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Abstract—The relevance of using test sequences with a given switching activity is discussed. As
a mathematical model for generating the tests, a modification of the Antonov–Saleev method
for generating Sobol sequences is used. It is based on the use of maximum-rank generating
matrices the form of which determines the main properties of the sequences. It is shown that
the construction of a generating matrix is reduced to the problem of partitioning an integer, and
an algorithm for splitting into summands of a given form is proposed. Procedures for modifying
the partition of an integer into summands and for modifying the value of switching activity are
introduced. Three problems are stated for the synthesis of generators of test sequences with
a given switching activity. Examples of using the proposed methods and experimental results
are considered.
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1. INTRODUCTION

The efficiency of test sequences for modern computing systems is largely determined by the
properties of test objects [1, 2]. It is important to concisely represent tests in the form of algorithms
or hardware structures for their generation when implementing self-testing of embedded systems ,
systems-on-a-chip, nets-on-a-chip [2, 3], and, first of all, for self-testing of their storage devices, the
share of which reaches 90% of the crystal area occupied by the system [3, 4]. An essential role for test
sequences is played by switching activity , which affects the switching activity of the digital devices
to be tested. The set of test sequences in the self-test architectures used includes sequences with
different switching activity [5, 6]. The set of such sequences includes: linear counting sequences ,
Gray code sequences , sequences with maximum switching activity (address complement sequences);
sequences with Hamming distance equal to one for all pairs of addresses (2i counting sequences),
and a number of other sequences [3, 5, 6].

Switching activity is of decisive importance in the field of designing digital devices with low
energy consumption [7], including the development and application of means for their testing and
self-testing [8, 9]. A large number of studies in this area are aimed at obtaining estimates of the
values of the switching activity of the poles of the designed devices, which make it possible to predict
their energy consumption [8, 10].

The mean values of switching activity can be interpreted as the average values of the Hamming
distance, which are widely used to construct controlled probabilistic test sequences [11–15]. Changes
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in the values of these characteristics permit one to construct controlled probabilistic tests with given
values of the Hamming distance.

It should be noted that the study of the synthesis of various types of devices with variable values
of switching activity for testing computer systems is only at the initial stage. In particular, the
methods for synthesizing address sequence generators, discussed in a number of sources [6, 16–18],
make it possible to construct such devices described by fixed values of switching activity. The
problem of synthesizing devices for generating test sequences with a given switching activity and
forming controlled probabilistic test sequences remains practically open.

The present paper provides a solution to the problem of synthesizing generators of test sequences
of maximum length consisting of 2m m-bit sets, called address sequences, with a given switching
activity of both separate bits of test sets and with the total switching activity of their sequences.

2. MATHEMATICAL MODEL

A mathematical model of a universal generator of sequences consisting of 2m m-digit sets,
called address sequences, was considered in [19]. By an address sequence one means a sequence
A(n) = am−1am−2 . . . a2a1a0, n ∈ {0, 1, 2, . . . , 2m − 1}, where ai ∈ {0, 1}, i ∈ {0, 1, 2, . . . ,m − 1},
which consists of all possible 2m m-digit binary vectors am−1am−2 . . . a2a1a0 generated in an ar-
bitrary order, with each vector formed only once [2, 6, 19]. For example, the linear counting
address sequence for m = 4 consists of 16 4-digit binary vectors 0000, 0001, 0010, 0011, . . . , 1111,
each formed only once [6]. As a basis for the mathematical model we use a modified method of
forming Sobol sequences [20–22]. According to the model indicated, the nth element of the Sobol
sequence A(n), which is an m-digit binary vector am−1am−2 . . . a0, is formed in accordance with the
recurrence relation

A(n) = A(n− 1)⊕ vi n = 0, . . . , 2m − 1, i = 0, . . . ,m− 1. (1)

in which only one modified direction number vi, i ∈ {0, 1, 2, . . . ,m − 1} is added to the previous
element A(n− 1) of the Sobol sequence, which is also an m-digit binary vector [19–21]. The value
of the index i of the direction number vi used as a summand in the expression (1) depends on
the switching sequence (transition sequence) Tm−1 of the reflected Gray code [21–23]. In the Gray
code, the transition from the previous state of the code to the next one is carried out by inverting
only one of its digits. The sequence of indices of these digits is the switching sequence [23]. In
the case of the most commonly used version of the Gray code, namely the reflected Gray code, the
switching sequence is easily formed from the linear counting sequence [23]. The index of the most
significant variable bit of the linear counting sequence during the formation of its next code will be
an element of the switching sequence. For example, when generating the code of the linear counting
sequence A(n) = a3a2a1a0 = 0001, only the least significant bit is changed from the previous
one 0000; accordingly, the first element of the switching sequence T3 will be the index 0. For m = 4,
the switching sequence of the reflected Gray code is T3 = 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 . This
sequence forms the index sequence i ∈ {0, 1, 2, 3} when generating A(n) = a3a2a1a0 for m = 4

according to (1).
Using an arbitrary initial value A(0) ∈ {0, 1, 2, . . . , 2m − 1}, the recurrence relation (1) yields

all 2m − 1 other values of A(n) [19, 22].
This mathematical model was generalized to include the case of sequences belonging not only

to the set of Sobol sequences [22]. In the general case, for the generating matrix V of direction
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numbers vi, i ∈ {0, 1, 2, . . . ,m− 1}, one can use any binary m×m square matrix of the form

V =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βm−1(0) βm−2(0) βm−3(0) . . . β0(0)

βm−1(1) βm−2(1) βm−3(1) . . . β0(1)

βm−1(2) βm−2(2) βm−3(2) . . . β02

. . . . . . . . . . . . . . .

βm−1(m− 1) βm−2(m− 1) βm−3(m− 1) . . . β0(m− 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2)

constructed of m linearly independent binary vectors vi = βm−1(i)βm−2(i). . .β0(i), i = 0, . . . ,m− 1.
The linear independence condition makes it possible to ensure the formation of test sequences of
maximum length [19].

3. SWITCHING ACTIVITY

To estimate the properties of the Sobol sequences A(n) = am−1am−2 . . . a0 used for a test sequence
in [22], a numerical parameter F (aj), j ∈ {0, 1, 2, . . . ,m − 1}, was introduced that determines the
number of switchings (changes) in the jth digit aj of the code of the sequence A(n). The numerical
characteristic F (aj) is called switching activity [5, 19, 24] and determines the switching activity of
the jth digit aj of the test sets A(n). In the general case, for an arbitrary value of j, the value of
this characteristic for sequence (1) is determined by the formula

F (aj) = βj(0) · 2m−1 + βj(1) · 2m−2 + · · ·+ βj(m− 2) · 21 + βj(m− 1) · 20

=

m−1∑

i=0

βj(i) · 2m−1−i.
(3)

Based on the switching activity F (aj), an integral switching activity measure

F (A) =

m−1∑

j=0

m−1∑

i=0

βj(i)2
m−1−i =

m−1∑

i=0

2m−1−i

m−1∑

j=0

βj(i) (4)

was introduced in [19] for a sequence A(n), where the second sum equals the number of ones in the ith
row of matrix (2) and is the Hamming weight w(vi) of the binary vector vi = βm−1(i)βm−2(i) . . . β0(i),
i = 0, . . . ,m− 1.

As follows from the linear independence of the binary vectors vi, the jth column of the ma-
trix V cannot be zero; therefore, the minimum value of F (aj), j ∈ {0, 1, 2, . . . ,m− 1}, is achieved
for βj(m− 1) = 1 and βj(i) = 0, i ∈ {0, 1, 2, . . . ,m−2}. The minimum value of F (aj) is possible for
any jth digit, but only for one of them [19]. This constraint also follows from the linear independence
of the rows of the generating matrix V . The maximum value of F (aj), j ∈ {0, 1, 2, . . . ,m − 1},
is ensured by the formation of the jth unit column of matrix (2), i.e., for the values βj(i) = 1,
where i = 0, . . . ,m− 1. This implies the equality

maxF (aj) =

m−1∑

i=0

2m−1−i = 2m − 1. (5)

The characteristic F (aj) of sequences (1) possesses the following property.

Property 1 . For any sequence A(n) given in (1), the switching activity F (aj) takes m distinct
values in the range from 1 to 2m−1.
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The switching activity F (A) of the sequence A(n) = am−1am−2 . . . a0, n ∈ {0, 1, 2, . . . , 2m − 1},
takes the minimum value for Gray code sequences [22]. For a matrix consisting of m distinct rows,
each containing one unity, according to (4), we have minF (A) = 2m−1. The maximum estimate
of F (A) is also unambiguously determined by the form of the generating matrix [22], whose first
row consists of ones and the remaining rows contain one zero value each and which is determined as

maxF (A) = m · 2m−1 + (m− 1)

m−1∑

i=1

2m−i−1 = m · 2m − 2m−1 −m+ 1. (6)

The switching activity F (A) given in (4) possesses the following property.

Property 2 . The switching activity F (A) of the sequence A(n) given in (1) assumes values in
the range from 2m−1 to m · 2m − 2m−1 −m+ 1.

For the real values of m > 10, it is convenient to use the mean values Fav(aj) and Fav(A) of
the previously considered numerical parameters of the switching activity F (aj) and F (A), which
indicate the average value of switchings when forming the next test set. These characteristics are
defined as Fav(A) = F (A)/(2m−1) and Fav(aj) = F (aj)/(2

m−1), and their maximum and minimum
values are

minFav(aj) = min
F (aj)

(2m − 1)
=

1

2m − 1
;

maxFav(aj) = max
F (aj)

2m − 1
= 1;

minFav(A) = min
F (A)

2m − 1
= 1;

maxFav(A) = max
F (A)

2m − 1
= m− 1

2
+

1

2m+1 − 2
.

(7)

An important consequence of the above Properties 1 and 2 is the existence of a set of generating
matrices V of maximum rank [19, 22].

4. SYNTHESIS OF SEQUENCES WITH A GIVEN SWITCHING ACTIVITY

For an arbitrary m, the synthesis of a sequence generator A(n)(1) with a given average switching
activity Fav(A) and its counterpart F (A) consists in finding the generating matrix V . To do this,
a binarym×mmatrix of maximum rank is formed with constraints determined by the value of F (A).
Initially, the value of the switching activity F (A) is represented as the partition [19]

F (A) = w(v0) · 2m−1 + w(v1) · 2m−2 + w(v2) · 2m−3 + · · ·+ w(vm−1) · 20. (8)

This partition represents the value of F (A) in a m-ary mixed number system, in which the
weights of digits are represented as powers of two from 20 to 2m−1, and the values of the digits w(vi)

range from 1 to m. Note that w(vi) is the Hamming weight of the binary vector vi of the desired
generating matrix V of maximum rank. The absence of a zero value of w(vi) is explained by the
impossibility of constructing a square matrix of maximum rank with a zero row whose Hamming
weight is equal to 0. The second constraint on the digits w(vi) in partition (8) is that only one
digit w(vi) can take the value m. In terms of the generating matrix V of maximum rank, this
means that only one row of the matrix can have a weight equal to m. There are other, not so
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Table 1. Examples of partition (8) of number 37

w(v0) w(v1) w(v2) w(v3) F (A) = w(v0) · 23 + w(v1) · 22 + w(v2) · 21 + w(v3) · 20 F (A) = 37

3 2 2 1 37 = 3·8 + 2·4 + 2·2 + 1·1 88844221

2 4 1 3 37 = 2·8 + 4·4 + 1·2 + 3·1 8844442111

2 3 3 3 37 = 2·8 + 3·4 + 3·2 + 3·1 88444222111

obvious, restrictions on the digits w(vi) (Hamming weights) of the partition (8), which are the basis
for constructing the matrix V of maximum rank.

By way of example, consider the case of formation of the sequence A(n) for m = 4 and switching
activity F (A) = 37. The value F (A) = 37 belongs to the range from 15 to 53 defined by 2. Table 1
lists the partitions (8) of the number 37 for the case of m = 4.

Note that each partition (8) can be associated with a set of matrices V in which the weights of
the rows correspond to the values of the digits w(vi) of the specified partition. For example, for
the partition 37 = 3·8 + 2·4 + 2·2 + 1·1, the weight w(v0) of the first row of the matrix is 3, the
weights w(v1) of the second and w(v2) of the third row are 2, and the weight w(v3) of the fourth
row is equal to 1. The matrices V1 and V2 given in Table 2 are examples of maximum rank matrices
with specified row weights, while the matrices V3 and V4 are maximum rank matrices for other
partitions (8) of size 37. In Table 2, there are also examples of forming sequences A(n) according
to (1) for all four types of matrices V . The sequence T3 previously given as an example was used
as a switching sequence.

The procedure for obtaining the partition (8) for an arbitrary integer value of F (A) can be
interpreted as a solution of the problem of partitioning an integer into summands that are positive
integers of the form 2i, where i ∈ {0, 1, 2, . . . ,m−1}. Table 1 gives examples of such partitions, one
of which is the partition 37 = 8 + 8 + 8 + 4 + 4 + 2 + 2 + 1, represented as the sequence 88844221

of repeated terms 8, 4, 2, and 1 [25–27].

The simplest way to generate all partitions of an integer into summands, regardless of their order,
is to partition in reverse lexicographic order, starting with the integer ‘n’ being partitioned, when
the number itself is represented by one summand n, and ending with the representation ‘111 . . . 1’
of this number in the form of n summands equal to one [25].

For an integer value of F (A) = 37 and m = 4, taking into account the constrains on the
summands, which in this case can only be 8, 4, 2, and 1, and their number, all possible partitions
are as follows: 88844221, 888442111, 888422221, 8884222111, 884444221, 8844442111, 8844422221,
88444222111.

Partitioning the switching activity value is peculiar because of the restriction imposed on the
number of summands 2m−1, 2m−2, . . . , 20, the number of each of which should not be zero or
exceed m, with only one summand being allowed to occur in the partition m times.

Consider an algorithm for partitioning an integer that determines the switching activity F (A)

of the sequence A(n) = am−1am−2 . . . a0 (1) for a given value of m. The partition terms can only
be integers of the form 2i, where i ∈ {0, 1, 2, . . . ,m − 1}, and their sum must be in the range
from 2m − 1 to m · 2m − 2m−1 −m+ 1 (see Property 2).
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Table 2. Examples of generating matrices V and sequences A(n) for m = 4

V V1 V2 V3 V4

β3(0) β2(0) β1(0) β0(0)

β3(1) β2(1) β1(1) β0(1)

β3(2) β2(2) β1(2) β0(2)

β3(3) β2(3) β1(3) β0(3)

1 1 1 0

1 1 0 0

1 0 0 1

0 0 0 1

1 0 1 1

1 1 0 0

0 1 1 0

0 1 0 0

0 1 1 0

1 1 1 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 0

0 1 1 1

1 0 1 1

A(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A(1) = A(0)⊕ v0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0

A(2) = A(1)⊕ v1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0

A(3) = A(2)⊕ v0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0

A(4) = A(3)⊕ v2 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1

A(5) = A(4)⊕ v0 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1

A(6) = A(5)⊕ v1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1

A(7) = A(6)⊕ v0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1

A(8) = A(7)⊕ v3 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0

A(9) = A(8)⊕ v0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0

A(10) = A(9)⊕ v1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0

A(11) = A(10)⊕ v0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0

A(12) = A(11)⊕ v2 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1

A(13) = A(12)⊕ v0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1

A(14) = A(13)⊕ v1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1

A(15) = A(14)⊕ v0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1

Integer partition algorithm.

Step 1. Initially, determine the sum of all terms 2i, which is equal to the maximum m-bit binary
number 2m − 1.

Step 2. Divide F (A) by 2m − 1. The resulting quotient w determines the minimum number of
occurrences of each of the terms 2i in the partition of the integer F (A). If the remainder q
of the division operation is zero, the quotient w is the number of instances of each of the
terms 2i, i ∈ {0, 1, 2, . . . ,m − 1} in the partition of F (A), and at this step the partitioning
algorithm ends. Otherwise, go to the next step.

Step 3. Represent the remainder 0 < q < 2m−1 of the division operation in binary code,
q = bm−1 · 2m−1 + bm−2 · 2m−2 + · · ·+ b0 · 20, bi ∈ {0, 1}.

Step 4. Construct the partition of the integer F (A) into summands 2i, where i ∈ {0, 1, 2, . . . ,m−1},
each of which is included in the partition 0 < w + bi ≤ m times, where the value w + bi
determines the value of the digit w(vm−1−i) of the partition (8).

Applying this algorithm for the case of m = 6 and F (A) = 189, we conclude that the quotient w
of dividing 189 by 63 is 3, the remainder is q = 0, and accordingly, the partition of the number 189
is 252525242424232323222222212121202020. The digits of the partition (8) take the values w(v0) =

w(v1) = w(v2) = w(v3) = w(v4) = w(v5) = 3, and it is these values that determine the weights
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(a) (b)

8 8

4

22 2

11

2

8 8

4 4

2 2

11

Fig. 1. Diagrams for (a) w(v0) = w(v1) = w(v2) = w(v3) = 2 and (b) w(v0) = w(v3) = 2, w(v1) = 1 and w(v2) = 4.

of the rows in the matrix V . In the case of finding the generating matrix V corresponding to
the resulting row weights, which is used to implement relation (1), finding the next set of the
sequence A(n) will always be carried out by performing three switchings. In the general case, an
important fact is the existence of a generating matrix V of maximum rank whose row weights
correspond to the digits of the partition (8) [28].

When a matrix V with a rank different from the maximum is obtained, the random formation of
a matrix with fixed Hamming weights of its rows is repeated. Each row of this matrix is a random
binary vector with a given weight w(vi). Then the rank of the matrix is checked again. Obviously,
the requirement for the weights of the matrix rows and at the same time the need for its maximum
rank can significantly worsen the probabilistic estimate of a positive outcome of finding the generat-
ing matrix V [28]. The inconsistency of these requirements may lead to the impossibility of finding
such a matrix, as illustrated by the following example.

Example 1 . Determine the row weights of the generating matrix V to form the sequence
A(n) = a3a2a1a0 (1) with switching activity F (A) = 30.

The value of m is equal to 4; accordingly, F (A) = 30 belongs to the required range from 15 to 53.
Applying the algorithm described above, we obtain the values of the digits w(v3) = 2, w(v2) = 2,
w(v1) = 2, and w(v0) = 2 of the partition (8) corresponding to the partition 88442211 of the
integer 30. However, an attempt to find the corresponding matrix of maximum rank in which all
rows contain two ones fails for m = 4. This is due to the fact that in this case the requirement
for the linear independence of the vectors v3, v2, v1, and v0 and their weights w(v3), w(v1), w(v2),
and w(v0) are inconsistent. At the same time, the partition 884222211 of the number 30 determines
the digits w(v3) = 2, w(v2) = 4, w(v1) = 1, and w(v0) = 2 of the partition (8) for which matrices
with maximum rank already exist.

The above example shows that obtaining one partition of an integer into summands is not
a difficult task. In turn, the generation of the generating matrix V may require the presence of a
larger number of integer partitions obtained by modifying the original one. By analogy with Young
diagrams [25], to formalize the procedure for modifying the partition of a number into summands, we
will determine the diagram of the partition (8) that takes into account all the previously formulated
constraints.

Definition 1. The diagram of the expansion (8) of an integer belonging to the range from 2m−1

to m · 2m− 2m−1−m+1 is a matrix consisting of m×m cells, where each filled cell in the ith row,
i ∈ {0, 1, 2, . . . ,m − 1}, corresponds to the integer 2m−1−i. There are no flush-left empty rows in
the matrix, and their filling corresponds to the partition of the integer.

Figure 1 shows two partition diagrams for the case of integer 30.
The presented diagrams show that the sum of values of the filled cells in both cases equals

the number 30, and their filling corresponds to the partitions 88442211 and 884222211 into sum-
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mands 8, 4, 2, and 1. An analysis of the example shows that diagram 1b can be obtained from
diagram 1a by removing one cell 4 and filling in two empty cells with 2. This procedure is equivalent
to removing the term 4 from the partition 88442211 of the number 30 and adding two terms equal
to 2 to obtain the partition 884222211 of the same number; this allows us to define the operation
of modifying the partition corresponding to Definition 1.

Operation of modification. For the ith (i = 0, . . . ,m− 2) row of the diagram of partition (8)
containing more than one filled cell, deleting a filled cell is associated with filling 2j free cells in
the (i+ j)th (i+ j = 1, . . . ,m− 1) row of the diagram, where j ≤ log2(m− 1).

This operation is symmetric with respect to the delete and fill operations. This means that
deleting 2j filled cells in the ith (i = 1, . . . ,m− 1) row of the diagram containing more than 2j filled
cells is associated with filling one cell in the (i−j)th row (i−j = 0, . . . ,m− 2), where j ≤ log2(m−1).

5. PROBLEMS OF SYNTHESIZING SEQUENCES WITH GIVEN SWITCHING ACTIVITY

Taking into account the wide range of application of test sequences A(n) [19, 21, 22, 29, 30], we
will formulate the problems of synthesis of generators of such sequences. The result of the synthesis,
as mentioned earlier, will be a generating matrix V that provides the values of switching activ-
ity Fav(A) and Fav(aj) of the sequence A(n) = am−1am−2 . . . a0, ai ∈ {0, 1}, i ∈ {0, 1, 2, . . . ,m− 1}
and n ∈ {0, 1, 2, . . . , 2m−1}.

Problem 1. Synthesize a device that generates a sequence A(n) for a given value of m and
a required value of Fav(A).

An example of such a problem can be the problem of generating a double Gray sequence, i.e.,
a sequence for which only two switchings are performed during the transition from the current test
set to the next one. The solution to Problem 1 will be:

(i) Obtain the value of F (A) = int [Fav(A)× (2m−1)], where int means the operation of obtaining
the integer part of the number in brackets.

(ii) Partition the integer F (A).

(iii) Obtain the values w(vi) of row weights of the desired generating matrix V and find the
maximum-rank matrix with the row weights w(vi).

If it is impossible to obtain the desired matrix owing to the inconsistency of the requirements stated
for it, the modification of integer partition described earlier is first applied. The next and final step
is the correction of the value of F (A).

In general, the correction operation is used to ensure that Fav(A) is set to a given value with
minimal error. To do this, the value of F (A) is initially changed (corrected) by a minimum value (+1

or −1), and the corresponding generating matrix V (2) is sought. In case of a negative outcome
based on the results of the search for the required matrix, the value of the deviation of F (A)

from the required value int [Fav(A) · (2m − 1)] increases. It should be noted that the correction
of F (A) by one introduces an insignificant error, which for real values of m in percentage terms
is (1/(2m − 1))× 100%.

Problem 2. Synthesize a device that generates a sequence A(n) for a given value of m in which
the specific values of switching activity Fav(aα1), Fav(aα2), . . . , Fav(aαk) are defined for k ≤ m of
its bits aα1, aα2, . . . , aαk, αi ∈ {0, 1, 2, . . . ,m− 1}, i = 1, . . . , k.
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Just as in the case of Problem 1, the averages of Fav(aα1), Fav(aα2), . . . , Fav(aαk) of switching
activities are represented as the total values F (aα1), F (aα2), . . . , F (aαk) of the number of switching
bits aα1, aα2, . . . , aαk in the sequence A(n). Then F (aαi) is converted into an m-digit binary code,
F (aαi)(10) = F (aαc)(2) = βαi(0) · 2m−1 + βαi(1) · 2m−2 + · · ·+ βαi(m− 1) · 20. Note that βαi(0) is the
most significant bit of the resulting binary code, and the code βαi(0)βαi(1) . . . βαi(m− 1) uniquely
determines the values of the αith column of the generating matrix V (2). Thus, we calculate the
values of all k ≤ m columns of the matrix V that determine the switching activities Fav(aα1),
Fav(aα2), . . . , Fav(aαk).

If the necessary condition for F (aα1), F (aα2), . . . , F (aαk) stated as Property 1 is not satisfied,
then the correction operation is applied.

The next step in solving Problem 2 is to check whether the sufficient condition for the values of
switching activities F (aα1), F (aα2), . . . , F (aαk), which are the binary codes of the columns of the
matrix V , is satisfied. This condition is the linear independence of the columns of the generating
matrix. The failure of this condition necessitates the application of the correction operations.

Then the remaining columns of the binary matrix V are generated randomly (equiprobably and
independently). The columns α1, α2, . . . , αk in this matrix take the given values. The rank of
the resulting matrix is determined. In the case of the maximum rank, this matrix is the desired
one and is used to construct the generator of the sequence A(n). When obtaining a matrix with
a rank different from the maximum value m, the random generation of the remaining columns of
the desired matrix V is repeated.

Problem 3. Synthesize a device that generates a sequence A(n) for a given value m in which
specific values of the switching activity Fav(aα1), Fav(aα2), . . . , Fav(aαk) are defined for k ≤ m of
its bits aα1, aα2, . . . , aαk, αi ∈ {0, 1, 2, . . . ,m − 1}, i = 1, . . . , k, and the switching activity A(n)

is Fav(A).

The well-posedness of Problem 3 implies that Fav(aα1) + Fav(aα2) + · · · + Fav(aαk) < Fav(A) ≤
m − 1/2 + 1/(2m+1 − 2). At the initial stage, the solution of Problem 3 repeats the solution of
Problem 2. Next, the steps of the procedure for solving Problem 1 are executed. The difference is
that we partition the integer F ∗(A) = int [Fav(A) ·(2m−1)]− int , [Fav(aα1) ·(2m−1)]− int [Fav(aα2) ·
(2m−1)]−· · ·− int [Fav(aαk) · (2m−1)] rather than the numbers F (A). In addition, when obtaining
the values w(vi) of the row weights of the desired generating matrix V , it is necessary to take into
account the row weights of the previously generated k columns.

If it is impossible to obtain the desired matrix owing to the inconsistency of the requirements
stated for it, the operation of modification of integer partition is first applied. Subsequently,
the correction of the values of F ∗(A) is performed and lastly, the switching activities F (aα1),
F (aα2), . . . , F (aαk) are corrected starting from their maximum values. As an example, consider
the solution of Problem 3 in a particular case.

Example 2 . Synthesize a device that generates the sequence A(n) = a5a4a3a2a1a0 for m = 6,
where the switching activities Fav(a1) = 1, Fav(a3) = 1/63, as well as the value of Fav(A) = 2, are
defined for the bits a1 and a3.

The inequality Fav(a1) + Fav(a3) = 1 + 1/63 < Fav(A) = 2 ≤ m− 1/2 + 1/(2m+1 − 2) = 5.5079

satisfied indicates the possibility of constructing a device with given switching activities. Based on
the average values of the switching activities Fav(a1), Fav(a3), and Fav(A), we obtain F (a1) = 63,
F (a3) = 1 and F (A) = 126.
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The values of F (a1) and F (a3) are represented as F (a1) = 63(10) = 111111(2) and F (a3) =

1(10) = 000001(2). Accordingly, the values of the first and third columns of the matrix V take the
form β1(0)β1(1)β1(2)β1(3)β1(4)β1(5) = 111111 and β3(0)β3(1)β3(2)β3(3)β3(4)β3(5) = 000001. The
value F ∗(A) = F (A)− F (a1)− F (a3) = 126− 63− 1 = 62 is calculated.

Further, using the algorithm described above for partitioning the integer F ∗(A) = 62, we ob-
tain w = 0 and q = 62(10) = 111110(2). Thus, b5b4b3b2b1b0 = 111110.

A partition of the integer F ∗(A) into summands 2i is constructed, where i = 0, . . . , 5, each of
which is included in the partition w + bi = 1 + bi times. Since q = 111110, the terms 25, 24, 23, 22,
and 21 occur in the partition of 62 once each, and the term 1 is not included, because only b0 = 0.
The value w+bi determines the value of the digit w(vm−1−i) in the partition (8) of the number F ∗(A),
which in this case is the Hamming weight of the rows of the desired matrix V , which consists of six
rows and six columns excluding the first and third columns and hence allows the zero values of the
partition digits.

Next, we randomly form the values of six four-bit binary vectors with Hamming weights equal to
w(v0) = w(v1) = w(v2) = w(v3) = w(v4) = 1, and w(v5) = 0, which will determine the values of the
remaining (except the first and third) columns of the desired matrix. The maximum of the rank is
determined for the matrix thus obtained. In the case of a positive outcome, the matrix is the basis
for forming the sequences A(n) (1) with switching activities specified in the statement of Problem 3.
If the rank of the matrix is not 6, then the procedure for generating the matrix is repeated; i.e., six
four-bit vectors are randomly generated that determine the values of the bits a5, a4, a2, and a0 of
the sequence A(n) = a5a4a3a2a1a0. In the case where a result of a certain number of iterations does
not result in the desired matrix of maximum rank, the operations of modification and correction
are successively applied. A solution to the example in Problem 3 can be the matrix

V =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

β5(0) β4(0) β3(0) β2(0) β1(0) β0(0)

β5(1) β5(1) β3(1) β2(1) β1(1) β0(1)

β5(2) β5(2) β5(2) β2(2) β1(2) β0(2)

β5(3) β5(3) β3(3) β2(3) β1(3) β0(3)

β5(4) β5(4) β3(4) β2(4) β1(4) β0(4)

β5(5) β5(5) β3(5) β2(5) β1(5) β0(5)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 1 0

0 1 0 0 1 0

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 0 1 0

0 0 1 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

This result was obtained by successive application of modification and correction operations.

6. CONCLUSIONS

A technique for synthesizing generators of test sequences with given switching activity is pro-
posed. The definitions of modification and correction operations for finding the generating matrix
of the test generator are given. The problems of synthesis of test sequences with given switching
activity are stated, and the ways of their solution and the existing limitations are shown.
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