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Abstract: A general limitation in assessing the accuracy of land cover mapping is the availability of
ground truth data. At sites where ground truth is not available, potentially inaccurate proxy datasets
are used for sub-field-scale resolution investigations at large spatial scales, i.e., in the Contiguous
United States. The USDA/NASS Cropland Data Layer (CDL) is a popular agricultural land cover
dataset due to its high accuracy (>80%), resolution (30 m), and inclusions of many land cover and crop
types. However, because the CDL is derived from satellite imagery and has resulting uncertainties,
comparisons to available in situ data are necessary for verifying classification performance. This study
compares the cropland mapping accuracies (crop/non-crop) of an optical approach (CDL) and the
radar-based crop area (CA) approach used for the upcoming NASA-ISRO Synthetic Aperture Radar
(NISAR) L- and S-band mission but using Sentinel-1 C-band data. CDL and CA performance are
compared to ground truth data that includes 54 agricultural production and research fields located
at USDA’s Beltsville Agricultural Research Center (BARC) in Maryland, USA. We also evaluate
non-crop mapping accuracy using twenty-six built-up and thirteen forest sites at BARC. The results
show that the CDL and CA have a good pixel-wise agreement with one another (87%). However,
the CA is notably more accurate compared to ground truth data than the CDL. The 2017–2021 mean
accuracies for the CDL and CA, respectively, are 77% and 96% for crop, 100% and 94% for built-up,
and 100% and 100% for forest, yielding an overall accuracy of 86% for the CDL and 96% for CA.
This difference mainly stems from the CDL under-detecting crop cover at BARC, especially in 2017
and 2018. We also note that annual accuracy levels varied less for the CA (91–98%) than for the
CDL (79–93%). This study demonstrates that a computationally inexpensive radar-based cropland
mapping approach can also give accurate results over complex landscapes with accuracies similar to
or better than optical approaches.

Keywords: Sentinel-1; land use and coverage; agriculture; radar

1. Introduction

Agricultural land use has important implications for food security and Earth sys-
tem processes, particularly the nitrogen (e.g., fertilizer), carbon (e.g., biomass), and water
(e.g., evapotranspiration) cycles [1–4]. Many practical agricultural monitoring applications
need frequent (<weekly) large-scale (global) observations at moderate (<30 m) to high
(<4 m) spatial resolutions [5]. The most commonly used observations to meet these de-
mands are from optical satellite sensors such as Landsat, Sentinel-2, and others [5]. Optical
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sensors have many benefits, such as being supplied in an analysis-ready data (ARD) format,
which, notably, also includes data quality flags at each pixel. Data quality flags hold im-
portant information on clouds, cloud shadows, or other transient surface conditions such
as snow. The main drawback of optical instruments is that they cannot view the Earth’s
surface when cloudy. Cloud cover is highly variable in time and space, and important
agricultural events such as green-up and harvest dates may not be accurately detected [6,7].
Furthermore, spaceborne optical data usually only captures two-dimensional information,
inferring properties such as biomass by indirect means, such as canopy closure [8]. Most
optical-based crop mapping products use decision tree and random forest approaches [9–13].
These approaches are computationally expensive, given that they first require model training
and then must step through the decision tree at each pixel. Although current human and
computational requirements are sufficient for making annual cropland maps, it is likely
that associated costs make it challenging to produce more frequent maps, which could
reduce the latency by many months. Furthermore, these approaches mainly focus on the
peak growing season, and classifications can be difficult if this period coincides with cloudy
conditions [14].

Radar is an active sensing approach where a power source on the satellite provides
the energy for emitting and receiving the signal, and radar systems collect data of equal
quality irrespective of the time of day. Radar also uses microwave frequencies (~1–30 GHz),
corresponding to centimeter-scale wavelengths (e.g., 1–30 cm). The microwave frequency
range is highly sensitive to water due to its absorption/emission bands falling in this range
and thus presents an excellent tool for monitoring water dynamics such as soil moisture [15].
Its wavelength also makes radar less sensitive to atmospheric effects, allowing reliable
observations of the surface even in cloudy conditions [16,17]. Commonly used spaceborne
radar instruments measure the returned (backscattered) portion of the electromagnetic
waves after they have interacted with the landscape. The radar then detects a voltage wave
represented as a phasor (complex number), having an amplitude and phase.

In the most commonly used configuration, radar data is sent and received in horizontal
(H) or vertical (V) polarization, yielding four sent/received combinations: HH, HV, VH,
and VV. Backscatter amplitude, phase, and polarization are sensitive to the particular
landscape element’s properties, allowing for landcover classifications. However, radar
classifications are more limited than optical classifications due to spaceborne radar normally
only having a single frequency, as compared to optical instruments that have a dozen or
more bands [11,18].

For polarimetry work, backscatter data is first converted to power units normalized
by area, referred to as radar cross section (RCS), ahead of use. Because the scattering is
a three-dimensional process and may penetrate plants and soils ahead of being returned,
radar data allow users to infer three-dimensional information relating to soil and plant
properties such as vegetation structure, soil and vegetation water content, and Earth
surface deformations [19–25]. Although radar sensing can be a powerful tool, its most
substantial drawback is that radar imagery is usually not provisioned as ARD [26]. Data
often need extensive preprocessing and quality control by the end users. For example, radar
data do not have data quality flags at each pixel and may potentially incorporate noise
unrelated to Earth surface processes, such as radio frequency interference (RFI). This can be
a hindrance for large-scale cloud computing efforts as erroneous pixels cannot be readily
screened out. Radar data also often require additional processing for data to be properly
geolocated and calibrated, necessitating user knowledge of tools such as the European Space
Agency’s (ESA) Sentinel Application Platform (SNAP) software [27]. For some types of
analyses (polarimetry and interferometry), further processing is required using tools such as
PolSARPro, GAMMA software, or NASA’s Interferometric Synthetic Aperture Radar (SAR)
Scientific Computing Environment (ISCE) [28–30]. However, data providers are taking on
these processing requirements, making analyses less computationally expensive to users.
For example, Google Earth Engine freely hosts Sentinel-1 data that were processed by
SNAP [31]. Users may also request free Sentinel-1 on-demand cloud processing for terrain
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flattening or interferometric coherence and phase calculation using Alaska Satellite Facility’s
(ASF) Vertex platform [32,33]. On-demand processing is performed using GAMMA but
has a monthly quota. A key objective of future radar missions such as the NISAR is to
make ARD readily available (including terrain flattened and interferometric products),
allowing users comparable data processing options to those available for optical imagery
but without data quality flags [19].

This work focuses on comparing crop/non-crop mapping performance of the optical-
based USDA/NASS Cropland Data Layer (CDL) and the radar-based NISAR crop area
science algorithm (CA) at the C-band against ground truth data. There are other potential
land cover datasets that could be used, but the CDL is overall the most useful for this
radar-based study, owing to its combination of appropriate resolution (30 m), latency
(annual) and stratification of crops (>50 crop types). Comparatively, the National Land
Cover Database provides the same gridding (30 m) but is only updated every five years and
has no stratification of crops [34]. Other products with the same latency as the CDL are the
global land cover products from NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS, MCD12Q1.061, 500 m pixels) or ESA’s Sentinel-2 based CGLS-LC100 product
(100 m pixels), but they are coarser than the CDL and do not have crop stratification.
There are also finer-gridded global products, such as ESA’s WorldCover 10 m 2020 v100
product, but they are not updated every year and do not have crop stratification [35,36].
The detailed breakdown of agricultural crop types can be useful for evaluating the strengths
and weaknesses of NISAR’s CA product [37,38].

While there have been multiple studies of NISAR’s CA in the past covering both the L-
and C- band, all but one was limited to using a proxy for ground truth data [37–43]. The
only study comparing NISAR’s CA approach to ground truth was conducted in Germany
and did not include comparisons to any of the large-scale optical map products [41].
Comparisons of the CA product with optical products were usually found to have over
80% agreement, which is also the accuracy requirement for NISAR CA [37–40,42,43]. The
CA approach has also been tested by land cover class, showing that it generally performs
well over most crops and forests but has some difficulty in detecting grassland, pasture,
and urban land cover as non-crop [38,43]. Most previous studies only stratified evaluations
by crop and non-crop. However, the two studies were also stratified by different crop
types. One study was for an agricultural region in Canada [38], and the other was for 100
1-by-1-degree tiles in the contiguous USA [43]. In both cases, only the most prevalent row
crops were considered for each region, such as corn, soybeans, wheat, barley, oats, and
canola. Both studies showed that the median and interquartile range for the coefficient of
variation (CV) values had considerable overlap for crops. Therefore, both studies concluded
that the approach used is not suitable for distinguishing between different crops. However,
there were substantial differences between those metrics from the crop versus non-crop
classes, and the studies agreed that the CV approach is suitable for obtaining relatively
accurate (i.e., often >80%) crop/non-crop classifications.

The CDL has been exhaustively tested and was shown to have good agreement (>85%)
with ground truth, but the reported accuracies vary by region and crop type, and the
intermixing of scattered crop pixels in non-crop areas remains problematic [44]. The CDL
uses the USDA Farm Service Agency’s (FSA) common land unit (CLU) data as ground truth.
CLUs are polygons identifying contiguous cropland management areas. In the process of
generating the CDL product, the CLU polygons are rasterized, and those pixels are then
selected from the training and accuracy assessments [9]. The non-crop data in the CDL is
taken from other data sources, such as the National Land Cover Database [34]. It is difficult
to give a confident estimate on the CDL’s crop/non-crop mapping performance due to the
stratified nature of the CDL’s data sources (NLCD + CLU) and how accuracies are provided
(by crop type at CLU validation pixels).

In previous studies, accuracy evaluations of the NISAR CA approach were limited to
optical cropland datasets that are not ground truth, such as the ACI and CDL. Therefore,
it was only possible to assess the correspondence between radar and widely used optical
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cropland mapping approaches, but it was not possible to determine what the performance
gap was between them. Unlike previous studies, we use ground truth data to evaluate the
radar (CA) and optical (CDL) products, enabling us to report on the overall performance
and relative strengths of each approach. It is also important to report on the results of optical
versus radar-based approaches to contextualize the substantial cost and time reductions
associated with radar-based cropland mapping, to better weigh the costs and benefit trade-
offs between the two approaches and to decide which to employ. Reporting on radar-based
cropland mapping performance is important and timely in light of impending (e.g., NISAR,
BIOMASS) and future (e.g., ROSE-L) radar missions that may be used to further advance
cropland mapping capabilities, given that there will be more frequent observations made
and at multiple bands. The low-cost, all-weather capability of the CA approach is important
because this allows it to produce multiple cropland maps each year (e.g., quarterly or
better [19]), which greatly improves current agricultural monitoring capabilities.

2. Materials and Methods
2.1. Materials

Table 1 shows the datasets and tools used for conducting this study.

Table 1. Datasets used in this study.

Dataset/Tool Institution Avail. Link

Farm Operations/shapefiles USDA-BARC open https://doi.org/10.5281/zenodo.8087301 (accessed on
1 August 2023)

Sentinel-1 radar data ESA open https://asf.alaska.edu/ (accessed on 1 August 2023)
Cropland Data Layer USDA/NASS open https://nassgeodata.gmu.edu (accessed on 1 August 2023)

InSAR Computing Env. NASA open https://github.com/isce-framework/isce2 (accessed on
1 August 2023)

Copernicus DEM ESA open https://registry.opendata.aws/copernicus-dem/
(accessed on 1 August 2023)

WMTA ridership WMTA open www.wmata.com (accessed on 1 August 2023)

2.2. Study Area

BARC fields are distributed throughout both the urban and relatively undeveloped
parts of Beltsville, MD. This study focuses on a region encompassing most of both types of
BARC fields, those that are encompassed within the polygon labeled “BARC” in Figure 1. It
is situated in an area that has substantial coverage of agricultural fields (ranging from less
than 1 to over 20 ha in size), built-up areas, and forests (Figure 1). BARC is a USDA Long-
Term Agroecosystems Research (LTAR) site in Maryland, USA [45]. BARC was selected as
the study site because it has a detailed long-term record of crop management information
over a large number of fields representing many different crops, such as soybeans, corn
and wheat. This is ideal for testing NISAR’s CA because performance may vary by crop
type, and it also allowed us to verify which fields had been in active use each year (planted
or harvested). The active use part is important, as a key premise of NISAR’s CA approach
is that field management activities (e.g., tilling, growth, harvesting) during the growing
season change RCS values more than over other land covers [41]. Another important aspect
of BARC is that the region is large enough (~2670 ha) to encompass 50+ fields of ~0.8 ha
or greater extent, making it suitable for the 30 m × 30 m remote sensing-based products
evaluated in this paper (CDL and CA) [46]. Furthermore, the diverse representation of
fields, forests and built-up land use makes BARC, and the surrounding area, an ideal
location for assessing NISAR’s CA mapping limitations, given that NISAR’s CA was shown
to be consistently accurate over fields and forests, but exhibits mixed results over built-up
areas [38,43]. This location, therefore, provides an opportunity to evaluate the classification
of urban areas, forest, and cropland.

https://doi.org/10.5281/zenodo.8087301
https://asf.alaska.edu/
https://nassgeodata.gmu.edu
https://github.com/isce-framework/isce2
https://registry.opendata.aws/copernicus-dem/
www.wmata.com
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Figure 1. Study area of Beltsville Agricultural Research Center region in Maryland, USA. The region
primarily consists of built-up, forest, and agricultural cropland use.

It is important to note that the ‘crop’ polygons were digitized using GPS data and thus
are not expected to contain any substantial amount of non-crop covers. Because the ‘forest’
polygons were hand-drawn over visually selected sites, they are also highly uniform but can
include minor inhomogeneities due to roads and small clearings. The ‘built-up’ polygons
consist of a combination of different land cover/landscape elements by design: they consist
of built-up features like buildings (office, residential), paved surfaces (parking lots), and also
intermixed lawns and trees that are common to residential and commercial areas.

2.3. Field Data

BARC maintains an extensive ground truth library of farm management practices in
the FarmLogic system [47], which includes details on farm operations such as planting
and harvesting dates, cultivars, and crop termination methods. This dataset also includes
GIS data, such as shapefiles delineating field locations and extents, plus data on field
classification (e.g., dairy, production, or research) and crop type. This database covers the
entire period for which 12-day or more frequent Sentinel-1A/B observations were available
over CONUS [48]—making it ideal for testing a Sentinel-1-based approach using time
series of similar density as NISAR’s 12-day revisit. It is desirable to use dense time series to
capture the effects of field management activities in a timely manner, such as harvesting
and tilling [37,49].

The BARC field records in the FarmLogic needed additional data screening prior
to analysis. It is important to note that the database also includes many small fields for
research, resulting in a relatively high number of field dates in FarmLogic. FarmLogic
contained about 400 to 500 field dates for harvesting operations each year and only covered
2019 to 2021. Planting data were available for the full range of this study from 2017 to
2021. However, planting entries had relatively greater variation in field dates, ranging from
400 to 800. This discrepancy stems from some fields not having any record or only one of
planting or harvesting in some years, while other fields had multiple field operation entries
within a single year. This can be explained by not every field management activity having
been entered into the database.
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Working from this digital data record, we defined that an actively used field is one
that had at least one planting or harvesting date in each year of the five-year period. This
compromise was implemented to maximize the number of fields to be studied while also
ensuring a reasonable level of confidence that each field was actively used for crops in each
year studied. Furthermore, we required fields to be of reasonable size compared to the
30 m × 30 m pixels, imposing a 2-acre (0.81 ha) area requirement. Four highly instrumented
research fields were also included due to their onsite long-term camera record indicating
that these fields were in active use between 2017 and 2021, bringing the total to 54 [50].
Imposing a requirement of a field having at least one planting or harvesting record to be
considered in this study results in some crop type omissions, as not all the crops or cover
crops planted throughout the year may be represented in a full accounting based on the
database only. Using the harvest and planting entries from 2019 as example, there were
19 soybean, 13 corn, 7 wheat, 5 rye, 4 cover crop, 2 grass, 1 mixed, 1 alfalfa, 1 brassica fields
and 1 field labeled as miscellaneous.

For assessment purposes, it is also necessary to assess non-crop classification per-
formance. Because this study focuses on classifying fields rather than pixels as crop or
non-crop, regions of interest were hand-drawn over 13 forested and 26 built-up areas inside
BARC (Figure 1). Figure 2 shows the size distribution of the crop and the non-crop fields,
here broken down by dairy production (crops such as soybeans, corn, wheat, rye, and
cover), production (crops, mainly soybeans), research (crops such as soybeans, corn, and
rye), forest and built-up having mean areas of 4.8, 4.0, 3.1, 11.1 and 9.3 ha, respectively. In
the context of U.S. agriculture, field sizes studied here are considerably smaller than the
U.S. median value of 27.8 ha but closely resemble regional field sizes (median 6 ha) [51,52].

Sensors 2023, 23, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 2. Field size distribution by field category in 0.5 ha bins. 

2.4. Remote Sensing Data 
Cross-polarized (‘VH’) Sentinel-1 C-band data were used as input to the CA mapping 

approach. Data were processed using NASA’s ISCE software (ISCE-2, version 2.5.3) [29], 
using the rtcApp.py script but with a custom geocoding step. The rtcApp.py script per-
forms a radiometric and terrain correction (RTC) using the methods described in [53]. RTC 
is important because RCS values vary with incidence angle and terrain, and those depend-
encies should be removed to better attribute RCS values to land cover and surface pro-
cesses [54,55]. RTC processing can greatly reduce terrain impacts on RCS values and 
makes it possible for radar data obtained from different observation geometries to be in-
teroperable with one another [56]. The ISCE script uses Sentinel-1 GRD data obtained from 
ASF Vertex as input and uses Sentinel-1 orbit information to accurately project data back 
into radar coordinates. Data were multi-looked three times in azimuth and range, result-
ing in 30 m × 30 m pixels. RTC processing requires a digital elevation model (DEM) to 
correct the RCS values. The accuracy of the DEM and the choice of the terrain-flattening 
approach impact the quality of the RTC result [26,54]. We use the Copernicus global 30 m 
DEM (GLO-30) as input to the terrain flattening workflow. GLO-30 is a new and relatively 
accurate DEM product having global coverage [57,58]. The ISCE-2 workflow uses the 
Ulander projection angle approach for terrain flattening [55]. Unlike previous studies that 
used 150 m × 150 m pixels [43], we used 30 m × 30 m pixels to obtain finer CA results and 
match the CDL resolution. However, the 30 m results had speckle noise artifacts, which 
can lead to classification errors. Therefore, a 7 × 7 enhanced lee speckle filter was used to 
further reduce noise [59]. Data were then co-registered to the CDL pixels. The study used 
data from 20 March to 16 November for years 2017 to 2021 to include planting and harvest 
periods that mainly focus on cash crops (see Figure 3 and Section 2.3). Data prior to 2017 
were not used as coverage was temporally sparse. The study site was covered by Sentinel-
1A in ascending mode (~6 p.m. local time) and located in ASF Frame 125, relative orbit 4. 

The lack of data quality flags with SAR imagery poses a general challenge for large-
scale SAR data processing. While not occurring often, data may be contaminated by arti-
facts unrelated to Earth surface processes, such as the suspected RFI shown in Figure 3a. 
This necessitates careful data screening, especially as the NISAR CA approach is, by 

Figure 2. Field size distribution by field category in 0.5 ha bins.



Sensors 2023, 23, 8595 7 of 26

2.4. Remote Sensing Data

Cross-polarized (‘VH’) Sentinel-1 C-band data were used as input to the CA mapping
approach. Data were processed using NASA’s ISCE software (ISCE-2, version 2.5.3) [29],
using the rtcApp.py script but with a custom geocoding step. The rtcApp.py script per-
forms a radiometric and terrain correction (RTC) using the methods described in [53].
RTC is important because RCS values vary with incidence angle and terrain, and those
dependencies should be removed to better attribute RCS values to land cover and surface
processes [54,55]. RTC processing can greatly reduce terrain impacts on RCS values and
makes it possible for radar data obtained from different observation geometries to be
interoperable with one another [56]. The ISCE script uses Sentinel-1 GRD data obtained
from ASF Vertex as input and uses Sentinel-1 orbit information to accurately project data
back into radar coordinates. Data were multi-looked three times in azimuth and range,
resulting in 30 m × 30 m pixels. RTC processing requires a digital elevation model (DEM)
to correct the RCS values. The accuracy of the DEM and the choice of the terrain-flattening
approach impact the quality of the RTC result [26,54]. We use the Copernicus global 30 m
DEM (GLO-30) as input to the terrain flattening workflow. GLO-30 is a new and relatively
accurate DEM product having global coverage [57,58]. The ISCE-2 workflow uses the
Ulander projection angle approach for terrain flattening [55]. Unlike previous studies that
used 150 m × 150 m pixels [43], we used 30 m × 30 m pixels to obtain finer CA results and
match the CDL resolution. However, the 30 m results had speckle noise artifacts, which
can lead to classification errors. Therefore, a 7 × 7 enhanced lee speckle filter was used
to further reduce noise [59]. Data were then co-registered to the CDL pixels. The study
used data from 20 March to 16 November for years 2017 to 2021 to include planting and
harvest periods that mainly focus on cash crops (see Figure 3 and Section 2.3). Data prior
to 2017 were not used as coverage was temporally sparse. The study site was covered by
Sentinel-1A in ascending mode (~6 p.m. local time) and located in ASF Frame 125, relative
orbit 4.

The lack of data quality flags with SAR imagery poses a general challenge for large-
scale SAR data processing. While not occurring often, data may be contaminated by
artifacts unrelated to Earth surface processes, such as the suspected RFI shown in Figure 3a.
This necessitates careful data screening, especially as the NISAR CA approach is, by design,
sensitive to changes in RCS over time [37,41,43]. For example, the image artifacts only
showed up in the processed CV values for 2017. Because removing the first RFI image did
not remove all the artifacts in the CV stack, a second data quality check was conducted to
remove the second date, resulting in a clean CV result image for 2017. This showcases one
way for how the CV calculation can be utilized for data quality screening.

2.5. Developing a Binary Crop Map from the CDL

The CDL includes many different crop and non-crop land cover classes. The CDL is
produced once per year. The CDL runs classifications for all pixels first and then replaces
non-crop classes using the 5-year NLCD. The CDL’s crop/non-crop map varies from year to
year. For facilitating comparisons to CA, we translate the CDL into a binary crop/non-crop
dataset according to [37]. All crops except tree crops are considered crop. Categories such
as open water and aquaculture are masked because the coefficient of variation (CV) values
(Equation (1)) are high and noisy over water, often showing as crop; in the case of clouds, it
is because the CA does not have a land cover class value at those pixels for comparison
against the CA result [43]. Tree crops are also masked because radar data is not expected
to be capable of detecting comparable levels of change in RCS values compared to field
crops and would consistently show as non-crop, as indicated by other studies [43,60]. The
remainder is considered non-crop (e.g., developed, forest, wetland, and pasture/grassland),
although CA has been shown to have some difficulty at consistently categorizing pasture,
grassland, and developed land-use/land-cover areas as non-crop [43]. Figure 4 shows the
CDL and binary CDL map for 2017. The CDL identifies roughly 5.5k out of 62k pixels
(9%) categorized as cropland, depending on the year, similar to what is shown for 2017
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in Figure 4b. According to the CDL, the most dominant non-crop land cover at BARC
is built-up 27.4k (44%) pixels (gray in Figure 4a) and forest 22.4k (36%) pixels (green in
Figure 4a). The remaining 6.7k (11%) pixels are other non-crop landcover types.
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2.6. NISAR CA Approach

The NISAR CA approach used in this manuscript is the same as reported in prior
work on this topic [37,39,43]. Data are co-registered and stacked in a time dimension on
an annual cadence, ranging from 16 to 20 images per stack depending on year (Figure 3).
Then, the coefficient of variation (CV) across time is calculated at each pixel (Equation (1)):

CV =
σ

µ
(1)

where σ and µ are the temporal standard deviation and temporal mean of the data.
Crop/non-crop classification is then determined using a threshold value for the CV (CVthr)
at each pixel (CVpixel) as given in Equation (2):

CVpixel

{
< CVthr = 0
≥ CVthr = 1

(2)

with the assigned values of 0 and 1 corresponding to non-crop and crop, respectively.
As mentioned in Section 2.2, the key premise of this approach is that agricultural land
management (e.g., tilling, growth, and harvesting) would exhibit relatively greater change
in RCS values over time compared to ‘constant’ areas such as forests [41]. Thus, crops
usually have a high CVpixel value, and a smaller CVthr value increases crop area.

2.7. Threshold Selection

Receiver operating curve (ROC) approaches were used for identifying the optimal
CVthr value. Our work uses a different ‘look up’ approach, described in the last paragraph
of this section. For completeness, the following describes the ROC-based approaches as
well. The ROC requires a computation of the confusion matrix at small CVthr increments.
In prior work, 0.01 increments ranging from 0.0 to 1.0 had been used. It should be noted
that CV values often exceed 1.00, but all prior studies so far indicated that the ideal CVthr
usually falls within a range of 0.2 to 0.7 for both L- and C- bands [38,39,43]. The confusion
matrix is the result of the comparisons between the model (here, CA) to the ground truth
(here, BARC FarmLogic) and consists of true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) detections.

The confusion matrix elements are then used to calculate Sensitivity (TP/(TP + FN))
and Specificity (TN/(TN + FP)) for each increment. To create the curve, data are then
plotted using Sensitivity and 1-Specificity for the y-axis and x-axis, respectively. Earlier
work also used histograms for identifying an optimal CVthr value and compared it to
ROC, showing nearly identical results [39]. More recent work, such as [37,38,43], also
computed the kappa and the Youden J statistic at each CVthr step and identified the CVthr
value corresponding to the maximum J statistic as optimal [61,62]. Iterative optimization
approaches can be of value for local studies but are inefficient due to their repetitive nature,
especially when attempting to map many regions, such as in Rose et al. (2021) [43].

Here, we use a different means of identifying a suitable CVthr value, using informa-
tion from relevant published studies. Rose et al. (2021) calculated optimal CVthr values
(maximum J statistic) over 100 1-by-1-degree tiles over CONUS, finding that optimal CVthr
varied in a somewhat gradual pattern across the United States, ranging from about 0.3 near
coasts to about 0.5 in the center [43]. While that study only calculated results for 2017, other
work reported that CVthr values do not substantially vary in time [63], suggesting that
2017 CVthr values would also be applicable to future years. Other previous studies plotted
performance metrics (J statistic, kappa, and accuracy) as a function of CVthr, showing
that performance metrics remained near optimal (~<5%) over a fairly wide CVthr range,
about ±0.1 from either side of the peak [37,42]. This means that it is sufficient to approx-
imate a CVthr corresponding to a high J statistic; an exact optimal value is not needed.
Furthermore, [37] also showed that optimal CVthr values tend to increase with finer grid
spacing. That finding can be useful for translating the optimal CVthr values across studies
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where they employ different spatial resolutions. Altogether, these prior findings present a
means of identifying near-optimal CVthr values a priori. First, we look up the value for a
nearby location—i.e., the nearby sites reported by Rose et al. (2021) are located in North
Carolina and Pennsylvania. Both had similar recommended CVthr values in the 0.2 to 0.3
range [43]. Realizing that CVthr values provided in [43] were obtained at a coarser resolution
(150 m × 150 m) than this study uses (30 m × 30 m), according to [37] results, CVthr values
should be increased from 0.2 to reflect the finer pixels used here. This is also confirmed
in Figure 5, the histogram of CV values for the fields used in this study. Figure 5 shows a
distribution of two or more modes, with the major peak at CV = 0.17 (the non-crop fields).
Selecting a CVthr value of 0.20 would lead to more of the non-crop areas being misclassified
as crop, supporting the idea of increasing the thresholds determined in the prior work
using 150 m pixels.
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Figure 5. Histogram of 2017 CV values for crop, built-up, and forest fields. A vertical line is inserted
at CVthr = 0.25 to visually indicate its ability to distinguish between crop and non-crop classes. The
bin size is 0.01.

2.8. Data Processing Framework and Assessment Methods

The processing and assessment methods used in this work are summarized in a
flowchart (Figure 6). For this study, we produce the CA once per year using all the year’s
available data (Figure 3) and applying a threshold of 0.25 (see Sections 2.6 and 2.7). Areas
that were masked in the CDL (Section 2.5) were also masked in the CA. The CA is a raster
having three values—0 for non-crop, 1 for crop and a mask value used for areas outside
the region of interest and the few masked land covers described in Section 2.5. As can
be seen from the white areas in Figure 4b, barely any masking occurred: an average of
only 128 CDL pixels inside the BARC boundary were masked per year out of about 62k
BARC pixels.
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ground truth (BARC FarmLogic).

We used a sieve operation implemented in the Geospatial Data Abstraction Software
Library (GDAL) [64]. Sieving removes raster polygons smaller than the threshold size and
replaces them with the pixel value of the largest neighbor polygon. We assessed sizes of
none, 5, 10, 20, 50 and 100 pixels at four connectedness settling on a size of 20, which is
shown in Figure 7b. Sieving is a common practice in removing noisy classifications and is
also recommended for use with the CDL, although this study only applied the sieve to the
CA [65].
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Figure 7. Result for the 2017 CA before (a) and after sieving (b), with white color indicating masked
pixels.

The sieved CA was then intersected with the three types of polygons (crop, forest,
built-up) shown in Figure 1. We only keep CA pixels (each having a value of 0 for non-
crop or 1 for crop) where the pixel centroid fell inside the polygon field boundary. This
result is useful for visually highlighting the degree of agreement for each boundary type,
i.e., the degree to which polygons are correctly detected by CA as crop or non-crop. Next,
the mean of all pixel values (0 for non-crop, 1 for crop) falling into each boundary is
calculated. If the mean value was greater than 0.5, the boundary was classified as crop and
was otherwise considered non-crop. We then compare the polygon label (ground truth)
to the pixel-majority-based crop/non-crop classification result. A correct classification for
crop, forest, and built-up boundaries was assessed to be crop, non-crop, and non-crop, and
incorrect otherwise. Overall accuracy (OA) was then calculated as the number of correct
classifications divided by total classifications (Table 2) [37]:

OA =
TP + TN

TP + FP + FN + TN
∗ 100 (3)

Table 2. Confusion Matrix.

Reference (BARC FarmLogic)

Model (CA) Crop Non-crop
Crop TP FP

Non-crop FN TN

To investigate the degree of impact sieving had on results, we also repeated the
assessments using the original CA map.
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3. Results and Analysis
3.1. Pixel-Wise Correspondence between CA and CDL

Table 3 shows the annual OA when the CDL is used as ground truth for the CA using
CVthr = 0.25 for all pixels ahead of sieving and intersection with polygons. This is how
most prior works were evaluated. OAs shown in Table 3 are within the range of values
found in other studies using the CDL as ground truth in evaluations of the CA, showing
that these two datasets have better than 85% agreement at this site every year.

Table 3. Overall Accuracy (OA) between CDL and CA by year for CVthr = 0.25. Results are pixel-wise
and ahead of sieving and intersection with polygons.

Year OA (%)

2017 88.7
2018 85.3
2019 86.4
2020 87.6
2021 87.6
AVG 87.1

3.2. Accuracy Assessment of CA and CDL versus Ground Truth Polygons

Figures 8 and 9 show the pixel-wise correspondence between CA and the CDL. Poly-
gon edges are colored to provide a visual reference as to the ground truth status of the
location: crop is green, built-up is orange, and forest is gray. While Table 3 indicates high
correspondence between CDL and CA, Figures 8 and 9 more clearly show the strengths and
weaknesses of either approach. The strengths of the CDL lie in accurately identifying built-
up and forest as non-crop in all years. However, the CDL has some difficulty in correctly
classifying crop fields as crop, especially in 2017 and 2018. For example, there are many
orange-colored pixels inside green polygons, especially in western fields for 2017 and 2018.
While the CDL accuracy improves in 2019 and the following years, there remain several
actively used fields that are not detected as crop in the CDL. The strengths of the CA lie in
accurately identifying forest as non-crop, and crop as crop. However, the CA consistently
detects a non-negligible amount of crop pixels inside some of the built-up polygons.

Consistent with the visual interpretation of Figures 8 and 9, Table 4 shows that the
CDL and CA both accurately categorize non-crop polygons. While the CDL achieves 100%
accuracy for forest and built-up, the CA achieves 100% and 94% for forest and built-up,
respectively. The greatest difference between the two datasets lies in the crop polygon
classifications, where the CDL only averaged 76.7% compared to 95.6% for the CA. The
CDL had considerable difficulty in accurately classifying many crop polygons in 2017 and
2018, only achieving 63%. This improved to over 85% in 2019 and later; however, the
CDL was not able to exceed the CA crop detection performance in any year. It is unclear
what specifically may have prompted the substantial improvement in CDL starting in
2019, but the USDA/NASS implemented some changes in creating the CDL at that time,
such as applying smaller inward buffers to the CLU data ahead of rasterizing (personal
communication, USDA/NASS 2023). The table also includes results for the CA before
results were sieved (‘CAns’) to explore how this operation impacted classifications. We find
that the sieving did not appreciably impact OA (Table 4). The main reason for this was
that although there were more misclassified pixels in CAns, results did not exceed the 0.5
threshold needed for any of the polygons to change classification. Because sieving removes
raster polygons smaller than the threshold size and replaces them with the pixel value of
the largest neighbor cluster, sieving can increase crop/non-crop regions, depending on
cluster location. The improvement in OAcrop for CAns corresponds to two more crop fields
being detected. This is where sieving removed some crop pixels inside two crop polygons
and fell below the 0.5 threshold, resulting in their classification as non-crop in CA (Central
Farm 1-20C and South Farm SE 1-8-F). The improvement in OAbuilt-up corresponds to one
additional built-up polygon being correctly classified as non-crop. Here, sieving filled in
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some non-crop pixels with crop pixels, resulting in the misclassification at the built-up
polygon described as office park and restaurants in Section 4.3.
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Figure 9. CA and CDL pixel-wise classification agreement for 2020 (a) and 2021 (b) within the
93 polygons consisting of crop, built-up and forest. Compared to the CA, the CDL has difficulty in
correctly classifying pixels in the zoomed-in window.

Table 4. Accuracy of CDL and CA against ground truth (BARC FarmLogic) by polygon category and
overall. Also included is the tally for CA without sieving (CAns).

Year OAcrop,n=54 (%) OAbuilt-up,n=26 (%) OAforest,n=13 (%) OAall,n=93 (%)

CDL CA CAns CDL CA CAns CDL CA,
CAns * CDL CA CAns

2017 63.0 88.9 92.6 100.0 100.0 100.0 100.0 100.0 78.5 93.5 95.7
2018 63.0 100.0 100.0 100.0 92.3 92.3 100.0 100.0 78.5 97.8 97.8
2019 85.2 100.0 100.0 100.0 92.3 92.3 100.0 100.0 91.4 97.8 97.8
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Table 4. Cont.

Year OAcrop,n=54 (%) OAbuilt-up,n=26 (%) OAforest,n=13 (%) OAall,n=93 (%)

CDL CA CAns CDL CA CAns CDL CA,
CAns * CDL CA CAns

2020 85.2 88.9 88.9 100.0 92.3 96.2 100.0 100.0 91.4 91.4 92.5
2021 87.0 100.0 100.0 100.0 92.3 92.3 100.0 100.0 92.5 97.8 97.8

AVG 76.7 95.6 96.3 100.0 93.8 94.6 100.0 100.0 86.5 95.7 96.3

* The CA and CAns results are combined because they are identical.

4. Discussion
4.1. Challenges for Cropland Mapping Using Spaceborne Radar Data

There are several challenges in cropland mapping using radar data. The foremost are
(1) the general lack of freely available and routinely collected global radar datasets and (2) the
computational burden in data processing costs that users must bear. Currently, the only widely
distributed and free radar data source is Sentinel-1 at the C-band. Fortunately, there are other
missions planned that will ameliorate these challenges, such as the deployment of additional
Sentinel-1 satellites, NASA’s NISAR mission and ESA’s Copernicus Radar Observation Systems
for Europe in L-band (ROSE-L) mission near the end of the decade [16,19,66]. The latter two
have the additional benefit of the data providers taking on some processing, providing users
with imagery in ARD format.

However, a remaining potential omission is that it is unclear whether future radar
data will have a quality flag for each pixel, similar to how optical ARDs are provided.
Temporary atmospheric or human impacts can unduly impact the RCS detected at the
sensor, such as heavy precipitation, RFI, and ionosphere effects and may need to be flagged.
Incorporating error flags would ultimately be necessary for big-data cloud processing, as it
is not practical for each user to create their own data quality screening approach or rely
on manual data quality inspections of every result tile in big-data processing, such as was
done in [32]. Without quality flags, analyses are bound to include poor data, and this could
make it difficult to attribute the RCS values to surface processes. This shortcoming also
impacted this study because two dates were not used in the computation, although many
of the pixels in the imagery appeared to have good data quality. Further, for this analysis,
we needed to assume all data not showing obvious artifacts were of good quality.

4.2. Challenges for CDL Mapping

The CDL is a useful dataset because it provides great detail on crop type at desir-
able spatiotemporal resolutions. However, with so many different available crop classes,
challenges in making correct crop-type (or even crop/non-crop) determinations are to be
expected. The CDL’s main purpose is to inform on crop-type classifications rather than
non-crop because the non-crop categories are imported from other data sources that may
not be as frequently updated as the CDL. For this study, the misclassification of actively
used agricultural fields as non-crop is a notable shortcoming. Looking in greater detail, the
CDL misclassifications pre-2019 stem from the corn/soy fields in the western portion of the
BARC campus being classified as grassland/pasture (the light green areas in Figure 4a),
which becomes reclassified as a non-crop in the binary CDL (Section 2.5). Improvements
from 2019 onwards in the CDL were mainly that the central field pixels were now correctly
identified as crop (corn and soybeans).

The CDL data itself also has misclassification speckle, but unlike the CA, these tend
to be confined to the field polygons. The Figure 4b inset map shows that crop areas
have non-crop classes within or around their edges, indicating that cropland tends to be
underestimated by the CDL at this location. Specifically, the inset shows there are six
fields where there are a few correct crop classifications, but these generally tend to be
limited to the center sections of the polygons. Most of the field edges are categorized
as non-crop. Based on our results, there was no obvious need to implement additional
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preprocessing steps for the CDL, such as the sieve used for the CA. The CDL has two
types of misclassification speckles: (1) pixels that are different crops and (2) pixels that
are non-crop. In case (1), sieving would not impact the result because they are all crops.
In case (2), sieving might still not help: it would depend on the pixel connectivity as to
which pixels are reclassified, and the re-classifications would still need to result in crossing
the 50% threshold to produce a different result for our methodology. Looking in more
detail at Figure 4, 8 and 9 zoomed insets, even a priori, it is doubtful that sieving would
change results too much for either the CDL or CA. For the CDL, looking at the bottom left
field of Figure 4b inset shows that this would be correctly classified as crop (>50% crop
pixels)—but crop pixels are split into two disconnected patches. Due to their small size, the
sieve operation would remove both patches, changing the originally correct classification
to an incorrect one when sieving.

For the CDL, looking at the top right field in Figure 4b inset shows that it would be
incorrectly classified as non-crop (<50% crop pixels). Given the pixel arrangement, sieving
would not increase the crop pixel count in this polygon. This crop field would remain
incorrectly classified as non-crop. This limited example shows that sieving the CDL may
also negatively impact its OA, similar to what happened for the CA (CAns performed
slightly better). It is important to emphasize that the overriding reason for recommending
additional CA data processing steps (here, sieving) was primarily to produce more realistic
non-crop mapping over built-up (Figure 7a vs. Figure 7b), rather than optimizing the re-
ported OAs of this study. While the CDL data at this study site did not reveal a comparable
need for implementing additional processing steps, it should be noted that some literature
also recommends pre-processing the CDL prior to use [65].

Field size can be important for misclassifications, as fields may be too small in extent
to be correctly detected as crop, especially when they have aspect ratios much different
from unity. While FarmLogic data were screened by area, no consideration was given
to aspect ratio. Figure 4, Figure 8, and Figure 9 show that some crop polygons can be
narrow in one dimension, but each field is usually wide enough to contain at least two
pixels in either dimension. Even so, this can make it challenging to correctly categorize the
polygons, because each pixel would be considered a border pixel and could be mixed with
an adjacent class. Thus, it can also be useful to consider the impacts of the polygon aspect
on classifications in more detail. However, this is likely more a consideration for the use
of CDL rather than CA, given that the study revealed that nearly all crop polygons were
correctly detected by CA even when no screening for aspect was conducted.

Comparing the CA result in 2017 (Figure 7) and the CDL (Figure 4a) to BARC Farm-
Logic (Figure 1) shows that CA did not have substantial difficulty in detecting any of the
crop areas even at >0.81 ha field size. This is consistent with estimates by [46] indicating
that 30 m × 30 m satellite data should be sufficient at the scales of the polygons used in this
study. The CDL uses some inward buffering of CLU data (30 m but only 15 m since 2019)
to avoid mixed pixels ahead of rasterizing the CLU and selecting training and validation
pixels. While this change in buffering temporally coincides with the improvement noticed
starting in 2019, it is unclear how this alone would translate to the CDL’s improved results;
there may have been other improvements starting in 2019.

4.3. Challenges for CA Mapping

The CA has good accuracy but with some noted difficulties for built-up polygons. This
is consistent with CA results reported in a few other studies that also encompassed built-up
pixels. Whelen and Siqueira (2017) applied the CA using L- and C-band data from the 2006
AgriSAR study (Germany), showing that histograms of CV values over urban areas have
a wide-spread overlap with both crop (here, maize) and non-crop (forest) classes. They
also noted scattered misclassifications over urban areas, suggesting that this may be due to
the integration of small fields and gardens between buildings, which were categorized as
non-crop in their reference dataset [41]. Kraatz et al. (2021) applied the CA to Sentinel-1
data over an agricultural site in Carman, Canada, and also showed that CV values for
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urban areas had considerable overlap with both crop and non-crop categories [38]. As a
result, the CA performed poorly in correctly classifying built-up areas as non-crop in that
study, only achieving slightly over 50% accuracy. Our study showed that CA could also
have excellent performance over built-up areas, given that only about five out of twenty-six
built-up polygons had a notable proportion of pixels misclassified as crop, with about
two of them usually misclassified in any given year. This shows that CA results can vary
considerably between locations.

However, there are several key differences between the Carman and BARC studies.
One difference is that the Carman study employed pixel-wise comparisons, while this study
assesses accuracy according to correct polygon classifications. Another major difference is
that the prevalence of non-crop pixels was smaller over the Carman study (~31%) compared
to BARC (~91%). Specifically, Carman contained much fewer built-up pixels (5% of total)
than this study (44%). Also, CV values were more dynamic over Carman, as evidenced in
that study’s optimal CVthr value being much larger (0.56) than here (0.25). Additionally, the
Carman study used a different land cover reference dataset for evaluations, the Agriculture
and Agri-Food Canada Annual Cropland Inventory [10]. Furthermore, the Carman study
did not implement a sieve operation, which would have been able to remove the isolated
higher CV locations (i.e., classification speckle) over the urban area. To elaborate further,
Figure 10 clearly shows that the majority of CA’s misclassifications occurred over the
built-up areas, but the sieve filter was able to remove most of them (Figure 7). Comparing
results to Google satellite imagery, we determined that the larger speckle remaining after
sieving corresponds to paved areas, including parking lots, office parks, shopping areas
and restaurants. We also note that one of these larger patches (at −76.92, 39.02) is an
agricultural field (Linkage Farm EB-3) that was not used in this study because it did not
meet the screening criteria described in Section 2.3.
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Overall, the CA classified about 17% of all pixels as crop compared to the CDL’s 9%,
which helps explain the CA’s better ability to detect crop. This difference in crop pixel
detections stems from two sources: overestimates of the crop by the CA at built-up areas
and underestimates of crop by the CDL—i.e., the substantial number of non-crop pixels
in or around the fields, but also any valid agricultural field pixels missed by the CDL but
captured in the CA (Section 4.2).

We noted that a select few built-up polygons incorporate consistently misclassified
pixels as crop for most years. This suggests that there may be some specific features of these
locations that consistently give rise to misclassified pixels. We noted that two of the four
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sites include buildings and that all of the sites are paved (Figure 11). Figure 11 sites consist
of office parks, restaurants, stores, metro parking, and an airstrip. Buildings are well known
to cause a double bounce effect; strong radar returns occur where the signal reflects from a
flat surface toward a building and back toward the detector. This is influenced by building
heights and orientations relative to the satellite viewing geometry [67,68]. Sentinel-1 orbits
differ over time, and baselines for the same frame and orbit may vary by up to about
200 m [32]. These variations in sensor–target geometry may result in variations in the
strength of the double bounce effect for a given pixel containing buildings and, thus, higher
CV values.
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Figure 11. Zoom-in of the four built-up areas that were most frequently misclassified by CA as crop.
These sites can also be viewed in the zoomed-out maps in Figure 1, Figure 4, Figure 8, and Figure 9.
Areas containing auto repair and home improvement stores (a), Greenbelt Metro parking (b), office
parks and restaurants (c), and part of a small airstrip (d).

Vehicles are also likely to be present at the Figure 11 sites when Sentinel-1 collects
data at 6 p.m. It is possible that changes in vehicle presence also impact RCS sufficiently
to produce false crop detections. This idea would be consistent with prior work that
studied Sentinel-1 data over parking lots and with our relatively poorer results over the
metro parking lot site shown in Figure 11b (see Section 3.2) [69]. We note that this study
period also includes the onset of the COVID pandemic (early 2020) when the most severe
travel, gathering and facility requirements were implemented. Of the four highlighted
sites in Figure 11, the Metro parking (Figure 11d) is most likely to hold information on
parking lot impacts on CA mapping in general and also whether the impact of COVID
travel restrictions could be shown in this CA dataset. Coinciding with the pandemic
onset and most severe travel restrictions, 2020 was the only year where all pixels in the
Greenbelt Metro station polygon (Figure 11b) were correctly classified by CA (Figure 12).
This observation can be cross-checked with data from the Washington Metropolitan Area
Transit Authority (WMATA). WMATA publicly reports details on ridership and parking
transactions by the station as average daily values for any given month, showing a large
decrease in average daily parking transactions after March 2020 [70]. Averaging for the
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CA period (April–October), parking transactions decreased from 1686 in 2019 to 54 in
2020. Parking transactions have slowly been inching back toward pre-pandemic levels
(110 in 2021 and 540 in 2022) ever since. While these data are, in principle, consistent with
the idea of parking lot activity impacting CA results, we also note that the polygon was
poorly classified by CA in 2021, even though 2021 exhibited a relatively slight uptick in
daily transactions in absolute terms (56). Unfortunately, the scope of this study is not well-
suited to study this potential relationship in further detail and make any more confident
determinations. However, owing to the backdrop of wide availability of Sentinel-1 data,
severe travel restrictions during COVID, plentiful large parking lots in CONUS and the
CA’s potential sensitivity to human activity in them, considerably more detailed studies on
this could be conducted in the future.
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Figure 12. Zoom-in for the classifications over the Greenbelt Metro parking lot shown in Figure 11b,
with the classification results for 2018 (a), 2019 (b), 2020 (c) and 2021 (d). The gray pixels show where
the CDL and CA both correctly detected this non-crop area as non-crop. The orange pixels show
where the CDL correctly detected non-crop, but the CA incorrectly detected crop.

Although OAns performed slightly better, we recommend sieving CA data ahead of
use when built-up areas constitute a substantial proportion of the study area. Using more
numerous, smaller polygons for built-up areas and forests may give more detail in terms of
how OA results are impacted by sieving. However, this was not revisited in greater detail
as the polygon sizes used here are well within the normal range of agricultural fields in
the region (Section 2.3), and sufficient information on the erroneous pixels was already
provided between Sections 2.8, 3.2 and 4.3 (Figures 7–10).

4.4. Extension of the CA Algorithm to Other Regions

A major challenge for the CA lies in the selection of the CVthr value used for de-
lineating crop and non-crop. Smaller CVthr values increase crop area, but also increase
misclassifications over non-crop regions, whereas greater CVthr values decrease crop area
and increase misclassifications of agricultural fields. While prior work found that using
a single threshold of CVthr = 0.5 yielded >80% OA when applied to many different agri-
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cultural regions in CONUS [39,43], we used a considerably smaller CVthr of 0.25. This is
consistent with the results of [43], where a histogram of optimal CVthr values over CONUS
showed a bimodal distribution with peaks at about CVthr = 0.3 and CVthr = 0.5. Using the
general recommendation of CVthr = 0.5 would not be a useful choice for this study site, as
CV values over BARC are much lower than other parts of CONUS, and many agricultural
fields would not be detected. Elaborating further, given that only 9% of the pixels in the
study area are crops, it is easy to obtain a 91% OA when selecting unreasonably large CVthr
values for this site (e.g., 0.5 or 1.0), resulting in all pixels being classified as non-crop. The
intent of any cropland mapping study should be to put forth the best effort in the accurate
detection of both crops and non-crops. Although only so much can be achieved using a
single cutoff threshold, this will be improved when using CVthr values corresponding to
other performance metrics such as kappa and the J statistic peak. Rose et al. (2021) reported
that the J statistic peaked between 0.2 and 0.3 at nearby locations (Section 2.7), and the
results of this work confirmed that this threshold value provided an accurate classification
of both crop and non-crop areas [43]. However, for routine and large-scale CA mapping,
it is not feasible to determine the threshold for each study area and temporal subset to
be used (e.g., annual, quarterly, bimonthly, etc.). Drawing from synergistic information
from prior work, this study determined CVthr values a priori (Section 2.7), which may be
valuable for generalizing the CA over large spatial scales.

5. Conclusions

This work compared optical and radar-based cropland area mapping approaches
against an extensive ground truth dataset (FarmLogic) over the Beltsville Agricultural
Research Center (BARC) located in Beltsville, Maryland, USA. The ground truth data
consisted of planting and harvesting dates, methods, and polygons of the agricultural
fields. The BARC site also encompasses many built-up and forested areas, and separate
polygons for these landcover types were generated to assist in the accuracy evaluations.
The USDA/NASS Cropland Data Layer (CDL), an optical-based dataset, was re-classified
into crop and non-crop for comparisons. The raster data were intersected with the reference
polygons, with the pixel classification majority determining whether a polygon was crop or
non-crop. The CDL achieved 100% classification accuracy over built-up and forest polygons.
Accuracy over crop polygons was only 76.7%, resulting in an 86.5% overall accuracy. We
note that while the CDL only detected 63% of fields in 2017 and 2018, this improved to
over 85% for 2019–2021. The radar-based cropland area mapping approach used in this
study (CA) is the same as that for the upcoming NISAR mission (operating at L-band and
S-band), except that Sentinel-1 C-band data were used. Here, we provide a rule of thumb
for looking up a crop/non-crop delineating threshold. There was no need for any training
or calibration using this approach. CA classifications resulted in speckle noise over built-up
areas, and a sieve filter was used. The CA achieved an overall accuracy of 95.7% and was
93.8%, 100%, and 95.6% accurate at identifying the built-up, forest, and crop polygons,
respectively. Although the accuracy of the built-up polygons was high, several specific
polygons regularly contained many misclassified pixels. The challenge of using the CA
over built-up areas has been reported on in prior work, where it was suggested that errors
stem from smaller fields or gardens. However, our most problematic built-up locations
were those containing office parks, stores, restaurants, and parking lots. Results show that
radar-based cropland (crop/non-crop) mapping is competitive with optical approaches,
with added advantages in that it does not require training data, is operable under cloudy
conditions, and has a lower computational cost.
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