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Summary
In studies involving functional data, it is commonly of interest to model the impact of predictors
on the distribution of the curves, allowing flexible e ects on not only the mean curve but also the
distribution about the mean. Characterizing the curve for each subject as a linear combination of a
high-dimensional set of potential basis functions, we place a sparse latent factor regression model
on the basis coe cients. We induce basis selection by choosing a shrinkage prior that allows many
of the loadings to be close to zero. The number of latent factors is treated as unknown through a
highly-e cient, adaptive-blocked Gibbs sampler. Predictors are included on the latent variables
level, while allowing different predictors to impact different latent factors. This model induces a
framework for functional response regression in which the distribution of the curves is allowed to
change flexibly with predictors. The performance is assessed through simulation studies and the
methods are applied to data on blood pressure trajectories during pregnancy.
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1. Introduction
Many modern statistical analyses involve variables best represented as curves, surfaces or
more general functions (Ramsey and Silverman, 2005). Examples include biomarker
trajectories, images, videos, genetic codes and hurricane tracks. Data on such curves may
come into two flavors, either measured on a dense, regular grid common to all observation
units (subjects) or as measurements taken at irregular time points or locations that vary from
subject to subject. Analyses of these two kinds of data are labeled, respectively, functional
and longitudinal data analyses, abbreviated FDA and LDA; see Rice 2004. We explore the
important issue of modeling and analyzing the relationship of such data with other covariate
and outcome variables simultaneously measured on the same subjects.

Our work is motivated by the Healthy Pregnancy, Healthy Baby (HPHB) study, an ongoing
prospective cohort study examining the effects of environmental, social, and host factors on
racial disparities in pregnancy outcomes. Specifically, we want to characterize the
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trajectories in mean arterial blood pressure (MAP = 2/3 diastolic pressure + 1/3 systolic
pressure) during pregnancy, while simultaneously addressing three main objectives: i) obtain
a low dimensional representation of the individual curves; ii) incorporate covariate
information (e.g., maternal age, maternal race, parity), thus allowing the distribution of the
curves to change flexibly with predictors; and iii) link the clinical and functional predictors
to subsequent health responses (e.g., gestational age at delivery, birth weight). Because
functional data are infinite dimensional, their statistical analysis necessitates obtaining a low
dimensional representation of the individual curves. Therefore, objective i) becomes
absolutely crucial for building a hierarchical model where the curves are to be related to
other covariates recorded on the same subjects.

To address these aims, we propose a new Bayesian latent factor model for functional data
characterizing the curve for each subject as a linear combination of a high-dimensional set
of basis functions, and place a sparse latent factor regression model on the basis coe cients.
Within our framework, it is possible to study the dependence of the curve shapes on
covariates incorporated through the distribution of the latent factors, and we can
accommodate the joint modeling of functional predictors with scalar responses or multiple
related functions.

The existing literature on FDA and LDA does not o er an encompassing framework that can
address simultaneously the three aspects mentioned above, though there is a rich array of
methods for each individual task. The most widely used tool to represent curves through a
low dimensional vector is functional principal component analysis (FPCA; see Rice and
Silverman, 1991; James, Hastie and Sugar, 2000; Yao, Müller and Wang, 2005; and
references therein). In FPCA, a finite number of basis functions are derived by
eigendecomposition of a smoothed version of the empirical covariance function of the
observed curves. Each curve is then represented by a vector of eigen-scores with respect to
the estimated basis. These scores are used to build a two-stage, plug-in model of how the
curves a ect the response variable. Crainiceanu and Goldsmith (2009) propose a refinement
where they plug-in only the FPCA basis functions at the second stage, while jointly
modeling the eigen-scores with other variables of interest.

However, there is very little literature on how to perform FPCA when the curves may
depend on additional covariates. Jian and Wang (2010) recently proposed an extremely
flexible approach that accommodates covariates, but their method faces serious practical
diffculties when the covariate dimension is not minuscule or when different covariates have
a different degree of influence on the curve.

As an alternative to plugging-in FPCA bases and/or scores, which might underrepresent
uncertainty, one can directly build models on the space of curves and then use discriminant
analysis to perform functional classification. However, existing methods of this kind (e.g.,
De la Cruz-Mesia, Quintana and Müller, 2007, and Dunson, 2010 from a Bayesian
standpoint) do not include covariate information to model the curves, and an extension along
this line appears challenging in absence of a sparse representation of the curves. It is also
possible to completely ignore modeling of the curves and just build regression models for
scalar outputs based on functional and non-functional covariates (e.g., Reiss, Huang and
Mennes, 2010; Zhu, Vannucci and Cox, 2010). Such approaches face diffculties when
predictions are to be made with the functional covariates only partially and sporadically
observed, such as when predicting the possibility of a low birth weight delivery given 5
MAP measurements until the 30th week of pregnancy. Additional references on functional
regression in a Bayesian context include Behseta, Kass and Wallstrom (2005), Ray and
Mallick (2006), Dunson (2009), Petrone, Guindani and Gelfand (2009), Rodriguez, Dunson
and Gelfand (2009), and Bigelow and Dunson (2009).
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In very different approaches, Nagin (1999) and Jones, Nagin, and Roeder (2001) adopt a
mixture model representation to characterize curves through latent classes and let covariates
impact on the class probabilities. However, they consider the curves only as response
variables and do not discuss models where the curves play the role of functional predictors.
Potentially, their method can be extended to an encompassing framework like ours by letting
the latent class impact the distribution of the response variable, but this extension was not
addressed by the authors. Secondly, by representing each curve by a vector of scores
(instead of a single group label), we allow other variables to influence or depend on the
curves in a local way. Alternatively, James and Sugar (2003) propose a model for clustering
sparsely sampled functions assuming either a classification or mixture likelihood, but no
attempt is made to build response models.

We avoid two-stage procedures by building a framework that simultaneously accommodates
function-on-scalar and vector-on-function regression. Also, our model preserves the
modeling goal of FPCA, that is, identifying a common basis and assigning low dimensional
scores to individuals with respect to this basis. Along the same lines, we could easily
accommodate the joint modeling of multiple related functions (function-on-function
regression), but our emphasis was on developing methods motivated by the application to
the study of blood pressure and pregnancy outcomes.

The rest of the paper is organized as follows: Section 2 outlines the functional latent factor
regression model (LFRM). Section 3 extends the LFRM to allow joint modeling of a
functional response and additional outcomes. Section 4 describes the application of our
methodology to the blood pressure data. Conclusions are presented in Section 5. A
simulation study and further discussions are reported in the Supplementary Materials.

2. Functional latent factor regression model
Let n denote the number of subjects in the study. We suppose that functional data on subject
i are available as noisy measurements of an underlying smooth curve fi(t) at ni time points
tij, j = 1, ··· , ni. We denote these measurements as yij and model

(1)

with εij ~ N(0, φ2), independently across i and j. In our application, yij denotes the blood
pressure (BP) measurement of the i-th woman at her j-th visit to the clinic during pregnancy,
with tij denoting time (in weeks) from the onset of pregnancy.

To ensure smoothness, f1(t), ··· , fn(t) are assumed to belong to the linear span of a smooth
finite basis {b1(t), ··· , bp(t)}:

(2)

It is important to use a sufficiently large p and to choose locally concentrated basis elements
so that a rich variety of shapes for fi(t) are entertained. In particular, after standardizing the
time domain to [0, 1], we use Gaussian kernels

(3)

with equally spaced kernel locations ψ1, ··· , ψp–1 and a bandwidth parameter ν to be
specified later. By denoting the functional data vector of subject i by yi, we can write
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(4)

where Bi is the ni × p matrix with rows {b1(tij), ··· , bp(tij)}, j = 1, ··· , ni and θi = (θi1, ··· ,
θip)′.

The coefficient vectors θ1, ··· , θn capture all subject-to-subject variations in the functional
data. But these vectors are non-sparse. They have a large dimension p and have highly
correlated neighboring elements unless f1(t), ··· , fn(t) are sparse in the basis {bl}. The latter
is unlikely to hold for a pre-specified local basis such as ours. The non-sparsity of θ1, ··· , θn
makes them unfit to be included in a joint model with other observations of interest.

We obtain an attractive low dimensional representation of the curves by placing a sparse
latent factor model on the basis coefficients

(5)

where Λ = ((λlm)) is a p × k factor loading matrix with k << p, ηi = (ηi1, ··· , ηik)′ is a vector
of latent factors for subject i and ζi = (ζi1, ··· , ζip)′ is a residual vector that is independent
with the other variables in the model and is normally distributed with mean zero and a

diagonal covariance matrix .

The low dimensional vectors θ1, ··· , θn are used in all subsequent parts of our model where
we seek to link the curves f1(t), ··· , fn(t) with other variables of interest. Like θi, the vector
ηi can also be interpreted as a coe cient vector for subject i because we can write

(6)

where  form an unknown non-local basis to be learned

from data and  is a function-valued random intercept. This
decomposition, without ri(t), is analogous to an FPCA representation of fi(t), except that the

latter requires the basis functions  to be mutually orthogonal eigenfunctions.
Although orthogonality enhances interpretability of the elements in the decomposition, this
is not a primary concern in our application since we view the latent factorization only as a
vehicle to link functional observations with other variables. To highlight this difference with

FPCA, we refer to  as a dictionary.

The size k and the elements of the dictionary  depend on how Λ is modeled. We assign
Λ a multiplicative, gamma process shrinkage (MGPS; Bhattacharya and Dunson, 2011)
prior which favors an unknown but small dictionary size k (refer to Section 2.1 for details on
the MGPS prior).

Given the sparsity of the data, it becomes mandatory to borrow information across the
population of curves to improve inferences and predictions. Specifically, the LFRM model
allows borrowing strength across the different subjects in estimating their functions in that

the low dimensional dictionary functions , their number, and the random intercept ri(t)
are learnt by pooling information from all subjects.
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The score vectors θ1, ··· , θn can be put in any flexible joint model with other variables of
interest. For example, information from a covariate xi can be incorporated through a simple
linear model

(7)

where β is a r × k matrix of unknown coefficients, and with r denoting the dimension of xi.
With a semi-conjugate model on β, this specification leads to very efficient posterior
computation via Gibbs updating, as we describe in the next sub-section. Despite the
simplicity of this linear model, the resulting model on f1(t), ··· , fn(t) allows a very flexible

accommodation of the covariate information. Conditionally on , these
curves are independent (finite rank) Gaussian processes with covariate dependent mean

functions  and a common covariance function

, where βm denotes the m-th
column of β.

2.1 Bayesian formulation, prior elicitation and posterior computation
A Bayesian formulation of our sparse LFRM is completed with priors for the parameters in
(1)-(7). Given the dimensionality, it is practically important to choose conditionally
conjugate priors that lead to efficient posterior computation via blocked Gibbs sampling.
Typical priors for factor analysis constrain Λ to be lower triangular with positive diagonal
entries using normal and truncated normal priors for the free elements of Λ and gamma
priors for the residual precisions (Arminger, 1998; Lopes and West, 2004). However,
following Bhattacharya and Dunson (2011) we note that such constraints are unnecessary
and unappealing in leading to order dependence and computational inefficiencies. Hence, we
follow their lead in using a MGPS prior for the loadings as follows:

(8)

(9)

j = 1, . . . , p, h = 1, . . . , k, δl, l ≥ 1, are independent, τh is a global shrinkage parameter for
the hth column and ϕjh's are local shrinkage parameters for the elements in the hth column.
Under a choice a2 > 1, the τh's are stochastically increasing favoring more shrinkage as the
column index increases. The choice of this shrinkage prior allows many of the loadings to be
close to zero while avoiding factor splitting, thus inducing effective basis selection. The
number of latent factors, k, is treated as unknown and tuned as the sampler progresses. Refer
to Web Appendix A for a detailed discussion on the adaptive choice of k.

The prior structure under our model is completed by

(10)

with j = 1, . . . , p. Furthermore, consider , where  denotes the j-th column
of the n × k transpose of the matrix of latent factors η, βj denotes the j-th column of the r × k
matrix of coefficients β and X̃′ denotes the transpose of the matrix of predictors X̃. Each
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row i, i = 1, . . . , n, of X̃′ corresponds to the vector of predictors for subject i,

. A Cauchy prior is induced on the matrix of coefficients β as follows

(11)

The posterior computation proceeds via a straightforward Gibbs sampler, and is similar to
the Markov Chain Monte Carlo (MCMC) algorithm for the sparse Bayesian infinite factor
model in Bhattacharya and Dunson (2011). Details are provided in Web Appendix B.

A crucial aspect of our research is to ensure computational tractability to scale well in
dimension and sample size. Our model builds more parametric (mostly linear) relationships
between the different components, and the basis expansion chosen to represent the functions
fi induces posterior computation which involves the update of single, low dimensional
component pieces. Thus, our structure leads to an efficient Gibbs sampler having block
updating steps, while avoiding the need to invert large matrices. For example, the HPHB
study contains data for 1,027 women with an average number of 10 measurements per
subject (range = [1, 25]), for a total of N = 10, 290 observations, and with 12 clinical
predictors collected for each woman. The posterior update took 71 seconds per hundred
iterations in Matlab on an Intel(R) Core(TM)2 Duo machine. Our approach scales well both
in the number of subjects and number of measurements, with simulation experiments
showing that cases with n ≈ 4, 000 and N ≈ 40, 000 can be accommodated (a few minutes
required per hundred iterations), while larger experiments face serious time and memory
constraints.

Preliminary sensitivity analyses will be required to adjust the priors and other model
parameters to provide the best fit to the data. To save on computing time, it might be
preferable to run the preliminary analyses on a randomly chosen subset of subjects and
proceed to the analysis of the complete data set when one is satisfied with the choice of the
hyperparameters and other parameter values. This choice is discussed in Web Appendix C.

3. Joint modeling extension for the HPHB study
It is of interest to extend our LFRM to allow joint modeling of a functional predictor with
scalar responses. For example, there is substantial interest in relating the BP trajectories to
gestational age (GA) at delivery, birth weight (BW), and preeclampsia (hypertension and
proteinuria at time of delivery).

We start with a simple probit extension of our model to predict premature delivery. A
bivariate probit model for preeclampsia and low birth weight (LBW = weight under 2500
grams) is outlined in Section 3.2, and a joint model for BW, GA and MAP is presented in
Section 3.3. These extensions involve straightforward modifications of the MCMC
algorithm for the LFRM (Web Appendix B), which includes additional steps to sample from
the full conditional posterior distributions of the new model parameters.

3.1 Probit model for risk of preterm birth

Preterm birth refers to the birth of a baby of less than 37 weeks GA. Let  if preterm

birth and  if full-term birth. We let , where Φ(·) denotes
the standard normal distribution function. α is an intercept with a N(Φ–1(0.123), 0.25) prior,
where the hyperprior mean is chosen to correspond to the national average of 12.3% in 2008
(Hamilton et al., 2010), ηi are the latent factors for subject i, and γ is a vector of unknown
regression coefficients with prior distribution γ ~ Nk(μγ, Σγ).
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The full conditional posterior distributions needed for Gibbs sampling are not automatically
available, but we can rely on the data augmentation algorithm of Albert and Chib (1993) to
facilitate the computation:

so that  by marginalizing out Wi. Therefore, the same set of
latent factors impacts on the functional predictor via the basis coefficients θi and on the
response variables via the probability of preterm birth.

3.2 Bivariate probit model for preeclampsia and low birth weight
We develop a bivariate probit model to study the relationship between preeclampsia, LBW
and gestational MAP. The sample proportion of LBW is 12%, thus slightly higher than the
corresponding national rate of 8.2% in 2008 (Hamilton et al., 2010), whereas the sample
proportion of preeclamptic women is 16%, far above the incidence of preeclampsia which
typically affects 5-8% of all pregnancies (Cunningham et al., 2001).

Let us denote the outcome variables for preeclampsia and LBW as  and , respectively.

In particular,  is an indicator variable equal to 1 if woman i develops preeclampsia, and

 is an indicator variable equal to 1 if woman i delivers a LBW infant.

We adopt a data augmentation approach and introduce two underlying normal variables, 

and , such that  and , with , and

 and , with ρ controlling the dependence between  and

. The joint probability of preeclampsia and LBW is obtained by double integration of the

bivariate normal distribution of the latent variables  and 

Analogously, we can compute the marginal probability of observing preeclampsia and the
marginal probability of LBW.

The Bayesian specification of the bivariate probit model is completed by choosing
conditionally conjugate (normal and multivariate normal) prior distributions for the
additional parameters. This choice is discussed in Web Appendix C.

Heterogeneity across subjects and dependence between the smooth function, fi, and the

outcomes,  and , is accommodated through the latent factors, ηi, which impact on the
MAP measurements via the basis coefficients θi and on the probabilities of preeclampsia

and LBW via the latent normal variables  and .

Our goal is to compare sequential predictions of the probability of preeclampsia and LBW
for a test sample of women at different times during gestation, say at weeks 20, 25, and so
on. Predictions are expected to improve over time, and we aim to assess whether we can
make a detection with some certainty sufficiently early during gestation or if it is necessary
to wait until close to delivery to make an accurate prediction.
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3.3 Joint model of birth weight, gestational age at delivery and blood pressure
Let zi denote the outcome for subject i, zi = (zib, zig), with zib denoting the BW and zig the
GA at delivery. To flexibly joint model GA at delivery and BW, we consider a two-
component mixture-model of bivariate normal distributions

(12)

This model can be equivalently specified as

(13)

where Ti ∈ {0, 1} is a latent variable indicating which class (zig, zib) belong to, and πih =
P(Ti = h). We now let the Wi's have independent t-distributions using a scale mixture of
normals construction:

(14)

where γ a k × 1 vector of unknown regression coefficients with normal prior distribution,

, ηi are the latent factors for subject i and α ~ N(Φ–1(0.1), 0.25). Note that
(14) constitutes a t approximation to a logit link function on the mixing weights πih, and to
ensure a good approximation to the univariate logistic distribution we set

 (O'Brien and Dunson, 2004). In addition, this approximation
ensures conjugacy of the full conditional distributions, thus allowing efficient posterior
update. To complete our Bayesian specification, we chose an inverse-Wishart (I-W)

distribution for the covariance matrix, , and a bivariate normal

distribution for the mean μh, . The choice of the hypeparameter values is
discussed in Web appendix C.

Therefore, the common set of latent factors impacts both on the functional predictor fi and
on the outcomes zi = (zig, zib) via the class membership probability of the pregnancy

outcomes, .

4. Application to the Healthy Pregnancy, Healthy Baby Study
The HPHB study is part of the US EPA-funded Southern Center on Environmentally Driven
Disparities in Birth Outcomes and enrolls pregnant women from the Duke Obstetrics Clinic
and the Durham County Health Department Prenatal Clinic. Our focus is on the
investigation of gestational MAP. It is well known that hypertensive women are more likely
to experience complications during pregnancy than normotensive women (Cunningham et
al., 2001). In particular, gestational hypertension is associated with LBW and early delivery,
and in the most serious cases the mother develops preeclampsia. In normotensive women,
BP typically declines steadily until mid-gestation and then rises until delivery. In contrast,
preeclamptic women typically experience no early decline in BP, with BP remaining stable
during the first half of pregnancy and then rising until delivery. Also, primiparous, older,
and non-Hispanic black women are more likely than other demographic groups to
experience hypertensive disorders during pregnancy. Monitoring the gestational BP can help
identify women at risk of adverse birth outcomes, and point to appropriate treatments.
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Data were available for 1,027 English-literate women at least 18 years old, for a total of
10,290 measurements. Women with twin gestation or with known congenital anomalies
were not included in our analysis. Women with pre-gestational chronic hypertension were
also excluded since their BP was artificially lowered by medical treatment. Moreover, we
only considered non-Hispanic black and non-Hispanic white women due to the limited
number of Hispanics and other ethnic groups in the study.

The sampler described in Web Appendix B was run for 25,000 iterations, with the first
5,000 samples discarded as a burn-in and collecting every fifth sample to thin the chain. The
sampler appeared to converge rapidly and mix efficiently based on the examination of
traceplots of function estimates fi(tij) at a variety of time locations and for different subjects.
The estimated number of factors was 11, with a 95% credible interval of [9, 13].

Figure 1 shows the results for 6 randomly selected women, with the MAP estimates
following the typical U-shaped trajectory.

Repeating the analysis for the two-stage FPCA approach (Web Figure 1), we observe
accurate estimates at locations close to data points, but the estimates are inferior when no or
few measurements are recorded. The use of a pre-specified, over-complete set of basis
functions with no shrinkage on (and hence no basis selection) leads to overly-spiky curves.

To assess the predictive performance, we held out and predicted the MAP measurements
collected after the 30–th week for 300 randomly selected women with at least one
measurement in the first 30 weeks. We then compared our approach with “baseline” LFRM
and two-stage FPCA with no covariates by setting ηi ~ N(0, Ik). Results are reported in
Table 1. The high prediction errors were expected since there were many hard-to-predict
outliers in the MAP measurements. Predictions improved with the LFRM, although the
inclusion of covariate information did not significantly decrease the prediction errors.

Figure 2, which shows how average MAP trajectories change across six different covariate
groups, confirms previous findings on gestational BP, with older and primiparous women
having higher BP, although discrepancies are small. Diabetic women have higher gestational
BP than healthy women, with non-overlapping 95% credible intervals between mid-
gestation and the 35th week. There were no differences among the remaining covariate
groups.

To assess the relative importance of the j-th covariate, we look at the j-th column of the k × r
matrix β′, which contains the vector of coefficients associated with covariate j. The norms
of the columns of β′ indicate whether the covariates have any impact on the latent factors.
The magnitude of the elements within each column determines the load of the covariate on

each latent factor. If , covariate j does not impact on the estimate of any of the latent
factors for any subject. Figure 3 shows side-by-side boxplots of the norms of the posterior
estimates of the columns of β′. Greater relative impact is attributed to the indicators for
renal disease and (age > 35), followed by lead and cadmium concentration in ng/mL and
maternal race. Similarly, one can look at the norms of the columns of Λ to assess the relative
impact of Ληi on θi (Web Figure 2).

In terms of joint modeling, we report the results of a probit extension used to predict LBW.
For this analysis, we randomly split the data into a training set of 677 women and a test set
of 350 women. The complete data was retained for the training set whereas the test set was
entirely held out, that is, neither the MAP measurements nor the final outcome were
included. We compared the LFRM with the Dependent Dirichlet process (DDP) in De la
Cruz-Mesia, Quintana and Müller (2007), the Kernel partition process (KPP) in Dunson
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(2010), and with two-stage FPCA. The ROC plot in Figure 4 shows that the LFRM
outperforms the two-stage FPCA approach, and it is equally good as KPP in guaranteeing
high sensitivity. However, the LFRM's classification performance could be potentially
improved over the KPP (which does not include covariates) by letting the predictors directly
impact on the probability of LBW, while currently only an indirect impact via the ηi's is
accommodated. The DDP had worse performance than our approach, so the ROC curve was
omitted for simplicity of exposition.

Table 2 reports the posterior mean estimates of the marginal probabilities of preeclampsia
and LBW (with Monte Carlo standard errors) computed at the 20th, 25th, 30th and 35th
week of gestation for four randomly selected women in the test set. The final outcome
information was included for women in the training set only, while the BP measurements at
time of delivery were available for none of the women. Women in the test set had at least
one MAP measurement before the 20th week, and at least one measurement after the 35th
week. As early as 20 weeks of gestation, the LFRM estimated probabilities of preeclampsia
and LBW were up to three times higher than the national rates for women who in fact
experienced preeclampsia and/or LBW, with one exception being the probability of
preeclampsia for woman 2, which was initially high but then dropped to 11.41% at the 35th
week. By looking at Web Figure 3, it is evident that the curve and the BP measurements for
woman 2 were similar to those of normotensive woman 4. Thus, it is possible that woman 2
had normal BP during the prenatal visits, but was still preeclamptic because she had very
high BP (and proteinuria) at delivery.

These findings suggest that, as early as the 20th week of gestation, the LFRM identifies
women at high risk for adverse birth outcomes, with predictions getting more accurate
around the 30th to 35th week of gestation. However, the LFRM may fail to identify the risk
of preeclampsia in women who only register a sharp increase in MAP at delivery since the
normotensive gestational BP would not be enough to detect the risk of the adverse outcome.

5. Discussion
The article has proposed a Bayesian latent factor regression model for functional data. The
basic formulation generalizes the sparse Bayesian infinite factor model of Bhattacharya and
Dunson (2011), which was developed for estimation of high-dimensional covariance
matrices for vector data, to the functional data case. This allows one to include a high-
dimensional set of pre-specified basis functions, while allowing automatic shrinkage and
effective removal of basis coefficients not needed to characterize any of the curves under
study. In addition, we consider several generalizations allowing predictors to impact on the
latent factor scores and accommodating joint modeling of functional predictors with scalar
responses that are modeled parametrically or via mixture models. Along the same lines, we
can consider joint modeling of multiple related functions easily within the proposed
framework, but our emphasis was on developing methods motivated by the application to
the study of blood pressure and pregnancy outcomes.

The proposed framework has the advantage of straightforward computation via a simple
Gibbs sampler and easy modifications for joint modeling of disparate data of many different
types. In particular, the θi vector of basis coefficients in the functional data model can
instead be replaced with concatenated coefficients within component models for different
types of objects, including not only time trajectories but also images, movies, text, etc. This
leads to a general shared latent factor framework for modeling high-dimensional mixed
domain data that should have broad utility to be explored in future research. An interesting
modification would be a semiparametric case that allows the latent variables densities to be
unknown via nonparametric Bayes priors.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
MAP function estimates for 6 randomly selected women in the Healthy Pregnancy, Healthy
Baby Study. The posterior means are solid lines and dashed lines are 95% pointwise credible
intervals. The x-axis scale is time in weeks starting at the estimated day of ovulation.
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Figure 2.
MAP function estimates for 6 representative covariate groups. Dotted lines represent 95%
pointwise credible intervals and refer to the solid lines, and dash-dot lines are the 95%
pointwise credible intervals referring to the dashed lines.
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Figure 3.
Side-by-side boxplots of the norms of the posterior estimates of the columns of β.

Montagna et al. Page 15

Biometrics. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 4.
ROC plot for the correct classification of LBW in the HPHB study: the solid line refers to
the LFRM, the dashed line to the KPP, and the dotted line to two-stage FPCA.
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Table 1

Mean square predictive error (MSPE), predictive average absolute bias (PAAB) and predictive maximum
absolute bias (PMAB) for the HPHB study with the LFRM and the two-stage FPCA approach fitted with and
without covariates, respectively.

LFRM two-stage FPCA

Covariates No Covariates Covariates No Covariate

MSPE 88.36 89.91 92.16 92.22

PAAB 7.44 7.51 7.52 7.52

PMAB 43.50 43.29 49.51 49.62
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Table 2

Posterior mean estimates of the probabilities of preeclampsia and LBW (with Monte Carlo standard errors). 
and  are indicator variables equal to 1 if woman i developed preeclampsia and delivered a LBW infant,

respectively. Woman 1: , ; Woman 2: , ; Woman 3: , ; Woman 4: ,
.

Subjects

Pr(zp
i = 1) 1 2 3 4

20th week 0.2545 (0.0037) 0.2085 (0.0034) 0.0711 (0.0019) 0.1179 (0.0025)

25th week 0.2819 (0.0047) 0.1314 (0.0031) 0.1148 (0.0038) 0.1046 (0.0027)

30th week 0.3640 (0.0044) 0.1960 (0.0035) 0.0855 (0.0023) 0.0985 (0.0023)

35th week 0.4185 (0.0042) 0.1141 (0.0023) 0.1128 (0.0024) 0.0983 (0.0021)

Pr(zlbw
i = 1) 1 2 3 4

20th week 0.2582 (0.0054) 0.0858 (0.0032) 0.2544 (0.0053) 0.1144 (0.0037)

25th week 0.2391 (0.0056) 0.0644 (0.0030) 0.3166 (0.0062) 0.0981 (0.0038)

30th week 0.3193 (0.0058) 0.0986 (0.0035) 0.2865 (0.0057) 0.1056 (0.0036)

35th week 0.3462 (0.0058) 0.0608 (0.0027) 0.3462 (0.0058) 0.0997 (0.0034)
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