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ABSTRACT: The monitoring of loans’ life-cycle has received the increasing attention
of the scientific community after the 2008 global financial crisis. A number of aspects
of this broad topic have been addressed by means of several regulatory, statistical and
economical tools. However, many issues still require further investigation. In this
work, we are interested in the monitoring phase of granted loans to anticipate possible
defaults and to investigate whether there is evidence of a liquidity contagion effect
within a trade network of firms. To this end, we apply a Bayesian spatial model to a
proprietary dataset, and assess its out-of-time predictive performance.
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1 Introduction

The European Central Bank requires banks to adapt their organization, pro-
cesses and IT infrastructure in order to give an integrated answer to the non-
performing loans problem. Banks can mitigate their credit risk in several steps
of the loan life-cycle, for example by foreseeing liquidity problems for those
customers which already have a debt to the bank. A timely detection of the
transition to financial distress is pivotal, and it will be addressed it in this work
leveraging on statistical models and bank data.
Recently, a number of contributions (see, e.g., Dolfin et al. , 2019) focused on
introducing information on the supply chain connections in credit risk models
based on the evidence of trade credit use in European markets. The main idea
is that liquidity distress can flow along these connections, and a firm experienc-



ing a period of liquidity distress can delay payments towards its commercial
partners, that can consequently experience liquidity distress. The supply chain
is seen as a complex network in these studies, but it can also be represented as
an adjacency matrix with proper assumptions (Lamieri & Sangalli, 2019).
In this work, we set up a predictive model leveraging Bayesian conditionally
auto-regressive (CAR) models for areal data (Banerjee et al. , 2003). Specifi-
cally, inference is based on a sample of firms from a trade network in a given
month, and the predictive performance of a CAR model is tested by estimat-
ing the probability of default for both a different sample of firms and for the
same sample in the future. Although spatial CAR models have been widely
used in ecology, environmental science, biology and medicine, to the best of
our knowledge they have not yet been fully exploited in econometrics when
dealing with hundreds of thousands of data points interacting in a dynamic
complex network (e.g., firms or natural persons).

2 Methodology

With some due simplifications, the monthly goal for a lending bank is to red
flag those borrowing firms that have the greatest probability of default (delay
in paying their debts to the bank) in the following 3 months. In this paper, we
analyse a proprietary dataset of Intesa Sanpaolo collected in a given month, for
a total of n = 944 firms. Our response variable is a binary indicator such that
Yk = 1 if firm k switches to a liquidity distress state in the next 3 months.

The trade network can be represented as a link matrix W ∈ Rn×Rn, with
binary entries wk j = 1 if k 6= j and k supplier, j customer in the previous year.
The link matrix W represents a complex network with a scale free structure
(Barabási & Albert, 1999). Further, the Bank database stores several credit and
trend information on each specific customer firm, but for the sake of simplicity
here we only consider two possible covariates xxxk for each firm k. The first
covariate, x1

k , represents the used amount of credit over the granted amount
among all Italian financial institutions, while the second, x2

k , represents the
maximum number of days of payment delay recorded in the past 3 months.

We fit a proper CAR specification (Banerjee et al. , 2003) to our data as
follows:

Yk ∼ Bernoulli(θk)

logit(θk) = βββxxxk +φk (1)

φk|φ−k,α,τ,W ∼ N
(

α
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)
,



Here φk is a firm-specific spatial random effect incorporating the information
contained in the network of relationships W . Conditionally on W , φk is mod-
elled as a Markov random field, meaning that the value of φk only depends
on the value of its neighbours. Indeed, we expect the probability of default of
firm k to increase (decrease) if one of more firms connected with k are (not)
in default. Parameters α and τ represent the strength and the precision of the
autocorrelation, respectively. The CAR specification is chosen because the in-
formation arising from the network (incorporated through φk) can help explain
those default events that are not ubiquitously captured by the linear covariates.
Standard priors are placed on α, τ, and β0,β1,β2, and estimation of model
parameters proceeds via MCMC (Banerjee et al. , 2003).

3 Results and conclusions

Testing model (1) on real data, we notice that the posterior distributions of the
linear parameters obtained with the CAR model are coherent with those of a
standard GLM, which considers covariates xxxk only. The overlap between the
credible intervals of the linear parameters from the two models implies that the
spatial random effects estimated by the CAR model contribute to explain a part
of the default phenomenon not entirely captured by firm-specific information.
Further, we record very good in-sample performance in terms of area under
the curve (AUC), as the GLM has a 0.79 AUC while the CAR specification
reaches a 0.89 AUC. Furthermore, model (1) helps in identifying defaulted
firms through the spatial random effects. Indeed, Figure 1 (left panel) shows
that, for most truly defaulted firms (red dots), the estimated probability that the
spatial effect is positive, computed as P̂(φk > 0) = 1

T−B ∑
T
g=B+11(φ

g
k > 0), is

strictly greater than 50%. Here T is the total number of MCMC iterations, and
B denotes the burn-in.

Further, we test the predictive power of the model on a disjoint sample
drawn from the network seen at the same timestamp of the training sample
(out-of-sample set composed of unseen firms), and on the training dataset but
seen six months later (out-of-time set composed of future observations of the
same firms used in training). In line with the original aim of spatial CAR mod-
els, which are intended to fit data referring to static maps, the model does not
generalise in the out-of-sample case. This is an unfortunate result for our credit
risk application, as one can instead expect the liquidity distress contagion dy-
namics to spread with similar strength (α) and precision (τ) in different areas
of the trade network. In the out-of-time case, the CAR model shows slightly
better predictive performance with respect to the simple GLM, as shown in



Figure 1 (right panel).
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Figure 1. Left: Estimated probability of a strictly positive spatial effect (i.e., P̂(φk > 0)) for each firm.
Red dots are defaulted firms (Yk = 1) with estimated probability of strictly positive spatial effects greater
than 50%. Black dots indicate all other firms. Right: ROC curves and AUC for a GLM considering only
covariates xxxk (black) and CAR model (blue) for the prediction six-months ahead with respect to training.

To conclude, the application of disease mapping methods to a scale free
network represents a novelty at present. The encouraging results on the out-
of-time set suggest to further investigate spatial modelling of trade networks.

References

BANERJEE, SUDIPTO, CARLIN, BRADLEY P, & GELFAND, ALAN E. 2003.
Hierarchical Modeling and Analysis for Spatial Data. Chapman &
Hall/CRC Monographs on Statistics & Applied Probability. CRC Press.
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