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Abstract

In this study, we discussed a mathematical model that incorporates important interactions be-

tween normal cells, tumor cells, immune cells, and estrogen. The mathematical model was revised

to include two control measures; namely surgery and hormone therapy to minimize the number

of tumor cells. The model was mathematically analyzed with the premise that the two control

measures are positive constants. Locally and globally analyses were performed using a variety of

analytical methods to investigate the stability of the breast cancer model. Furthermore, an op-

timal control problem was formulated and used to determine the best strategy for reducing the

number of tumor cells by incorporating hormone therapy and surgery, based on the well-known

Pontryagin’s Maximum Principle. The numerical results indicates combining both optimal con-

trol measures (surgery and hormone therapy) simultaneously is more efficacious than using single

control measure separately in decreasing the number of tumor cells.
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Abbreviations

NTIE : Normal Tumor Immune Estrogen.

TFE : Tumor Free Equilibrium.

PMP : Pontryagin’s Maximum Principle.

OCP : Optimal Control Problem.

DCIS : Ductal Carcinoma In Situ.

IDC : Invasive Ductal Carcinoma.

ILS : Lobular Carcinoma Invasive.
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Symbols

α1 : Per capita growth rate of normal cells.

α2 : Per capita growth rate of tumor cells.

φ1 : Natural death rate of normal cells.

φ2 : Natural death rate of tumor cells.

σ1 : Tumor formation rate as a result of DNA damage by excess estrogen.

σ2 : Immune suppression rate due to excess estrogen.

γ1 : Tumor cells death rate due to immune response.

γ2 : Interaction coefficient rate with immune response.

β : Rate of inhibition of normal cells.

δ : Natural death rate of estrogen.

Λ : Source rate of estrogen.

ρ : Immune response rate.

ω : Immune threshold rate.

ν : Assume constant of value of decay factor.

µ : Natural death rate of immune cells.

s : Source rate of immune cells.

u1(t) : Control function (Surgery).

u2(t) : Control function (Hormone therapy).

Ω : Model domain.

R0 : Basic reproduction number.

ρ(A) : Spectral radius of matrix A.

J : Jacobian matrix.

λ : Eigenvalues of J .

λ(t) : Adjoint variable.
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Symbols (Continued)

H : Hamiltonian.

U : Control set.

A : Control parameter associated with u1(t).

B : Control parameter associated with u2(t).

tf : Final time.
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Chapter 1

Introduction

1.1 Background

A disease can be either infectious or non-infectious. Infectious diseases are contagious illnesses

that can spread from one person to the next. Non-infectious diseases are illnesses that do not

spread to others and they restrain an individual who has contracted them. An example of a non-

infectious disease is cancer.

Cancer is a genetic disease caused by changes in genes that controls how our cells function, specif-

ically how they grow and divide. Cancer is defined the unmanageable growth of abnormal cells

everywhere in the body. These abnormal cells are termed cancer cells [1]. Cancer cells can move

from the location of formation in the body to distant locations in the body via the blood vessels

or lymph system, where they exit the vessels to form a new tumor mass. This is referred to as

Metastasis [2]. According to Discovery Health Medical Scheme [3], cancer causes more deaths in

South Africa than HIV/AIDS, Tuberculosis and Malaria combined. The most common types of

cancer include: breast cancer, lung cancer, prostate cancer, and skin cancer among others.

Among many cancer types, breast cancer is the second most common cancer in women, exceeded

only by skin cancer. Breast cancer is the most common cancer in women around the world, ac-

counting for 1.7 million cases in 2012 [4]. Breast cancer is a malignant (cancerous) tumor that

begins in the breast cells, a group of cancer cells that can grow into surrounding tissues or spread

(metastasize) to distant areas of the body.
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There are several types of breast cancer, some of which are extremely rare. The vast majority of

breast cancers are carcinomas, which are tumors that begin in the epithelial cells that line organs

and tissues throughout the body. The type of breast cancer can also indicate whether or not the

cancer has spread. Breast cancer is frequently divided into two types: non-invasive and invasive

breast cancer. Non-invasive breast cancers are those that have not spread or invaded the normal

breast tissues and are contained within the milk ducts or lobules. There are two types of non-

invasive breast cancer: ductal carcinoma in situ and lobular carcinoma in situ. Ductal carcinoma

in situ develops in the milk ducts of the breast and is non-invasive because it has not spread into

the surrounding breast tissue. Lobular carcinoma in situ is a type of non-invasive breast can-

cer that develops in the lobules and it is non-invasive as it has not spread into any surrounding

breast tissue [5]. The term ”invasive breast cancer” refers to any type of breast cancer that has

spread into the surrounding breast tissue [6]. There are two types of invasive breast cancer: inva-

sive ductal carcinoma and invasive lobular carcinoma. The term ”invasive” refers to cancer that

has invaded or spread to the surrounding breast tissues. The most common type of breast cancer

is invasive ductal carcinoma (IDC) . About 80% of all breast cancers are invasive ductal carcino-

mas (IDC) [5]. Invasive ductal carcinoma is a type of cancer that begins in the milk ducts of the

breast, spreads through the duct lining, and spreads into the surrounding breast tissues. Invasive

lobular carcinoma (ILC) is the second most common type after IDC. Invasive lobular carcinoma

occurs when a cancer that begin in the milk-producing lobules of the breast has broken through

the lining and spread into surrounding breast tissue[5].

The precise cause of breast cancer is unknown, but some factors make it more likely. Breast can-

cer is caused by three widely accepted phenomena: hormonal imbalance (excess estrogen and pro-

gesterone exposure appears to increase the risk of breast cancer), genetics (those with a family

history of breast cancer) ,and environmental factors (alcohol consumption, poor diet, smoking,

exposure to toxins, and so forth) [7]. The body uses estrogen to form the breast tissue, but too

much estrogen causes cells to multiply out of control, leading to breast cancer [8].

The first symptoms of breast cancer usually appear as an area of thickened tissue in the breast

or lump in the breast or armpit, sore breast, itchiness, and nipple discharge. Systemic thera-

pies are drugs that can reach cancer cells through out the body and are used to treat breast can-

cer. Depending on the type of breast cancer, various drug treatments such as, hormone therapy,

chemotherapy, immunotherapy, targeted therapy, and radiation therapy may be used. Although
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we have treatments for breast cancer, they are not without side effects such as hair loss, vomit-

ing, nausea, mouth sores, constipation, and fatigue. Surgery is an important component of breast

cancer treatment because it removes the tumor with an operation known as breast conserving

surgery or mastectomy [9]. Breast conserving surgery removes only the cancerous cells from the

breast, whereas mastectomy removes the entire breast, including all of the breast tissue and, in

some cases, other surrounding tissues. Although surgery is expensive, in South Africa it ranges

from R50000 to R140000 and is the best treatment possible because it removes the entire breast

or take out the potion with cancer cells [10]. Enderling et al [11] demonstrated that surgery alone

will result in a tumor recurrence within medically reasonable time period of 5-10 years and they

also predicted that the strayed tumor cells can be eradicated by an adjuvant. Adjuvant hormone

therapy is now part of the standard treatment because surgery alone results in tumor recurrence

in less than 10 years in 30% of cases. Adjuvant hormone therapy is frequently used to help re-

duce the risk of cancer following surgery. Hormone therapy is also used in breast cancer as anti-

hormone or anti-estrogen to lower hormone levels in the body or to block hormone actions. Hor-

mone therapy costs less than any other systematic therapy and it ranges from R650- R2500 per

month [10].

Mathematical modeling can be used to analyze disease dynamics [12]. Kermack and McKendrick

[13] demonstrated that mathematical modeling can be used solve epidemiology problems. The

course of mathematical modeling of cancer was explained by Byrne [14]. Byrne’s article shows

charts progress in mathematical modeling of cancer over the past 50 years, highlighting the differ-

ent theories that have been used to dissect and the insights that have arisen. Some studies specif-

ically discussing mathematical model of breast cancer are as follows. De Pillis et al [15] presented

a tumor growth competition model that includes both immune system response and drug therapy.

They also used optimal control problem to find the best cancer treatment. Mufudza et al [16], in-

vestigated the role of estrogen as a risk factor on the dynamics of breast cancer. They created a

probabilistic mathematical model to demonstrate the general dynamics of breast cancer with im-

mune response. They developed a four-population model that incorporates tumor cells, host cells,

immune cells and estrogen. In their study, they concluded that taking hormonal birth controls in-

creases the possibility of breast cancer development and their results shows the negative relation-

ship of estrogen and tumor cell development. Segun et al [17] used nutritious diet as a control

on tumor cells and implementing time-dependent control parameters predicted on the premise
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that there is an interaction between normal cells and tumor cells caused by mutation in DNA as

a result of excess estrogen in the body. They used optimal control to investigate the effects of ke-

togenic diet and anti-cancer drugs on tumor cells. Their findings revealed that the development of

tumor cells is influenced by the ammount of excess estrogen in the body.

In this study, we will extend the models of Mufudza et al [16] and Segun et al [17] by incorporat-

ing time-dependent control parameters (hormone therapy and surgery) based on the assumption

that there is an interaction between normal cells and tumor cells that is due to mutated DNA

in the body as a result of excess estrogen. Though Mufudza et al demonstrated that high estro-

gen levels have effects on breast cancer development when they are high and Segun et al used

chemotherapy to reduce tumor cells and ketogenic diet to control estrogen levels, our model dif-

fers from their models because it incorporates surgery and hormone therapy to control the tumor

cell growth. We will use the control surgery to remove cancer cells and hormone therapy as ad-

juvant to kill any remaining cancer cells and prevent the disease from returning. To control es-

trogen levels we will use hormone therapy. The goal is to keep the patient healthy while killing

tumor cells. We will apply Optimal Control Problem to surgery and hormone therapy to investi-

gate if they can assist in minimizing the tumor population and estrogen levels by the end of the

treatment period while maintaining the normal cells and immune cells above the required level.
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1.2 Problem statement

Breast cancer is a worldwide problem and the most common cancer amongst women comprising

23% of the female cancer [18]. Breast cancer is the leading cause of death in women worldwide

and is expanding especially in developing countries where most of cases are discovered in late

stages[19]. Breast cancer malignant growth influences roughly 27 out of 100 000 women in South

Africa and record for 16% of disease passing against women [20]. In spite of the fact that vari-

ous treatments are accessible for battling cancer, a mix of medication might be an answer for this

issue. It is well known that surgery can not treat breast cancer alone but it needs systemic thera-

pies. In this study we will investigate the use of optimal controls surgery and hormone therapy to

reduce tumor cells and estrogen levels.

1.3 Aim

The aim of this study is to investigate if hormone therapy and surgery as control strategies can

reduce breast cancer.

1.4 Research objectives

The following are the primary objectives of this study:

1. To formulate the Normal cells, Tumor cells, Immune response and Estrogen (NTIE) model

for breast cancer, incorporating surgery and hormone therapy as interventions.

2. To perform mathematical analysis of the NTIE model and obtain epidemic thresholds.

3. To formulate NTIE optimal control problem and investigate the best way to apply hormone

therapy and surgery in order to reduce the cancer cells at minimal cost.
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1.5 Methodology

A normal cells (N), tumor cells (T), immune cells (I), and estrogen (E) model would be formu-

lated, and it is one of the models used to describe the epidemiology of non-infectious diseases.

This computes the number of normal cells, tumor cells, immune cells, and estrogen in a volume(cm3).

The model represented by a dynamical system of non-linear ordinary differential equations will be

analyzed numerically to find the epidemic threshold and equilibrium points. The proposed model

will then be reformulated in the optimal control framework to select the best control strategy for

breast cancer in order to reduce the tumor cells at minimal cost. Finally, numerical simulations

will be carried out in MATLAB.

1.6 Justification

There have been mathematical models of breast cancer, and in this study we will extend the ex-

isting model of Mufudza et al and Segun et al [16, 17]. This study, combined with other breast

cancer models, will pave the way for broader attempts to reduce tumor growth and prevent this

disease in our communities. Death as a result of breast cancer may hamper the country’s pro-

ductivity and hence is a threat to socio-economic development. This study will therefore be of

paramount importance in aiding in the control of breast cancer.
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Chapter 2

Literature review

In this chapter, we review the literature on breast cancer and intervention measures for combat-

ing breast cancer such as surgery and hormone therapy. We also review mathematical models of

breast cancer including optimal control models involving the interventions and cancer research

papers that are relevant to this dissertation.

2.1 Biology of normal breast and breast cancer

In this section, we consider the anatomy of the breast as well as the position of the cancer when

it develops within the breast. This is bound to give a clearer understanding of the cells involved

when breast cancer develops.

The mammary glands, which are positioned on the front of the chest, are medically known as the

breasts. The breast is made up of connective tissue, fat, and breast tissue, which contains the

milk-producing glands [21]. Each breast has 15 to 20 sections called lobes arranged in a circu-

lar fashion. The breast’s size and shape are determined by the fat (subcutaneous adipose tissue)

that covers the lobes. Each lobe is made up of several lobules, each of which has a little bulb-like

gland or sac at the end that produces milk in response to hormonal signals. Ducts connect the

lobes, lobules, and glands in nursing mothers. The darker pigmented area around the nipple is

known as the areola. The gaps between lobules and ducts are filled with fat. There are no mus-

cles in the breast, but muscles lie under each breast and cover the ribs [22]. The following image
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is the anatomy of a normal breast [23]:

Figure 2.1: Anatomy of the breast [5]

The breast is responsive to a complex interplay of hormones that cause the tissue to develop, en-

large and produce milk. Estrogen, progesterone, and prolactin are the three principal hormones

that affect the breast and cause glandular tissue in the breast and uterus to change over the men-

strual cycle [23]. Some types of breast cancer are caused by hormones such as estrogen and pro-

gesterone. Breast cancer start when cells in the breast (such as ducts and lobules) begin to grow

abnormally.

There are various forms of breast cancer that are named after the parts of the breast where they

begin. The type of breast cancer might also indicate whether or not the cancer has spread. In

situ breast cancer (ductal carcinoma in situ, or DCIS) is a type of cancer that begins in a milk

duct but does not spread to the rest of the breast tissue. Any sort of breast cancer that has ex-

panded (invaded) into the surrounding breast tissue is referred to as invasive breast cancer. DCIS

is the earliest form of breast cancer. DCIS occurs when abnormal cells are found in the milk ducts.

DCIS is non-invasive, which implies it has not spread outside of the milk ducts to any surround-

ing breast tissue [24]. The most frequent kind of breast cancer is Invasive Ductal Carcinoma (IDC).

Invasive indicates that the abnormal cells have migrated beyond the ducts (small tubes that carry

milk to the nipples during nursing) and into the surrounding breast tissue. Invasive Lobular Car-

cinoma (ILC) is a type of breast cancer in which abnormal cells have grown outside the walls of

the lobules, which generate milk that empties into the milk ducts and the surrounding breast tis-

sue. Metastatic breast cancer is the breast cancer that has spread to other parts of the body. The

brain, liver, bones and lungs are the common organs where breast cancer metastasizes. Breast

cancer cells spread from the original tumor through the blood stream and the lymphatic sys-
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tem. Inflammatory Breast Cancer is a type of aggressive breast cancer that normally presents

as skin reddening and swelling rather than a recognizable tumor. This kind of breast cancer is

extremely rare, accounting for about 1% of all breast cancer incidences in the United States [25].

The graphic below depicts the various forms of breast cancer [26]:

Figure 2.2: A biological scenario of breast cancer progression [5]

2.2 Interventions of breast cancer

The function of all cancer treatments is to destroy cancer cells while also distinguishing between

cancerous and healthy cells. There are several types of cancer treatments that includes: surgery,

chemotherapy, hormone therapy, and so on. Here we give a review of surgery and hormone ther-

apy as they are the most relevant to the aims of this study [27].
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Surgery is a type of medical treatment in which an individual’s body is cut open so that a doctor

can repair, remove, or replace a diseased or damaged part. Breast cancer surgery is an impor-

tant part of breast cancer treatment that involves surgically removing the cancer [28]. For sev-

eral decades, surgery has been the primary treatment for breast cancer. Breast cancer surgery

includes a variety of procedures, including:

• Surgical removal of the entire breast (mastectomy)

• A portion of the breast tissue is removed during surgery (lumpectomy)

• Surgical removal of nearby lymph nodes

The best breast cancer surgery is determined by the size and stage of the cancer [29]. Several tri-

als over the last several decades have resulted in a shift away from radical approaches and toward

less extreme, breast-conserving procedures. Adjuvant or neoadjuvant therapy, such as hormonal

therapy, chemotherapy, and or radiation therapy, is frequently used in conjunction with surgical

treatment of breast cancer [30].

Hormone therapy is a cancer treatment that slows or stops the the reproduction cancer cells that

use hormones. Hormone therapy is frequently used as an adjuvant therapy to help reduce the risk

of cancer recurrence after surgery, but it can also be used as a neoadjuvant treatment. Neoadju-

vant therapy is a treatment used to shrink a tumor before the main treatment, which is usually

surgery. The variety of methods for blocking estrogen’s effect or lowering estrogen levels are used

to treat hormone receptor-positive breast cancers [31]. Hormonal therapy, on the other hand, is

ineffective in patients whose tumors are both estrogen receptor (ER) and progestin receptor (PR)

negative. According to studies, women who receive at least 5 years of adjuvant tamoxifen therapy

after surgery for early-stage ER-positive breast cancer have a lower risk of breast cancer recur-

rence, including a new breast cancer in the opposite breast, and a lower risk of death at 15 years

[32].
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2.3 A review of mathematical models

Kermack and McKendrick [16] showed that mathematical modeling is useful in solving the prob-

lem of epidemiology. Models in mathematics are frequently coupled systems of governing differen-

tial equations that describe the dynamics of each of the interacting component cells. Specifically,

the interactions between tumor growth and the immune system is often described using a sys-

tem of coupled differential equations with formulated initial conditions. These equations include

nonlinear interactions and do not often admit an exact solution, so they require computational

methods to solve them [33].

Pranav et al [34] developed a mathematical model that combines an important interactions be-

tween tumor cells and cells in the immune systems including natural killer cells, dendritic cells,

and cytotoxic CD8+T cells combined with drug delivery to these cell sites. They described these

interactions via system of ordinary differential equations that are solved numerically. They also

performed a stability analysis to determine conditions for tumor-free equilibrium to be stable.

They also studied the influence of proliferation rates and drug interventions in the dynamics of all

the cells involved. Their finding showed that the combination of chemotherapy and immunother-

apy intervention reduces tumor growth greatly after 10-20 days.

In order to investigate the efficacy of chemotherapy in eradicating cancer cells, Phino et al [35]

created a mathematical model of chemotherapy for tumor treatment. In their analysis, they demon-

strated the parameter space region in which cancer cells can be eliminated. They also proved the

effects of varying drug infusion rates on cell concentration levels. They presented their numerical

results in the bifurcation diagram in terms of infusion rate and the tumor cells were eradicated at

the end of the treatment.

Tian [36] created and examined a basic mathematical model of virotherapy. They considered a

tumor populations that were not infected, tumor cell populations that were infected, and free

virus populations. Their study discovered two threshold burst size values: below one, the tumor

always develops to its maximum size, whereas above the other, one or three families of periodic

solutions arising from Hopf bifurcations exist. The study’s findings confirmed that when the burst

size is large enough, a tumor’s cell count can be reduced to undetectable levels.
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Manju emph et al [37] proposed a framework for describing the interaction of cancer and immune

cells during immunotherapy based on a qualitative analysis of a system of nonlinear ordinary dif-

ferential equations. Their mathematical analysis of the model equation was performed in terms

of the boundedness of solutions, the nature of equilibria, and their local and global study. They

used numerical analysis to back up their analytic findings. They discovered that immunotherapy-

treated lymphocyte proliferation significantly reduces the cancer cell population. They concluded

that if cancer is immunogenic, that is, if cancer cells have distinct surface markers known as tu-

mor specific antigens, the cancer cell population can be easily managed. In addition, the presence

of antigenic cancer cells causes a time delay in the production of immuno-agents, and the critical

value of the delay for which the stability switch occurs is determined.

Sharma et al [38] investigated a tumor growth model that includes tumor immune interactions

as well as chemotherapeutic drugs. They investigated two types of immune cells: helper (rest-

ing) T-cells, which stimulate CTLs and convert them into active (hunting) CTL cells, and active

(hunting) CT cells, which attack, destroy, or ingest tumor cells. Tumor cells, active CTL cells,

helper T-cells, and chemotherapeutic drugs are divided into four compartments in their model.

In relation to the model, they devised an optimal control problem in order to reduce the number

of tumor cells and the administration of chemotherapeutic drugs. They discovered that the best

control is far more effective at reducing tumor cell counts to near zero. Overall, their numerical

analysis indicates that a burst of treatment at the start is beneficial.

De Pillis et al [15] presented a tumor growth competition model that incorporates both immune

system response and drug therapy. Their research is based on a four-population model, which in-

cludes tumor cells, host cells, immune cells, and drug interaction. They looked for target basins

of attraction by analyzing the stability of the drug-free equilibrium in relation to the immune re-

sponse. The goal was to simulate the asynchronous tumor-drug interaction known as ”Jeff’s phe-

nomenon” qualitatively. This asynchronous response behavior is successfully generated by the

developed model. Another goal was to find treatment protocols that could be used to improve

standard pulsed chemotherapy regimens. They used optimal control theory with constraints and

numerical simulations to develop new therapy protocols, which they then compared to traditional

pulsed for periodic treatment. Over time, the optimal control-generated therapies cause larger os-

cillations in the tumor population. However, by the end of the treatment period, the total tumor

size is smaller than with traditional pulsed therapy, and the normal cell population experiences
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almost no oscillations. The reviewed studies has given insight into the modeling of breast cancer

and that there are methods that can be used to develop breast cancer model. Overall, mathe-

matical modeling is a valuable tool for studying breast cancer and developing new treatments.

Mathematical models helps to understand the complex dynamics of tumor growth and interac-

tions between cancer cells and the normal cells in the body. While there are still many challenges

to overcome in the study of breast cancer, mathematical modeling offers a promising avenue for

advancing our understanding of this disease and improving patient outcomes.
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Chapter 3

NTIE Model formulation

3.1 Introduction

In this chapter, we present a mathematical model that extends existing breast cancer models

[16, 17] to discuss the cell population interaction. The mathematical model subdivides the total

population H(t) of cells into four compartments: normal cells (N), tumor cells (T ), immune cells

(I) and estrogen (E). The normal cells compartment (N) is a type of epithelial cell that makeups

breast tissue. The cells separate and die naturally as they have unaltered DNA which controls

all cells activities. The tumor cells compartment (T ) represents a class of breast cancer cells with

damaged DNA. The immune cells compartment (I) represents the natural killer and CD+8 T

cells. Estrogen is a natural steroid hormone, found in both women and men. Estrogen also helps

in development of breasts, but an increase of estrogen levels can lead to growth of tumor cells.

Estrogen goes about as a cancer-causing agent by legitimately harming DNA, driving solid ep-

ithelial cells to have a higher probability of malignant conversion.

3.2 Mathematical model

The NTIE breast cancer model is proposed, the total population is divided into four compart-

ments as normal cells (N), tumor cells (T ), immune cells (I) and estrogen cells (E).
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3.2.1 Model assumptions

We consider the following assumptions when developing the proposed model:

1. In this model, breast cancer is assumed to be non-invasive.

2. The tumor cells are caused by excess estrogen in the body and damaged cells.

3. Estrogen cells are produced by the ovaries and consumption of birth controls.

3.2.2 Model description

The variable N(t) is used to denote normal cells. Normal cells can either be destroyed or grown

utilizing the stable DNA that precludes all activities of the cell. We also assume that normal

cells and tumor cells compete for space, nutrients and other resources. The normal cells are repre-

sented by the non-linear differential equation:
dN

dt
= (α1 − φ1N)N − βNT − (1− k)σ1NE.

The first term represents the logistic growth of normal cells, with α1 representing the intrinsic

rate of growth of normal cells and φ1 is a measure of the effect of interaction of normal cells (fight-

ing for space, nutrients, etc). β represents the rate at which normal cells interact with tumor

cells, causing normal cells to be inhibited. The last term represents normal cell reduction due to

estrogen interaction, where k denotes the efficacy of hormone therapy with 0 ≤ k < 1 if k = 0

denotes no intervention. σ1 denotes the reduction of normal cells as a results of an encounter with

estrogen.

The dependent variable T (t) shows how tumor cells emerge; the tumor cell population is assumed

to grow logistically in the absence of immune cells and estrogen. The tumor cells are represented

by the non-linear differential equation:

dT

dt
= ((1− d)(1− k)α2 − φ2T )T + (1− k)σ1NE − γ1IT.

The first term represents tumor cell growth that is limited by the rate of parameter d and k (surgery

and hormone therapy respectively), φ2 denotes death rate of tumor cell due to competition among
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themselves, while γ1 is the rate of loss of tumor cells due to an encounter with immune cells. Ex-

cess estrogen causes DNA mutations, which populate the tumor cells σ1NE.

The dependent variable I(t) is represented in the form of NK cells and CD8+ T cells. The growth

of immune cells may be stimulated by the presence of the tumor, and they can destroy tumor

cells via kinetics process. The immune cells are presented by the non-linear differential equation:

dI

dt
= s+ ρ

IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E
.

The first term represents the constant source of immune system. The second term represents non-

linear growth for immune response, where ρ is the rate of immune response and ω is the immune

threshold. The parameter γ2 is the rate at which immune response is inactivated due to inter-

acting with tumor cells, and µ represents the natural death rate of immune cells. The last term

denotes a limited rate at which estrogen suppresses immune cells activation, σ2 is the rate of im-

mune suppression due to estrogen presente and υ is the estrogen threshold rate.

The ovaries produce estrogen, and more estrogen is introduced into the body through birth con-

trols. The estrogen compartment is represented by the non-linear differential equation:

dE

dt
= (1− k)Λ− δE.

Λ denote constantly replenishing excess estrogen and δ is the rate at which estrogen is being washed

out of the body system.
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3.2.3 Model equations

The following figure is a flow diagram for the model mentioned above:

Figure 3.1: Schematic diagram for breast cancer model

Dashed red arrow in the above represents the interactions between compartments and black lines

represents addition and also subtraction from the compartment respectively. For simplicity the

independent variable t shall be omitted for all the states, thus for example N(t) = N . The model

depicted in Figure 3.1 is described by the following system of differential equations:

dN

dt
= (α1 − φ1N)N − βNT − (1− k)σ1NE, (3.1)

dT

dt
= ((1− d)(1− k)α2 − φ2T )T + (1− k)σ1NE − γ1IT, (3.2)

dI

dt
= s+ ρ

IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E
, (3.3)

dE

dt
= (1− k)Λ− δE, (3.4)

where N(0) = N0 ≥ 0, T (0) = T0 ≥ 0, I(0) = I0 ≥ 0, E(0) = E0 ≥ 0.

3.3 Model Analysis

3.3.1 Positivity and boundedness of solutions

In order to retain the biological validity of the model, we must prove that solutions to the system

of differential equations are positive and bounded for all values of time. Since the human body is
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made up of a finite number of cells, the population must remain limited. Furthermore, bounded-

ness and positivity outline that once tumor started, it is conceivable that the population of the

cancer cells will proceed to exist beneath the detectable threshold without doing critical harm

[39]. The next step in analyzing our model will be to prove positivity and boundedness for the

system of differential equation.

The model equations (3.1)-(3.4) describe cell population and therefore, it is very important to

prove that all state variables N(t), T (t), I(t), and E(t) are non-negative for all time t. The system

of equations (3.1)-(3.4) has an initial condition by N(0) = N0 ≥ 0, T (0) = T0 ≥ 0, I(0) = I0 ≥

0, E(0) = E0 ≥ 0. Based on the biological finding, the system of equation (3.1)-(3.4) will be

studied in the following region such as:

Ω =
{

(N, T, I, E) ∈ R4
+

}
. (3.5)

The following theorem assures that the system of equation is well posed such that solutions with

non-negative initial conditions remain non-negative for all 0 < t < ∞ and therefore makes the

variable biological meaningful. Hence, we have the following results:

Theorem 3.1 The solution of the system with initial conditions N(0) = N0 > 0, T (0) = T0 ≥

0, I(0) = I0 > 0, E(0) = E0 ≥ 0 is bounded for all t > 0.

Proof. We must prove that for all t > 0, N(t), T (t), I(t), and E(t) will be bounded and we know

that all constants used in the system are positive. We begin by writing the equation (3.1) as fol-

lows, without losing it’s generality:

dN

dt
≤ N(α1 − φ1N),
dN

N(α1 − φ1N) ≤ dt.

Solving the above ordinary differential inequality expression using partial fractions, we get this,

∫  1
α1

N
+

φ1
α1

α1 − φ1N

 dN =
∫
dt.

Integration and using the initial condition we get,

N(t) ≤ α1

φ1 + α1−φ1N0
N0

e−α1t
,∀t ≥ 0.
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Thus

lim
t−→∞

N(t) ≤ α1

φ1
, (3.6)

hence, N(t) is bounded at α1
φ1

. Writing the equation (3.2) without losing it’s generality as follows:

dT

dt
≤ (1− d)(1− k)α2T − φ2T

2

The method in the first differential inequality can be used to solve the above inequality. As a re-

sult, we have:

T (t) ≤ (1− d)(1− k)α2

φ2 + (1−d)(1−k)α2−φ2T0
T0

e−(1−d)+(1−k)α2t
,∀t ≥ 0.

Thus

lim
t→∞

T (t) ≤ (1− d)(1− k)α2

φ2
, (3.7)

hence, T (t) is bounded at (1−d)(1−k)α2
φ2

. Once more, we present the equation (3.3) as follows:

dI

dt
≤ s+ ρIT

ω + T
− µI,

applying proper fraction, give ρ T
ω+T ≤ ρ× 1 then

dI

dt
+ (µ− ρ)I ≤ s,

solving using integrating factor H = e
∫

(µ−ρ)dt, we have

I(t) ≤ s

µ− ρ
+ I0e

−(µ−ρ)t,

thus

lim
t→∞

I(t) ≤ s

µ− ρ
, (3.8)

hence, I(t) is bounded at s
µ−ρ under the condition that µ > ρ, when µ <= ρ there is negative

population which is unrealistic. Finally, we solve the equation (3.4),

dE

dt
= (1− k)Λ− δE,

dE

dt
+ δE = (1− k)Λ,

integrating using factor, with X = eδt, we have

E(t) = (1− k)Λ
δ

+ Ce−δt,

from the initial condition we have E(0) = E0 and solving for C we get,

E(t) = (1− k)Λ
δ

+ E0e
−δt,
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thus

lim
t→∞

E(t) ≤ (1− k)Λ
δ

, (3.9)

hence, E(t) is bounded by (1−k)Λ
δ

, hence all solutions in the system are bounded. �

Theorem 3.2 Let the state variables be such that N(0) = N0 ≥ 0, T (0) = T0 ≥ 0, I(0) = I0 ≥ 0

, E(0) = E0 ≥ 0 All solutions N(t), T (t), I(t), E(t) of the system (3.1)-(3.4) are non-negative

in R4
+ for all t ≥ 0. For the model system (3.1)-(3.4), the region Ω is positively invariant and all

solutions starting in Ω remain in Ω.

Proof. The equation (3.1) can be expressed as a differential inequality without losing it’s gener-

ality,
dN

dt
≥ −(φ1N + βT + (1− k)σ1E)N.

Since T (t) and E(t) are bounded, let

supT (t) = (1− d)(1− k)α2

φ2
and supE(t) = (1− k)Λ

δ

respectively. Taking β( (1−d)(1−k)α2
φ2

) + (1 − k)2σ1
Λ
δ

= C proven in the previous theorem. Then we

have
dN

dt
≥ −(φ1N + C)N.

Using partial fractions to solve the above expression, we get:
∫ ( 1

C

N
−

φ1
C

φ1N + C

)
≥ −

∫
dt.

By integrating over [0, t], we obtain

N(t) ≥ C
C+φ1N0

N0
e−Ct − φ1

(3.10)

since N(0) ≥ 0, we have N(t) ≥ 0 for all t ≥ 0 and C = β( (1−d)(1−k)α2
φ2

) + (1−k)2σ1Λ
δ

. After re-

moving the positive terms from the differential equation (3.2), we obtain the following differential

inequality,
dT

dt
≥ −(φ2T + γ1I)T

Since I(t) bounded, let sup I(t) = s
µ−ρ . Taking γ1s

µ−ρ = K. Hence

dT

dt
≥ −(φ2T +K)T
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Integration over [0, t] and also using the statement in the solution above gives

T (t) ≥ K
K+φ2T0

T0
e−Kt − φ2

,

if T (0) ≥ 0, then we have T (t) ≥ 0 for all t ≥ 0, K+φ2T0
T0

e−Kt > φ2 and K = γ1s
µ−ρ . The equation

(3.3) can be expressed as a differential inequality without losing generality and is written as

dI

dt
≥ −

(
µ+ γ2T + (1− k)σ2E

ν + E

)
I.

Since E and T are bounded, let supE(t) = (1−k)Λ
δ

and supT (t) = β( (1−d)(1−k)α2
φ2

) respectively. Let

A = µ+ γ2
(1−d)(1−k)α2

φ2
) + (1−k)σ2e

ν+e
(1−d)(1−k)α2

φ2
), then we have

dI

dt
≥ −AI.

By integrating over[0, t], we obtain

I(t) ≥ I0e
−At,

again if I(0) ≥ 0, then we have I(t) ≥ 0 for all t ≥ 0 and A = µ+γ2
(1−d)(1−k)α2

φ2
)+ (1−k)σ2e

ν+e
(1−d)(1−k)α2

φ2
).

Finally, after removing the positive term that appears on the right hand side of the equation

(3.4), can be expressed as a differential inequality without losing generality,

dE

dt
≥ −δE,

dE

E
≥ −δ.

Integration over [0, t] gives,

E(t) ≥ E0e
−δt.

Also, since E(0) ≥ 0, we have E(t) ≥ 0 for all t ≥ 0. Hence, the solution (N(t), T (t), I(t), E(t)) is

non-negative for non-negative initial conditions. Thus, all solutions of model (3.1)-(3.4) are non-

negative and bounded in the following region:

Ω =
{

(N, T, I, E) ∈ R4
+ : N ≤ α1

φ1
, T ≤ (1− d)(1− k)α2

φ2
, I ≤ s

µ− ρ
, E ≤ (1− k)Λ

δ

}
, (3.11)

Ω is positively invariant. This means that every solution with initial conditions in Ω remains Ω

∀t ≥ 0 that is, the model (3.1)-(3.4) is well posed. �
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3.3.2 The equilibrium points of the system

A stable condition that does not change over time is referred to as an equilibrium point. The

equilibrium point occurs when all of the ordinary differential equations in the system are simul-

taneously zero, that is, when:
dN

dt
= dT

dt
= dI

dt
= dE

dt
= 0.

The model system concedes six equilibrium points, in which there are four dead equilibria, one

tumor-free equilibrium point, and one co-existing equilibrium point, and since cell populations are

non-negative and real, therefore, all parameters and variables are positive.

• Tumor-free equilibrium (TFE) point: in this category , the tumor cell population is zero,

but other cells survive. To find TFE, we let T = 0, and we have the following system of

equations:

(α1 − φ1N)N − (1− k)σ1NE = 0,

s− µI − (1− k)σ2
IE

ν + E
= 0,

(1− k)Λ− δE = 0.

(3.12)

Solving these system of equations simultaneously from the third equation in the system

(3.12) solving for E we get

E = (1− k)Λ
δ

. (3.13)

Solving the first equation in the system (3.12), we have

(α1 − φ1N)N − (1− k)σ1NE = 0,

N = 0, N = α1 − (1− k)σ1E

φ1
.

Substituting for E in the above equation we get

N = α1δ − (1− k)2σ1Λ
δφ1

. (3.14)

Solving the second equation in the system (3.12)

s = µI + (1− k)σ2
IE

ν + E
,

I = s(ν + E)
µ(ν + E) + (1− k)σ2E

.
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Substituting E in the above equation we get,

I = s(νδ + (1− k)Λ)
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ . (3.15)

The Tumor-free equilibrium (TFE) point is given by:

E0 =
(
α1δ − (1− k)2σ1Λ

δφ1
, 0, s(νδ + (1− k)Λ)

µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,
(1− k)Λ

δ

)
, (3.16)

tumor-free equilibrium E0 is positive if α1δ > (1− k)2σ1Λ.

• Case (i) A dead equilibrium point exists when both normal and tumor cell populations have

died off and then we left with the following system of equations,

s− µI − (1− k)σ2
IE

ν + E
= 0,

(1− k)Λ− δE = 0.
(3.17)

Solving the equations in (3.17) simultaneous, we obtain case (i) equilibrium as follows,

Ed1 =
(

0, 0, s(νδ + (1− k)Λ)
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,

(1− k)Λ
δ

)
. (3.18)

• Case (ii), (iii), (iv) The dead equilibrium point is reached when all of the normal cells have

died, leaving only the tumor cells to survive. We call this ”dead” because there is no re-

covery of damaged normal cells because they have been forced to extinction. The following

systems of equations are solved simultaneously,

(1− d)(1− k)α2T − φ2T
2 − γ1IT = 0,

s+ ρIT

ω + T
− µI − (1− k)σ2

IE

ν + E
= 0,

(1− k)Λ− δE = 0.

(3.19)

Solving the first differential equation in the system (3.19), we have

T = 0, T = (1− d)(1− k)α2 − γ1I

φ2
.

Solving the second differential equation in the system (3.19), and substituting for the value
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of T , we obtain the following

γ1γ2(ν + E)
φ2

I3

−
(

2µγ1

φ2
− γ1

φ+ 2(γ2ω + 2(1− d)(1− k)γ2

φ2
)(ν + E)− (1− k)σ2γ1E

φ2

)

−
(

(1− d)(1− k)α2µ

φ2
− (γ1µ

φ2
+ γ1γ2ω(1− d)(1− k)α2

φ2
− µω

)
I

−
(
γ2((1− d)(1− k))α2)2

φ2
2

)(ν + E) + sγ1

φ2
(ν + E) + (1− k)σ2ωE + (1− k)2(1− d)σ2γ1E

φ2

)
I

+ s(νω + ωE + νγ1

φ2
+ E).

Substituting for E in the above differential equation and solving for I, yields a cubic func-

tion and following are the equilibrium points obtained when solving the system (3.19):

Case (ii)

Ed2 =
(

0, (1− d)(1− k)α2 − γ1I
∗
1

φ2
, I∗1 ,

(1− k)Λ
δ

)
(3.20)

Case (iii)

Ed3 =
(

0, (1− d)(1− k)α2 − γ1I
∗
2

φ2
, I∗2 ,

(1− k)Λ
δ

)
(3.21)

Case (iv)

Ed4 =
(

0, (1− d)(1− k)α2 − γ1I
∗
3

φ2
, I∗3 ,

(1− k)Λ
δ

)
(3.22)

• Co-existing equilibrium point state exists when all cell populations would have survived the

competition. To find co-existing equilibrium point, we solve the following system of differen-

tial equations simultaneously:

(α1 − φ1N)N − βNT − (1− k)σ1NE = 0,

((1− d)(1− k)α2 − φ2T )T + (1− k)σ1NE − γ1IT = 0,

s+ ρ
IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E
= 0,

(1− k)Λ− δE = 0,

(3.23)

then the equilibrium point is given by:

Ee = (Ne, Te, Ie, Ee)
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where

Ne = α1 − βTe− (1− k)σ1Ee
φ1

, (3.24)

Te = 1
2φ1φ2

(
−A+

√
A2 + 4φ1φ2(σ2

1Ee − α1σ1Ee)
)
, (3.25)

Ie = s(ω + Te)(ν + Ee)
ρTe(ν + Ee)− (µ+ γ2Te)(ω + Te)(ν + Ee)− (1− k)(ω + Te)σ2Ee

, (3.26)

Ee = (1− k)Λ
δ

, (3.27)

where

A = −σ2φ1 + φ1γ1Ie + βσ1Ee.

We need α1 ≥ βTe + (1 − k)σ1Ee for Ne to be feasible at this equilibrium state. The value

of Te > 0 at the equilibrium when

Ee(σ2
1Ee − α1σ1) ≥ 0.

Therefore we have Ee 6= 0 and Ee ≥ α1
σ1

. The value of Ie exist at the equilibrium state, when

µ+ (1− k) σ2Ee
ν + Ee

>
ρTe

ω + Te
− γ2Te.

3.3.3 The Basic Reproduction number

The basic reproduction number (R0) is the number of newly infected cells produced by one in-

fected cell during it’s life time, assuming all other cells are susceptible [39]. R0 can also be in-

terpreted as the minimum absolute elimination or eradication effort, if we are dealing with a ho-

mogenous population and a control method which affects every body in a non-selective way [40].

It is one of the most important threshold parameters in mathematical epidemiology. It has a sig-

nificant implication on epidemiological trend in such a way that if each infective can produce less

than one new infective, (when R0 < 1), then the epidemic will die out; and if each infective indi-

vidual can produce more than one infective during the individual’s lifetime as an infective (when

R0 > 1), then the epidemic will develop in the population. The basic reproduction number for the

model is computed using the next generation method proposed by Van den Driesshe and Wat-

mough [41].

The description of this method is as follows:
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Assume that there are n compartments so that upon rearrangement the first m compartments

correspond to infected cells. Let Fi(x) be the rate of appearance of new infections in compart-

ment i, V +
i (x) be the rate of transfer of cells into compartment i by all other means, other than

the epidemic and V −i (x) be the rate of transfer of individuals out of compartment i. The disease

transmission model consists of the system of equations

xi = gi(x) = Fi(x)− Vi(x),

where

V−i (x)− V+
i (x)

One other important step is to obtain the tumor-free equilibrium point x0. The m × m matrices

F and V are then computed, where m represents the number infected classes, defined by

F =
[
∂Fi
∂xj

(x0)
]
,

and

V =
[
∂Vi
∂xj

(x0)
]

with 1 ≤ i, j ≤ m

F is non-negative and V is a non-singular M-matrix (a matrix with inverse, belonging to the class

of positive matrices). Since F is non-negative and V is non-singular, then V −1 is non-negative

and also FV −1 is non-negative. The matrix FV −1, defined as the the next generation matrix , is

then computed [27].

The basic reproduction number (reproduction ratio) R0 is then defined as

R0 = ρ(FV −1), (3.28)

where ρ(A) is the spectral radius of matrix A, (or the maximum modulus of the eigenvalues of A).

The method described above is now used to establish local stability of the basic model using R0

as follows:

Rewriting the equations (3.1)-(3.4) so that those representing infected classes are written first and

the rest follow, yields :
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dT

dt
= ((1− d)(1− k)α2 − φ2T )T + (1− k)σ1NE − γ1IT, (3.29)

dN

dt
= (α1 − φ1N)N − βNT − (1− k)σ1NE, (3.30)

dI

dt
= s+ ρ

IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E
, (3.31)

dE

dt
= (1− k)Λ− δE, (3.32)

From system (3.29)-(3.32), Fi and Vi are defined as:

Fi =



(1− k)σ1NE

0

0

0


, (3.33)

and

Vi =



φ2T
2 + γ1IT − (1− r)α2T

βNT + (1− k)σ1NE −N(α1 − φ1N)

µI + γ2IT + (1− k)σ2
IE
ν+E − s−

ρIT
ω+T

δE − (1− k)Λ


. (3.34)

When evaluating the Jacobian of Fi at tumor free equilibrium E0 , the following is obtained

JFi
=



0 (1− k)σ1E
∗ 0 (1− k)σ1N

∗

0 0 0 0

0 0 0 0

0 0 0 0


, (3.35)

Also

JVi
=



−(1− r)α2 + γ1I
∗ 0 0 0

βN∗ −α1 + 2φ1N
∗ + (1− k)σ1E

∗ 0 (1− k)σ1N
∗

ρI∗

ω
0 µ+ (1− k)σ2

E∗

ν+E∗ (1− k)σ2
νI∗

(ν+E∗)2

0 0 0 −δ


,

(3.36)
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Now, we let F and V be as follows:

F =


0 (1− k)σ1E

∗ 0

0 0 0

0 0 0

, (3.37)

and

V =


a11 0 0

a21 a22 0

a31 0 a33

, (3.38)

where

a11 = (νδ + (1− k)Λ)(sγ1 − µ(1− d)(1− k)α2)− (1− d)(1− k)α2(1− k)2σ2Λ
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,

a21 = β
(α1δ − (1− k)2σ1)

δφ1
,

a22 = α1δφ1 − φ1σ1(1− k)2Λ
δφ1

,

a31 = ρs(νδ + (1− k)Λ)
ω(µ(νδ + (1− k)Λ) + (1− k)2σ2Λ) ,

a33 = µ(νδ + (1− k)Λ) + (1− k)2σ2Λ
νδ + (1− k)Λ .

To find the inverse matrix of V , we use minors, co-factors and adjugate method. The inverse ma-

trix is given by:

V −1 =


1 0 0

a21
a11a22

(1− k)σ1E
1
a22

0
a31

a11a33
0 1

a33

. (3.39)

Now we compute FV −1[28] resulting in

FV −1 =


a21

a11a22
(1− k)σ1E

∗ 1
a22

(1− k)σ1E
∗ 0

0 0 0

0 0 0

 (3.40)

To compute R0 , the spectral radius of the matrix in (3.40) is required computing this from
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∣∣∣FV −1 − λD
∣∣∣ = 0, (3.41)

where the 3× 3 identity matrix, the following is obtained∣∣∣∣∣∣∣∣∣∣∣

a21
a11a22

(1− k)σ1E
∗ − λ 1

a22
(1− k)σ1E

∗ 0

0 0− λ 0

0 0 0− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.42)

yielding the three eigen values λ1 = a21
a11a22

(1− k)σ1E
∗, λ2 = 0, λ3 = 0

It follows that λ1 is the spectral radius and thus the basic reproduction number R0 is given by:

R0 = ρ(FV −1) = λ1 = a21

a11a22
(1− k)σ1E

∗,

= a21

a11a22
× (1− k)2σ1Λ

δ
.

Then the expanded expression of R0 is given by:

R0 =
βσ1Λ(1− k)2

(
α1δ − (1− k)2σ1

)(
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ

)
δ
(
α1δφ1 − φ1σ1(1− k)2Λ

)(
(νδ + (1− k)Λ)(sγ1 − µα2r)− rα2(1− k)2σ2Λ

) , (3.43)

where r = (1 − d)(1 − k). The Basic reproduction number is represented by all parameters that

play a role in either controlling or stimulating the growth of breast cancer. As long as σ1 is neg-

ative in the R0 expression, the growth of cancer cells is controllable, as estrogen hormone stimu-

lates tumor cell growth.
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3.4 Local stability of equilibrium points

Now, we will be analysing the system’s stability by means of eigenvalues. We say that an equi-

librium point is stable if all the eigenvalues have real parts less than zero and unstable if at least

one of the eigenvalues has a real part greater than zero, otherwise there is no conclusion. The

equilibrium point and it’s local stability are examined using linearised stability analysis. The

model system (3.1)-(3.4) is thus linearised by computing their Jacobian matrix J , and the gen-

eral Jacobian matrix is given by:

J =



J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44


=



J11 −βN 0 −(1− k)σ1N

(1− k)σ1E J22 −γ1T (1− k)σ1N

0 J32 J33 J34

0 0 0 −δ


, (3.44)

where

J11 = α1 − 2φ1N − βT − (1− k)σ1E,

J22 = (1− d)(1− k)α2 − 2φ2T − γ1I,

J32 = ρωI

(ω + T )2 − γ2T,

J33 = ρT

ω + T
− γ2T − µ− (1− k) σ2E

ν + E
,

J34 = −(1− k) σ2νI

(ν + E)2 .

Theorem 3.3 The tumor-free equilibrium point of the system (3.1)-(3.4) is locally asymptotically

stable if this conditions hold R0 < 1, α1φ1δ < 2φ1(α1δ − (1− k)2σ1Λ) + (1− k)2α1Λ,

(1-d)(1-k)α2 <
sγ1(νδ+(1−k)Λ)

µ(νδ+(1−k)Λ)+(1−k)2σ2Λ .
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Proof. Linearising the system(3.1)-(3.4) at TFE (E0 ), we obtain the following Jacobian matrix

J (E0)

J (E0) =



A0 A1 0 −A2

A3 A4 0 A2

0 A5 A6 A7

0 0 0 −δ


, (3.45)

A0 = α1φ1δ − (1− k)2σ1Λ
δφ1

,

A1 = β(α1δ − (1− k)2σ1Λ)
φ1δ

,

A2 = (1− k)σ1(α1δ − (1− k)2σ1Λ)
δφ1

,

A3 = (1− k)2σ1Λ
δ

,

A4 = (νδ + (1− k)Λ)(sγ1 − µ(1− d)(1− k)α2)− (1− d)(1− k)α2(1− k)2σ2Λ
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,

A5 = sρ(νδ + (1− k)Λ)− γ2(νδ + (1− k)Λ)
ω(µ(νδ + (1− k)σ2Λ) + (1− k)2σ2Λ) ,

A6 = −µ(νδ + (1− k)Λ)− (1− k)2σ2Λ
νδ + (1− k)Λ ,

A7 = σ2δ
2s(1− k)(νδ + (1− k)Λ)

µ(νδ + (1− k)Λ) + ((1− k)2σ2Λ)(νδ + (1− k)Λ)2 .

Let λ denote the eigenvalues of J , then

|J (E0)− λI| = 0 (3.46)

where I is a 4× 4 identity matrix Using (3.46) we get the following:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 − λ A1 0 −A2

A3 A4 − λ 0 A2

0 A5 A6 − λ A7

0 0 0 −δ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.47)

Then the characteristic equation at E0 of the linearised system of the model (3 1)-(3 4) is given

below,

(−δ − λ)(A6 − λ)(λ2 − (A0 + A4)λ+ A0A4 − A1A3) = 0.
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Therefore, we get two negative characteristic roots,

λ1 = −δ, λ2 = −A6,

Now, we consider the following equation to try and find R0

λ2 − (A0 + A4)λ+ A0A4 − A1A3 = 0

λ2 − (A0 + A4)λ+ A0A4(1− A1A3

A0A4
) = 0

By simplifying the below expression, we have the basic reproduction number,

A1A3

A0A4
=

βσ1Λ(1− k)2
(
α1δ − (1− k)2σ1

)(
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ

)
δ
(
α1δφ1 − φ1σ1(1− k)2Λ

)(
(νδ + (1− k)Λ)(sγ1 − µα2r)− rα2(1− k)2σ2Λ

) = R0,

(3.48)

where r = (1− d)(1− k). This implies the following equation,

λ2 − (A0 + A4)λ+ A0A4(1−R0) = 0

Now we can apply the Routh-Hurwitz criterion in the above equation,

• Tr(A) < 0,

• Det(A) > 0.

a0 = 1 > 0, a1 = (A0 + A4) < 0, A0A4(1−R0) > 0,

the above conditions are true, when

α1φ1δ < 2φ1(α1δ − (1− k)2σ1Λ) + (1− k)2α1Λ,

(1− d)(1− k)α2 <
sγ1(νδ + (1− k)Λ)

µ(νδ + (1− k)Λ) + (1− k)2σ2Λ and R0 < 1.
(3.49)

Since the Routh-Hurwitz criterion holds, all the eigenvalues are negative. Therefore, the Tumor-

free equilibrium point of the system of equation (3.1)-(3.4) is locally asymptotically stable when

R0 < 1. �
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We now discuss local stability of the system about it’s dead equilibrium point. For this, we com-

pute eigenvalues of the jacobian matrix of the linearised system. Negative eigenvalues of the ja-

cobian matrix about the dead equilibrium point implies local stability of the dead equilibrium

point.

Theorem 3.4 The case (i) Dead equilibrium point Ed1 of the system (3.1)-(3.4) is locally asymp-

totically stable if
(1− k)2σ1Λ

α1δ
> 1,

sγ1(νδ + (1− k)Λ)
(1− d)(1− k)α2(µ(νδ + (1− k)Λ) + (1− k)2σ2Λ) > 1.

.

Proof. When J is evaluated at dead equilibrium point Ed1 is given by,

J (Ed1) =



B0 0 0 0

B1 B2 0 0

0 B3 B4 0

0 0 0 −δ


, (3.50)

|J (Ed1)− λI| = 0 (3.51)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − λ 0 0 0

B1 B2 − λ 0 0

0 B3 B4 − λ 0

0 0 0 −δ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.52)

The characteristic polynomial of J (Ed1) is,

(−δ − λ1)(B0 − λ2)(B2 − λ3)(B4 − λ4) = 0

where

B0 = α1 −
(1− k)2σ2Λ

δ
,

B2 = (1− d)(1− k)α2 −
sγ1(νδ + (1− k)Λ)

µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,

B4 = −µ− (1− k)2σ2Λ
νδ + (1− k)Λ
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Clearly, two eigenvalues of the system at Ed1 are negative and real,

λ1 = −δ, λ4 = −µ− (1− k)2σ2Λ
νδ + (1− k)Λ

for dead equilibrium point to be stable all eigenvalues need to be less than zero, for λ2 < 0, B0 <

0

α1 −
(1− k)2σ2Λ

δ
< 0,

α1 <
(1− k)2σ2Λ

δ
,

1 < (1− k)2σ2Λ
δα1

,

(1− k)2σ2Λ
δα1

> 1

for λ3 < 0, B2 < 0

(1− d)(1− k)α2 −
sγ1(νδ + (1− k)Λ)

µ(νδ + (1− k)Λ) + (1− k)2σ2Λ < 0,

(1− d)(1− k)α2 <
sγ1(νδ + (1− k)Λ)

µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,

sγ1(νδ + (1− k)Λ)
(1− d)(1− k)α2(µ(νδ + (1− k)Λ) + (1− k)2σ2Λ) > 1.

Thus, all eigenvalues are negative and real. Hence, the Dead equilibrium point Ed1 of the system

(3.1)-(3.4) is locally asymptotically stable. �

Theorem 3.5 The case (ii) Dead equilibrium point Ed2 of the system (3.1)-(3.4) is locally asymp-

totically stable if

(1− k)2σ1Λ
α1δ

> 1,

(1− d)(1− k)α2

γ1I∗1
> 1,

A0 > 0, 0 < k < 1

otherwise unstable.
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Proof. When J is evaluated at dead equilibrium point Ed2 is given by,

J (Ed2) =



C0 0 0 0

C1 C2 C3 0

0 C4 C5 C6

0 0 0 −δ


, (3.53)

|J (Ed2)− λI| = 0 (3.54)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 − λ 0 0 0

C1 C2 − λ C3 0

0 C4 C5 − λ 0

0 0 0 −δ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.55)

Clearly, one of the eigenvalues of the system at J (Ed2) is negative and real, λ1 = −δ. However,

the remaining can be analysed by basic calculation

(C0 − λ)(C2 − λ)(C5 − λ) = 0,

λ2 = C0, λ3 = C2, λ4 = C5

where

C0 = α1 − (1− k)2σ1Λ
δ

,

C2 = γ1I
∗
1 − (1− d)(1− k)α2,

C5 = (A0ρφ2 − A0A1γ2)((1− d)(1− k)α2 − γ1I
∗
1 − A1φ1(µA0 + (1− k)2σ2Λ))

φ2A0A1

where

A0 = δν − (1− k)Λ, A1 = ωφ2 + (1− d)(1− k)α2 − γ1I
∗
1 .

For dead equilibrium point to be stable all eigenvalues need to be less than zero, the following

conditions apply,

1. C0 < 0 if 0 < k < 1, (1−k)2σ1Λ
α1δ

> 1,

2. C2 < 0 if, (1−d)(1−k)α2
γ1I∗

1
> 1,
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3. C5 < 0 given A0 > 0, 0 < k < 1.

Thus, all eigenvalues are negative and real. Hence, the Dead equilibrium point Ed2 of the system

(3.1)-(3.4) is locally asymptotically stable. �

Theorem 3.6 The co-existing equilibrium point Ee of the system (3.1)-(3.4) is stable if the fol-

lowing Routh-Hurwitz criterion is satisfied,

Tr(J (Ee)) = (Q0 +Q3 +Q6 − δ) < 0,

Det(J (Ee)) = (−δ(Q0Q3Q6 +Q0Q4Q5 +Q1Q2Q6)) > 0.

Proof. We examined and Linearized the system (3.1)-(3.4) around the co-existing equilibrium

point Ee and we obtained the Jacobian matrix below J (Ee), which represents the co-existing equi-

librium values for normal cells, tumor cells, immune cells and estrogen levels

J (Ee) =



Q0 −βNe 0 −Q1

Q2 Q3 −γ1Te Q1

0 Q4 Q5 Q6

0 0 0 −δ


, (3.56)

|J (Ee)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q0 −βNe 0 −Q1

Q2 Q3 −γ1Te Q1

0 Q4 Q5 Q6

0 0 0 −δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.57)
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where

Q0 = α1 − 2φ1Ne − βTe − (1− k)σ1Ee,

Q1 = (1− k)σ1Ne,

Q2 = (1− k)σ1Ee,

Q3 = (1− d)(1− k)α2 − 2φ2Te − γ1Ie,

Q4 = ρωIe
(ω + Te)2 − γ2Ie,

Q5 = ρTe
ω + Te

− γ2Te − (1− k) σ2Ee
ν + Ee

,

Q6 = (1− k) σ2νIe
(ν + Ee)2 .

We need to show that Trace(J (Ee)) < 0, that is

Trace(J Ee) = (Q0 +Q3 +Q6 − δ) < 0

= −(δ − α1 − (1− d) + (1− k)α2)− Te
(
β + 2φ2 −

ρ

ω + Te

)
− γ1Ie − 2φ1Ne − Ee

(
(1− k)σ1 + (1− k)σ2

νIe
(ν + Ee)2

)

Thus,

Tr(J (Ee)) < 0, if δ > α1 + (1− d)(1− k)α2

To show that,

Det(J (Ee)) = (−δ(Q0Q3Q6 +Q0Q4Q5 +Q1Q2Q6)) > 0

letτ1 = −δQ0Q3Q6, τ2 = −δQ0Q4Q5, τ3 = −δQ1Q2Q6

τ1 = −δ
(

(α1 − 2φ1Ne − βTe − (1− k)σ1Ee)((1− d)(1− k)α2 − 2φ2Te − γ1Ie)((1− k) σ2νIe
(ν + Ee)2 )

)

This implies that τ1 > 0, if α1 > 2φ1Ne +e +(1− k)σ1Ee and (1− d)(1− k)α2 < γ1Ie + 2φ2Te

τ2 = −δQ0Q4Q5,

= −δ
(

(α1 − 2φ1Ne − βTe − (1− k)σ1Ee)(
ρωIe

(ω + Te)2 − γ2Ie)(
ρTe

ω + Te
− γ2Te − (1− k) σ2Ee

ν + Ee
)
)
.
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This implies that τ2 > 0, if α1 < 2φ1Ne +βTe + (1− k)σ1Ee, ρωIe

(ω+Te)2 < γ2Ie and ρTe

ω+Te
< γ2Te− (1−

k) σ2Ee

ν+Ee

τ3 = δe((1− k)σ1Ee)((1− k) νIe
(ν + Ee)2 ).

This implies that τ3 > 0 and by Rourth-Hurwitz criterion the co-existing equilibrium point is

asymptotically stable. �
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3.5 Global stability of equilibrium points

Rantzer [44] presented the concept of global stability and its analysis through the Lyapunov Method

in his paper, which opened a new study avenue in nonlinear differential equations analysis. Two

well-known approaches (Lyapunov method and Bendixson-Dulac criteria) are used to investigate

the requirement of global stability for steady states of nonlinear differential equations.

Solving the global stability, we will make use of Lyapunov function. Lyapunov method is a pow-

erful technique for multidimensional systems. There is no systematic strategy for constructing

Lyapunov function for mathematical models. On the other hand the Lyapunov functions for a

given system are not unique. It turns out that Lyapunov function can continuously be found for

any steady system and thus in the event that a system is stable, a Lyapunov function exists and

vice versa[45].

3.5.1 Global stability of Tumor-free equilibrium point

Now we need to show that the tumor-free equilibrium point is globally stable, which means the

total eradication of the tumor cells. We will accomplish this objective by the Lyapunov second

strategy. The tumor-free equilibrium point for our model, which is locally stable is E0 = (N0, 0, I0, E0).

Theorem 3.7 The tumor-free equilibrium point is globally asymptotically stable in Ω, if the fol-

lowing conditions hold:

α1 >
(1− k)2σ1Λ

δ
,

µ+ α2γ2(1− d)(1− k)
φ2

+ (1− k)2σ2Λ
δν + (1− k)Λ >

α2ρ

δω + (1− d)(1− k)α2
,

2δ
I2

0E
2
0

{
γ2T + µ+ (1− k)σ2

E

υ + E

}
>

(1− k)2σ2
2

I2
0 (ν + E)2(ν + E0)2 + 2δρT

I2
0E

2
0(ω + T ) ,

2δ
N2

0E
2
0
{φ1(N +N0) + +(1− k)σ1E} >

(1− k)2σ2
1

N2
0

+ 2δα1

N2
0E

2
0

Proof. We now consider a Lyapunov function V defined by:

V =
(
N −N0

N0

)2
+
(
I − I0

I0

)2
+
(
E − E0

E0

)2
+ (T − T0)2.
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In the NTIE-plane containing the tumor free equilibrium point E0, V (E0) = 0 and V (E) > 0 are

evident. As a result, it is a Lyapunov function.

The derivative of V along the system’s solution (3.1)-(3.4) is represented as:

dV

dt
= 2

N2
0

(N −N0)dN
dt

+ 2
I2

0
(I − I0)dI

dt
+ 2
E2

0
(E − E0)dE

dt
+ 2(T − T0)dT

dt
,

= 2
N2

0
(N −N0)

{
α1N − φ1N

2 − βNT − (1− k)σ1NE
}

+ 2
I2

0
(I − I0)

{
s+ ρ

IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E

}
+ 2
E2

0
(E − E0) {(1− k)Λ− δE}

+2(T − T0) {((1− d)(1− k)α2 − φ2T )T + (1− k)σ1NE − γ1IT} .

Since at the tumor free equilibrium point (E0)

dN

dt
= dI

dt
= dE

dt
= 0

and T0 = 0, so we have

α1N0 − φ1N
2
0 − βN0T0 − (1− k)σ1N0E0 = 0,

s+ ρ
I0T0

ω + T0
− γ2I0T0 − µI0 − (1− k)σ2

I0E0

υ + E0
= 0,

(1− k)Λ− δE0 = 0,

((1− d)(1− k)α2 − φ2T0)T0 + (1− k)σ1N0E0 − γ1I0T0 = 0.

Incorporating the above terms in dV
dt

and we get

dV

dt
= 2

N2
0

(N −N0)
(
α1N − φ1N

2 − βNT − (1− k)σ1NE − (α1N0 − φ1N
2
0 − βN0T0 − (1− k)σ1N0E0)

)
+ 2
I2

0
(I − I0)

(
s+ ρ

IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E

−
(
s+ ρ

I0T0

ω + T0
− γ2I0T0 − µI0 − (1− k)σ2

I0E0

υ + E0

))
+ 2
E2

0
(E − E0)

(
(1− k)Λ− δE − ((1− k)Λ− δE0)

)
+2(T − T0)

(
1− d)(1− k)α2T − φ2T

2 + (1− k)σ1NE − γ1IT

−
(
(1− d)(1− k)α2T0 − φ2T

2
0 + (1− k)σ1N0E0 − γ1I0T0

))
.
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Collecting and canceling terms, yields

= 2
N2

0
(N −N0)

(
α1(N −N0)− φ1(N2 −N2

0 )− β(NT −N0T0)− (1− k)σ1(NE −N0E0)
)

+ 2
I2

0
(I − I0)

(
ρ( IT

ω + T
− I0T0

ω + T0
)− γ2(IT − I0T0)− µ(I − I0)− (1− k)σ2( IE

υ + E
− I0E0

υ + E0
)
)

+ 2
E2

0
(E − E0)(−δ(E − E0))

+2(T − T0)
(
(1− d)(1− k)α2(T − T0)− φ2(T 2 − T 2

0 )− γ1(IT − I0T0)
)
,

which then becomes:

= 2
N2

0
(N −N0)

(
α1(N −N0)− φ1(N −N0)(N +N0)− β(NT −N0T +N0T −N0T0)

−(1− k)σ1(NE −N0E +N0E −N0E0)
)

+ 2
I2

0
(I − I0)

(
ρ
( IT

ω + T
− I0T

ω + T
+ I0T

ω + T
− I0T0

ω + T0

)
− γ2(IT − I0T + I0T − I0T0)

−µ(I − I0)− (1− k)σ2
( IE

υ + E
− I0E

υ + E
+ I0E

υ + E
− I0E0

υ + E0

))
+ 2
E2

0
(E − E0)

(
− δ(E − E0)

)
+2(T − T0)

(
(1− d)(1− k)α2(T − T0)− φ2(T − T0)(T + T0)− γ1(IT − T0I + T0I − I0T0)

)
,

= 2
N2

0
(N −N0)

(
α1(N −N0)− φ1(N −N0)(N +N0)− β(T (N −N0)−N0(T − T0)

−(1− k)σ1(E(N −N0)−N0(E − E0))
)

+ 2
I2

0
(I − I0)

(
ρ( T

ω + T
(I − I0)

+ I0

(ω + T0)(ω + T )(T (ω + T0)− T0(ω + T ))
)
− γ2(T (I − I0)− I0(T − T0))

)
+ 2
E2

0
(E − E0)(−δ(E − E0))

+2(T − T0)
(
(1− d)(1− k)α2(T − T0)− φ2(T − T0)(T + T0)− γ1(T (T − T0)− T0(I − I0))

)
.
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Following some algebraic computations, we arrive at

dV

dt
= 2

N2
0

(N −N0)2
(
α1 − φ1(N +N0)− βT − (1− k)σ1E

)
+ (N −N0)(I − I0)× 0

−2(1− k)σ1

N0
(N −N0)(E − E0)− 2β

N0
(N −N0)(T − T0)

+ 2
I2

0
(I − I0)2

(
ρ

T

ω + T
− γ2T − µ− (1− k)σ2

E

υ + E

)

− 2(1− k)σ2ν

I0(ν + E)(ν + E0)(I − I0)(E − E0) + 2
(

ρω

I0(ω + T )(ω + T0) −
γ2

I0
− γ1

)
(I − I0)(T − T0)

− 2δ
E2

0
(E − E0)2

+2(T − T0)2
(
(1− d)(1− k)α2 − φ2(T + T0)− γ1I

)
= −a11(N −N0)2 − a13(N −N0)(E − E0)− 2a14(N −N0)(T − T0)

−a22(I − I0)2 − 2a23(I − I0)(E − E0)− 2a24(I − I0)(T − T0)

−a33(E − E0)2 − a44(T − T0)2.

Thus, dV
dt

is a quadratic form which can be expressed as

dV

dt
= −Y TAY,

where Y T = (N −N0, I − I0, E − E0, T − T0) and A is a symmetric matrix given by

A =



a11 0 a13 a14

0 a22 a23 a24

a31 a32 a33 0

a41 a42 0 a44


(3.58)
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where

a11 = 2
N2

0
{−α1 + φ1(N +N0) + βT + (1− k)σ1E} ,

a13 = a31 = (1− k)σ1

N0
,

a14 = a41 = β

N0
,

a22 = 2
I2

0

{
−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E

}
,

a23 = a32 = (1− k)σ2ν

I0(ν + E)(ν + E0) ,

a24 = a42 = ρω

I0(ω + T )(ω + T0) −
γ2

I0
− γ1,

a33 = 2δ
E2

0
,

a44 = 2 {−(1− d)(1− k)α2 + φ2(T + T0) + γ1I}

Now dV
dt

can only be negative definite if the matrix A is positive definite i.e all the principal mi-

nors of A are positive. Now the first principal minor is given by

M1 = |a11| =
2
N2

0
{−α1 + φ1(N +N0) + βT + (1− k)σ1E} > 0

only if

−α1 + φ1(N +N0) + βT + (1− k)σ1E > 0.

Since all the variables are bounded in the region:

Ω =
{
N ≤ α1

φ1
, T ≤ (1− d)(1− k)α2

φ2
, I ≤ s

µ− ρ
, E ≤ (1− k)Λ

δ

}
,

now substituting for the upper bounds of the variables, we get

−α1 + φ1(α1

φ1
+N0) + β

(1− d)(1− k)α2

φ2
+ (1− k)2σ1Λ

δ
≤ 0.

Moreover, substituting for N0 = α1δ−(1−k)2σ1Λ
δφ1

, we have the following comparison:

⇒ −α1 + φ1(α1

φ1
+ α1δ − (1− k)2σ1Λ

δφ1
) + β

(1− d)(1− k)α2

φ2
+ (1− k)2σ1Λ

δ
≥ 0

α1δ − (1− k)2σ1Λ
δ

+ β
((1− d) + (−k))α2

φ2
+ (1− k)2σ1Λ

δ
≥ 0.
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Thus, a sufficient condition for M1 to be positive definite is that

α1 >
(1− k)2σ1Λ

δ
, (3.59)

which holds. Therefore, M1 > 0.

For the second principal minor

M2 =

∣∣∣∣∣∣∣
a11 0

0 a22

∣∣∣∣∣∣∣ > 0

holds if a11a22 > 0 since a11 > 0 holds from the first condition, now we need a22 > 0. Now substi-

tuting the upper bounds of the variables, then a22 > 0 if

µ+ α2γ2(1− d)(1− k)
φ2

+ (1− k)2σ2Λ
δν + (1− k)Λ >

α2ρ

δω + (1− d)(1− k)α2
(3.60)

therefore M2 > 0, with 0 ≤ k < 1 and 0 ≤ d < 1. The third principal minor

M3 =

∣∣∣∣∣∣∣∣∣∣∣
a11 0 a13

0 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣
= a11a22a33 − a11a

2
23 − a2

13a22 > 0

holds if

a11a22a33 − (a11a
2
23 + a2

13a22) > 0

⇒ a11

{
a22a33

2 − a2
23

}
+ a22

{
a11a33

2 − a2
13

}
> 0

Since a11 holds from M1 and a22 holds from M2, then for the above inequality to hold we need

the following inequalities to be positive,

a22a33

2 − a2
23 > 0

and
a11a33

2 − a2
13 > 0

Now we have

a22a33

2 − a2
23 > 0,

⇒ 2δ
I2

0E
2
0

{
−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E

}
− (1− k)2σ2

2
I2

0 (ν + E)2(ν + E0)2 > 0,

2δ
I2

0E
2
0

{
γ2T + µ+ (1− k)σ2

E

υ + E

}
>

(1− k)2σ2
2

I2
0 (ν + E)2(ν + E0)2 + 2δρT

I2
0E

2
0(ω + T )
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and

a11a33

2 − a2
13 > 0

2δ
N2

0E
2
0
{−α1 + φ1(N +N0) + βT + (1− k)σ1E} −

(1− k)2σ2
1

N2
0

> 0

2δ
N2

0E
2
0
{φ1(N +N0) + βT + (1− k)σ1E} >

(1− k)2σ2
1

N2
0

+ 2δα1

N2
0E

2
0

Then M3 > 0 if the following holds,

2δ
I2

0E
2
0

{
γ2T + µ+ (1− k)σ2

E

υ + E

}
>

(1− k)2σ2
2

I2
0 (ν + E)2(ν + E0)2 + 2δρT

I2
0E

2
0(ω + T )

2δ
N2

0E
2
0
{φ1(N +N0) + βT + (1− k)σ1E} >

(1− k)2σ2
1

N2
0

+ 2δα1

N2
0E

2
0
.

(3.61)

Therefore M3 > 0 provided the conditions above.

Lastly, the fourth principal minor

M4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 0 a13 a14

0 a22 a23 a24

a31 a32 a33 0

a41 a42 0 a44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

a11

{
a44(a22a33

2 − a2
23) + a33(a22a44

2 − a2
24)
}

+a13
{
a2

24a31 − (a24a32a41 + a22a41a44)
}

+a14
{
a41a

2
23 − (a22a33a41 + a23a31a42)

}
> 0

M4 is positive if

a22a33

2 > a2
23,

a22a44

2 > a2
24

a2
24a31 > a24a32a41 + a22a41a44

a41a
2
23 > a22a33a41 + a23a31a42.

(3.62)

The principal minor M4 is positive provided all the above conditions are satisfied. Then dV
dt

is

negative definite if the matrix A is positive definite if all the inequalities (3.49), (3.50), (3.51).

Since the model is proven to be bounded and singleton ,LaSalle’s Invariance Principle [46] al-

lows us to conclude that the tumor-free equilibrium point (E0) of the system (3.1)-(3.4) is globally

asymptotically stable. �
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3.5.2 Global stability of Case (i) dead equilibrium point

Theorem 3.8 The dead equilibrium point Ed1 is globally asymptotically stable in Ω, provided the

following conditions holds:

γ2T + µ+ (1− k)σ2
E

υ + E
> ρ

T

ω + T
,

2δ
I2

1E
2
1

(
γ2T + µ+ (1− k)σ2

E

υ + E

)
>

(1− k)2σ2
2ν

2

I2
1 (ν + E)2(ν + E1)2 + 2δρT

I2
1E

2
1(ω + T ) ,

2δ
I2

1E
2
1

(
γ2T + µ+ (1− k) σ2E

ν + E

)
> (1− k)2σ2

1 + 2δρT
I2

1E
2
1(ω + T ) .

Proof. Now we will show the equilibrium point

Ed1 = (N1, T1, I1, E1) =
(

0, 0, s(νδ − (1− k)Λ)
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ ,

(1− k)Λ
δ

)

is globally stable by constructing a Lyapunov function, which described the total eradication of

normal cells and tumor cells. We first define a Lyapunov function of the model as

W =
(
I − I1

I1

)2
+
(
E − E1

E1

)2
+ (N −N1)2 + (T − T1)2

Evidently, we can see that W (Ed1) = 0 and W (E) > 0 ∀E 6= Ed1 in the NTIE-plane containing

the equilibrium point Ed1 So, it is a Lyapunov function. Now differentiating on both sides with

respect to time, yields

dW

dt
= 2

I2
1

(I − I1) dI
dt

+ 2
E2

1
(E − E1) dE

dt
+ 2(N −N1)dN

dt
+ 2(T − T1)dT

dt
dW

dt
= 2

I2
1

(I − I1)
{
s+ ρ

IT

ω + T
− γ2IT − µI − (1− k)σ2

IE

υ + E

}
+ 2

E2
1

(E − E1) {(1− k)Λ− δE}

+ 2(N −N1)
{
α1N − φ1N

2 − βNT − (1− k)σ1NE
}

+ 2(T − T1) {((1− d)(1− k)α2 − φ2T )T + (1− k)σ1NE − γ1IT} .

Since at the dead equilibrium point Ed1

dI

dt
= dE

dt
= 0
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and N1 = T1 = 0, then we have

s+ ρ
I1T1

ω + T1
− γ2I1T1 − µI1 − (1− k)σ2

I1E1

υ + E1
= 0,

(1− k)Λ− δE1 = 0,

α1N1 − φ1N
2
1 − βN1T1 − (1− k)σ1N1E1 = 0,

((1− d)(1− k)α2 − φ2T1)T1 + (1− k)σ1N1E1 − γ1I1T1 = 0

Incorporating the above terms in dW
dt

and the derivation are the same as in the tumor free global

stability proof, yields:

dW

dt
= 2

I2
1

(I − I1)2
{
ρ

T

ω + T
− γ2T − µ− (1− k)σ2

E

υ + E

}
− 2(1− k)σ2ν

I1(ν + E)(ν + E0)(I − I1)(E − E1)

+(I − I1)(N −N1)× 0 + 2( ρω

I1(ω + T )(ω + T0) −
γ2

I1
− γ1)(I − I1)(T − T1)

− 2δ
E2

1
(E − E1)2

+2(N −N1)2 {α1 − φ1(N +N1)− βT − (1− k)σ1E}

−2(1− k)σ1(N −N1)(E − E1)− 2β(N −N1)(T − T1)

+2(T − T1)2 {(1− d)(1− k)α2 − φ2(T + T1)− γ1I} ,

= −b11(I − I1)2 − 2b12(I − I1)(E − E1)− 2b14(I − I1)(T − T1)

−b22(E − E1)2 − 2b23(N −N1)(E − E1)

−b33(N −N1)− 2b34(N −N1)(T − T1)− b44(T − T1)2.

As a result, dW
dt

is a quadratic form that may be written as

dW

dt
= −XTBX

where XT = (I − I1, E − E1, N −N1, T − T1) and B is a symmetric matrix given by

B =



b11 b12 0 b14

b21 b22 b23 0

0 b32 b33 b34

b41 0 b43 b44


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where

b11 = 2
I2

1
(−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E
)

b12 = b21 = (1− k)σ2ν

I1(ν + E)(ν + E1)
b14 = b41 = γ1 + γ2

I1
− ρω

I1(ω + T )(ω + T1)

b22 = 2δ
E2

1

b23 = b32 = (1− k)σ1

b33 = 2(−α1 + φ1(N +N1) + βT + (1− k)σ1E)

b34 = b43 = β

b44 = 2 (−(1− d)(1− k)α2 + φ2(T + T1) + γ1I)

Then dW
dt

< 0 if the matrix B is positive definite i e all the principal minors of B are positive.

Now the first principal minor is given by

M1 = |b11| =
2
I2

1
(−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E
) > 0

only if

−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E
> 0

γ2T + µ+ (1− k)σ2
E

υ + E
> ρ

T

ω + T

with this condition

γ2T + µ+ (1− k)σ2
E

υ + E
> ρ

T

ω + T
, (3.63)

therefore M1 > 0. For the second principal minor

M2 =

∣∣∣∣∣∣∣
b11 b12

b21 b22

∣∣∣∣∣∣∣ > 0

holds if b11b22 > 0 since b11 > 0 holds from the first condition. Now we need b22 > 0, then b22 > 0

if

b11b22 − b2
12 > 0

2δ
I2

1E
2
1

(
−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E

)
− (1− k)2σ2

2ν
2

I2
1 (ν + E)2(ν + E1)2 > 0

2δ
I2

1E
2
1

(
γ2T + µ+ (1− k)σ2

E

υ + E

)
>

(1− k)2σ2
2ν

2

I2
1 (ν + E)2(ν + E1)2 + 2δρT

I2
1E

2
1(ω + T )

(3.64)
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Therefore M2 > 0 since the above inequality holds. The third principal minor is given by

M3 =

∣∣∣∣∣∣∣∣∣∣∣
b11 b12 0

b21 b22 b23

0 b32 b33

∣∣∣∣∣∣∣∣∣∣∣
= b11(b22b33 − b2

23)− b12b21b33 > 0

b11(b22b33 − b2
23)− b12b21b33 > 0

b11

(
b22b33

2 − b2
23

)
+ b33

(
b11b22

2 − b2
12

)

This inequality hold if

b22b33

2 − b2
23 > 0,

2δ
I2

1E
2
1

(
γ2T + µ+ (1− k) σ2E

ν + E

)
> (1− k)2σ2

1 + 2δρT
I2

1E
2
1(ω + T ) ,

b11b22

2 − b2
12 > 0,

2δ
I2

1E
2
1

(
γ2T + µ+ (1− k) σ2E

ν + E

)
>

(1− k)2σ2
2ν

2

I2
1 (ν + E)2(ν + E1)2 + 2δρT

I2
1E

2
1(ω + T ) .

(3.65)

Lastly, the fourth principal minor

M4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b12 0 b14

b21 b22 b23 0

0 b32 b33 b34

b41 0 b43 b44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

b11

(
b22(b33b44

2 − b2
34) + b44(b22b33

2 − b2
23)
)

+b12

(
b21(b

2
34
2 − b33b44) + b34(b21b34

2 − b23b41)
)

+b14

(
b23(b23b41

2 − b21b43) + b41(b
2
23
2 − b22b33)

)
> 0.

Then M4 > 0 if

b33b44

2 > b2
34,

b22b33

2 > b2
23,

b2
34
2 > b33b44

b21b34

2 > b23b41,
b23b41

2 > b21b43,
b2

23
2 > b22b33

(3.66)
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Then the principal minor M4 is positive provided all the above conditions are satisfied. Then dW
dt

is negative definite if the matrix B is positive definite if all the inequalities (3.54), (3.55), (3.56),

(3.57) are satisfied simultaneously. The tumor-free equilibrium point(Ed1) of the system (3.1)-

(3.4) is globally asymptotically stable, according to LaSalle’s Invariance Principle [46]. �

3.5.3 Global stability of Case (ii) dead equilibrium point

Theorem 3.9 If Z = α1
φ1N+βT+(1−k)σ1E

≤ 1, then the dead equilibrium point Ed2 is globally asymp-

totically stable in Ω.

Proof. Consider the following Lyapunov function:

V (N, T, I, E) = 1
2N

2.

In the NTIE-plane containing the equilibrium point, V (Ed1) = 0 and V (E) > 0 ∀E 6= Ed1 are

evident, as a result, it is a Lyapunov function. The derivative of V along the system’s solution

(3.1)-(3.4) is represented as

dV

dt
= N

dN

dt
,

= N(α1N − φ1N
2 − βNT − (1− k)σ1NE),

= −N2(φ1N + βT + (1− k)σ1E − α1),

= −N2(φ1N + βT + (1− k)σ1E)(1− Z),

where Z = α1
φ1N+βT+(1−k)σ1E

. If Z ≤ 1 then dV
dt
≤ 0. Hence, V is a Lyapunov function on Ω.

Therefore, it follows from the LaSalle’s Invariance Principle [47], that the dead equilibrium point

is globally asymptotically stable. �
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3.5.4 Global stability of co-existing equilibrium point

Theorem 3.10 The co-existing equilibrium point Ee = (Ne, Te, Ie, Ee) of the system (3.1)-(3.4) is

globally asymptotically stable provided the following conditions are satisfied in Ω:

φ1Ne + α2β(1− d)(1− k)
φ2

+ (1− k2)σ1Λ
δ

> 0,

2
N2
eT

2
e

(
φ1Ne + α2β(1− d)(1− k)

φ2
+ (1− k)2σ1Λ

δ

)(
φ2Te + γ1s

µ− ρ

)
>

β2

N2
e

,

2
T 2
e I

2
e

(
φ2Te + γ1s

µ− ρ

)(
α2γ2(1− d)(1− k)

φ2
+ µ+ (1− k)2σ2Λ

νδ + (1− k)Λ

)
+
(

ρω

Ie(ω + T )(ω + Te)

)2

>,

2
T 2
e I

2
e

(
φ2Te + γ1s

µ− ρ

)(
α2ρ(1− d)(1− k)

φ2ω + (1− d)(1− k)α2

)
+ γ1

T 2
e

+ γ2

I2
e

.

The conditions means that even though the cells co-exists, normal and immune cells are still above

the equilibria.

Proof. Consider the following Lyapunov function about Ee

V =
(
N −Ne

Ne

)2
+
(
T − Te
Te

)2
+
(
I − Ie
Ie

)2
+
(
E − Ee
Ee

)2

Differentiating on both side with respect to time, we get
dV

dt
= 2

N2
e

(N −Ne)
dN

dt
+ 2
T 2
e

(T − Te)
dT

dt
+ 2
I2
e

(I − Ie)
dI

dt
+ 2
E2
e

(E − Ee)
dE

dt

= 2
N2
e

(N −Ne)(α1N − φ1N
2 − βNT − (1− k)σ1NE)

+ 2
T 2
e

(T − Te)((1− d)(1− k)α2T − φ2T
2 + (1− k)σ1NE − γ1IT )

+ 2
I2
e

(I − Ie)(s+ ρIT

ω + T
− µI − γ2IT − (1− k)σ2

IE

ν + E
)

+ 2
E2
e

(E − Ee)((1− k)Λ− δE)

We arrived at this conclusion after some algebraic calculations:

= 2
N2
e

(N −Ne)2(α1 − φ1(N +Ne)− βT − (1− k)σ1E)− 2β
Ne

(N −Ne)(T − Te) + (N −Ne)(I − Ie)× 0

−(1− k)σ1(N −Ne)(E − Ee) + 2
T 2
e

(T − Te)2((1− d)(1− k)α2 − φ2(T + Te)− γ1I)

+2(γ1

Te
+ γ2

Ie
− ρω

Ie(ω + T )(ω + Te)
)(T − Te)(I − Ie)

+ 2
I2
e

(I − Ie)2( ρT

ω + T
− µ− γ2T − (1− k)σ2

E

ν + E
)− 2(1− k)σ2ν

Ie(ν + E)(ν + Ee)

− 2δ
E2
e

(E − Ee)2.
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dV
dt

can now be written as the sum of the quadratics as follows:
dV

dt
= −a11(N −Ne)2 − 2a12(N −Ne)(T − Te)− 2a14(N −Ne)(E − Ee)− a22(T − Te)2

−2a23(T − Te)(I − Ie)− a33(I − Ie)2 − a44(E − Ee)2

= −XTCX

where XT = (N −Ne, T − Te, I − Ie, E − Ee) and C is a symmetric matrix given by

C =



c11 c12 0 c14

c21 c22 c23 0

0 c32 c33 c34

c41 0 c43 c44


(3.67)

where

c11 = 2
N2
e

(−α1 + φ1(N +Ne) + +(1− k)σ1E)

c12 = c21 = β

Ne

c14 = c41 = (1− k)σ1

Ne

c22 = 2
T 2
e

(−(1− d)(1− k)α2 + φ2(T + Te) + γ1I)

c23 = c32 = γ1

Te
+ γ2

Ie
− ρω

Ie(ω + T )(ω + Te)

c33 = 2
I2
e

(−ρ T

ω + T
+ γ2T + µ+ (1− k)σ2

E

υ + E
)

c34 = c43 = (1− k)σ2

Ie

b44 = 2δ
E2
e

.

Then dV
dt

< 0 if the matrix C is positive definite i.e all the principal minors of C are positive.

Now the first principal minor is given by:

M1 = |c11| =
2
N2
e

(−α1 + φ1(N +Ne) + βT + (1− k)σ1E) > 0

M1 > 0 only if −α1 + φ1(N + Ne) + βT + (1 − k)σ1E > 0. Since all variables are bounded in the

region Ω, now substituting the upper bounds of the variables, yields:

φ1Ne + α2β(1− d)(1− k)
φ2

+ (1− k2)σ1Λ
δ

> 0 (3.68)
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which holds. Therefore M1 > 0. For the second principle minor, repeat the process,

M2 =

∣∣∣∣∣∣∣
c11 c12

c21 c22

∣∣∣∣∣∣∣ > 0

c11c22 − c2
12 > 0

c11c22 > c2
12.

Since all variable are bounded in the region Ω and now substituting the upper bounds of the vari-

ables, yields:
2

N2
eT

2
e

(
φ1Ne + α2β(1− d)(1− k)

φ2
+ (1− k2)σ1Λ

δ

)(
φ2Te + γ1s

µ− ρ

)
>

β2

N2
e

(3.69)

Since the above inequality holds, then M2 > 0. The third principal minor

M3 =

∣∣∣∣∣∣∣∣∣∣∣
c11 c12 0

c21 c22 c23

0 c32 c33

∣∣∣∣∣∣∣∣∣∣∣
= c11(c22c33 − c2

23)− c12c21c33 > 0

M3 is positive definite if the following holds,

c11

(
c22c33

2 − c2
23

)
+ c33

(
c11c22

2 − c2
12

)
> 0

Since all variable are bounded in the region Ω and now substituting the upper bounds of the vari-

ables, then the above inequality holds if
c22c33

2 > c2
23

2
T 2
e I

2
e

(
φ2Te + γ1s

µ− ρ

)(
α2γ2(1− d)(1− k)

φ2
+ µ+ (1− k)2σ2Λ

νδ + (1− k)Λ

)
+
(

ρω

Ie(ω + T )(ω + Te)

)2

>

2
T 2
e I

2
e

(
φ2Te + γ1s

µ− ρ

)(
α2ρ(1− d)(1− k)

φ2ω + (1− d)(1− k)α2

)
+ γ1

T 2
e

+ γ2

I2
e

c11c22

2 > c2
12

2
N2
eT

2
e

(
φ1Ne + α2β(1− d)(1− k)

φ2
+ (1− k2)σ1Λ

δ

)(
φ2Te + γ1s

µ− ρ

)
>

β2

N2
e

(3.70)

Lastly the fourth principle minor

M4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 0 c14

c21 c22 c23 0

0 c32 c33 c34

c41 0 c43 c44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0
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Then

c11

(
c22(c33c44

2 − c2
34) + c44(c22c33

2 − c2
23)
)

+c12

(
c21(c

2
34
2 − c33c44) + c34(c21c34

2 − c23c41)
)

+c14

(
c23(c23c41

2 − c21c43) + c41(c
2
23
2 − c22c33)

)
> 0

then M4 is positive definite if the following holds

c33c44

2 > c2
34,

c22c33

2 > c2
23,

c2
34
2 > c33c44

c21c34

2 > c23c41,
c23c41

2 > c21c43,
c2

23
2 > c22c33

(3.71)

So the matrix C is positive definite if all the inequalities (3.68), (3.69), (3.70), (3.71) are satisfied

simultaneously. Thus the co-existing equilibrium point Ee satisfies all the Lyapunov stability theo-

rem with the conditions in (3.68), (3.69), (3.70), (3.71). Then the co-existing equilibrium point is

globally stable. In all aspect the Normal and Immune cells should always be positive, so that the

body can fight Tumor cells. �
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Chapter 4

NTIE model as an Optimal Control

Problem

4.1 Introduction

Optimal Control theory is a branch of mathematical optimization that deals with evaluating a

control for a dynamical system over time in order to optimize an objective function[48]. Our aim

is use two controls surgery (u1) and hormone therapy (u2) to reduce the number of tumor cells

and the levels of estrogen cells at a minimal cost.

In this chapter, we use the model system (3.1)-(3.4) in Chapter 3 to formulate a corresponding

Optimal Control Problem (OCP). Thus we seek from the OCP, optimal values for the controls

u1(t) (surgery) and u2(t) (hormone therapy) as well as the optimal trajectories N∗, T ∗, I∗ and E∗

which form the solution to the OCP. The system will be considered in the time interval [0, tf ],

where tf is the final time. The control set is defined as follows:

U = {(u1(t), u2(t)) : ui Lebesgue measurable , 0 ≤ ui ≤ uimax < 1, i = 1, 2} (4.1)

where u1 max and u2 max denote the upper bounds for the efforts of respective intervention. These

bounds reflect practical limitations on the maximum rates of controls in the given time period

[48]. As a result, these will be determined by the budget set aside for the implementation of each

of these control measures. The lower bounds for the controls, on the other hand, correspond to

the situation in which there is no intervention for the classes T and E.
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4.2 Formulation of the optimal control problem

In this section, we formulate an Optimal Control Problem for the model in the systems of differ-

ential equations (3.1)-(3.4), using surgery and hormone therapy as control interventions to reduce

the tumor burden and estrogen levels at the lowest possible cost at final time. Then, we formu-

late the objective functional

J(u1, u2) = min
u1,u2

∫ tf

0

(
T (t) + E(t) + 1

2Au
2
1 + 1

2Bu
2
2

)
dt, (4.2)

subject to

dN

dt
= (α1 − φ1N)N − βNT − (1− u2)σ1NE,

dT

dt
= ((1− u1)(1− u2)α2 − φ2T )T + (1− u2)σ1NE − γ1IT,

dI

dt
= s+ ρ

IT

ω + T
− γ2IT − µI − (1− u2)σ2

IE

υ + E
,

dE

dt
= (1− u2)Λ− δE,

(4.3)

where N(0) = N0 ≥ 0, T (0) = T0 ≥ 0, I(0) = I0 ≥ 0, E(0) = E0 ≥ 0

U = {0 ≤ u1 ≤ u1 max, 0 ≤ u2 ≤ u2 max,∀t ∈ [0, tf ]} (4.4)

and where the parameters A and B together with appropriate units define the appropriate costs

associated with controls u1(t) and u2(t) respectively. The quadratic terms are introduced to indi-

cate non-linear costs potentially arising at high intervention levels [31]. Thus, the terms Au2
1 and

Bu2
2 describe the costs associated with intervention of tumor and estrogen cells respectively. Since

we have shown that the system is bounded from chapter 3, now we need to determine the exis-

tence of the optimal control using the results in [49]. For our analysis we will assume that the two

controls (u1, u2) are bounded and Lebesgue integrable. In particular, we seek an ideal control pair

(u∗1, u∗2) such that

J(u∗1, u∗2) = min
U
J(u1, u2).

Theorem 4.1 (Existence of an Optimal control)

Given the objective function in (4.2), where U is the admissible set, there exists an optimal con-

trols u∗1 and u∗2 such that

J(u∗1, u∗2) = min
u1,u2∈U

J(u1, u2),
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if the following holds:

• The set of variables and controls of the state problem is non-empty.

• U is a closed convex.

• The Objective functional integrand is concave.

Proof. Since the coefficients of the system (4.3) are bounded and the solutions are bounded on

a finite time interval, we may use the result of [50] to determine the existence of the system’s so-

lution (4.3). Then the first condition is fulfilled. By definition the control set is closed convex,

which gives the second condition. Now we need to prove the concavity of the integrand, note that

we have Hessian matrix of J in u1, u2 is given by

H(u1, u2) =

A 0

0 B

,
then,

det(H(u1, u2)) = AB ≥ 0,∀(u1, u2) ∈ U,

therefore, the objective functional integrand is concave. �

The above problem can now be solved either numerically by using total enumeration methods or

linear programming techniques. This will be presented in chapter 5. Any solution to the above

optimal control problem must also satisfy certain auxiliary conditions, which are discussed below.

The necessary conditions that an optimal control pair must satisfy are derived from Pontryagin’s

Maximum Principle (PMP) [51]. There are various versions of PMP for problem statements of

varying generality. The PMP states simply that the Hamiltonian (H), must be minimized with

respect to u1 and u2 over the set of all permissible controls U .

With the help of Pontryagin’s Maximum Principle [51] (see A), we define the Hamiltonian for the

problem of the system (4.2) and (4.3) as follows:

H(t, N, T, I, E, u1, u2, λ1, λ2, λ3, λ4) = T +E+ 1
2Au

2
1 + 1

2Bu
2
2 +λ1

dN

dt
+λ2

dT

dt
+λ3

dI

dt
+λ4

dE

dt
. (4.5)

By applying the PMP to the model (4.3) and using the existence result proved above for the opti-

mal control, we obtain the following theorem:
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Theorem 4.2 There exists an optimal control pair (u∗1, u∗2) with a corresponding solution (N∗, T ∗, I∗, E∗),

that minimizes J(u1, u2) over U. Moreover, there exists adjoint functions, λ1(t), λ2(t), λ3(t) and

λ4(t), such that
dλi
dt

= −∂H
∂xi

, i ∈ {1, 2, 3, 4} ,

with x1 = N, x2 = T, x3 = I, x4 = E,

that is

dλ1

dt
= −∂H

∂N
=− (λ1(α1 − 2φ1N

∗ − βT ∗ − (1− u∗2)σ1E
∗) + λ2(1− u∗2)σ1E

∗)

dλ2

dt
= −∂H

∂T
=−

(
1− βN∗λ1 + λ2((1− u∗1)(1− u∗2)α2 − 2φ2T

∗ − γ1I
∗)− λ3( ρωI∗

(ω + T ∗)2 − γ2I
∗)
)

dλ3

dt
= −∂H

∂I
=−

(
−λ2γ1T

∗ + λ3( ρT ∗

ω + T ∗
− µ− γ2T

∗ − (1− u∗2) σ2E
∗

ν + E∗
)
)

dλ4

dt
= −∂H

∂E
=−

(
1− λ1(1− u∗2)σ1N

∗ + λ2(1− u∗2)σ1N
∗ − λ3(1− u∗2) σ1νI

∗

(ν + E∗)2 − λ4δ

)
,

(4.6)

with transversality conditions

λi(tf ) = 0, i ∈ {1, 2, 3, 4} .

The following characterization holds,

u∗1 =



0 if ∂H
∂u1
≤ 0,

λ2α2T ∗

A
if ∂H

∂u1
= 0,

u1 max if ∂H
∂u1
≥ 0,

and

u∗2 =



0 if ∂H
∂u2
≤ 0,

σ1N∗E∗(λ2−λ1)+λ2α2T ∗+Λλ4
B

+ λ3σ2I∗E∗

B(ν+E∗) if ∂H
∂u2

= 0,

u2 max if ∂H
∂u2
≥ 0.

Thus the compact way of writing the optimal control is,

u∗1 = min
{
u1 max,max

[
0, λ2α2T

∗

A

]}
(4.7)
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and

u∗2 = min
{
u2 max,max

[
0, σ1N

∗E∗(λ2 − λ1) + λ2α2T
∗ + Λλ4

B
+ λ3σ2I

∗E∗

B(ν + E∗)

]}
(4.8)

Proof. Let u∗1 and u∗2 be the given optimal control functions and N∗, T ∗, I∗ and E∗ be the sys-

tem’s associated optimal control variables that minimize the objective functional. Then by Pon-

tryagin’s maximum principle [52], there exists adjoint variables λ1, λ2, λ3, λ4 which satisfy the

equations below:
dλ1

dt
= −∂H

∂N
=− (λ1(α1 − 2φ1N

∗ − βT ∗ − (1− u∗2)σ1E
∗) + λ2(1− u∗2)σ1E

∗ + (1− u∗2)σ1λ2E
∗)

dλ2

dt
= −∂H

∂T
=−

(
1− βN∗λ1 + λ2((1− u∗1(1− u∗2)α2 − 2φ2T

∗ − γ1I
∗)− λ3( ρωI∗

(ω + T ∗)2 − γ2I
∗)
)

dλ3

dt
= −∂H

∂I
=−

(
−λ2γ1T

∗ + λ3( ρT ∗

ω + T ∗
− µ− γ2T

∗ − (1− u∗2) σ2E
∗

ν + E∗
)
)

dλ4

dt
= −∂H

∂E
=−

(
1− λ1(1− u∗2)σ1N

∗ + λ2(1− u∗2)σ1N
∗ − λ3(1− u∗2) σ1νI

∗

(ν + E∗)2 − λ4δ

)
,

(4.9)

with transversality conditions

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = 0,

evaluated at the optimal control pair and corresponding states, which results in the adjoint sys-

tem (4.6) [53].

Note that u∗1 and u∗2 are candidate minimum solutions for the problem. By taking into account

the optimality conditions,

∂H
∂u1

= 0 at u∗1 and ∂H
∂u2

= 0 at u∗2

and solving for u∗1 and u∗2, depending on the limits 0 ≤ u1 ≤ u1max and 0 ≤ u2 ≤ u2max, then the

characterizations in (4.7) and (4.8) can be derived as follows:

0 = ∂H
∂u1

= Au1 − α2λ2T,

0 = ∂H
∂u2

= Bu2 + σ1NE(λ1 − λ2)− σ2λ3IE

ν + E
− Λλ4.

The characterization of u∗1 and u∗2 are obtained as follows:

u∗1 = λ2α2T
∗

A
,

u∗2 = σ1N
∗E∗(λ2 − λ1) + λ2α2T

∗ + Λλ4

B
+ λ3σ2I

∗E∗

B(ν + E∗) .
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The bounds 0 ≤ u1 ≤ u1 max and 0 ≤ u2 ≤ u2 max, can now be imposed on the controls to obtain

the following:

u∗1 = min
{
u1 max,max

[
0, λ2α2T

∗

A

]}
(4.10)

u∗2 = min
{
u2 max,max

[
0, σ1N

∗E∗(λ2 − λ1) + λ2α2T
∗ + Λλ4

B
+ λ3σ2I

∗E∗

B(ν + E∗)

]}
. (4.11)

�

The optimality system comprises of the four state equations coupled with the corresponding four

adjoint equations with the initial and transversality conditions together with the characterization

of the optimal controls. Utilizing the characterization of the optimal controls above, we obtain

the following set of equations:

dN∗

dt
= (α1 − φ1N

∗)N∗ − βN∗T ∗ − (1− u∗2)σ1N
∗E∗,

dT ∗

dt
= ((1− u∗1)(1− u∗2)α2 − φ2T

∗)T ∗ + (1− u∗2)σ1N
∗E∗ − γ1I

∗T ∗,

dI∗

dt
= s+ ρ

I∗T ∗

ω + T ∗
− γ2I

∗T ∗ − µI∗ − (1− u∗2)σ2
I∗E∗

υ + E∗
,

dE∗

dt
= (1− u∗2)Λ− δE∗,

dλ∗1
dt

= − (λ1(α1 − 2φ1N
∗ − βT ∗ − (1− u∗2)σ1E

∗) + λ2(1− u∗2)σ1E
∗) ,

dλ∗2
dt

= −
(

1− βN∗λ1 + λ2((1− u∗1)(1− u∗2)α2 − 2φ2T
∗ − γ1I

∗)− λ3
( ρωI∗

(ω + T ∗)2 − γ2I
∗
))

,

dλ∗3
dt

= −
(
−λ2γ1T

∗ + λ3
( ρT ∗

ω + T ∗
− µ− γ2T

∗ − (1− u∗2) σ2E
∗

ν + E∗

))
,

dλ∗4
dt

= −
(

1− λ1(1− u∗2)σ1N
∗ + λ2(1− u∗2)σ1N

∗ − λ3(1− u∗2) σ1νI
∗

(ν + E∗)2 − λ4δ

)
,

(4.12)

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = 0 and N(0) = N0, T (0) = T0, I(0) = I0, E(0) = E0.
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Chapter 5

Numerical Analysis

5.1 Introduction

In this chapter, we will perform sensitivity analysis on the basic reproduction number (R0) in re-

lation to the parameters and present numerical results for both the NTIE model and the corre-

sponding OCP-NTIE model. Different optimal control strategies for the OCP-NTIE model will

be discussed using estimated parameters.

5.2 Sensitivity analysis

Sensitivity analysis specifies the importance of each parameter to the model. Furthermore, sen-

sitivity analysis is used to investigate the accuracy of model predictions for parameter values be-

cause errors in data collection and postulated parameter values can occur [53, 54]. Furthermore,

it is used to determine which parameters have greater influence on R0 than others.

In this section, we will perform a sensitivity analysis of the basic reproduction number using to

identify which parameters have the most impact on the model. We are interested in learning

more about how these parameters affect R0 as their values vary. To find out which parameter in

the model have high impact on R0, we investigate the change in R0 with respect to tumor growth

parameters. From equation (3.43), the explicit expression of the basic reproduction number R0 is
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given by:

R0 =
βσ1Λ(1− k)2

(
α1δ − (1− k)2σ1

)(
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ

)
δ
(
α1δφ1 − φ1σ1(1− k)2Λ

)(
(νδ + (1− k)Λ)(sγ1 − µα2r)− rα2(1− k)2σ2Λ

) .
where r = (1− d)(1− k)

The normalized forward sensitivity index of a variable to a parameter is the ratio of the variable’s

relative change to the parameter’s relative change. The sensitivity index is defined using partial

derivatives if the variable is a differentiable function of the parameter [66]. The normalized for-

ward sensitivity index of a variable u that depends differentiability on a parameter p is defined as

[67]:

Υp
u = ∂u

∂p
× p

u

Since we have derived an explicit formula for R0, using normalized forward sensitivity index, we

obtain analytical expression for the sensitivity of R0,

∂R0

∂p
= ∂R0

∂p
× p

R0

To slow the growth of cancer cells, we must first understand the significance of the various fac-

tors that contribute to their development. The initial growth of cancer cells is determined by

the reproduction number R0. As a result, we investigate the sensitivity indices of the reproduc-

tion number R0 in relation to the parameters in question. The following parameters are subjected

to sensitivity analysis to determine their impact on basic reproduction number: constant rate of

surgery (d), source of immune cells (s), tumor cell death rate due to immune response (γ1), tumor

formation rate (σ1), and immune suppression rate due to excess estrogen (σ2). We now investi-

gate the change in R0 with respect to (d) by computing:

∂R0

∂d
= −

ABα2
(
µ(νδ + (1− k)Λ) + (1− k)2σ2Λ

)
CD2

where

A = βσ1Λ(1− k)2
(
α1δ − (1− k)2σ1

)
,

B = µ(νδ + (1− k)Λ) + (1− k)2σ2Λ,

C = δ
(
α1δφ1 − φ1σ1(1− k)2Λ

)
,

D = (νδ + (1− k)Λ)(sγ1 − µα2r)− rα2(1− k)2σ2Λ.
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Since 0 ≤ d < 1 and all of the other parameters are considered to be positive, we obtain

∂R0

∂d
< 0.

This implies that the basic reproduction number R0 in the cell population decreases with the rate

of surgery performed on the tumor cells. This means that intervention of surgery to the infected

cells, has a positive effect on the disease intervention and control because it decreases the num-

ber of cancer cells. An increase of surgery intervention, decreases the number of cancer cells pro-

duced. Now to investigate the effect of s and γ1 on the basic reproduction number, we examine

the change in R0 with respect to s and γ1 by computing:

∂R0

∂s
= −γ1(νδ + (1− k)Λ)

CD2 < 0,

∂R0

∂γ1
= −s(νδ + (1− k)Λ)

CD2 < 0.

This implies that the number of secondary cases R0 in the cell population will decrease with in-

creasing the source of immune booster (s) and the number of tumor cells death rate due to im-

mune response (γ1). We now examine the effect of σ1 on the basic reproduction number, by com-

puting the change in R0 with respect to σ1:

∂R0

∂σ1
= βΛ(1− k)2(α1δ − 2(1− k)2σ1)BC + ABφ1(1− k)2Λ

C2D
.

Since all parameters are assumed to be positive, then we obtain:

∂R0

∂σ1
> 0.

This implies that the number of secondary cases R0 in the cell population increases with the tu-

mor formation rate σ1. Therefore, this parameter should be kept as low as possible. We now in-

vestigate the effect of σ2 on R0, we compute the change in R0 with respect to σ2:

∂R0

∂σ2
= A((1− k)2DΛ + α2r(1− k)2ΛB)

CD2 > 0.

This means that as the immune suppression rate increases, so does the number of secondary cases

R0 in the cell population. As a result, this parameter should be kept to a minimum value.
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5.3 Model parameters and estimated initial conditions

In this section we summarize the parameter values and initial values of the NTIE model. The

parameter values and initial values were estimated using historical data. In numerical simula-

tions, we will analyze the volume in a sphere to determine the number of cells that stretch across

the diameter using Runge Kutta method. The mathematical formula of a volume of sphere is

given by:

V = 4
3πr

3,

where r = d
2 is the radius of the sphere, V is the volume [15]. We will derive all our initial values

using the cell size of 0, 01mm. The initial values are N(0) = 1 cm3 (1012 cells), T (0) = 10−5 cm3,

I(0) = s
µ

= 1.448 cm3 [15] and we have assumed the initial value of estrogen to be E(0) = 0.02

cm3. A tumor of 1 cm3 is assumed to contain 109 cells [55] and the clinical detection threshold for

tumor is generally 107 cells [56], the initial volume of 10−5 is below clinical detection levels, im-

plying that tumor can be eradicated. The initial tumor cells and estrogen cells are small, while

immune and normal cells are at their healthy equilibrium points when surgery and hormone ther-

apy are started. The parameters of the cost function are set to A = 0.05 and B = 0.005. These

values ensure that the maximum control is equally weighted, and the maximum control input for

both controls is 0.9. The maximum duration of observation is set at 100 days. All parameter val-

ues and sources, used in the numerical simulations are stated in the table below:
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Table 5.1: Description of parameter values
Description Parameter Value Units Source

Per capita growth rate of normal cells α1 0.70 day−1 [16]

Per capita growth rate of tumor cells α2 0.98 day−1 [16]

Natural death of rate of normal cells φ1 0.3 day−1 [17]

Natural death rate of tumor cells φ2 0.4 day−1 [17]

Tumor formation rate by excess estrogen σ1 0.20 day−1 [15]

Immune suppression due to excess estrogen σ2 0.002 day−1 [16]

Rate of inhibition of normal cells β 1 day−1 [18]

Source of estrogen Λ 0.5 day−1 [18]

Tumor death rate due to immune response γ1 0.9 day−1 [15]

Immune death rate due to tumor attack γ2 0.3 day−1 [15]

Immune response rate ρ 0.2710 day−1 [57]

Immune threshold ω 0.8620 day−1 [57]

Natural death of immune cells µ 0.29 day−1 [16]

Decay factor of immune cells ν 0.1 day−1 [17]

Source of immune cells s 0.4 day−1 [16]

Natural death rate of estrogen δ 0.97 day−1 [17]

Constant rate of surgery d 0-1 day−1 [18]

Constant rate of hormone therapy k 0-1 day−1 [18]

5.4 Results and discussion

In this section, we use the Runge-Kutta method (RK4) to investigate the behavior of the NTIE

and OCP-NTIE models. To solve the systems of state equations and adjoint equations, we ran

numerical simulations in MATLAB using the forward-backward sweep method. The systems of

state equations were solved forward in time simultaneously, and the systems of adjoint equations

were solved backward in time simultaneously. We assume the step size h = tf
M

where tf = 100 and

M = 999.

The graphical representations of the NTIE model with and without controls are presented so

that we can compare them and understand the effectiveness of using the control. Figure 5.1 shows
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solutions to the model with no control measures.

Figure 5.1: The Normal Tumor Immune and Estrogen (NTIE) model with no controls(days)

The numerical solution shows that in the presence of excess estrogen, tumor cell population grow

as shown in the Figure 5.1, normal and immune cell population decrease, with normal cell pop-

ulation suffering the most. There is a suppression of normal and immune cell population as con-

sequence of increase estrogen levels and the rapid growth of tumor cell population. This implies

that introducing more estrogen into the body increases the rate of tumor formation, resulting in

the development of breast cancer. The reason why tumor cell population are slightly decreasing,

it is because the immune system identifies the threat caused by cancer cells and tries to fight it,

but it is not potent enough to kill the tumor cells [58]. What we observed from the Figure above

is that the tumor cell population are being delayed by the immune system and other internal fac-

tors; otherwise, if this suppression of immune system by tumor cells was greater than the suppres-

sion of tumor by immune system, the tumor cells might be able to invade other cells and gradu-

ally expand to other parts of the body [45]. The numerical solution shows that as estrogen levels

rise, immune cell population decreases, weakening the immune system. Subsequently, the immune

system will be unable to effectively compete with cancer cells and eventually fail to control the

disease.

The NTIE model in Figure 5.1 shows the undesirable results , because there is still a burden of

breast cancer disease that needs to be treated. Now we apply the optimal control problem to in-
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tervene in the problem by introducing the following intervention strategies to control breast can-

cer:

The three control strategies discussed further below are as follows:

• Strategy 1: Surgery (u1) control on tumor cells.

• Strategy 2: Hormone therapy (u2) control on excess estrogen and tumor cells.

• Strategy 3: Surgery(u1) and hormone therapy(u2) combined control on tumor cells growth

and excess estrogen.
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Strategy 1:

This strategy implements surgery (breast conserving) as the only control measure, thus the corre-

sponding cost balancing factors are A = 0.05 and B = 0 for u1 and u2 respectively.

Figure 5.2: The optimal states and optimal control surgery(days)

In this strategy, we vary the value of one parameter σ1, that was found to be more sensitive to

the basic reproduction number. We reduce the tumor’s ability to grow in order to monitor the

behavior of tumor cells in Chapter 5. We apply surgical force to the initial variable T (0) = 10−5.

Figure 5.2 depicts the results of surgical simulations of tumor cell removal, and we can see that

some tumor cells may have strayed beyond the surgical margin. Provided that tumor formation

has been reduced, we can draw the conclusion that normal cells have reached an equilibrium,

whereas immune cells are still affected by excess estrogen. The estrogen levels are still the same

as in Figure 5.1 and these levels are not desirable because high levels of estrogen influence tumor

cells to grow. The Figure also shows that after 90 days, the optimal control surgery decreases to
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zero, which is primarily influenced by the adjoint system because the control is dependent on it.

The results are depicted in Figure 5.3.

Figure 5.3: Adjoint system with optimal surgery(days)

Figure 5.2 shows that although surgery reduces the number of tumor cells, it does not eliminate

all cancer cells because estrogen are activated and have a negative impact on normal and immune

cells.
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Strategy 2:

This strategy implements hormone therapy (tamoxifen) as the only control measure, thus the cor-

responding cost balancing factors are A = 0 and B = 0.005 for u1 and u2 respectively.

Figure 5.4: Optimal states and optimal hormone therapy(days

In this simulation we vary the two parameters σ1 and Λ due to the fact that these parameters en-

able the estrogen hormone to develop cancer cells. and fix the other parameters. Figure 5.4 shows

the numerical simulations of the state system with hormone therapy as the optimal control when

σ1 = 0.002 and Λ = 0.005 . We note that, in the presence of hormone therapy (tamoxifen) re-

duces the activities of tumor cells, and we also note that using too much hormone therapy drug

results in a rapid decrease of estrogen levels. The Figure 5.4 depicts an increase in immune and

normal cells while a decrease in estrogen and tumor cells. The increase in normal cells is due to

a decrease in estrogen intake (Λ), which results in less tumor formation (σ1). The increase in im-

mune cells is due to a reduction in estrogen consumption, which results in less suppression of im-

mune cells by estrogen cells. We can see from the Figure 5.4 that the drug’s strength was much
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higher at the start of the treatment period, and there was a lag due to the singular control de-

fined in equation 4.11. This means that the drug’s dosage was initially high and gradually de-

creased to a constant intake. That is why there is a lag. We can conclude from this observation

that optimal control is far more effective at reducing the number of tumor cells to near zero. The

Figure 5.4 shows that the control reaches zero after 95 days. This is due to the control’s reliance

on the adjoint system, which eventually reaches zero after 100 days. The following graph depicts

the adjoint system with hormone therapy:

Figure 5.5: Optimal control (Hormone therapy)

Based on the optimal control diagram, we can conclude that we should give full effort at the be-

ginning of the disease to reduce tumor cell spread. This means that hormone therapy is much

more effective at the beginning of the disease than it is later on.

72



Strategy 3:

This strategy considers the implementation of both surgery (u1) and hormone therapy (u2) as

control measures, with A = 0.05 and B = 0.005. In this strategy, hormone therapy is used as

adjuvant therapy to help reduce the likelihood of cancer recurrence.

Figure 5.6: The optimal states and optimal controls (surgery (u1) and hormone therapy

(u2))(days)

Figure 5.4 depicts the combination of two controls (surgery and hormone therapy), both of which

have a significant impact on the increase of normal and immune cell populations. We notice that

tumor cells can be eradicated after 10 days, which is faster compared to the results in Figure 5.2

and 5.4 when we used the controls alone. The rapid decrease in tumor cell population in the pre-

ceding Figure is caused by surgical intervention, and the remaining cancer cells after surgery are

removed using hormone therapy.

The numerical results show that using the combination of hormone therapy and surgery is more
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effective than using hormone therapy or surgery alone. The combination of surgery and hormone

therapy resulted in significant tumor and estrogen cells eradication. The results depicted in Fig-

ure 5.4 resolved the problem depicted in Figure 5.1, indicating that breast cancer was successfully

treated with the combination of surgery and hormone therapy.
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Chapter 6

Discussions, conclusions and

recommendations

6.1 Discussions

In this study, we developed a mathematical model that incorporated the dynamics of four cell

populations, including normal cells, tumor cells, immune cells, and estrogen, with two optimal

controls: surgery and hormone therapy. The associated ordinary differential equation’s local and

global stability was thoroughly examined, and the critical threshold basic reproduction number

was determined. The tumor-free equilibrium (TFE) has been established as having local stabil-

ity, and the system is only locally asymptotically stable if the reproductive number is less than

unity (R0 < 1). As a result, the development of breast cancer is unavoidable. This means that if

the best treatments are used, the number of tumor cells in the body will be reduced to zero. We

found out that the presence of excess estrogen increases the tumor formations depicted in Figure

5.1. This means that any extra estrogen introduced into the body through birth control increases

the rate of tumor formation. The optimal control problem associated with the ordinary differen-

tial equation was developed and solved to find the adjoint system and characterization of optimal

controls. We compared three control strategies that were implemented to reduce the number of

tumor cells, estrogen levels, and the cost of treating breast cancer.In comparison to current clin-

ical and research studies, reducing a tumor to undetectable levels in less than a week is biolog-

ically impossible. Several factors, including the type of cancer being treated and the character-
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istics of the patient’s cells, influence the length of cancer treatment. This makes predicting how

long it will take to clear a tumor in body tissue difficult. A tumor can also be reduced to insignif-

icant levels and then reappear [60]. Nonetheless, our findings suggest that surgery and hormone

therapy have a good chance of reducing the tumor to undetectable levels in a short period of time

(10 days).

The findings of this study are similar to those of Pranav et al [45], and Alharbi et al [54] in that

they show that after using therapies, the tumor can be cleared after 10 days depending on the pa-

rameters chosen. These findings were presented by mathematical researchers despite the fact that

they contradict the biological meaning, as medicine has demonstrated that cancer cells cannot be

cleared in 10 days. The cancer cells must be removed over a period of months.

6.2 Conclusions

Numerical results demonstrated that surgery had a significant effect on tumor growth, and simi-

lar results were also observed for a hormone therapy approach, which clearly shows that hormone

therapy can reduce estrogen levels. The results revealed that surgery is more effective compared

to hormone therapy. Clearly, we observed that the combination of surgery and hormone therapy

eradicates the tumor cells and excess estrogen. After a few days of treatment, the numerical re-

sults showed and confirmed that the optimal treatment strategies reduce the number of tumor

cells and estrogen levels while increasing normal and immune cells to their healthy equilibrium.

The combination therapy strategy surpassed the strategy of surgery or hormone therapy alone.
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6.3 Recommendations

There are gaps in our study, because we were unable to capture valid data or laboratory data to

predict the behavior of tumor cell population. We only used available data from previous papers,

and we drew our conclusions based on the numerical solutions we obtained from this data. Con-

sidering the findings above, it is recommended that in order to reduce tumor cell population both

controls should be implemented.

6.4 Extensions

The model presented in this study was made simple by assumptions that breast cancer is non-

invasive. The model could be further extended to invasive breast cancer and incorporate different

controls.
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Appendix A

Relevant Definitions

Theorem A.1 Lyapunov stability theorem: Let E be an open subset of R+
4 containing an

equilibrium point E0 suppose that f is continuously differentiable and then there exists a continu-

ous differentiable function, say V (x), which satisfy the following conditions V (E0) = 0

1. V (E0) = 0

2. V (x) > 0, if x 6= E0 where x ∈ E

• If V̇ ≤ 0 ∀x ∈ E, E0 is stable

• If V̇ < 0 ∀x ∈ E, E0 is asymptotically stable

• If V̇ > 0 ∀x ∈ E, E0 is unstable [55]

Theorem A.2 (Pontryagin’s Maximum principle) (PMP) Consider the problem

min
u

∫ tf

t0
f(t,x(t),u(t))dt,

such that

ẋ(t) = g(t,x(t),u(t)),

x(t0) = x0 and x(tf ) = free

85



If u∗(t) and x∗(t) are optimal for the above problem then there exists a piecewise differentiable

adjoint variable λ(t) such that

H(t,x∗(t),u(t), λ(t)) ≥ H(t,x∗(t),u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = f(t,x(t),u(t)) + λ(t)g(t,x(t),u(t))

and

λ̇(t) = −∂H(t,x∗(t),u∗(t), λ(t))
∂x

λ(tf ) = 0.

[17]

There exist an optimal control u∗(t) such that

J(u∗(t)) = min
u∈U

J(u(t)),

subject to the control system with initial conditions.

Definition A.1 Hessian matrix refers to a square matrix of second ordered partial derivatives

of a scalar function [18].

Definition A.2 Tissue is a group of cells that have similar structure and that function together

as a unit [4].

Definition A.3 Cells are basic building blocks of all living things [65].

Definition A.4 ([64]) A piecewise continous control u(·), defined on some time interval t0 ≤ t ≤

tf , with range in the control region U ,

u(·) ∈ U,∀t ∈ [t0, tf ] , is said to be an admissible control.
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A typical optimal control problem (OCP) requires a performance index or cost functional, J [x(·), u(·)];

which must be specified for evaluating the performance of a system quantitatively, a set of state

variables, x(·) ∈ X; and a set of control variables, u(·) ∈ U . The main goal consists in finding

a piecewise continuous control u(t), t0 ≤ t ≤ tf , and the associated state variable x(t), to maxi-

mize or minimize the given objective functional ([?]). An OC problem can be presented in many

different, but equivalent ways, depending on the purpose or the software to be used.

Definition A.5 ([65]) (Basic OC Problem in Lagrange form). An OC problem is:

min
u
J [x(·), u(·)] =

∫ tf

t0
f(t, x(t), u(t))dt

s.t.

ẋ(t) = g(t, x(t), u(t))

x(t0) = x0

It is often assumed that f and g are continuously differentiable functions in all three arguments,

the control(s) are piecewise continuous, and the associated state(s) are piecewise differentiable.
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