
Fundamenta Informaticae 188(1) : 41–61 (2022) 41
Available at IOS Press through:
https://doi.org/10.3233/FI-222141

Universal Address Sequence Generator for Memory
Built-in Self-test*

Ireneusz Mrozek†

Bialystok University of Technology, Bialystok, Poland

i.mrozek@pb.edu.pl

Nikolai A. Shevchenko
Gymnasium, Darmstadt, Germany

nik.sh.de@gmail.com

Vyacheslav N. Yarmolik
Belarusian State University of Informatics and

Radioelectronics, Minsk, Belarus

yarmolik10ru@yahoo.com

Abstract. This paper presents the universal address sequence generator (UASG) for memory
built-in-self-test. The studies are based on the proposed universal method for generating address
sequences with the desired properties for multirun march memory tests. As a mathematical model,
a modification of the recursive relation for quasi-random sequence generation is used. For this
model, a structural diagram of the hardware implementation is given, of which the basis is a
storage device for storing so-called direction numbers of the generation matrix. The form of
the generation matrix determines the basic properties of the generated address sequences. The
proposed UASG generates a wide spectrum of different address sequences, including the standard
ones, such as linear, address complement, gray code, worst-case gate delay, 2i, next address, and
pseudorandom. Examples of the use of the proposed methods are considered. The result of the
practical implementation of the UASG is presented, and the main characteristics are evaluated.

Keywords: antirandom tests, controlled random tests, multiple tests, RAM testing.
*This work was supported by the grant WZ/WI-IIT/2/2020 from Bialystok University of Technology, Faculty of Computer

Science
†Address for correspondence: Bialystok University of Technology, Bialystok, Poland.

Received July 2021; accepted September 2022.

ar
X

iv
:2

20
8.

05
32

5v
2

 [
cs

.A
R

]
 3

 J
an

 2
02

3

42 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

1. Introduction

The percentage of embedded memories in a chip is increasing. Thus, memory is a major portion of
the current system-on-a-chip designs (occupying more than 70%) and is expected to rise to 95% of the
area overhead [1, 2, 3, 4]. The density of modern memory is rapidly increasing compared to random
logic. Additionally, the smaller feature size and increasing space occupied by the memory on a chip
result in an enormous critical chip area that may potentially have defects.

Memory faults can be divided on the basis of the number of memory cells being faulty, namely into
one-cell faults (e.g., stuck-at faults, stuck open faults, and transition faults), and multiple cells faults
(first of all pattern sensitive faults - PSF). The first group of faults is well detectable by existing classi-
cal march tests. In the case of the second group of faults, the problem is much more difficult.Although
many approaches have been proposed in the literature [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], the issue of
efficient detection of multiple cell faults is still open.

The traditional approach based on direct memory access for testing is costly in terms of silicon
area, routing complexity, and test application time [15]. The memory built-in self-test (MBIST) has
become an attractive alternative and can offer benefits, such as at-speed testing and, therefore, high
fault coverage [16, 17]. Traditionally, the MBIST solutions are based on march test algorithms.

Due to the linear complexity, regularity, symmetry and simplicity of the hardware implementation,
the march tests are usually a preferred and often the only reasonable method for RAM testing. March
test algorithms consists of a set of march elements. March elements are a finite sequence of read and
write operations applied to every cell in the memory by accessing all memory addresses in any order.
The order of memory cells can be the same for all march elements or can be reversed for some march
elements [6, 18].

Well known property of march tests is that for one run memory test execution there is no any
special requirements for the address order, as well as for memory background [6]. For any address
order and memory background the number of detectable memory faults, including multi-cell faults,
will be the same and can be calculated according to the memory test detection ability. One of the
constructive solutions for achieving high fault coverage especially for complex faults, as has been
shown in [7, 19], is multi-run testing. The idea of multi-run tests was originally formulated in the
context of transparent testing [20], and later exhaustive and pseudo-exhaustive RAM testing [21, 22,
23]. According to this idea, the same testing procedure is executed several times, each time with
different initial conditions. As pointed out in many research studies [20, 21, 24, 25, 26], transparent
tests are able to cover a wide range of memory faults (theoretically all faults). In this case, the test
process requires multiple runs of one or more memory tests. It is obvious that the fault coverage of
such testing processes depends both on the test used (including the number of its iterations) and the
memory background and/or address order in each iteration of the test [26].

So, one of the key element of multi-run tests are the address sequences. As has been mentioned
for one-run memory test execution, there is no any specific requirements for the address order [6].
The only restriction is that an entire set of all possible addresses has to be generated in an arbitrary
order in an up and down direction. That is why a simple binary counter with an increment and a
decrement by 1 mode can be used. It is another story in the case of multi-run memory tests. The high
efficiency of such type of memory testing is obtained due to the detection of additional portions of the

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 43

complex memory faults. Any new run of the same memory test has to be done with the new initial
conditions. Usually, this can be a new memory background or address order, or both background and
address order. In this case, it is quite important to choose an appropriate set of memory addresses. For
example, for two-run memory test, we have to select two different address sequences with a different
address order. There is no doubt that a different subset can result in different fault coverage.

From the above perspective the key element of the MBIST is the address sequence generator
(ASG), which is the most critical part of the area of MBIST implementation. The ASG designs are
very different, and the area required for the ASG varies between 26% and 33% of the MBIST [27].
To detect complex and speed-related faults, the functionality of ASG should be extended and flexible
[27, 28]. The ASG must generate an appropriate set of address sequences (ASs), with the desired
address switching activity.

Several MBIST architectures have been proposed in the literature [17, 28, 29, 30, 31, 32, 33].
In [28, 32], attempts were put forward for proposed architectures of address generators with a low
transition. It has been proven that efficient employment of the ASG architecture has considerably
reduced the switching activity of MBIST [32]. The proposed approaches are based on a modified
linear feedback shift register (LFSR), which generates the restricted sets of ASs.

In [34], the MBIST address generator is used to implement addresses with a significantly low
area, less power, and high speed based on a set of multiplexers and counters. In this paper, a new
architecture is analyzed and proposed with more advantageous properties. The implementation aspects
of several ASs, including linear, address complement, and gray code sequences have been analyzed.
The proposed investigation supports several designs for an ASG to generate only one AS, and their
combination requires additional area overhead.

To reduce the MBIST power consumption to test the memory core of a system on a chip, the
design proposed in [35] concentrated on just three types of ASG, namely LFSR-based, linear, and
gray code ASs. A comparison with the standard solutions in terms of the area overhead and consumed
power was presented and analyzed. The same power-reducing issue was investigated in [15] for only
one LFSR-based AS.

In [27], the authors stated that the set of counting methods, commonly used in industry to detect
different fault classes, including speed-related faults, consists of the linear, address complement, gray
code, worst-case gate delay, 2i, next address, and pseudorandom ASs. All efforts within these inves-
tigations have been concentrated on the optimization of ASG implementation. The AS properties and
implementation aspects of several ASs have been considered. As a result, a novel, systematic, high-
speed, low-power, and low-overhead implementation based on an up-counter and a set of multiplexors
was presented [27].

The complexity of the MBIST is a major design issue because it requires a large area and limits
the speed of the MBIST. In addition, the restriction on the set of ASs may reduce the efficiency of
the memory-test procedures. To overcome this tradeoff, in this paper, the universal address sequence
generator (UASG) is proposed and analyzed. The motivation of this work is to design an efficient
universal MBIST ASG that generates sufficiently different ASs, including the standard ASs, compared
with known solutions. The area overhead and speed issues, as crucial aspects of ASG implementations,
are compared with the existing techniques.

44 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

2. Standard address sequences

The address sequence is a binary number system that satisfies the following property:

Property 1. A binary number system A = amam−1 . . . a3a2a1 consists of all possible 2m binary
combinations amam−1 . . . a3a2a1 formed in an arbitrary order, where ai ∈ {0, 1}. Moreover, all
combinations amam−1 . . . a3a2a1 occur in A only once.

It should be noted that there is the strong requirement to generate all addresses in an arbitrary order
and the same sequence of addresses in an inverse order for memory test implementation.

Taking into account the Property 1, the address sequence A consists of N = 2m m-bit words
as well as of m N -bit sequences amam−1...a1. The classical address sequence (counter address se-
quence) for m = 3 is presented in Table 1.

Table 1. The classical address sequence for m = 3

Address
m = 3

a3 a2 a1

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

In the example (Table 1), we have eight addresses, namely 000, 001, 010, 011,100, 101, 110, 111,
and three bit sequences a3 = 00001111, a2 = 00110011 i a1 = 01010101.

Now, let us formulate the general properties of the bit sequences ai for any address sequences A.
Let’s start with the general property of A = amam−1 . . . a3a2a1 where ai ∈ {0, 1}

Property 2. For any bit sequence ai of an address sequenceA there exist 2m−1 distinct binary combi-
nations for amam−1 . . . ai+1ai−1 . . . a3a2a1 with ai = 0 and exactly the same number of combinations
amam−1 . . . ai+1ai−1 . . . a3a2a1 with ai = 1.

The Property 2 allows to make the conclusion that there are 2m−1 ’0’ values and the same number
2m−1 ’1’ values for any bit sequence ai within any binary numerical systemA = amam−1 . . . a3a2a1.

Property 3. For any two-bit sequence of bits ai and aj i 6= j of an address sequence A there are
exactly 2m−2 all binary combinations, namely 00, 01, 10, 11 within the address sequence A.

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 45

The last property can be formulated for the general case as the following property.

Property 4. For any number of bits r < m ai, aj , . . . , aq within the standard address sequence A,
where i 6= j 6= . . . 6= q, there are exactly 2m−r all binary combinations, namely 00 . . . 0, 00 . . . 1, . . . ,
11 . . . 1 within the address codes amam−1 . . . a3a2a1.

For the given memory with 2m cells, there is only one counter sequence described via classical
algorithm. To increase the number of sequences with an entire set of m− bit addresses many standard
solutions have been presented [32, 34, 35, 36, 37, 38, 39, 40].

Let us analyze Address bit permutation method as an example of one of AS generating methods.

For a one m-bit address sequence A, there are m! sequences of addresses as a result of bit permu-
tation. For example, in the case of a counter sequence A = a2a1 we have only 2! = 2 sequences, but
for A = a3a2a1 with m = 3 we can get 3! = 6 sequences. All the mentioned sequences for m = 2, 3
are shown in Table 2.

Table 2. Sequences of address for m = 2 and m = 3

m = 2 m = 3

A#1 A#2 A#1 A#2 A#3 A#4 A#5 A#6

a2a1 a1a2 a3a2a1 a3a1a2 a2a3a1 a2a1a3 a1a3a2 a1a2a3

00 00
000 000 000 000 000 000
001 010 001 010 100 100

01 10
010 001 100 100 001 010
011 011 101 110 101 110

10 01
100 100 010 001 010 001
101 110 011 011 110 101

11 11
110 101 110 101 011 011
111 111 111 111 111 111

The key parameter for predicting the number m! of memory address sequences depends only on
the memory width m. For a large m, the value m! can be approximated by Stirling’s approximation:

r! ≈ rre−r
√
2πr. (1)

In reality, it is a large number.

Let us sum up the above approach in terms of its implementation [41, 42]:

1. For real memory, this approach allows getting enormous amounts of address sequences.

2. There is substantial hardware overhead. For practical implementation, we need to use m m-
input multiplexers and m m-bit registers to fix one of the address sequences out of all those
possible.

3. Decreasing in the performance in terms of delay due to multiplexing of address bits.

46 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

3. Proposed method

The basic idea behind the proposed UASG is the significant expansion of the set of different ASs (with
moderate hardware overhead), including the standard well-known and extensively used AS generated
by the UASG. To achieve the goal, the fundamental bases of the binary vectors field are used [43].

The ASA(n) = am(n) am−1(n)am−2(n) . . . a2(n)a1(n), where ai(n) ∈ {0, 1}, i ∈ {1, 2, 3, . . . ,
m}, the m-dimensional binary vectors in binary space, are considered. Then, the problem of generat-
ing the desired AS can be regarded as m-dimensional binary vectors in binary space generation. The
vector space consists of a set of elements ai(n) over which the binary addition operation, denoted by
the XOR (⊕) operation, is defined. The binary multiplication operation, denoted by the AND (×)
operation, is defined between an element ai(n) of the field and the vectors of the space. The set
of linearly independent binary vectors, vi = β1(i)β2(i) . . . βm−1(i)βm(i), i = 1,m, generates m-
dimensional binary vectors A(n), which is called a basis of the m-dimensional binary vector space.
The set of linearly independent vectors, vi = β1(i)β2(i) . . . βm−1(i)βm(i), generates m-dimensional
binary vectors A(n) with all linear combinations:

A(n) = b1(n)× v1 ⊕ b2(n)× v2 ⊕ . . .⊕ bm(n)× vm, (2)

where B(n) = bm(n)bm−1(n)bm−2(n) . . . b2(n)b1(n); bi(n) ∈ {0, 1}, i ∈ {1, 2, 3, . . . ,m} and
n ∈ 2m − 1 is any entire binary vector set (AS) consisting from all possible 2m binary combinations.
Then, the vector space (composed of m bit vectors A(n)) formed according to (2) is of dimension
m and consists of 2m vectors, which is why the vectors (A(n)) can be used as ASs. For further
investigations, the set of vectorsB(n) is regarded as linear ASs or simply binary up-counter sequences.
The enormous variety of AS generated according to (2) primarily depends on the values of linearly
independent vectors (vi = β1(i)β2(i) . . . βm−1(i)βm(i), βj(i) ∈ {0, 1}, j = 1,m,), which form
the generating binary m × m matrix V . The only restriction for such a matrix (V) is the maximal
rank achieved by choosing a linearly independent set of vectors vi. The second argument extending
the possibilities to generate different ASs is the vector set B(n). This set consists of all possible 2m

binary vectors. Thus, any AS can be used as the vector set B(n) for generation of new AS according
to (2).

Brief analyses of the above-presented Relation (2), which can be used for AS generation, reveal
at least two questions. The first question concerns the generation matrix V , and the second question
addresses the computational complexity of the above-presented algorithm (2).

The rank of a random m ×m matrix V with entries in GF (2), which are independently chosen
and equally likely to be 0 or 1 (p(0) = p(1) = 0, 5), is analyzed in Kolchin’s book [44]. He proved
that the probability that the rank of a random m×m matrix is m− s equals:

P (m, s) = 2−s2(
∏

0≤i<≤m−s−1

(1− 2−(m−i))× (
∑

0≤i1≤i2...is≤m−s

2−i1−i2...is). (3)

In the case of s = 0, the probability of the full rank matrix is as follows:

P (m, 0) =

m∏
i=0

(1− 2−i). (4)

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 47

As m becomes larger and larger, P (m, s) approaches the limiting values, for example, if s = 0
and m → ∞, then P (m, 0) ≈ 0, 2887880950866. At the same time, the expected value of the
rank of the random matrix is m −

∑m
s=0 sP (m, s). For a large value of m, this value approaches

m − 0, 850179830874 [44]. Thus, the number of ASs generated according to (2) for real values of
m reaches astronomical values that are equal to more than 28.8% of the total number 2m

2
of possible

m×m binary matrices. The procedure of AS generation based on Relation (2) for the case of m = 4
and the set of m linearly independent binary vectors v1 = 1011, v2 = 1000, v3 = 0101, v4 = 1111
forming the generated matrix V is presented in Table 3:

V =

∣∣∣∣∣∣∣∣∣∣
v1

v2

v3

v4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 1 1

1 0 0 0

0 1 0 1

1 1 1 1

∣∣∣∣∣∣∣∣∣∣
(5)

Table 3. Procedure of address sequence generation based on Relation (2)

n B(n) = b4(n)b3(n)b2(n)b1(n) A(n) = a4(n)a3(n)a2(n)a1(n) B(n)⊕B(n− 1)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

1 0 1 1

1 0 0 0

0 0 1 1

0 1 0 1

1 1 1 0

1 1 0 1

0 1 1 0

1 1 1 1

0 1 0 0

0 1 1 1

1 1 0 0

1 0 1 0

0 0 0 1

0 0 1 0

1 0 0 1

1 1 1 1

0 0 0 1

0 0 1 1

0 0 0 1

0 1 1 1

0 0 0 1

0 0 1 1

0 0 0 1

1 1 1 1

0 0 0 1

0 0 1 1

0 0 0 1

0 1 1 1

0 0 0 1

0 0 1 1

0 0 0 1

In this case:
A(n) = b1(n)× v1 ⊕ b2(n)× v2 ⊕ b3(n)× v3 ⊕ b4(n)× v4.

For exampleA(5) = b1(5)×v1⊕b2(5)×v2⊕b3(5)×v3⊕b4(5)v4 = 1×v1⊕0×v2⊕1×v3⊕0×v4
and finally we have A(5) = v1 ⊕ v3 = 1011⊕ 0101 = 1110.

Table 3 reveals that the number of operands for consecutive address A(n) calculation according
to (2) strongly depends on the number of 1s within the B(n). Depending on the number of nonzero
components of B(n), up to m operands can obtain the value of A(n). This indicates that the address

48 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

generation according to (2) is a time-consuming procedure, which may sufficiently reduce the rate of
the test pattern generation.

To decrease the number of operations to only one bitwise XOR operation, Relation (2) can be
transformed into a recursive relation [40, 36]:

A(n) = A(n− 1)⊕ v∗i ; n = 0, 2m − 1, i = 1,m (6)

where
v∗i = v1 ⊕ v2 ⊕ . . .⊕ vi. (7)

The main idea behind this transformation is based on the set of consecutive values of B(n) ⊕
B(n − 1). Table 3 indicates that only the four different correction values, v∗1, v

∗
2, v

∗
3, v

∗
4 , are used to

obtain A(n) from the previous value A(n − 1). For our previous example in Table 3, v∗1 = v1 =
1011; v∗2 = v1 ⊕ v2 = 0011; v∗3 = v1 ⊕ v2 ⊕ v3 = 0110; v∗4 = v1 ⊕ v2 ⊕ v3 ⊕ v4 = 1001.

For the general case, the recursive relation in (6) for the AS generation can be obtained from
(2) using the new bases V ∗ constructed according to generation matrix V (7), which is built from
the linearly independent vectors, vi = β1(i)β2(i) . . . βm−1(i)βm(i), βj(i) ∈ {0, 1}, j = 1,m. The
same relation in (7) can be used to obtain V from V ∗, namely, vi = v∗i−1 ⊕ v∗i . The value of the
index i of the binary vector v∗i , which is used as a term in Expression (6), depends on the so-called
switching sequence, Tm, of the reflected gray code [37]. The binary reflected gray code, also known
as the standard gray code, is the best-known gray code [37]. A characteristic property of the binary
standard gray code is that the second half of the list of codewords can be obtained from the first
half by reflection (i.e., by writing the first half backwards and replacing the first 0 with 1). Any
reflected gray code is described by the switching sequence Tm. For example, form = 4, this sequence
has the form T4 = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. Formally, the switching sequence Tm defines
the index i of an inverted bit to obtain the new value B(n)g from the previous value B(n − 1)g.
Index g of the B(n)g indicates the representation in the gray code of the initial binary code B(n) =
bm(n)bm−1(n)bm−2(n) . . . b2(n)b1(n). The vector B(n)g in the gray code B(n)g = gm(n)gm−1(n)
gm−2(n) . . . g2(n)g1(n) can be obtained according to the following well-known relation [37]:

gm(n) = bm(n)

gi(n) = bi+1(n)⊕ bi(n); i = 1,m− 1.
(8)

The values of the bits of gray code B(n)g for m = 4 are determined in accordance with the
relations g4(n) = b4(n), g3(n) = b4(n)⊕ b3(n), g2(n) = b3(n)⊕ b2(n), and g1(n) = b2(n)⊕ b1(n).

4. Address Sequence Generator

The general structure of the proposed ASG consists of three sequentially connected function blocks,
as presented in Fig. 1. The first block, the switching sequence generator (SSG), is used to select
one out of m vectors vi per clock (Clk) according to the required order. As demonstrated in the
previous section, the main block of the ASG is a memory block for storing m linearly independent
vectors vi = β1(i)β2(i) . . . βm−1(i)βm(i), βj(i) ∈ {0, 1}, j = 1,m, which form the binary m ×m

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 49

Switching
Sequence
Generator

(SSG)

Memory
Unit
vi

Bitwise
XOR

Adder

m

Reset

Reset

Set

m

r/w

r/w

vi

m
B(0)

Clk

m

A(n)......

clock signal

m bit line

1 bit line

reset line

m

read/write

select mode line

Figure 1. General structure of the proposed address sequence generator.

generation matrix V . Then, the second block is the memory unit consisting ofmm-bit cells for storing
vectors vi. Memory units must perform read (r) and write (w) operations (r/w) for the generation of
vectors vi and upload the new values (Fig. 1). The last block is the bitwise XOR adder to perform the
operation A(n) = A(n − 1) ⊕ vi. It consists of m synchronous D-type flip-flops and m two-input
XOR gates. The adder moves to the next state after the clock pulse (Clk) generation. Set and reset
inputs in D-type flip-flops load the all-zero state A(0) (reset) to the adder or any other initial state
A(0) (set). At the output of the adder, the desired AS is generated.

The structure of the second (memory unit) and third (bitwise XOR adder) blocks is quite simple
and standard, but the construction of the first block is not as obvious. The architecture of this block,
namely, the SSG proposed in this paper, is characterized in Fig. 2.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

m

m

Up-counter

Transition sequnece T

generator

m

Gray-counter

clock signal

m bit line

1 bit line

XOR gate

D �ip-�op

Figure 2. Switching sequence Tm generator.

50 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

The main block of the ASG is the SSG, Tm, which determines the sequence of the selection of
the vectors vi of the matrix V (2). As noted, in each cycle of operation, only one output of the SSG
generates an enable signal that determines the selected vector vi by its index i.

The up-counter is the main part of the SSG, which consists of the m-bit binary counter that per-
forms two micro-operations. The first operation is the increment by 1 (+1) operation to make the
transition from B(n − 1) to B(n). The second operation is the load instruction, which is used to
upload the initial state B(0) to the up-counter. Both operations are synchronous and are performed
by the clock signal Clk. The gray counter in Fig. 2 consists of an up-counter and m–1 two-input
XOR gates connected according to (8). The SSG Tm performs the bitwise XOR operation between
consecutive vectors B(n− 1)g and B(n)g to obtain one out of m output selection vector vi signals. It
consists of mD-type flip-flops and m two-input XOR gates.

The proposed UASG illustrated in Figs. 1 and 2 generates any AS depending on the values of the
generated matrix V . The only restriction for V is the linear independence of the binary vectors vi. For
example, for m = 4 and the matrix (5) the procedure for obtaining the AS (set of all possible m bit
vectors A(n)) in detail is presented in Table 4.

Table 4. Procedure of AS generation based on relation (6)
n B(n) B(n)g B(n)g ⊕B(n− 1)g Tm vi ⇑ A(n) ⇓ A(n) ⇑ A∗(n)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 0 1

0 1 0 0

0 0 0 1

0 0 1 0

0 0 0 1

1 0 0 0

0 0 0 1

0 0 1 0

0 0 0 1

0 1 0 0

0 0 0 1

0 0 1 0

0 0 0 1

4

1

2

1

3

1

2

1

4

1

2

1

3

1

2

1

1 1 1 1

1 0 1 1

1 0 0 0

1 0 1 1

0 1 0 1

1 0 1 1

1 0 0 0

1 0 1 1

1 1 1 1

1 0 1 1

1 0 0 0

1 0 1 1

0 1 0 1

1 0 1 1

1 0 0 0

1 0 1 1

0 0 0 0

1 0 1 1

0 0 1 1

1 0 0 0

1 1 0 1

0 1 1 0

1 1 1 0

0 1 0 1

1 0 1 0

0 0 0 1

1 0 0 1

0 0 1 0

0 1 1 1

1 1 0 0

0 1 0 0

1 1 1 1

1 1 1 1

0 1 0 0

1 1 0 0

0 1 1 1

0 0 1 0

1 0 0 1

0 0 0 1

1 0 1 0

0 1 0 1

1 1 1 0

0 1 1 0

1 1 0 1

1 0 0 0

0 0 1 1

1 0 1 1

0 0 0 0

1 0 0 0

0 0 1 1

1 0 1 1

0 0 0 0

0 1 0 1

1 1 1 0

0 1 1 0

1 1 0 1

0 0 1 0

1 0 0 1

0 0 0 1

1 0 1 0

1 1 1 1

0 1 0 0

1 1 0 0

0 1 1 1

The first column contains the binary values B(n) = b4(n)b3(n)b2(n)b1(n) of the up-counter
starting from the all-zero state. Transformed into gray code, B(n)g = g4(n)g3(n)g2(n)g1(n) vectors
as the output sequence of the gray counter are listed in the next column (Fig 2 and Table 4). Columns
B(n)g ⊕ B(n − 1)g, Tm and vi contain the transition sequence output signals used for selecting
one vi = β1(i)β2(i)β3(i)β4(i) out of the four vectors (v1, v2, v3, v4) of the matrix (5) as well as
corresponding vi vectors. The output AS (vectors A(n) = A(n− 1)⊕ vi;n = 0, 1, 2, . . . , 24 − 1, i ∈
{1, 2, 3, 4} in the next column ⇑A(n) can be regarded as the up-sequence. The initial value for the
up-sequence generation of the all-zero vector A(0) = 0000 was chosen. The corresponding down-
sequence, the sequence with the reversed address order, is presented in column ⇓A(n). To generate the
down-sequence, the initial value of ⇓A(0) must be equal to the last ⇑A(15) value of the up-sequence.
In this case, ⇓A(0) = ⇑A(15) = 1111 (Table 4).

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 51

To summarize, the initial value ⇓A(0) for the down-sequence generation must be equal to the final
state ⇑A(n − 1) of the up-sequence, which follows from the properties of the XOR operation and is
formulated as Statement 1.

Statement 1. A decreasing sequence (down-sequence) of addresses ⇓A(n), n ∈ {0, 1, 2, . . . , 2m–1}
with respect to the increasing sequence (up-sequence) of addresses ⇑A(n), n ∈ {0, 1, 2, . . . , 2m–1},
for which ⇓A(n) = ⇑A(2m–1–n), is generated using Relation (6) and the same generator matrix V
as for generating ⇑A(n) with the starting address ⇓A(0) equal to ⇑A(2m–1).

If the initial state A(0) is not an all-zero state, the AS differs from the original AS obtained for
the zero starting state. All bits of vector A(n) = am(n)am–1(n)am–2(n) . . . a2(n)a1(n) for which
aj(0) = 1, j ∈ {1, 2, 3, . . . ,m} are inverted. Table 4 reveals the sequence ⇑A∗(n) for whichA∗(0) =
1000 is the copy of ⇑A(n) with just the fourth bit inverted. The sequence ⇓A(n) was obtained from
the inverted values of ⇑A(n) because ⇓A(0) = 1111.

5. Address sequences

The declared goal of the presented research is a UASG with a wide spectrum of generated sequences.
The general expression for AS generation according to the algorithm implemented as the UASG is
based on the recursive relation in (6) and has the following form:

A(0) = A;

A(n) = A(n− 1)⊕ vi(Tm(B))

n = 1, 2m − 1; i = 1,m

(9)

The initial conditions of UASG depend on the values of two constants A = amam−1 . . . a3a2a1
and B = bmbm−1 . . . b3b2b1, where ai, bi,∈ {0, 1}, and m m-bit binary vectors vi = β1(i)β2(i)
. . . βm−1(i)βm(i), βj(i) ∈ {0, 1}, j = 1,m, which form the binary m × m generation matrix V .
Constants A and B are represented by the initial states of bitwise XOR adder and up-counter, respec-
tively (Figs. 1 and 2). Concerning the constants A and B, no restrictions exist for their values and,
usually, their standard meaning is all-zero values. For some UASG implementations, the zero initial
conditions for A and B can save the required area for the fabrication of the generator.

The only requirement for the generation matrix V is its maximal rank, which generates cyclic
ASs with a length of 2m [43]. The required order of the vectors vi(Tm(B)) depends on the switching
sequence Tm(B) of the reflected gray code generated by the gray counter (Fig. 2). The gray counter
is constructed on the bases of the binary up-counter, which can use any initial state B(0). Usually,
the starting value of the up-counter is a zero binary vector, and the sequence of the used vectors vi
corresponds to the standard reflected gray code sequence Tm. Applying nonzero values of B(0) 6=
000 . . . 0 initiates the generation process of the shifted version of Tm = Tm(B), where B determines
the number of shifts. Then, i = i(Tm(B)) is the function of Tm(B), which defines the sequence of
the selected vectors for AS generation.

The analysis of the existing memory tests reveals that it is necessary to generate addresses in the
reverse sequence ⇓A(n) concerning the original ⇑A(n) ASs and their various modifications. To solve

52 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

this problem, the peculiar properties of the proposed model (9) for AS generation can be used for
further investigation. The equivalence of the addition (XOR) and subtraction operations by modulo
two (⊕) [43] and the symmetry of the switching sequence Tm of the reflected gray code [37] are basic
features of (9). Within the framework of the proposed model in (9) of generating ASs, the formation
of a sequence of decreasing ⇓A(n) addresses concerning ⇑A(n) is consistent with Statement 1 [45].
Statement 1 is true for any AS generated according to ((9)) and the arbitrary initial value of B(0). For
all-zero values of B(0), the example of up and down ASs is given in Table 4.

Statement 2. A shifted copy of the AS by any l number of positions compared with the original AS
for the case of all-zero values of B(0) and A(0) generated according to (9) is obtained whenB(0) = l
and A(0) = A(l).

Statement 2 also is true for any AS generated based on the chosen mathematical model (9) and
generates the shifted version of the address order, which is very important for multirun memory test-
ing [38, 46]. As an example, the shifted copy of AS by l = 3 positions is presented in Table 5. For
this case, m = 4 and the same matrix V (5) is used.

Table 5. Procedure of shifted AS generation by UASG according to relation (9)

n

A(n) with B(0) = 0000, A(n) with B(0) = 0011, A(n) with B(0) = 0011,
A(0) = 0000 A(0) = 0000 A(0) = 1000

B(n) Tm(B) A(n) B(n) Tm(B) A(n) Tm(B) A(n)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

i = 4

i = 1

i = 2

i = 1

i = 3

i = 1

i = 2

i = 1

i = 4

i = 1

i = 2

i = 1

i = 3

i = 1

i = 2

i = 1

0 0 0 0

1 0 1 1

0 0 1 1

1 0 0 0

1 1 0 1

0 1 1 0

1 1 1 0

0 1 0 1

1 0 1 0

0 0 0 1

1 0 0 1

0 0 1 0

0 1 1 1

1 1 0 0

0 1 0 0

1 1 1 1

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

i = 1

i = 3

i = 1

i = 2

i = 1

i = 4

i = 1

i = 2

i = 1

i = 3

i = 1

i = 2

i = 1

i = 4

i = 1

i = 2

0 0 0 0

0 1 0 1

1 1 1 0

0 1 1 0

1 1 0 1

0 0 1 0

1 0 0 1

0 0 0 1

1 0 1 0

1 1 1 1

0 1 0 0

1 1 0 0

0 1 1 1

1 0 0 0

0 0 1 1

1 0 1 1

i = 1

i = 3

i = 1

i = 2

i = 1

i = 4

i = 1

i = 2

i = 1

i = 3

i = 1

i = 2

i = 1

i = 4

i = 1

i = 2

1 0 0 0

1 1 0 1

0 1 1 0

1 1 1 0

0 1 0 1

1 0 1 0

0 0 0 1

1 0 0 1

0 0 1 0

0 1 1 1

1 1 0 0

0 1 0 0

1 1 1 1

0 0 0 0

1 0 1 1

0 0 1 1

Table 5 reveals that the ASA(n) that is shifted by l = 3 positions is generated forB(0) = 3(10) =
0011(2) and A(3) = 1000. For real values of l, the only problem is to determine the meaning of
A(l), which requires additional calculations. These calculations are based on the following statement,
which follows from the above-presented discussions concerning the binary vector space [43, 44].

Statement 3. The AS, which is generated as m-dimensional binary vectors according to (2) based on
generating anm×m matrix V with a maximal rank, can be obtained from the recursive relation in (6)
with the generation matrix V ∗ received from (7) and vice versa.

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 53

From this statement, it follows that, if the AS A(n) that is presented in Table 5 is generated
according to Relation (6) or (9) using the matrix in (5), then the same sequence A(n) is generated
based on (2) for the generation matrix V ∗, which is calculated as follows:

V ∗ =

∣∣∣∣∣∣∣∣∣∣
v∗1
v∗2
v∗3
v∗4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
v1

v1 ⊕ v2
v2 ⊕ v3
v3 ⊕ v4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 1 1

0 0 1 1

1 1 0 1

1 0 1 0

∣∣∣∣∣∣∣∣∣∣
(10)

Applying Relation (2) and using the matrix in (10), A(3) = v∗1 ⊕ v∗2 = 1011⊕ 0011 = 1000.

Applying different values of B(0) and A(0) generates a wide spectrum of different ASs. Among
which, sequences of addresses A(n) = am(n)am–1(n)am–2(n) . . . a2(n)a1(n) with inverted bits
ai(n), i ∈ {1, 2, 3, . . . ,m} have actively been used in practice [38, 47, 39]. Considering that the
bit inversion ai(n) is equivalent to the XOR operation ai(n) = ai(n) ⊕ 1, the desired set of inverted
bits within A(n) can be specified by the initial value A(0). The examples of such ASs are illustrated
in Table 5. This technique, based on just setting a nonzero initial value A(0), allows to generate 2m–1
different sequences, where m is the dimension of the vector space described by the generation matrix
V .

6. Most common Address Sequences for memory built-in self-test

The generalized mathematical model (9) presented in the previous section is an extension of the math-
ematical model used for binary vector generation. The basis of this model is in the form of the
generation matrix V , which determines the main properties of ASs and identifies their subsets. For
memory testing, the address generator must generate several ASs because each sequence and the
combinations of them have their properties that are closely related to the memory-test fault-detection
capability [27, 48, 49]. The generation of the most important and quite common ASs listed in [27]
based on UASG is considered next.

Linear ASs, also called counting ASs are the first in the set of an AS family. For the formation of
counting (counter) sequences formed by binary counting circuits (counters), it is necessary to form a
generation matrix V following Statement 4.

Statement 4. The linear(counting) AS is generated by UASG (9) when the generation matrix V is
the lower triangular matrix relative to the antidiagonal with only nonzero (1s) entries on and below
the antidiagonal

An example of such an AS is presented in Table 6 for the case ofm = 4 andB(0) = A(0) = 0000.
The linear AS belongs to the set of 2j ASs, which generates all address pairs with a Hamming distance
equal to 1 [27]. The linear AS is the 2j AS with j = 0, obtaining the address order incremented by 1.
The complete set of 2j AS where j ∈ {0, 1, 2, . . . ,m − 1}, can be generated based on the proposed
solution according to the next statement.

54 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

Statement 5. The 2j AS is generated using UASG (9) when the generation matrix V is the matrix
obtained as the column permutation of the lower triangular matrix relative to the antidiagonal with
only nonzero (1s) entries on and below the antidiagonal with all 1s in the m− j column.

Table 6 contains an example of 2j = 4 AS for j = 2, generating the addresses incremented by 4.
The generation matrix V has all an 1s column with the index m − j = 4 − 2 = 2. In the previous
section, the up and down (increasing/decreasing) sequence generation techniques for the case of any
type of AS were presented. Applying the technique described by Statement 1, it is easy to generate
decreasing order of the 2j AS. The example in Table 6 repeats the example presented in [27], for
which the switching activity of the other bits of A(n) = a4(n)a3(n)a2(n)a1(n), except the (j + 1)th
bit corresponding to all the 1s m − j column, is constant. The proposed solutions implemented as
the UASG set any switching activity for all bits of A(n), starting from the minimal 20 = 1 up to the
maximal 2m−1 [36].

Table 6. Most-used address sequence generation using the universal address sequence generator

n

Linear 2j = 4 Complement Limited Gray Code Random∣∣∣∣∣∣∣∣∣∣
0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

∣∣∣∣∣∣∣∣∣∣
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 0

0 0 0 1

0 1 0 1

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 0

1 0 1 0

1 1 1 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 1

1 1 1 0

0 0 1 0

1 1 0 1

0 0 1 1

1 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

0 1 1 1

1 0 0 0

0 0 0 0

1 1 1 1

0 0 0 1

1 1 1 0

0 0 1 1

1 1 0 0

0 0 1 0

1 1 0 1

0 1 1 0

1 0 0 1

0 1 1 1

1 0 0 0

0 1 0 1

1 0 1 0

0 1 0 0

1 0 1 1

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

1 0 0 0

0 0 0 0

1 1 0 0

0 1 0 0

1 0 1 0

0 0 1 0

1 1 1 0

0 1 1 0

1 0 0 1

0 0 0 1

1 1 0 1

0 1 0 1

1 0 1 1

0 0 1 1

1 1 1 1

0 1 1 1

The complement AS described in [27] specifies the sequence that, in the even cycle, represents the
linear up-sequence and, in the odd cycle, takes the complementary value of the preceding even cycle.

Statement 6. The complement AS is generated by the UASG (9) when the generation matrix V is the
upper triangular matrix relative to the antidiagonal with only nonzero (1s) entries on and above the
antidiagonal.

For the case ofm = 4, Table 6 contains the set of complement addresses that takes complementary
values from the odd cycle of the previous address obtained from the even cycle. In the even cycle,
(Table 6) this sequence corresponds to the linear AS. The complement AS is extremely useful for

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 55

providing the stress behavior of a memory address decoder. In this case, the high rate of switching
activity of the address bits creates considerable noise, a high level of power consumption, and maximal
delay [27].

The same high efficiency can be obtained in terms of the speed-related memory faults using an
AS with limited switching activity [45]. This type of AS obtains addresses with the highest possi-
ble switching activity. To generate such ASs, the generation matrix V should satisfy the following
statement.

Statement 7. The generation matrix V of UASG (9) for the AS with limited (highest possible)
switching activity consists of one unit column and m–1 columns that are different from each other,
containing a 0 value in each of the m–1 rows, except the first row.

For the case of m = 4, Table 6 contains the set of addresses with limited activity that takes
reflected grey codes in the even cycles and complementary values in the odd cycle of the previous
address obtained in the even cycle (Table 6). Like the complement AS, the limited AS is also especially
useful for providing the stress behavior of the memory address decoder.

To minimize the stress during memory testing, sequences with minimal switching activity are
used, among those in the first place is the gray code AS. In the general case, the AS with the minimum
switching activity (minimum Hamming distance) formed according to (9) is provided by the matrix
V with a minimum number of nonzero values. For an arbitrary case, such a matrix is constructed
according to Statement 8.

Statement 8. The generation matrix V for the AS generation based on (9) with minimum switching
activity consists of m rows that are different from each other, each of which contains just one value
of 1.

According to the above statement, such a generation matrix V characterized by a set of columns
differing from each other, containing one nonzero value, as listed in Table 6 for the case of m = 4.
This example is the standard reflected gray code sequence. In addition, m! different gray code ASs
exist, which can be reproduced by the UASG. In the case of m = 4, this number equals 4! = 24 as
a result of all permutations of the matrix V columns resulting in the bit rearrangement of the address
A(n).

All the above-described ASs belong to the set of so-called deterministic sequences that are widely
used for MBIST. The next widely used set of ASs for memory testing involves so-called pseudoran-
dom sequences that are sequences of nonrandom numbers that have properties of random sequences.
The M–sequences generated by LFSR are often used as ASs [27, 32, 34, 35]. The quasi-random se-
quences also belong to the family of sequences which, being deterministic, have the main properties of
random sequences [40, 45, 32, 50]. To have a similar computation overhead to pseudorandom testing,
quasi-random testing uses quasi-random sequences to generate low-discrepancy and low-dispersion
test cases that help deliver high fault-detection effectiveness [50].

The mathematical model described by Relation (9) and matrix V of directed numbers (m-bit
binary vectors) in the form of a lower triangular matrix with a unit diagonal can be used for the case
of ASs related to quasi-random sequence generation. In the general case, any square matrix V with
the properties described in Statement 9 can be used for quasi-random AS generation.

56 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

Statement 9. The generation matrix V for quasi-random AS generation based on (9) has the form of
a lower triangular matrix with all 1s on the main diagonal.

The specific values of the binary vectors of the lower triangular matrix correspond to the modified
directed numbers that specify a specific form of the quasi-random sequence. For example, in the case
in which all entries below and on the main diagonal are 1s, the generated AS is a van der Corput
sequence [36, 45, 50]. For the case of m = 4, this sequence is presented in Table 6.

7. Hardware implementation

The hardware overhead of the proposed solution for the ASIC circuitry can be estimated based on the
general structure of the proposed address sequence generator (ASG) in Fig. 1. The UASG consists of
three main blocks as depicted in Section 3, namely the switching sequence generator (SSG), memory
unit, and bitwise XOR adder. For the general case with m-bit addresses, the hardware overhead is
needed for all these blocks, and the whole UASG is shown in the next table.

Table 7. Hardware overhead for UASG implementation

Standard elements D-type flip-flops 2 XOR gates Memory Up-Counter

SSG m 2m− 1 – m-bit up-counter

Memory unit mm-bit memory cells

XOR adder m m

UASG 2m 3m− 1 mm-bit memory cells m-bit up-counter

Compared with the known solutions, especially the best solution [27], the proposed ASG requires
moderate hardware overhead. According to the summarized data in Table 7, only roughly 3m D-type
flip-flops, 3m 2-XOR gates, and memory with m cells each of m-bit size are needed for UASG
implementations. Depending of the used technology the area overhead for UASG implementation
will vary sufficiently and will be comparable with all known solutions.

The performance of the proposed generator depends only on up-counter delays because this block
is the slowest one (see Fig. 2). The signal delays on the bitwise XOR adder and transition sequence
Tm generator are the same and equals to the delay on D-type flip-flop and XOR gate (see Fig 1 and
Fig. 2). As well as the delay on the memory unit can be estimated as the delay for read operation by
the so-called memory cycle. This delay can be measured by the delay on only one D-type flip-flop in
a case of register type of the memory. In a worse case the total delay of UASG will includes delay on
up-counter, delay on three D-type flip-flops and delay on three XOR gates. Taking into account that
up-counter consists ofm sequentially connected D-type flip-flops its delay time will be dominated one
for the real applications when m usually greater than 32. As the conclusion of this discussions can
be stated that frequency of formation of synchronizing signals (Clk) in the proposed UASG generator
will be the same as in most similar generators utilized binary counter.

The best known solution allows generating only seven types of address sequences [27]. Additional
options in the existing solutions for new address sequence generation require additional hardware,

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 57

decreasing its rough performance. In the case of UASG, any possible address sequence can be gener-
ated without additional hardware with the same performance.

The main characteristics of the ASG were investigated using its implementation on FPGA, Intel
Cyclone V (5CSXFC6D6F31C8ES), illustrated in Fig. 3. The specified FPGA consists of 41910
adaptive logic modules and 553 SRAM memory blocks (M10k). The generator implementation for
m = 8 required 17 adaptive logic models and one M10k internal memory unit, which is less than 1%
of the FPGA chip area. The timing parameters of the generator correspond to the maximum possible
timing parameters of the FPGA.

Figure 3. Implementation of an address sequence generator on FPGA.

The implementation of the ASG in Fig. 3 completely corresponds to the structure given earlier
(Fig. 1). The input, output, and intermediate nodes of the implemented device (Fig. 3) and its detailed
structure (Fig. 1) and descriptions are in full compliance. The examples of the generation of different
ASs are illustrated in Fig. 4.

Figure 4. Waveform from the FPGA implementation of the address generator.

Figure 4 displays the ModelSim simulation result waveform from the FPGA implementation of
the generator for m = 8. The top row reveals the type of sequence that is generated by the UASG.
The eight rows below indicate the entries in the generation matrix V . The content of the matrix is
loaded with the matrix load valid signal. The UASG then generates the AS according to the loaded
matrix. The bottom row is a visualization of the generated sequences. The depicted waveforms are

58 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

created from the values of the ASG output. The displayed sequences are (listed from left to right) the
Sobol sequence with minimal Hamming distance, the Sobol sequence with the maximum Hamming
distance, three types of gray code, and two types of counters, including a linear counter.

The power consumption of UASG (Fig. 3) was analyzed using Quartus Prime (v. 19.1.0 Build
670 09/22/2019 SJ Lite Edition). The results of the analysis are given in Table 8, which indicates the
minimum power consumption of the proposed device. The UASG time parameters correspond to the
maximum possible FPGA time parameters.

Table 8. Power consumption analysis results

Total Thermal Power Dissipation 463.45 mW

Core Dynamic Thermal Power Dissipation 14.63 mW

Core Static Thermal Power Dissipation 415.27 mW

I/O Thermal Power Dissipation 33.56 mW

8. Conclusion

The use of a modified mathematical model of quasi-random sequence generation expanded the capa-
bilities of the ASG in terms of a significant increase in the number of types of such sequences. The
essence of the method consists of the synthesis of the required generation matrix of maximum rank,
providing the given values of switching activity. The limitations of the proposed technique are dis-
cussed, which are associated with the possible conflicting requirements for the values of the weights
of the rows of the matrix and their linear independence. Examples of the use of such sequences for
MBIST design are provided. A practical implementation of the ASG is presented, demonstrating the
feasibility of such a device with minimal hardware costs and maximum speed.

References

[1] Test and Test Equipment. The International Technology Roadmap for Semiconductors, http://wwwitrsnet/.
2015.

[2] Bhunia S, Tehranipoor M. System on Chip (SoC) Design and Test. In: Hardware Security. United States:
Morgan Kaufmann Publishers; 2019. p. 47–78.

[3] Marinissen EJ, Prince B, Keltel-Schulz D, Zorian Y. Challenges in embedded memory design and
test. In: Proceedings of the Design, Automation and Test in Europe. vol. 2; 2005. p. 722–727.
doi:10.1109/DATE.2005.92.

[4] Bushnell M, Agrawa DV. Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI
Circuits. Frontiers in Electronic Testing. Springer US; 2002. doi:10.1007/b117406.

[5] Hayes JP. Detection of Pattern-Sensitive Faults in Random-Access Memories. IEEE Transactions on
Computers. 1975;24(2):150–157.

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 59

[6] van de Goor AJ. Testing Semiconductor Memories: Theory and Practice. Chichester, England: John
Wiley & Sons; 1991. ISBN: 0471925861, 9780471925866.

[7] Cockburn BF. Deterministic tests for detecting scrambled pattern-sensitive faults in RAMs. In: Proceed-
ings of the IEEE International Workshop on Memory Technology, Design and Testing. IEEE Computer
Society; 1995. p. 117–122.

[8] Franklin M, Saluja KK. Testing reconfigured RAM’s and scrambled address RAM’s for pattern sensitive
faults. IEEE Transactions on CAD of Integrated Circuits and Systems. 1996;15(9):1081–1087.

[9] Cheng KL, Wu CW. Neighborhood Pattern-Sensitive Fault Testing for Semiconductor Memories. In:
Proceedings of the VLSI Design/CAD Symposium; 2000. p. 401–404.

[10] Bernardi P, Grosso M, Reorda MS, Zhang Y. A programmable BIST for DRAM testing and diagno-
sis. In: Proceedings of the IEEE International Test Conference. ITC’10; 2010. p. 1–10. doi:10.1109/
TEST.2010.5699247.

[11] Sfikas Y, Tsiatouhas Y. Testing Neighbouring Cell Leakage and Transition Induced Faults in DRAMs.
IEEE Transactions on Computers. 2016;65(7):2339–2345.

[12] Cascaval P, Bennett S, Huţanu C. Efficient March Tests for a Reduced 3-Coupling and 4-Coupling Faults in
Random-Access Memories. Journal of Electronic Testing. 2004;20(3):227–243. Available from: http://
dx.doi.org/10.1023/B:JETT.0000029457.21312.23. doi:10.1023/B:JETT.0000029457.21312.23.

[13] Huzum C, Cascaval P. A Multibackground March Test for Static Neighborhood Pattern-Sensitive Faults
in Random-Access Memories. Electronics and Electrical Engineering. 2012;119(3):81–86.

[14] Wunderlich HJ. Multiple distributions for biased random test patterns. In: Proceedings of the IEEE
International Conference on Test: new frontiers in testing. ITC; 1988. p. 236–244.

[15] Du X, Mukherjee N, Cheng WT, Reddy SM. Full-speed field-programmable memory BIST architec-
ture. In: Proceedings of the IEEE International Conference on Test. ITC; 2005. p. 1173. doi:10.1109/
TEST.2005.1584084.

[16] Aswin AM, Ganesh SS. Implementation and Validation of Memory Built in Self Test (MBIST) – Survey
(September 11, 2019). International Journal of Mechanical Engineering and Technology. 2019;10(3):153–
160.

[17] Harutyunyan G, Shoukourian S, Zorian Y. Fault Awareness for Memory BIST Architecture Shaped by
Multidimensional Prediction Mechanism. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 2019 March;38(3):562–575. doi:10.1109/TCAD.2018.2818688.

[18] van de Goor AJ, Offerman A, Schanstra I. Towards a Uniform Notation for Memory Tests.
In: Proceedings of the European Design and Test Conference. ED&TC. Paris; 1996. p. 420–427.
doi:10.1109/EDTC.1996.494335.

[19] Yarmolik VN, Klimets Y, Demidenko S. March PS(23N) Test for DRAM Pattern-Sensitive Faults. In:
Proceedings of the 7th Asian Test Symposium. ATS’98. IEEE Computer Society; 1998. p. 354–357.

[20] Nicolaidis M. Transparent BIST for RAMs. In: Proceedings IEEE International Test Conference 1992,
Discover the New World of Test and Design, Baltimore, Maryland, USA, September 20-24, 1992. IEEE
Computer Society; 1992. p. 598–607.

[21] Karpovsky MG, van de Goor AJ, Yarmolik VN. Pseudo-exhaustive word-oriented DRAM testing. In:
Proceedings of the European Conference on Design and Test. EDTC ’95. IEEE Computer Society; 1995.
p. 126.

60 I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test

[22] Kuhn RD, Okum V. Pseudo-Exhaustive Testing for Software. In: Proceedings of the 30th Annual
IEEE/NASA Software Engineering Workshop. IEEE Computer Society; 2006. p. 153–158.

[23] Wagner KD, Chin CK, McCluskey EJ. Pseudorandom Testing. IEEE Transactions on Computers. 1987
Mar;36(3):332–343. doi:10.1109/TC.1987.1676905.

[24] Das D, Karpovsky MG. Exhaustive and Near-Exhaustive Memory Testing Techniques and their BIST
Implementations. Journal of Electronic Testing. 1997;10(3):215–229.

[25] Mrozek I, Yarmolik VN. Iterative Antirandom Testing. Journal of Electronic Testing. 2012 Jun;28(3):301–
315.

[26] Yarmolik SV, Zankovich AP, Ivanyuk AA. Marshevye testy dlya samotestirovaniya OZU (March Tests for
RAM Self-testing). Minsk: Beloruss. Gos. Univ.; 2009.

[27] van de Goor AJ, Kukner H, Hamdioui S. Optimizing memory BIST Address Generator implementa-
tions. In: Proceedings of the 6th International Conference on Design Technology of Integrated Systems in
Nanoscale Era (DTIS); 2011. p. 1–6.

[28] Kumar S, Rajkumar M. Efficient Memory Built in Self-Test Address Generator Implementation. Interna-
tional Journal of Applied Engineering Research. 2015;10(7):16797–16813.

[29] Cascaval P, Silion R, Cascaval D. A BIST Logic Design for MarchS(3)C Memory Test BIST Implemen-
tation. Romanian Journal of Information Science and Technology. 2009;12(4):440–454.

[30] van de Goor AJ, Jung C, Hamdioui S, Gaydadjiev G. Low-cost, customized and flexible SRAM MBIST
engine. In: Proceedings of the 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits
and Systems; 2010. p. 382–387. doi:10.1109/DDECS.2010.5491749.

[31] Mukherjee N, Pogiel A, Rajski J, Tyszer J. High Volume Diagnosis in Memory BIST Based on Com-
pressed Failure Data. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
2010 March;29(3):441–453. doi:10.1109/TCAD.2010.2041852.

[32] Saravanan S, Hailu M, Gouse GM, Lavanya M, Vijaysai R. Design and Analysis of Low-Transition Ad-
dress Generator. In: Zimale FA, Enku Nigussie T, Fanta SW, editors. Advances of Science and Technology.
Cham: Springer International Publishing; 2019. p. 239–247.

[33] Sosnowski J. Analyzing BIST robustness. In: Proceedings of the IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems; 2001. p. 104–109. doi:10.1109/DFTVS.2001.966758.

[34] Pavani P, Anitha G, Bhavana J, Raj JP. A Novel Architecture Design of Address Generators for BIST
Algorithms. International Journal of Scientific & Engineering Research. 2016 Feb;7(2):1484–1488.

[35] Singh B, Narang SB, Khosla A. Address Counter / Generators for Low Power Memory BIST. International
Journal of Computer Science. 2011 July;8(1):561–565.

[36] Yarmolik VN, Yarmolik SV. Generating modified Sobol sequences for multiple run march memory tests.
Automatic Control and Computer Sciences. 2013;47(5):242–247. Available from: http://dx.doi.org/
10.3103/S0146411613050088. doi:10.3103/S0146411613050088.

[37] Savage C. A Survey of Combinatorial Gray Codes. SIAM Review. 1996;39(2):605–629.

[38] Yarmolik VN, Yarmolik SV. The repeated nondestructive march tests with variable address sequences.
Automation and Remote Control. 2007;68(4):688–698.

I. Mrozek et all. / Universal Address Sequence Generator for Memory Built-in Self-test 61

[39] Yarmolik SV, Yarmolik VN. Modified Gray And Counter Sequences For Memory Test Address Gener-
ation. In: Proceedings of the International Conference Mixed Design of Integrated Circuits and System,
2006. MIXDES 2006. Gdynia, Poland; 2006. p. 572–576.

[40] Chen TY, Merkel RG. Quasi-Random Testing. IEEE Transactions on Reliability. 2007;56(3):562–568.

[41] Yarmolik VN, Sokol B, Yarmolik SV. Counter Sequences for Memory Test Address Generation. In:
Proceedings of the 12th International Conference Mixed Design of Integrated Circuits and Systems.
MIXDES’05. Krakow, Poland: IEEE Computer Society; 2005. p. 413–418.

[42] Mrozek I, Yarmolik VN. Problemy funkcjonalnego testowania pamieci RAM. Bialystok, Poland: Bia-
lystok University of Technology; 2009. ISSN 0867-096X.

[43] Boyd S, Vandenberghe L. Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares.
Cambridge University Press; 2018. doi:10.1017/9781108583664.

[44] Kolchin VF. Random Graphs. Cambridge University Press; 1998. doi:10.1017/CBO9780511721342.

[45] Yarmolik VN, Yarmolik SV. Address sequences for multi run RAM testing (In Russ.). Informatics. 2014;
(2):124–136.

[46] Yarmolik VN, Mrozek I, Yarmolik SV. Controlled method of random test synthesis. Automatic Con-
trol and Computer Sciences. 2016;49(6):395–403. Available from: http://dx.doi.org/10.3103/

S0146411615060115. doi:10.3103/S0146411615060115.

[47] Yarmolik SV, Yarmolik VN. Memory Address Generation for Multiple Run march Tests with Differ-
ent Average Hamming Distance. In: Proceedings of the IEEE East-West Design and Test Workshop.
EWDTW’06. Sochi, Russia; 2006. p. 212–216.

[48] Mrozek I, Yarmolik VN. Multiple Controlled Random Testing. Fundamenta Informaticae. 2016;144(1):
23–43.

[49] Mrozek I, Yarmolik VN. Two-Run RAM March Testing with Address Decimation. Journal of Cir-
cuits, Systems, and Computers. 2017;26(2):1750031. Available from: http://dx.doi.org/10.1142/
S0218126617500311. doi:10.1142/S0218126617500311.

[50] Liu H, Chen TY. Randomized Quasi-Random Testing. IEEE Transactions on Computers. 2016
June;65(6):1896–1909. doi:10.1109/TC.2015.2455981.

