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Comprehensive Analysis of Graphene
Geometric Diodes: Role of Geometrical

Asymmetry and Electrostatic Effects
D. Truccolo , P. Palestri , Senior Member, IEEE, D. Esseni, Fellow, IEEE, S. Boscolo, and M. Midrio

Abstract— A self-consistent Monte Carlo/3-D Poisson
simulator has been developed to analyze the current asym-
metry in graphene geometric diodes. The model couples
ballistic transport in the graphene layer with 3-D electro-
statics in the graphene and oxide substrate. Results are
given in terms of transmission coefficients and currents
at the two terminals of the diode. We prove that while the
current asymmetry is mainly induced by ballistic transport
in the asymmetric structure, the electrostatics plays a rel-
evant role that tends to substantially counterbalance the
geometrical effect.

Index Terms— Ballistic transport, graphene, Monte Carlo.

I. INTRODUCTION

GEOMETRIC diodes in graphene are attracting increasing
interest from the scientific community due to their poten-

tial for novel applications in electronics and photonics [1].
Geometric diodes operate based on a pure ratchet effect [3].
They lack built-in potentials and space charge regions, result-
ing in extremely low capacitance, even down to attofarads [2].
These diodes can achieve frequency response in the THz range
[4]. Hence, geometric diodes have a significant technological
potential, especially in emerging THz technologies crucial
for various applications across fields [5]. These applications
include security screening [6], medical imaging [7], material
analysis [8], and wireless communications [9].
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Fig. 1. Sketch of the simulated structure and definition of the geo-
metrical parameters. Shapes in red are graphene. Yellow regions are
metallic contacts and back-gate. The gray is the substrate oxide. Above
the simulated structure we assume to have air (not shown in the figure).

The ratchet effect in asymmetric electronic structures was
proposed over 20 years ago [3], [10] [11], [12]. Recently,
interest in these structures has increased due to the importance
of the carrier mean free-path (MFP) in these devices. When
transport approaches the ballistic regime, geometric effects
induce rectifying I –V characteristics [10]. To minimize scat-
tering events that reduce rectification, the MFP should exceed
the device length. In this regard, graphene offers unparalleled
prospects as an MFP of about 10 µm can be achieved at room
temperature [13], [14].

Fig. 1 shows a sketch of the geometric diode that
we consider in the present article [2]. It consists of a
trapezoidal-shaped graphene structure (red color in the figure)
contacted by metals (yellow regions). The graphene layer sits
on the dielectric substrate (gray in the figure). Beneath the
oxide, a metallic back-gate is used to control the charge density
in graphene. Above the structure we assume to have air (not
shown in the figure).

The current asymmetry in a device similar to the one
shown in Fig. 1 was experimentally reported for the first
time in [1] and [2], where authors manufactured a device
with a neck aperture Wn ≃ 75 nm and a shoulder width
Wc = 400 nm. The current asymmetry A ≃ 1.3 was observed
for an applied voltage VDS = 1.5 V with exfoliated graphene
on SiO2 substrate with MFP ≃ 45 nm. Asymmetry reduced to
A ≃ 1.1 for CVD graphene with shorter MFP. More recently,
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the current asymmetry was experimentally studied as a func-
tion of the neck aperture Wn in [15]. With CVD graphene
on SiO2 substrate having MFP ≃ 70 nm, an asymmetry
A ≃ 1.4 was observed for Wn = 50 nm, decreasing to 1.25 for
Wn = 100 nm. Asymmetry vanished when further increasing
Wn . Nguyen et al. [16] could achieve a much larger MFP,
thanks to hBN encapsulation. This resulted in an improved
asymmetry, up to 1.66 with a neck aperture Wn = 175 nm.

In parallel to experimental efforts, several theoretical works
have dealt with possible explanations of the current asym-
metry. For example, in [17] the asymmetry was explained
using the analogy of ballistic transport with classical dilute
gas kinetics. Conversely, in [18] the I –V characteristic is
calculated treating graphene as 2-D electron gas that satisfies
the Dirac equation. The asymmetry mechanism was also
investigated through quantum mechanical simulation using
a scattering matrix approach [19], hence including coherent
transport effects. However, all the aforementioned theoretical
contributions assumed a uniform electric field within the
device. This neglects more complex field patterns that may
arise from the bias at the back-gate terminal. As we will
demonstrate below, this assumption is inaccurate, given that
electrostatic effects substantially influence the device behavior.

To understand the contributions to rectification and how
current asymmetry depends on the geometric parameters
and on the bias, we have developed an accurate simulation
tool. Carrier transport in single-layer graphene is modeled
using a Monte Carlo (MC) approach for the semi-classical
electronic transport [20], self-consistently coupled with the
solution of the Poisson equation [21]. Carriers respond to
the electric field resulting from both the carrier distribution
in the graphene layer and the bias on the back-gate contact.
We have derived rigorous analytical equations to model carrier
motion in graphene. Self-consistency is achieved by alternately
simulating charge motion through MC and solving the full
3-D Poisson equation [21]. It is important to note that a
similar numerical tool based on the self-consistent Monte
Carlo/Poisson simulation was used in [22]. This earlier study
used a particle-in-cell algorithm in conjunction with an elec-
tron momentum relaxation mechanism. Our approach differs
from that of [22] because we add the full 3-D electrostatic.
It is worth reiterating that the inclusion of electrostatic effects
is crucial for a thorough understanding of the device physics.

The main objective of this article is to provide a clear
and comprehensive understanding of the fundamental physics
behind the device behavior, rather than the engineering or
optimization of its performance. Consequently, we will limit
our analysis to ballistic transport and perfectly specular reflec-
tions at the graphene edges. Namely, we deliberately neglect
the influence of momentum randomizing scattering mecha-
nisms, such as phonon or edge-roughness scattering, which
might obscure the basic physics of the device. Moreover,
given the symmetric electron and hole transport in graphene,
we consider only biases corresponding to a unipolar transport
scenario. In particular, we assume a robustly n-type graphene,
where hole transport can be safely neglected. In this latter
respect, it should be mentioned that a bipolar transport regime
occurring at very small carrier densities is in any case detri-

mental to the current asymmetry. In fact, electrons and holes
are driven in opposite directions by a given electric field,
so that for both the positive and negative fields we have carriers
traveling across the neck region in opposite directions.

As a final remark, we note that while our MC simulator
uses a semi-classical transport, one may legitimately wonder
whether quantum transport effects (e.g. interference and reso-
nance) can influence the current asymmetry. In this respect,
while a quantitative comparison with a quantum transport
approach goes beyond the scope of this article, we can share
with the readers a few qualitative considerations. Electron
interference effects are typically relevant in physical systems
or devices that have been conceived and carefully designed
to induce such effects. In graphene geometric diodes, how-
ever, nothing is designed to induce interference or resonance
effects. Instead, the potential energy profile along the transport
direction is smooth and does not feature any single or double
quantum barrier. In this respect, the quantum billiard view of
transport in ballistic devices [23] boils down to semi-classical
balistic transport (i.e., classical billiard balls). Moreover, even
in graphene-based systems where interference effects have
been observed [24], [25], [26], this has been reported at
deeply cryogenic temperatures, making it unlikely that electron
interference effects can have a sizeable influence on the
operation of graphene geometric diodes at room temperature,
which is the focus of our investigation.
This article is organized as follows. In Section II, we briefly
describe the simulation model. In Section III, we show the
results of the numerical simulations and the interpretation of
the physical phenomena leading to rectification in the device
of Fig. 1. Section IV concludes the article.

II. SELF-CONSISTENT MONTE CARLO 3-D POISSON
SIMULATOR

In this section, we briefly describe the numerical code
developed for the study of graphene ballistic devices. The
motion of carriers is described with the Monte Carlo method,
which is self-consistently coupled with the solution of the 3-D
Poisson equation.

A. Carrier Transport
Electrons are confined to 2-D trajectories within the

graphene plane. By assuming that electrons obey to the
semi-classical equation of motion dk⃗/dt = −q E⃗/h̄ and
considering the linear energy dispersion near the K -points
ϵ = h̄v f |k⃗| [27] with v f being the graphene Fermi velocity,
the equation of motion reads

ds⃗
dt

= v⃗ =
1
h̄

∇⃗kε
(
k⃗(t)

)
= v f

k⃗(t)
|k⃗(t)|

(1)

We assume that during the free-flight intervals, the electric
field remains constant (i.e., the carrier stays inside a mesh
element), so that

k⃗(t) = k⃗0 + R⃗t (2)

where k⃗0 is the wave vector of the particle at t = 0 (beginning
of the flight) and, for the sake of a compact notation, we define
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Fig. 2. Sketch of a single pixel of the Poisson mesh. The diagonal
divides the rectangular element of a tensor product grid into two trian-
gles. In each triangle, the values of the potential at the vertices uniquely
define the electric fields Ex and Ey that are thus constant inside the
triangle.

R⃗ = −q E⃗/h̄ where q is the electron charge. Inserting (2)
into (1) and integrating over time, the following expression
for the trajectory s⃗ of the particle is found:

s⃗(t) = s⃗0 + v f

[
R⃗
(

9(t) − A0

A2
2

)
+

−

(
A2

2k⃗0 − A1 R⃗
A3

2

)
log

(
u(t)
u(0)

)]
(3)

where A0 = |k⃗0|, A1 = R⃗ · k⃗0, A2 = |R⃗|, 9(t) = (A2
0 +2A1t +

A2
2t2)1/2, and u(t) = A2

2[A1 + A2
2t−A29(t)]. This equation

is only valid if the electric field remains constant during the
whole flight. The constant field condition is by definition
fulfilled in each element of a triangular mesh (see Fig. 2),
which we have used for graphene. In particular, the electric
field was calculated using the unique plane passing through
the vertices of the triangle, according to the expressions also
shown in Fig. 2.

The procedure is similar to the simplex Monte Carlo [29].
When a particle begins its free flight within one of these
triangles, the duration of the flight is determined by calculating
the time of intersection of the particle’s trajectory with the
edges of the triangular element (by computing the intersection
between the trajectory of (3) and the linear equations describ-
ing each edge) and selecting the shortest one. At defined time
steps, carriers are injected from the device terminals according
to the Fermi level of the terminal, following what is done when
simulating mesoscopic structures and adapted to MC transport
in [31]. The current is

Ĩα =
qWc

π

∫
∞

0
d E Dos(E)v f fα(E) =

=
2qWc

(π h̄)2v f

∫
∞

0
d E

E

1 + e(E−E f α)/kb T
(4)

where kb is Boltzmann’s constant, α = {D, S}, Dos(E) =

2|E |/(πv2
f h̄2) is the graphene density of states (account-

ing for spin and valley degeneracy), and fα(E) the contact
Fermi–Dirac distribution where E f α = q(ϕc−Vα) is the Fermi
level of the contact with ϕc being the average value of the
electrostatic potential along the contact line and Vα the bias

applied to the contact. In (4), it is assumed that the energy
reference is taken at the Dirac point of the contact α, so the
injection considers only the conduction band (E > 0). When a
particle hits a device terminal, it is absorbed. If hitting another
boundary, it gets reflected. The net mean current at each
contact is calculated as the difference between the injected
current and the current associated with the carriers that are
absorbed by the contact itself. The potential difference VDS is
applied to the contacts as VD = VDS/2 and VS = −VDS/2.

B. Self-Consistency and Evaluation of the Electric Field
To compute the electric field, we solve the Poisson equation.

The space charge is determined by the density of electrons.
We do not consider graphene chemical doping or charge
impurities, either in the graphene or in the back oxide. These
factors can induce a fixed charge density. The solution of the
Poisson equation is obtained numerically by resorting to a
nonuniform-grid finite difference method (FDM). The entire
3-D domain is divided into pixels (the rectangles in Fig. 2)
obtained by extruding along the vertical axis the rectangles
(elements of a uniform, tensor-product mesh) that we use to
discretize the 2-D plane containing the graphene sheet.

We denote as Nx and Ny the number of points used to dis-
cretize the graphene plane. Typical dimensions of the devices
analyzed are in the order of WC ≃ LC ≃ 100 − 300 nm.
With Nx ≃ Ny ≃ 100 − 200, the pixel dimensions are
dx = LC/Nx ≃ dy = WC/Ny ≃ 1 nm. In the vertical
dimension, the domain is discretized with Nz points. In our
FDM scheme, discretization points along z do not need to be
equally spaced. Customarily, we use ten points with 1z =

1 nm around graphene, and 1z ≃ 10 nm further away from it.
The typical thickness of the oxide substrate in our simulations
is tox = 100 nm. We used an air thickness of tair = 20 nm in
all the simulations presented in this article. We verified that
tair = 20 nm is sufficiently large to yield results practically
independent of this thickness. Therefore, usually Nz ≃ 20 −

30 in our simulations. FDM turns the Poisson equation into a
sparse linear system with Nx Ny Nz ≃ 106 unknowns.
Stability issues of the linear formulation of the Poisson
equation necessitate an extremely frequent MC-Poisson iter-
ation [21], [28] [30], resulting in a significant increase in
computational time. However, for steady-state simulations,
stability is guaranteed by using the nonlinear formulation of
the Poisson equation that relaxes the time step and spatial mesh
limitation of the linear Poisson scheme and avoids unwanted
plasma oscillations [21], [28], [30]

∇ ·
(
ε∇ϕ(k+1)

)
= δ(z)qn(k)e

q
(
ϕ(k+1) − ϕ(k)

)
kbT (5)

where the electrostatic potential ϕ(k+1) at the (k + 1) iteration
is calculated using the electron density n(k) determined by the
MC at the kth iteration, with electrons undergoing the kth
iteration potential ϕ(k). The δ(z) function stems from the 2-D
nature of graphene, and it can be treated as a field discontinuity
along the z dimension in the Poisson equation. In fact, two
solutions of Laplace equations are solved below and above
graphene. The two solutions are connected by imposing that
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at the graphene interface their derivative is discontinuous by
an amount equal to the charge density in the graphene. In this
approach, there is no need to associate a dielectric constant to
the graphene.

We verified that the results do not change if, when solving
the Poisson equation, graphene is described as a 3-D volume
with a finite thickness of 0.34 nm, and with a constant
volumetric charge density along the thickness direction z.

The nonlinear Poisson equation has been discretized obtain-
ing the corresponding FDM matrix equation

Aϕ(k+1)
= B

(
ϕ(k+1)

)
(6)

where A is the discrete Laplacian matrix, and B(ϕ(k+1))

is the charge carrier density vector. The potential ϕ(k+1) is
computed using a iterative Newton–Rapshon scheme. We used
the Neumann boundary conditions for all the borders of the
domain, except for the back-gate where a potential of Vbk

is applied. This assumption implicitly assumes that the work
function of metal equals the electron affinity of graphene [31].
The nonlinear Poisson scheme is not affected by self-forces
because the field used to move electrons at a given MC
iteration is calculated from the potential profile obtained in
the previous Poisson step [32]. An electron does not feel the
field generated by itself, even if charge and force assignments
are not consistent.

III. RESULTS

This section aims to identify the origin of the current
asymmetry in the device illustrated in Fig. 1, showing that it
arises from a complex interplay between purely electrostatic
and geometric effects. To the best of our knowledge, this
interplay has not been discussed in the previous literature.

To understand the role of different possible mechanisms
inducing a current asymmetry, we analyze the following cases.

1) Uniform electric field regime.
2) Self-consistent simulations with 3-D Poisson.

The first scenario enables us to describe the asymmetry as
an effect stemming solely from the device geometry. In the
second scenario, the electric field is calculated using the self-
consistent MC-Poisson method.

By comparing these two cases, we can highlight the role
of electrostatics on the device asymmetry when modifying
the device geometry. In all the simulations reported in the
following, we consider, as fixed parameters, the following
quantities: ϵox = 3.7ϵ0, ϵa = ϵ0, Wc = 100 nm, Wd = 40 nm,
and Wn = 10 nm.

A. Uniform Electric Field Regime

We examine the case in which the electric field along the
y-axis, Ey , is zero, and only the field Ex (assumed to be
uniform in the graphene domain) influences carrier transport.
The presence of Ex affects the value of the transmission
coefficients, Ti j , which are defined as the fraction of electrons
injected by contact j that are absorbed by contact i .

Three distinct cases, illustrated in Fig. 3, are worth of
mentioning.

Fig. 3. Schematic representation of the working principle of the
geometric diode. Case (a) null electric field Ex. Case (b) negative Ex.
Case (c) positive Ex.

Panel a) of Fig. 3 refers to the case of zero applied electric
field: Ex = 0. In this case, a symmetrical transport condition
is expected, resulting in TDS = TSD = Wn/Wc.

In contrast, when Ex ≪ 0 [Fig. 3(b)], strong backscattering
occurs for electrons injected from terminal D causing TSD →

0. At the same time, the field guides electrons injected from the
S terminal along the x-axis, enhancing the geometric funnel
effect. As a result, the transmission TDS reaches values greater
than Wn/Wc. In the limit case of Ex → −∞, the field forces
all the electrons entering the funnel region at the aperture Wd

to exit the funnel at the aperture Wn (see Fig. 1), resulting in
TDS = Wd/Wc.

Finally, when Ex ≫ 0 [Fig. 3(c)], the majority of electrons
injected from the S terminal undergo backscattering, leading to
TDS → 0 . However the asymmetrical shape of the device does
not generate an enhancement of the transmission coefficient
TSD , which remains equal to Wn/Wc as in Ex = 0 case.

To verify the above intuitive trends, MC simulations have
been performed by applying a constant electric field Ex =

−VDS/LC throughout the whole graphene shape. In this con-
figuration, the gate-induced electrostatic potential, ϕG , on the
graphene plane and the corresponding electron density, n, are
given by the solution of the system of two nonlinear equations

ϕG =
(CoxVbk − qn)

Cair + Cox
(7a)

n =

∫
∞

0
d E DoS(E) f (E − qϕG) (7b)

where Cox=(ϵox/tox) and Cair=(ϵair/tair) are the capacitance
per unit area of, respectively, the oxide region below and the
air region above the graphene layer.

Fig. 4(a) shows the simulated transmission coefficients as
a function of the applied voltage VDS , for different values of
angle αd , considering a gate voltage Vbk = 3.38 V. The angle
αd is varied by changing the length Ld . Using (7), the voltage
applied to the back-gate gives rise to the electron density n =

6.7×1011 cm−2 at VDS = 0 V. The corresponding hole density
is p = 1.6 × 1010 cm−2, a value small enough to neglect the
effect of hole transport.

The results from simulations agree with the intuitive trends
discussed above. In particular, for all αd values, the transmis-
sion coefficient TSD tends to Wn/WC = 0.1 for negative values
of VDS (i.e., positive Ex ), while TSD and TDS tend to zero for
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Fig. 4. Uniform electric field regime. (a) Simulated transmission coefficients TSD and TDS as a function of applied voltage VDS for different angles
αd. (b) Asymmetry coefficient as a function of VDS for different angles αd. (c) Transmission coefficient trend as a function of input voltage VDS for
different electron densities. (d) Corresponding asymmetry trend.

negative and positive VDS , respectively. We also note that TDS

exceeds Wn/WC for VDS > 0, getting larger and larger as VDS

increases, consistently with our previous discussion about the
enhancement of the geometric funnel effect that is expected
for Ex ≪ 0.

The net terminal currents IDS can be cast in the form

IDS(VDS) = Ĩ S(VDS)TDS(VDS) − Ĩ D(VDS)TSD(VDS) (8)

where Ĩ D/S is the current injected through the terminals,
as computed through (4). We also define the current asymmetry
coefficient the quantity

A =
IDS(+VDS)

IDS(−VDS)
≃

TDS(+VDS)

TSD(−VDS)
. (9)

The above approximation holds as TSD(VDS) → 0 and
TDS(−VDS) → 0 for increasing values of |VDS| and
ĨS(+VDS) = − ˜ID(−VDS) owing to the potential distribution
VD = VDS/2 = −VS .

In the limit of large VDS , the current asymmetry coefficient
should tend to Wd/Wn . This result shows that the maximum
achievable current asymmetry is simply given by the ratio
between the base and the neck of the funnel. In practice,
simulations indicate that an unrealistic source–drain voltage
VDS > 10 V must be applied to have A approach its upper
limit. This means that in real devices the geometrical effect is
expected to appear modest.

Fig. 4(b) shows the current asymmetry coefficient A
[see (9)], as numerically evaluated with MC. It is seen that
a rather weak asymmetry (A ≃ 1.05−1.15) is achieved in the
low-voltage regime.

Proper choice of the geometrical parameters allows for opti-
mization. Notably, angle αd has a particularly relevant impact
on the device performance. Fig. 4(a) shows that lower increase
in transmission TDS with VDS is observed for αd = 7.6◦ than
for αd = 84.3◦. In the rest of this article, we will denomi-
nate geometrical enhancement the excess of TDS(+VDS) with
respect to TSD(−VSD) occurring with constant electric field,
and solely due to the funnel geometry. When αd approaches
90◦, the shape of the device tends to become symmetric, and
the geometrical enhancement drops to 1. The angle αd =

84.3◦ considered in the figure is the optimal value that we
have identified numerically, namely, the angle resulting in the
highest values of the asymmetry coefficient A.

Fig. 4(d) shows that the current asymmetry is also strongly
affected by graphene electron density. For this figure, an angle
αd = 69.4◦ was used. As the electron concentration decreases,
the current asymmetry becomes larger. This fact can be
explained in a straightforward manner. The Fermi wave vector
of electrons in graphene is given by k f = (2πn)1/2. Thus, the
lower the value of n, the smaller the k f . To achieve the current
asymmetry, externally applied electric field must align the
wave vector in the x-direction. The smaller the value of k f , the
more easily this can occur, even with relatively modest electric
fields. Note, however, that this simple explanation holds true
only until the concentration of electrons is sufficiently larger
than the hole concentration. In fact, the effect of the electric
field Ex is exactly the opposite for holes and electrons,
so that TSD,holes = TDS,electrons and TDS,holes = TSD,electrons.
Consequently, when the electrons and holes’ concentrations
become similar, the current asymmetry disappears.

B. Self-Consistent Simulations
Self-consistent simulations are run by repeatedly alternating

105 MC steps with the solution of the nonlinear Poisson
equation. The MC time step 1t is chosen so that, on the
average, an electron trajectory in one time step is entirely
included in a triangular mesh element having a constant
electric field, leading to 1t ≃ dx/v f ≃ dy/v f ≃ 0.1 fs.
At each MC step, pinj = 20 particles (“virtual electrons”) are
injected into the simulation domain through each contact (with
a statistical weight w = Ĩα1t/(q pinj) ). The larger the pinj,
the more accurate is the solution of the Poisson equation, but
the simulation time also becomes longer because the number
of particles in the simulation domain increases. In fact, a low
number of the particles in Monte Carlo simulations results
in possibly large fluctuations of the charge density in the grid
elements, because some elements may have very few particles.
We found pinj = 20 to be a good tradeoff between accuracy
and simulation time.

After having completed a set of 105 MC steps, the full
3-D nonlinear Poisson equation [see (5)] is solved. The initial
guess for the potential is the solution of (7). As the simulation
progresses, the potential is self-updated using the charge
distribution provided by the MC solver. The current IDS is
calculated after each MC/Poisson iteration and the simulation
is stopped when IDS stabilizes.
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Fig. 5. Self-consistent simulations. (a) Transmission coefficients for various αd and Vbk = 3.38 V. (b) Simulated I–V curves for various αd and
Vbk = 3.38 V. (c) Corresponding current asymmetry trend. (d) Sketch of the symmetric structure indicated with black lines in plots (a)–(c).

Fig. 6. Self-consistent simulations. (a) Plot of electron flux distribution in proximity of the neck. The plotted configuration considers VDS = −200 mV
and αd = 84.3◦. (b) Transmission coefficients trend considering different Vbk and αd = 69.4◦. (c) Simulated I–V curves for αd = 69.4◦ and different
Vbk. (d) Corresponding current asymmetry coefficient.

Fig. 7. Trend asymmetry coefficient A for different values of neck Wn
considering a gate voltage Vbk = 3.38 V and Wd = 40 nm. (a) Uniform
electric field case. (b) Self-consistent case. Note the different scales in
the y-axis.

Fig. 5 shows the results of these simulations. Panel d) Fig. 5
shows that a “symmetric” device was also simulated both to
check the code and to spot more easily the asymmetry in the
I –V curves of the asymmetric devices. Some comments are
in order.

As expected, for the symmetric device, the black solid and
dashed line are symmetric with respect to VDS . Consistently,
the asymmetry coefficient is 1 for all VDS .

A comparison between Figs. 4 and 5 gives the first clear
evidence of the role of electrostatic effects. Differently from
the case of uniform electric field, in the self-consistent simula-
tions TSD is no longer constant for VDS < 0. On the contrary,
the more negative the VDS , the larger the TSD . A simple
explanation for this fact can be provided. In the vicinity of the

neck, the electric field is far from being uniform. Rather, as it
is always the case whenever a geometrical spike accumulates
charges, near the tips of the neck the electric field becomes
concentrated and it is capable of deflecting the trajectory of
electrons and channel them into the neck.

This intuitive picture is confirmed by Fig. 6(a) where the
electrons flux distribution is plotted in the vicinity of the neck
for VDS = −200 mV and αd = 84.3◦. Electrons are “attracted”
toward the neck, and the transmission coefficient TSD can
greatly exceed the pure geometrical constraint Wn/Wc (which
is equal to 0.1 in these simulations). We will call this effect
electrostatic attraction in the rest of this article.

A practical consequence of this fact is the severe decrease
in the asymmetry coefficient A that may be observed by com-
paring Figs. 4(b)–5(c): the asymmetry coefficient has almost
halved when the full electrostatics is considered.

The electrostatic effects are notably evident when compar-
ing the asymmetry coefficient A versus angle αd . A distinct
difference from the uniform electric field case is observed
at αd = 7.6◦ [red curves in Figs. 4(b) and 5(c)], where A
becomes slightly lower than one. This effect can be under-
stood by looking at the transmission coefficients [red lines in
Fig. 5(a)]. TSD (filled squares) at negative VDS is larger than
TDS (open squares) at positive VDS , which is opposite to the
behavior observed for a uniform electric field [red curves in
Fig. 4(a)]. The difference is entirely due to the electric field,
which is no longer uniform, in particular at the neck. The
electrostatic attraction has now come into play, and it is larger
than the geometrical enhancement, causing a net asymmetry
coefficient A < 1. Electrostatic effects influence TSD and TDS
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even at VDS = 0, causing a slight deviation from Wn/Wc for
all angles αd considered.

Fig. 6 completes the analysis for the full self-consistent
case. These figures report the transmission coefficient, the I –
V curves, and the asymmetry coefficient A for αd = 69.4◦

at varying Vbk . As Vbk increases, a greater number of carriers
become available for transport (resulting in a higher electron
density). Consequently, the transmission coefficient decreases
in accordance with the earlier discussion regarding the Fermi
wave vector of electrons in graphene and the strength of the
electric field required to align particle trajectories parallel to
the x-axis. Curves tend to become more and more linear, with
higher slope due to the increased number of carriers being
available for the transport. This increased linearity implies a
lower asymmetry coefficient as it can be seen in Fig. 6(d).

An analysis of the asymmetry coefficient A for various neck
widths, Wn , has also been conducted. The same back-gate
voltage (Vbk = 3.38 V) and shoulder width (Wd = 40 nm)
used in the previous analysis were considered. The results are
presented in Fig. 7, where the left and right panels correspond,
respectively, to a uniform field and a self-consistent simulation.

Although a direct comparison with the experimental results
in [15] is not possible because ballistic transport conditions
are assumed in this article, our numerical results are qualita-
tively consistent with the experiments. Indeed, a reduction in
the asymmetry coefficient for increasing values of the neck
aperture, Wn , was reported in [15]. Moreover, asymmetry
values around 1.25–1.40 were reported for an applied voltage
of 2 V in devices with a length in the micrometer range [15].
Our simulations show comparable asymmetry values for an
applied voltage of 200 mV and a device length in the range of
hundreds of nanometers, namely, for electric fields comparable
to those in [15].

Another comparison can be made with the experimental
results in [16], where asymmetry was shown to reduce when
increasing the gate voltage, which is also predicted by our
simulations [see Fig. 6(d)].

Finally, we have analyzed the behavior of current asymme-
try A versus. the value ϵr of the substrate dielectric constant
(not shown). In these simulations, we set Vbk = 3.38 V
and adjusted the substrate thickness so as to maintain the
same induced charge density on graphene. We observed that
A decreases for increasing ϵr . One should further consider
that depositing the graphene sheet on top of high-k dielectrics
results in a significant mobility degradation [33], [34] [35],
[36], i.e., shorten mean-free path. Addressing this point in
detail requires the inclusion of remote polar phonons in
simulation future work.

IV. CONCLUSION

In this article, the interpretation of asymmetric
current–voltage characteristics in geometric diodes has
been revisited by exploiting a sophisticated self-consistent
Monte Carlo/3-D Poisson simulation tool, which has been
developed ad hoc. The behavior of the device in terms of
transmission coefficients from drain to source (and vice
versa) and current in the two terminals has been analyzed
in two different scenarios. First, the case of a constant

electric field across the device has been considered. Then, the
self-consistent case has been addressed, where the electric
field is determined by the charge distribution in graphene and
the voltage applied to the back-gate contact.

By comparing the two scenarios, we could demonstrate
that the evaluation of the device rectification based only
on geometry asymmetry is incomplete. In fact, electrostatic
effects, in particular the charge-induced electric field near
the diode’s neck, influence significantly the device operation
and can cancel or even reverse the rectification due to the
geometric asymmetry.

Our interest in this article was to describe the physical
phenomena taking place in the geometric diode, rather than
engineering its performance, and hence, our analysis is not
exhaustive in determining the actual potential of the device
in terms of rectification. Nevertheless, our simulations could
identify important information for the device design: 1) the
analysis of the device under a uniform field condition tends
to overestimate the rectifying capabilities of the geometric
diode and 2) the asymmetry coefficient tends to improve as
the funnel angle αd increases, with a maximum asymmetry
occurring for αd ≃ 85◦. A more comprehensive analysis of
the device performance is left for a future work, where we
would like to include the effect of scattering due to local and
remote phonons (the latter significantly reducing the mobility
in graphene deposited on polar dielectrics with respect to
freestanding graphene) and graphene edge roughness, as well
as address the high-frequency behavior, which is of paramount
importance for many perspective applications.
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