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Abstract

Approximately, 350 million people, a proportion of 8%, suffer from color vision deficiency

(CVD). While image generation algorithms have been highly successful in synthesizing high-

quality images, CVD populations are unintentionally excluded from target users and have

difficulties understanding the generated images as normal viewers do. Although a straight-

forward baseline can be formed by combining generation models and recolor compensation

methods as the post-processing, the CVD friendliness of the result images is still limited since

the input image content of recolor methods is not CVD-oriented and will be fixed during the

recolor compensation process. Besides, the CVD populations can not be fully served since

the varying degrees of CVD are often neglected in recoloring methods.

To address these issues, we introduce a personalized CVD-friendly image generation

algorithm distinguished by two key features: (i) the ability to produce CVD-oriented images

that align with the needs of CVD populations, and (ii) the capacity to generate continuous

personalized images for people with various CVD degrees through disentangling the color

representation based on a triple-latent structure. Quantitative and qualitative experiments

affirm the effectiveness of our proposed image generation model, demonstrating its practicality

and superior performance compared to standard generation models and combination baselines

across multiple datasets.
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CHAPTER 1

Introduction

In this section, we will first introduce the growing interest in image generation and the typical

generative model structures. Additionally, the background of color vision deficiencies (CVD)

and the gamut of individuals with CVD will be illustrated. Then, we will provide insights

into the current GAPs and our motivation towards this work. Lastly, our main contribution

will be summarized.

1.1 Introduction of Image Generation

In an era dominated by digital media and visual storytelling, the ability to create, manipulate,

and generate images has become an indispensable facet of modern technology and commu-

nication. With the continuous advancement of deep learning technology, many outstanding

image-generation algorithms have been introduced. Starting from the early Variational Au-

toencoders (VAEs) [1, 2], progressing to Generative Adversarial Networks (GANs) [3, 4, 5, 6,

7], and most recently, the Diffusion Models (DMs) [8, 9].

Specifically, the common architecture of a Variational Autoencoder (VAE) comprises two

primary components: an encoder and a decoder. The encoder is responsible for encoding

the input training image into a probability distribution in a lower-dimensional space, while

the decoder’s role is to acquire the ability to resemble the image from this distribution [2].

Though VAEs can generate new data samples that resemble the training data, they often

tend to generate blurry and may struggle to capture highly complex data distributions [10].

Similarly, While Generative Adversarial Networks (GANs) and Diffusion Models (DMs) are

capable of generating high-quality images, they each have their respective limitations.
1



2 1 INTRODUCTION

In the context of Generative Adversarial Networks (GANs), there are two key components:

a generator and a discriminator. The generator’s primary task is to produce high-fidelity

images with the objective of deceiving the discriminator. Conversely, the discriminator is

tasked with distinguishing between genuine and synthesized images. Though high-quality

images can be generated through GANs, the training process can encounter challenges such

as instability and mode collapse [11]. On the counterpart, the typical training process of

Diffusion Models (DMs) involves both a noising process and a denoising process. During

the noising process, noise is introduced into the input training data following a Gaussian

distribution. Subsequently, the model learns to predict and remove this noise during the

denoising process. The following papers [11, 12, 13] introduce the classifier guidance

and classifier-free generation training strategies to enhance the conditional generation and

further incorporate the CLIP text encoder [14] to enhance the interactive generation process.

Despite their capability to achieve exceptional performance, DMs are hindered by substantial

computational costs, encompassing time, and resource requirements which can limit their

efficiency. In pursuit of a balance between image generation quality and computational

efficiency, we have opted to select the GAN as our primary baseline.

1.2 Introduction of Color Vision Deficiency

Human vision relies on three types of cone cells, known as L-cones (sensitive to long-

wavelength light, including red and orange), M-cones (sensitive to medium-wavelength light,

including green and cyan), and S-cones (sensitive to short-wavelength light, including blue

and purple). Variations in the spectral sensitivity of these cones result in different forms of

color vision deficiency (CVD), including protan for abnormal L-cones, deutan for abnormal

M-cones, and tritan for abnormal S-cones. Colloquially, these conditions are often referred to

as red-weak, green-weak, and blue-weak or even red-blind, green-blind, and blue-blind.

This variation in cone sensitivity has profound effects on how individuals perceive colors,

leading to different color gamuts for people with CVD, as depicted in Fig. 1.1. The severity

of CVD, denoted as δs, can be estimated as a percentage based on the shift ∆λ relative to
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FIGURE 1.1. CVD color gamut and cone curves. Compared to the normal
viewers’ (a) and (b) [15], (c) and (d) are CVD cone curves with a shift of ∆λL

and ∆λM ; (e) and (g) are the perceptual color gamut under varying severity
δs; In (f) and (h), the gamut is indistinguishable between every two dotted
lines with the same color. The white area is distinct to individuals with CVD.

the standard sensitivity curve, typically calibrated to a 20 nm shift. A 20 nm shift represents

total cone dysfunction, akin to dichromacy (single-color-blindness). This shift is measured

separately for L-cones and M-cones, denoted as ∆λL and ∆λM , respectively.

Roughly 350 million people,constituting approximately 8% of the population, contend

with color vision deficiency (CVD), and as of now, no efficient medical cure has been

developed [16]. Nevertheless, this sizeable population is unintentionally excluded as the

target audience of image generation, underscoring the need for the development of an image

generation model that is friendly to a broader range of viewers, including those with color

vision deficiency.

1.3 GAPs and Motivations in CVD-Friendly Generation

The term “CVD-friendly" refers to an image that can be comprehended similarly by both

individuals with color vision deficiency (CVD) and those with normal color vision. A CVD-

friendly image should preserve several essential characteristics, including the sharpness
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FIGURE 1.2. Compared to the combination baseline (a), the proposed CVD-
GAN (b) can generate CVD-oriented images directly, enhancing the friendli-
ness of the image for CVD populations. In addition, the model can generate
personalized friendly images for CVD populations with varying degrees by
disentangling the color representation based on the triple-latent structure.

of color transitions, consistency in color themes, and the retention of high-level semantic

information, ensuring that individuals with CVD can perceive and interpret the image in a

manner comparable to those with normal color vision.

So far, hardly any generation algorithm has offered to serve CVD populations. Some re-

coloring algorithms [17, 18, 19, 20, 21, 22, 23, 24, 25] can partly alleviate the problems

by post-processing compensation based on the CVD simulation [26, 27] that provides the

perspective of CVD populations of the given image. The process of recoloring can be sum-

marized as providing CVD-unfriendly images as input, conducting color compensation or

transformation, and outputting recolored images for CVD populations. As a result, a straight-

forward baseline for CVD-friendly generation can be formed by combining generation models
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FIGURE 1.3. Potential limitations of the recoloring methods.

and recolor methods as the post-processing as Fig. 1.2 (a). However, this baseline still has

many gaps in CVD-oriented and personalized generation.

The combination baseline is non-CVD-oriented, potentially restricting the user-friendliness

of recolored images, where the generated content remains unchanged as recoloring methods

solely concentrate on color transformation. This approach imposes a likely lower limit

on the user-friendliness of the recolored images since the content may also matter in the

CVD-friendly generation potentially and will somehow influence the performance of the

recoloring methods. To illustrate, consider situations where indistinguishable colors (i.e. red,

orange, and yellow) are present within a complex and intertwined color distribution or within

small, densely populated areas (as depicted in the middle and right pairs in Fig. 1.3). In such

scenarios, existing CVD-recolor methods often struggle to produce satisfactory results, as

opposed to situations where these colors are showcased in larger patches with well-defined

boundaries, as exemplified in the left pair of images in Fig. 1.3. (All figures are presented in

pairs, with samples and deutan-simulated versions of the recolored samples.) Furthermore,

despite the fact that CVD populations exhibit diverse requirements based on varying color

impairment severity [28, 21], only a few recolor algorithms have addressed the issue of CVD

diversity [20] so far.

Thus, our motivation is to propose a personalized CVD-friendly image generation algorithm,

aiming to facilitate the visual experience of the diverse CVD population, allowing them to

have a similar sensory experience to individuals with normal vision.
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1.4 Contributions of Our Paper

To address the above gaps, we propose a CVD-oriented personalized image generation

framework based on the adversarial network structure [4], as Fig. 1.2 (b). To generate CVD-

aligned images, a framework that allows for unbiased perception among normal viewers and

those with CVD is implemented. Further, in order to account for varying degrees of CVD,

the color representation will be decoupled and controlled by a novel triple-latent structure,

enabling the model to yield images with specified color distributions in accordance with the

severity of the color impairment.

Particularly, a differential CVD simulator [17] posterior to the generated image, where

CVD loss functions will be proposed and used to constrain the generated images and their

corresponding simulation to achieve the CVD-oriented generation. Additionally, to reach

the goal of personalized generation, triple-latent inputs will be established, where two latent

codes serve as contrastive supervision and the other one controls the color pattern generation.

Consequently, continuous CVD-friendly images towards various severity will be obtained

through latent traversal.

Our proposed method evaluates the friendliness of generated images based on contrast decay,

color information, and high-level perception across various types and degrees of CVD. Results

indicate that our method outperforms existing image generation models and combination

baselines on multiple datasets [29, 30, 24].

Our main contributions can be summarized as follows: (i) proposing an end-to-end CVD-

oriented image generation framework, (ii) proposing a novel triple-latent structure to dis-

entangle and control the color representation, enabling the model to generate continuous

personalized CVD-friendly images aligned with all degrees of CVD populations. (iii) Extens-

ive experiments on datasets [29, 30, 24] show that CVD-GAN can generate CVD-friendly

images for CVD populations with varying types and severity.



CHAPTER 2

Literature review

Our contribution is related to prior works about generative adversarial networks, GAN

Representation Disentanglement, and recoloring methods for CVD Compensation.

2.1 Generative Adversarial Network

In recent years, there has been a notable advancement in the domain of generative adversarial

networks (GANs), encompassing substantial progress in both image quality enhancement and

training stability, as evidenced by a substantial body of research [31, 6, 32, 7, 33, 34, 35, 36].

This commendable development is underscored by the transformation of generated images,

which have transitioned from rudimentary representations such as handwritten digits to

intricate and sophisticated compositions, including artistic paintings [37, 38] and exceptionally

high-resolution visuals [33].

It is worth noting that the foundational concept of adversarial networks, initially conceived in

the context of image generation, has transcended its origins and found extensive application

across diverse domains [39, 40]. This broad-spectrum application underscores the far-reaching

potential inherent in adversarial network frameworks.

However, amid this fervent pursuit of technological advancement and creative image synthesis,

it is imperative to acknowledge an unintentional consequence of this progress. Specifically,

individuals within the population afflicted by Color Vision Deficiency (CVD) may inadvert-

ently find themselves excluded as target users of these generated images. Regrettably, the

accessibility and comprehensibility of the content contained within these generated visuals
7
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may elude those grappling with CVD, thereby limiting their ability to fully engage with and

appreciate the evolving landscape of generative imagery. This inadvertent oversight highlights

a pressing concern in the intersection of technology, accessibility, and inclusivity, warranting

further exploration and potential remedies to ensure that these advancements benefit a wider

and more diverse audience.

2.2 GAN Representation Disentanglement

The challenge of disentangling and controlling representations within the generative process,

often regarded as a "black box," has been a subject of ongoing exploration and innovation in

the field of generative adversarial networks (GANs). Several approaches have been proposed

to address this intricate issue, each offering unique insights and solutions to the problem.

One notable approach is InfoGAN [41], which tackles the representation learning problem

by maximizing the mutual information between latent variables and generated data. This

framework seeks to uncover meaningful and interpretable representations within the latent

space, thus enhancing control over the generative process. StyleGAN [6] introduces a

distinctive architecture featuring intermediate latent variables. These intermediate variables

enable the "mixing" of style information and can be progressively fed into different layers

of the generator. This innovative structure provides finer-grained control over image style,

allowing for the creation of diverse and customizable visuals. Building upon the foundations

laid by StyleGAN, subsequent works have extended and refined this framework. Lee et al. [42]

introduced techniques to fix noise patterns in StyleGAN, preserving a desired target style. Zhu

et al. [43] proposed an automated mechanism for selecting style latent variables, facilitating

semantic discovery and control.

However, it is important to note that the quest for unsupervised disentanglement is not without

challenges. Locatello et al. [44] raised concerns about the reliability of some unsupervised

disentanglement models. They emphasized the strong dependence of these models on ran-

dom seeds and hyperparameters, highlighting the need for robustness and reproducibility in

research. Additionally, Locatello’s work advocated for making the inductive bias explicit



2.3 CVD RECOLORING COMPENSATION 9

and underlining the practical benefits of disentanglement, aligning the pursuit of theoretical

advances with real-world applicability. Furthermore, while advancements have been made in

decoupling representations, the issue of controlling representations during latent traversal re-

mains relatively underexplored [45]. This represents a compelling avenue for future research,

as it could further empower users to interactively and intuitively shape generative outputs.

2.3 CVD Recoloring Compensation

In the domain of image recoloring, the pursuit of two primary objectives has been evident:

the restoration of decaying contrast and the preservation of naturalness within the recolored

images. These goals are essential not only for enhancing the overall visual quality but also for

aiding individuals with Color Vision Deficiency (CVD) in discerning image content. Various

research endeavors have been undertaken to address these objectives, leveraging a range of

techniques and methodologies.

To enhance contrast and assist CVD users in distinguishing image content, several approaches

have emerged. Some studies [17, 19, 18, 20] have focused on contrast compensation by

optimizing objective functions that align given images with recolored image simulations.

Alternatively, deep learning networks have been employed in works such as those by Li

et al.[46] and Ma et al.[47] to perform color transformations, thereby improving contrast

and color differentiation. Lau et al. [48] have implemented K-means algorithms to enhance

contrast in adjacent areas, contributing to improved visual clarity.

While contrast enhancement is pivotal, preserving the naturalness of recolored images is

equally crucial. Several approaches have proposed incorporating constraints between given

images and their recolored counterparts as penalized regularization terms [21, 20, 22, 23, 24].

These constraints ensure that the recolored images maintain a sense of realism and fidelity

to the original content. Additionally, Rigos et al. [25] introduced the concept of semantic

segmentation to selectively transform the colors of objects while leaving other elements

unchanged, further contributing to the preservation of naturalness.
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However, despite these commendable advancements, the diverse demands of CVD pop-

ulations, which can exhibit varying degrees of color vision impairment, have often been

overlooked. For instance, Zhu et al. [20] required users to manually input configurations to

obtain corresponding recolored images. This manual input approach may yield inappropriate

results due to the sensitivity of the parameters and the potential for user error. Achieving

personalized recoloring tailored to the unique needs of individuals with CVD remains a

challenging endeavor.



CHAPTER 3

Methods

3.1 Overview

Our goal is to enable end-to-end CVD-aligned generation. Further, personalized generation

will be achieved based on the novel triple-latent structure, adapting to varying degrees of

CVD. Our method is established based on the generative adversarial network, training a

generator G(·) that synthesizes images from noise z sampled from noise distribution pnoise to

fool the discriminator and a discriminator D(·) to distinguish the fake images G(z) based on

the dataset distribution pdata adversarially at the same time. The loss function of GAN can be

defined as:

LG = Ex∼pdata

[
log

(
1−D(x)

)]
+ Ez∼pnoise

[
log

(
1−D(G(z))

)]
. (3.1)

The GAN loss function only aims to generate images with the same distribution as the real

images, where the demand of the CVD populations is disregarded. Hence, a CVD-oriented

GAN is expected to assist the CVD populations.

As illustrated in Fig. 3.1, our model is comprised of two distinct functional components.

The first component, referred to as "CVD-oriented generation" (depicted in Fig. 3.1 (b)), is

designed with the specific objective of generating CVD-friendly images. This is achieved

through the incorporation of the CVD simulation (introduced in Sec. 3.2) and a CVD-oriented

loss function denoted as LCVD (outlined in Sec. 3.3). Furthermore, recognizing that individuals

with varying degrees of CVD possess different sensitivities to distinguishable colors, we have

implemented a "color representation disentanglement" mechanism based on a triple-latent
11
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FIGURE 3.1. Structure of the CVD-GAN. In (a) and (b), z1, z2 and zcvd are
three latent codes with size of D. I1, I2 and I are images generated by the
generator G. To enhance the dominance of the z0, the dominance of other
dimensions needs to be diminished. Hence, LDis is used to ensure the color
histogram hI1 and hI1 have the same distribution. Meanwhile, an increment δs
representing the CVD severity is added on the z0cvd, which is also passed into
the CVD simulation Sim. to obtain the specified Sim(·) and constraints LCVD.
Besides, discriminator D(·) discriminates whether I1 is fake or not based on
the real data distribution Pdata. (c) and (d) present LLC and LCI, which aim
to retain the contrast and preserve the color information. In (c), LLC retain
the contrast by minimizing the decay of the local contrast of local maps in I
as shown in the first row, which can be visualized in RGB channels and be
summarized as the last row, where the darker regions indicate a more severe
loss. In (d), LCI calculated the loss of color information extracted by Gaussian
Blur function Φ. LCVD and LDis will be trained with the GAN loss LG.

structure (illustrated in Fig. 3.1 (a)). This adaptation serves to cater to the diverse requirements

of individuals with differing degrees of CVD (explained in Sec. 3.4).

3.2 CVD Simulation

A two-stage model [27] is implemented to simulate CVD gamut, summarized as:

Sim(I, δs) = Γ−1Γδs · I, (3.2)
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where I is the input image, δs denotes the degree of the CVD, Γδs is 3×3 matrix parameterized

by δs. Γ is a constant matrix representing the perception of normal people, with the same size

as Γδs. The detailed derived formulas will be presented in the appendix.

CVD simulation serves a crucial role in allowing individuals with normal color vision to gain

insight into the visual perspective of those with color vision deficiencies (CVD). It enables

the assessment of potential perception biases by employing pure matrix transformations, a

differential process that will be seamlessly integrated into our framework.

3.3 CVD-Oriented Loss Functions

This section introduces the CVD-oriented loss LCVD, which aims to preserve image informa-

tion after the corresponding CVD simulation to prevent perception bias. LCVD includes two

constraint losses LLC(I, δs) and LCI(I, δs) as:

LCVD = LLC(I, δs) + LCI(I, δs), (3.3)

where I is image and δs represents the degree of CVD.

Local Contrast Loss. Due to color impairment, the patch boundaries of the image will

be blurred if indistinguishable colors are distributed in adjacent pixels, discouraging the

information acquisition for the CVD population. As shown in Fig. 3.1 (c), the boundaries of

the petal and leaves become ambiguous due to color impairment. To retain the image distinct

after simulation, the contrast within all of the local neighborhood maps of the image should be

sustained after simulation. To evaluate the loss of contrast, the contrast term of the SSIM [49]

is adopted as:

c
(
x, y

)
=

2σxσy + ε

σ2
x + σ2

y + ε
, (3.4)

where σx and σy are the standard deviations of the input patch x and y as the first row of

Fig. 3.1 (c), ε is a small constant to avoid instability. c(·) calculates the contrast similarity

between corresponding local maps as Eq. (3.4). The loss LLC is computed by aggregating the
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local contrast losses in patches:

LLC(I, δs) = 1− 1

|N |
∑

(x,y)∈N

c
(
x, y

)
, (3.5)

where N is the set of corresponding local maps in the generated image I and its simulation

Sim(I, δs); The LLC(I, δs) can be visualized in RGB channels as the last row of Fig. 3.1 (c),

where the darker region presents a larger contrast loss.

Color Information Loss. Color itself carries a lot of information for images, including style,

mood, temperature, etc., while the available color gamut for the CVD population is limited.

Therefore, we expect the generated images can adapt to the CVD gamut and maintain the main

colors after the simulation to avoid ambiguity. To extract the primary color of an image while

avoiding excessive detail, a Gaussian kernel is applied to blur the image, as demonstrated in

Fig. 3.1 (d). This optimization process can be summarized as:

LCI(I, δs) =
∥∥∥Φ(I)− Φ

(
Sim(I, δs)

)∥∥∥
1
, (3.6)

where I denotes the generated images; Φ(·) means the Gaussian Blur process as pixel details

are not needed; ∥ · ∥1 is the L1 norm of a vector.

3.4 Triple-Latent Based Color Disentanglement

As people with distinct degrees of CVD have various sensitivities to discernable hues, color

distribution generation is expected to be personalized to different users. To obtain images

with varying color distribution for different requirements, two goals need to be achieved: 1)

color representation should be disentangled; 2) color distribution can be controlled according

to the specified requirement.

Therefore, a novel triple-latent structure is proposed to attain the goal. Specifically, the

triple-latent can be divided into two groups, namely the contrastive group containing z1 and

z2 that facilitates the first goal of color representation disentanglement and the control group

zcvd that accomplishes the second goal of the personalized generation.
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Since color representation is entangled with the dimensions of the latent code in an ordinary

GAN, changes in each dimension may cause changes in the color generation during the latent

traversal. In other words, the dominance of the dimensions controlling color generation is

diffused and irregular. Oppositely, a fixed dimension is expected to control the color. The

contrastive group approach is designed based on the intuition that diminishing the influence of

all other dimensions on color generation would result in the expected dimension dominating

the color representation.

The contrastive group comprises two latent codes, z1 and z2, each with a dimensionality of

D. Mathematically, z1 = {zd1 |d ∈ [0, D)}, z2 = {zd2 |d ∈ [0, D)}. Similarly, for the control

latent code zcvd = {zdcvd|d ∈ [0, D)}, where D is the dimension of latent codes, in which

z01 = z02 , z
0
cvd = z01 + δs. δs is sampled from the uniform distribution of [0.0, 1.0], indicating

the severity of CVD. During the training, a randomly selected vector dimension d̃ ∈ [1, D)

will be utilized to encourage the color representation to be fully decoupled. We ensure that 1)

zd̃1 ̸= zd̃2 ; 2) zd1 = zd2 , d ∈ [0, D), d ̸= d̃; 3) zd1 = zdcvd, d ∈ [1, D). As a result, the goal is to

minimize the dominance of color representation of the zd̃, persuading it to be dominated by

the z0.

To reduce the dominance of the zd̃, z1 and z2 are sent into generator G as:

[I1, I2] = G([z1, z2]), (3.7)

where [I d̃1 , I
d̃
2 ] is the image pair generated from the generator G. Further, to reduce the

influence of d̃, a constraint will be utilized on the image pair [I d̃1 , I
d̃
2 ] to ensure the color

distribution will keep unchanged no matter how the value of latent code zd̃ on dimension d̃

changes as:

LDis =
1√
2
||
√

H(I1)−
√

H(I2)||22, (3.8)

where H(·) is a operation to obtain the 2D color histogram feature [50], ∥ · ∥22 is the L2 norm.

An example of color representation disentanglement is shown in Fig. 3.2. The impact of zd̃

on the generation of color patterns is negligible because variations in the value of zd̃ produce

only slight modifications in the distribution of colors, then the color distribution generation

can be predominantly influenced by z0.
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(a)

(b)

FIGURE 3.2. Color representation disentanglement. (a) The influence of the
dimension zd̃ on color pattern generation is minimal, as changes in the value
of zd̃ result in few alterations to the color distribution, (b) z0 can dominate the
color distribution generation.

This increment δs will be fed into the later objective function Eq. (3.5) and Eq. (3.6) as the

CVD severity to obtain specified constraints as

LCVD = LLC
(
G(zcvd), δs

)
+ LCI

(
G(zcvd), δs

)
, (3.9)

where LLC(·) and LCI(·) are local contrast and color information loss functions introduced

in Sec. 3.3. As a result, LCVD is able to provide different degrees of constraints for various

severity of color impairment. Through training, CVD-GAN enables the generation of person-

alized images for different degrees of CVD by performing latent traversal on the dimension

z0, whereby increments of δs.

During training, the total losses L include constraints deployed for color representation

disentanglement LDis and CVD-oriented loss functions LCVD, and GAN loss LG, which can

be denoted as:

L = LG + αLDis + βLCVD, (3.10)

where α and β are loss weights.
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CHAPTER 4

Results

4.1 Experiments Settings and Datasets

Datasets. To explore the CVD-oriented generation, the datasets [29, 30, 51] with flexible

colors were selected. Flower [29] dataset contains 8,189 images with 103 classes. Abstract

art [30] includes 15,022 artworks of the abstract genre from the Middle Ages to recent years.

Still-Life and symbolic-painting are the subclasses of the wikiArt [51], which contain 4,799

images and 3,000 images depicting still objects and symbolic imagery, respectively.

Settings. StyleGAN-ada is served as the backbone, and the training setting mostly fol-

lows [32] with the Adam optimizer [52], the learning rate of 0.0025, batch size of 64, and

15000 steps. The weight α of the LDis is set to 15 while the weight β of the combination of

LLC(I, δs) and LCI(I, δs) is set to 1. The trade-off between the weights and generated image

quality will be discussed in Sec. 4.4. It is noted that, unlike StyleGAN, the latent codes with a

length of 16 will be fed directly into the generation without a prior mapping transformation.

The detailed network architecture is presented in the Table 4.1.

4.2 Qualitative Evaluation

In Figure 4.1, a comparative analysis is presented, evaluating the performance of three different

approaches: StyleGAN [7], StyleGAN with recolor methods [20, 17], and the CVD-GAN

proposed in this study. These evaluations are conducted using diverse datasets, including the

still-life dataset [51], the flower dataset [29], and the symbolic painting dataset [51].
18
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Generator

16 × 16 × 128 Learnable Constant

3 × 3 Deconv. ReLU

3 × 3 ModuConv. ReLU, Latents 4

3 × 3 Conv. ReLU

3 × 3 Conv. ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Deconv. ReLU

3 × 3 ModuConv. ReLU, Latents 4

3 × 3 Conv. ReLU

3 × 3 Conv. ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Deconv. ReLU

3 × 3 ModuConv. ReLU, Latents 4

3 × 3 Conv. ReLU

3 × 3 Conv. ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Deconv. ReLU

3 × 3 ModuConv. ReLU, Latents 4

3 × 3 Conv. ReLU

3 × 3 Conv. ReLU

3 × 3 Conv. + Noise ReLU

3 × 3 Conv. + Noise ReLU

256 × 256 × 3

TABLE 4.1. Structure of CVD-GAN Generator.
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FIGURE 4.1. Qualitative comparison. (a) The results of StyleGAN [7], (b)
and (c) present the results of StyleGAN with recolor methods [20, 17], (d)
shows our results through latent traversal. For each, the first row shows the
generation result (or after recolor compensation), and the second row shows
the corresponding CVD simulation. “D." and “P." show the degree of deutan
and protan, respectively.

In the context of the still-life dataset, images generated through StyleGAN are observed

to exhibit a tendency to blur petals into the background, thereby creating ambiguity in

the images. Even after the application of recolor compensation techniques, this ambiguity

persists, potentially hindering the ability of individuals with Color Vision Deficiency (CVD)

to distinguish the image content. In contrast, CVD-GAN demonstrates a distinctive capability

to mitigate confusion by darkening the background as the degree of CVD increases and

lightening the petals to a perceptible shade of yellow. This adjustment is particularly beneficial

for protan populations, for whom the color red is often imperceptible.
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When evaluating the flower dataset, StyleGAN’s generated images are found to suffer from a

severe decay of color and contrast, resulting in perceptual bias. While recolor compensation

methods partially alleviate this bias, a noticeable gap between normal and CVD perspectives

remains. In contrast, CVD-GAN exhibits a remarkable ability to generate CVD-oriented

color distributions through latent traversal. Importantly, this transformation is achieved with

minimal loss of information, as evidenced by the high-quality output images generated by the

model.

The effectiveness of CVD-GAN is further exemplified in the context of the symbolic painting

genre, where it consistently outperforms StyleGAN and recolor compensation methods in

maintaining information fidelity and mitigating perceptual deviations for CVD populations.

To provide a more comprehensive assessment of CVD-GAN’s performance, a user study has

been conducted, the details of which are available in the appendix. This study reaffirms the

effectiveness of CVD-GAN in improving accessibility and enhancing the visual experience

for individuals with varying degrees of color vision impairment.

4.3 Quantitative Evaluation

In this section, several experiments will be conducted to compare the effectiveness among the

generation baseline StyleGAN [7], StyleGAN with post-processing recolor methods [20, 17],

and proposed CVD-GAN under various situations of degrees (20%, 40%, 60%, 80%, 100%)

with two different CVD types (protan and deutan) conditions.

As illustrated in Sec. 1.3, CVD-friendly pertains to an image that can be comprehended in a

similar manner by both populations with Color Vision Deficiency (CVD) and those without.

A CVD-friendly image should maintain the sharpness of color transitions, consistency of

color theme, and high-level semantics for CVD-viewers. Our metrics adopted from [53, 50,

54] correspond to these aspects of CVD-friendliness.

Local Contrast Distance Decay. A CVD-friendly image should preserve the sharpness and

clarity of color transitions. This entails ensuring that boundaries between different colors
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Dataset Type Degree
StyleGAN [7]

StyleGAN with
CVD-GAN (Ours)

Zhu et al. [20] Huang et al. [17]

LCD H dis. Perc. L. LCD H dis. Perc. L. LCD H dis. Perc. L. LCD H dis. Perc. L.

Abstract Art [30]

Protan

20% 0.4663 0.0151 0.3629 0.4439 0.0150 0.3569 0.6712 0.0151 0.4334 0.2155 0.0079 0.1094
40% 0.7639 0.0186 0.5950 0.7439 0.0181 0.5640 1.0699 0.0193 0.6929 0.3355 0.0108 0.3230
60% 0.9573 0.0206 0.7715 0.7360 0.0199 0.6320 1.3085 0.0218 0.8898 0.4002 0.0121 0.4165
80% 1.0762 0.0221 0.9149 0.6133 0.0209 0.6329 1.4391 0.0234 1.0482 0.4301 0.0129 0.4856
100% 1.1218 0.0232 1.0350 0.5450 0.0218 0.6606 1.4848 0.0243 1.1756 0.4378 0.0131 0.5333

Deutan

20% 0.5398 0.0159 0.4045 0.5209 0.0159 0.4509 0.7996 0.0178 0.4897 0.2330 0.0086 0.2048
40% 0.8400 0.0193 0.6321 0.8388 0.0190 0.6165 1.2419 0.0217 0.7567 0.3438 0.0113 0.3309
60% 1.0023 0.0212 0.7823 0.8293 0.0207 0.6827 1.4845 0.0238 0.9365 0.3915 0.0122 0.4063
80% 1.0815 0.0225 0.8869 0.7350 0.0215 0.7053 1.6063 0.0251 1.0629 0.4067 0.0129 0.4526
100% 1.1104 0.0232 0.9619 0.7007 0.0221 0.7415 1.6509 0.0257 1.1523 0.4052 0.0129 0.4782

Still-Life [51]

Protan

20% 0.4673 0.0101 0.3789 0.3982 0.0112 0.3368 0.7715 0.0125 0.4816 0.2783 0.0075 0.2789
40% 0.7561 0.0148 0.6455 0.6293 0.0152 0.5369 1.2217 0.0183 0.7992 0.4354 0.0114 0.4795
60% 0.9405 0.0182 0.8538 0.5777 0.0179 0.6062 1.4865 0.0219 1.0458 0.5225 0.0138 0.6272

80% 1.0555 0.0207 1.2041 0.4721 0.0198 0.6262 1.6310 0.0243 1.2430 0.5660 0.0155 0.7366

100% 1.1138 0.0224 1.1671 0.4536 0.0210 0.6816 1.6867 0.0257 1.4016 0.5800 0.0167 0.8181

Deutan

20% 0.5261 0.0113 0.4207 0.4380 0.0123 0.3773 0.9581 0.0150 0.5432 0.3044 0.0086 0.3091
40% 0.8041 0.0162 0.6820 0.6863 0.0162 0.5815 1.4718 0.0208 0.8700 0.4408 0.0123 0.5061
60% 0.9476 0.0193 0.8620 0.6318 0.0189 0.6511 1.7424 0.0239 1.0979 0.5095 0.0145 0.6309
80% 1.0145 0.0215 0.9891 0.5784 0.0208 0.7069 1.8698 0.0258 1.2585 0.5285 0.0160 0.7068
100% 1.0379 0.0225 1.0817 0.5596 0.0217 0.7585 1.9093 0.0268 1.3709 0.5265 0.0168 0.7585

Symbolic-Painting [51]

Protan

20% 0.4190 0.0114 0.3363 0.3404 0.0128 0.2950 0.5508 0.0119 0.3725 0.1980 0.0084 0.2252
40% 0.6840 0.0164 0.5715 0.4918 0.0172 0.4506 0.8788 0.0175 0.3259 0.3055 0.0129 0.3780
60% 0.8564 0.0197 0.7528 0.4470 0.0198 0.5138 1.0754 0.0208 0.8214 0.3626 0.0154 0.4845
80% 0.9661 0.0221 0.8996 0.3915 0.0214 0.5517 1.1888 0.0230 0.9779 0.3882 0.0168 0.5489
100% 1.0245 0.0235 1.0236 0.3770 0.0224 0.5957 1.2403 0.024 1.1060 0.3947 0.0176 0.6125

Deutan

20% 0.4532 0.0127 0.3741 0.3598 0.0141 0.3289 0.7079 0.0151 0.4402 0.2107 0.0096 0.2468
40% 0.6880 0.0178 0.6031 0.4992 0.0185 0.4889 1.0853 0.0206 0.7095 0.3034 0.0140 0.3937
60% 0.8038 0.0208 0.7559 0.4648 0.0210 0.5604 1.2805 0.0235 0.8932 0.3387 0.0161 0.4810
80% 0.8530 0.0227 0.8620 0.4404 0.0224 0.6149 1.3692 0.0252 1.0212 0.3448 0.0173 0.5323
100% 0.8654 0.0236 0.9401 0.4244 0.0231 0.6619 1.3937 0.0261 1.1121 0.3388 0.0178 0.5627

Flowers [29]

Protan

20% 0.5937 0.0179 0.5311 0.6829 0.0191 0.6047 0.9519 0.0164 0.6709 0.2799 0.0118 0.3162
40% 0.9566 0.0233 0.8795 1.1452 0.0242 0.9067 1.5128 0.0222 1.0542 0.4193 0.0168 0.5383
60% 1.1820 0.0263 1.1498 1.0872 0.0270 1.0920 1.8476 0.0256 1.3490 0.4847 0.0196 0.7000
80% 1.3125 0.0282 1.3694 0.8756 0.0280 1.1231 2.0309 0.0278 1.5876 0.5101 0.0211 0.8195
100% 1.3610 0.0294 1.5514 0.8437 0.0292 1.2508 2.0938 0.0289 1.7789 0.5147 0.0218 0.9064

Deutan

20% 0.7323 0.0188 0.5777 0.8502 0.0199 0.6599 0.9952 0.0190 0.6889 0.3423 0.0121 0.3334
40% 1.1509 0.0240 0.9187 1.3906 0.0246 1.0012 1.5518 0.0239 1.0431 0.5071 0.0166 0.5460
60% 1.3896 0.0267 1.1614 1.3201 0.0268 1.0841 1.8641 0.0266 1.2846 0.5829 0.0189 0.6860
80% 1.5178 0.0285 1.3386 1.1930 0.0270 1.0864 2.0269 0.0282 1.4560 0.6123 0.0201 0.7778
100% 1.5756 0.0290 1.4645 1.1679 0.0274 1.1570 2.0917 0.0288 1.5749 0.6179 0.0204 0.8346

TABLE 4.2. Quantitative Results. Comparison with StyleGAN [7] and Styl-
eGAN with recolor methods [20, 17]. For each method, three metrics, in-
cluding Local Contrast Decay denoted as LCD, Hellinger distance of color
histogram abbreviated as H.dis., and perceptual loss abbreviated as Perc.L.,
are implemented to evaluate. For all the metrics, the lower value means the
higher friendliness of the image.

are distinct and easily distinguishable for individuals with CVD. Maintaining sharp color

transitions is pivotal for preventing color confusion and enhancing the visual experience.

In other words, the local contrast is expected to be preserved, otherwise, the image will be
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D. 100%

FIGURE 4.2. The significance of the consistent color theme for CVD pop-
ulations. Though hardly any indistinguishable patches occur under CVD’s
perspective, CVD individuals tend to misinterpret the original image (the left
one) as an autumn scene.

ambiguous to distinct. Following the conventional thoughts [19, 55], decayed Euclidean

distance between corresponding local maps of test images and their simulations will be

employed to assess the sharpness loss. To be noted, test images will be transformed into CIE

L*a*b* color space which better represents the human perception of colors [56] than RGB

color spaces. The blue column in Table 4.2 shows the local contrast distance decay for each

method.

Hellinger Distance of Color Histogram. In addition to contrasting aspects, our evaluation

framework also incorporates a metric [50] for assessing color theme consistency. Given

that colors inherently convey significant information, shifts in an image’s tonal theme can

profoundly affect its semantics. To illustrate, 4/5 of our CVD testers in the user study

recognize Fig. 4.2 as an autumn scene, whereas it unequivocally represents spring from the

perspective of individuals with normal vision.

To assess the preservation of the primary image color following simulation, we will employ

the Hellinger distance to measure the dissimilarity between the color distributions [50] derived

from the test image I and its simulation, denoted as Sim(I, δs). The less the distance is, the

main color is more consistent after simulation, and the more friendly the image I is. The

pink column in Table 4.2 shows the Hellinger distance between generated images and their

simulations of the color histogram.

Perceptual Loss. Color perception impairment can lead to the loss of high-level information

beyond content details. Consequently, we incorporate perceptual loss, a widely accepted
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metric for evaluating the degradation of high-level features that might be neglected by local

criteria [54], to further assess high-level semantics.

By leveraging a pre-trained VGG model, features and semantics from the images can be

extracted, enabling us to evaluate the perceptual similarity between the test images I and their

CVD-friendly simulations Sim(I, δs) more effectively. The pink column in Table 4.2 shows

the perceptual loss between generated images and their simulations.

In summary, our CVD-GAN showcases state-of-the-art (SOTA) performance across the

majority of datasets and exhibits robustness across varying levels of color vision deficiency

(CVD) severity. This accomplishment underscores the effectiveness of our approach in

generating visually coherent, accessible, and comprehensible images for individuals with

color perception impairments. By advancing the field of CVD-friendly image generation, our

work contributes to making visual content more inclusive and accommodating the diverse

needs of individuals with different degrees of CVD.

4.4 Ablation Study

CVD Loss Functions. To further discuss the contribution of each of the CVD loss functions,

LLC(I, δs) and LCI(I, δs) will be ablated to analyze. Note that the experiments are performed

in the protan CVD type by default. As Table 4.3 shows, with the implementation of LLC(I, δs),

the local contrast distance decay will decrease significantly, while the metric of Hellinger

distance of color histogram will be better slightly. The opposite situation will happen when

with the implementation of only LCI(I, δs). Also, It’s surprisingly found that the high-level

metric, perception loss, might be more relevant to local contrast preservation than general

color preservation.

Color Representation Disentanglement. If color representation can be fully disentangled

and controlled by the chosen dimension, the color histogram contributions will be consistent

between images generated by latent codes that differ in other dimensions. Thus, to confirm

the effect of the LDis, Hellinger distance is used again to calculate the similarity between
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Method
Degree

40% 100%

LCD H dis. Perc. L. LCD H dis. Perc. L.

StyleGAN 0.7639 0.0186 0.5950 1.1218 0.0232 1.0350

+LLC 0.3784 0.0158 0.3726 0.5052 0.0197 0.6039
+LCI 0.4659 0.0114 0.4112 0.6104 0.0139 0.6924

+LLC+LCI 0.3355 0.0108 0.3230 0.4378 0.0131 0.5333

TABLE 4.3. The ablation study of CVD loss under the degrees of 40% and
100% in protan type.
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FIGURE 4.3. Effect of the color representation disentanglement and accord-
ingly FID. α is the weight of the LDis.

the color histogram feature extracted from the I1 and I2 denoted in the Fig. 3.1. Besides,

to determine the value of the weight α of LDis, the FID metric, used to evaluate the image

quality, will be also considered. Fig. 4.3 presents the relationship between the α and FID.

It shows that with the increase of the weight α of LDis, the image quality will decrease

generally while the color representation disentanglement will be enhanced. When the weight

equals 15, a balanced trade-off is reached to generate well-quality and disentangled images.

As a result, the α is set to 15 in this paper.

Extra Baseline. To further substantiate the effectiveness of our approach, we conducted train-

ing with StyleGAN on the symbolic-painting dataset, which had undergone post-processing
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FIGURE 4.4. Trade-off of image quality. β is the weight of the LCVD. The
blue, orange, gray, and yellow lines represent the FID, local contrast distance
decay, Hellinger distance of color histogram, and perceptual Loss, respectively,
based on the β.

as described by Zhu et al. [20]. The results in Table 4.4 clearly indicate the superiority of our

method over this extra baseline across all evaluated aspects..

Method
P.40% P.100%

LCD H Dis. Perc. L LCD H Dis. Perc. L.

StyleGAN∗ 0.295 0.017 0.402 0.476 0.024 0.731

Ours 0.305 0.013 0.378 0.395 0.018 0.613

TABLE 4.4. Comparison with extra baseline under Protan’s situation.

Trade-off of Generation Images Quality. The essence of all the CVD loss is to limit the

color gamut of the generated images, which will cause a negative impact on the quality of

generation. Fig. 4.4 presents the relationships between the β and FID metric with CVD

metrics introduced in Sec. 4.3. The abscissa denotes the value of the weight of β, while the

blue, orange, gray, and yellow lines represent the FID, local contrast distance decay, Hellinger

distance of color histogram, and perceptual loss, respectively.

It is indicated that with the augment of the weight β of LCVD, the image is more suitable for

CVD viewers at the cost of quality. After all, the β is set to 1 to reach a balanced trade-off

between FID and CVD metrics.
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In summary, we will compare the Fréchet Inception Distance (FID) of CVD-GAN across all

datasets with the baseline, both with and without the post-processing recoloring method, as

presented in Table 4.5. The results clearly illustrate that, in general, image quality diminishes

as the severity of CVD increases, mainly because a higher degree of CVD leads to a more

restricted gamut. However, when compared to various traditional post-processing recoloring

methods, our approach consistently produces comparable results in terms of image quality

across different datasets, even when dealing with varying degrees of CVD. It’s worth noting

that these experiments were conducted using a default CVD type of protan, and the dataset

consisted of 4800 images.

Dataset Degree StyleGAN [7]
StyleGAN with

CVD-GAN (Ours)
Zhu et al. [20] Huang et al. [17]

Abstract Art [30]

0% 14.35 - - 17.73

40% - 16.68 - 18.27

100% - 23.44 16.86 19.58

Still-Life [51]

0% 18.96 - - 22.10

40% - 23.42 - 24.09

100% - 26.36 21.91 25.36

Symbolic-Painting [51]

0% 28.20 - - 31.66

40% - 29.26 - 28.37

100% - 30.55 28.76 28.01

Flowers [29]

0% 8.23 - - 18.93

40% - 12.48 - 19.15

100% - 18.73 20.64 20.13

TABLE 4.5. FID of images generated by StyleGAN, post-processing recolor
methods, and proposed CVD-GAN under various datasets, where the lower
value indicates better image quality.
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4.5 Limitations and Future work

CVD-GAN has demonstrated its ability to effectively generate personalized CVD-oriented

images for protan and deutan types. However, it should be noted that it currently does not

accommodate viewers with tritan (e.g. blue-perception cones impairment) or other complex

color impairments due to constraints related to reference samples and volunteers. Also, the

possibility of substituting the baseline with alternative generation models is encouraged to be

considered, like diffusion models and VAEs. This could potentially yield improved results.

Furthermore, there is a need for an in-depth investigation to explore potential limitations

of the recoloring algorithm, especially when dealing with content that may be considered

"inherently unfriendly" to the recoloring process. Additionally, the advancement of large-scale

vision models and multi-modal generation techniques has sparked a motivation to incorporate

more user-friendly modalities into CVD-friendly image generation, such as text-to-image

capabilities. This integration could potentially enhance the accessibility and user experience

of generating images tailored for individuals with Color Vision Deficiency (CVD).

These aspects will be left for future exploration.



CHAPTER 5

Conclusions

The paper introduces an innovative approach to generate personalized images tailored for

individuals with varying degrees of Color Vision Deficiency (CVD) using Generative Ad-

versarial Networks (GANs). This method leverages deep learning techniques to address the

needs of underrepresented populations. The key contributions of this model include:

1. End-to-End CVD-Oriented Image Generation: The model can seamlessly generate images

specifically designed for individuals with CVD, providing a comprehensive solution.

2. Personalized Image Generation: It goes beyond generic CVD correction by producing

personalized images for individuals with different CVD types and severity levels. This

personalization is achieved by disentangling color representations through a triple-latent

structure.

3. State-of-the-Art Performance: The proposed method demonstrates state-of-the-art perform-

ance on various datasets, encompassing both natural scenes and artistic paintings.

This research represents a significant advancement in the field of addressing visual impair-

ments through deep learning techniques.
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5.1 Appendix A

CVD Simulation.

Based on the two-stage theory, this paper adopted a two-stage model to simulate the CVD

gamut proposed by Machado [27]. Take the ∆λ as the offset distance, spectral curves of L-,

M- and S-cone of CVD can be indicated as follows in the first stage:

La(λ) = L(λ+∆λL) (5.1)

Ma(λ) = M(λ+∆λM) (5.2)

Sa(λ) = S(λ+∆λS) (5.3)
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Then, in the second stage, the corresponding signals will be processed by the transformation

matrix TLMS2Opp [57] into the opponent-color space as follows:
WS(λ)

YB(λ)

RG(λ)


pa

= TLMS2Opp


La(λ)

M(λ)

S(λ)

 (5.4)


WS(λ)

YB(λ)

RG(λ)


da

= TLMS2Opp


L(λ)

Ma(λ)

S(λ)

 (5.5)


WS(λ)

YB(λ)

RG(λ)


ta

= TLMS2Opp


L(λ)

M(λ)

Sa(λ)

 (5.6)

where pa, da, and ta represent the protan, deutan, and tritan deficiency; WS, YB and RG

denote the channels of opponent-color space: white-black, yellow-blue, and red-green,

respectively. By projecting the spectral power distribution φR(λ), φG(λ), and φB(λ) of

the RGB primaries, a transformation from RGB color space to the opponent-color space can

be obtained as:

WSR = ρWS
∫
φR(λ)WS(λ)dλ,

WSG = ρWS
∫
φG(λ)WS(λ)dλ,

WSB = ρWS
∫
φB(λ)WS(λ)dλ,

YBR = ρYB
∫
φR(λ)YB(λ)dλ,

YBR = ρYB
∫
φG(λ)YB(λ)dλ,

YBR = ρYB
∫
φB(λ)YB(λ)dλ,

RGR = ρRG
∫
φR(λ)RG(λ)dλ,

RGR = ρRG
∫
φG(λ)RG(λ)dλ,

RGR = ρRG
∫
φB(λ)RG(λ)dλ,

(5.7)
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where ρWS, ρYB, and ρRG are normalization factors, ensuring that

WSR + WSG + WSB = 1

YBR + YBG + YBB = 1

RGR + RGG + RGB = 1

(5.8)

Therefore, the transformation matrix can be concluded as a 3×3 matrix Γδs, where δs denotes

the degree of CVD based on the ∆λ:

Γδs =


WSR WSG WSB

YBR YBG YBB

RGR RGG RGB

 (5.9)

In summary, the general transformation from RGB color space to opponent-color space for

CVD can be defined as a 3 × 3 matrix Γδs. Let Γ be the transformation matrix for normal

viewers, then the CVD simulation of an RGB image can be defined as:
Rsim

Gsim

Bsim

 = Γ−1Γδs


R

G

B

 (5.10)

Triple-Latent Based Color Disentanglement.

The triple-latent structure consists of a contrastive group to disentangle the color representation

and a control group to ensure the personalized generation. Specifically, there are two latent

codes in the contrastive group in order to eliminate the dominance of other dimensions

zd̃
(
d̃ ∈ (1, D]

)
toward the color. To better evaluate the results of disentanglement, we assign

zd̃ and z0 random values.

Fig. 5.1 shows the visualization results of random assignments. For each group divided by

the dotted line, the first row presents the images generated from latent codes with random

zd̃, while the second row presents the ones generated from random z0. It is shown that

the color distribution in the image is maintained although changes in the zd̃, and it will be



38 BIBLIOGRAPHY

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 5.1. Examples of color representation disentanglement. For each
group divided by the dotted line, the first row presents the images generated
from latent codes with random zd̃, while the second row presents the ones
generated from random z0.

modified significantly only when the changes in the z0, which means the dominance of color

representation has been decoupled with zd̃. As a result, the z0 can dominate the color pattern

generation.

With the increment δs on the z0 during the latent traversal, CVD-GAN can generate personal-

ized images for CVD populations with varying degrees.
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FIGURE 5.2. Examples of personalized generation of the symbolic-painting
dataset, where "D" denotes deutan- and "P" denotes protan-simulation.

Fig. 5.2, Fig. 5.3, and Fig. 5.4 present the results of personalized generation with an increment

of [0.05, 0.2, 0.4, 0.55, 0.7, 0.9, 1.0] on the z0 and their corresponding simulations. The fewer

the change in the image after simulation, the more friendly it is to CVD populations since

fewer potential perception biases will occur. It is shown that for all degrees, CVD-GAN can

generate friendly images with little perception bias.

User Study

As of now, our user study is still ongoing, and we have successfully recruited 17 CVD

volunteers, covering a range of ages from 20 to 54 years old. These participants are categorized
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FIGURE 5.3. Examples of personalized generation of the abstract-art dataset.

into three levels: mild, medium, and severe, based on the Hue 100 test. Each volunteer rates

18 randomly selected images generated by three different methods: StyleGAN (black box),

StyleGAN + Zhu (green box), and our CVD-GAN (blue box) using a Likert scale from 1 to 5.

The ratings are based on the clearness and comfort level of the images, where a higher score

indicates better results. The current outcomes are as Fig. 5.1.

According to the p-values of the t-test, ours achieves higher marks with statistical significance.
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FIGURE 5.4. Examples of personalized generation of the still-life and flower
datasets.
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(a) Mild (b) Medium (c) Severe

F_S. 5.43
P_V. 0.05

F_S. 4.21
P_V. 0.02

F_S. 3.72
P_V. 0.04

FIGURE 5.5. Result of the user study. (a), (b), and (c) showcase the ranking
of populations with mild, medium, and severe CVD degrees, respectively.
The notation F_S. indicates the F statistics and P_V represents the statistical
significance of the collected preference results.
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