
RISC-V HARDWARE MODIFICATION FOR M-SEQUENCES
GENERATION

Petrovsky D., Ivaniuk A.
Faculty of Computer Systems and Networks, Belarusian State University of Informatics and Radioelectronics

Minsk, Republic of Belarus
E-mail: petrovsky.dmitr@gmail.com, ivaniuk@bsuir.by

A hardware modification of the soft processor core of the open RISC-V architecture to accelerate the generation
of M-sequences is being considered. The results of a comparative analysis of the performance of completely
software algorithms and an algorithm with support for hardware modification are shown, and the hardware costs for
implementation in a Xilinx-7 FPGA chip are calculated.

Introduction

The main advantage of processor systems is the
ability to perform a wide range of tasks, such as var-
ious mathematical algorithms and control systems.
To speed up the execution of which, the following ap-
proaches can be used: software optimization, adding
specialized co-processors, and a combination of hard-
ware and software modifications. This article will
discuss the third approach.

I. Problem statement

As a processor core we will use the currently
popular RISC-V[1] architecture, into the structure
of which hardware changes will be introduced. This
architecture supports instruction sets with different
bit depths as shown in Table 1.

Table 1 – Basic instruction sets
Abbreviation Name
RVWMO Basic memory consistency model
RV32I Basic set with integer operations,

32-bit
RV64I Basic set with integer operations,

64-bit
RV128I Basic set with integer operations,

128-bit

In addition to the basic sets, this architecture
also contains additional sets that expand the func-
tionality, as shown in Table 2.

Table 2 – Standard unprivileged command sets
Abbreviation Name
M Integer Multiplication and Division
F Single-Precision Floating-Point
D Double-Precision Floating-Point
V Vector Operations

A pseudo-random sequence (PRS) is a sequence
of numbers that was calculated according to some
arithmetic rule, but has all the properties of a ran-
dom sequence. One of the devices for generating
PRS is a linear feedback shift register (LFSR), in
which the value of the input (pushed) bit is equal to
a linear Boolean function of the values of the remain-
ing bits of the register before the shift. There are
two types of feedback in LFSR, external feedback
(Fibonacci configuration Figure 1.a) and internal
feedback (Galois configuration Figure 1.b). Both

implementations have the same generator functions,
but the Galois configuration, due to the ability to
parallelize XOR operations, allows for greater per-
formance in both software and hardware implemen-
tations.

Figure 1 – Shift register with linear feedback a)
Fibonacci configuration b) Galois configuration

The PRS with the maximum length is called
an M-sequence and has the following properties:

– M-sequences are periodic with period
N = 2n − 1;

– the number of symbols taking the value one,
over the length of one period of the M-
sequence, is one more than the number of
symbols taking the value zero;

– any combination of symbols of length n in one
period of the M-sequence, with the exception
of a combination of n zeros, occurs no more
than once;

– a combination of n zeros is prohibited: only a
sequence of only zeros can be generated on its
basis.
The extensive use of M-sequences in cryptog-

raphy problems, communication systems and digital
signal processing algorithms makes it urgent to solve
issues of optimization and acceleration of PRS gen-
eration algorithms.

II. Research results

A pipeline implementation of a soft processor
of the RISC-V architecture with support for the

127



RV32I[2] instruction set was taken. This implemen-
tation contains a set of 32 registers and includes
39 instructions: fetch-store, logical and arithmetic
operations, conditional and unconditional jump in-
structions.

To speed up M-sequence calculations, it is pro-
posed to add additional logic to the general-purpose
register and modify the command decoding device.

The additional logic for the general-purpose
register will allow it to perform both the LFSR and
general-purpose register functions. To make the
general-purpose register work as a shift register be-
tween triggers we will place a two-input multiplexer,
the selecting signal of which provides a choice be-
tween parallel write or shift operation. In the re-
sulting shift register input bit is directed from the
stage of elements AND/XOR allowing the imple-
mentation of external feedback in the LFSR. This
structure(Figure 2) allows you to implement any
polynomial to form a PSP with a dimension of up to
32-bit. The polynomial is specified in the 32-bit sta-
tus control register (SCR), so a one set in bit number
N adds the N+1 term to the polynomial. For exam-
ple, a polynomial of the form « x32+x22+x2+x1+1»
will correspond to the value of register 0x8020003. If
this register takes a non-zero value, then the general-
purpose register switches its mode to LFSR, if this
SCR register took a zero value, the register functions
as a normal general-purpose register.

Figure 2 – LFSR block structure

Modification of the control device is an addi-
tional reading signal. This signal is generated for the
register we have selected while executing commands
that use this register.

This hardware modification allows the register
with LFSR function to be used for operation with
standard processor instructions. Thus, all logical
operations, arithmetic operations and memory write
operations will cause the next LFSR value to be cal-
culated, so that a new value can be obtained every
processor clock.

Here are the results of comparison of software
implementations with our hardware modification.
The Prog.1 fully corresponds to our hardware modi-
fication, it checks all bits of the polynomial in a loop

and when the value of the bit "1" to perform the
XOR operation, the shift always occurs. The Prog.2
computes only one polynomial, runs without a loop
and without unnecessary shift operations. Table 3
shows for comparison the number of CPU cycles re-
quired to calculate one element of the M-sequence of
the following polynomials «0x8020003, 0x8579D037,
0xFFFFFFFFEE». The general graph of clock cy-
cles consumed for all polynomial lengths is shown
in Figure 3.

Table 3 – Comparison CPU cycles
Polynomial Number

of
terms

Prog.1 Prog.2 Prog.3
with
mod.

0x80200003 4 312 12 1
0x8579D037 16 309 36 1
0xFFFFFFEE 30 295 64 1

Figure 3 – Graph of the clock cycles

The RISC-V soft processor was implemented
in a Xilinx-7 series FPGA chip, Table 4 shows the
hardware overheads of the implementation without
and with hardware modification, and the difference
in their expenses.

Table 4 – table
Implementation Slice LUT’s Registers
Original
RISC-V

704 1489 1433

Mod. RISC-V 789 1638 1465
Difference 85 149 32

The data in Tables 3-4 show that fully software
implementations are inferior to hardware-software
implementations in performance by a factor of 8 to
320. Hardware costs are not significant compared
to the resources occupied by the soft processor core.

1. Official site RISC-V International [Electronic resource]
– Mode of access: https://riscv.org. – Date of access:
26.10.2023.

2. Harris. S. L. Digital Design and Computer Architecture,
RISC-V / S. L. Harris, D. Harris; – Morgan Kaufmann.
Press, 2021. - 592 p

128


	Секция <<Математическое моделирование и компьютерная графика>>
	Баштык П. А., Кукин Д. П., Шабанович Р. А.Алгоритм управления траекторией движения игрового персонажа

