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Quantum skyrmion Hall effect in f -electron systems
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The flow of electric current through a two-dimensional material in a magnetic field gives rise to the family of
Hall effects. The quantum versions of these effects accommodate robust electronic edge channels and fractional
charges. Recently, the Hall effect of skyrmions, classical magnetic quasiparticles with a quantized topological
charge, has been theoretically and experimentally reported, igniting ideas on a quantum version of this effect.
To this end, we perform dynamical mean-field-theory calculations on localized f electrons coupled to itinerant c
electrons in the presence of spin-orbit interaction and a magnetic field. Our calculations reveal localized quantum
nanoskyrmions that start moving transversally when a charge current in the itinerant electrons is applied. The
results show the time-transient buildup of the quantum skyrmion Hall effect, accompanied by an Edelstein
effect and a magnetoelectric effect that rotate the spins. This work motivates studies about the steady state
of the quantum skyrmion Hall effect, looking for eventual quantum skyrmion edge channels and their transport
properties.
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I. INTRODUCTION

From fundamental physical processes to application-
oriented information storage and processing, the stability
of a physical effect is paramount. Some physical effects,
especially quantum Hall effects, accommodate observables
that are topologically protected, i.e., they are robust against
a continuous deformation of selected parameters. Recently,
experimental and theoretical studies have found topologically
protected classical magnetic structures in thin films or
effectively two-dimensional systems, which have been
coined magnetic skyrmions [1–5], connected to earlier
ideas in particle physics [6]. The stability of these objects
and the possibility of creating them by electrical currents
or time-controlled magnetic boundary conditions [7–10]
promote the idea of using them in spintronics and as
information carriers [11–13]. Furthermore, in sight of the
ongoing miniaturization of magnetic skyrmions, they have
also been proposed as ingredients in quantum computing [14].

Classical magnetic skyrmions experience an additional
drag transversal to the direction of an applied electric cur-
rent, which leads to an accumulation of skyrmions at one
side [15–23]. The angle between the direction of motion and
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the direction of the current is called the Magnus angle of
the skyrmion Hall effect. The question arises if there is a
quantum version of the skyrmion Hall effect and, if so, which
characteristics of the electronic Hall effects transfer, includ-
ing hypothetical skyrmion edge channels with their quantized
conductance. A previous study treating the quantum skyrmion
as a product state and calculating an effective action for the
quantum skyrmion demonstrated the existence of the Magnus
force [24]. Yet the challenge in describing general quantum
skyrmions comes with the large Hilbert spaces that need to be
considered in two-dimensional spin systems carrying quan-
tum skyrmions of a size of minimally 3 × 3 spins [25–27],
which demand special theoretical techniques like density ma-
trix renormalization group [28] or artificial neural networks
[29] to investigate them numerically.

Another method to analyze quantum skyrmions is the use
of localized spins from interacting electrons, like f electrons
to represent the skyrmions in a correlated electronic system
[30]. Representing the skyrmions as electronic degrees of
freedom has the advantage that we can treat considerably large
quantum spin systems with established advanced numerical
techniques for correlated electronic systems and that we can
apply an electric current within the model without further
assumptions. Interestingly, skyrmions in f -electron systems
have been experimentally detected in EuAl4, in which the
skyrmions have been treated classically [31]. Yet the quan-
tum nature of skyrmions in strongly correlated electronic
systems is not well studied. Ultimately, a quantum skyrmion
Hall effect could have direct practical applications extenting
the manifold of suggested technical applications of magnetic
skyrmions [32] to the quantum world. Moreover, fundamental
questions about the topological nature of quantum skyrmions,

2643-1564/2023/5(3)/033180(10) 033180-1 Published by the American Physical Society

https://orcid.org/0000-0001-8451-433X
https://orcid.org/0000-0002-7212-7997
https://orcid.org/0000-0003-0839-6268
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.033180&domain=pdf&date_stamp=2023-09-12
https://doi.org/10.1103/PhysRevResearch.5.033180
https://creativecommons.org/licenses/by/4.0/


PETERS, NEUHAUS-STEINMETZ, AND POSSKE PHYSICAL REVIEW RESEARCH 5, 033180 (2023)

which, strictly speaking, gets lost because of quantum spin
slip processes [27,33–35], could be answered when quantum
skyrmions are connected to quantum Hall effects and their
unambiguous topological origin.

In this paper, we numerically study a square lattice of
localized f electrons that are coupled to two-dimensional
itinerant conduction (c) electrons in the presence of spin-
orbit coupling and a small magnetic field perpendicular to
the two-dimensional plane. Using dynamical mean-field the-
ory, we reliably identify regions in parameter space that
host quantum nanoskyrmions. We subsequently study the ef-
fect of a current in the itinerant electrons on the quantum
skyrmion in linear response theory and find a strong initial
drag into the direction perpendicular to the current, marking
the onset of the quantum skyrmion Hall effect. The shift of
the skyrmion is accompanied by an Edelstein effect and a
magnetoelectric effect [36–42], which leads to a rotation of
the localized f -electron spins. Our study stimulates further
investigation of the quantum skyrmion Hall effect, espe-
cially its steady state, and possibly quantized skyrmion edge
channels.

The remainder of this paper is structured as follows: In
Sec. II, we introduce the model and the method. In Sec. III, we
analyze the stability and structure of the quantum skyrmions
for different model parameters. This is followed by Sec. IV,
where we demonstrate the onset of the skyrmion Hall effect
using linear response theory. Finally, in Sec. V, we discuss
our results and conclude the paper.

II. MODEL AND METHOD

Motivated by the discovery of magnetic skyrmions in Eu
compounds [31], including partially filled f electrons, we
focus here on magnetically ordered ground states and low-
energy metastable states in f -electron systems on a square
lattice with a lattice constant of a on the order of half a
nanometer. In particular, we study the ground states of a
noncentrosymmetric f -electron system described by a peri-
odic Anderson model [41,43,44]. It is important to note that
we explicitly start with an electronic Hamiltonian instead of
a quantum spin model. Thus, charge fluctuations and other
effective interactions besides the effective Heisenberg and
Dzyaloshinskii–Moriya (DM) interaction generally affect the
ground state. Furthermore, due to the hybridization between
the itinerant conduction (c) electrons and the f electrons, the
magnetic moments generated by the f electrons are intrin-
sically coupled to the c electrons. Such a coupling, which
is necessary to observe skyrmion Hall and skyrmion drag
effects, does hence not need to be inserted manually but is
naturally included.

Our model Hamiltonian can be split into a single-particle
part, H0, and an interaction part, HU . The single-particle
Hamiltonian is

H0(k) = (t[cos(kx ) + cos(ky)] + [μc + μ f ]/2)c†
kck

+ (t[cos(kx ) + cos(ky)] + [μc − μ f ]/2)c†
kσ

0τ zck

− 2αc sin(ky)c†
kσ

xτ xck + 2αc sin(kx )c†
kσ

yτ xck

+ V c†
kσ

0τ xck + Bc†
k,ρ1τ1

σ zτ 0ck, (1)

where ck = (ckx,ky,↑, fkx,ky,↑, ckx,ky,↓, fkx,ky,↓) is the spinor con-
taining the momentum space annihilation operators of the
itinerant electrons and f electrons, respectively, correspond-
ing to the real-space operators ci, j,σ and fi, j,σ at site (i, j)
of a square lattice with spin σ . The matrices σλ = sλ ⊗ s0

and τ = s0 ⊗ sλ denote the Pauli matrices on the spin and
sublattice space, respectively, where s are the bare Pauli ma-
trices. The particle number operators are nc

i, j,σ = c†
i, j,σ ci, j,σ

and n f
i, j,σ = f †

i, j,σ fi, j,σ . The strength of the nearest neighbor
hopping of the c electrons on the square lattice is denoted by
t . Throughout this paper, we use t as the unit of energy. μc and
μ f are local energies of the c and f electrons, respectively. V
is a local hybridization between the c and f electrons as com-
monly used in the periodic Anderson model. B corresponds to
a small magnetic field applied in the z direction. Finally, we
include a spin-orbit coupling between the c and f electrons
with hopping amplitude αc. This spin-orbit coupling corre-
sponds to a Rashba-type spin-orbit interaction as present in
noncentrosymmetric f -electron systems [43]. The interaction
part of the Hamiltonian is

HU = U
∑
i, j

n f
i, j,↑n f

i, j,↓, (2)

corresponding to a density-density interaction between f elec-
trons on the same lattice site. The full Hamiltonian is

H = H0 + HU . (3)

The calculations are performed on a finite lattice Lx × Ly =
11 × 11 with periodic boundary conditions.

To find the ground state of this quantum model, we use the
real-space dynamical mean-field theory (RDMFT) [45–49].
RDMFT maps each atom of a unit cell (finite lattice) on its
own quantum impurity model by calculating the local Green’s
function

Gn,m(z) = [z − h̃0 − �(z)]−1
n,m, (4)

where h̃0 is the single-particle matrix of the Fourier transform
of H0 in Eq. (1) into real space, i.e., H̃0 = ∑

n,m c†
nh̃n,mcm.

Here n and m are super indices including the lattice positions,
the f -c sublattice, and the spin. Furthermore, �(z) is a matrix
including the local self-energies of each lattice site in the finite
lattice, where, by the defining approximation of RDMFT,
�n,m(z) vanishes when the spatial components of n and m
differ. Writing the local Green’s function as

Gn,m = [z − �n,m(z) − �n,m(z)]−1, (5)

we can map each lattice site on a quantum impurity model,
where �n,m(z) is the local hybridization of the impurity
model. This hybridization function describes the environ-
ment for one lattice site created by the rest of the lattice.
Here the self-energy differs for each lattice site, and hence
this hybridization function is different for each lattice site.
Summarizing the numerical procedure, the local hybridization
functions define quantum impurity models, which are solved
to obtain the local self-energy for each lattice site. These
updated self-energies are then used in Eq. (4), which defines
a self-consistency problem. To calculate the self-energy of
each lattice site, we use the numerical renormalization group
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[50–52], which can calculate accurate Green’s functions and
self-energies at low temperatures.

The magnetic properties of the periodic Anderson model
without Rashba spin-orbit interaction are well understood
within the DMFT approximation [45]. At half-filling, 〈nc

i, j〉 =
〈n f

i, j〉 = 1, on a square lattice, the periodic Anderson model
orders antiferromagnetically for weak hybridization strengths
V [48]. For large hybridization strengths, the periodic An-
derson model at half-filling becomes a Kondo insulator. On
the other hand, when the number of c electrons is small and
the f electrons are nearly half-filled, the system orders ferro-
magnetically [53]. This paper aims to study the existence and
properties of magnetic skyrmions in a ferromagnetic periodic
Anderson model, including Rashba spin-orbit interaction. We
thus look for parameters where the f electrons are nearly
half-filled, and the c-electron filling is about 〈nc〉 ≈ 0.2.

An exhaustive search of the parameter space of the peri-
odic Anderson model for stable quantum skyrmions in the
ground state is numerically unfeasible. In advance to our fully
quantum-mechanical calculations, we therefore first identify
candidate parameter regions where the ground state or low-
energy metastable states accommodate magnetic skyrmions.
We do so by mapping Eq. (1) to a classical Heisenberg spin
model with nearest-neighbor coupling by integrating out the
c electrons using second-order perturbation theory, which ob-
tains the RKKY spin-spin interactions [54–56]. We then use
classical Monte Carlo methods to find the ground states of
these spin models [57]. In particular, we have varied in this
procedure the local hybridization V , the spin-orbit coupling
αc, and the c-electron level position, μc. We subsequently
transfer parameter configurations where we find a classi-
cal skyrmion to the quantum model and conduct RDMFT
calculations to obtain the system’s ground state. Here the
presence of magnetic skyrmions in the corresponding classical
model generally is a good indicator for quantum skyrmions
in the quantum model. Setting U/t = 6 and μ f /t = −3,
corresponding to half-filling of the f electrons, we find quan-
tum skyrmions in a ferromagnetic background for V = t ,
μc/t ≈ 3.6, and a finite spin-orbit coupling in combination
with a magnetic field, in agreement with previous results on
classical and quantum magnetic skyrmions [25–28]. In the
RDMFT calculations, we vary the strength of the spin-orbit
interaction, αc, and the strength of the magnetic field, B, in the
region according to the results of the classical calculations.

III. STRUCTURE AND STABILITY OF MAGNETIC
SKYRMIONS IN THE PERIODIC ANDERSON MODEL

To unambiguously identify a magnetic skyrmion, we break
the spin translation symmetry of the model in the first DMFT
iteration. By this, we select a specific state of the translation-
ally invariant space of ground states. We use two different
strategies in our calculations. We either start with a ferromag-
netic solution where all f electrons point downwards and flip
a single f electron upwards. Alternatively, we directly start
with a magnetic skyrmion solution obtained for a different set
of parameters. Then, by iterating the DMFT self-consistency
equation, we find possible, stable magnetic skyrmion solu-
tions when the algorithm converges. In the skyrmion phase,
both initial states lead to identical DMFT solutions. We show

the convergence of the self-energies for a typical skyrmion
solution in Appendix B.

To verify the existence of a magnetic skyrmion, we calcu-
late the spin expectation values of the c and f electrons for
each lattice site,

Sc
r = 〈c†

r,ρ1
σρ1,ρ2 cr,ρ2〉, (6)

S f
r = 〈 f †

r,ρ1
σρ1,ρ2 fr,ρ2〉, (7)

where r = (i, j) corresponds to the coordinates of a lattice
site and σ = (σ x, σ y, σ z ) is the vector containing the spin
space Pauli matrices. Using these spin expectation values, we
calculate the local lattice skyrmion density for the f and c
electrons based on the solid angle spanned by three vectors as

Nd
r1,r2,r3

= 1

2π
tan−1

[
Sd

r1
· (

Sd
r2

× Sd
r3

)
(

h̄
2

)3 + h̄
2

(
Sd

r1
Sd

r2
+ Sd

r1
Sd

r3
+ Sd

r2
Sd

r3

)
]
, (8)

where d either stands for f or c electrons, r1, r2, and r3 are
nearest-neighbor lattice sites spanning an elemental triangle
〈r1, r2, r3〉 in the densest triangular tessellation of the lattice.
The sum of this skyrmion density over all triangles spanning
the square lattice yields the skyrmion number

Nc/ f =
∑

〈r1,r2,r3〉
Nc/ f

r1,r2,r3
. (9)

Unlike in a classical calculation, the spin expectation values
in a quantum model do not need to be h̄/2 in magnitude.
In fact, these expectation values are usually smaller due
to quantum fluctuations, |S| < h̄/2. We thus calculate two
types of skyrmion densities: One is the quantum skyrmion
density/number using un-normalized spin expectation values.
The second type is a classical skyrmion density, where we
normalize all spin expectation values to h̄/2 before using
them in Eq. (8). The skyrmion number is an integer when
using normalized spin expectation values. When using un-
normalized spin expectation values, the skyrmion number is
not quantized, and instead its magnitude is an indicator of the
skyrmion stability [27], similarly to the scalar chirality defined
in Ref. [25].

A representative magnetic skyrmion solution is shown in
Fig. 1 calculated for a spin-orbit coupling αc/t = 0.3 and a
magnetic field B/t = 0.002. We note that within the accu-
racy of our calculations, we cannot find discernible energy
differences between the ferromagnetic configuration and the
magnetic skyrmion. The described skyrmions can, therefore,
be metastable excitations on a ferromagnetic background with
almost vanishing excitation energy or present in the ground
state itself. Such an almost degenerate situation is favorable
for applications in racetrack devices. If skyrmions were en-
ergetically strongly favorable, then a skyrmion lattice would
form instead of individual skyrmions. Figure 1 shows the
spin texture of the f and c electrons underlaid with the local
skyrmion density for normalized spin expectation values as
two-dimensional color plot, see Eq. (8). Due to the local hy-
bridization, V , which leads to an effective antiferromagnetic
interaction between the c and f electrons, the spins of the
c and f electrons mostly point in opposite directions, with
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FIG. 1. Magnetic skyrmion in an f electron system. A skyrmion
forms in the f electrons, depicted by their spin expectation values (a).
The color code corresponds to the local skyrmion density in Eq. (8).
As a result, an antiskyrmion forms in the itinerant c electrons (b).
The antiskyrmion is considerably less polarized, |〈Sc〉|a ≈ 0.03 h̄

2 .
The spin expectation values are shown normalized for better visu-
alization. Parameters: spin-orbit coupling αc/t = 0.3 and magnetic
field B/t = 0.002.

deviations in the skyrmion’s center, where the Rashba inter-
action and the itinerant character of the c electrons play a
stronger role. The combined state corresponds to a bound
skyrmion-antiskyrmion pair where the f electrons form a
magnetic skyrmion with skyrmion number N f = 1 and the c
electrons form a magnetic antiskyrmion with skyrmion num-
ber Nc = −1. However, in this system, the spin expectation
values of the c and f electrons are of very distinct origins
and magnitudes. Because the f electrons are strongly in-
teracting, they form localized magnetic moments, and their
spin expectation values in this calculation are approximate
|〈S f 〉|a ≈ 0.75 h̄

2 . They are not perfectly polarized due to the
entanglement between the c and the f electrons. On the other
hand, the c electrons are noninteracting, and their spin expec-
tation values vary around |〈Sc〉|a ≈ 0.03 h̄

2 . The c electrons’
polarization is a direct cause of the hybridization with the
magnetized f electrons and, thus, a secondary effect. In this
situation, the skyrmion of the f electrons and the antiskyrmion
of the c electrons do not annihilate. This is revealed by the
finite total skyrmion number calculated with un-normalized
spin expectation values. This is indeed different from classical
skyrmions, where the magnitude of the spin vectors is nor-
malized. The reduced polarization decreases the topological
protection of the magnetic skyrmion. The smaller the spin
expectation value, the easier the spin can be flipped, and
the magnetic skyrmion is destroyed [27]. On the other hand,
this facilitates manipulating them as necessary for technical
applications.

Next, we analyze the stability of the magnetic skyrmion
for different magnetic field strengths, as shown in Fig. 2. As
stated above, we generally apply a small magnetic field which
helps to stabilize the magnetic skyrmion against spin spiral
solutions [25,28]. In Fig. 2(a), we show the skyrmion number

FIG. 2. Magnetic field dependence of magnetic skyrmions for
spin-orbit coupling αc = 0.3t . Panel (a) shows the normalized and
un-normalized skyrmion number and average spin expectation val-
ues of the c and f electrons. The skyrmion number drops to zero
at B/t ≈ 0.0056, and the spins align ferromagnetically, consistent
with studies on quantum skyrmions in spin lattices [25,28]. The
average spin expectation value |〈S f /c〉|a of the c and f electrons
alone does not indicate this phase transition. Panels (b) and (c) show
typical f -spin configurations for small (skyrmionic configuration at
B/t = 0.002) and large magnetic fields (ferromagnetic configuration
at B/t = 0.006), respectively.

using normalized and un-normalized spins, respectively. We
observe that, while the skyrmion number (normalized) is
constantly one for B/t � 0.0056 = Bc, the skyrmion number
using un-normalized spin expectation values is N f ≈ 0.4 and
gradually drops for an increased magnetic field until Bc is
reached. The difference between these numbers demonstrates
the relevance of quantum effects to the system at hand. We
furthermore show the average spin expectation values of
the c and f electrons, indicating that the f electrons are
considerably more stronger polarized than the c electrons.
Furthermore, for magnetic fields stronger than Bc, we only
find ferromagnetic solutions. Figures 2(b) and 2(c) give
representative spin textures of the f electrons for the corre-
sponding parameter regimes, i.e., small and large magnetic
fields.

We next analyze the structure of the skyrmion depending
on the strength of the Rashba spin-orbit coupling αc. We
show the skyrmion number using normalized spin expecta-
tion values, the skyrmion number using un-normalized spin
expectation values, and the average spin expectation values
(〈S f 〉 and 〈Sc〉) in Fig. 3(a). Increasing the Rashba interaction,
the f -electron spin expectation value is slightly suppressed,
while the c-electron spin expectation value slightly increases.
This increase in the c electron magnetization can be explained
by the stronger coupling between the c and f electrons. While
we need αc/t > 0 to create a finite DM interaction that sta-
bilizes the magnetic skyrmion, we see that for increasing
αc the skyrmion gets destabilized and for αc/t > 0.4, mag-
netic skyrmions become unstable indicated by the vanishing
skyrmion number. To analyze this transition further, we cal-
culate the average size of the skyrmion. First, the center of the
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FIG. 3. Dependence of magnetic skyrmions on the spin-orbit
coupling for B/t = 0.002. Panel (a) shows the skyrmion number
(normalized), skyrmion number (un-normalized), and averaged spin
expectation values (c and f electrons), 〈S f 〉a and 〈Sc〉a, for different
strengths of the Rashba interaction. The skyrmion changes to a spin
density wave at αc/t = 0.4. Panel (b) shows the extension of the
skyrmion in the x and y direction; see Eq. (11). Panels (c)–(e) show
representative spin configurations for small (αc = 0.2t), medium
(αc = 0.35t), and large (αc = 0.5t) spin-orbit interaction.

skyrmion created by the f electrons is

RS =
∑

〈r1,r2,r3〉
N f

r1,r2,r3

r1 + r2 + r3

3
, (10)

where r1, r2, and r3 are the coordinates of the lattice sites
spanning the elemental triangle as explained below Eq. (8).
The extension of the skyrmion in the x and the y directions
L = (Lx, Ly) is then given as

L2
x =

∑
r1,r2,r3

N f
r1,r2,r3

(
x1 + x2 + x3

3
− xS

)2

, (11)

L2
y =

∑
r1,r2,r3

N f
r1,r2,r3

(
y1 + y2 + y3

3
− yS

)2

, (12)

where xi (yi) is the x (y) component of the position ri and
the center of the skyrmion is Rs = (xs, ys). In Fig. 3(b), we
show the extension of the skyrmion in the x and y direc-
tions depending on the Rashba spin-orbit interaction. We
see that while the average extension of the skyrmion in
the x direction remains unchanged when increasing αc, the
magnetic skyrmion is strongly elongated in the y direction.
At αc/t ≈ 0.4, the magnetic skyrmion changes into a spiral
phase, again consistent with findings for quantum skyrmions
on nonelectronic spin lattices [25,28]. Representative spin
textures of the f electrons are shown in Figs. 3(c)–3(e),
depicting a skyrmion for small αc [Fig. 3(c)], an elongated
skyrmion close to the phase transition [Fig. 3(d)], and a
spiral wave for large αc [Fig. 3(e)]. For larger values of
the spin-orbit coupling, we do not find stable skyrmion
solutions.

Finally, we note that we have confirmed the stability of
the quantum skyrmion phase for smaller lattice sizes, such

as 7×7. Magnetic skyrmions remain stable as long as their
elongation is smaller than the lattice width. Furthermore, we
do not find an even/odd effect in the lattice width, which can
be understood by the fact that all spins are ferromagnetically
aligned far away from the magnetic skyrmion, irrespective of
changes of the lattice sizes once it exceeds the size of the
quantum skyrmion.

IV. CHARGE-DRIVEN QUANTUM SKYRMIONS—THE
ONSET OF THE QUANTUM SKYRMION HALL EFFECT

Finally, we study the response of the identified stable
skyrmion textures to an applied charge current in the itiner-
ant c electrons. To do this, we calculate the change in the
spin expectation values of all lattice sites in linear response
theory. We focus on describing the time-transient behavior of
the system. A description of the nonequilibrium steady state
poses considerable numerical challenges, as discussed in the
concluding remarks.

In linear response, the change in an expectation value of
operator A resulting from a perturbation B is given by

〈A〉(τ ) = 〈A〉(0) +
∫ τ

0
dτ ′ XAB(τ − τ ′), (13)

XAB(τ − τ ′) = i
(τ − τ ′)〈[A(τ ), B(τ ′)]〉, (14)

where 
(τ ) is the Heaviside step function. Because we are
interested in the linear response of the spin expectation values
of the f electrons to a charge current in the itinerant electrons,
we use

A = f †
r,ρ1

σ x/y/z
ρ1ρ2

fr,ρ2 = Sx/y/z, (15)

B = Jc = −iJ
∑
i, j,σ

(c†
i+1, j,σ ci, j,σ − c†

i−1, j,σ ci, j,σ ), (16)

where A corresponds exactly to the local spin of an f elec-
tron and B is the charge current operator in the c electrons.
For these operators, Eq. (14) corresponds to a nonlocal two-
particle Green’s function. Using the DMFT approximation,
where vertex corrections in nonlocal Green’s functions vanish,
we write these two-particle Green’s functions as the con-
volution of two single-particle Green’s functions. Then, we
calculate the time evolution of the spin expectation values of
all spins. Because the self-energy depends on the lattice site,
also the time evolution of the spin expectation value depends
on the lattice site. This is shown in Fig. 4, where we show the
change of the x, y, and z component of the spin expectation
values �〈Sx〉(τ ), �〈Sy〉(τ ), and �〈Sz〉(τ ) along the x direc-
tion of the lattice across the center of the skyrmion solution
for αc/t = 0.3 (shown in Fig. 1). Specifically, the spin expec-
tation values are shown for lattice sites (xS + x, yS ), where
RS = (xS, yS ) is the center of the skyrmion, see Eq. (10).
�〈Sx〉 and �〈Sz〉 show a strong dependence on the position
close to the center of the skyrmion. �〈Sz〉 changes even its
sign when changing the position from the left of the center
to the right of the center. On the other hand, �〈Sy〉 is nearly
independent of the lattice site. Also, while �〈Sz〉 becomes
small for spins far away from the skyrmion center, �〈Sx〉
and �〈Sy〉 are nonzero. Thus, even in the ferromagnetic re-
gion away from the skyrmion center, 〈Sx〉 and 〈Sy〉 change.
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FIG. 4. Time-resolved change of the spin expectation values
�〈Sx〉(τ ) (a), �〈Sy〉(τ ) (b), and �〈Sz〉(τ ) (c) scanned in the
x direction across the center of the magnetic skyrmion at lat-
tice sites (xS + x, yS ), calculated by linear response theory for
αc/t = 0.3. Here RS = (xS, yS ) is the center of the skyrmion, see
Eq. (10). The change of the spin expectation values is normal-
ized by the strength of the current, J . The expectation values start
oscillating when the validity regime of the linear response theory
is left.

This rotation of the spin in the ferromagnetic state when a
charge current is applied is explained by the Edelstein and
the magnetoelectric effect [41]; in a system where the Fermi
surface is split due to the Rashba spin-orbit coupling, a charge
current results in an accumulation of spin. This can be seen
here as a rotation of the spin expectation values in the x and
the y direction, even far away from the magnetic skyrmion.
Furthermore, we emphasize that the linear-response results
only remain valid within sufficiently small times τ . In Fig. 4,
we see that the initial linear trend in τ is reduced, and, as an
expected artifact from linear response theory, all spin expec-
tation values start oscillating after a certain individual time.
The change of all spin expectation values for τ · t/h̄ = 2 and
τ · t/h̄ = 4 are visualized in Fig. 5 as arrows. Each arrow
corresponds to the direction of the local change in the spin ex-
pectation values �〈S〉(τ ). The actual length of each change is

FIG. 5. Changes in the spin expectation values at (a) τ · t/h̄ = 2
and (b) τ · t/h̄ = 4 for αc/t = 0.3. The length of the vectors has
been multiplied by five in both figures to enhance visibility. The
actual magnitude of the changes are (a) |�〈S〉(τ )| ≈ 0.04 h̄

2 J and
(b) |�〈S〉(τ )| ≈ 0.07 h̄

2 J .

FIG. 6. Onset of the quantum skyrmion Hall effect for αc/t =
0.3 and B/t = 0.002: Shown are the center (a) and the size (b) of
the quantum magnetic skyrmion depending on time, calculated by
linear response theory. The quantum skyrmion starts moving almost
perpendicularly to the applied current, indicating a Magnus angle
close to 90◦. When the validity of the linear response calculations
is left, the skyrmion slows down. The size of the skyrmion stays
constant over time, indicating a negligible smearing of the structure
compared to its motion.

|�〈S〉(τ )| ≈ 0.04 h̄
2 J and |�〈S〉(τ )| ≈ 0.07 h̄

2 J for τ · t/h̄ = 2
and τ · t/h̄ = 4, respectively. We see that in the ferromagnetic
region, all spins are rotated in the same direction. Only close
to the magnetic skyrmion, the change in the spin expectation
values significantly depends on the lattice site.

Finally, we take the time evolution of each spin on the
lattice and calculate the skyrmion density and the time-
dependent size and position of the skyrmion according to
Eqs. (10) and (11). By Eq. (14), we find that the center of
the skyrmion moves almost perpendicularly to the applied
current, as shown in Fig. 6(a). While the current is applied
in the x direction, the skyrmion moves in the positive y di-
rection. Thus, our results demonstrate the onset of a quantum
skyrmion Hall effect with a Magnus angle close to 90◦. No-
tably, the size of the skyrmion effectively remains constant
during the motion, shown in Fig. 6(b).

V. DISCUSSION

In conclusion, we show that noncentrosymmetric f -
electron systems with spin-orbit coupling in the presence
of a small external magnetic field can host quantum
nanoskyrmions in the ground state, and we demonstrate the
onset of the quantum skyrmion Hall effect when applying a
charge current, which is accompanied by an Edelstein and
magnetoelectric effect.

The reason for the stability of the quantum skyrmion
is an effective DM interaction generated by the spin-orbit
interaction and a local density-density interaction. Despite the
itinerant c electrons being magnetized like an antiskyrmion,
the quantum skyrmions of the f electrons remain stable and
dominate the physical behavior of the system because of its
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FIG. 7. Spin texture including a magnetic skyrmion for αc/t =
0.3 (top panel) and αc/t = −0.3 (bottom panel). The insets show the
initial motion of the center of the skyrmion after a charge current in
the x direction is applied.

considerably stronger polarization due to strong correlations.
Concerning the quantum skyrmion Hall effect, we observe a
Magnus angle close to 90◦. This is consistent with the behav-
ior of classical skyrmions, where the Magnus angle increases
when the size of the skyrmions is smaller or when dissipative
effects are small [22,23]. Both is the case for the observed
quantum nanoskyrmions. Furthermore, no quantum skyrmion
pinning is visible in our study. We note that our method can
only describe the onset of the skyrmion motion. In particular,
in a full nonequilibrium calculation, time-dependent spin ex-
pectation values would lead to time-dependent self-energies.
The system would adapt to the changed spin expectation
values and backaction effects would alter our conclusions
when the linear-response regime is left. For example, linear
response theory can permanently decrease the polarization
locally, ultimately resulting in a site with vanishing spin po-
larization. However, this situation is energetically unfavorable
due to the strong density-density interaction. Thus, in a full
nonequilibrium calculation, self-energies will change in a way
that an atom with vanishing spin polarization is prevented,
rendering the quantum magnetic skyrmion stable and letting it
continue its motion perpendicular to an applied current. Yet a
full nonequilibrium calculation, as well as a steady-state anal-
ysis, goes beyond the scope of the current paper and is left for
future work.

We note that other forms of spin-orbit interaction also lead
to stable quantum nanoskyrmions in the f -electron system at
hand. We show the results for a different form of the spin-
orbit interaction, where the momenta couple to the same spin
direction, in Appendix A. Also in these systems, the spin-orbit
interaction results in a spin accumulation when a current is
applied, which leads to a site-dependent change of the spin
expectation values, and to a skyrmion Hall effect. These re-
sults emphasize that the existence of magnetic skyrmions in
strongly correlated f -electron systems with spin-orbit cou-
pling and the skyrmion Hall effect is a general effect.
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APPENDIX A: DIFFERENT FORM
OF SPIN-ORBIT INTERACTION

To demonstrate that our results are robust for different
types of spin-orbit coupling, we repeat our analysis using a

FIG. 8. Convergence of the diagonal and off-diagonal self-
energies of the f electrons for a lattice site left of the skyrmion center.
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FIG. 9. Convergence of the diagonal and off-diagonal self-
energies of the f electrons for a lattice site below the skyrmion
center.

spin-orbit interaction of the form

HSOI(k) = 2αc(sin(kx )c†
kσ

xτ xck

+ sin(ky)c†
kσ

yτ xck). (A1)

The rest of the Hamiltonian, including the two-particle
interaction, is unchanged compared to the main text. In
Fig. 7, we show two RDMFT solutions, including magnetic
skyrmions, for αc = ±0.3t , where we again use a small

magnetic field, B/t = 0.002, to stabilize the magnetic
skyrmion [25–28]. The change in the sign of the spin-orbit in-
teraction leads to a change in the rotation direction of the spin
texture.

Furthermore, we apply a charge current in the x direction
for both solutions and find that the center of the quantum mag-
netic skyrmion dominantly moves into the positive y direction.
This is explained as follows: The change in the sign of the
spin-orbit interaction leads not only to a reversal of the spin
rotation inside the skyrmion but also changes the sign of the
Edelstein and magnetoelectric effect. Thus, spins in these two
examples are rotated in opposite directions when current is
applied. As a result, both magnetic skyrmions move into the
same, the positive y direction.

APPENDIX B: CONVERGENCE
OF THE REAL-SPACE DMFT

In this Appendix, we demonstrate the convergence of the
real-space DMFT in the magnetic skyrmion phase for αc/t =
0.3. In Figs. 8 and 9, we show representative self-energies
of the f electrons for two different lattice sites and dif-
ferent DMFT iterations. Panels (a) shows the off-diagonal
self-energy, �↑↓(ω), and panels (b) shows the diagonal self-
energies, �↑↑(ω) and �↓↓(ω). On average, we need 20–30
DMFT iterations (depending on the parameters) to obtain a
converged magnetic skyrmion solution. In both figures, we see
that while the self-energy of the 10th iteration qualitatively
shows the same behavior as iterations 26 and 27, quantita-
tively, it still differs from the converged self-energy. On the
other hand, the self-energies of the 26th and 27th iterations lie
on top of each other.
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