,i),−1

)}
− π−
nU (2π+ − 1)

nU∑
i=1

{
ℓ
(
w⊤ϕ(xU,i),+1

)
− ℓ
(
w⊤ϕ(xU,i),−1

)}
+

1

nU (2π+ − 1)

nU∑
i=1

{
(π+ − π−)ℓ

(
w⊤ϕ(xU,i),−1

)}
.

Notice that the first and the last terms are both convex with respect to w.
Since the second and third terms cannot be convex simultaneously unless
they are both linear in w. Therefore, to make this objective function con-
vex for arbitrary data and hyper-parameters, (ℓ(x, 1) − ℓ(x,−1)) must be
linear in x.

D.6 Why Assumption 1 − ρd > πs Generally

Holds

Note that the physical meanings of πs and 1 − ρd are the pro portion
of similar data pairs in unlabeled data Du and noisy similarity data D̃s.
Generally, even though D̃s contains some noise, it still collects similar data
pairs purposely, and thereby the noise is not too large. Thus, the proportion
of similar data pairs in purposely collected noisy similarity data D̃s (i.e.,
1− ρd) is generally bigger than in unlabeled data Du (i.e., πs). Besides, if
this condition is not satisfied, it becomes a different problem and thus we
need a new solution rather than still solving this problem in the proposed
way.
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D.7 Proof of Theorem 3

Theorem D.7.1. Assume the positive data distribution P+ and the neg-
ative data distribution P− are mutually irreducible, then Pd is irreducible
with respect to P̃s, and Ps is irreducible with respect to P . Thus the mixture
proportion γ and κ in Lemma 6.3.2 is identifiable.

Proof. Since the positive data distribution P+ and the negative data dis-
tribution P− are mutually irreducible, the following two equations hold:

inf
S∈S,P−(S)>0

P+(S)

P−(S)
= 0, (D.6)

inf
S∈S,P+(S)>0

P−(S)

P+(S)
= 0. (D.7)

For Ps and Pd,

Pd(S, S
′)

Ps(S, S ′)
=

(π2
+ + π2

−)(P+(S)P−(S
′) + P−(S)P+(S

′))

2(π2
+P+(S)P+(S ′) + π2

−P−(S)P−(S
′))

=
(π2

+ + π2
−)(P−(S

′)/P+(S
′) + P−(S)/P+(S))

2(π2
+ + π2

−(P−(S)/P+(S))(P−(S ′)/P+(S ′)))
.

According to Eq. (D.7),

inf
S,S′∈S,Ps(S,S′)>0

Pd(S, S
′)

Ps(S, S ′)
= 0. (D.8)

Similarly, we have,

inf
S,S′∈S,Pd(S,S′)>0

Ps(S, S
′)

Pd(S, S ′)
= 0. (D.9)

Thus, Ps and Pd are mutually irreducible.
For Pd and P̃s,

Pd(S, S
′)

P̃s(S, S ′)
=

Pd(S, S
′)

(1− ρd)Ps(S, S ′) + ρdPd(S, S ′)

=
Pd(S, S

′)/Ps(S, S
′)

(1− ρd) + ρdPd(S, S ′)/Ps(S, S ′)
.
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According to Eq. (D.8),

inf
S,S′∈S,P̃s(S,S′)>0

Pd(S, S
′)

P̃s(S, S ′)
= 0. (D.10)

Similarly, we have,

inf
S,S′∈S,P (S,S′)>0

Ps(S, S
′)

P (S, S ′)
= 0. (D.11)

Therefore, Pd is irreducible with respect to P̃s, and Ps is irreducible with
respect to P .

D.8 Proof of Theorem 4

Note that the loss function is symmetric to xS,i and x′S,i, such that the
expected and empirical risks can be expressed as

RnSU(f) = E
x∼p̃s

[LnS(x)] + E
x∼p

[LU(x)],

R̂nSU(f) =
1

2nnS

2nnS∑
i=1

LnS(xS,i) +
1

nU

nU∑
i=1

LU(xU,i).

LetRnS(f) = E
x∼p̃s

[LnS(x)], RU(f) = E
x∼p

[LU(x)],R̂nS(f) =
1

2nnS

∑2nnS

i=1 LnS(xS,i)

and R̂U(f) =
1
nU

∑nU

i=1 LU(xU,i), we have

R(f̂)−R(f ∗) = RnSU(f̂)−RnSU(f
∗)

= (RnSU(f̂)− R̂nSU(f̂)) + (R̂nSU(f̂)− R̂nSU(f
∗))

+ (R̂nSU(f
∗)−RnSU(f

∗))

≤ (RnSU(f̂)− R̂nSU(f̂)) + 0 + (R̂nSU(f
∗)−RnSU(f

∗))

≤ 2 sup
f∈F

∣∣∣RnSU(f)− R̂nSU(f)
∣∣∣

≤ 2 sup
f∈F

∣∣∣RnS(f)− R̂nS(f)
∣∣∣+ 2 sup

f∈F

∣∣∣RU(f)− R̂U(f)
∣∣∣ .
(D.12)

The third inequality holds because of the definition of f ∗.
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Here, we introduce the generalization error with Rademacher complex-
ity.

Lemma D.8.1 ([8]). Let the loss function be upper bounded by M . Then,
for any δ > 0, with the probability 1− δ, we have

sup
f∈F
|E[f(x)]−

1

n

n∑
i=1

f(xi)| ≤ 2Rn(ℓ ◦ F) +M

√
log 1/δ

2n
, (D.13)

where Rn(ℓ ◦ F) is the Rademacher complexity defined by

Rn(ℓ ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σiℓ(f(xi), f(xi′), S̄ii′)

]
, (D.14)

and {σ1, · · · , σn} are Rademacher variables uniformly distributed from {−1, 1}.

Now we can bound two terms in Eq.(D.12) with the next two lemmas.

Lemma D.8.2. Assume the loss function ℓ is ρ-Lipschitz with respect to
the first argument (0 < ρ < ∞), and all functions in the model class F
are bounded, i.e., there exists a constant Cb such that ∥f∥∞ ≤ Cb for any
f ∈ F . Let Cℓ ≜ supt∈{±1} ℓ(Cb, t). For any δ > 0, with probability at least
1− δ

2
,

sup
f∈F

∣∣∣RNS̃(f)− R̂NS̃(f)
∣∣∣ ≤ 4AρCF + A

√
2C2

ℓ log
4
δ√

2nnS

.
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Proof. By Lemma D.8.1,

sup
f∈F

∣∣∣RNS̃(f)− R̂NS̃(f)
∣∣∣

= A sup
f∈F

∣∣∣∣∣ E
x∼p̃s

[ℓ(f(x),+1)− ℓ(f(x),−1)]− 1

2nnS

2nnS∑
i=1

[ℓ(f(xS,i),+1)− ℓ(f(xS,i),−1)]

∣∣∣∣∣
≤ A

{
sup
f∈F

∣∣∣∣∣ E
x∼p̃s

[ℓ(f(x),+1)]− 1

2nnS

2nnS∑
i=1

ℓ(f(xS,i),+1)

∣∣∣∣∣
+sup

f∈F

∣∣∣∣∣ E
x∼p̃s

[ℓ(f(x),−1)]− 1

2nnS

2nnS∑
i=1

ℓ(f(xS,i),−1)

∣∣∣∣∣
}

≤ A

4R(ℓ ◦ F ; 2nnS, p̃s) +

√
2C2

ℓ log
4
δ

2nnS

 ,

where ℓ ◦ F in the last line means {ℓ ◦ f |f ∈ F}. The last inequality holds
from Lemma D.8.1. By Talagrand’s lemma (Lemma 4.2 in [79]),

R(ℓ ◦ F ; 2nnS, p̃s) ≤ ρR(F ; 2nnS, p̃s).

Together with R(F ;n, µ) ≤ CF√
n
, we obtain

sup
f∈F

∣∣∣RNS̃(f)− R̂NS̃(f)
∣∣∣ ≤ A

4ρ
CF√
2nnS

+

√
2C2

ℓ log
4
δ

2nnS


=

4AρCF + A
√

2C2
ℓ log

4
δ√

2nnS

.

Lemma D.8.3. Assume the loss function ℓ is ρ-Lipschitz with respect to
the first argument (0 < ρ < ∞), and all functions in the model class F
are bounded, i.e., there exists a constant Cb such that ∥f∥∞ ≤ Cb for any
f ∈ F . Let Cℓ ≜ supt∈{±1} ℓ(Cb, t). For any δ > 0, with probability at least
1− δ

2
,

sup
f∈F

∣∣∣RU(f)− R̂U(f)
∣∣∣ ≤ 2(−B − C)ρCF + (−B − C)

√
1
2
C2
ℓ log

4
δ

√
nU

.
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This lemma can be proven similarly to Lemma D.8.2.

Combining Lemma D.8.2, Lemma D.8.3 and Eq. (D.12), Theorem 6.3.4
is proven.

If we further take the MPE error into consideration, there is a gap
between the ground-truth empirical risk R̂nSU(f) and the approximated
empirical risk ˆ̂

RnSU(f), which uses the estimated class prior and noise rate.
We have

|R̂nSU(f)− ˆ̂
RnSU(f)| = |

A− Â
2NnS

2NnS∑
i=1

[ℓ(f(xS,i),+1)− ℓ(f(xS,i),−1)]

+
B − B̂
NU

NU∑
i=1

[ℓ(f(xU,i,+1)]− C − Ĉ
NU

NU∑
i=1

[ℓ(f(xU,i),−1)]|

≤

∣∣∣∣∣A− Â2NnS

2NnS∑
i=1

[ℓ(f(xS,i),+1)− ℓ(f(xS,i),−1)]

∣∣∣∣∣
+

∣∣∣∣∣B − B̂NU

NU∑
i=1

[ℓ(f(xU,i),+1)]

∣∣∣∣∣+
∣∣∣∣∣C − ĈNU

NU∑
i=1

[ℓ(f(xU,i),−1)]

∣∣∣∣∣ ,
where Â, B̂, Ĉ are the corresponding estimated ones.

Ideally, if we have the knowledge of the exact class priors and noise
rate parameters, those risks can be directly calculated since they are both
empirical risks. If not, according to the Theorem 12 in [93], we know that
the estimated value λ̂ converges to the true value λ with a rate O(m− 1

2 ):

|λ− λ̂| ≤ |α(λ)m−
1
2 |,

where α(λ) is the coefficient and m is the smaller number of data from two
proportions, i.e., F and H in the MPE. Let πs = g(κ, γ) = γ(1−κ)

1−γκ . The
Taylor series of πs at the true value π∗s (κ∗, γ∗) is:

πs = g(κ, γ) = g(κ∗, γ∗) + (κ− κ∗)g′

κ(κ
∗, γ∗) + (γ − γ∗)g′

κ(κ
∗, γ∗) + on.
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By omitting the high-order terms, we have:

|πs − π∗s | ≤ |(κ− κ∗)g
′

κ(κ
∗, γ∗) + (γ − γ∗)g′

κ(κ
∗, γ∗)|

≤
(
|α(κ∗)g′

κ(κ
∗, γ∗)|+ |α(γ∗)g′

κ(κ
∗, γ∗)|

) ∣∣∣m− 1
2

∣∣∣ ,
which indicates that the convergence rate for πs is O(m− 1

2 ). Likewise, ρd
and π+ both have the convergence rate of O(m− 1

2 ). Further, given that πs,
ρd, and π+ all converge with a rate of O(m− 1

2 ), similarly, we have that A,
B, and C all have the same convergence rate of O(m− 1

2 ).

D.9 Specific Class Information regarding News20
and CIFAR-10

Table D.3: The relationships between the semantic classes in the original
News20 and the classes selected in the News_05, · · · , News_49 datasets.

Dataset Positive Negative

News_05 alt.atheism comp.graphics
News_16 misc.forsale rec.autos
News_27 talk.politics.mideast comp.sys.ibm.pc.hardware
News_38 comp.os.ms-windows.misc sci.crypt
News_49 sci.space sci.med

Table D.4: The relationships between the semantic classes in the original
CIFAR-10 and the classes selected in the Cifar_03, Cifar_14, and Cifar_25
datasets.

Dataset Positive Negative

Cifar_03 airplane dog
Cifar_14 cat ship
Cifar_25 deer truck
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