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Abstract

Deep neural networks have been demonstrated to enhance tracking performance through

their powerful representation capabilities. This thesis aims to address unresolved issues within

current tracking approaches by proposing four novel methods for addressing problems related

to training data, network architecture, tracking pipeline, and template modality. Through a

comprehensive examination and analysis, this research endeavours to provide solutions to

these unresolved issues and contribute to advancing visual object tracking.

Siamese Network has emerged as a popular choice among state-of-the-art trackers due to

its ability to achieve a desirable balance between tracking accuracy and speed. Despite this

success, certain areas for improvement in existing approaches still exist. One such area is the

uniform sampling strategy utilized for training data. In existing trackers, the Siamese Network

is trained using image pairs randomly sampled from training videos, with all videos being

treated as equivalent. This uniform sampling approach disregards the importance of varying

video characteristics and leads to inadequate network training. In Chapter 3, we propose a

Modified Gaussian Sampling Strategy which considers the video length and difficulty level to

select image pairs for training. Furthermore, we introduce the Farthest Image Pair Sampling

to prevent repeated sampling and promote diversity in training image pairs.

In addition to training data, the network architecture is another crucial aspect that can

impact tracking performance. In Chapter 4 of this thesis, we focus on the Siamese Network

architecture, which is widely adopted in existing trackers without thoroughly examining its

necessity. Through a series of experiments, we investigate the importance of the Siamese

architecture in visual object tracking and optimize it through a neural architecture search.

The resulting superior architecture, the Partially Siamese Network, demonstrates improved

performance while maintaining comparable tracking accuracy on several benchmark datasets.

While the optimized architecture proposed in Chapter 4 demonstrates superior perform-

ance for visual object tracking, it undermines the trend of developing general models (such

iv



ABSTRACT v

as Clip (Radford et al. 2021) and Perceiver (Jaegle et al. 2021)) for tracking task. This

is primarily due to the complex and customized design of current tracking pipelines. In

Chapter 5, we aim to address this issue by simplifying the existing tracking pipeline using

transformer-based architecture. Our proposed pipeline is more straightforward yet achieves

new state-of-the-art performance in visual object tracking.

The final work in Chapter 6 addresses the enhancement of human-machine interaction in

visual object tracking. Recognizing the advantages of speech over text in terms of efficiency,

accessibility, and applicability, we propose a novel task: speech-guided single object tracking

(speech-SOT). This includes the development of diverse speech descriptions for targets in

two existing datasets, a transformer-based framework for addressing the task, and an initial

evaluation of the results for future research. Additionally, we introduce a refine module that

greatly reduces tracking drifts by incorporating online human instructions, further enhancing

human-machine interaction in visual object tracking.

In summary, all proposed methods aim to optimize existing tracking techniques in various

aspects. Through extensive experimentation on general benchmarks, we demonstrate the

effectiveness of our methods. We hope that these contributions will help advance the field of

visual object tracking and provide new solutions for unresolved issues in the field.
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CHAPTER 1

General Introduction

1.1 Definition of Visual Object Tracking

As computer science continues to evolve, the integration of intelligent systems (Radford

et al. 2021; Liu et al. 2023; Thoppilan et al. 2022) is increasingly influencing various

aspects of human existence. Among the various subdomains of intelligent systems, visual

object tracking (Li et al. 2018a; Li et al. 2019a; Yan et al. 2021b; Chen et al. 2022) has

emerged as a particularly vital area, with a discernible impact on contemporary human life.

The utilization of visual object tracking technology can be observed in a wide range of

applications, including military tracking, commercial drone navigation, robotics, and traffic

surveillance. The continued development of accurate and efficient visual object tracking

algorithms holds the potential to facilitate online tracking and enhance the convenience of

modern life.

Tracking, as a field of study, aims to follow the trajectory of a target object or objects through a

video sequence, utilizing only the initial frame’s target information as a reference. The domain

is broadly divided based on the number of objects being tracked: Multi-Object Tracking

(MOT), which deals with the concurrent tracking of several entities and is exemplified by

works (Zhao et al. 2022b; Cai et al. 2022), and Single Object Tracking (SOT), which dedicates

its focus to the precise tracking of an individual target, as demonstrated in studies like

SiamRPN (Li et al. 2018a), SiamRPN++ (Li et al. 2019a), and STARK (Yan et al. 2021b).

Along another dimension, the tracking field encompasses natural language-based tracking,

where tracking is guided through textual descriptions and linguistic cues, and visual tracking,

which depends solely on image data extracted from the video frames. Despite the varied
2
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FIGURE 1.1. The pipeline of deep-learning-based SOT methods.

methodologies, the overarching goal remains consistent: to achieve precise and robust object

tracking across diverse and challenging scenarios. This thesis is dedicated to enhancing

Single Object Tracking performance, and it is important to clarify that, within the subsequent

discussions, the term "visual object tracking" is used explicitly to refer to single object

tracking.

Visual object tracking encompasses the ability to track any object of interest in a video

sequence, regardless of its class, including animals, vehicles, or even inanimate objects such

as a ball or a piece of machinery. This task, while seemingly simple for humans, presents sig-

nificant challenges for machines. The human brain’s ability to rapidly acquire target features

and track them, even in the presence of unpredictable changes such as rotation, illumination

changes, and occlusion, is a result of its intricate structure. However, machines acquire images

in digital form and can only extract target information from matrices representing image data,

and subsequently predict the current location of the target based on previous observations and

current images. This mechanism, which is based on numerical data, is prone to inaccuracies

and tracking drift. Additionally, real-time performance is a critical consideration in visual

object tracking, as non-real-time tracking has limited practical applications. Finding an

effective balance between the competing demands of accuracy and real-time performance is a

significant challenge in the field, and the goal is to develop algorithms that can effectively

track objects in most real-world scenarios.

Visual object tracking has made significant improvements (Yan et al. 2021b; Chen et al.

2021d; Chen et al. 2022) in recent years, utilizing the latest advancements in computer

vision, machine learning, and other related technologies. A variety of tracking methods

have been proposed in the literature, each with its own strengths and weaknesses. These

methods include sparse learning-based methods, correlation filter-based approaches, deep
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learning-based techniques, etc. The emergence of large-scale datasets has also enabled the

development of more sophisticated deep learning-based models. The general pipeline of

deep-learning-based SOT methods is shown in Fig.1.1, which consists of a feature extraction

module to extract template and search features, an interaction module to highlight the target

information on the search features, and a target localization module to find the target state

according to the target-related feature.

In conclusion, visual object tracking is a field with a wide range of potential applications.

While current developments have reached a significant level of maturity, there are still

numerous challenges and issues that need to be addressed. Furthermore, with the constant

advances in computer vision and machine learning, new opportunities for improvement are

continuously emerging. As such, visual object tracking remains an active area of research

with significant potential for future development.

1.2 Challenges in Visual Object Tracking

The unpredictable variations of the target and the background make visual object tracking a

difficult task. The common challenges in visual object tracking can roughly be divided into

two categories: one is the tracking drift caused by the changes in the target, and the other is

the tracking drift caused by the variations in the background.

In the field of visual object tracking, the target object is subject to a number of variations

that can impede the ability of the tracking algorithm to accurately match the target image to

candidate regions within a video. These variations include scale changes, occlusion (Zhang

et al. 2014c), non-rigid deformation, motion blur (Guo et al. 2021b), fast motion, and rotation

(Gupta et al. 2021). We show several challenges in Fig.1.2. These unpredictable perturbations

in target appearance can greatly influence the outcome of the matching process, resulting in

the failure of visual object tracking.

Another challenge in visual object tracking comes from the inclusion of background inform-

ation when selecting the target object using a rectangle bounding box in the first frame.
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(a) Occlusion (b) Background Clutters (c) Illumination (d) Motion Blur (e) Deformation

FIGURE 1.2. Several challenges in visual object tracking. The target is shown
in the red box.

Complex backgrounds can have a significant impact on the tracking process. For example,

if the background is brighter and the foreground is darker (like Fig.1.2 (c)), the tracker may

focus more on the background, leading to the loss of the target object when it moves to a

different background. To address this problem, many algorithms utilize a Hanning window to

process the target image, in order to weaken the impact of the background on the tracking

results. In addition to the illumination variation, other factors can also contribute to tracking

drifts in visual object tracking. These include the presence of background clutter, which can

lead to confusion for the tracking algorithm and result in inaccurate matching, as well as low

resolution of the video or target image, which can make it more difficult for the algorithm to

distinguish the target object from its surroundings.

In addition to the previously identified factors, real-time performance is a crucial aspect in

visual object tracking. A plethora of applications necessitate trackers with low computational

complexity, as images often contain a vast amount of information. Consequently, the efficient

and expeditious processing and calculation of this information is vital to the success of

visual tracking. As such, the design of the algorithm, as well as the optimization of its

implementation, play a critical role in achieving real-time performance. Techniques such

as the utilization of efficient data structures, parallel computing, and GPU acceleration can

significantly enhance the speed of tracking algorithms.
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1.3 Evaluation Metrics

In this section, we delineate three evaluation metrics that are prevalently employed in the

assessment of single object tracking algorithms: the precision score, normalized precision

score, and success score. It should be noted that additional metrics exist, such as the Expected

Average Overlap (EAO) featured in the VOT datasets (Kristan et al. 2018) and the Average

Overlap (AO) utilized within the GOT datasets (Huang et al. 2018), among others. For a

comprehensive understanding of these and further metrics, readers are encouraged to consult

the respective dataset publications.

Precision Score: The precision score is a metric that measures the accuracy of the tracker in

terms of the estimated location of the tracked object. It is calculated based on the distance

between the centers of the predicted bounding box and the ground truth bounding box. For

each frame, the Euclidean distance between the center of the predicted bounding box and

the ground truth is computed. The distances across all frames are then compiled to create

a distribution. The precision score is often reported as the percentage of frames where the

center error is within a certain threshold, such as 20 pixels. This threshold can be arbitrary,

but it is commonly set to account for the variability in object sizes and video resolutions.

Normalized Precision Score: The normalized precision score is a variation of the precision

score that takes into account the size of the ground truth bounding box. This normalization

is important because it provides a scale-invariant measure of precision, ensuring that the

score does not unfairly penalize trackers on smaller objects or favor them on larger ones. The

distance between the predicted and the actual bounding box centers is divided by the size of

the ground truth bounding box to normalize it. The normalized distances are used to compute

the percentage of frames where the normalized center error is below a threshold (often set to

0.1 or 0.2, representing 10% or 20% of the object size), making it a scale-invariant precision

measure.

Success Score (AUC): The success score is an accuracy metric that evaluates how well the

bounding box predicted by the tracker overlaps with the ground truth bounding box. This

is also known as the overlap score and is considered one of the most important metrics for
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evaluating the performance of a tracker. The Intersection over Union (IoU) is calculated

for each frame by taking the area of overlap between the predicted bounding box and the

ground truth bounding box, divided by the area of their union. A success plot is generated by

calculating the success rate (the percentage of frames where the IoU is higher than a given

threshold) for various thresholds (e.g., from 0 to 1). The success score for a tracker is often

represented by the Area Under the Curve (AUC) of this success plot. A higher AUC indicates

a better overall performance.

1.4 Thesis Aims and Outline

This thesis aims to investigate the problems associated with existing approaches in visual

object tracking, and propose new solutions to address these issues. This thesis is organized

into six chapters. Chapter 1 provides a general introduction to the task of visual object

tracking. Chapter 2 shows the developments and some representative methods in visual object

tracking. The subsequent chapters (Chapter 3, Chapter 4, Chapter 5 and Chapter 6) present

four methods for improving tracking performance and exploring new research directions.

Finally, Chapter 7 offers a general conclusion of the four proposed methods.

● Chapter 1 General Introduction. In this chapter, we delineate the scope of our

inquiry by defining visual object tracking, elucidating the core challenges it poses,

and detailing the evaluation metrics that are essential for its assessment. Additionally,

we outline the objectives and organizational structure of this thesis to provide a

roadmap for the reader.

● Chapter 2 Literature Review. This section offers a thorough survey of the liter-

ature tracing the evolution of object tracking. Special emphasis is placed on the

breakthroughs achieved through the integration of deep learning into visual object

tracking.

● Chapter 3 SiamSampler: Video-Guided Sampling for Siamese Visual Tracking.

This chapter presents a new sampling strategy, aiming to address the limitations of

uniform sampling. All the chapters related to our proposed methods have similar
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structure, including introduction, related work, algorithm details, experiments, and

conclusion.

● Chapter 4 DNVOT: Exploring Dual-branch Network for Visual Object Tracking.

In addition to training data, network architecture is another important factor for

tracking performance. This chapter explores the significance of network architecture

for optimal tracking performance. Specifically, we investigate the utility of the

Siamese network and the potential for utilizing neural architecture search to generate

a more robust network for visual object tracking.

● Chapter 5 SimTrack: A Simplified Architecture for Visual Object Tracking. Sim-

ilar with Chapter 4, this chapter also concentrates on network architecture. However,

in contrast, our focus is on the transformer network rather than the convolutional

network. We propose a method for simplifying the existing Siamese-based tracking

pipeline without sacrificing tracking accuracy.

● Chapter 6 Speech-SOT: Single Object Tracking Guided by Speech. This chapter

introduces a novel modality for visual object tracking. We propose a new task,

named as speech-sot, which utilizes human speech as the primary source of target

information for trackers, as opposed to the target image. As a complementary

modality to existing tracking methods, speech-sot offers distinct advantages such as

improved efficiency, accessibility, and applicability.

● Chapter 7 General Conclusion. This chapter summarizes the strengths and lim-

itations of the methods discussed in the previous chapters, and suggests potential

directions for future research in visual object tracking.
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Literature Review

The field of object tracking has experienced a dramatic evolution over the years, transitioning

from traditional methods based on hand-crafted features and simple classifiers to advanced

deep-learning-based approaches that have significantly boosted performance. In this section,

we provide an extensive literature review that spans the developmental history of object

tracking, with an emphasis on advancements brought about by deep learning.

2.1 Evolution of Visual Object Tracking.

The domain of visual object tracking has fundamentally been about the consistent monitoring

of a target object through diverse real-world environments. This endeavor relies on two key

components: a motion model that captures and predicts the temporal states of the object

(as exemplified by the Kalman filter (Comaniciu et al. 2003) and particle filter (Pérez et al.

2002; Li et al. 2008)) and an observation model that defines the visual attributes of the object,

validating the predictions with each new frame (Li et al. 2013). It’s recognized in literature,

such as that referenced by (Wang et al. 2015), that the observation model is often more critical

than the motion model.

Tracking methodologies within the realm of the observation model fall into two broad

categories: generative and discriminative approaches. Generative methods include those

based on templates (Comaniciu et al. 2003; Adam et al. 2006), subspace models (Ross et al.

2008), and sparse representations (Mei and Ling 2011; Wang et al. 2013), aiming to match

regions of the video to the object. Discriminative methods, conversely, approach tracking as a

binary classification task, differentiating the object from the background, utilizing a variety of
9
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machine learning algorithms like support vector machines (Avidan 2004), boosting (Grabner

and Bischof 2006; Avidan 2007), random forest (Saffari et al. 2009), multiple instance

learning (Babenko et al. 2011), metric learning (Jiang et al. 2011), structured learning (Hare

et al. 2016), naive bayes (Zhang et al. 2014b), latent variable learning (Gao et al. 2014), and

correlation filters (Henriques et al. 2015).

Wang et al. (Wang et al. 2015) have emphasized the crucial importance of feature extraction

in constructing effective trackers, highlighting that the use of HOG features significantly

surpasses those that rely on Haar-like features. Insights from traditional tracking algorithms

suggest that enhancements in feature extraction and the integration of sophisticated machine-

learning techniques have been pivotal to the progression of visual object tracking methods.

The adoption of deep learning, with its established success in feature extraction and ob-

ject classification, is anticipated to bring forth significant strides in tracking accuracy and

reliability.

2.2 Visual Object Tracking with Deep Learning

In exploring the evolution of visual object tracking, deep learning has notably shifted the

paradigm, initially stepping in to revolutionize feature extraction. Early works, such as those

by researchers in (Ma et al. 2015a; Danelljan et al. 2015a; Danelljan et al. 2015b; Danelljan

et al. 2016; Danelljan et al. 2017), harnessing the power of deep discriminative features,

demonstrating a significant enhancement in tracking performance over traditional handcrafted

features. Subsequently, the field has progressed towards constructing comprehensive end-to-

end deep learning architectures tailored for visual object tracking, which will be the primary

focus of the ensuing discussion.

Contemporary deep learning-based tracking algorithms can be primarily divided into two

classifications: trackers that operate independently of Siamese Networks and those that are

predicated upon them. The former encompasses a variety of architectures and methodologies,

while the latter leverages the unique capabilities of Siamese Networks for real-time tracking.
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This literature review will explore salient methods within each category, showcasing their

distinct approaches and the advancements they have brought to visual object tracking.

Trackers without Siamese Networks. Trackers without using Siamese Networks incorporate

a diverse array of architectures and strategies, including those based on CNNs (Jung et al.

2018; Valmadre et al. 2017) and RNNs (Cui et al. 2016; Fan and Ling 2017; Zhu et al. 2016).

Most trackers based on CNNs typically consist of a backbone for feature extraction and a

binary classification strategy. The binary classifier is trained offline with massive training

data. To improve the classification capability for the current video, some methods will update

the classifier with the ground truth in the initial frame during inference. This classifier is then

utilized to differentiate the target from the background in subsequent frames. To accommodate

for unpredictable changes in the target and background, the classifier trained in the initial

frame is updated in subsequent frames using predicted results to crop positive and negative

samples. While frequent updates can enhance tracking accuracy, they have the potential to

negatively impact tracking speed.

MDNet (Multi-Domain Network) (Jung et al. 2018) is a notable algorithm in trainable-

classifier-based object tracking, which samples many candidates in a given frame and uses

a classifier to identify the target. The algorithm operates under the assumption of minor

object displacements between frames, which reduces the search area but still carries a heavy

computational load. MDNet’s innovation lies in its use of domain-specific layers for training a

target-specific classifier, enhancing the discriminative power of the feature extraction network.

However, MDNet’s precision comes at the cost of speed, managing only about 1 frame per

second.

CFNet (Correlation Filter Network) (Valmadre et al. 2017), in contrast, tackles the compu-

tational intensity of MDNet by sampling candidates on the features of a search region, thus

avoiding redundant feature extraction. It accelerates both training and testing by applying

correlation filters and utilizing cyclic matrix properties, significantly reducing computational

complexity. The network integrates correlation filters as a trainable layer in a neural network,

facilitating end-to-end training. While CFNet performs better with shallow networks and
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shows improved speed, suitable for real-time tracking, it’s less effective with deeper networks,

constraining its advancement in tracking accuracy.

Trackers With Siamese Networks. While CFNet operates at a high speed, it does not

perform well when used in conjunction with deep networks. As deep networks have demon-

strated powerful representation capabilities in various fields, some algorithms have attempted

to leverage the representative ability of deep neural networks in visual tracking. SiameseFC

(Fully-Convolutional Siamese Network) (Bertinetto et al. 2016) is one of the most widely

adopted algorithms in this category. SiameseFC employs a Siamese network, which consists

of two branches that share parameters. The two branches are used to extract features for

the template and search region. The template features are then used as the non-trainable

classifier to locate the target in subsequent frames through similarity matching. In contrast

to trainable-classifier-based trackers, the entire network remains fixed during the inference

phase. As a result, Siamese-based trackers tend to have higher tracking speeds. Generally,

their performance heavily depends on the representative power of deep networks.

Using a general network for all videos during inference (such as SiameseFC) is not econom-

ical, as different videos or frames require different computations to achieve high tracking

accuracy. For example, easy frames with minimal target variations and background clutter

can be processed with less computationally representative features (such as features from

shallow layers or pixel values), while challenging frames with noise usually require more

computationally representative, but more invariant deep features. To balance the trade-off

between computation burden and accuracy, EAST (EArly-Stopping Tracker) (Huang et al.

2017) proposed a dynamic tracking algorithm that learns an agent to decide whether to stop

feature extraction at an early layer or continue processing subsequent layers. The crucial

aspect of EAST is the Q-Net, which takes as input the features of the template and search

image and outputs an average score map as well as 8 actions. After feature extraction for

each layer, the Q-Net makes a decision based on 8 actions, including 2 global scaling, 4 local

scaling, no scaling, and stop. When the action is "stop", the tracker terminates at the current

layer, and the average score map is used to calculate the target position. Otherwise, the tracker

progresses to the next layer until the end layer of the network. The computation of EAST is
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significantly reduced by the adaptive stop mechanism, making the tracker run at a speed of

23fps on a single CPU without compromising accuracy.

Inspired by the success of Region Proposal Network (RPN) in object tracking, SiamRPN

(Siamese Region Proposal Network) (Li et al. 2018a) is a visual object tracking algorithm that

utilizes a two-branch architecture for classification and regression. The architecture includes

a feature extraction network and a region proposal network, which are trained using a large

number of image pairs in an end-to-end fashion. The feature extraction network in SiamRPN

is similar to that in SiameseFC (Bertinetto et al. 2016), with two shared branches to extract

features for the template and search regions, respectively. The region proposal network has

two branches, with the top branch responsible for foreground-background classification and

the bottom branch responsible for proposal refinement. During inference, the network is

fixed and the template is cropped based on the given ground truth in the initial frame, which

is then used to search for the target in the following frames. The use of two branches for

classification and regression in SiamRPN allows for more accurate and efficient visual object

tracking compared to non-trainable classifier-based algorithms.

Although SiamRPN has demonstrated strong performance in terms of both accuracy and speed,

the features from SiamRPN can only discriminate foreground from non-semantic backgrounds,

as only non-semantic negative samples are used to train the network. To address this limitation,

DaSiamRPN (Distractor-aware Siamese Region Proposal Networks) was proposed, which

utilizes a distractor-aware training method for Siamese networks. Compared to SiamRPN,

DaSiamRPN introduces two main improvements. First, an effective sampling strategy is

used to make the model focus on semantic distractors. Second, a distractor-aware module is

employed during inference for online updates. DaSiamRPN adopted negative pairs from the

same and different categories during offline training, in addition to the original detection pairs

used in SiamRPN. This harder negative pairs further improves the discriminative ability of

DaSiamRPN compared to SiamRPN. Overall, DaSiamRPN is a more robust and effective

visual object tracking algorithm, which is able to better handle semantic distractors during

both training and inference process.
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Another limitation of SiamRPN is the limitation of using features from deep networks, such

as ResNet-50 or deeper. In SiamRPN++ (Li et al. 2019a), the authors aim to address this

limitation by analyzing the SiamRPN algorithm. They identify that the decrease in accuracy

on deep networks is caused by the destruction of translation invariance. To solve this problem,

SiamRPN++ keeps the padding of all layers and reduces the effective strides at the last two

blocks of ResNet50 to improve the network quality of SiamRPN. Additionally, SiamRPN++

uses a layer-wise aggregation of features from 3 different blocks to combine both low-level

and semantic information. Another improvement in SiamRPN++ is replacing the Up-Channel

Cross Correlation Layer with Depth-wise Cross Correlation Layer, leading to a faster tracking

speed. These modifications to the original SiamRPN algorithm result in better performance

on deep networks and improve accuracy and speed in visual object tracking.

SiamFC++ is a similar visual object tracking algorithm that has two main differences from

SiamRPN++. The first difference is that it is an anchor-free method, meaning that it does not

use pre-defined anchors. The second difference is that it consists of three branches, including

the classification, regression, and quality assessment branches. The quality assessment branch

is responsible for estimating the certainty of the classification results. This allows for more

accurate and efficient tracking by providing a confidence score for the classification results,

enabling the algorithm to make more informed decisions. Additionally, the anchor-free

design of SiamFC++ allows for more flexibility and adaptability compared to the traditional

anchor-based methods used in SiamRPN++.

In 2017, Vaswani et al. introduced the transformer architecture in their seminal work,

"Attention Is All You Need" (Vaswani et al. 2017b). The transformer was initially applied

to machine translation and has since gained widespread popularity due to its self-attention

mechanism, which allows for the modeling of dependencies among all input tokens and the

capture of global sequential information. The architecture’s ability to support significant

parallelization and its competitive performance have led to its widespread adoption in various

fields such as language modeling (Devlin et al. 2018; Radford et al. 2018) and computer

vision (Dosovitskiy et al. 2020; Hugo et al. 2021; Chen et al. 2021a; Chen et al. 2021b).

Recently, the introduction of the transformer architecture to visual object tracking has led to
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the development of new state-of-the-art trackers (Ning et al. 2021; Chen et al. 2021d; Yan

et al. 2021b). One notable example is the transformer-based tracker proposed by Stark (Yan

et al. 2021b), which replaces the traditional cross-correlation operation with a transformer

to create a target-related search feature. In this method, the template and search features are

first flattened and concatenated, and then fed into the transformer. The transformer can model

more complex relationships between the template tokens and the search tokens compared to

traditional cross-correlation-based methods, which leads to improved tracking performance.



CHAPTER 3

SiamSampler: Video-Guided Sampling for Siamese Visual Tracking

We present SiamSampler, the first to our knowledge investigating video sampling in visual

object tracking. We observe that the random sampling applied in Siamese-based trackers

cannot focus on important data or ensure data diversity, hindering the effective training of

networks. This chapter proposes the Video-Guided Sampling Strategy to solve the problems in

random sampling from both inter and intra-video levels. At the inter-video level, we propose

Modified Gaussian Sampling Strategy to automatically assign higher sampling probabilities

to longer and more difficult videos and reduce the sampling probabilities of shorter and

easier videos. At the intra-video level, the Farthest Image Pair Sampling Strategy is proposed

to increase the diversity of training data. Extensive experiments on general benchmarks

demonstrate the effectiveness of our method. Compared with the baseline model, our method

improves tracking performance on five datasets, without affecting the testing speed.

3.1 Introduction

Siamese Networks have achieved a great success in visual object tracking (Bertinetto et al.

2016; Li et al. 2018a; Li et al. 2019a; Zhu et al. 2018a; Fan et al. 2020; Li et al. 2021;

Zhao et al. 2022a; Shan et al. 2020), among which SiamRPN (Li et al. 2018a) is one of the

most popular baseline models. Most existing trackers based on SiamRPN either improve

the network structure (Wang et al. 2019a; Fan and Ling 2019; Zhang and Peng 2019; Li

et al. 2019a; Yu et al. 2020; Chen et al. 2020) or propose new losses (Xu et al. 2020; Wang

et al. 2019b; Lukezic et al. 2020). For these deep learning approaches, there is no doubt that

training samples are critical for effectively learning models.
16
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FIGURE 3.1. Our motivation. At the inter-video level (a), the three videos
have different length and difficulty levels. The random sampling (RS) in
existing works has the same sampling probabilities for these videos. With
our MGSS, the first video has the lowest sampling probability while the third
video has the highest sampling probability. At the intra-video level (b), the
sampled image pairs (shown in orange square) may be close to each other with
random sampling, while our FPSS ensures the sampling diversity.

Different from the image-based tasks, such as image classification and object detection, only

small portion of training image pairs are sampled in video object tracking. In SiamRPN, we

have about 600 million image pairs in the training dataset but only sample about 12 million

image pairs for network training. Therefore, how to sample becomes extremely important.

However, there is no investigation on data sampling in visual object tracking. In this chapter,

we observe problems in utilizing training samples at inter and intra-video levels.

At the inter-video level, conventional sampling does not pay attention to the differences of

videos in lengths and difficulty levels. In most tracking approaches, all videos are randomly

sampled with uniform probability. Generally, these videos have different lengths and difficulty

levels. For example, the first video has 25 frames and the second one has 50 frames in Fig. 3.1

(a), but the two videos are sampled with equal probability in random sampling. For tracking

dataset, the average video length of VID (Russakovsky et al. 2015) is about 20 times that
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of Youtube (Real et al. 2017). As another example, videos with the same length may have

different target variations or background clutter, as the second and the third videos in Fig. 3.1

(a). These videos should have different levels of importance to the network training. Treating

them all equally will lead to insufficient data usage.

At the intra-video level, the problems is the lack of diversity. In existing works, all training

image pairs are sampled randomly in videos. The random sampling can not ensure the

diversity of training data. Some frames are sampled for many times while others are not

sampled during the whole training procedure. For example, in RS (random sampling) of

Fig. 3.1 (b), the two pairs of images, (Z3, X2) and (Z4, X2), are from the same video but are

very close in temporal index space. This causes the two pairs of samples too similar in visual

information to have diversity of training sample pairs, which hinders the network to be trained

well. The low sampling ratio of image pairs (2% in SiamRPN) makes the situation worse.

To solve the above problems, we propose a Video-Guided Sampling Strategy which consists

of a Modified Gaussian Sampling Strategy (MGSS) at the inter-video level and the Farthest

Image Pair Sampling Strategy (FPSS) at the intra-video level.

At the inter-video level, the video length and difficulty level are considered by MGSS for

efficient sampling. First, the uniform sampling probability is changed based on the video

length. Then, we measure the video difficulties and use the distribution of video difficulties

to guide the image pair sampling. With this strategy, the sampling probabilities of harder

videos are increased and the sampling probabilities of easier ones are reduced. For example,

in Fig. 3.1(a), the first video will have the lowest sampling probability while the last one will

have the highest sampling probability.

At the intra-video level, after a video is selected with MGSS, we propose FPSS to sample

image pairs from this video. The main idea is to use frame index as the guidance to enforce

visual diversity of samples. FPSS requires the sampled image pairs to have the farthest

distances in the temporal index space. If we need to sample an image pair, we should sample

the image pair which is the farthest in temporal index (and thus in visual diversity) from all

sampled image pairs in this video. Fig. 3.1(b) show a example of sampling using FPSS.
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The contributions of this chapter are summarized as follows:

● We propose the Modified Gaussian Sampling to modify the sampling probability of

different videos according to their lengths and difficulty levels.

● We propose the Farthest Image Pair Sampling to increase the diversity of sampled

image pairs in a video.

Our sampling strategy can be easily combined with existing trackers. Extensive experiments

conducted on general benchmarks show that the proposed tracker achieves promising results

without affecting testing speed (60-90 fps). On VOT2018, our sampling strategies help to

improve the EAO by about 7%. On GOT-10k, the AO is improved by 2.7% for SiamRPN++ (Li

et al. 2019a). Our sampling strategies improve the performance for both anchor-based tracker

(SiamRPN++ (Li et al. 2019a)) and anchor-free tracker (SiamFC++ (Xu et al. 2020)).

3.2 Related Work

Loss and Data. SiamFC++ (Xu et al. 2020) introduces a quality assessment branch

for more accurate results. SiamMask (Wang et al. 2019b) and D3C (Lukezic et al. 2020)

narrow the gap between tracking and segmentation by augmenting the tracking loss with

a binary segmentation task. UPDT (Bhat et al. 2018) analyzes the influence of different

data augmentation in visual object tracking. DaSiamRPN (Zhu et al. 2018a) controls the

imbalanced distribution of training data by introducing new training samples as semantic

distractors. Similarly, we also aim to use the training data more effectively. The main

difference is that these loss functions are based on the sampled data but do not handle the

inter and intra-video sampling problems that we target at. Our method is complementary to

the methods above, because these designs of loss functions or inclusion of more data can be

naturally combined with our sampling method.

Training Data Sampling for Other Tasks. The idea of data sampling has been well studied

in the literature (Kahn and Marshall 1953; Xu et al. 2019; Wang et al. 2020a; Malisiewicz

et al. 2011; Li et al. 2019c; Viola and Jones 2001). Importance sampling (Kahn and Marshall
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FIGURE 3.2. The overview of the proposed inter-video (a) and intra-video (b)
sampling strategies. In the inter-video level, we change the video sampling
probability based on video length and difficulty, as show in the top box. Each
circle represents a video, in which the two number are video length and
difficulty values. For example, "5,9" in the circle represents video length 5 and
difficulty level 9. First, we modify the uniform sampling probability according
to video length. After that, we further change the sampling probability based
on video difficulty. In the intra-video level, we sample the image pair which
has the farthest distance with the sampled image pairs.

1953; Xu et al. 2019; Wang et al. 2020a) matches different data distributions by assigning

weights to samples. Similarly, hard example mining (Malisiewicz et al. 2011) helps to exploits

the hard examples by re-weighting. One crucial advantage of data re-weighting is helping to

solve class imbalance problems, which has been widely used in object detection and image

classification. Some methods (Viola and Jones 2001; Felzenszwalb et al. 2010; Wang and

Gupta 2015; Shrivastava et al. 2016) utilize the loss as an evaluation to select hard examples.

If the loss is larger than a threshold, the corresponding sample is treated as hard sample

and assigned a higher weight. Gradient norm is another direction to re-weight important

examples. (Zhao and Zhang 2015; Needell et al. 2014) show the sampling probability should

be proportional to the gradient norm. (Lin et al. 2020) proposes the focal loss to down-weight

the loss of well-classified examples and emphasizes a sparse set of hard examples.

All the above methods are about sample-level sampling, which can not directly be used at

the video level. For image pair sampling in videos, not all image pairs will be selected

during the whole training process. Many important image pairs are ignored by vanilla random
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FIGURE 3.3. Distribution of Video Difficulty. The x-axis is the difficulty
value of each bin. The y-axis is the number of videos. (a) the overall difficulty
distribution of all training data with uniform sampling probability. (b) the
difficulty distribution of all training data before (in dark purple) and after
changing sampling probability based on video length (in light purple). (c) four
weight functions to change the sampling probability based on video difficulty
(Eq. (3.6)), as shown in dart line. (d) the video difficulty distribution of all
training data before (light purple) and after changing sampling probability
based on the f 4(.) (dark gray). (e) The modified Gaussian distribution (the red
dotted line). (f) the video difficulty distribution of ImageNet Det (Deng et al.
2009) (in red at the left) and Youtube (Real et al. 2017) (in blue at the right).

sampling. The existing re-weighting methods can only give the sampled image pairs different

weights but can not increase sample probabilities of important image pairs. Besides, the above

methods cannot handle the diversity problem at the intra-video level. The proposed sampling

strategy is specific designed for video sampling, which helps to focus on important videos

and ensure data diversity.

3.3 Proposed Algorithm

As shown in Fig. 3.2, the proposed sampling algorithm consists of two steps: 1) at the

inter-video level, a video is sampled according to its length and difficulty (Section 3.3.2), 2)

from the video selected, a pair of frames are sampled according to the constraint on having

the largest diversity of sampled pairs in the video (Section 3.3.3). At the second step for

intra-video level, the 2D spatial distance is considered to sample frame pairs from a video.

For better understanding, we will first introduce the preliminary about Siamese-based tracker

in Section 3.3.1 and show existing problems in Section 3.3.2.
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3.3.1 Brief Introduction of Siamese-based Tracker

Given an input image pair (Z,X ), we send them to the Siamese network Z3 to extract

features. After feature extraction, the classification and (or) regression head is used to get the

classification and regression maps:

cls(Z,X ), reg(Z,X ) = head(f(Z) ∗ f(X )), (3.1)

where Z ∈ Rc×w1×h1 is the template image cropped from the initial (previous) frame, X ∈

Rc×w2×h2 is the search image cropped from current frame, generally w1 < w2, h1 < h2, and ∗ is

the correlation operation. We can find the target location in X according to the classification

results cls(Z,X ) and regression results reg(Z,X ). Not all trackers have both classification

and regression heads. Some tracker only have either classification or regression head. We

refer readers to (Bertinetto et al. 2016; Li et al. 2019a; Xu et al. 2020) for more details.

FIGURE 3.4. The sampling frequency of images in SiamRPN++ for random
sampling. The x-axis is the average sampling times of images, and the y-axis
shows the percentage of images. The sampling ratio is seriously unbalanced.
About 80% of the ImageNet DET images are sampled more than 9 times,
while about 80% of VID samples are never sampled.

3.3.2 Modified Gaussian Sampling Strategy (MGSS)

The training of Siamese networks requires image pairs. Most existing trackers utilize random

sampling strategy to get training image pairs, with which we random sample a video first and

an image pair from this video next. Previous random sampling strategy at the inter-video level

can not take full use of the training data. The training videos usually have different characters,

such as length and difficulty level. Different kinds of videos should be sampled with different

probabilities. Treating all videos equally will lead to insufficient data usage. As shown in
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Fig. 3.4, with random sampling, about 80% images of VID dataset (Russakovsky et al. 2015)

are not sampled while over 80% images of ImageNet DET dataset (Russakovsky et al. 2015)

are sampled more than nine times. There is a serious imbalance distribution of the data usage.

To solve the above problems, we propose the MGSS to sample training videos more efficiently.

In MGSS, the video sampling probability is calculated based on both video length and

difficulty, which are two essential factors to evaluate video importance. Given N videos, the

overall sampling probability of video Vi for i = 1, . . . ,N is:

p(Vi) =
fl(Vi) ⋅ fd(Vi)

∑
N
j=1 fl(Vj) ⋅ fd(Vj)

, (3.2)

where fl(Vi) denotes the weight function based on video length, fd(Vi) denotes the weight

function based on difficulty level.

3.3.2.1 Weight Function for Video Length

Suppose the video Vi has Li frames in total, two heuristic sampling methods are to sample

videos with uniform probability or with probability directly proportional to their frame

numbers, denoted as fl(Vi) = 1 or fl(Vi) = Li. The first method has no chance to sample all

useful frames while the second method ignores the redundant information in a longer video.

We propose to define fl(.) as follows:

fl(Vi) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, Li < 3

log(Li) + 1, otherwise.
(3.3)

As the video length becomes longer, the increase speed of video sampling probability becomes

lower in Eq. (3.3). Suppose there are two videos, one with 100 and another with 1000 frames.

The second video contains about 100 times the number of image pairs in the first video, so

the sampling probability for the second video should be larger than the first one so the the

image pairs in both videos have similar sampling probability. However, directly using a 100

times sampling probability for the second video compared with the first one is not so suitable,

since the longer video generally includes more redundant information. Our strategy uses a

log function for considering both frame length and redundant information in a longer video.
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3.3.2.2 Sampling Considering Video Difficulty

Evaluation of Video Difficulty. To design sampling weight function based on video difficulty,

we first need to evaluate the video difficulty. Generally, the confusion degree of prediction can

roughly reflect the difficulty of input images. Entropy information (Shannon 2001) is a good

criterion to measure the confusion degree of predictions, as shown in (Zhang et al. 2014a;

Ma et al. 2015b). Therefore, we utilize the Entropy information of the classification map

cls(f(Z), f(X )) to evaluate video difficulty, where f(.) denotes the backbone and cls(.)

denotes the classification head.

In this chapter, we evaluate our method on three baseline methods, including SiamRPN++ (Li

et al. 2019a), SiamFC++ (Xu et al. 2020), and SiamGAT (Guo et al. 2021a). These three

methods have classification heads which consist of several Conv-BN layers and a Softmax

layer at the end. The forward process in the classification head is as follows:

cls(f(Z), f(X )) = Softmax(ConvBNs(f(Z)⍟ f(X )))), (3.4)

where ⍟ is the cross-correlation in SiamRPN++ (Li et al. 2019a) and SiamFC++ (Xu et

al. 2020) (the graph attention module in SiamGAT (Guo et al. 2021a)), f(X ) and f(Z)

are the search and template features after the backbone, cls(f(Z), f(X )) ∈ Rc×w×h is the

classification map. SiamRPN++ (Li et al. 2019a) is an anchor-based method where five

(c = 5) anchors with different scale ratios are predefined at each position of f(X ). The

value at (i, j, k) on cls(f(Z), f(X )) ∈ R5×w×h denotes the probability of the ith anchor being

the target at position (j, k). We calculate the max probability among five anchors for each

position. Then, we can get the classification map cls∗(f(Z), f(X )) ∈ R1×w×h, which is used

in evaluating video difficulty. SiamFC++ (Xu et al. 2020) and SiamGAT (Guo et al. 2021a) are

anchor-free methods (where c = 1). The classification map cls(f(Z), f(X )) ∈ R1×w×h can be

directly used in video difficulty calculation. For better understanding, we adopt SiamRPN++

to explain our method in the following description and show the generalization ability of our

method on the three baseline models in Section 3.4.
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Given video i, we use Zi ∈ R3×w1×h1 to represent the template image from the initial frame,

Xij ∈ R3×w2×h2 to denote the search image from frame j(j = 1,2, . . . ,Ni), where Ni denotes

the number of frames in video i. Then, the classification map is cls(Zi,Xij). To simplify, we

rewrite cls(Zi,Xij) as clsij ∈ R1×w×h. The difficulty value of video i is:

d(Vi) = −
1

Ni

Ni

∑
j=1

K

∑
s=1

psijlog(p
s
ij), (3.5)

where K is the number of positive samples in clsij and psij corresponds to the probability of

location s being the target. As an example, consider only one frame, i.e. Ni = 1, and suppose

there is only one sample in the j-th frame of Vi, i.e. K = 1 in Eq. (3.5), if the classification

result pij is 1 (confident), then d(Vi) is a low value of 0. If pij is 0.5 (confusing), then d(Vi)

is high (about 0.69). The prediction of difficult frames usually has more uncertainty, so their

d(Vi) are accordingly higher. Some visual examples are shown in Fig. 3.7. Considering the

trade-off between accuracy and computation, we only select five instead of all image pairs

from a video to calculate d(Vi). We show the difficulty distribution of all training videos in

Fig. 3.3 (a). After sampling training videos using the weight function fl for video length in

Eq (3.3), the overall difficulty distribution is shown in Fig. 3.3 (b).

Motivation of Weight Function on Video Difficulty. Before we reach the final definition of

the weight function in Eq. (3.7), we provide the motivation for such definition. Denote the

weight function based on video difficulty by fd(.). Based on the difficulty distribution after

considering video length, we can try four different methods to sample videos considering

their difficulty values, as shown in the dark line in Fig. 3.3 (c). Mathematically, the weight

functions of the four methods can be written as:

f 1
d (Vi) = (a + δ(d(Vi) < β)), (3.6)

f 2
d (Vi) = (a + δ(d(Vi) > β)),

f 3
d (Vi) = (a +

d(Vi) −min(d)

max(d) −min(d)
),

f 4
d (Vi) = (a + 0.5 ∗ cos(π

d(Vi) −min(d)

2(β −min(d))
+ π) + 0.5),
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TABLE 3.1. EAO means of different sampling weight functions on
VOT2018 (Kristan et al. 2018).

Base p1(.) p2(.) p3(.) p4(.) p5(.)
EAO 0.308 0.303 0.315 0.320 0.326 0.326

where δ(True) = 1, δ(False) = 0, a is a constant number (a=0.5 in our implementation) to

control the range of fd ∈ [a, a + 1], β is the difficulty value corresponds to the peak of the

distribution, as shown in Fig. 3.3 (c), min(d) and max(d) denotes the minimal and maximal

difficulty value among all video difficulties. The hyper-parameter design principle of f 4
d

is to make sure f 4
d (Vi) = 1 for d(Vi) = β. We test the above four sampling methods on

VOT2018 (Kristan et al. 2018). The tracking framework is SiamRPN++ (Li et al. 2019a)

with ResNet18 (the first three stage). To reduce the instability, we calculate the EAO mean

of models from the last five training epochs as the final results. The experiment results are

shown in Table 3.1. Increasing the sampling probability of hard videos using f 2
d performs

better than baseline model, i.e. Base in Table 3.1, and reducing the sampling probability of

hard training examples using f 1
d . The way to increase sampling probability of hard videos

also influence the final results. The linear weight function f 3
d performs better than the uniform

function f 2
d . The cosine weight function f 4

d performs better than linear weight function

f 3
d . Because the training sample becomes more noisy when videos are very difficult. As

shown by some examples in Fig. 3.7, the image pairs in solid red box at the last low cannot

even be matched well by human. These samples too difficult to help the network training.

Increasing the sampling probability of the most difficult videos also introduces noise ratio,

so the most difficult videos should not have the highest weight values, which is achieved

by the cosine weight function f 4
d but not in f 3

d . On the other hand, the formulation of f 4
d in

Eq. (3.6) has lots of hyper-parameters, which is not neat and may requires lots of manual

tuning. We cast another viewpoint on the weight function so the function is dependent on

the data without requiring hyper-parameters. After sampling according to f 4
d , the difficulty

distribution of all training data is shown in dark gray in Fig. 3.3 (d), which is similar to a

Gaussian distribution. Inspired by this observation, we calculate the mean and variance of

video difficulty D and draw the Gaussian distribution, making the highest value of Gaussian

distribution the same as the peak of original distribution. We show the Gaussian distribution
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as the red dashed line in Fig. 3.3 (e). As we can see, the Gaussian distribution fits well with

the data distribution after sampling with f 4
d . Therefore, in our implementation, we utilize the

Gaussian distribution, instead of counting on the weighting function f 4
d , to sample videos and

evaluate the model performance, which is the f 5
d in Table 3.1. The Gaussian distribution using

f 5
d performs as good as p4(.). Based on the analysis and the empirical results, we propose the

Modified Gaussian Sampling Strategy to get the new video sampling probability with less

hand-designed hyper-parameters.

Definition of Weight Function on Video Difficulty. To change the sampling using Guassian

distribution in fd
5 back to the weight function similar to f 1

d , f
2
d , f

3
d and f 4

d , we utilize the ratio

of two distributions and define f 5
d as:

f 5
d (Vi) =

gb
ob
, where d(Vi) ∈ [rb, rb+1], (3.7)

where gb is the target Gaussian Distribution and ob is the original distribution. The f 5
d defined

in Eq. (3.7) is used as the fd in Eq. (3.2) in our implementation.

Given B bins, the original distribution o = [o1, . . . , oB] for the set of difficulties for all training

videos is obtained using histogram as follows:

[o, r] = hist({Vi},B), (3.8)

where ob for b = 1, . . . ,B is the number of videos in the bth bin. ob can be normalized so that

∑
B
b=1 ob = 1. r = [r1, . . . , rb, . . . , rB] is the minimum difficulty value of each bin. Fig. 3.3 (a)

shows an example of the histogram.

The corresponding values of Gaussian distribution g = [g1, . . . , gb, . . . , gB] based on D and r

is calculated as follows:

gb = A ⋅ exp(−
(rb − µ)2

2σ2
), (3.9)

where A is a constant number to ensure the maximum value in g is equal to that in o, µ and σ

are the mean and variance of all D(Vi). Compared with the weight function f 4
d in Eq. (3.6),

f 5
d in Eq. (3.7) only needs the statistics of mean and variance for video difficulty from data

but does not need hyper-parameters. The details of the MGSS are shown in Algorithm 1. We
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Algorithm 1 Modified Gaussian Sampling Strategy
Input: Training videos V1,V2,⋯,Vn from several datasets, histogram bin number B.
Output: Sampling probability p(Vi).

Step 0: Train the network using the training videos Vi.
Step 1: Get the video difficulty d(Vi), Eq. (3.5).
Step 2: Get the original distribution o, Eq. (3.8).
Step 3: Get the Gaussian distribution g, Eq. (3.9).
Step 3: Get the weight function f 5

d , Eq. (3.7).
Step 4: Get video length weight fl, Eq. (3.3).
Step 5: Get video sampling probability p(Vi), Eq. (3.2).

also calculate the video difficulty distribution of single datasets, both are similar to a Gaussian

distribution. For clear display, we show two of them in Fig. 3.3 (f).

3.3.3 Farthest Image Pair Sampling Strategy (FPSS)

The random sampling strategy used in existing trackers does not consider data diversity. For

example, suppose we sample the image pair (Zm,Xn), i.e. frame index m as template Zm and

frame index n as the search image Xn, at the second iteration, it is possible that we sample

the images pair (Zm+1,Xn) or other image pairs which are close to the first image pair. To

solve the problems, we propose the Farthest Image Pair Sampling Strategy. There are two

main steps in the Farthest Image Pair Sampling Strategy. First, distance array establishing is

used for setting the distance among image pairs. Then, farthest image pair sampling is used

to sample videos using the established distance array.

Establishing Distance Array. The process of establishing distance array is shown in Fig. 3.5.

Given a video V containing N images, there are total N2 image pairs, as Fig. 3.5 (1). To

save the computation and memory resources, we split V into K bins (K << N ), as shown in

Fig. 3.5 (2). Each bin contains N/K consecutive frames. The template and search images

can both be selected from K bins, so there are total K2 bin pairs. We denote two bin pairs

from K2 bin pairs as k1 and k2 respectively, where k1, k2 = 1, . . . ,K2. In Fig. 3.5 (2), taking

the two yellow boxes as an example, k1 = 2, k2 = K2. We use (u1,w1) to represent the bin

pair of k1, where u1 denotes the bin index of template image and w1 is the index of search

image. Similarly, (u2,w2) represents the bin pair of k2. The element Dk1k2 in the distance
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FIGURE 3.5. The calculation process to get the distance array. The video
with N frames is used for constructing the index array in (1). The pairs of
frames in the video with N frames are grouped intro K2 bin pairs, each bin
pair containing N/K ×N/K pairs of frames in (2). The distance between bin
pairs is used for constructing the distance array D.

array D ∈ RK2×K2 can be calculated as follows:

Dk1k2 = ∣∣(u1,w1) − (u2,w2)∣∣
2, (3.10)

where Dk1k2 is the Euclidean distance of bin pairs (u1,w1) and (u2,w2), ∣∣ ⋅ ∣∣2 denotes L2

norm. The temporal distance between bin pairs obtained in Eq. (3.10) is used for measuring

the distance between the image pairs to be sampled in the next step, the Farthest Image Pair

Sampling. Note that the key is in establishing the distance array D and use it for sampling,

but not in defining the D in Eq. (3.10). The D can also be calculated by other strategies, such

as feature similarity. We choose the form in Eq. (3.10) because it is easy to understand and

fast to compute.

Farthest Image Pair Sampling. The key idea of Farthest Image Pair Sampling is to select

an image pair which is the farthest from the image pairs that have been sampled in the same

video. First, we divide the video into K bins. Then, the candidate list L and sampled list D

are initialized. L contains the index of bin pairs which are not sampled. D contains the index

of bin pairs that have been sampled. After that, we iteratively select an image pair from L.

The chosen image pair should have the farthest distance from the image pairs in D. Then,

the index of the sampled image pair is moved from L to D. Besides, the diagonal index of

selected image pairs in the distance array is also moved from L to D since the two diagonal

elements in the distance array represent the same bin pair. The L and D are re-initialized
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Algorithm 2 Farthest Image Pair Sampling Strategy

Input: The image set {I1, I2,⋯, IN} in a video, initial sampling probability P (Eq. (3.2)) and
the total number M of training image pairs.
Output: Sampled image pairs (Xm,Zn).

1) Divide the image set into K bins. K = ⌊
√
2PM⌋

2) Initialize candidate and sampled list L and D with ∅.
2) Calculate the distance array D, Eq. (3.10).
for iter ∈ 0,1,⋯,M do

if D = ∅ then
Random sample an element k in L.

else
For elements in L, get their minimal distance to D.
Select k from L with the max distance to D.

end if
a). u = ⌊k ÷K⌋,w = k (mod K)
b). Get the image pairs (Xm,Zn) by random sampling from the u-th bin and w-th bin.
c). Move the diagonal elements k and Kw + u from the candidate list L to D.
if L = ∅ then

Re-initialize L and D:
L = [1,2,⋯,K2], D = ∅

end if
end for

when L is an empty set. The details of the Farthest Sampling are shown in Algorithm 2. Our

Farthest Image Pair Sampling strategy helps to ensure visual diversity of sampled image pairs,

because all sampled image pairs are based on the distance among image pairs instead of single

images. Specifically, Our image pair sampling strategy is not based on the distance between

u1 and w1 in Eq.(3.10). Instead, we treat the image pair (u1, w1) as a whole and sample

another image pair (u2, w2) that has the biggest distance from the image pair (u1, w1).

Analysis. For better understanding, we show the position of sampled image pairs in Fig. 3.6.

The random sampling (the first row) used in most existing trackers will select many similar

image pairs, even when we only sample 25 image pairs from about 600 image pairs. Even

worse, random sampling has a certain probability of selecting the same image pairs multiple

times when there are many unsampled image pairs. Differently, the selected image pairs with

our sampling strategy have better diversity and no overlap. The Farthest Image Pair Sampling

Strategy takes full use of the image pairs in a video.
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FIGURE 3.6. The position of selected image pairs with different sampling
strategies when sampling 25 (left), 50 (middle), and 75 (right) image pairs.
Lighter dots means more sampling times. With random sampling (first row),
there are many close image pairs (highlighted by red dotted boxes). Our
approach with FPSS (second row) is more scattered.

FIGURE 3.7. The visual maps of entropy value (in yellow). Each image pair
shows the searching image (left) and classification map (right). The template
are shown in the red dotted box at the bottom of the search images. The tracked
targets are shown in green box.

3.4 Experiments

All codes are implemented in Python with the Pytorch framework and tested with an intel

i7 3.2GHz CPU with 32G memory and an Nvidia 1080ti GPU with 11G memory. We test

our method with eight state-of-the-art trackers on five general benchmarks. Our tracker runs



32 3 SIAMSAMPLER: VIDEO-GUIDED SAMPLING FOR SIAMESE VISUAL TRACKING

about 60 − 90fps which is the same with the baseline models. In the ablation study, we test

different variations of our model with SiamRPN++ on VOT2018 (Kristan et al. 2018).

3.4.1 Implementation Details.

We utilize SiamRPN++ (Li et al. 2019a), SiamFC++ (Xu et al. 2020) and SiamGAT (Guo et al.

2021a) as our baseline models (named BaseRPN++, BaseFC++ and BaseGAT), which are

respectively anchor-based, anchor-free, and anchor-free Siamese-based trackers. The training

datasets include VID (Russakovsky et al. 2015), YouTube (Real et al. 2017), ImageNet

DET (Russakovsky et al. 2015), COCO (Lin et al. 2014), LaSOT (Choi et al. 2017) (the train

subset) and GOT-10k (Huang et al. 2018) (the train subset). Considering the similar network

architecture of SiamFC++ and SiamGAT, we directly replace the correlation operation in

SiamFC++ (Xu et al. 2020) with the graph attention module in SiamGAT (Guo et al. 2021a) to

get the baseline model (named BaseGAT in this chapter). The baseline models (BaseRPN++,

BaseFC++, BaseGAT) are trained on the above datasets with a random sampling strategy.

In OurRPN++, OurFC++, and OurGAT, we train the corresponding baseline trackers with

the proposed Modified Gaussian Sampling Strategy (MGSS) and the Farthest Image Pair

Sampling Strategy (FPSS). All networks are trained for 20 epochs with the same training

scheduler as SiamRPN++. We start using MGSS at the tenth epoch. All inference settings are

the same as the baseline models.

3.4.2 Evaluation on Five datasets.

Evaluation on the VOT2018 dataset. The VOT2018 (Kristan et al. 2018) dataset contains

60 testing sequences annotated with 6 different attributes. The accuracy (A), robustness

(R), and expected average overlap (EAO) are three essential criteria, among which EAO is

a general criterion that reflects both accuracy and robustness. We refer readers to (Kristan

et al. 2018) for more details. As shown in Table 3.2, our tracker ranks second among these

trackers in terms of EAO. Compared with the baseline model and SiamRPN++, our model

has a significant performance gain, demonstrating the effectiveness of the proposed method.
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TABLE 3.2. The comparison results on VOT2018 (Kristan et al. 2018).

Models A R EAO
SiamFC (Bertinetto et al. 2016) 0.503 0.585 0.188
ECO (Danelljan et al. 2017) 0.484 0.276 0.280
ATOM (Danelljan et al. 2019) 0.590 0.204 0.401
SiamFC++ (Xu et al. 2020) 0.587 0.183 0.426
SiamBAN (Chen et al. 2020) 0.600 0.211 0.452
CRCDCF (Zhu et al. 2020b) 0.521 - 0.312
MCOT (Zheng et al. 2021b) - - 0.336
BaseRPN++ 0.597 0.178 0.410
OurRPN++ 0.620 0.197 0.440

TABLE 3.3. The comparison results on GOT-10k (Huang et al. 2018)

Models AO SR.5 SR.75

MemTracker (Yang and Chan 2018) 46.0 52.4 19.3
MDNet (Yang and Chan 2018) 29.2 30.3 9.9
SiamFC (Bertinetto et al. 2016) 34.8 35.3 9.8
ECO (Danelljan et al. 2017) 31.6 30.9 11.1
SiamRPN++ (Li et al. 2019a) 51.8 61.8 32.5
ATOM (Danelljan et al. 2019) 55.6 63.4 40.2
DeepMTA (Wang et al. 2021b) 46.2 55.6 -
BaseRPN++ 51.7 60.0 35.9
OurRPN++ 52.6 61.7 37.0

Evaluation on the GOT-10k dataset. GOT-10k (Müller et al. 2018) is a large-scale dataset

with 10,000 videos in train subset and 180 in val and test subset. The labels of the test

subset are not publicly available. We train the tracker only with the train subset of GOT-10k.

The results in Table 5.3 are obtained through an evaluation server. There are three evaluation

metrics, including average overlap (AO), and success rate (SR) with different thresholds. As

shown in Table 5.3, our tracker ranks second in terms of AO. The first tracker (ATOM) utilizes

an online update mechanism, but we do not use such an online update, which are well-known

techniques to significantly improve tracking accuracy. Compared with the baseline model,

our model performs better.
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TABLE 3.4. The comparison results on TrackingNet (Müller et al. 2018).

Models Prec Norm Prec Succ
SiamFC (Bertinetto et al. 2016) 51.8 65.2 55.9
ECO (Danelljan et al. 2017) 49.2 61.8 55.4
MDNet (Nam and Han 2016) 56.5 70.5 60.6
SiamRPN++ (Li et al. 2019a) 69.4 80.0 73.3
ATOM (Danelljan et al. 2019) 64.8 77.1 70.3
FC+Guess (Song et al. 2019) - 67.5 59.2
SiamFC++ (Xu et al. 2020) 70.5 80.0 75.4
IBFP (Pi et al. 2021) 68.2 79.0 73.4
BaseRPN++ 68.8 79.5 72.9
OurRPN++ 68.7 80.7 73.5
BaseFC++ 72.4 82.1 75.9
OurFC++ 73.4 82.8 77.1
BaseGAT 72.6 81.9 75.8
OurGAT 73.7 83.0 77.6

Evaluation on the TrackingNet dataset. TrackingNet (Müller et al. 2018) is a large-scale

dataset which includes 30,132 training videos and 511 testing videos. The ground-truth of the

test subset is not publicly available. Three evaluation criterion are used in this benchmark,

including precision, success and normalized precision. As shown in Table 3.4, our sampling

method helps to improve the Succ score of BaseRPN++ from 72.9 to 73.5, BaseFC++ from

75.9 to 77.1 and BaseGAT from 75.8 to 77.6, showing the effectiveness of our method.

Evaluation on OTB2015 and LaSOT. The OTB2015 (Wu et al. 2015) dataset consists

of 100 challenging video and LaSOT (Choi et al. 2017) (the test subset) consists of 280

sequences with 2500 frames in average. Table 3.5 shows the AUC scores of all compared

methods, among which our method based on BaseRPN++ achieves the highest AUC score

of 70.8% on OTB2015. OurGAT with the proposed sampling strategy gets the highest AUC

score of 56.2% on LaSOT. Our sampling strategy helps to improve the performance for all

three siamese-based trackers, demonstrating the effectiveness and good generalization ability.

3.4.3 Ablation Analysis.

Ablation study on MGSS and FPSS. Table 3.6 shows the results evaluating the MGSS and

the FPSS SiamRPN++ on VOT2018 (Kristan et al. 2018). Compared with the baseline model
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TABLE 3.5. The comparison results on LaSOT (Choi et al. 2017) and
OTB2015 (Wu et al. 2015).

Models Year LaSOT_AUC OTB_AUC
SiamFC (Bertinetto et al. 2016) 2016 33.6 58.2
ECO (Danelljan et al. 2017) 2017 32.4 69.1
MDNet (Danelljan et al. 2017) 2017 39.7 67.8
ATOM (Danelljan et al. 2019) 2019 51.5 67.1
FC+Guess (Song et al. 2019) 2019 36.6 61.3
CRCDCF (Zhu et al. 2020b) 2020 32.1 -
GLCA (Jiang et al. 2020) 2020 - 66.3
IBFP (Pi et al. 2021) 2021 54.3 68.1
DeepMTA (Wang et al. 2021b) 2021 52.0 65.0
MCOT (Zheng et al. 2021b) 2021 - 70.6
BaseRPN++ 2018 49.6 69.2
OurRPN++ - 50.1 70.8
BaseFC++ 2020 54.0 66.8
OurFC++ - 55.8 68.6
BaseGAT 2021 54.3 67.5
OurGAT - 56.2 68.9

TABLE 3.6. Experiments of removing MGSS and FPSS on VOT2018 (Kristan
et al. 2018). ‘L’ and ‘D’ respectively denote using video length and difficulty
to adjust video sampling probability in MGSS.

Methods Video Frame VOT2018
L D FPSS A R EAO ∆EAO

Siam % % % 0.600 0.211 0.410 -
Siam_L ! % % 0.617 0.192 0.417 +1.70%
Siam_MG ! ! % 0.612 0.192 0.426 +3.90%
Siam_MGFP ! ! ! 0.620 0.197 0.440 +7.30%

‘Siam’, the sampling strategy only considering video length (‘Siam_L’) helps to improve the

EAO score by 1.70%. Our model trained with MGSS (Siam_MG) improves the EAO by

3.90%. It demonstrates that both the video length and difficulty value are important for video

sampling. After adding FPSS, the model (Siam_MGFP) further improves EAO by about 5%.

These results show that the proposed sampling strategies at the inter and intra-video levels

both contribute to performance improvement.

Visualization of Video Difficulty Values. In Eq. (3.10), we use the index distance to

approximate the feature distance between two image pairs. In Fig. 3.8, we show the correlation
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maps between the index and feature distance of image pairs. In general, the two distances are

positively correlated. In a video, the frames with larger index distance usually have larger

features distance, because the target and background are changing over time. Therefore, it is

reasonable for our design in using frame index difference for indicating the video difficulty

value. Better design for measuring difficulty values will be our future work.

Num=5k Num=10k

FIGURE 3.8. The index distance and feature distance between image pairs
from OTB2015. The x-axis is the normalized index distance. The y-axis is
the normalized feature distance. The figures show distance correlations of 5k
and 10k image pairs. We utilize ResNet50 and L2 norm to calculate distance.
Frame index and feature distance are positively correlated.

3.5 Conclusion

Using training data effectively has high importance in network training but has not attracted

enough attention in visual object tracking. We propose the MGSS to solve the imbalance

video sampling problems and the FPSS to use the image pairs in a video fully. The proposed

sampling strategies can be adopted in most existing trackers and help to improve their

performance further. We hope the proposed sampling strategies can raise interest in further

research on data sampling methods for visual object tracking. Although the proposed sampling

strategies show good performance, the principle is hand-designed. Automatically learning the

sampling strategy is an exciting direction.



CHAPTER 4

DNVOT: Exploring Dual-branch Network for Visual Object Tracking

In addition to training data, network architecture also plays a crucial role in model performance.

The effective backbone for feature extraction facilities the performance improvement in

computer vision but is rarely explored in visual object tracking (VOT). The general training

pipeline with ImageNet pre-training makes network design cumbersome and computationally

intensive in VOT, especially for very deep networks. To be more efficient, we first design

experiments to show that ImageNet pre-training is unnecessary for accurate tracking. Based

on the concise pipeline after removing ImageNet pre-training, it is more convenient to design

optimal network architectures for VOT through neural architecture search (NAS). Siamese

Network, which has two branches with all blocks sharing parameters, is a particular case

of dual-branch networks and has been widely used in visual object tracking for a long time.

Nevertheless, no work investigates if it is necessary to share parameters for all blocks. In

this chapter, we investigate the necessity by targeting a more general case, the dual-branch

networks, during the NAS process. Specifically, we introduce a new searching element, the

sharing switch, to dual-branch networks and specifically design a search space for visual

object tracking. Among the searched network architectures, Partially Siamese Network

performs better than Siamese Network with similar computation costs, providing a new

direction for architecture design in VOT.

4.1 Introduction

Siamese network (Bromley et al. 1993), which consists of the template and search branches

with shared parameters, has been the most popular network architecture in VOT (Bertinetto

et al. 2016; Li et al. 2018a; Yu et al. 2020; Xu et al. 2020). Most Siamese-based trackers
37
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utilize networks from the image classification community, such as AlexNet (Krizhevsky

et al. 2012), ResNet (He et al. 2016), as the primary network structure of each branch. The

network architectures specifically designed for image classification are most likely not the

best choice for VOT. How to design an optimal network architecture for VOT is a critical

question. Manually designing an ideal network often requires a lot of manual try-and-error

and computational costs.

Neural Architecture Search (NAS) can automatically find optimal network architectures and

is a better choice to get optimal networks for VOT. However, NAS for VOT is rarely studied.

LightTrack (Yan et al. 2021c) is the only published work on NAS for VOT, which adopts

one-shot NAS (Guo et al. 2020) to get lightweight network architectures. There are two

critial points when applying NAS to VOT, including obtaining a concise pipeline with less

computation costs and designing a specific searching space for the VOT task.

The whole NAS process in LightTrack (Yan et al. 2021c) consists of five main steps, including

pre-training the supernet on ImageNet (Deng et al. 2009), finetuning the supernet with VOT

data, searching better sub-networks from the supernet, pre-training the searched sub-networks

on ImageNet and finetuning sub-networks with VOT data. Following the five steps makes

NAS a complex and time-consuming task for VOT. This problem is tolerable for lightweight

networks but will become severe when we focus on deeper networks.

The two additional steps from the above NAS process come from the ImageNet pre-training,

which is used by most existing trackers (Nam and Han 2016; Bertinetto et al. 2016; Li et al.

2018a; Li et al. 2019b; Yu et al. 2020; Xu et al. 2020) to improve the performance but

significantly increase the computational burden during NAS. Fig. 4.1 (a) shows the training

costs when we use different training recipes in NAS. Training a supernet with ImageNet pre-

training (‘IMG-Pre’) and tracking data fine-tuning (‘VOT-Fine’) costs over four times GPU

days than training the supernet from scratch (‘VOT-Scratch’) to get a similar performance for

SiamRPN++(Li et al. 2019a).

In recent years, many large-scale VOT datasets (Choi et al. 2017; Huang et al. 2018; Müller

et al. 2018) containing numerous training videos have been published, which motivates us
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FIGURE 4.1. (a) The training costs of NAS when we train a supernet with Im-
ageNet classification pre-training (‘IMG-Pre’) and tracking dataset fine-tuning
(‘VOT-Fine’), and train it from scratch with tracking datasets (‘VOT-Scratch’).
(b) Three different kinds of network architectures, including Siamese, Non-
Siamese, and Partially Siamese, from left to right. ‘S’ and ‘T’ denote the search
image and the template image, respectively. ‘Op’ means candidate operation,
which is used in NAS for VOT. (c) the average extra FLOPs percentage of the
network (y-axis) when we increase the FLOPs of template branch from 5G to
15G (suppose the FLOPs of search branch is 5G). The x-axis is the number of
frames in a video on a log scale. We also show the average number of frames
for three general tracking datasets (GOT-10k, TrackingNet and LaSOT).

to question whether the ImageNet pre-training is still necessary. It has been shown that

Group Normalization (GN) layers (Wu and He 2018) and longer training iterations make

the ImageNet pre-training unnecessary in object detection (He et al. 2019). Based on these

observations, we conduct the first exploration in VOT to investigate the necessity of ImageNet

pre-training. Experimental results reveal that the ImageNet pre-training can be omitted, which

will bring a more concise and efficient NAS framework for VOT. Benefitting from removing

ImageNet pre-training, we can search deep networks through NAS for VOT more efficiently.

The next question is how to design a suitable search space for the specific task VOT. Siamese

network is a special case of dual-branch networks. Most of the recent trackers apply Siamese

Network. But it is unknown if Siamese Network is the best choice. We design exploratory

experiments to answer this question. According to our experiments in Fig. 4.2 (c), there is a

better choice than Siamese architecture, i.e., Partially Siamese.

Based on the above insight, we design a specific search space for dual-branch trackers by

introducing a new search item, the sharing switch. The search space consists of the sharing

option between the two branches and the detailed operations of each block. The dual-branch
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network can be converted into Siamese, Non-Siamese and Partially Siamese architectures by

changing the sharing switch of blocks, as shown in Fig. 4.1 (b). At the same time, we search

the detailed block options by changing two hyper-parameters, including the expansion ratio

and group number of each block. Among the searched architectures, the Partially Siamese

(PSiam) architectures with more computation allocated to the template branch achieve a

better speed-accuracy trade-off. The additional computation on the template branch brings a

more discriminative kernel for target localization. Compared with the template feature from

Siamese architecture, the template feature from PSiam architecture is more robust to target

variations. In deep trackers without online updating, the template feature is only extracted

at the initial frame, so increasing the computation for the template branch will have little

influence on the tracking speed, as shown in Fig. 4.1 (c). For most existing tracking datasets,

we can ignore the FLOPs increasing from the complexity increase of the template branch.

The contributions in this chapter are summarized as follows:

● Investigation on the necessity of ImageNet pre-training in VOT. We find that Im-

ageNet pre-training is unnecessary with enough training data publicly available,

streamlining the NAS process and reducing computation costs.

● A new item, the sharing switch, is introduced to NAS space, by which we can convert

architecture candidates among Siamese, Non-Siamese, and Partially Siamese.

● With the sharing switch, we design a specific search space for dual-branch VOT,

from which we find a new network architecture, Partially Siamese network (PSiam),

performs better than Siamese networks.

4.2 Related Work

4.2.1 Neural Architecture Search

Neural Architecture Search (NAS) aims to automatically design optimal network architectures,

which is widely used in image recognition (Bello et al. 2017; Zoph et al. 2018; Real et al. 2019;

Chu et al. 2019; Liu et al. 2019) and object detection (Chen et al. 2019; Liang et al. 2020).
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Existing NAS algorithms have different kinds of strategies. Reinforcement-learning-based

NAS (Zoph et al. 2018; Bello et al. 2017; Zhou et al. 2020) utilize an agent to sample subnets

that are independent with each other. These subnets are tested on the validation dataset, and

their accuracy is applied to guide the agent training. Both the sampling and training process

of these methods is time-consuming. To solve the time-consuming problem, One-shot (Guo

et al. 2020; Chu et al. 2019) and differentiable methods (Liu et al. 2019; Cai et al. 2019; Xie

et al. 2019) introduce the weight sharing strategy among sampled subnets. These methods

have three main steps, including supernet training, subnet searching, and subnet retraining.

First, the supernet constructed with all subnet candidates is trained on training datasets.

Then, Evolutionary Algorithm (EA) (Real et al. 2019) (One-Shot) or architecture parameters

(differentiable) is used to generate the optimal subnets. Finally, the optimal subnets are

retrained to get the final model.

Here, we exploit network architectures for VOT based on One-Shot NAS (Guo et al. 2020).

Our method has two differences compared with the above NAS methods. First, the target

task is different. We aim to find optimal network architectures for VOT instead of image

classification or object detection. Second, our search space is specifically designed for dual-

branch trackers by introducing another crucial searching dimension, the sharing switch to

dual-branch networks in VOT.

4.2.2 Neural Architecture Search in VOT

There is only one paper about NAS for VOT, named LightTrack (Yan et al. 2021c), which

search lightweight network architectures based on NAS. Though ours and LightTrack are

both about NAS for VOT, our claimed contributions on removing ImageNet pre-training,

introducing sharing switch and proposing Partially Siamese networks are not investigated in

LightTrack. First, we remove the ImageNet pre-training by investigation experiments, which

is not investigated in LightTrack. Second, we focus on larger network searching, so the search

space is designed based on ResNet50. LightTrack focuses on CPU-friendly models, so the

search space contains many operations from MobileNet. Third, our search space contains
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Non/Partial Siamese networks but there are only Siamese networks in the search space of

LightTrack.

4.3 Method

Our goal is to explore better network architectures for visual object tracking (VOT) through

One-Shot NAS. First, we design controlled experiments to get two crucial insights for VOT

(Section 4.3.1):

1): ImageNet pre-training is not necessary with enough data.

2): Siamese architecture is not the best choice for VOT.

Based on the above insights, we specifically design a search space (Section 4.3.2) for VOT

and find optimal dual-branch architectures through One-Shot NAS (Section 4.3.3).

First: We introduce a new searching dimension, sharing switch of blocks, into the search

space. Different choices of the sharing switch for blocks result in the network being Siamese,

Partially Siamese, or Non-Siamese architecture.

Second: We design candidate operations on each block by changing its expansion ratio and

group number. This enables the choice of different network architectures and computational

costs for the two branches.

4.3.1 Exploratory Experiments.

ImageNet Pre-training. As the first exploratory experiment, we investigate the necessity

of ImageNet pre-training in VOT. SiamRPN++ is a really popular algorithm in visual object

tracking and a baseline model for numeric existing trackers (Wang et al. 2019b; Yu et al.

2020; Chen et al. 2020; Ning et al. 2021; Chen et al. 2021d). We adopt SiamRPN++ (Li

et al. 2019a) as the baseline model and change the training recipe. Fig. 4.2(a) shows the

performance of trackers with different training data (GOT for black lines in the figure when

using only GOT-10k (Huang et al. 2018), ALL for red lines when using six datasets including
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FIGURE 4.2. (a) the Average Overlap (AO) of SiamRPN++ (Li et al. 2019a)
on GOT-10k_Test (Huang et al. 2018) trained with GOT-10k_Train (Huang
et al. 2018) (in black) or trained with all six training datasets (in red) includ-
ing YouTube (Real et al. 2017), VID (Russakovsky et al. 2015), ImageNet-
DET (Deng et al. 2009), COCO (Lin et al. 2014), LaSOT_Train (Choi et al.
2017) and GOT-10k_Train (Huang et al. 2018). ‘w Pre’ means training net-
work with ImageNet pre-training and fine-tuning it for 20 epochs, and ‘w/o
Pre’ means training models from scratch for 60 epochs. (b) the AO values
when training the tracker with Res18 from scratch for different epochs. (c)
the AO values of SiamRPN++ (Li et al. 2019a) (with AlexNet) when no block
is shared (‘N-Siam’), part of blocks are shared (‘PSiam’) and all blocks are
shared (‘Siam’).

GOT-10k) and deep models with FLOPs ranging from 1.8G to 6G. When training data is

adequate, the models trained from scratch (solid line in red) perform better than those with

ImageNet pre-training (dotted line in red). When we train models with only GOT-10k, the

models trained from scratch (solid line in black) still outperform the models with ImageNet

pre-training (dotted line in black) for small models, i.e., those with smaller FLOPs. As

the model size increases, models trained from scratch cannot catch those with ImageNet

pre-training. The performance drop of large models mainly comes from the lack of training

data. The experiment demonstrates that ImageNet pre-training can be removed in VOT with

enough training data.

In Fig. 4.2(b), we train SiamRPN++ (Li et al. 2019a) from scratch for different epochs. In

SiamRPN++, the model initialized with ImageNet pre-training is fine-tuned on tracking

datasets for 20 epochs. We increase the training epochs by 2×, 3×, 4× and 6× when training

models without ImageNet pre-training. As we can see, 3× and 4× are better. Considering the

computation costs, we train trackers for 60 epochs when we remove the ImageNet pre-training.
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TABLE 4.1. Search space for VOT. There are three stages in the supernet,
each stage containing several blocks. We search suitable depth, width, group
number and shared block number of the network through changing the block
number bi of each stage, the expansion ratio eij and the group number gij of
each block, as well as the sharing switch si of each stage, where i and j denote
the index of stage and block, respectively. ‘C’ denotes feature dimension.

Stage Stage1 Stage2 Stage3
Sharing Switch si 0,1 0,1 0,1
Block_num bi 2,3,4 3,4,5 5,6,7
Expansion_ratio eij 0.25,0.5 0.25,0.5 0.25,0.5
Group_num gij 1, C16 ,32,C 1, C16 ,32,C 1, C16 ,32,C

Siamese Architecture. To exploit the necessity of the Siamese Architecture, we design

three kinds of network architectures based on AlexNet (Krizhevsky et al. 2012) for faster

training, including Siamese, Partially Siamese and Non-Siamese architectures. The Siamese

architecture (‘Siam’) has two branches with all parameters shared. For Partially Siamese

architecture, there are three candidate networks, including ‘PSiam-5’, ‘PSiam-54’ and ‘PSiam-

543’ (from left to right in Fig. 4.2(c)), which denote sharing parameters for the last one, two

and three layers respectively. The two branches in the Non-Siamese architecture (‘N-Siam’)

do not share parameters. Similarly, we test these architectures under the SiamRPN++ (Li et al.

2019a) framework on the test subset of GOT-10k dataset. As shown in Fig. 4.2(c), ‘Siam’

performs better than ‘N-Siam’. However, ‘PSiam’ performs the best.

According to the experiments, Partially Siamese Network architectures have better perform-

ance than the Siamese network. The template feature in most existing dual-branch trackers

can be seen as a convolution kernel which is convolved with the search features. Then, the

response map is sent to the classification or regression head for final target localization. If we

can have a more powerful template branch to extract a more discriminative kernel, the tracker

will become more accurate. The experiments in Fig. 4.2 (c) light up such a way. Inspired by

this, we introduce a crucial searching factor to control the network being Siamese, Partially

Siamese or Non-Siamese network and search for better network architectures through NAS.
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FIGURE 4.3. The basic network structure (a) and four searching factors for
dual-branch trackers, including block number (b), expansion ratio (c), group
number (d) and sharing switch (e). ‘T’ and ‘S’ means the forward path of the
template and search information, respectively.

4.3.2 Designed Search Space for VOT.

Our primary network for VOT is a dual-branch network with two branches to extract features

for the template and search images. We utilize the template and search branches to denote the

two branches. Siamese Network is a particular case of dual-branch networks with template

and search branches sharing all parameters. Our primary network includes three stages in

total. Each stage consists of several blocks and each block has different candidate operations.

As shown in Table 4.1, the four search elements include sharing switch, block number,

expansion ratio and group number. First, we introduce an essential searching factor, called

sharing switch In this chapter, to the search space for controlling the sharing options of blocks.

Then, we enlarge the search space by adding different block number (depth), expansion ratio

(width) and group number (cardinality) operations. The search space consists of both Siamese,

Non-Siamese and Partially Siamese architectures.

Sharing Switch. We are the first to give dual-branch networks the autonomy to learn whether

a stage should share parameters through the sharing switch. As the name suggests, it controls

the operation and parameter sharing strategy of each stage. If the sharing switch of a stage

is 1, then the template and search branches must choose the same operations and share their
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parameters for all blocks in this stage. Otherwise, the template and search branches have the

freedom to choose their operations. If the selected operations are the same, they will share

parameters. Otherwise, they utilize different operations and different parameters. For Siamese

architectures, the sharing switch of all stages is equal to 1. For Non-Siamese networks, all

sharing switches are equal to 0. In Fig. 4.3 (e), the sharing switch is equal to 1 for the top

stage, 0 for the bottom stage. We use si ∈ {0,1} denotes the sharing switch value of the ith

stage.

Other Factors. The network depth is controlled by different block numbers bi, shown

in Fig. 4.3 (b). The basic network is built on ResNet50, which has {3,4,6} blocks for the

first three stages. We increase and decrease the original block number by one to get our

depth operations, as shown in the second row of Table 4.1. The factors mentioned above,

including the sharing switch and block number, are searched on the stage level. The other two

factors, i.e., expansion ratio and group number, are searched on the block level. We utilize the

expansion ratio eij of the jth block in the ith stage to control the network width (in Fig. 4.3

(c)). Each block has two candidate operations {0.25,0.5} about eij . The last search element

is the group number gij (in Fig. 4.3 (d)) which has four candidate choices, including two

stage-irrelevant choices {1,32} and two stage-relevant choices { C
16 ,C}, where C is output

feature dimension of blocks.

4.3.3 Neural Architecture Search Process for VOT.

Supernet Construction. The supernet is a network containing all candidate subnets, which

have shared parameters for their common operations. As in Fig. 4.4, our supernet has three

stages, and each stage has several blocks. Each block contains the candidate operations

introduced in Section 4.3.2. The candidate subnets are dual-branch networks, where the

template branch is constructed by selecting one operation for each block, and similarly for

the search branch. Mathematically, the supernet can be represented as N (A,W), where A

denotes the search space andW denotes the weight of the supernet. The weightW is shared

among all architecture candidates, i.e., subnets α ∈ A in N .
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FIGURE 4.4. The pipeline of NAS for VOT in our search space. Our supernet
consists of three stages, S1, S2 and S3. Each stage has several blocks and
each block has some operations. Different operations have different values
of expansion ratio e, group number g or sharing switch s. The dual-branch
subnets are sampled from the supernet and used in supernet training, subnet
searching and subnet retraining.

Overview of One-Shot NAS. After supernet construction, we apply One-Shot NAS (Guo

et al. 2020) to find optimal network architectures for VOT. The whole process has three stages,

supernet training, subnet searching and subnet retraining. For supernet training, we randomly

sample a subnet from the supernet and train the subnet parameters at each iteration. After that,

we apply Evolutionary Algorithm (EA) to find the optimal subnets at the subnet searching

stage. The optimal subnets are retrained with the training data. After subnet retraining, we

select the subnet with the top performance as the final network architecture. In detail, the

optimal subnet α∗ is formulated as:

α∗ = argmax
α

Accval(N (α,W
∗(α))),

s.t.W∗ = argmin
W
Ltrain(N (A,W)),

(4.1)

where Accval is the accuracy of subnet on the validation dataset,W∗ is the learned supernet

parameters,W∗(α) denotes the parameters for subnet α, and Ltrain is the loss function of the

supernet on the training dataset.

Supernet Training. We directly train the supernet N (A,W) on tracking datasets instead

of pre-training it with the ImageNet dataset. During each training iteration, we first decide

sharing switch si for each stage. Then, we sample a subnet α ∈ A from the supernet and train
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it. The subnet should follow the sharing principle consistent with {si}. After repeating the

above two steps for enough iterations, we will get our optimized supernet N (A,W∗).

Subnet Searching. We utilize FLOPs as the constraint on computational cost during subnet

searching. Similar to the supernet training, we first decide the sharing switch of each stage

and then sample a subnet which both meets the parameter sharing principle and the FLOPs

constraint:

FLOPs(αs) ≤ FLOPsc, (4.2)

where αs is the search branch of the dual-branch network, FLOPsc is the predefined FLOPs

constraint which is the same as the FLOPs of the baseline model. The FLOPs of the template

branch has little influence on the model FLOPs, so we only consider the FLOPs of the search

branch.

We utilize the Evolutionary Algorithm (Guo et al. 2020) to search optimal subnet candidates.

First, we randomly select N subnet candidates with the FLOPs constraint. All these subnets

are tested on the validation dataset. Considering the testing speed and the fact that most

trackers are sensitive to testing hyper-parameters, such as cosine window weight and updating

rate, we utilize the loss instead of accuracy on the validation dataset as the evaluation metrics

of tracking performance. After testing all the subnets, we pick the top k subnets as parent

networks to generate child networks through mutation and crossover. We repeat the mutation

and crossover process until we get enough child networks that meet the FLOPs constraint.

After subnet searching, we choose the top-k2 candidate subnets with the lowest loss score for

subnet retraining.

4.4 Experiments

All codes are implemented with the Pytorch framework and tested on intel i7 3.2GHz CPU

with 32G memory and an Nvidia V100 GPU with 16G memory. We focus on five datasets,

including GOT-10k (Huang et al. 2018), TrackingNet (Müller et al. 2018), LaSOT (Choi

et al. 2017), TNL2K (Wang et al. 2021c) and NFS (Galoogahi et al. 2017) for performance
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comparison. The SiamRPN++ with our searched PSiam runs about 60 ∼ 90fps, similar to the

baseline models.

4.4.1 Implementation Details.

Tracking Framework. We first evaluate our method on SiamRPN++ (Li et al. 2019a). All

models based on SiamRPN++ are trained from scratch for 60 epochs, including the surpernet,

in the NAS process. Then, we evaluate the generalization ability of our method on another

Transformer-based framework, STARK (Yan et al. 2021b). The transformer head in STARK

is more time-consuming to train than other RPN-based heads in most existing trackers. For

example, with ImagNet pre-training, SiamRPN++ requires only 20 epochs to finetune while

STARK requires 500 epochs. If we use the training strategy In this chapter to remove the

ImageNet pre-training for STARK, we need to increase the training epoch 3-4 times to get a

similar performance. According to our experiments, we need about 2000 epochs for training

STARK from scratch to get a similar performance (65.5 AUC score on LaSOT) with the

model trained with ImageNet pre-training (65.7 AUC score on LaSOT). So we use ImageNet

pre-training for STARK In this chapter for fast convergence. Training transformer-based

head is known to be slow for VOT (Yan et al. 2021b) and detection (Carion et al. 2020; Zhu

et al. 2020a). We hope there will be some work to speed up the training process for the

transformer-based head in STARK and make it possible to remove the ImageNet pre-training

for STARK with fewer computation costs.

Network Training. For SiamRPN++ (Li et al. 2019a), the models are trained on VID (Rus-

sakovsky et al. 2015), YouTube (Real et al. 2017), ImageNet-DET (Deng et al. 2009),

COCO (Lin et al. 2014), the train subset of LaSOT (Choi et al. 2017) and GOT-10k data-

set (Huang et al. 2018). We adopt the Step learning rate scheduler for training. The initial

learning rate of the head is 0.02. When fine-tuning SiamRPN++ with 20 epochs, the learning

rate of the backbone is 0.1 times that of the head. When training SiamRPN++ from scratch

for 60 epochs, all network parameters have the same learning rate. During NAS, the supernet

and subnets are both trained for 60 epochs with GOT-10k (Huang et al. 2018). We utilize the

val dataset of GOT-10k (Huang et al. 2018) for subnet searching and select the best model for
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TABLE 4.2. Performance comparisons with baseline SiamRPN++ on the test
subset of GOT-10k (Huang et al. 2018), TrackingNet (Müller et al. 2018) and
LaSOT (Choi et al. 2017). We test two searched architectures with different
FLOPs constraints on SiamRPN++, including ‘M18’ with similar FLOPs with
ResNet18 and ‘M50’ with similar FLOPs with ResNet50.

Methods FLOPs GOT-10k_Test TrackingNet LaSOT
AO SR0.5 SR0.75 AUC Pnorm AUC Pnorm

SiamRPN++_R18 1.8G 52.4 60.6 37.8 72.9 78.7 50.0 56.8
SiamRPN++_M18 1.4G 55.0(+2.6) 64.4(+3.8) 38.8(+1.0) 74.1(+1.2) 80.1(+1.4) 51.2(+1.2) 58.2(+1.4)
SiamRPN++_R50 6.0G 51.7 59.4 37.8 74.0 79.9 50.7 58.0
SiamRPN++_M50 6.0G 54.2(+2.5) 62.0(+2.6) 40.0(+2.2) 74.3(+0.3) 80.3(+0.4) 53.3(+2.6) 61.0(+3.0)

subnet retraining. The training and inference settings for STARK are the same as (Yan et al.

2021b).

4.4.2 Baseline Comparisons.

To shown the effectiveness of our PSiam architecture, we compare our searched models with

baseline models in a popular tracking framework, SiamRPN++. Specifically, we search two

PSiam architectures which have similar FLOPs with ResNet18 (R18) and ResNet50 (R50),

represented as M18 and M50 in Table 4.2. Then, we compare the two models with baseline

models (R18 and R50) on three popular datasets, including GOT-10k (Huang et al. 2018),

TrackingNet (Müller et al. 2018) and LaSOT (Choi et al. 2017). It should be noted that all

models in Table 4.2 are trained with the same training data.

GOT-10k. GOT-10k (Huang et al. 2018) consists of the train subset with 9335 videos, the

val subset with 180 videos and the test subset with 420 videos. GOT-10k requires training

trackers with only the train subset and test models through an evaluation server. We follow

this policy for all experiments on GOT-10k. As shown in Table 4.2, with PSiam (M18 and

M50), the AO scores are improved by 2.6% and 2.5% compared with ResNet18 and ResNet50

in SiamRPN++.

TrackingNet. TrackingNet (Müller et al. 2018) is another large-scale dataset which contains

30,132 training videos and 511 testing videos. The labels of the test videos are not publicly
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available. In Table 4.2, although the models (M18 and M50) are searched based on the GOT-

10k dataset, M18 helps to improve the AUC score by 1.2% for SiamRPN++ with ResNet18,

which demonstrates the good generalization ability of the search models.

LaSOT. LaSOT is a large-scale benchmark for long-term tracking. We test our models on

the test subset with 280 long videos. As Table 4.2 shows, our PSiam architectures M18 and

M50 respectively achieve AUC gain of 1.2% and 2.6% for SiamRPN++.

4.4.3 Comparisons with State-of-the-art Trackers.

To compare with state-of-the-art trackers, we evaluate our method on a recent published tracker

STARK_S (Yan et al. 2021b) by replacing the original ResNet50 with our M50. We conduct

experiments on four datasets, including LaSOT (Choi et al. 2017), TrackingNet (Müller et al.

2018), TNL2K (Wang et al. 2021c) and NFS (Galoogahi et al. 2017) and show the results in

Table 4.3.

LaSOT. STARK_S_M50 helps to improve the success score of STARK_S_R50 (the baseline

model) by 1.9%, the normalized precision score by 1.6%, with similar FLOPs (8.6G vs. 8.6G).

When compared with STARK_S_R101, our model can still get 1.3% higher AUC score with

only 53% computation costs (8.6G vs. 16.1G), which further validates the effectiveness of

our searched architecture.

TrackingNet. STARK_S_M50 can get competitive tracking results with other compared

trackers, exceeding 0.7/1.1 points on the AUC/Pnorm, respectively.

TNL2K. TNL2K is a recently published dataset for both vision and natural language tracking,

which consists of 2300 videos in the train set and 700 videos in the test set. Table 4.3

shows our M50 achieves the best performance, 53.6% AUC score and 52.6% precision score,

which are 1.6% and 2.0% higher than STARK_S_R50, further proving the advanced model

capability of our M50.

NFS. There are 100 videos with fast-moving objects in NFS dataset. We report our results on

the 30fps version, as shown in Table 4.3. Our STARK_S_M50 obtains the best AUC and
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TABLE 4.3. Performance comparisons with state-of-the-art trackers on the
test subset of LaSOT (Choi et al. 2017), TrackingNet (Müller et al. 2018),
TNL2K (Wang et al. 2021c) and NFS (Galoogahi et al. 2017). Red, green and
blue fonts indicate the top-3 methods. M50 helps improve the performance.

Methods FLOPs LaSOT TrackingNet TNL2K NFS
AUC Pnorm AUC Pnorm AUC Prec AUC Prec

SiamFC (Bertinetto et al. 2016) 4.9G 33.6 42.0 55.9 65.2 29.5 28.6 - -
DSiam (Guo et al. 2017) 4.9G 33.3 40.5 - - - - - -
SiamFC++ (Xu et al. 2020) 7.3G 50.1 - 71.2 75.8 - - - -
SiamFC++ (Xu et al. 2020) 15.8G 54.4 56.9 75.4 80.0 38.6 36.9 58.1 -
DiMP-18 (Bhat et al. 2019) 2.3G 53.2 - 72.3 78.5 - - - -
ATOM (Danelljan et al. 2019) 3.0G 51.5 57.6 70.3 77.1 40.1 39.2 59.0 69.4
DiMP-50 (Bhat et al. 2019) 5.4G 56.9 65.0 74.0 80.1 44.7 43.4 62.7 75.1
SiamRPN++ (Li et al. 2019a) 7.8G 49.6 56.9 73.3 80.0 32.9 28.1 48.8 56.7
SiamBAN (Chen et al. 2020) 12.1G 51.4 59.8 - - 41.0 41.7 59.4 70.0
Ocean (Zhipeng et al. 2020) 7.8G 56.0 65.1 - - 38.4 37.7 55.3 -
TransT (Chen et al. 2021d) 7.8G 64.9 73.8 81.4 86.7 50.7 - 65.7 78.8
TrDiMP (Ning et al. 2021) 18.2G 63.9 - 78.4 83.8 - - 66.5 78.4
AutoMatch (Zhang et al. 2021) - 58.3 - 76.0 - 47.2 43.5 60.6 -
LightTrack (Yan et al. 2021c) 0.79G 55.5 56.1 73.3 78.9 - - - -
STARK_S_R50 8.6G 65.7 74.8 80.3 85.1 52.0 50.6 64.8 77.8
STARK_S_R101 16.1G 66.3 75.9 - - 52.0 50.3 64.7 77.5
STARK_S_M50 8.6G 67.6 76.1 81.0 86.2 53.6 52.6 66.6 80.2

Si
am
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m

FIGURE 4.5. The visualization of important region in the search images for
target localization. The first row shows the important regions from Siamese
architecture. The second row shows those of our PSiam architecture. The
targets are shown in the red boxes.

precision scores among all the compared trackers and outperforms our baseline model by 1.8

AUC points.
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4.4.4 Ablation Study.

PSiam Visualization. The searched architectures, including M18 and M50, are provided in

Fig.4.6. Both network architectures are PSiam architectures which have the template branch

with more FLOPs than the search branch. The additional computation of the template branch

brings more discriminative template kernels, helping to improve the tracking performance.

Fig. 4.5 visualizes the critical regions in the search image for target localization. Our PSiam

(the second row) focuses on a more discriminative target area than the Siam (the first row),

such as the pangolin body in the 2rd column, the horse body in the 3nd column and the boat

in the last column. In contrast, ‘Siam’ models focus on only part of the object, which makes

it less robust when there is noise in this object area. Our PSiam is more robust to tracking

challenges, such as similar instances (the 1st and 4th columns), fast-moving (the 5th column)

and occlusion (the 6th and 8th columns).

PSiam Architectures. We show the searched architectures in Fig.4.6, including M50 and

M18, which have similar Flops with ResNet50 and ResNet18, respectively, for the search

branch. For M50, there are five, four, and seven blocks respectively in stages one, two and

three. The first two stages share parameters among blocks. The template and search branches

utilize different operations in the last stage, as shown in orange and green. For M18, there

are three blocks in each stage. All blocks in stage1 and stage3 share parameters between the

template and search branches. Both M50 and M18 have more shared blocks than non-shared

blocks, and the non-shared blocks exist in the later stages (stage3 in M50 and stage2 in M18).

Both M50 and M18 have fewer flops at stage1. For most blocks, the group number is greater

than 1. A larger group number leads to lower Flops. Both M50 and M18 have more blocks in

three stages than the baseline models. The searched PSiam tends to reduce the Flops of each

block but include more leagues (narrower but deeper model). Besides, the template branch has

more Flops than the search branch for M50 and M18. The extra computation of the template

branch brings more discriminative information without influencing the tracking speed. We

show the Flops distribution of the template and search branches of M50 and ResNet50 in

Fig4.7(a), M18 and ResNet18 in Fig4.7(b). For both M50 and M18, the highest Flops of the
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template and search branches exist in the stage where there are non-shared blocks, such as

stage3 in M50 and stage2 in M18.
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FIGURE 4.6. The searched architectures of M50 and M18, which have similar
Flops as ResNet50 and ResNet18. ‘e’ is the expansion ratio; ‘g’ is the group
number; ‘C’ is the output channels of current block; ‘Template’ and ‘Search’
are the template and search images. Both a bigger ‘e’, a smaller ‘g’, and more
blocks in a stage will lead to more Flops.

Visualization Method. We show PSiam visualizations in Chapter 4. Here, we introduce

how we get these visualization maps. We utilize Grad-CAM (R et al. 2017) to highlight

essential regions in the search image for target localization. SiamRPN++ is our tracking

framework, which has a classification head for coarse target localization and a regression head

for fine-grained box modification. We adopt both the Siamese network and our PSiam network

as the backbones in SiamRPN++. We utilize the classification maps from the classification

head of SiamRPN++ to show the visualization maps.

Different Backbones. The baseline mode is SiamRPN++ with ResNet50 (He et al. 2016). We

also test two other backbones including MobileNet (Howard et al. 2017) and ResNeXt (Xie

et al. 2017) in the SiamRPN++ framework. All these models utilize Siamese architectures.

For Siamese architectures (‘S_Siam’), we set all sharing switches to one (si = 1, i = 1,2,3)

and only search the other three factors, i.e., block number, expansion ratio, and group number.

As shown in Fig. 4.8, the AO score of ‘S_Siam’ is higher than those of ResNet50, MobileNet

and ResNeXt50, demonstrating the effectiveness of our search space without the sharing

switch. The performance gain of ‘S_Siam’ comes from the better combination of block

number, expansion ratio and group number through NAS.
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Flops Flops

Stage Stage

(a) (b)

FIGURE 4.7. The Flops distributions in different stages for our M50, M18,
and the corresponding baseline models. ‘M50_T’ means the template branch
of our M50; ‘M50_S’ means the search branch of our M50; ‘M18_T’ means
the template branch of our M18; ‘M18_S’ means the search branch of our M18;
‘Res50’ and ‘Res18’ are the ResNet50 and ResNet18 used in SiamRPN++.

Different Sharing Options. To evaluate the effectiveness of PSiam, we utilize the One-Shot

NAS method to search different network architectures on different settings in our search space.

Similar with ‘S_Siam’ in Fig. 4.8, si = 0 for i = 1,2,3 is used for searching non-Siamese

architectures (‘S_N-Siam’). For ‘S_PSiam’, we automatically find the sharing switch values

for different stages and also search the other three factors. Besides, we also evaluate the

performance of searching the sharing switch per block instead of per stage, named ‘S_Pr-

Siam’. Among the last four models in Fig. 4.8, our ‘S_PSiam’ performs the best among all

models, which demonstrates that our search space is better than the other three. ‘S_PSiam’

has better performance than ‘S_Siam’, because of the essential searching element, the sharing

switch. ‘S_PSiam’ also performs better than ‘S_Pr-Siam’, showing that setting sharing

switches on stage level is more efficient than setting them on a block level. ‘S_Non-Siam’

performs the worst among the last four models.

Model Size. We show the parameter size and FLOPs of our PSiam architectures (‘Ours’) and

the Siamese networks (‘Base’) in Table 4.4. ‘FLOPs(S)’ and ‘FLOPs(T)’ are the FLOPs of

the search and template branch. ‘Ours’ has fewer FLOPs(S) compared with ‘Base’, especially

for ResNet18. Fewer FLOPs(S) means our tracker has less computation after the first frame.

The FLOPs(T) of ‘Ours’ are bigger than those of ‘Base’. More computation on the template

branch bring more a powerful template kernel. As mentioned above, bigger FLOPs(T) has

less influence on the tracking speed in VOT. One drawback of our model is that the number
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Net Para FLOPs(T) FLOPs(S)
M G G

Res18 Base 3.11 1.85 1.85
Ours 3.19 2.15 1.42

Res50 Base 13.79 6.02 6.02
Ours 21.18 6.57 6.00

TABLE 4.4. The parameter
number and FLOPs of Siam-
RPN++ (Li et al. 2019a)
with different backbones.
‘Res18/50’+Base is Res-
Net18/50 used in (Li et al.
2019a). ‘Res18/50’+Ours
is (Li et al. 2019a) with the
searched PSiam.

ResNet50

MobileNet_V2

ResNeXt50

S_Siam

S_N-Siam

S_Pr-Siam

S_PSiam

AO/GOT-10k_Test

FIGURE 4.8. The AO
scores of SiamRPN++ (Li
et al. 2019a) on GOT-
10k_Test (Huang et al. 2018)
with different backbones.

of parameters is larger, especially for ResNet50. The additional parameters come from the

non-share blocks.

4.5 Conclusion

This section explores an unexplored direction, namely the necessity of networks that are

specifically designed for image classification and ImageNet pre-training in dual-branch

trackers. The empirical results obtained in this study suggest that the significant computational

burden associated with ImageNet pre-training for NAS is not necessary. These findings are

expected to inspire further research on NAS for SOT. Additionally, This section introduces

another essential searching dimension that specifically exists in dual-branch trackers, namely

the sharing switch of network blocks. This switch allows the network to be converted into

Siamese, Non-Siamese, and Partially Siamese networks. To the best of our knowledge, this is

the first study to demonstrate that the Partially Siamese architecture outperforms the Siamese

architecture in SOT. This outcome has the potential to generate more intriguing ideas in both

NAS and manual network designs for SOT.



CHAPTER 5

SimTrack: A Simplified Architecture for Visual Object Tracking

Exploiting a general-purpose neural architecture to replace hand-wired designs or inductive

biases has recently drawn extensive interest. However, existing tracking approaches rely on

customized sub-modules and need prior knowledge for architecture selection, hindering the de-

velopment of tracking in a more general system. This chapter presents a Simplified Tracking

architecture (SimTrack) by leveraging a transformer backbone for joint feature extraction and

interaction. Unlike existing Siamese trackers, we serialize the input images and concatenate

them directly before the one-branch backbone. Feature interaction in the backbone helps to re-

move well-designed interaction modules and produce a more efficient and effective framework.

To reduce the information loss from down-sampling in vision transformers, we further propose

a foveal window strategy, providing more diverse input patches with acceptable computational

costs. Our SimTrack improves the baseline with 2.5%/2.6% AUC gains on LaSOT/TNL2K

and gets results competitive with other specialized tracking algorithms without bells and

whistles. The source codes are available at https://github.com/LPXTT/SimTrack.

5.1 Introduction

Visual Object Tracking (VOT) (Chen et al. 2020; Yu et al. 2020; Chen et al. 2018; Li et al.

2018b) aims to localize the specified target in a video, which is a fundamental yet challenging

task in computer vision. Siamese network is a representative paradigm in visual object

tracking (Bertinetto et al. 2016; Li et al. 2018a; Li et al. 2019a; Yan et al. 2021b), which

usually consists of a Siamese backbone for feature extraction, an interactive head (e.g., naive

correlation (Bertinetto et al. 2016)) for modeling the relationship between the exemplar and
57
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X

FIGURE 5.1. The pipeline of existing transformer trackers (a) and ours (b). A transformer
backbone is used to create a simple and generic framework for tracking.

search, and a predictor for generating the target localization. Recently, transformer (Chen

et al. 2021d; Ning et al. 2021; Yan et al. 2021b) has been introduced as a more powerful

interactive head to Siamese-based trackers for providing information interaction, as shown in

Fig. 5.5(a), and pushes the accuracy to a new level.

While effective, these transformer heads are highly customized and meticulously designed,

making it difficult to incorporate them into a more general system or generalize to a wide

variety of intelligence tasks. On the other hand, transformers have recently shown an excellent

capability to simplify frameworks for computer vision tasks, like object detection (Chen et al.

2021c) and object segmentation (Zheng et al. 2021a). Owning to the superior model capacity

of transformers, the sub-modules and processes with task-specific prior knowledge can be

removed by adequately leveraging transformers to a specific task. Producing a task-agnostic

network can not only get a more simplified framework but also help the community move

towards a general-purpose neural architecture, which is an appealing trend (Jaegle et al. 2021;

Zhu et al. 2021). However, as observed in this chapter, exploiting the transformer to produce

a simple and generic framework is not investigated in existing VOT approaches.

With the observation above, this chapter advocates a Simplified Tracking (SimTrack) paradigm

by leveraging a transformer backbone for joint feature learning and interaction, shown as

Fig.5.5(b). Specifically, we serialize the exemplar (Z) and search (X ) images as multiple

tokens at the beginning and send them together to our transformer backbone. Then, the search

features from the transformer backbone are directly used for target localization through

the predictor without any interaction module. Like existing backbones, our transformer

backbone can also be pre-trained on other vision tasks, e.g. classification, providing stronger
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initialization for VOT. Moreover, our SimTrack brings multiple new benefits for visual object

tracking. (1) Our SimTrack is a simpler and more generic framework with fewer sub-modules

and less reliance on prior knowledge about the VOT task. The transformer backbone is a

one-branch backbone instead of a Siamese network, consistent with the backbones used in

many vision tasks, e.g., image classification (He et al. 2016; Dosovitskiy et al. 2020; Tang

et al. 2021; Wang et al. 2022), object detection (Ren et al. 2015), semantic segmentation (He

et al. 2017; Zhang et al. 2018), depth estimation (Laina et al. 2016; Wang et al. 2020b),

etc. (2) The attention mechanism in our transformer backbone facilitates a multi-level and

more comprehensive interaction between the exemplar and search features. In this way, the

backbone features for the search and exemplar image will be dependent on each other in

every transformer block, resulting in a designated examplar(search)-sensitive rather than

general search(examplar) feature, which is the hidden factor for the effectiveness of the

seemingly simple transformer backbone. (3) Removing transformer head reduces training

expenses. On one hand, the SimTrack can reach the same training loss or testing accuracy

with only half training epochs as the baseline model because information interaction happens

in a well-initialized transformer backbone instead of a randomly-initialized transformer head.

On the other hand, although adding information interaction in backbone will bring additional

computation, the additional computation is generally smaller than that from a transformer

head. (4) According to extensive experiments, SimTrack can get more accurate results with

appropriate initialization than other transformer-based trackers using the same transformer as

Siamese backbone.

While the transformer-based backbone is capable of achieving sufficient feature learning

and interaction between the exemplar and search jointly, the down-sampling operation may

cause unavoidable information loss for VOT, which is a localization task and requires more

object visual details instead of only abstract/semantic visual concepts. To reduce the adverse

effects of down-sampling, we further present a foveal window strategy inspired by fovea

centralis. The fovea centralis is a small central region in the eyes, enabling human eyes to

capture more useful information from the central part of vision area. In this chapter, the

centre area in the exemplar image contains more target-relevant information and needs more

attention accordingly. Therefore, we add a foveal window at the central area to produce more



60 5 SIMTRACK: A SIMPLIFIED ARCHITECTURE FOR VISUAL OBJECT TRACKING

diverse target patches, making the patch sampling frequencies around the image centre higher

than those around the image border and improving the tracking performance.

In conclusion, our contributions are summarized as follows:

● We propose SimTrack, a Simplified Tracking architecture that feeds the serialized

exemplar and search into a transformer backbone for joint feature learning and

interaction. Compared with the existing Siamese tracking architecture, SimTrack

only has the one-branch backbone and removes the existing interaction head, leading

to a simpler framework with more powerful learning ability.

● We propose a foveal window strategy to remedy the information loss caused by the

down-sampling in SimTrack, which helps the transformer backbone capture more

details in important exemplar image areas.

● Extensive experiments on multiple datasets show the effectiveness of our method.

Our SimTrack achieves state-of-the-art performances with 70.5% AUC on LaSOT (Choi

et al. 2017), 55.6% AUC on TNL2K (Wang et al. 2021c), 83.4% AUC on Tracking-

Net (Müller et al. 2018), 69.8% AO on GOT-10k (Huang et al. 2018) and 71.2% on

UAV123 (Mueller et al. 2016).

5.2 Related Work

5.2.1 Vision Transformer

Vaswani et.al. (Vaswani et al. 2017b) originally proposed transformer and applied it in the

machine translation task. The key character of the transformer is the self-attention mechanism

which learns the dependencies of all input tokens and captures the global information in

sequential data. Thanks to significantly more parallelization and competitive performance,

transformer becomes a prevailing architecture in both language modeling (Devlin et al. 2018;

Radford et al. 2018) and vision community (Dosovitskiy et al. 2020; Hugo et al. 2021; Chen et

al. 2021a; Chen et al. 2021b). The first convolution-free vision transformer, ViT (Dosovitskiy
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et al. 2020), splits input images into fixed-size patches, which are converted to multiple 1D

input tokens. All these tokens are concatenated with a class token and sent into a transformer

encoder. After the encoder, the class token is used for image classification. Later, DeiT (Hugo

et al. 2021) introduces a distillation strategy to help transformers reduce the reliance on huge

training data. For object detection, DETR (Carion et al. 2020) treats the task as a sequential

prediction problem and achieves promising performance. To reduce the long training time

of DETR, deformable DETR (Zhu et al. 2020a) replaces the global attention to adaptive

local attention and speeds up the training process. Besides, transformer has also shown their

powerful potential in other research topics like self-supervised learning (Chen et al. 2021e;

Mu et al. 2021), multi-module learning (Radford et al. 2021; Kamath et al. 2021), etc.

5.2.2 Visual Object Tracking

Siamese networks is a widely-used two-branch architecture in a surge of tracking algorithms.

Previous works (Bertinetto et al. 2016; Li et al. 2018a; Xu et al. 2020; Zhu et al. 2018a; Li

et al. 2019b; Guo et al. 2017; Chen et al. 2020; Wang et al. 2019b; Shen et al. 2022) based on

Siamese Networks (Bromley et al. 1993) formulate VOT as a similarity matching problem and

conduct the interaction through cross-correlation. Concretely, SiameseFC (Bertinetto et al.

2016) utilize the response map from cross-correlation between the exemplar and search

features for target localization. The highest score on the response map generally indicts the

target position. In stead of directly getting the target position through the response map,

SiamRPN (Li et al. 2018a) and the follow-ups (Zhu et al. 2018a; Guo et al. 2017; Chen

et al. 2020; Yu et al. 2020) send the response map to Region Proposal Network (RPN) (Ren

et al. 2015) to get a more accurate localization and scale estimation. Later, GAT (Guo et al.

2021a) and AutoMatch (Zhang et al. 2021) tried to replace the global cross-correlation with

more effective structure to improve model performance. Recently, there have been several

notable transformer trackers (Ning et al. 2021; Chen et al. 2021d; Yan et al. 2021b) which

introduce the transformer to tracking framework for stronger information interaction and

achieve compelling results.
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All the above-mentioned works introduce interaction between the exemplar and search

frames after the backbones. A recent work (Guo et al. 2022) adds multiple interaction

modellers inside the backbone through hand-designed sub-modules. Our SimTrack also

moves information interaction to the backbone but has the following fundamental differences.

First, our SimTrack is a more generic and straightforward framework without using Siamese

architecture or well-designed interaction modules, which are both used in (Guo et al. 2022)

and all above Siamese-based methods. Second, our SimTrack utilizes pre-trained vision

transformers for the interaction instead of training the interaction module from scratch. Third,

the interaction between the exemplar and search exists in each block of our backbone. In

contrast, the interaction modules are only added at the end of several blocks in (Guo et al.

2022). Fourth, there is only information flow from the exemplar feature to the search

feature in (Guo et al. 2022), while ours has bidirectional information interaction between the

exemplar and search features.

5.3 Proposed Method

Our SimTrack consists of a transformer backbone and a predictor, as shown in Fig. 5.2 (b).

The transformer backbone is used for feature extraction and information interaction between

the exemplar and search features, guiding the network to learn a target-relevant search

feature. After passing the backbone, the output features corresponding to the search area

are sent to a corner predictor for target localization. For better understanding, we will first

introduce our baseline model in Section 5.3.1, which replaces the CNN backbone of STARK-

S (Yan et al. 2021b) with a transformer backbone, and then show details of our SimTrack in

Section 5.3.2 and the foveal window strategy for improving SimTrack in Section 5.3.3.

5.3.1 Baseline Model

STARK-S has no extra post-processing during inference, which is consistent with our initial

purpose to simplify the tracking framework. We replace the backbone of STARK-S (Yan et al.

2021b) from Res50 (He et al. 2016) to ViT (Dosovitskiy et al. 2020) to get our baseline model
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FIGURE 5.2. The pipeline of the baseline model (a) and our proposed
SimTrack (b). ‘FW’ in (b) denotes foveal window, ps and pe are position
embedding of the search and exemplar tokens. In (b), a transformer back-
bone is utilized to replace the Siamese backbone and transformer head in (a).
Both exemplar and search images in (b) are serialized into input sequences,
which are sent to the transformer backbone for joint feature extraction and
interaction. Finally, the target-relevant search feature is used for target localiz-
ation through a predictor.

STARK-SV. Like other transformer-based trackers, the pipeline of STARK-SV is shown in

Fig. 5.5 (a). Given a video, we treat the first frame with ground truth target box as exemplar

frame. According to the target box, we crop an exemplar Z ∈ Rhz×wz×3 from the first frame,

where (hz, wz) is the input resolution of Z . All following frames X ∈ Rhx×wx×3 are the search

frames.

Image serialization. The two input images are serialized into input sequences before the

backbone. Specifically, similar to current vision transformers (Dosovitskiy et al. 2020; Hugo

et al. 2021), we reshape the images Z ∈ Rhz×wz×3 and X ∈ Rhx×wx×3 into two sequences of

flattened 2D patches Z ∈ RNz×(P 2⋅3) and X ∈ RNx×(P 2⋅3), where (P,P ) is the patch resolution,

Nz = hzwz/P 2 and Nx = hxwx/P 2 are patch number of the exemplar and search images.

The 2D patches are mapped to 1D tokens with C dimensions through a linear projection. After

adding the 1D tokens with positional embedding (Vaswani et al. 2017b), we get the input

sequences of the backbone, including the exemplar sequence e0 ∈ RNz×C and the search

sequence s0 ∈ RNx×C .
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Feature extraction with backbone. The transformer backbone consists of L layers. We

utilize el and sl to represent the input exemplar and search sequences of the (l + 1)th layer,

l = 0, ..., L − 1. The forward process of the exemplar feature in one layer can be written as:

e∗ = el +Att(LN(el)),

el+1 = e∗ + FFN(LN(e∗)),
(5.1)

where FFN is a feed forward network, LN denotes Layernorm and Att is self-attention

module (Vaswani et al. 2017b) (we remove LN in the following functions for simplify),

Att(el) = softmax(
(elWQ)(elWK)

T

√
d

)(elWV) , (5.2)

where 1/
√
d is the scaling factor, WQ ∈ RC×D, WK ∈ RC×D, WV ∈ RC×D are project metrics

to convert input sequence to query, key and value. Generally, multi-head self-attention

is adopted to replace self-attention in Eq.(5.1). For better understanding, we use the self-

attention module here. As we can see, the feature extraction of el only considers exemplar

information. The feed forward process of sl is the same as el. After passing the input into the

backbone, we get the output exemplar sequence eL and the output search sequence sL.

Feature interaction with transformer head. The features eL ∈ RNz×D and sL ∈ RNx×D

interact with each other in the transformer head. We refer readers to STARK-S (Yan et al.

2021b) for more details of the transformer head in our baseline models.

Target localization with predictor. After transformer head, we get a target-relevant search

feature sL∗ ∈ RNx×D∗ , which is reshaped to hx

s ×
wx

s ×D
∗ and sent to a corner predictor. The

predictor outputs two probability maps for the top-left and bottom-right corners of target box.

During offline training, a pair of images within a pre-defined frame range in a video are

randomly selected to serve as the exemplar and search frame. After getting the predicted

box bi, the whole network is trained through ℓ1 loss and IoU loss (Carion et al. 2020),

L = λiouLiou(bi, b
∗
i ) + λL1L1(bi, b

∗
i ), (5.3)

where b∗i is the ground truth, λiou and λL1 are loss weights.
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5.3.2 Simplified Tracking Framework

Our key idea is replacing the Siamese backbone and transformer head in the baseline model

with a unified transformer backbone, as shown in Fig. 5.2 (b). For STARK-S, the function of

the backbone is to provide a strong feature extraction. The transformer head is responsible for

information interaction between the exemplar and search features. In our SimTrack, only a

transformer backbone is needed for joint feature and interaction learning. In the following, we

show how to apply vision transformer as a powerful backbone to VOT successfully and create

a more simplified framework. The input of our transformer backbone is also a pair of images,

the exemplar image Z ∈ Rhz×wz×3 and the search image X ∈ Rhx×wx×3. Similarly, we first

serialize the two images to input sequences e0 ∈ RNz×C and s0 ∈ RNx×C as mentioned above.

Joint feature extraction and interaction with transformer backbone. Different from the

baseline model, we directly concatenate e0 and s0 along the first dimension and send them to

the transformer backbone together. The feed forward process of (l + 1)th layer is:

⎡
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(5.4)

The symbol of layer normalization is removed in Eq.(5.4) for simplify. The main difference

between Eq.(5.1) and Eq.(5.4) is the computation in Att(.),

Att(
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where a(x, y) = (xWQ)(yWK)
T /
√
d. After converting Eq.(5.5), the exemplar attention

Att(el) and the search attention Att(sl) are,

Att(el) = softmax ([a(el, el), a(el, sl)]) [elWV, s
lWV]

T
,

Att(sl) = softmax ([a(sl, el), a(sl, sl)]) [elWV, s
lWV]

T
.

(5.6)
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In the baseline model, the feature extraction of the exemplar and search features are inde-

pendent with each other as shown in Eq.(5.2). While, in our transformer backbone, the feature

learning of exemplar and search images influence each other through a(el, sl) and a(sl, el)

in Eq.(5.6). Att(el) contains information from sl and vice verse. The information interaction

between the exemplar and search features exists in every layer of our transformer backbone,

so there is no need to add additional interaction module after the backbone. We directly send

the output search feature sL to the predictor for target localization.

Distinguishable position embedding. It is a general paradigm to seamlessly transfer

networks pre-trained from the classification task to provide a stronger initialization for VOT.

In our method, we also initialize our transformer backbone with pre-trained parameters.

For the search image, the input size (224 × 224) is the same with that in general vision

transformers (Dosovitskiy et al. 2020; Hugo et al. 2021), so the pre-trained position embedding

p0 can be directly used for the search image (ps = p0). However, the exemplar image is

smaller than the search image, so the pre-trained position embedding can not fit well for the

exemplar image. Besides, using the same pre-trained position embedding for both images

provides the backbone with no information to distinguish the two images. To solve the

issue, we add a learnable position embedding pe ∈ RNz×D to the exemplar feature, which is

calculated by the spatial position (i, j) of the patch and the ratio Rij of the target area in this

patch (as depicted in Fig. 5.3 (b)),

pe = FCs(i, j,Rij), (5.7)

where pe denotes the position embedding of the exemplar feature, FCs are two fully connec-

ted layers. After obtaining the position embedding pe and ps, we add them to the embedding

vectors. The resulting sequences of embedding vectors serve as inputs to the transformer

backbone.

5.3.3 Foveal Window Strategy
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…

Z

Z*

Zp

Zp*

…

Foveal Window

i=1, j=1, Rij=1

i=0, j=2, Rij=0.5

Target Box
Patch 1
Patch 2

(a) Foveal window strategy (b) PosEmb input

FIGURE 5.3. (a) the foveal window
strategy and (b) getting the inputs of
FCs in Eq.(5.7).

The exemplar image contains the

target in the center and a small

amount of background around the

target. The down-sampling pro-

cess may divide the important tar-

get region into different parts. To

provide the transformer backbone

with more detailed target informa-

tion, we further propose a foveal

window strategy on the exemplar

image to produce more diverse target patches with acceptable computational costs. As shown

in the second row of Fig. 5.3(a), we crop a smaller region Z∗ ∈ Rhz
∗×wz

∗×3 in the center of the

exemplar image and serialize Z∗ into image patches Z∗ ∈ RN∗z ×(P 2⋅3), where N∗x = h∗xw∗x/P 2.

The partitioning lines on Z∗ are located in the center of those on the exemplar image Z ,

so as to ensure that the foveal patches Z∗ contain different target information with the ori-

ginal patches Z. After getting the foveal patches Z∗, we calculate their position embedding

according to Eq.(5.7). Then, we map Z∗ with the same linear projection as Z and add the

mapped feature with the position embedding to get the foveal sequence e0∗. Finally, the input

of transformer backbone includes the search sequence s0, the exemplar sequence e0 and the

foveal sequence e0∗. The exemplar image is small in VOT, so the token number in e0 and

e0∗ are modest as well.

5.4 Experiments

5.4.1 Implementation Details

Model. We evaluate our method on vision transformer (Radford et al. 2021) and produce

three variants of SimTrack: Sim-B/32, Sim-B/16, and Sim-L/14 with the ViT base, base,

and large model (Dosovitskiy et al. 2020) as the backbone, respectively, where input images

are split into 32 × 32, 16 × 16 and 14 × 14 patches, correspondingly. All parameters in the
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backbone are initialized with pre-trained parameters from the vision branch of CLIP (Radford

et al. 2021). For better comparison with other trackers, we add another variant Sim-B/16∗

with fewer FLOPs than Sim-B/16. In Sim-B/16∗, we remove the last four layers in the

transformer backbone to reduce computation costs. The predictor is exactly the same as that

in STARK-S (Yan et al. 2021b).

Training. Our SimTrack is implemented with Python 3.6.9 on PyTorch 1.8.1. All experiments

are conducted on a server with 8 16GB V100 GPUs. The same as STARK-S, we train our

models with training-splits of LaSOT (Choi et al. 2017), GOT-10K (Huang et al. 2018),

COCO2017 (Lin et al. 2014), and TrackingNet (Müller et al. 2018) for experiments on

all testing datasets except for GOT-10k_Test. For GOT-10k_Test, we follow the official

requirements and only use the train set of GOT-10k for model training. In Sim-B/32, we set

the input sizes of exemplar and search images as 128 × 128 and 320 × 320, corresponding

to 22 and 52 times of the target bounding box, because the larger stride 32 makes the output

features having a smaller size. Too small output size has a negative effect on target localization.

In Sim-B/16, the input sizes are 112× 112 and 224× 224, corresponding to 22 and 42 times of

the target bounding box. For Sim-L/14, the exemplar input size is reduced to 84 × 84 (1.52

times of target bounding box) to reduce computation costs. Without the special declaration,

all other experiments use the same input sizes as Sim-B/16. The size of the cropped image

for the foveal window is 64 × 64.

The whole training needs 500 epochs with 6 × 104 image pairs in each epoch. The training

batch size is 256. All models are optimized with AdamW and the weight decay is 10−4. The

initial learning rates of the backbone and head are 10−5 and 10−4, which will drop by a factor

of 10 after 400 epochs. The loss weights λiou and λL1 are 2 and 5. For Sim-B/32, we shift

the exemplar image by 16 pixels (half of the patch size 32) and crop a 64 × 64 foveal image

in the centre of the shifted image. For Sim-B/16, we directly crop a 64 × 64 foveal image

in the centre of the exemplar image. For Sim-L/14, to reduce computation cost, the input

exemplar size is reduced to 84 × 84. We centre crop a 42 × 42 image as the foveal image,

where the partitioning lines are located in the centre of those on the exemplar image.
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TABLE 5.1. Performance comparisons with state-of-the-art trackers on the
test set of LaSOT (Choi et al. 2017), TNL2K (Wang et al. 2021c) and Track-
ingNet (Müller et al. 2018). ‘Size’ means the size of search image, ‘FLOPs’
shows the computation costs of backbone and transformer head. For methods
without transformer head, ‘FLOPs’ shows the computation costs from the
backbone. AUC, Pnorm and P are AUC, normalized precision and precision.
Sim-B/16∗ denotes removing the last four layers of the transformer-backbone
in Sim-B/16 to reduce FLOPs. Trackers shown with ◇ have online update
modules. Red, green and blue fonts indicate the top-3 methods.

Methods Net Size FLOPs LaSOT TNL2K TrackingNet
AUC Pnorm AUC P AUC P

SiamFC (Bertinetto et al. 2016) AlexNet 255 4.9G 33.6 42.0 29.5 28.6 57.1 66.3
ATOM (Danelljan et al. 2019) ◇ ResNet18 288 3.0G 51.5 57.6 40.1 39.2 70.3 64.8
DiMP (Bhat et al. 2019) ◇ ResNet50 288 5.4G 56.9 65.0 44.7 43.4 74.0 68.7
SiamRPN++ (Li et al. 2019a) ResNet50 255 7.8G 49.6 56.9 41.3 41.2 73.3 69.4
SiamFC++ (Xu et al. 2020) GoogleNet 303 15.8G 54.4 56.9 38.6 36.9 75.4 70.5
Ocean (Zhipeng et al. 2020) ◇ ResNet50 255 7.8G 56.0 65.0 38.4 37.7 70.3 68.8
SiamBAN (Chen et al. 2020) ResNet50 255 12.1G 51.4 52.1 41.0 41.7 - -
SiamAtt (Yu et al. 2020) ResNet50 255 7.8G 56.0 64.8 - - 75.2 -
TransT (Chen et al. 2021d) ResNet50 256 29.3G 64.9 73.8 50.7 51.7 81.4 80.3
TrDiMP (Ning et al. 2021) ◇ ResNet50 352 18.2G 63.9 - - - 78.4 73.1
KeepTrack (Mayer et al. 2021) ◇ ResNet50 464 28.7G 67.1 77.2 - - - -
AutoMatch (Zhang et al. 2021) ResNet50 - - 58.3 - 47.2 43.5 76.0 72.6
TransInMo∗ (Guo et al. 2022) ResNet50 255 16.9G 65.7 76.0 52.0 52.7 - -
STARK-S (Yan et al. 2021b) ResNet50 320 15.6G 65.8 - - - 80.3 -
STARK-ST (Yan et al. 2021b) ◇ ResNet101 320 28.0G 67.1 77.0 - - 82.0 86.9
Sim-B/32 ViT-B/32 320 11.5G 66.2 76.1 51.1 48.1 79.1 83.9
Sim-B/16∗ ViT-B/16∗ 224 14.7G 68.7 77.5 53.7 52.6 81.5 86.0
Sim-B/16 ViT-B/16 224 25.0G 69.3 78.5 54.8 53.8 82.3 86.5
Sim-L/14 ViT-L/14 224 95.4G 70.5 79.7 55.6 55.7 83.4 87.4

Inference. Like STARK-S (Yan et al. 2021b), there is no extra post-processing for all

SimTrack models. The inference pipeline only consists of a forward pass and coordinate

transformation process. The input sizes of exemplar and search images are consistent with

those during offline training. Our Sim-B/16 can run in real-time at more than 40 fps.

5.4.2 State-of-the-art Comparisons

We compare our SimTrack with other trackers on five datasets, including LaSOT (Choi et al.

2017), TNL2K (Wang et al. 2021c), TrackingNet (Müller et al. 2018), UAV123 (Mueller et al.

2016) and GOT-10k (Huang et al. 2018).
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LaSOT is a large-scale dataset with 1400 long videos in total. The test set of LaSOT (Choi

et al. 2017) consists of 280 sequences. Table 5.1 shows the AUC and normalized precision

scores (Pnorm) of all compared trackers. Our SimTrack can get a competitive or even

better performance compared with state-of-the-art trackers. Our Sim-B/16∗ outperforms all

compared trackers with a simpler framework and lower computation costs. Our Sim-B/16

achieves a new state-of-the-art result, 69.3% AUC score and 78.5% normalized precision

score, with acceptable computation costs. After using the larger model ViT-L/14, our Sim-

L/14 can get a much higher performance, 70.5% AUC score and 79.7% normalized precision

score. We are the first to exploit such a large model and demonstrate its effectiveness in visual

object tracking.

TNL2K is a recently published datasets which composes of 3000 sequences. We evaluate

our SimTrack on the test set with 700 videos. From Table 5.1, SimTrack performs the best

among all compared trackers. The model with ViT-B/16 exceeds 2.8 AUC points than the

highest AUC score (52.0%) of all compared trackers. Leveraging a larger model can further

improve the AUC score to 55.6%.

TrackingNet is another large-scale dataset consists of 511 videos in the test set. The test

dataset is not publicly available, so results should be submitted to an online server for

performance evaluation. Compared with the other trackers with complicated interaction

modules, our SimTrack is a more simple and generic framework, yet achieves competitive

performance. By leveraging a larger model, Sim-L/14 outperforms all compared trackers

including those with online update.

UAV123 provides 123 aerial videos captured from a UAV platform. In Table 5.2, two versions

of our method both achieve better AUC scores (69.8 and 71.2) than the highest AUC score

(68.1) of all compared algorithms.

GOT-10k requires training trackers with only the train subset and testing models through

an evaluation server. We follow this policy for all experiments on GOT-10k. As shown in

Table 5.3, our tracker with ViT-B/16 obtains the best performance. When leveraging a larger

model ViT-L/14, our model can further improve the performance to 69.8 AUC score.
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SiamFC SiamRPN SiamFC++ DiMP TrDiMP TransT Ours Ours
ViT-B/16 ViT-L/14

AUC↑ 48.5 55.7 63.1 65.4 67.5 68.1 69.8 71.2
Pre↑ 64.8 71.0 76.9 85.6 87.2 87.6 89.6 91.6

TABLE 5.2. Performance comparisons on UAV123 (Mueller et al. 2016)
dataset. Red, green and blue fonts indicate the top-3 methods.

SiamFC SiamRPN SiamFC++ DiMP TrDiMP STARK-S Ours Ours
ViT-B/16 ViT-L/14

AO↑ 34.8 46.3 59.5 61.1 67.1 67.2 68.6 69.8
SR0.5 ↑ 35.3 40.4 69.5 71.7 77.7 76.1 78.9 78.8
SR0.75 ↑ 9.8 14.4 47.9 49.2 58.3 61.2 62.4 66.0

TABLE 5.3. Experimental results on GOT-10k_Test (Huang et al. 2018) data-
set. Red, green and blue fonts indicate the top-3 methods.

5.4.3 Ablation Study and Analysis

Simplified Framework vs. STARK-SV. To remove concerns about backbone, we compare

our method with the baseline tracker STARK-SV (Yan et al. 2021b) using the same backbone

architecture. In Table 5.4, our design can consistently get significant performance gains with

similar or even fewer computation costs. Our three variations with ViT-B/32, ViT-B/16 and

ViT-L/14 as backbone outperforms STARK-SV for 3.7/3.1, 2.5/2.6 and 1.3/1.6 AUC points

on LaSOT/TNL2K dataset, respectively, demonstrating the effectiveness and efficiency of

ours.

Training Loss & Accuracy. In Fig. 5.6, we show the training losses and AUC scores of

the baseline model STARK-SV and our method ‘Ours’ on the LaSOT dataset. Both the two

trackers utilize ViT-B/16 as the backbone. We can see that ‘Ours’ uses fewer training epochs

to get the same training loss with STARK-SV. When training models for the same epochs,

‘Ours’ can get lower training losses than STARK-SV. In terms of testing accuracy, training

our model for 200 epochs is enough to get the same AUC score (66.8% vs. 66.8%) with the

baseline model trained for 500 epochs. We think the main reason is ‘Ours’ does not have a

randomly initialized transformer head. The transformer head without pre-training needs more

training epochs to get a good performance.
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Backbone FLOPs LaSOT TNL2K
AUC↑ Pnorm↑ P↑ AUC↑ P↑

STARK-SV ViT-B/32 13.3G 62.5 72.1 64.0 48.0 44.0
Ours ViT-B/32 11.5G 66.2 (+3.7) 76.1 (+4.0) 68.8 (+4.8) 51.1 (+3.1) 48.1 (+4.1)

STARK-SV ViT-B/16 25.6G 66.8 75.7 70.6 52.2 51.1
Ours ViT-B/16 23.4G 69.3 (+2.5) 78.5 (+2.8) 74.0 (+3.4) 54.8 (+2.6) 53.8 (+2.7)

STARK-SV ViT-L/14 95.6G 69.2 78.2 74.3 54.0 54.1
Ours ViT-L/14 95.4G 70.5 (+1.3) 79.7 (+1.5) 76.2 (+1.9) 55.6 (+1.6) 55.7 (+1.6)

TABLE 5.4. Ablation study about our simplified framework and the baseline
model STARK-S (Yan et al. 2021b). ‘FLOPs’ shows computation costs of
different methods, AUC, Pnorm and P respectively denote AUC, normalized
precision and precision.

#Num ① ② ③ ④ ⑤
Pretrain DeiT Moco SLIP CLIP MAE

LaSOT AUC 66.9 66.4 67.6 69.3 70.3
Prec 70.3 69.4 71.0 74.0 75.5

TNL2K AUC 51.9 51.9 53.4 54.8 55.7
Prec 49.6 49.4 51.8 53.8 55.8

TABLE 5.5. The AUC/Pre scores
of SimTrack (with ViT-B/16 as
backbone) when using different
pre-training weights.
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TABLE 5.6. The training
loss and AUC (on LaSOT)
in the Y-axis for different
training epochs (X-axis).

Results with Other Transformer Backbones. We evaluate our framework with Swin

Transformer (Liu et al. 2021) and Pyramid Vision Transformer (PVT) (Wang et al. 2021a).

For Swin Transformer, we made a necessary adaption, considering the shifted window strategy.

We remove the a(el, sl) and slWV in the first function of Eq.(6), which has less influence

according to our experiments (from 69.3% to 69.1% AUC score on LaSOT for SimTrack-ViT).

The attention of each search token is calculated with the tokens inside the local window

and those from exemplar features. During attention calculation, the exemplar features are

pooled to the size of the local window. For PVT, we reduce the reduction ratio of SRA module

for the exemplar by half, to keep a reasonable exemplar size. In the Table 5.7, SimTrack

with PVT-Medium is denoted as PVT-M and SimTrack with Swin-Base is denoted as Swin-B.

PVT-M gets comparable AUC scores with fewer FLOPs, and Swin-B has higher AUC scores
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with similar FLOPs to STARK-S on both datasets, demonstrating the good generalization of

our SimTrack.

DiMP TrDiMP TransT STARK-S PVT-M Swin-B
FLOPs 5.4G 18.2G 29.3G 15.6G 8.9G 15.0G
LaSOT 56.9 63.9 64.9 65.8 66.6 68.3
UAV123 65.4 67.5 68.1 68.2 68.5 69.4

TABLE 5.7. The AUC scores and FLOPs of SimTrack using PVT and Swin-
Transformer as backbone on LaSOT and UAV123 dataset.

Different Pre-training. We evaluate our SimTrack when using ViT-B/16 as backbone and

initializing the backbone with parameters pre-trained with several recent methods, including

DeiT (Hugo et al. 2021), MOCO-V3 (Chen et al. 2021e), SLIP (Mu et al. 2021), CLIP (Rad-

ford et al. 2021), and MAE (He et al. 2022). From Table 5.5, all of these versions achieve

competitive performance with state-of-the-art trackers on the two datasets. However, the

pre-trained parameters from MAE show the best performance, suggesting that appropriate

parameter initialization is helpful to the training of SimTrack.

Component-wise Analysis. To prove the efficiency of our method, we perform a component-

wise analysis on the TNL2K (Wang et al. 2021c) benchmark, as shown in Table 5.8. The

‘Base’ means STARK-SV with ViT-B/16, which obtains an AUC score of 52.2. In ②,

‘+Sim’ indicates using our SimTrack framework without adding the distinguishable position

embedding or foveal window strategy. It brings significant gains, i.e. 1.3/1.4 point in terms

of AUC/Pre score, and verifies the effectiveness of our framework. Adding our position

embedding helps model performs slightly better (③ vs. ②). Furthermore, the foveal window

strategy brings an improvement of 0.8 point on AUC score in ④. This shows using more

detailed target patches at the beginning contributes to improving accuracy.

Decoder Number. We analyze the necessity of introducing transformer decoders in our

SimTrack. Specifically, we add a transformer decoder at the end of our backbone for further

information interaction. In the decoder, the search features from the backbone are used to

get query values. The exemplar features are adopt to calculate key and value. Through

changing the layer number of the decoder from 0 to 6, the performance changes less. This
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Ours

exemplar search 2nd 4th 6th 8th 10th 12th

Base

Ours

Base

FIGURE 5.4. The images in different columns are the exemplar
image, search image, target-relevant attention maps from the
2nd,4th,6th,8th,10th,12th(last) layer of the transformer backbone.
Details can be found in supplementary materials.

#Num Com TNL2K↑
① Base 52.2/51.1
② +Sim 53.5/52.5
③ +PosEm 54.0/53.1
④ +FW 54.8/53.8

TABLE 5.8. Component-wise
analysis. AUC/Pre scores are
reported The results demon-
strate that each component is
important in our framework.

#Num Dec TNL2K↑
① 0 54.8/53.8
② 1 54.8/54.2
③ 3 54.6/54.0
④ 6 54.7/54.3

TABLE 5.9. The influence of
introducing decoders. With suf-
ficient interaction in the trans-
former backbone, decoder be-
comes redundant for SimTrack.

shows another information interaction module is unnecessary in our framework, because our

transformer backbone can provide enough information interaction between the search and

exemplar features.

Dense or Sparse Information Interaction. The information interaction between the

exemplar and search features exist in all twelve blocks in our Sim-B/16, shown as ①

in Table 5.10. In ②, we only enable the interaction in the 2nd,4th,6th,8th,10th and 12th

block, removing half of the interaction in ①. As we can see, using less information interaction

leads to 2.5 points AUC drop. When we further reduce half interaction in ②, the AUC

score drops another 2.5 points in ③. The experiments show that comprehension information

interaction helps to improve the tracking performance in SimTrack.

Visualization. Fig. 5.4 shows the target-relevant area in the search region for different layers.

Our architecture can gradually and quickly focus on the designated target and keep following

the target in the following layers. The visualization maps show that the Siamese backbone in
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#Num Ratio TNL2K↑
① 100% 54.8/53.8
② 50% 52.3/50.4
③ 25% 49.8/46.2

TABLE 5.10. Analysis of information interaction ratio in backbone. ① is ours
with interaction in 100% blocks. ② and ③ reduce the number of interaction
blocks to 50% and 25%.

‘base’ tends to learn general-object sensitive features instead of designated-target sensitive

features and no information interaction hinders the backbone from ‘sensing’ the target during

feature learning. By contrast, ‘Ours’ can produce designated-target sensitive features thanks

to the information interaction from the first block to the last block.

We show more target-relevant attention maps on the search images in Fig 5.5. For ‘Base’,

we replace the backbone of STARK-S with ViT-B/16. ‘Ours’ adopts the SimTrack framework

with ViT-B/16 as the backbone. Both ‘Base’ and ‘Ours’ are trained with the same training

setting. While target-relevant attention map can be obtained for ‘Ours’ directly in the

transformer backbone, ‘Base’ does not have such information since search and exemplar

are processed separately. To obtain the target-relevant attention map for ‘Base’ model, we get

the exemplar and search features from the lth transformer layer after training and calculate

the search attention weight A(sl) through,

A(sl) = softmax ([a(sl, el), a(sl, sl)]) , (5.8)

where sl ∈ RNx×D, el ∈ RNz×D, A(sl) ∈ RNx×(Nz+Nx). We select the target-relevant part from

A(sl) ∈ RNx×Nz and average it along the second dimension to get A∗(sl) ∈ RNx×1. Then, we

reshape A∗(sl) to hx

s ×
wx

s and up-sample it to the same size (hx ×wx) with the search image.

After that, we get the target-relevant attention maps as shown in Fig 5.5. As we can see in

Fig 5.5, ‘Ours’ can quickly and gradually focus on a more accurate and comprehensive target

area because the vital information interaction in the backbone enables the search feature

learning to ‘sense’ the designated target.

Input Resolution. In the paper, we set the input size of search image as 224 × 224 to be

consistent with existing vision transformers. We also evaluate the model performance when

we increase the input resolution to 320 × 320 (the same with STARK-S) and 384 × 384. The
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search 2nd 4th 6th 8th 10th 12th

FIGURE 5.5. The images in different columns are the exemplar im-
age, the search images, the target-relevant attention maps from the
2nd,4th,6th,8th,10th,12th(last) layer of the transformer backbone. ‘Base’
denotes the baseline model. ‘Ours’ is our SimTrack. ‘Ours’ can quickly and
gradually focus on a more accurate and comprehensive target area.

#Num Input Size LaSOT TNL2K
AUC↑ Pnorm↑ P↑ AUC↑ P↑

① 224 × 224 69.3 78.5 74.0 54.8 53.8
② 320 × 320 70.0 79.2 74.8 54.8 54.2
③ 384 × 384 70.4 79.3 75.0 55.2 55.2

TABLE 5.11. The performance of SimTrack (with ViT-B/16 as backbone)
with diverse input sizes. A higher input resolution helps improve tracking
accuracy.

results on LaSOT and TNL2K are shown in Table 5.11. A higher input resolution helps

improve tracking accuracy.
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5.5 Conclusions

This work presents SimTrack, a simple yet effective framework for visual object tracking. By

leveraging a transformer backbone for joint feature learning and information interaction, our

approach streamlines the tracking pipeline and eliminates most of the specialization in current

tracking methods. While it obtains compelling results against well-established baselines on

five tracking benchmarks, both architecture and training techniques can be optimized for

further performance improvements



CHAPTER 6

Speech-SOT: Single Object Tracking Guided by Speech

This chapter presents Speech-SOT, a new paradigm to track the target in a video sequence

based on speech descriptions. Compared with traditional tracking by bounding box, Speech-

SOT inherits all merits from the tracking by text (Text-SOT) paradigm and brings unique

advantages in terms of efficiency, accessibility, and applicability. To facilitate benchmarking

of Speech-SOT methods, we provide diverse speech annotations for two large-scale tracking

datasets and design a baseline framework based on the transformer. The speeches are from

not only a machine but also different people with accent variations, making the datasets

close to realistic scenarios. Own to the efficient human-machine interaction enabled by

speech, we further propose the idea to prevent tracking drifts with online human instruction,

which is achieved by a proposed Speech-Guided Refine (SGR) Module. Experiments are

conducted to demonstrate the feasibility of Speech-SOT and the effectiveness of tracking

with human instructions. We hope this work can inspire more ideas on Speech-SOT or more

interesting modules for vision-and-speech tasks. Our code and speech data will be released

upon acceptance.

6.1 Introduction

Single object tracking (SOT) aims to find the target (e.g., an object) that moves throughout a

video. It is a critical topic in computer vision and indispensable for many applications, such as

autonomous driving, intelligent robots and video surveillance. Based on the representation of

the target information provided in the initial frame, SOT can be split into two main categories:

1) Visual-SOT that represents the target with bounding box and visual information (also
78
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FIGURE 6.1. Three different types of SOT: (a) Visual-SOT, tracking the target
described by bounding box and the initial frame, (b) Text-SOT, tracking the
target described by text, e.g. “the bird", and (c) Speech-SOT, tracking the
target described by speeches, e.g. someone saying “the bird". Text-SOT and
Speech-SOT are two different expressions of NL-SOT.

called Tracking-by-BBox in (Wang et al. 2021c)), as shown in Fig.6.1 (a)); 2) NL-SOT that

represents the target using natural language.

While most existing trackers (Nam and Han 2016; Bertinetto et al. 2016; Li et al. 2018a; Li

et al. 2019a; Yan et al. 2021b) target the Visual-SOT problem and have achieved remarkable

success, Visual-SOT still suffers from some issues (Wang et al. 2021c), including the

inconvenience in initializing the bounding box, vulnerability to sudden appearance variance,

etc. Thus, several works (Li et al. 2017; Wang et al. 2021c) start moving to the second setting,

NL-SOT, which allows humans to present the target information in a more convenient and

complimentary manner. Compared with the Visual-SOT paradigm, NL-SOT is more intuitive

and straightforward for humans than accurately labeling the target bounding box. Besides,

natural language can provide more diversified descriptions of the target object ranging from

spatial location to semantic information (e.g., class, attributes, properties, and shape), which

could decrease the influence of bounding box ambiguity and object appearance variance

(Wang et al. 2021c).



80 6 SPEECH-SOT: SINGLE OBJECT TRACKING GUIDED BY SPEECH

Although several attempts were made, all existing NL-SOT uses texts as the target information

(denoted as Text-SOT and shown in Fig.6.1 (b)). In essence, natural language can be expressed

both in text and speech. Considering the convenience of human-machine interaction, using

speech as the target information for SOT (Speech-SOT) is a more natural choice. On the one

hand, speech and text can be transformed to each other easily and seamlessly, which indicates

that Speech-SOT can inherit all the above merits the same as Text-SOT. On the other hand,

Speech-SOT also brings unique advantages over Text-SOT regarding efficiency, accessibility,

and applicability.

● Efficiency: Speech-SOT is more efficient than Text-SOT since a human can speak

faster (150 words/minute) than typing (40 words/minute) (Basapur et al. 2007),

essentially decreasing the time in the target initialization.

● Accessibility: Speech-SOT solution can be accepted by a broader range of users

easily since most people can speak from an early age while typing and the back-end

literacy require specific training. According to (Roser and Ortiz-Ospina 2016), there

is still about 14% of the world population that remains illiterate.

● Applicability: Compared with the typing devices (e.g., keyboard or touch screen), a

microphone usually is of low cost and small size. Furthermore, typing is not always

practicable when people are handicapped or one’s hands are occupied, e.g., when

driving vehicles. With these two factors in mind, Speech-SOT is applicable to more

and broader application scenarios (e.g., smart glass, driving).

Considering all of the above factors, we propose a new task, Speech-SOT, which aims to

localize a target described by speech among a video sequence as shown in Fig.6.1 (c). This

task significantly escalates the Text-SOT paradigm in real applications by making SOT

applicable to a broader range of scenarios. It is also attractive to researchers from the

computer vision, NLP, and speech recognition because of the significant challenges, including

the modality difference between speech and visual information, the influence of diverse speech

characteristics (e.g., speeds, accents, noise), and the high demand for semantic comprehension

in complicated tracking scenarios. To promote the studies in this new task, we extend two

popular large-scale tracking datasets with diverse speeches, including LaSOT (Choi et al.
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2017) and TNL2K (Wang et al. 2021c). For each video, speeches from six different types

of sources are provided, including Machine with Female voice, Machine with Male voice,

and four different types of workers from 36 people on Amazon Mechanical Turk1. Based on

these speeches, we set six different training and testing sets with varying difficulty levels. To

show the potential of Speech-SOT, we also provide a Speech-SOT framework based on the

transformer.

The highly efficient and convenient human-machine interface enabled by speech also allows

the design of new strategies to improve tracking performance. Specifically, current advanced

trackers with high performance on public testing datasets still suffer from accumulated

tracking drifts. In this work, we also propose an online human intervention strategy to ease

this problem. As shown in the right part of Fig.6.1 (c), a pluggable refine module is introduced

to cleanse the tracking results online according to human instructions in the form of speech

data (e.g., speech instruction about ‘move to the top left’), which can avoid the tracking failure

caused by tracking drift accumulation and improve the tracking performance with a small

cost. Recalling the speech speed, this refine module would only introduce a small cost, which,

however, is impractical in Visual-SOT and Text-SOT paradigms.

The contributions are summarized as follows:

● A new task, i.e., Single Object Tracking guided by Speech (Speech-SOT), is pro-

posed to enable human-machine interaction in a more convenient and intuitive way.

Diverse speech descriptions of the targets for two existing datasets, a transformer-

based framework to solve the new task, and primary evaluation results are provided

for future researches.

● A Speech Guided Refine Module (SGR Module) is proposed to greatly reduce

tracking drifts by introducing online human instructions. This is a new strategy for

improving the tracking accuracy.

1https://www.mturk.com/
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6.2 Related Work

6.2.1 Visual-SOT

Most existing trackers only rely on vision features and adopt initial bounding box and the

image of the target to provide target information. Specifically, given the bounding box in

the first frame, there are two main strategies to introduce the target information to models,

template-based and model-based strategies. Template-based methods (Bertinetto et al. 2016;

Li et al. 2018a; Chen et al. 2020; Xu et al. 2020; Li et al. 2019a; Zhu et al. 2018a; Zhang

and Peng 2019; Yan et al. 2021b; Wang et al. 2019b) extract the target feature based on the

ground truth box, which is then used as a template to find objects in the following frames

according to similarity matching. Model-based methods (Nam and Han 2016; Jung et al.

2018; Wang et al. 2016; Chen et al. 2018; Danelljan et al. 2016; Danelljan et al. 2019; Bhat

et al. 2019; Danelljan et al. 2017) generate training samples according to the initial target

box and fine-tune some model parameters to distinguish the target from the background in

the current video. The tracking accuracy of both strategies can be improved by introducing

an update module, which modifies the template feature (Zhang et al. 2019; Yang and Chan

2018; Zhu et al. 2018b) or model parameters (Danelljan et al. 2019; Bhat et al. 2019; Li et al.

2019b) timely to adapt to the target or background variations. Besides, another functional

module in SOT is the refine module (Yan et al. 2021a), which aims to get a more precise box

based on a predicted one. We also propose a refine module in this chapter. Differently, it is

the first time to allow human intervention through refine module and guide the refine module

with a more intuitive and weakly-supervised way by speeches.

6.2.2 Trackers With Neural Language

In recent years, several trackers (Li et al. 2017; Wang et al. 2018; Feng et al. 2019; Yang et al.

2020; Feng et al. 2021; Wang et al. 2021c) try to introduce natural language to single object

tracking. Most of them (Feng et al. 2019; Wang et al. 2018; Yang et al. 2020; Feng et al.

2021) integrate natural language (NL) descriptions with the box initialization to improve the
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performance of vision-based tracking, which still needs labelling the target boxes and thus is

inconvenient in practical scenarios. Recently, there is a new rising topic (Li et al. 2017; Wang

et al. 2021c) on initializing the target through neural language. The authors of (Li et al. 2017)

design three variants for single object tracking by natural language, including relying on NL

specification only, relying on visual target specification based on language, and integrating

them joint capacity. In TNL2K (Wang et al. 2021c), a visual module and a grounding module

based on text descriptions are used for local and global search, respectively. Another switch

module controls the choice of tracking results from local or global search.

However, the above methods only explore text description while neglecting another repres-

entative NL modality, i.e., speech. We focus on providing a more efficient human-machine

interaction through speech for SOT.

6.2.3 Transformer-based Trackers

Recently, transformer (Vaswani et al. 2017a) achieved great success in the computer vision

community (Dosovitskiy et al. 2020; Hugo et al. 2021). For SOT, the head design based on

the transformer (Yan et al. 2021b; Chen et al. 2021d; Ning et al. 2021) improves the accuracy

of state-of-the-art trackers. These methods utilize the encoder and decoder in the transformer

to replace the correlation module and enhance the interaction between template and search

features. In this chapter, we adopt a similar framework with Stark (Yan et al. 2021b). Since

Stark is for Visual-SOT instead of the new Speech-SOT setting, we modify the carrier of

template information from bounding box to speech and add a specific global search branch to

find the target in the first frame. Besides, we propose a refine module to avoid tracking drift

by human intervention.
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6.3 Speech-SOT

6.3.1 Problem Description

A tracker in Speech-SOT aims to find the target in a video guided by speech. During offline

training, videos, speech descriptions about the targets in videos, and ground truth bounding

boxes of the targets are provided for training the tracker. During inference, given a video, the

tracker is provided a speech description about the target and required to generate the target

bounding boxes in all images. Unlike Visual-SOT, there is no bounding box provided for

Speech-SOT in the initial frame, so the tracker has to learn to find the target from video only

based on the speech.

6.3.2 Speech-SOT Dataset

LaSOT (Choi et al. 2017) and TNL2K (Wang et al. 2021c) are two large-scale datasets in

SOT, where the coordinates of the target box in each frame and text descriptions for each

video are provided, which attracts researchers to the NL-SOT. However, speech description is

not provided in existing SOT datasets, which hinders the further exploration of NL-SOT to

enjoy the advantages of Speech-SOT regarding the efficiency, accessibility, and applicability

as discussed in the introduction.

To promote researches on the Speech-SOT, we build two Speech-SOT datasets based on the

LaSOT (Choi et al. 2017) and TNL2K (Wang et al. 2021c) datasets with the help of their text

descriptions about targets in the first frame. For each video, six speech files are provided

from six sources shown in Table 6.1, which could support evaluating the performance and

generalization ability of SOT methods with different training and testing sets. The six sources

are described as follows.

MF & MM. Specifically, speech files under the Machine with Female Sound (MF) source

and Machine with Male Sound (MM) source are produced by the text-to-speech service
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TABLE 6.1. Six speech sets. ‘NES’ is the ratio of speeches from native
English speakers. More ‘⋆’ means more noisy.

Sets Speech Source NES Noise
MF Machine with female sound 100%
MM Machine with male sound 100%
HF A female native speaker 100% ⋆

HM A male native speaker 100% ⋆

HC1 17 different people 58.8% ⋆ ⋆

HC2 17 different people 29.4% ⋆ ⋆

from Google Cloud 2 with Female and Male voices separately. These speeches are American

English voices with the same sample rate and speaking rate, and are free of noise, which is

rare in practical scenarios.

HF & HM. For more realistic scenarios, speech files from the other four sources are all

obtained from the Amazon Mechanical Turk (AMT) but with different requirements. In detail,

we found two native English speakers on AMT, one Female (HF) and one Male (HM). Each

person records one speech file for each video. The speeches from HF and HM have a little

noise due to the recording devices.

HC1 & HC2. To introduce more diversity, we further randomly divide all text descriptions

in the two datasets into 17 groups (200 sentences each group) and find 34 speakers, including

both female and male, to help us recording the speeches. Then, all these speeches are separated

into two sets (denoted as HC1 and HC2 as shown in Table 6.1). Compared with the above four

sets, speeches in HC1 and HC2 have more noise and accent variations since not all speakers

are native English speakers (NES). HC2 set is technically more challenging than HC1 set

because the ratio of NES in HC2 is only half of that in HC1 with a similar noise level.

The details about the speeches and the two datasets are shown in Table 6.2 and a summary

of the speech length distribution is shown in Fig. 6.2. There are 20,400 speech files for all

the 1,400 video sequences in the LaSOT dataset and 2,000 video sequences in the TNL2K

dataset. Most of these speech files last for three to four seconds. The ratio of shorter (1s-2s)

and longer (>7s) speeches for TNL2K (about 18%) is higher than that for LaSOT (about 8%).

2https://cloud.google.com/text-to-speech
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TABLE 6.2. The number and length of the speech files provided for LaSOT
(Choi et al. 2017) and TNL2K (Wang et al. 2021c). We provide six speech
files from different sources for each video.

Datasets LaSOT_S TNL2K_S
train test train test

Video Num 1,120 280 2,300 700
Total Frame 3.52M 1.24M
Speech Files 6,720 1,680 13,800 4,200
Min Time (s) 1.14 1.14 0.77 0.83
Mean Time (s) 3.32 3.42 3.29 3.51
Max Time (s) 10.03 11.89 16.28 12.57
Total Time (h) 7.80 11.20
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FIGURE 6.2. The distribution of speech length on LaSOT (Choi et al. 2017)
and TNL2K (Wang et al. 2021c) datasets.

6.4 Our Proposed Approach

6.4.1 Overview

We provide an end-to-end network as the solution to the proposed Speech-SOT task, which is

composed of a baseline localization module (Section 6.4.2) and a pluggable refine module

(Section 6.4.3). As shown in Fig. 6.3, the localization module uses the initialization speech

description of the target for locating the target from a video (represented by a sequence of

images). Based on the output of the localization module, the optional refine module promotes
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FIGURE 6.3. The framework of our algorithm, which comprises a localization
module and a Speech-Guided Refine (SGR) module. During tracking, we
utilize the global branch from the localization module to find the target in the
whole initial frame t1. Then, we only rely on the local branch to get the target
states in the local images for the subsequent frames t2, t3, ..., tn. The predicted
target position for frame tk−1 is used as the center of the local region for frame
tk. The tracking results from the local branch are guided by human in the form
of instruction speech through the SGR module.

the tracking performance by introducing online human intervention provided by instruction

speeches. The tracking process can be divided into the following four steps.

Step 1: Acquiring speech features. Speech description is transformed to speech features using

Wav2Vec2 (Baevski et al. 2020).

Step 2: Initializing the target location at frame t1. Unlike Visual-SOT, the target bounding

box b1 at the first frame is not provided in Speech-SOT. Given the speech description about

the target, our first task is to find the target in the initial frame. The global branch extracts

features from the whole image and finds the image region that best matches the speech feature.

The best-matching region is the target bounding box b1 found by the global branch.

Step 3: Following the target at frame t2, t3, ..., tn. For frame tk, we crop a search region based

on the predicted box bk−1 in frame tk−1, which is sent to the local branch with the speech

feature from the first frame for getting the target bounding box bk in the current frame.

Step 4: Refining tracking results. When necessary (e.g., large tracking errors occur), the

tracking results can be refined if the instruction speech is available. Given bk predicted from
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Step 3 for frame tk, the refine module uses the instruction speech to obtain the refined box brk,

which replaces bk for generating the search region for the next frame. The predicted box for

frame tk is still bk.

The Step 3 and 4 above are iterated for frames t2, ..., tn. Steps 2 and 3 are accomplished by

the localization module. Step 4 is accomplished by the refine module.

6.4.2 Localization Module

The localization module consists of a global branch and a local branch. The two branches have

shared backbone networks for extracting speech and visual representation, shared (except for

the input query of the decoder) encoder-decoder network for capturing feature dependencies

and obtaining target related representations, and (non-shared) tracking heads to generate

the bounding box of the target, i.e. the tracking result. To facilitate understanding, we first

introduce the global branch and then illustrate the differences of the local branch at the end of

this section.

Backbone. Arbitrary networks can be used to extract features for visual images and speeches.

In this chapter, we adopt a vanilla ResNet50 (He et al. 2016) to extract visual features. We

remove the last stage and fully-connected layers of the ResNet50 pre-trained on ImageNet.

The whole image is resized to wg × hg × 3 and the image features obtained from ResNet50

have a size of wg

s ×
hg

s ×C, where s = 16 denotes the down-sampling ratio of ResNet50.

For speech feature extraction, we utilize Wav2Vec2 Base network (Baevski et al. 2020), which

is fine-tuned on LibriSpeech (Panayotov et al. 2015) dataset with the 960-hours split. All

input speeches are sampled with 16,000 Hz and padded to the same length.

Encoder-Decoder. The operations of the encoder-decoder module follow the design in

DETR(Carion et al. 2020) and Stark(Yan et al. 2021b). For the encoder, we first utilize

several convolutional layers to map the speech features and visual features into the same

feature dimensions Cei (‘ei’ denotes ‘encoder input’) before sending them to the encoder.

Then, the visual features are flattened and concatenated with the speech features. Finally,
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we send the concatenated features Fei ∈ R(N
s+w∗h)×Cei (w = wg

s and h = hg

s for the global

branch, N s denotes the length of speech features) to the encoders, which is a transformer

encoder (Vaswani et al. 2017b) with N layers.

The decoder inputs are a query Fdi ∈ R1×Cdi and the encoder output. The query interacts with

the encoder output to get the feature Fdo ∈ R1×Cdo . The decoder output Fdo is target-related

and used with the encoder output by the global head for target searching in a whole image.

Heads. After obtaining features from the decoder, the tracking head is utilized to generate

the target box with the same structure as Stark (Yan et al. 2021b). Specifically, the global head

will output two probability maps, including the maps for the top-left and bottom-right corner

of the bounding box. Then, we calculate the expectation of corners’ probability distribution

to get the normalized coordinates (xtl, ytl, xbr, ybr) (‘tl’ and ‘br’ denote ‘top left’ and ‘bottom

right’) of the predicted box in the whole image.

Differences in the local branch. There are three differences between the global and local

branches, including the input images of the backbone, the input queries of the decoder, and

the parameters of the tracking head. 1) For the local branch, the input is the local search

region cropped from the whole image and 4 times larger than the target; 2) Each (local/global)

branch has an independent query to better distinguish the local from global information for the

shared decoder; 3) Each branch has its own independent head for target localization because

the normalized coordinates of target box in local and global images usually have value gaps.

6.4.3 Speech-Guided Refine Module

The detailed architecture of our SGR module is shown in Fig.6.4. There are three inputs,

including the instruction speech obtained from the human instruction, the local feature

Fl
ei ∈ R(w×h×Cei) (‘l’ denotes ‘local branch’) from the local branch, and the normalized

coordinates of the predicted box from the localization module. The output of the SGR module

is the refined target coordinates (xr
tl, y

r
tl, x

r
br, y

r
br) (‘r’ denotes ‘refine module’), which can be

used to obtain a more accurate search region in the next frame and thus improve the tracking

performance.
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FIGURE 6.4. The detailed architecture of our SGR module. First, the instruc-
tion speech is transformed to the instruction kernel by Wav2Vec2 network
and encoder-decoder transformer. Second, this instruction kernel is convolved
with the features from the local feature and box coordinates. Finally, several
convolutional layers are used for outputting refined target state.

More concretely, we generate an instruction kernel Fik based on the instruction speech feature

and use it to conduct convolutional operation (‘F.Conv’ in Fig.6.4) over the concatenated

features of local feature Fl
ei and target mask map denoted by Fm (calculated by the coordinates

of the predicted box from the localization module). After this convolutional operation, the

output features are sent to several convolutional layers to get two refined probability maps.

We can get the refined target coordinates by the same strategy used in the tracking head of the

localization module.

Instruction Kernel Generation. In Table 6.3, we define nine instructions about target

position and seven instructions about target size for the refine module, which provides

human intervention for getting a more precise target state with few efforts during tracking.

Specifically, the instruction speeches are sent to Wav2Vec2 network (Baevski et al. 2020) to

extract instruction features, which is the same as extracting the initialization speech features

in the localization module. Then, the instruction features are sent to a lightweight transformer,

where a learnable query interacts with the instruction features in the decoder. The output

feature of the decoder is reshaped to an instruction kernel Fik ∈ RK×K×2Cei encapsulating the

information for refining the target position.
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TABLE 6.3. The human instructions in the form of ‘Move to A, be B’, where
A is from nine position instructions, and B is from seven size instructions. For
example, for instruction ‘Move to top right, be smaller’, A=‘top right’ and B
= ‘smaller’. If A=‘none’ and B = ‘smaller’, the above instruction becomes
‘Be smaller’.

9 Position Instructions

none top right top right top left
bottom left bottom left bottom right

7 Size Instructions
none bigger smaller wider narrower higher shorter

Target Mask Generation. The normalized coordinates (xtl, ytl, xbr, ybr) of the predicted

box on the search region is also the normalized coordinates on the search feature. According

to the normalized coordinates, a mask map Fm ∈ R(w×h×1) can be achieved, where the values

in the predicted target region are set to ones and the others are set to zeros. The mask map is

repeated Cei times along the channel dimension and concatenated with the search features

Fl
ei ∈ R(w×h×Cei) from the localization module.

6.4.4 Training Loss

The whole network is trained in an end-to-end fashion with the loss Lg for the global branch,

the loss Ll for the local branch, and the loss Lr for the SGR module. All the three losses

consist of a ℓ1 loss and a generalized IoU loss as in DETR (Carion et al. 2020) and Stark (Yan

et al. 2021b). The training process can be formulated as follows:

θ∗ = argmin
θ
(αgLg(θ) + αlLl(θ) + αrLr(θ)),

Lζ(θ) = λζ
iouL

ζ
iou(bi, b

∗
i ) + λ

ζ
ℓ1
Lζ
1(bi, b

∗
i ) for ζ ∈ {g, l, r},

(6.1)

where θ in the network parameter, αg, αl, αr, λζ
iou, λ

ζ
ℓ1

are loss weights, bi denotes the predicted

box, and b∗i denotes the ground-truth box.
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FIGURE 6.5. The visualization of situations when using different position
and size instructions.

6.5 Experiments

6.5.1 Implementation Details

Training Phase. For the fair comparison with methods in Text-SOT, all models are trained

with only LaSOT (Choi et al. 2017) dataset and speeches from the MM setting in Table 6.1

without special declarations. The image sizes of the local and global branches are 320×320×3

pixels and 640 × 640 × 3 pixels. The stride of ResNet50 in this chapter is 16, so the output

sizes of the visual features after ResNet50 are 20 × 20 × 1024 and 40 × 40 × 1024 for the local

and global branches, respectively. Before sending them to the transformer, we use one 2D

convolutional layer (kernel_size = 3, stride = 1, padding = 1) to reduce the channel number

from 1024 to 256.

All input speeches are padded to the same length (92000, 1). The size of the speech feature

after the backbone is (287,768), which is reduced to (33,256) after passing the speech

feature through three 1D convolutional layers. The kernel size and stride of all 1D Conv

layers are 5 and 2.
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There are 6 transformer layers in the localization module and 3 transformer layers in the

speech-guided refine module. The kernel size K of the speech-guided refine module is set

to 3. The values of feature dimension C,Cei,Cdi, and Cdo are, respectively, 1024,256,256,

and 256. The loss weights αl, αg, αr, λζ
iou, and λζ

ℓ1
in the loss function Eq.(1) are 1, 1, 1, 2,

and 5, respectively. The λζ
iou and λζ

ℓ1
are set according to Stark. The Wav2Vec2 Base network

is fixed during the training process. The whole network is trained in an end-to-end fashion

with a total of 250 epochs. We optimize the network by AdamW optimizer and set the weight

decay as 10−4. The initial learning rate is set to 10−5 for the backbone and 10−4 for the others,

which drops by a factor of 10 after 200 epochs. The training batch size is 128.

Inference Phase. Similar to (Yan et al. 2021b), there is no extra post-processing during the

inference phase. To be more convenient, we utilize the ground truth to generate the human

instructions for refining the tracking results. When the IoU value between the predicted box

and the ground truth box is lower than 0.4, the SGR module is used to get a more precise box.

All codes are implemented with Pytorch and tested on an Nvidia 1080ti.

Training Sample. A training sample consists of (1) a whole image, (2) a local image cropped

from the whole image, (3) an initialization speech containing the target information, (4) a

pseudo predicted box whose overlap with the ground-truth box is less than 0.6, (5) and an

instruction speech containing the guidance information to refine the pseudo predicted box.

The instruction speech is calculated through the relative position and scale change between

the pseudo predicted box and the ground truth box. Fig. 6.5 shows the position and size

instructions in different situations. Specifically, we first get the position instruction according

to the relative position between the pseudo predicted box and the ground truth box. For

example, in Fig. 6.5 (a), the ground truth position (the green dot) is at the top right of the

predicted position (the red dot), so the position instruction is ‘move to the top right’. Then,

we set the size instruction as shown in Fig. 6.5 (b). If both the width and height of the

predicted box are bigger than the ground truth box (the example in the first row and the

first column), the size instruction will be ‘be smaller’. After getting the position and size

instructions, we concatenate them and read them as the instruction speech to simulate online

human interactions.
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FIGURE 6.6. The success plots and precision plots of our models with state-
of-the-art trackers on LaSOT dataset.

6.5.2 Datasets and Evaluation Protocols

In our experiments, the two large-scale datasets LaSOT (Choi et al. 2017) and TNL2K (Wang

et al. 2021c) with our speeches described in Section 6.3.2 are employed. We adopt two popular

metrics, including Success Plot and Precision Plot to evaluate the tracking performance

(Fig. 6.6 shows the two plots on LaSOT dataset), which are widely used in many tracking

datasets, such as OTB (Wu et al. 2015), LaSOT (Choi et al. 2017), UAV (Mueller et al. 2016),

NFS (Galoogahi et al. 2017), and TNL2K (Wang et al. 2021c). The success plot denotes the

ratio of frames where the IoU values between the predicted target boxes and the ground-truth

boxes are higher than a pre-defined overlap threshold. The precision plot represents the

percentage of frames where the location error between the predicted target and ground-truth

boxes is smaller than a threshold. According to the success plot and precision plot, we can

get the success score and precision score as shown in the legend of Fig. 6.6. More details

about the evaluation toolkit can be found in LaSOT (Choi et al. 2017) and TNL2K (Wang

et al. 2021c).

6.5.3 Comparison with Existing Trackers.

Since there is no algorithm for Speech-SOT before ours, we compare our tracker with

algorithms on Visual-SOT and Text-SOT through quantitative and qualitative analysis.
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TABLE 6.4. Comparisons with existing trackers on LaSOT and TNL2K data-
set. ‘Info’ denotes the representation of target information in each tracker,
including Visual (‘V’), Text (‘T’) and Speech (‘Sp’) target information. ‘Ini-
tialize’ means the strategy of target initialization in the first frame. ‘BBox’
denotes directly providing the ground truth bounding box in the first frame.
‘T’ or ‘Sp’ is using text description or speech description to initialize the target.
[Prec.∣Succ. Score] are reported respectively.

Algorithm Info Initialize LaSOT TNL2K
SiamFC (Bertinetto et al. 2016) V BBox 0.40∣0.34 0.29∣0.30
MDNet (Nam and Han 2016) V BBox 0.46∣0.40 0.37∣0.38
VITAL V BBox 0.45∣0.39 0.35∣0.37
GradNet (Li et al. 2019b) V BBox 0.35∣0.37 0.32∣0.32
ATOM (Danelljan et al. 2019) V BBox 0.51∣0.51 0.39∣0.40
SiamDW (Zhang and Peng 2019) V BBox −∣0.38 0.33∣0.32
SiamRPN++ (Li et al. 2019a) V BBox 0.50∣0.45 0.41∣0.41
GlobalTrack (Lianghua et al. 2020) V BBox 0.53∣0.52 0.39∣0.41
SiamBAN (Chen et al. 2020) V BBox 0.60∣0.51 0.42∣0.41
Ocean (ocean-2020) V BBox 0.57∣0.56 0.38∣0.38
Stark_S (Yan et al. 2021b) V BBox 0.69∣0.66 0.51∣0.52

Feng et al. (Feng et al. 2020) T+V T 0.28∣0.28 −

Feng et al. (Feng et al. 2020) T+V T+BBox 0.35∣0.35 0.27∣0.25
GTI et al. (Yang et al. 2020) T+V T+BBox 0.47∣0.47 −

TNL2K-I (Wang et al. 2021c) T+V T 0.49∣0.51 0.06∣0.11
TNL2K-II (Wang et al. 2021c) T+V T+BBox 0.55∣0.51 0.42∣0.42
SNIT (Feng et al. 2021) T+V T+BBox 0.54∣− −

Ours Sp Sp 0.49∣0.49 0.14∣0.20
Ours_R Sp Sp 0.58∣0.57 0.20∣0.25
Ours-V_R Sp+V BBox 0.74∣0.70 0.55∣0.55

Quantitative Analysis. Different from existing trackers, our model totally relies on speech

to provide target information without using an additional visual module from the template

image. Introducing an additional visual module to assist the speech module will improve

the performance as demonstrated in (Feng et al. 2020; Feng et al. 2021; Wang et al. 2021c)

but is not the point of this chapter. In Table 6.4 and Fig. 6.6, we show three versions of

our models, including ‘Ours’ (w/o the SGR module), ‘Ours_R’ with the SGR module, and

‘Ours-V_R’ (Visual-SOT combining the SGR module without the initialization speech as the

target information).

When our model does not use the additional visual module (‘Ours’ in Table 6.4), the precision

scores of ‘Ours’ are comparable with the Text-SOT tracker TNL2K-I (Wang et al. 2021c) that

uses an additional visual module on the LaSOT dataset (0.49 vs. 0.49), and 8% higher than
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TNL2K-I on the TNL2K dataset, demonstrating the feasibility of Speech-SOT. By introducing

human interventions through the SGR module, the model ‘Ours_R’ can get much higher

performances (up to 9% higher) than the model ‘Ours’ on the two datasets in terms of both the

precision and success scores, showing the effectiveness of online human intervention during

tracking. We also evaluate our pluggable SGR module with a state-of-the-art visual tracker

Stark_S (Yan et al. 2021b), shown as ‘Ours-V_R’ in Table 6.4. Our SGR module can greatly

help ‘Stark_S’ to improve the performance on both datasets, further confirming the value of

SGR module.

Qualitative Analysis. In Fig. 6.7 (a), the model ‘Ours_R’ with the SGR module can

get more precise target boxes compared with ‘Ours’ (removing the SGR module). In the

second row, during tracking process, a similar fish appears, which will confuse the tracker.

After introducing human intervention through the SGR module, ‘Ours_R’ can focus on the

correct one when ‘Ours’ drifts. Fig. 6.7 (b) shows the tracking results from different kinds

of tracking algorithms. Our model can get good performance (the first two columns) when

facing challenges, such as target variations, background clutters, etc. We also show two failure

cases of our model in the last column. Ours can not perform well under low illumination (the

first image) or when the target changes frequently. For example, we need to track the player

who controls the ball in the second video. The ball is passing among different players, so the

target is changing accordingly. This situation is a new challenge proposed by TNL2K (Wang

et al. 2021c) and a tricky task for all compared trackers.

6.5.4 Ablation Study

Different Speech Sources.. We evaluate the performance of our model when using speeches

from the six sources described in Table 6.1. First, we train four models separately by gradually

increasing the diversity of training speeches on LaSOT dataset. Specifically, we utilize speech

data from the MM set for training the first model (in blue), the MM and MF sets for the

second model (in orange), the MM, MF, HM and HF sets for the third model (in gray) and all

sets for the last model (in yellow). Then, we test these models on the six testing sets of LaSOT

and TNL2K, separately, to evaluate the tracking performance and model generalization ability.
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Bicycle ridden by a man on the ground

Ours_R OursGT Stark TNL2K-IOurs-V_R FengTNL2K-II

(a) Comparisons between Ours_R and Ours on LaSOT. (b) Comparisons with existing trackers on TNL2K.
Goldfish in white and red, swimming among other fishes in the water. 

Speech-SOT Visual-SOT Text-SOT

FIGURE 6.7. The visualization of tracking results. (a) shows our tracking
results with (‘Ours_R’) and without (‘Ours’) the SGR module on LaSOT
dataset. (b) shows the target boxes from several tracking methods on TNL2K
dataset, including Ours_R, Ours, Ours-V_R, Stark (Yan et al. 2021b), TNL2K-
I (Wang et al. 2021c) (using text for target initialization), TNL2K-II (Wang
et al. 2021c) (using bounding box for target initialization) and Feng (Feng et al.
2020). The trackers with names in red do not use the bounding box provided
in the first frame.

The success scores of models on LaSOT (the left one) and TNL2K (the right one) are shown

in Fig. 6.8. The first two models have good performance on the LaSOT-MM and LaSOT-MF

testing sets, but their performance drops greatly when tested on other testing sets and TNL2K

dataset. Differently, training models with more diverse speeches from both machine and

human (the last two models) helps to improve the model generalization ability on different

testing sets and different datasets. Overall, the model trained without actual speeches from

human can not perform well in practical scenarios, demonstrating the necessity of our dataset.

Speech, Text, and Visual Target Information. We adopt speech to provide target informa-

tion for tracking in this chapter (‘Ours’ in Table 6.5). We can also utilize text or visual target

information in our framework by replacing the speech features from Wav2Vec2 with text

features, visual features or even nothing. For Ours_m1 in Table 6.5, the target is described by

text. We utilize Bert to extract text features, which are used for replacing the speech features

in Ours. In Ours_m2, we utilize the visual features of the target from ResNet50 to replace the

speech features. Ours has the same precision score as Ours_m1, which further confirms that

speech can be as effective as text in providing target information for SOT. Besides, both Ours

and Ours_m1 are inferior than Ours_m2 due to the modality gap between natural language

and visual image. Compared with Ours_m3, which offers no target information to the tracker,
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Ours and Ours_m1 have much better performance, demonstrating that our framework can

discover useful information from the natural language information.

TABLE 6.5. Precision score (‘Prec’) evaluated on LaSOT dataset for different
designs/settings of the localization module. ‘Info’ denotes the carrier of target
information used in each model, including Visual (‘V’), Text (‘T’), Speech
(‘Sp’) and Speech-to-text (‘Sp2T’) target information. ‘Train’ denotes the
training data. ‘La+TN’ represents using both LaSOT and TNL2K datasets for
training. ‘Query=1’ means the global and local queries in the decoder share
parameters.

Models Info Train Query Prec
Ours Sp LaSOT 2 0.49
Ours_m1 T LaSOT 2 0.49
Ours_m2 V LaSOT 2 0.55
Ours_m3 - LaSOT - 0.42
Ours_m4 Sp2T LaSOT 2 0.49
Ours_m5 Sp La+TN 2 0.50
Ours_m6 Sp LaSOT 1 0.47

Speech to Text. To utilize speeches in SOT, we can also apply a network to convert speech

to text and then use text information for tracking. Ours_m4 in Table 6.5 is such a model

where speeches are converted to texts through Wav2Vec2 and an additional Bert is used to

extract text features for target information. While it achieves a similar performance with Our,

its latency and parameters are larger than Ours because of introducing the additional Bert.

Specifically, the latency of the module (for speech feature extraction) in Ours_m4 (0.04s) is

twice of that in Ours (0.02s). The parameters of the module (for speech feature extraction) in

Ours_m4 (204.50M) are more than double of those in Ours (94.40M).

Training Data. Training our model on two datasets (Ours_m5) can get better performance

than training on one dataset (Ours). The performance gain is not obvious because there are

many videos from virtual games in the TNL2K dataset, which has domain gaps with the

videos from the LaSOT dataset.

Independent Token. Using two independent queries (Ours), including the global and local

query to distinguish the global and local branches, is more effective (0.49 vs 0.47) than relying

on one shared query (Ours_m6) for the two branches.
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FIGURE 6.8. Success scores of models (trained with speeches from different
sources) on six testing sets.

Refine Frequency. In Fig. 6.9 (a) and (b), compared with the baseline model (the dotted

lines), our SGR module (the solid lines) helps to improve the precision scores under different

refine frequencies for both the Speech-SOT model (‘Ours_R’ in orange) and the Visual-SOT

model (‘Ours-V_R’ in blue). The refine frequency in Fig. 6.9 denotes the ratio of frames

using the results from the SGR module among all testing frames. A higher refine frequency

leads to higher accuracy but requires more human intervention. The human intervention can

be reduced by combining the SGR module with a stronger localization module. The highest

refine frequency for ‘Ours-V_R’ is 15% which is only half of that (30%) for ‘Ours_R’. As

reducing refine frequencies by increasing the frame interval of activating the SGR module, the

success score of both ‘Ours_R’ and ‘Ours-V_R’ begins to drop. However, the SGR module

can still bring an obvious performance gain (over 3%) when the refine frequency reduces to a

low value (less than 5%), demonstrating the effectiveness of the SGR module with infrequent

interaction. Our SGR module complements existing trackers. When the tracking performance

is not good enough, the SGR module can help to improve tracking accuracy by increasing

human intervention. As the tracker becomes stronger, the refine frequency can be reduced

gradually. Our model without the SGR module can run in real-time at more than 40fps.

Refine Threshold. When the SGR module is activated, we simulate human intervention

through comparing the IoU value between the predicted box and the ground truth box. If the

IoU value is lower than a threshold, we will use the SGR module to refine the tracking results.

Fig. 6.9 (c) shows the precision score of ‘Ours_R’ with different IoU thresholds. When we
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FIGURE 6.9. (a) and (b) shows the precision scores (Prec.) of ‘Ours_R’ and
‘Ours-V_R’ with different refine frequencies on LaSOT (Choi et al. 2017).
(c) shows the precision scores of ‘Ours_R’ with different IoU thresholds on
LaSOT (Choi et al. 2017).

modify the IoU threshold from 0.1 to 0.5, the precision score hardly changes (less than 0.005).

The SGR module is robust to the IoU threshold.

Refine through Mask. We evaluate the performance of another refine strategy by mask

(‘Ours_Mask’). According to the ground truth box and predicted target box, we can get a mask

to filter out the useless region in the local feature. As shown in Fig. 6.10, the predicted box

(in red) is at the bottom right of the ground truth box (in green), so the human instruction will

be ‘move to the top left’. Based on this instruction, we can infer that the region at the bottom

and right of the predicted box is definitely useless. Then, we get a mask where the values at

the bottom and right of the predicted box are set to zeros and the other values are set to ones.

During inference, we utilize the ground truth box instead of human instructions to calculate

the mask directly for convenience. After getting the mask, we multiply it to the local feature

and send the masked feature to a tracking head for target localization. The tracking head has

the same structure but different parameters from that of the localization module. According to

the experiment, ‘Ours_Mask’ can help to improve the baseline model’s performance (0.52 vs

0.49 success score on LaSOT dataset). While, Our SGR module (‘Ours_R’) has a much higher

success score (0.58) than ‘Ours_Mask’ (0.52) with the same hyperparameters, demonstrating

the effectiveness of our SGR module. The superior performance of our SGR module comes
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FIGURE 6.10. The detailed architecture of the refine strategy by mask. First,
we get a mask based on the predicted box (the red box) and the ground truth
box (the green box). Second, we multiply the mask to the local feature to filter
out the useless region. Finally, the masked feature are sent to a tracking head
for target localization.

from the design of instruction kernel. In addition to the local feature and target mask, there

is an important instruction kernel in our SGR module, which contains the target changing

information, such as ‘move to the left and be smaller’. This information is more accurate for

guiding the refine module to find the target than the mask provided by ‘Ours_mask’, which

only filters out the useless region based on the predicted box.

Refine Kernel Size. The kernel size of the SGR module in our method is set to 3. We also

evaluate the performance of the models with a kernel size of 1 or 5. When we set the kernel

size as 1, 3 and 5, the success scores of the models on LaSOT are 0.560, 0.568 and 0.564,

respectively. The performance gap is small with different kernel sizes, demonstrating the

robustness of our method.

6.6 Speed Analysis

Our Speech-SOT model without the SGR module can run at about 40 − 50fps. After introdu-

cing the SGR module, the tracking speed depends on the refine frequency. With the highest

refine frequency, our model with the SGR module runs at about 25fps. The tracking speed

can be increased by reducing refine frequency, e.g., only performing refinement when IoU

between predicted box is far away from the target.
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6.7 Conclusions

We advocate a new task, Speech-SOT, which has the advantages of efficiency, accessibility,

and applicability over existing SOT paradigms. Diverse speech data for videos are provided to

inspire future works on Speech-SOT and improve the model generalization ability of Speech-

SOT in practical scenarios. A baseline Speech-SOT framework based on the transformer is

proposed. From this baseline, a speech-guided refine module is proposed to solve the tracking

drifts during online inference. Extensive experiments are conducted to demonstrate the

feasibility and necessity of Speech-SOT. Considering the merits of Speech-SOT, we believe

this work starts the journey of research on speech-enabled SOT. More exciting methods and

directions based on Speech-SOT are expected to emerge and push SOT to a new stage.



CHAPTER 7

General Conclusion

In this thesis, we ventured to enhance visual object tracking performance through the develop-

ment of four innovative methods: SiamSampler, DNVOT, SimTrack, and Speech-SOT. Each

method was crafted to tackle specific challenges prevalent in the field, from the inadequacies

in video sampling and network architectures to the complexities in tracking pipelines and the

integration of human-machine interaction.

The journey began with the introduction of SiamSampler in Chapter 3, where we addressed

the imbalance in video sampling with novel strategies that could be universally applied to

enhance existing trackers. This pursuit not only yielded improved performance but also laid

the groundwork for future research into adaptive data sampling methods—a path ripe with

potential that we hope will be zealously pursued.

Our exploration continued with DNVOT, which examined the efficacy of ImageNet pre-

training within dual-branch trackers. Our findings challenged the status quo, suggesting that

the costly pre-training may not be as critical as previously thought. The revelation of the

Partially Siamese architecture’s superiority, a novel concept introduced by us, opens a fertile

ground for innovation in network architecture design and could redefine the architectural

landscape of visual object tracking.

With SimTrack, we simplified the tracking framework by integrating a transformer backbone,

significantly reducing the dependency on customized tracking techniques. Our comparative

studies across multiple benchmarks revealed a strong potential for SimTrack, yet it also

indicated the necessity for further refinement in both its architecture and training methods to

fully unleash its capabilities.
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The thesis culminates with Speech-SOT, a pioneering foray into speech-enabled visual

object tracking. We presented the first Speech-SOT framework, accompanied by a novel

speech-guided refine module, setting a precedent in the field. Despite its initial success,

we acknowledge the need to refine the frequency of this refinement process and address

the challenges associated with speech feature extraction training. This endeavor not only

showcases the transformative potential of integrating speech into tracking but also underscores

the need for a concerted effort to push the boundaries of this nascent research avenue.

Reflecting upon the collective contributions of these methods, this thesis not only propels the

technical envelope but also opens several avenues for future inquiry. We anticipate that the

findings and methodologies laid out here will be the catalyst for the community to foster a

new wave of research—bridging the chasm between the current capabilities and the uncharted

potential of visual object tracking. In this light, our work is not the end but a beacon for

future innovations that will further intertwine the sophistication of machine learning with the

intricacies of visual object tracking.
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