
 
 

University of Birmingham

Analysis of translesion polymerases in colorectal
cancer cells following cetuximab treatment
Das, Anubrata; Gkoutos, Georgios; Acharjee, Animesh

DOI:
https://doi.org/10.1002/cam4.6945

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Das, A, Gkoutos, G & Acharjee, A 2024, 'Analysis of translesion polymerases in colorectal cancer cells following
cetuximab treatment: A network perspective', Cancer Medicine, vol. 13, no. 1, e6945.
https://doi.org/10.1002/cam4.6945

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 05. Feb. 2024

https://doi.org/10.1002/cam4.6945
https://doi.org/10.1002/cam4.6945
https://birmingham.elsevierpure.com/en/publications/32cc305a-e8a3-4299-949e-e848bbac438d


Cancer Medicine. 2024;13:e6945.	﻿	     |  1 of 10
https://doi.org/10.1002/cam4.6945

wileyonlinelibrary.com/journal/cam4

Received: 15 October 2023  |  Revised: 19 December 2023  |  Accepted: 6 January 2024

DOI: 10.1002/cam4.6945  

R E S E A R C H  A R T I C L E

Analysis of translesion polymerases in colorectal cancer 
cells following cetuximab treatment: A network perspective

Anubrata Das1  |   Georgios V. Gkoutos1,2,3,4,5  |   Animesh Acharjee1,2,3,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2024 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

1Institute of Cancer and Genomic 
Sciences, College of Medical and Dental 
Sciences, University of Birmingham, 
Birmingham, UK
2Institute of Translational Medicine, 
University Hospitals Birmingham NHS 
Foundation Trust, Birmingham, UK
3MRC Health Data Research UK (HDR 
UK), London, UK
4Centre for Health Data Research, 
University of Birmingham, 
Birmingham, UK
5NIHR Experimental Cancer Medicine 
Centre, Birmingham, UK

Correspondence
Animesh Acharjee, Institute of 
Cancer and Genomic Sciences, 
College of Medical and Dental 
Sciences, University of Birmingham, 
Birmingham B15 2TT, UK.
Email: a.acharjee@bham.ac.uk

Funding information
Nanocommons H2020-EU, Grant/
Award Number: 731032; Medical 
Research Council, Grant/Award 
Number: HDRUK/CFC/01; 
HYPERMARKER, Grant/Award 
Number: 101095480; MAESTRIA, 
Grant/Award Number: 965286; NIHR 
Surgical Reconstruction Microbiology 
Research Centre; Wellcome Leap, 
Grant/Award Number: 2515692

Abstract
Introduction: Adaptive mutagenesis observed in colorectal cancer (CRC) cells 
upon exposure to EGFR inhibitors contributes to the development of resistance 
and recurrence. Multiple investigations have indicated a parallel between cancer 
cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon 
entails a transient and coordinated escalation of error-prone translesion synthesis 
polymerases (TLS polymerases), resulting in mutagenesis of a magnitude suffi-
cient to drive the selection of resistant phenotypes.
Methods: In this study, we conducted a comprehensive pan-transcriptome analy-
sis of the regulatory framework within CRC cells, with the objective of identifying 
potential transcriptome modules encompassing certain translesion polymerases 
and the associated transcription factors (TFs) that govern them. Our sampling 
strategy involved the collection of transcriptomic data from tumors treated with 
cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived 
cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated 
modules using weighted correlation network analysis with a minKMEtostay 
threshold set at 0.5 to minimize false-positive module identifications and mapped 
the modules to STRING annotations. Furthermore, we explored the putative TFs 
influencing these modules using KBoost, a kernel PCA regression model.
Results: Our analysis did not reveal a distinct transcriptional profile specific to 
cetuximab treatment. Moreover, we elucidated co-expression modules housing 
genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, 
POLK, POLI, and POLQ were assigned to the “blue” module, which also encom-
passed critical DNA damage response enzymes, for example. BRCA1, BRCA2, 
MSH6, and MSH2. To delineate the transcriptional control of this module, we in-
vestigated associated TFs, highlighting the roles of prominent cancer-associated 
TFs, such as CENPA, HNF1A, and E2F7.
Conclusion: We found that translesion polymerases are co-regulated with DNA 
mismatch repair and cell cycle-associated factors. We did not, however, identi-
fied any networks specific to cetuximab treatment indicating that the response to 
EGFR inhibitors relates to a general stress response mechanism.
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1   |   INTRODUCTION

In 2018, the global incidence of colorectal cancer (CRC) 
stood at 1.8 million cases, resulting in 880,792 fatalities.1 
CRC continues to pose a significant health burden, par-
ticularly in developed regions.2 Its risk factors can be cat-
egorized into modifiable and nonmodifiable elements. 
Nonmodifiable factors encompass age, race, and geneti-
cally predisposing mutations, while modifiable factors 
encompass aspects such as diet, smoking, and alcohol 
consumption tendencies, and levels of physical activity.3 
Over the years, advancements in screening and diagnostic 
methodologies, coupled with the integration of neoadju-
vant chemotherapy and radiotherapy protocols prior to 
surgical interventions, have substantially ameliorated the 
severity of this ailment.4

CRC manifests as a consequence of specific deficien-
cies within the DNA repair machinery, critically involv-
ing microsatellite instability (MSI) cancers.5 These MSI 
cancers arise due to mutations within the mismatch 
repair system (MMR), primarily implicating a number 
of proteins, such as MLH1, PMS2, MSH2, and MSH6.6 
Consequently, these tumors exhibit elevated tumor mu-
tation burden, facilitating heightened immune system 
responsiveness.7 Furthermore, key DNA repair enzymes, 
namely PARP-1 and BRCA-1, exert significant influence 
on CRC by governing essential processes, such as DNA 
repair, DNA replication, chromatin dynamics, and mi-
totic processes. Recent research has shown that even 
ncRNA plays an important role in this aspect.8 The inter-
play between PARP-1 and BRCA-1, rescuing defects each 
other, has been leveraged to develop PARP inhibitors 
(PARPi) targeting homologous recombination deficient 
cancers, including CRC. By inhibiting PARP-1 activity, 
these inhibitors incapacitate DNA repair mechanisms, 
leading to the eradication of such cancers.9 Translesion 
polymerases (TLS polymerases) can synthesize past dam-
aged DNA and prevent the stalling of replication forks 
and form an important component of the DNA repair 
mechanism.10 There are nine known translesion poly-
merases but the regulatory networks which govern their 
activity is not very well understood.11 There is mounting 
evidence that dysregulated polymerases contribute to 
carcinogenesis12 and hence it is worthwhile to investi-
gate the putative networks governing their activity.

As highlighted earlier, mutations in DNA repair genes 
significantly impact CRC. Notably, EGFR inhibitor treat-
ment drives mutations in KRAS and NRAS, as well as in 

the extracellular domains of EGFR, imparting resistance to 
targeted therapy.13 Particularly pertinent is the activation 
of an “adaptive response” following targeted therapies, 
wherein DNA repair pathways are suppressed while mu-
tagenic pathways are concurrently stimulated. Pioneering 
work by Bardelli et  al. revealed that cetuximab-treated 
CRC cells exhibit simultaneous downregulation of the 
MMR system and upregulation of error-prone translesion 
polymerases, underscoring the persistence and complexity 
of this phenomenon.14 Furthermore, evidence suggests the 
activation of comprehensive pathways, encompassing the 
overexpression of RAD6/RAD18 ubiquitination enzymes 
and increased PCNA ubiquitination, further implicating 
the intricacies of this adaptive response.15

In this study, we systematically analyzed publicly 
available transcriptomic datasets encompassing CRC 
cells exposed to cetuximab, untreated cells, and cell 
lines not exposed to the agent. Our objective was to de-
lineate the regulatory and interaction network involv-
ing TLS polymerases and DNA repair enzymes within 
this context. Achieving this objective can potentially 
advance our understanding of adaptive responses and 
resistance mechanisms against targeted therapies, po-
tentially paving the way for proactive strategies to miti-
gate these challenges.

2   |   MATERIALS AND METHODS

2.1  |  Public data collection

Expression profiles of surgically excised colorectal 
tumor tissue (GSE156451),16 cell lines of colorectal ori-
gin (HT29, LS513, LS174T, and HCT116) (GSE185055)17 
and cetuximab-treated CRC tissue (GSE196576),18,19 
were obtained from the Gene Expression Omnibus 
(GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​) on March 
21, 2023. The details can be found in the Table 1. The re-
sulting Illumina sequencing dataset includes RNA-Seq 
profiles of 150 samples from 50 tumor tissue samples, 
50 cell line samples, and 50 cetuximab-treated sam-
ples. Count-based reads in the samples were converted 
to fragments per kilobase million (FPKM) values for 
within-sample normalization. The gene lengths were 
obtained from the ENSEMBL BioMart and the FPKM 
values were calculated using the DESeq2 v1.20 package 
in R (version 4.2.3). Subsequently, the FPKM values of 
all the samples were quantile normalized by quantile 

K E Y W O R D S

cancer, cetuximab, mutagenesis, network, TLS polymerase
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function in R to ensure identical sample distributions. 
The ComBat-Seq package (Bioconductor sva v3.36.0) 
was used to normalize batch effects, and the PCA plots 
were produced to verify the absence of batch effects.20 
Following the normalization of read counts of the RNA-
Seq data, the values of FPKM for each gene were used 
for the subsequent analysis. A graphical abstract of the 
workflow is presented in the Figure 1.

2.2  |  Colorectal Cancer co-expression 
module analysis

Weighted gene co-expression network analysis 
(WGCNA) was used to investigate co-expression 

modules related to CRC.21 The adjacency in WGCNA 
is based on the soft-threshold power (β) which is deter-
mined by two parameters, namely scale independence 
and mean connectivity. β value changes was plotted 
w.r.t scale independence and mean connectivity. The β 
of 7 showed R2 value of 0.9 for scale independence and a 
mean connectivity of 30, beyond which these values re-
mained constant (Figure S3). Hence the co-expression 
matrix was then calculated with a β of 7.The minimal 
module size was set to 30 and additionally the merge 
cut height was chosen as 0.5 to select for modules with 
at least 30 members. The network was signed to select 
positive correlations and the spurious membership was 
reduced with minKMEtostay set at 0.5. WCGNA labels 
each individual module of the discovered network with 

T A B L E  1   List of the Gene Expression Omnibus (GEO) RNA sequence datasets are described. The datasets in GEO short read archives 
(SRA) which store FASTQ data from which the data were collected.

Sample Assay type Library layout SRA study Source name

GSE156451 RNA-Seq Paired SRP278056 Tumor from colorectal cancer (CRC) patient

GSE196576 RNA-Seq Paired SRP359396 Cetuximab treated CRC patient

GSE185055 RNA-Seq Single SRP339453 CRC cells grown in 2D/3D conditions

F I G U R E  1   Graphical abstract of the workflow.
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a unique color and the largest modules are labeled tur-
quoise, blue, brown, yellow, green, red, black, etc.

2.3  |  Module–trait analysis based on 
characteristics of cell origin

The module–trait relationships within the tissue expres-
sion dataset were investigated for correlation with ce-
tuximab treatment. The sample characteristics (tumor, 
cell line, and cetuximab) were binarized to generate 
a trait matrix by creating a 150 × 3 numerical matrix 
and labelling the sample corresponding to its specific 
expression profile as one with the other two profiles 
labeled as 0.We used Kendall rank correlation to find 
the correlation between the eigengenes obtained from 
WGCNA with the trait data for the samples provided at 
SRA. We visualized the above relationship with a heat 
map. Additionally, binomial logistic regression models 
were created for each eigengene within the cetuximab-
treated sample set so as to obtain statistically relevant β 
coefficients. Finally, the distribution of these eigengenes 
was visualized using the lattice library (version 0.20.45) 
in R (version 4.2.3).

2.4  |  Mapping of co-expressing modules 
to STRING network data

We assembled a set comprising TLS polymerases and 
repair proteins, previously identified to be differentially 
regulated by Bardelli et al.14 designated by HGNC codes: 
POLH, POLI, POLK, POLL, POLM, POLQ, POLZ, REV1, 
POLN, POLA1, POLB, POLG1, POLD, POLDE, MLH1, 
MSH2, MSH6, BRCA2, RAD51, and EXO1. We system-
atically scanned the modules generated by WGCNA for 
the presence of these genes. Notably, certain TLS poly-
merases, such as POLH, were absent from all modules 
(except the grey module, which encompasses unclus-
tered genes). Using an adjacency matrix constructed in 
WGCNA, we extracted the 10 nearest neighbors of each 
of the genes identified as present within the modules 
and generated a set of 209 proteins. Subsequently, we 
employed Cytoscape, an open-source software special-
izing in analyzing and visualizing interactions among 
data points particularly suited for interpreting high-
throughput data outcomes such as RNA-Seq,22 and used 
the resulting protein set to interrogate the STRING da-
tabase. STRING is a comprehensive protein–protein 
network database, utilizing both experimental data and 
predictions to map interactions.23 The identified pro-
teins were then categorized module-wise and annotated 
using the STRING server plugin.

2.5  |  Transcription Factors acting on TLS 
polymerases

We used KBoost24 to discover the transcription factors 
(TFs) interacting with the TLS polymerases using our gene 
expression dataset. KBoost employs an algorithm that 
uses kernel PCA regression, boosting and Bayesian model 
averaging for fast and accurate reconstruction of gene 
regulatory networks. This algorithm performed favorably 
against the benchmark IRMA and DREAM4 datasets.25 
We queried our dataset with the Kboost_human_symbol 
function using the standard set of TFs available in the 
algorithm. The probability matrix returned by the func-
tion was used to plot a scree plot of the distribution of 
the number of predicted targets by the number of TFs. 
As we had earlier chosen the minimum module size as 
30, from the output of KBoost, we chose those TFs which 
were predicted to act on at least 30 or more targets (26).For 
choosing reliable TF-target relationships, we plotted the 
distribution of probabilities provided by KBoost for each 
TF of this subset. We chose only those targets with a prob-
ability score >0.3, as we found that this score has a Z > 10, 
which is well above the threshold of three standard de-
viations. We obtained the nearest neighbors of the chosen 
TLS polymerases from the sorted adjacency matrix result-
ing from the expression dataset. Finally, the TFs probabil-
ity matrix was interrogated for the presence of the chosen 
TLS polymerases and their neighbors as putative targets.

3   |   RESULTS

3.1  |  Transcription modules reveal 
a poor correlation with cetuximab 
treatment-specific cell origin

To study the regulatory network of the CRC cell adaptive 
response in response to targeted therapy, we obtained the 
following publicly available GEO transcriptome datasets, 
GSE156451, GSE185055, and GSE196576. We then com-
pared the transcriptome of cetuximab-treated cancer tissue 
along with CRC cells of similar genetic background albeit 
exposed to different environments so as to analyze tran-
scriptional response differences to cetuximab. Based on 
similar studies as well as for reasons of computational trac-
tability, we restricted the sample subsets to 50 randomly re-
sampled cases. We selected 50 representative samples from 
the 94 CRC samples available from a study by Tao et al.16 
examining the epigenetic changes associated with CRC in 
surgically excised tumor tissue without chemotherapy or 
radiotherapy treatment. Pramil et al.17 studied the response 
of cultured CRC cells to extracellular ATP in four CRC cell 
lines. HT29 and LS513 were MSS (microsatellite stable) cell 
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lines whereas LS174T and HCT116 were MSI cell lines. We 
selected 10 cases of HCT116, 18 cases of HT29, 13 cases 
of LS174T, and 9 cases of HCT116 as representative sam-
ples from the 194 samples in the dataset. Vincent et  al.18 
studied the immunogenic response of cetuximab- and 
bevacizumab-treated CRC tissue. From the 216 cetuximab 
samples, we selected 50 representative samples. Thus, we 
built a cohort of 150 samples, consisting of 50 cases each of 
(a) cetuximab-treated CRC cells, (b) untreated human tis-
sue, and (c) untreated cell lines.

Following normalization within samples (Figure 2A), 
between samples (Figure  2B), and across batches 
(Figure 2C), a unified dataset encompassing 150 samples 
and comprising 15,269 common genes was generated. 
Subsequently, WGCNA was applied with the previously 
outlined parameters, leading to the computation of eigen-
genes. 5439 genes did not align with any modules based 
on our established parameters. Notably, Pol eta (POLH) 
was not identified as clustering within any of the modules. 
Overall, the analysis yielded 15 modules, with the Blue 
module being the largest, consisting of 2011 members, and 
the Midnightblue module being the smallest, comprising 
73 members. In order to gain insights into the interplay be-
tween these modules, we conducted an investigation into 
the correlation of eigengenes among them (Figure  3A). 
While the Magenta and Yellow modules revealed a weak 
positive correlation of (0.48 p-value 3.5e–10), three other 
modules, namely Greenyellow and Blue (−0.77 p-value 
0.0), Brown and Salmon (−0.7 p-value 0.0), and Turquoise 

and Purple (−0.63 p-value 0.0), exhibited a strong nega-
tive correlation between each pair, respectively. We then 
mapped the genes across these modules onto pathways 
following an overrepresentation analysis using the g:-
Profiler suite.27 The resulting negative correlated GO en-
richment terms associated with each module were then 
statistically compared to the overall association of all 
human genes (Figure S1). Nine genes in the Greenyellow 
module, namely, FBXW4, KLHL22, ANAPC2, DCAF5, 
CUL9, LZTR1, FBXL15, KCTD13, and SPSB3 were associ-
ated with the Cullin–Ring ubiquitin ligase complex (p.adj 
9.4 e-4). Cullin–Ring ubiquitin ligases play a central role 
in cell cycle and DNA repair.28 The Greenyellow module 
is negatively associated with the Blue module with high 
statistical significance (p.adj 3.23 e-42) and the Blue mod-
ule has several key members of chromosome segregation 
and cell cycle such as BRCA1, TOP2A, RAD51C, SMC3, 
TOP1, CDC16, and NEK2 and also has several key DNA 
repair proteins such as BRCA2, PARP1, FANCM, RAD51, 
BLM, and PALB2. The Turquoise module includes sev-
eral genes involved in lipid metabolism, while the Purple 
module, which is negatively correlated with it, contains 
genes involved in ribosome biogenesis, an energy driven 
process negatively regulating lipid metabolism.29 Genes 
involved in fatty acid and lipid metabolism play a key role 
in carcinogenesis. An earlier study had found that ACADS 
and DHRS11 genes involved in fatty acid metabolism were 
differentially expressed in CRC cells and could distinguish 
between healthy and CRC cell.30 We could not explore 

F I G U R E  2   Data normalization flowchart. (A) Distributions of raw transcriptomics and fragments per kilobase million (FPKM) 
normalized data, (B) distributions of raw transcriptomics and after quantile normalization of the samples, and (C) PCA score plot analysis 
before and after batch correction of the data.
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the relationship of Brown and Salmon module due to the 
Salmon module being poorly annotated.

In an effort to unveil any correlation between targeted 
therapy and the discovered modules, we examined the 
correlation between the eigengenes and the three bina-
rized traits, namely, tumor, cell line, and cetuximab. Using 
Kendall's rank correlation, we found that some modules 
had a weak correlation with the targeted therapy pheno-
type (Figure 3B). The Cyan module was characterized by 
a weak, probably due to the presence of an outlier in the 
eigengene value distribution, yet statistically significant 
correlation with the targeted therapy trait (Figure 3C).

3.2  |  TLS polymerases belong to 
co-expression modules having members 
involved in DNA damage response

Figure 4 depicts the distribution of TLS polymerases and 
their associated genes, with the majority (10 members) 
located within the Blue module. Additionally, there is 
one member within the Greenyellow, Red, Yellow, and 
Turquoise modules. We assessed the strength of the mod-
ule membership of these polymerases within the largest 
module, that is, the Blue module, by correlating the ex-
pression profiles with the module eigengene. The result-
ing correlation scores for specific genes were as follows: 
POLB (0.3), POLA1 (0.64), POLI (0.25), POLQ (0.52), 
POLK (0.54), EXOI (0.60), BRCA2 (0.45), RAD51 (0.44), 
MSH2 (0.76), and MSH6 (0.70). In order to enhance the 
robustness of our network analysis, we cross-verified our 
findings by retrieving network data and annotation infor-
mation from the STRING database for these genes. The 
STRING server data corroborated the extensive intercon-
nections observed in our analysis using expression data 

from our dataset. We used Cytoscape to visualize the com-
plex and rich interaction between the TLS polymerases and 
other genes in the network (Figure 4). The gene network 
revealed a scale free topology with hubs having multiple 
interactions with key DNA damage response (DDR) genes, 
for example, BRCA1, BRCA2, and MSH6 acting as hubs. 
The TLS polymerases are well integrated within this DDR 
damage dominant hub and are part of networks entailing 
other repair proteins. Employing the diffusion function 
within Cytoscape, we unveiled the network connections 
of POLI, which interconnects with POLK, POLB, DNMT1, 
BDP1, BRCA2, MSH6, and others. POLI is experimentally 
known to interact with PCNA, a member of the Blue mod-
ule.31,32 POLK exhibits a network with partial overlap and 
additionally interfaces with RECQL, NEIL3, EXO1, and 
BLM. Similarly, POLQ, interacting with FANCD, mani-
fests its own distinct network. Furthermore, TLS polymer-
ases, located in modules other than the Blue module, also 
exhibit interactions with genes within the Blue module. 
Notably, in the Yellow module, POLN, known to interact 
with BRCA1,33 interacts with genes in the Blue module, 
along with REV1 in the Turquoise module. The profound 
interaction observed between TLS polymerases and the 
homologous recombination (HR) pathway is remarkable, 
considering that these pathways are typically distinct in 
terms of mechanistic function.

3.3  |  TLS polymerases and their  
transcriptionally adjacent genes are  
controlled by TFs prominent in 
carcinogenesis

One of our objectives was to identify the pivotal TFs 
orchestrating the response of repair polymerases. To 

F I G U R E  3   Discovery of co-expressing modules in the transcriptome dataset. (A) Heatmap of the correlation between the eigengenes of 
the modules. (B) Module–trait heatmap of the eigengenes and the cell source origin, (C) comparison of the distribution of values of module 
eigengenes between cetuximab-treated and -untreated samples.
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      |  7 of 10DAS et al.

achieve this, we employed a robust algorithm, KBoost, 
utilizing Kernel PCA regression, boosting, and Bayesian 
analysis.24 KBoost enabled us to systematically scan for 

TFs that influence the network of repair polymerases. 
Utilizing a scree plot, we determined a subset of TFs 
that affect 30 or more targets (Figure 5A) and obtained 

F I G U R E  4   Co-expression patterns are charted and visualized using Cytoscape, revealing a complex landscape of co-expression. 
Individual proteins were annotated using STRING, and the colors used in the visualization corresponds to the modules in which the 
respective genes were identified.

F I G U R E  5   Transcription factors (TFs') target protein interaction. (A) Screeplot of number of TFs versus number of predicted targets. 
(B) An integrated map of the TFs and the targets in the Blue module.
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50 TFs. We proceeded to plot the prediction probability 
threshold for each TF targets (Figure S2) and selected all 
targets with a probability exceeding 0.26 (equivalent to 
4 standard deviations). Subsequently, we scrutinized this 
subset for an overlap with genes within the Blue mod-
ule. Our investigation revealed that numerous pivotal 
cancer-responsive TFs are predicted to interact with TLS 
polymerases (Figure  5B). Notably, CENP-A, a histone 
H3 variant crucial for centromere stabilization and fre-
quently overexpressed in cancer,34 featured prominently 
in these predictions. CENPA is predicted to interact with 
POLQ (p = 0.4), which is involved in Interstrand crosslink 
repair. ZNF644 is a TF involved in site-specific histone 
methylation and DNA stabilization35 and interacts with 
SMC6 (p = 0.4), BDP1 (p = 0.4), and CEP120 (p = 0.4). 
E2F7, another well characterized TF involved in progres-
sion of cancer36 interacts with SMC4 (p = 0.55). All these 
proteins are close neighbors of POLK. Likewise, POLI in-
teracts with NEK1, a kinase which separates repair from 
replication and allows for proper repair. NEK1, in turn 
is predicted to be acted upon by HNF1A (p = 0.4), a TF 
involved synthesis of liver specific transcripts and whose 
absence predisposes to adenomas.37 Thus, the TLS poly-
merases and associated genes are acted upon by multiple 
TFs and in a complex circuitry in cancer cells.

4   |   DISCUSSION

Stress-induced mutagenesis is a well-studied phenom-
enon in bacteria. DNA damage and starvation, induces 
the SOS response, where double strand break repair is 
carried out by mutagenic polymerases DNA Pol IV, V, 
and II.38 Cancer cells are under metabolic stress due to 
demands of constant growth and dysregulation.39 An 
example of stress mediated mutagenesis would be the 
erroneous activation of APOBEC3 enzyme, which mu-
tagenizes by cytosine deamination and causes 75% of 
kataegis.40 Another example of stress-induced mutagen-
esis is presented by double strand break inducing cancer 
therapies, such as etoposide and doxorubicin, which are 
likely to provoke stress response–dependent error-prone 
repair mechanisms.41 Cetuximab treatment is an effec-
tive therapy against KRAS/NRAS CRC, however, resist-
ance inevitably emerges. Bardelli et al. had shown how 
cetuximab-treated CRC cell lines have transiently higher 
levels of mutagenic polymerases and lower levels of MMR 
proteins14 while another study on COSMIC signatures as-
sociated with cetuximab-treated CRC showed no signifi-
cant increase in SBS3 or SBS6 or SBS15 signatures, which 
are associated with loss of MMR activity.42 Moreover, an 
earlier transcriptome study on PCNA and TLS polymer-
ases43 also identified a co-regulation of DNA repair genes 

and TLS polymerases. These findings drove our explora-
tion of whether a cetuximab-specific transcriptional re-
sponse exists as well as whether mutagenic polymerases 
and MMR proteins are indeed co-regulated.

Our analysis of the transcriptional profile of a sizable 
number of CRC samples exposed to cetuximab did not reveal 
any Cetuximab treatment specific transcription module, 
which might be due to the transient nature of treatment-
induced mutagenesis or to the CRC heterogeneity.44 CRC 
is known to evolve via multiple clones and scRNA-Seq has 
revealed that different clones exhibit different transcrip-
tional profiles, for example, CRC bulk RNA-Seq data have 
been used to distinguish CRC into four sub-categories.45 
When a cell line was treated with cetuximab,14 western 
blots showed increased levels of TLS polymerases. But in 
our bulk RNA-Seq analysis of human tissue, we did not 
find any cetuximab-specific response, which could be due 
to the lack of resolution in bulk analysis. A previous study 
employing ScRNA-Seq analysis distinguished drug resis-
tant clones from drug-sensitive clones46 and our results 
point to the need for further scRNA-Seq analysis to un-
cover the cell types displaying adaptive mutagenesis. Using 
fairly rigorous criteria, we have discovered that mutagenic 
polymerases are part of regulatory modules that form key 
DNA repair pathways regulatory modules impacted by 
common TFs. Presumably, the repair pathway choices, as 
well as the immediate response to external stimuli, occur 
at the posttranscriptional level. Another important factor 
modulating transcriptional response lies with the external 
feedback received from microbiome and metabolome fac-
tors associated with CRC.47 The limitations of our study in-
clude the lack of resolution from bulk RNA-Seq data due to 
tumor heterogeneity, as well as the employment of datasets 
derived from different experiments. Therefore we consider 
future scRNA-Seq experiments using common cellular or-
igin and experimental conditions necessary. Despite these 
limitations, our meta-transcriptome study reveals that sev-
eral TLS polymerases are co-located within the same in-
tricate regulatory network similarly to other DNA repair 
proteins and should therefore adhere to similar expression 
patterns to other proteins regulated by the TFs discovered. 
Given this is an intricate network, involving epigenetic 
states and clonal evolution, any further study to dissect 
the regulatory framework or to discover candidate drugs 
would need to account for these findings.
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