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Abstract

Task-oriented dialog systems are computer systems that interact with humans in natural
language. The system receives a query, converts the sequence of words into a semantic
representation to be used by the dialog manager, decides the best response for the user, and
manages the task. Occasionally, the system may receive an out-of-scope query, namely, a
query that falls outside the range of the system’s capabilites. In this work, we focus on
out-of-scope query prediction, and show how the hierarchical Beta-Bernoulli process out-
performs state-of-the-art machine learning classifiers.

Keywords: Hierarchical Beta-Bernoulli processes, nonparametric Bayesian modelling, task-oriented
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1 Introduction

The increasing sophistication of machine learning algorithms in the last years has led to a revolution
in task-oriented dialog systems: nowadays people can ask Amazon’s Alexa what is their bank account
balance while they are cooking, and will get a satisfactory answer from her. Any dialog system is
designed to support a fixed number of intents only. For example, a task-driven system designed to support
personal finance queries cannot answer the question “What is the weather like tomorrow?”. Queries
falling outside the range of intents which the dialog system is designed to work upon are defined out-of-
scope queries (hereafter, OOS). Correctly identifying that a query is OOS is of paramount importance
for the system to avoid performing wrong actions. Thus far, however, little attention has been given
to evaluating the performance of state-of-the-art, dialog system machine learning classifiers in OOS
prediction. An exception is given by [1], who evaluate and compare the performance of a range of
benchmark classifier models focusing on OOS prediction relying on a novel dataset. Whilst the tested
models work well in predicting known intents, the authors show that all methods struggle with identifying
OOS queries.

The hierarchical Beta-Bernoulli process is a well known Bayesian nonparametric process that has
shown good performance in document classification tasks [2]. Informally speaking, documents are a
collection of words, thus queries themselves can be seen as documents. However, unlike long-text docu-
ments, the fact that queries consist of only a few words is an obstacle towards distinguishing an OOS from
an in-scope query, which indeed become indistinguishable if a couple of key words were removed from
the OOS query; see Table 1. In face of these difficulties, we believe that the flexibility of a nonparametric
model could be instrumental in detecting OOS queries. In this work, we fit a Beta-Bernoulli process to
the classification data in [1], and show that it outperforms benchmark machine learning classifiers in
OOS query prediction.
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The remainder of this paper is organised as follows. In Section 2, we introduce the discrete form
of the hierarchical Beta-Bernoulli process [2], which we leverage on in this work, and explain how this
process can serve as nonparametric Bayesian prior in document classification tasks. Section 3 illustrates
the inferential procedure leading to the classification of an unlabelled document. In Section 4, we analyse
the dataset in [1] by means of the hierarchical Beta-Bernoulli process, and Section 5 presents conclusions
and directions for future work.

2 Methods

The (discrete) Beta process, denoted BP (c, B0), is a Lévy process over a space ⌦ whose Lévy
intensity is defined by:

⌫(d!, dp) =
X

Beta(cqi, c(1� qi))(dp)�!i(d!)

where the base measure B0 =
P

i qi�!i is discrete, the positive real constant c is the concentration
parameter, and the total mass � = B0(⌦) of the base measure is called mass parameter; � is required to
be finite. Note that each qi must lie in (0, 1) in order for the Lévy intensity to be well defined.

The (discrete) Bernoulli process, denoted BeP (B), is the Lévy process characterised by the Lévy
intensity:

µ(d!, dp) =
X

Bernoulli(pi)(dp)�!i(d!)

where the base measure B =
P

i pi�!i is discrete. Note that the masses pi must lie in (0, 1] in order for
the Lévy intensity to be well defined. The probability of a particular realisation of a BeP (B) with B
discrete is:

P (X = {!j1 ,!j2 , ...,!jK}) =
KY

k=1

P (!jk 2 X) =
KY

k=1

Z

[0,1]
Ber (pjk) (dp) =

KY

k=1

pjk

Given a discrete base measure B0 and a positive real constant c, we can combine the two processes
above and obtain the Beta-Bernoulli process (BBp):

B ⇠ BP (c, B0), X|B ⇠ BeP (B)

and conjugacy holds, that is, given n conditionally iid samples X1, ..., Xn|B ⇠ BeP (B),

B|X1, ..., Xn ⇠ BP

 
c+ n,

c

c+ n
B0 +

1

c+ n

nX

i=1

Xi

!
.

Indeed, by independence over disjoint subsets of ⌦ and by the discreteness of B0, inference can be carried
out separately for each atom !i. The result follows from the well-known Beta-Binomial conjugacy.

We follow [2] and embed the BBp into a hierarchical model, leading to the hierarchical BBp (hBBp):

B ⇠ BP (c0, B0), B1, ..., BJ |B ⇠ BP (cj , B), X1,j , ..., Xnj ,j |Bj ⇠ BeP (Bj) j = 1, ..., J

An helpful analogy to better understand the model is the following. Consider a corpus X of n documents,
each of which is associated with one of J subjects, such that there are nj documents X1,j , ..., Xnj ,j

belonging to topic j. Any given word in the English vocabulary is more or less likely to appear in a
document depending on the subject: some technical terms will be exclusively used in certain domains,
other terms are likely to appear in affine subjects, and some other will be ubiquitous. Let us model a
document as a subset of words in some vocabulary, or, equivalently, as a binary vector whose components
are indexed by the words in the vocabulary. At a given component, 0/1 stands for the absence/presence
of that word in the document, respectively.

Taking the underlying space ⌦ = {!1,!2,!3, ...} as the vocabulary, which is potentially infinite
(think of every possible misspelled word) but countable, let B0 =

P
i b0(!i)�!i be a discrete measure
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over ⌦ such that b0(!i) 2 (0, 1) 8i, and let c0 be a real constant. Then, B is also discrete, and B(!i) ⇠
Beta(c0b0(!i), c0(1 � b0(!i)) 8i. In this setting each Bj is discrete, supported by ⌦ and such that
Bj(!i) ⇠ Beta(cjB(!i), cj(1 � B(!i)). Then, Bj(!i) gives the probability that word !i appears in a
document with topic j, while B(·) encodes the sharing of information between topics. Parameters c0, cj
encode the semantic richness overall and within each topic, respectively. Specifically, if cj is small then
documents of subject j contain the same few words, whereas if cj is large documents of topic j are
dissimilar. Similarly, a small c0 induces a lot of shared terms among the different topics, while a large c0
means that each topic has its own set of specialised terms. Concentration parameters c0, cj’s will play a
key role for the performance of the hBBp.

3 Inference

We rely on the hBBp presented above to assign a topic to an unlabelled document Xnew. Here we
explain the inferential procedure.

Because Lévy processes have independent increments over disjoint sets, it is legitimate to carry
out inference separately for the set of observed words (the bag-of-words obtained by the union of all
the words in every document) and for its complement (the words in ⌦ which never appeared in any
document of the corpus). Let ⌦obs ⇢ ⌦ be the collection of unique words that appeared at least once in
some document, and let ⌦0 be its complement. The procedures discussed in this Section are summarised
in Algorithm 1 and Algorithm 2.

Inference over ⌦obs Fix a ! 2 ⌦obs and define xi,j = Xi,j(!), x = {Xi,j(!)|j  J ; i  nj},
bj = {Bj(!)|j  J}, b = B(!), and mj =

Pnj

i=1 xi,j . It is possible to show that:

P
�
xnj+1,j = 1

��x
�
= E [E [bj |b, x]|x] = E


cjb+mj

cjb+mj + cj(1� b) + (nj �mj)

����x
�
=

cjE [b|x] +mj

cj + nj
.

The posterior expectation E [b|x] is not available in closed form analytically, thus we will rely on its
Monte Carlo approximation. In particular, it is possible to show that the density of b|x is bounded above
by the unnormalised density of a Gamma(↵,�), where

↵ = c0b0 +
JX

j=1

1(mj > 0), � =
c0(1� b0)� 1

1� b⇤
�

JX

j=1

mj�1X

i=1

cj
cjb⇤ + i

+
JX

j=1

nj�mj�1X

i=0

cj
cj(1� b⇤) + i

where b⇤ is the mode of the density of b|x, which can be easily obtained by any appropriate numerical
optimisation method, being such a density concave in (0, 1). Relying on the Gamma(↵,�) as proposal
distribution, we generate T samples b1, b2, . . . , bT via Metropolis-Hastings and then approximate E [b|x]
via the empirical mean. After some testing, we realised that the Gamma approximation is very precise:
20  T  30 samples yield a satisfactory approximation in the application discussed hereafter.

Inference over ⌦0 Fix some ! 2 ⌦0. Adapt the notation used above to this new !. As before, we
would like to compute the probability P

�
xnj+1,j = 1

��x = 0
�
, but this turns out to be more challenging.

Given W words {!1, ...,!W } ⇢ ⌦0, and defining �j :=
PK

k=1
c0B0(⌦0)
c0+k�1 pk,j ,

P
�
{!1, ...,!W } ⇢ Xnj+1,j

��x = 0
�
⇡ Pois (�j) (W )

WY

i=1

b0(!i)

where pk,j = Pk(xnj+1,j = 1, x = 0) and Pk is the probability over the slice of the hBBp corresponding
to !, and is approximated via simulation. The larger K, the better the approximation, which is in fact
exact for K !1. See Algorithm 2 and [2] for further details.
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Combining the above, given a new document Xnew = {!1, ...,!W } whose subject has to be inferred,
we compute

P(Xnj+1,j = Xnew|X) ⇡
Y

!2Xnew\⌦obs

cjE [B(!)|X] +mj

cj + nj
⇥ Pois (�j) (W )

Y

!2Xnew\⌦0

b0(!).

We compute this probability for all topics j = 1, . . . , J , and then assign Xnew to the topic j⇤ that
maximises the probability above.

Algorithm 1: HBBp training
Data: corpus X of n documents, nj documents for each topic 1  j  J ; ⌦ ; c1, . . . , cJ ; B0

�  mean number of unique words in a query ;
B0  B0

B0(⌦)� ;
⌦obs  unique words in the corpus ;
F  |⌦obs| ;
c0  solution of c0 = F��

� log
⇣

c0+n
c0+1

⌘ ;

for ! 2 ⌦obs do
M!,j  number of documents of topic j having !, for 1  j  J
b⇤!  mode of the posterior density of B(!)|X(!)
↵!  c0b0(!) +

PJ
j=1 1(M!,j > 0), with b0(!) := 0 if ! /2 ⌦

�!  c0(1�b0(!))�1
1�b⇤!

�
PJ

j=1

PM!,j�1
i=1

cj
cjb⇤!+i +

PJ
j=1

Pnj�M!,j�1
i=0

cj
cj(1�b⇤!)+i

end

Algorithm 2: Document classification via hBBp
Input: New document Xnew = {!1, . . . ,!W } ; trained hBBp ; T1, T2,K 2 N
Output: Most likely topic j s.t. Xnew = Xnj+1,j

for unique ! 2 Xnew \ ⌦obs do
b1, . . . , bT1  Metropolis-Hastings with Gamma(↵!, �!) proposal and target B(!)|X(!)
b 1

T1

PT1
i=1 bi

P1,j  P1,j
cjb+M!,j

cj+nj
, 8 1  j  J

end
for 1  k  K do

b1, . . . , bT2  sample from Beta(1, c0 + k � 1)
for 1  j  J do

ri,j  cjbi
cj+nj

QJ
j0=1

�(cj0 )�(cj0 (1�bi)+nj0 )

�(cj0 (1�bi))�(cj0+nj0 )
, 8 1  i  T2

pk,j  1
T2

PT2
i=1 ri,j

end
end
�j  

PK
k=1

c0B0(⌦0)
c0+k�1 pk,j , 8 1  j  J ;

P2,j  Pois(�j)(W )⇥
Q

unique !2Xnew\⌦0
b0(!), 8 1  j  J ;

return j⇤  1  j  J maximising P1,j ⇥ P2,j
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4 Data Analysis and Results

We fit the hBBp to the CLINC1501 data. The dataset contains a training set made of 15000 in-scope
queries, 100 for each of 150 intents, 100 OOS training queries, and a test set made of 4500 in-scope
queries and 1000 OOS queries. A snapshot of the CLINC150 data is provided in Table 1.

Table 1: A snapshot of in-scope and OOS queries from the CLINC150 dataset.
Query Intent

what is the temperature in costa mesa weather
does france have their own version of a visa international visa
where can i pick up my w2 to do my taxes w2
pay my gas bill from my saving account pay bill
what do i have on my calendar for march 2 calendar
who are some notable alumni of ucsd OOS
when was nintendo created OOS
when was the theory of evolution first considered OOS
why do males want to be alpha OOS
what are van gogh’s best pieces OOS

We consider as our space ⌦ the set of the most common words in Wikipedia2, which contains more
that 280000 terms. Despite its size, such a vocabulary does not contain many frequent terms appearing
in the dataset. Indeed CLINC150 queries are full of misspelled words, symbols, numbers and proper
names. However this is not an issue for the hBBp in that its nonparametric nature allows ⌦ to grow
as the data is observed. Here the underlying assumption is that if ! is observed in a training query but
it is not in ⌦, then we treat it as if ! belongs to ⌦ with b0(!) = 0. The prior distribution over such
! is improper, but becomes proper after the Bayesian update. Therefore, misspelled words have been
retained in the dataset. Further, we did not remove stop words, which indeed appear to be informative
predictors especially when appearing in clusters (e.g., “how would I...in...?”, often appears under the
intent “translate”), and no stemming has been applied.

Note that a test query might include a word that has never been observed in the training set and is also
not present in ⌦. Indeed, this is quite common, especially if the test query is OOS. Assuming b0(!) = 0
is not a good choice in such case since this would translate into a zero probability of observing such query
under every intent, and the classification would not be possible. To overcome this issue, we add a special
out-of-training (OOT) feature to the vocabulary of Wikipedia’s most common terms. Specifically, if a test
query contains a word that has never been observed in the training set and is not present in Wikipedia’s
vocabulary, then such a word is mapped to OOT and is interpreted as a feature of the query at hand.

To choose an appropriate B0, we rely on a power-law determined by the ranking in the list of
Wikipedia’s most frequent terms. Having shifted down in the ranking each word by one position (the
most frequent word becomes the second most, the second most frequent becomes the third most, and so
on) and having put OOS on top of the ranking in the first position, the chosen power-law is rank�0.1,
the exponent close to zero to avoid the tail from becoming too thin. The total mass of B0 has also to
be coherent with the data. One can show that � = B0(⌦) is the mean number of unique words per
document, which amounts to 8.31 in CLINC150.

Choosing the concentration parameters is challenging. Besides c0, which is computed as the fixed
point solution of a real valued function (see Algorithm 1 and [2]), the crucial point is the choice of the
concentration parameters associated to the 151 topics. Unfortunately, an exhaustive grid search for the
optimal combination for these hyperparameters is unfeasible given our computational resources. After
some trial and error, a tuning “by hand” led to choices giving a good trade-off between in-scope accuracy
and OOS recall, and is the chosen setting leading to the results presented hereafter.

1https://github.com/clinc/oos-eval
2https://en.lexipedia.org/
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Table 2: In-scope and out-of-scope performance comparison between the hierarchical Beta-Bernoulli
process and benchmark machine learning methods in [1]: FastText, CNN, MLP, BERT neural networks;
SVM, a linear support-vector classifier; Google’s DialogFlow and Rasa’s NLU conversational AIs.

Classifier In-Scope Accuracy Out-of-Scope Recall

FastText 89.0 9.7
SVM 91.0 14.5
CNN 91.2 18.9
DialogFlow 91.7 14.0
Rasa 91.5 45.3
MLP 93.5 47.4
BERT 96.9 40.3
Hierarchical Beta-Bernoulli process 86.5 79.5

A comparison with benchmark machine learning methods is displayed in Table 2, where results
referring to models from FastText to BERT are taken from [1] (see [1] for details on these models).
These results are promising: although slightly underperforming in terms of in-scope accuracy, the hBBp
outperforms in terms of OOS recall, which is the goal of our application. Further, these results should be
treated as preliminary results for our work and we expect both in-scope and OOS perfomance to improve
with more accurate tuning of the model hyperparameters, as done for the machine learning competitors
instead.

5 Conclusions

In this paper, we proposed a hierarchical Beta-Bernoulli process for OOS query prediction. The
methodology outperforms state-of-the-art machine learning techniques used by task-based dialog sys-
tems, and its in-scope performance is in line with that of existing techniques. Moreover, it can handle
misspelled words in a straightforward and appealing manner.

Possible future work could be the estimation of the number of different topics within the OOS class
via Kingman’s Coalescent, which plays the role of a nonparametric prior over the dendrogram governing
the clustering structure of OOS queries.
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