
Bayesian functional mixed effects model for
sports data
Modelli funzionali Bayesiani a effetti misti per dati
sportivi

Patric Dolmeta, Raffaele Argiento and Silvia Montagna

Abstract The use of statistical methods in sport analytics is common practice nowa-
days. In this work, we propose a hierarchical Bayesian model for describing and
predicting the evolution of performance over time for shot put athletes. We address
seasonality and heterogeneity in results by means of a linear mixed effects model
with heteroskedastic errors. The model provides an accurate description of the per-
formance trajectories and allows for prediction of athletes’ performance in future
seasons. We apply our method to an extensive real world data set on performance
data of professional shot put athletes recorded at elite competitions.
Abstract L’impiego di metodi statistici per lo studio dello Sport è ormai largamente
diffuso. In questo lavoro, proponiamo un modello Bayesiano gerarchico per la de-
scrizione e la previsione di risultati nel tempo per lanciatori del peso. Grazie a un
modello lineare ad effetti misti con errori eteroschedastici, affrontiamo stagionalità
e eterogeneità nei risultati. Applichiamo il metodo ad un dataset reale di grandi di-
mensioni contenente i risultati del lancio del peso in un gran numero di competizioni
internazionali e osserviamo una soddisfacente descrizione dei dati e la possibilità
di quantificare l’incertezza nelle previsioni di performance future.
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1 Introduction

Shot put is a track and field event involving throwing (“putting”) the shot as far
as possible. Shot put events range over the whole year, with indoor competitions
held during Winter months and major tournaments during the Summer. So, results
display some sort of seasonality, as it is common to all sportive competitions. We
underline that here the term “seasonality” is not used to indicate a cyclical behaviour
of observations over time, as in the literature of time series but, rather, a time depen-
dent gathering of observations. On one hand competitions are traditionally concen-
trated in some months of the year, and on the other hand weather and environmental
conditions may affect the performances or even the practicability of the sport itself.
In shot put, it is reasonable to say that seasons coincides with calendar years and
that taking seasonality effects into account is necessary to provide an accurate rep-
resentation of the data.
In this work, we are interested in describing the evolution of performances of profes-
sional shot put athletes throughout their careers. We describe results of each athlete
as error prone measurements of seasonal means trough a Bayesian mixed effects
model, that describes the seasonal mean for each athlete as a deviation from a grand
mean.

2 The World Athletics shot put data set

The data was obtained from an open results database (www.tilastopaja.eu) follow-
ing institutional ethical approval (Prop 72 2017 18). The dataset comprises 41,000
measurements of World Athletics (the world governing body for track and field ath-
letic sports) recognized elite shot put competitions for 653 athletes from 1996 to
2016. For each athlete, the data set reports the date of the event, the shot distance in
meters, an indication of doping violation and some demographic information.
The outcome of interest is the shot distance. Data are collected over time: hereafter
we will denote as ti j the time at which the j-th observation for athlete i is recorded.
ti j corresponds to the time elapsed from January 1st of each athlete’s career starting
year to the date of the competition. Having described seasons as calendar years, ath-
letes will compete in a different number of seasons according to their career length.
Figure 1 shows the number of athletes per season as well as boxplots of the distri-
bution of their mean performances across the various seasons. A general increasing
trend in performance can be observed as a function of career length (right panel in
Figure 1).
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Fig. 1 Left: total number of athletes per season. Right: each boxplot shows the distribution of the
athletes’ mean performances within each season.

3 The model

Let n be the total number of athletes in the study. Shot put performances for athlete i
collected over time represent temporal grouped data that we expect to be correlated
when associated to the same individual and season. Hence, we propose a mixed-
effects model for the shot put performances for athlete i at time point ti j (yi j), in-
ducing a hierarchical structure in the error variance. Accordingly, yi j are deviations
from a seasonal mean function µi(·) that takes constant value µis for any time point
in a given season s:

yi j = µis + εi j (1)

with εi j
iid∼ N(0,ψ2) independent errors recorded at time ti j, for j = 1, . . . ,ni and ni

is the total number of measurements available on athlete i. We further regard the
seasonal- and unit-specific random intercept µis as the latent effect that quantifies
the extent to which performances in season s responds above or below the overall
mean m:

µis = m+ζi,s, with ζi,s
iid∼ N(0,hi,s) (2)

Again, residuals at this higher level of hierarchy are assumed to be normally dis-
tributed, uncorrelated with lower-level residuals, but not uncorrelated among them-
selves. Indeed, the assumption of homogeneity of variance is inadequate here.
Early graphical displays, straightforward exploratory analysis and initial modeling
choices suggest a significant variability of the average response and its variance
across seasons. In particular, suppose the variance of some athlete’s performances
during a specific time interval is known, then it will provide insight on future vari-
ability. Even further, a history of volatility in results provides information about an
athlete’s potential more than a background of constant, close to the average, per-
formances. Hence, we consider a random intercept model with Normal Generalized
Autoregressive Conditional Heteroskedastic (GARCH) errors [1]. Specifically,
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µis | m,his = m+ζis
iid∼ N(m,his) (3)

his = α0 +α1ζ 2
is−1 +ϖhis−1 (4)

where α0 > 0,α1 ≥ 0 and ϖ ≥ 0 to ensure a positive conditional variance, and
ζis = µis −m with hi0 = ζi0 := 0 for convenience. The additional assumption of
wide-sense stationarity with

E(ζt) = 0 (5)
Var(ζt) = α0(1−α1 −ϖ)−1 (6)

Cov(ζt ,ζs) = 0 for t ̸= s (7)

is guaranteed by requiring α1 +ϖ < 1, as proven by [1].
Three parameters of the seasonal component require prior specification: the over-
all mean m and the conditional variance parameters, ϖ and α⃗ = (α0,α1)⊤. For the
autoregressive and heteroskedastic parameters of the GARCH model, we propose
non-informative priors satisfying the positivity constraint. For the overall mean pa-
rameter, we rely on a more informative Normal prior centered around the mean
suggested by posterior analysis of preliminary versions of the model. In particular:

m ∼ N(µm0 ,Σm0) (8)
α⃗ ∼ N2(µα ,Σα) I{α⃗ > 0} (9)
ϖ ∼ N(µϖ ,Σϖ ) I{ϖ ≥ 0} (10)

where α⃗ = (α0,α1) is a bidimensional vector. We complete the model specifi-
cation assuming that the parameters are statistically independent and noticing that
the hypothesis needed for wide-sense stationarity do not translate into actual prior
conditions on the parameters. Hence, one of the objects of our analysis becomes to
test whether the constraint α1 +ϖ < 1 holds true.
Because of the recursive definition of the conditional variance, no conjugate model
exists for the GARCH parameters. Hence, we rely on an adaptive version of the
Metropolis Hastings algorithm for posterior updates. In particular, for parameters
m,ϖ and α⃗ we build an adaptive scale Metropolis such that the covariance matrix
of the proposal density adapts at each iteration to achieve an optimal acceptance rate
[2]. We ran our sampler for 50,000 iterations, with a burn-in period of 50% and a
thinning of 5. We analyzed posterior samples for a variety of function estimates at
different time points and for a variety of athletes, and the other model parameters.
No issues emerged regarding convergence and mixing of the chains.
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4 Results

Our goal is in estimating trajectories for athletes’ performances. To this end, we
generate a fine grid of equispaced time points, {tk}T

k=1, over our time span and eval-
uate the trajectory in performance on this grid.
Since we modelled the seasonal mixed effects function as a piecewise continuous
function taking individual- and season-specific values, when estimating such func-
tion on any point in the time grid, we need to determine which season the time point
belongs to. As discussed in Section 2, time is rescaled so that equal values across
individuals indicate the same day of the year, possibly in different years. Therefore,
season changes, that occur at new year’s days, can be easily computed by straight-
forward proportions. In the following Equation, the indicator variable χ(t∈s) deter-
mines to which season each time point t belongs to and index g ranges over the total
number of iterations G:

ŷi(t) =
1
G

G

∑
g=1

Si

∑
s=1

µ(g)
is χ(t∈s) for t = t1, . . . , tT . (11)

Equation (11) represents the point estimate of athlete i’s performance at time t. Sim-
ilarly, 95% credible intervals can be computed to quantify uncertainty around our
point estimate. Estimated trajectories, credible bands and one season ahead predic-
tion are displayed in Figure 2 for a random selection of shut put athletes.

5 Discussion

We proposed a hierarchical Bayesian model for the analysis of athletes’ perfor-
mances in a longitudinal context. We addressed the issue of seasonal gathering of
sports data with a mixed effects model with GARCH errors, providing evolving ran-
dom intercepts over different time intervals in the data set. While the motivation of
our work comes from the analysis of shot put performance data, the methodology
presented in this work is applicable to the analysis of performance data collected in
all measurable sports.
The comprehensive nature of the data set suggests exploiting it further, possibly by
including the contribution of covariates on the response. In particular, we believe
there is potential for a better understanding of the effects of doping, not only on
single performances, but on the overall evolution of a career. Further, we hope also
doping detection might be targeted. Additional future developments include more
sophisticated modeling choices both for the intraseasonal variability and the sea-
sonal intercepts themselves. A nonparametric Bayesian approach to the hierarchy
with the intent of clustering observation both across athletes and seasons is already
forthcoming. This way we hope to recognize common patterns in similarly evolving
careers for enhanced prediction purposes.
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Fig. 2 Performance trajectory estimates for a random selection of athletes. The x-axis denotes the
time measured in days from January 1st of the first season of career, whereas on the y-axis there is
the length of throw in meters. Vertical lines represent calendar years (seasons in our notation). The
final part of each trajectory (grey) for which no observations are available, represents one-season-
ahead performance prediction.
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