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Hole-spin qubits in semiconductors represent a mature platform for quantum technological applications.
Here we consider their use as quantum sensors, and specifically for inferring the presence and estimating the
distance from the qubit of a remote charge. Different approaches are considered, based on the use of single or
double quantum dots, ground and out-of-equilibrium states, Rabi and Ramsey measurements, and comparatively
analyzed by means of the discrimination probability, and of the classical and quantum Fisher information.
Detailed quantitative aspects result from the multiband character of the hole states, which we account for
by means of the Luttinger-Kohn Hamiltonian. Furthermore, general conclusions can be drawn on the relative
efficiency of the above options, and analytical expressions are derived for the Fisher information of a generic

qubit within the Rabi and Ramsey schemes.
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I. INTRODUCTION

Spin qubits in silicon quantum dots are the subject of an
intense research activity [1-4]. In recent years, high fidelities
have been achieved in all fundamental primitive operations,
including single- [5-7] and two-qubit gates [8,9], state prepa-
ration [10], and readout [11-13]. The suitability of silicon as a
host material for spin qubits [14—16] is related to the long co-
herence times [17-19], resulting from the natural abundance
of nonmagnetic isotopes and from the possibility of further
enhancing such fraction through isotopic purification [20,21].
Moreover, the manufacturing processes of silicon devices are
well established in the modern industry [1]. Thus, dense arrays
of spin qubits can be realized [22] and possibly operated at
temperatures as high as 4 K [23-27].

Silicon quantum dots can host both electron- and hole-spin
based qubits. An appealing feature of the hole-based imple-
mentation lies in the strong atomic spin-orbit coupling, which
offers the opportunity to perform all-electrical manipulation
of the qubit states [28-31], without the inclusion of micro-
magnets in the device [32]. Besides, some properties of the
hole-spin qubits, and specifically their coupling to external
fields, strongly depend on the band mixing, which can in
turn be rather sensitive to the electrostatic environment. This
makes hole-spin qubits highly susceptible to electric noise
[6,31] but, on the other hand, allows for a strong tunability
and for a dynamic control of the qubit properties [33,34].
Here we explore the possibility of exploiting such properties
in the context of remote charge sensing and quantum param-
eter estimation [35-37]. Specifically, we consider the case
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where one wants to infer the presence of a remote charge
at a given (known) distance D from the qubit, or estimate
the precise value of such distance. As pictorially shown in
Fig. 1, different distances D; and D, result in different spa-
tial distributions of the hole ground state [Figs. 1(a) and
1(b)], and in different values of the Larmor (w;) and Rabi
(wr) frequencies. The absence of the remote charge can be
identified with the case of a charge positioned at an infinite
distance from the qubit. Different values of the Rabi and
Larmor frequencies, in turn, translate into different rotation
angles of the qubit state for given free precession times
T [Figs. 1(c) and 1(d)] or manipulation pulses [Figs. 1(e)
and 1(f)]. The inference of the unknown parameter D can
thus be based either on the properties of the hole ground
state (static approach), or on the final out-of-equilibrium
state |y) of the spin qubit resulting from a given pulse
sequence (dynamic approach). We assess and compare the
quality of the remote charge sensing and of the parameter
estimation based on these two approaches by computing the
discrimination probability and the (classical and quantum)
Fisher information, respectively. In fact, the static approach
is essentially meant to provide a general and quantitative
characterization of the qubit susceptibility to the external
charge, and a benchmark for the dynamic approach, whose
implementation is based on the standard readout of the qubit
state.

Remote charge sensing has been demonstrated in recent
experiments [38,39], where the properties (charge occupation)
of a target dot are inferred from the positions of the Coulomb
peaks in the conductance of a sensor dot during a transport
measurement. Our investigation moves along these lines, but
considers two significant elements of novelty. On the one
hand, as in the quantum sensing paradigm, the information on
the remote charge is encoded in the quantum state of the qubit,
rather than on the positions of peaks observed in continuous
transport measurements. On the other hand, as in the typical
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FIG. 1. Schematic representation of the main effects induced by
a charge on a hole-spin qubit in a double quantum dot: (a), (b) hole
charge density; (c), (d) free precession during a time t of the qubit
state vector around the Z axis of the Bloch sphere; (e), (f) rotation
around the X axis of the Bloch sphere induced by a pulse of duration
T. Panels (a), (c), (e) and (b), (d), (f) correspond to a distance
D, and D, < D, of the charge from the center of the double dot,
respectively. The inference of the charge presence corresponds to the
discrimination between two distances, one of which goes to infinity.

quantum estimation scenario, the quantity to be inferred can
be a continuous one, namely, the distance of a charge from the
qubit.

Inferring the presence of an external charge and estimating
its distance from the qubit are related and yet distinct tasks.
In fact, the suitable measurement schemes are different in the
two cases, and the optimal values of the control parameters
need to be identified through different figures of merit. In case
both inferences are required, they should thus be carried out
sequentially, through different and independently optimized
measurement schemes.

The eigenstates of the hole-spin qubit and its dynamics
induced by the application of pulsed electric fields result from
a complex interplay between the shape of the electrostatic po-
tential, the atomic spin-orbit coupling, the external magnetic
field, and the Coulomb interaction with the remote charge.
Such interplay is fully captured by the six-band k - p approach
[40—43], which is here used for the calculation of the hole
eigenstates. At a qualitative level, the role of the confine-
ment potential emerges from the comparison between single
(SQDs) and double quantum dots (DQDs). The latter ones
are characterized by a wider polarizability of the hole ground
state, and thus by a stronger dependence of its properties on
the distance of the remote charge. Moreover, the Rabi and
Ramsey frequencies of DQDs have a stronger dependence

on D than those of SQDs, eventually resulting in a larger
discrimination probability and in a more precise parameter
estimation. Overall, the dynamic approach leads to higher
values of all the considered figures of merit. More specifically,
estimation procedures based on the Ramsey measurement
with a DQD allows one to achieve values of the Fisher infor-
mation that are several orders of magnitude larger than those
obtained with the other considered approaches. This emerges
as a robust conclusion, irrespective of the detailed properties
of the quantum dot systems.

The rest of the paper is organized as follows. In Sec. II we
introduce the multiband model of the hole-spin qubit, along
with the Hubbard model that qualitatively reproduces the main
features of the DQD implementation. In Sec. III we discuss
the static estimation strategy, based on the dependence of the
hole ground state on the charge distance. Section IV is devoted
to the dynamic strategy, where the remote charge sensing and
the parameter estimation are based on the Rabi and Ramsey
measurements. Finally, in Sec. V we report the conclusions
and the outlook.

II. MODEL SYSTEM

The multiband character of the hole eigenstates plays
a crucial role in determining the relevant qubit properties,
specifically the Larmor and Rabi frequencies. In fact, these
result from the interplay between the atomic spin-orbit cou-
pling, the confining potential, and the external magnetic field.
In order to account for these features, we model the hole-spin
qubit by means of a six-band Luttinger-Kohn Hamiltonian
[44] (Sec. IT A), with an external confining potential that mod-
els either a SQD or a DQD. In the DQD case, the interplay
between interdot tunneling and charge-induced bias can also
be described by means of a biased Hubbard model (Sec. I1 B),
where the bias between the dots is due to their different dis-
tances from the remote charge. This simplified model allows
one to obtain analytical expressions that qualitatively repro-
duce several trends and dependencies of the numerical results
on the parameters of the system; such agreement corroborates
the generality of our findings.

A. Multiband model of the single and double quantum dots

The six-band Luttinger-Kohn envelope-function Hamilto-
nian is appropriate for the description of the low-energy hole
states close to the maximum of the valence band in silicon (T
point) [42,45,46]. There, the atomic spin-orbit coupling pro-
vides an energy splitting Aso = 44 meV between the j = %
quartet (heavy- and light-hole bands) and the j = % doublet
(split-off band). The single-hole Hamiltonian defined in such
combined position-spin space and with the inclusion of exter-
nal (electric and magnetic) fields is diagonalized numerically
in order to derive the hole energies and eigenstates [40—42].

a. Single and double quantum dots. The hole confinement
is induced by a combination of band offset and electrostatic
coupling to the metal gates. In the presence of an additional
external charge, the total potential acting on the hole is given
by V(r) = Veons (r) + Vo (r), where Vone (1) is the confinement
potential, and V,(r) accounts for the Coulomb interaction
with the charge. In the cases of the single (SQD) and double
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quantum dots (DQD) considered hereafter, V.o (1) coincides
with

kKoo2, 2
Vsap(r) = S0 + ) + V(@) ()
and
2 2\
Voan(r) = g[% +y2} V@, O

respectively. In both cases, the last contribution accounts for
the confinement in the vertical direction and reads as

—Ejiz |zl <L;/2,

3)
Vbo lz| > L;/2,

Vi) = {
where L, is the channel width, V4, is the band offset be-
tween the well and the barriers along the z direction (here
Voo = 4000 meV and L, = 5 nm), and E| is an electric field
applied along the z direction [40] (E) is set to zero in Sec. III
and to —50 mV/nm in Sec. IV). The strength of the in-plane
confinement is determined by « and, close to the minima of
Vbop(r), it approaches that of the SQD, both in the x and y
directions (here ¥ = 7.6566 x 1072 meV/nm?). The interdot
distance is identified with the distance 2a between the minima
of VDQD (r)

The Coulomb interaction between the confined hole and
the external charge (assumed to be equal to —|e|) is

62

e/ (@ —x )2+ =y )P+ -2

where ¢ = 11.68 is the dielectric constant of bulk silicon
[47]. In the following, we specifically consider the case where
the charge is positioned along the x axis, r. = (D, 0, 0), in
order to highlight the interplay between the interdot tunneling
and the Coulomb interaction. Different values of ¢ will also
be considered, in order to effectively account for screening
effects, resulting from the presence of metal gates within
different gate geometries [48].

Finally, the coupling between the hole and the static mag-
netic field is accounted for by the Zeeman-Bloch Hamiltonian
and the substitution k — k 4 (¢/A)A in the k - p Hamilto-
nian, with A being the vector potential associated to the
magnetic field [40,43].

b. Larmor and Rabi frequencies. In order to realize a
hole-spin qubit, it is crucial to split the Kramers degeneracy
in the ground doublet by means of a static magnetic field
B = B(sinf cos ¢, sin6 sin ¢, cosf). The resulting energy
splitting between the lowest-energy eigenvalues e; and e;
defines the Larmor angular frequency

Ve(r) = — “

&)

whose value depends on the field intensity (B) and orientation
(6 and ¢), on the detailed composition of the hole eigenstates,
and (therefore) on the parameters that define the confinement
potential.

Hole-spin qubits can be manipulated electrically by ap-
plying voltage pulses to a nearby metal gate. Here, we
assume that such voltage induces a time-dependent po-
tential perturbation 8V (r,t) = —8Ey cos(wt) z, correspond-
ing to an oscillating, homogeneous electric field (here

W, = ﬁ(ez —e1),

3Ey = 3 meV/nm). The resulting Rabi angular frequency is
given by

ox = 7 8Es [ lzlga)], ©)
where [) and |y,) are the hole eigenstates belonging to the
ground doublet.

Both w, and wg are affected by the Coulomb interaction
between the hole and the external charge [Eq. (4)], and de-
pend on the distance D between this and the center of the
(double) quantum dot. The figures of merit that determine
the accuracy in the estimation of D (Sec. IV) are functions
of both these angular frequencies and their derivatives with
respect to D, w; = dpwr, and wi = dpwr. These are here
calculated through the extended Hellmann-Feynman theorem,
which allows to avoid the finite-differences approach and the
related numerical noise (see Appendix A for further details).

B. Hubbard model of the double quantum dot

The coupling of the hole to the external (electric and
magnetic) fields, and the resulting accuracy in the parameter
estimation achieved through the dynamic approach (Sec. IV),
depends on the detailed composition of the hole eigenstates,
and thus on the specific geometry of the host device and on
the resulting shape of the confining potential. The properties
of the hole ground state that determine the results obtained
within the static approach (Sec. III) are less dependent on
such details. It is therefore possible to identify general trends
and properties, which can be effectively described in terms
of a simpler model. In fact, as shown below, the simplest
model of a DQD system, namely, the biased two-site single-
band Hubbard Hamiltonian, qualitatively accounts for several
features of the more realistic multiband system, including the
dependence on D of the quantum Fisher information.

The biased DQD Hubbard Hamiltonian, for a single hole,
reads as

"y Hub A A A N A A
A = " (e1fra + fra — 18] 20 — 78] 4E1a). ()
a=1 4

Here, o € {{, I} is a pseudospin quantum number, distin-
guishing time-reversal conjugated single-particle states [41];
@Ia creates a hole in a state localized in dot i with pseudospin
o, and 7,4 = 5Za@i,a§ t is the interdot tunneling parameter,
and ¢; is the onsite energy for site i. The eigenenergies are
independent of «, and read as

Hub __ 1

ey’ = sler + et V(eg —e)* +4[t%]. (8)

The parameters introduced in Eq. (7) can be related to
the energies characterizing the multiband system. In partic-
ular, the two dots are assumed to be symmetric, so that the
difference between the onsite energies ¢; is entirely due to
the presence of the external charge. As a simple approxima-
tion, we then take ¢; to coincide with V.(r;), where r{,, =
(%£a, 0, 0) correspond to the minima of Vpgp(r):

e? e?

Dt @TVmI=—TnTo
9

€ =V(r)) =—
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The bias §. between the two dots, induced by the charge, is
then given by

2ae?

T e(D?—a¥)

As to the energy separation 83 = ez — e; between the
ground and first excited doublets, obtained from the multiband
calculations at zero magnetic field and for V., = 0, this is iden-
tified with 27|, corresponding to the energy gap e — "
of the Hubbard model in the absence of external charges. As
discussed in Sec. III C and Appendix B, the hopping param-
eter in the DQD depends on a according to |t| = z‘oe’ya2 toa
very good approximation.

8(; — €] — € (10)

II1. STATIC APPROACH TO THE ESTIMATE
OF THE CHARGE DISTANCE

The presence of a charge in the vicinity of the DQD affects
the eigenstates of the system. In particular, the dependence of
the hole ground state on the remote charge can be used to infer
its presence or estimate its distance [Figs. 1(a) and 1(b)]. The
maximal probability of discriminating between the presence
and the absence of the remote charge (at a given position)
is quantified through the Helstrom bound (Sec. IIIB). The
highest achievable precision in the estimate of the distance
is quantified by means of the quantum Fisher information
(Sec. III C). The physical origin of its maxima, corresponding
to optimal working points, is investigated through the depen-
dence on the charge position of the hole density distribution
and of the energy gap between the ground and first excited
doublets (Sec. IIT A).

A. Charge distribution and energy eigenvalues

If the confinement potential Vpgp(r) is symmetric with
respect to the plane x = 0, the same applies to the hole
density of the eigenstates. This symmetry is broken by the
presence of the charge positioned away from the yz plane
(Fig. 2). In particular, a negative charge atr. = (D, 0, 0) (with
D > 0) tends to localize the hole density n; (r) = |(r|y)|* for
the ground (k = 1, 2, red curves) and first-excited doublets
(k = 3, 4, cyan curves), respectively, in the right (x > 0) and
left (x < 0) dots. The degree of localization results from the
competition between the Coulomb interaction with the charge,
which induces a bias between the two dots and thus tends to
localize the hole, and the interdot tunneling, which tends to
delocalize the eigenstates over the DQD. A transition between
a delocalized and a localized-hole regime is observed for
increasing values of a at a given charge distance D [Figs. 2(a)—
2(c)], and for decreasing values of D at a given half-interdot
distance a [Figs. 2(d)-2(f)].

Such transition clearly shows up in the behavior of the hole
energy eigenvalues at zero magnetic field. In particular, we
consider the energies e; = e; and ez = e4 of the Kramers-
degenerate ground and first-excited doublets as functions of
a [Fig. 3(a)]. In the absence of an external charge, the energy
gap 83,1 = e3 — e; decreases monotonically in the considered
range of values [Fig. 3(b), dashed gray line]. This is because
83,1 is related to the tunneling amplitude between the two dots,
which decreases approximately as e (for further details,

-‘(a)a:Snm[ _1(b)a:14nm|;' j(c)a:Zan| _

V [meV]

20 40 -20 0 20 40
X [nm]

20 40 -20 O
X [nm]

-40 -20 O
X [nm]

FIG. 2. Charge densities (solid lines) for the ground (red) and
first-excited (blue) hole states of a silicon DQD in the presence
of an external charge. The gray dashed curves are the profiles of
the confining potential for y = z = 0. [(a)—(c)] The calculations are
performed for D = 66 nm and for different values of the half-interdot
distance a. [(d)—(f)] The calculations are performed for a = 14 nm
and for different values of the charge distance D.

ex [meV]

no defect
2 D =60 nm —a— 4
D =70 nm

D =80 nm —a—
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E
@
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FIG. 3. (a) Energies e; = e, and e3 = e4 of the hole ground and
first-excited doublets in a DQD as a function of the half-interdot
distance a (and for B = 0), in the absence (dashed line) and in the
presence of the external charge, for D equal to 60 (red curves), 70
(orange), 80 (green), and 100 nm (blue). (b) Energy gap e; — e;, with
the same color code as above.
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FIG. 4. (a) Squared overlap between the two hole states |.)
and |v,.) and (b) corresponding Helstrom bound as a function of
the distance D of the remote charge. The blue curves correspond
to the case of the Hubbard model, the red symbols are obtained
by numerically solving the Luttinger-Kohn Hamiltonian for the hole
state, with half-interdot distance a = 12 nm.

see Appendix B). This behavior changes in the presence of the
external charge (solid lines), where 83 ; displays a minimum
for a &~ ap,. There, a transition takes place from a regime
where the interdot tunneling is larger than the charge-induced
bias and the hole state is delocalized, to the opposite for
a 2, amin. Correspondingly, the energy levels e; and e3 un-
dergo an avoided crossing, as can be seen by comparing the
curves corresponding to the same value of D in Fig. 3(a).
Higher-energy levels lie at least 1.5 meV above e3 for all the
considered values of a and D.

This interplay is qualitatively reproduced by the Hubbard
model described in Sec. II B. In fact, the bias between the two
dots, induced by the external charge, concurs with quantum
tunneling to determine the avoided crossing between the en-
ergy levels e™"* and €f"* [Eq. (8)], corresponding to e; and e3,
respectively (see Appendix B).

B. Remote charge sensing

In this section, we consider the case where one has to infer
the presence (or absence) of the remote charge at a given
distance from the qubit. The inference is based on the fact
that, in the two cases, the ground state of the hole corresponds
to two different, though nonorthogonal, states |} (presence
of the charge) and [v,.) (no charge present). This problem
can be formalized within the framework of quantum state
discrimination [49,50]. In particular, the probability of dis-
criminating between the two qubit states and thus correctly
inferring the presence of the remote charge is upper bounded
by the Helstrom bound, defined as

Pd max = % + %[1 —4p. pnc|<wc|wnc>|2]l/2: (11)

where p. and p,,. are the a priori probabilities assigned to the
two hypotheses, which in the following are assumed to be %
The dependence of py max on the distance D of the remote
charge is reported in Fig. 4 for a representative case, corre-
sponding to an interdot distance of 2a = 24 nm. The presence
of the remote charge at the distance D = 60 nm slightly mod-
ifies the hole wave function [Fig. 4(a)], yielding a maximum
discrimination probability around 0.63 [Fig. 4(b)]. For larger
values of D, interdot tunneling dominates and the ground state
tends to be delocalized in spite of the Coulomb interaction

between the hole and the external charge. As a result, the two
states |.) and |¥,.) tend to coincide, and py max approaches
its theoretical minimum, equal to % In accordance with the
discussion in the previous subsection, the value of D at which
such transition takes place decreases with the half-interdot
distance a.

Finally, the Hubbard model (blue curves) slightly overesti-
mates the values of py max obtained from the Luttinger-Kohn
Hamiltonian (red curves); the relative discrepancy between
the values obtained from the model and those obtained from
the numerical calculations is between 2% and 3% in the whole
investigated range of D, and the curves are qualitatively sim-
ilar in the two cases. In the limit of a close charge, where the
bias between the two dots is much larger than the tunneling
parameter, the squared overlap between the states |i.) and
|¥ne) in the Hubbard model would be %, corresponding to a

Helstrom bound py max = 3(1 + 1/+/2) ~ 0.854. We finally
note that these values of the maximal discrimination proba-
bility correspond to single-shot measurements performed on
the sensor qubit, and can be increased by performing repeated
measurements [51].

C. Quantum Fisher information of the hole ground state

The dependence on the interdot distance of the hole local-
ization and the energy gap anticipates and explains that of the
quantum Fisher information (QFI). The QFI is a key quantity
in quantum parameter estimation [52], for it provides, via the
quantum Cramér-Rao bound, the highest achievable precision
in the estimate of the unknown value of the parameter. For a
generic state |Y) depending on a parameter A, the QFI reads
as

H =409 10,9) + (0¥ [¥)?). (12)
The QFI related to the parameter A = D is computed hereafter
in order to further characterize the dependence of the hole
ground state on the position of the charge and to provide a
benchmark for the dynamic approach to the estimate of the
charge distance.

The dependence of H on the half-interdot distance a, for
different distances D of the charge from the DQD, is char-
acterized by a maximum for a & ay,;,, where 83 ; is minimal
(Fig. 5, solid lines). In agreement with what was previously
observed for the energy eigenvalues, the maxima occur at
values of the interdot distance that increase with the distance
D between the charge and the DQD.

The behavior obtained from the six-band k - p Hamiltonian
is qualitatively reproduced by the Hubbard model (dashed
lines), especially for values of D that are sufficiently larger
than 2a. Besides, in the case of the Hubbard model, one can
derive the analytical expression of the QFI:

2¢%alt|eD 2
alet + |t|2£2(D2 _ 02)2 ’

H™ = [ (13)

which depends on the half-interdot distance a also through the
tunneling parameter ¢ (see Appendix B). At a given value of
a, the maximum value of H"" as a function of D (in the case
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FIG. 5. Quantum Fisher information of the hole ground state as
a function of the half-interdot distance a and for different values of
the charge distance D: (a) 60, (b) 70, (c) 80, and (d) 100 nm. Each
panel compares the numerical results obtained from the multiband
simulations (solid line) with the analytical results from the Hubbard
model (dashed). The vertical dotted lines indicate the value of a
corresponding to o = 1, for each value of D.

of D > a) is obtained at

4
b | @ / N 3e
DmaxH - 5 a+ . |4a” + €2|[|2 . (14)

The above expression thus gives the value of D at which the
hole ground state is most sensitive to small variations in D.
The problem of identifying the value of a that maximizes
HM® for a given D, is not analytically solvable. However,
we find that such optimal value of a is close to satisfying the
condition o & 1 (see Fig. 5), where o = 2|t| /4. is the ratio be-
tween the tunneling energy gap and the charge-induced bias.
The Hubbard model thus provides a clear indication that the
maximal sensitivity of the hole ground state to the position of
the external charge is achieved when the competition between
interdot tunneling and charge-induced bias is balanced.

The effect of the remote charge on the hole-spin qubit
depends not only on its position, but also on the screening of
the Coulomb interaction between the two charges resulting,
for example, from the presence of neighboring metal gates
[48]. A detailed analysis of such dependence is beyond the
scope of this paper. However, a preliminary understanding of
such effect can be gained by assuming that such screening
results in a renormalization of the dielectric constant &, whose

O i L
8 10 12 14 16 18 20 22

a[nm]

FIG. 6. Dependence of the quantum Fisher information on the
half-interdot distance a at fixed distance D = 100 nm between the
qubit and the remote charge. Different colors correspond to different
values of the screening constant €, normalized to the value in bulk
silicon &py.

value is known before the quantum estimation or state dis-
crimination procedures are implemented. As is apparent from
the expressions of the Coulomb interaction [Eq. (4)] and of
the QFI for the Hubbard model [Eq. (13)], the dependence of
the figures of merit on the dielectric constant cannot be ab-
sorbed in a redefinition of the distance D, due to the extended
character of the hole wave function. As shown in Fig. 6, the
dependence of the QFI on a essentially undergoes a shift in the
position of the maximum, whose value remains approximately
constant for a significant range of values of ¢.

IV. DYNAMIC APPROACH TO THE ESTIMATE
OF THE CHARGE DISTANCE

In the dynamic approach, the presence of the charge or its
position are inferred from the outcome of the qubit readout,
performed after a coherent control scheme. When the hole
is operated as a qubit, the only degree of freedom which is
accessed is the particle spin, defined by the lowest-energy
doublet: {|0) = |¥1), |1) = |¥»)}. The particular qubit state
[vr) that is generated after manipulating the hole depends on
the Larmor and Rabi frequencies and, through these, on the
presence of the charge and on its distance D from the (double)
quantum dot.

A. Larmor and Rabi frequencies

The presence of the external charge affects the Larmor fre-
quency in ways that depend on the orientation of the magnetic
field B. As the charge distance D from the DQD increases,
fL = wr /27 monotonically increases [Figs. 7(a)-7(c), solid
lines], and eventually tends to the value obtained in the ab-
sence of the charge (dashed lines). While this behavior is
qualitatively independent of the magnetic-field orientation,
the sensitivity of fi to D is maximal when B is oriented along
either the x or y directions. The situation is analogous for a
SQD, although in this case the curves corresponding to B || x
and B || y have opposite curvatures (i.e., opposite values of
T

- Both the value of the Larmor frequency (wr ) and its change
(Awy) in the presence of an external charge display a non-
monotonic dependence on the interdot distance [Figs. 7(d)
and 7(e), B || x]. The position of the maxima of both wr, and
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FIG. 7. [(a)—(c)] Energy gap between the qubit states |0) and |1)
of a DQD, induced by a magnetic field of 1 T and for a = 12 nm.
The gap is plotted as a function D (solid lines), for B oriented along
(a) the x, (b) y, and (c) z axes. The dashed horizontal lines indicate
the value of the gap in the absence of an external charge. (d) Same
energy gap, as a function of the half-interdot distance a, with the
charge at D = 60 nm (solid lines) and without the charge (dashed),
forafield B =1 T, oriented along the x axis. The difference between
the two cases is reported in (e).

Ay, depends on the distance D. The role played by spin-orbit
coupling, and specifically by the value of the splitting between
the j = % and the % bands, is demonstrated by the compari-
son between the above-mentioned results and those obtained
by a four-band calculation (corresponding to the limit where
Ago — 00). In the opposite limit with no spin-orbit coupling
(Aso = 0) the Larmor frequency is entirely independent of
the orbital degrees of freedom and, thus, of the electrostatic
potential. In this case f; is given by the Zeeman splitting
hff = goupB = 115.77 peV, where up is the Bohr magneton
and gy ~ 2 is the electron-spin g-factor. This implies that the
presence of Agp # 0 is fundamental since the dependence
of the Larmor frequency on D plays a crucial role in the
estimation of the parameter D performed both in the Rabi and
in the Ramsey measurement schemes (see Sec. IV C).

The Rabi frequency for a hole-spin qubit in a Si SQD has
been previously studied for different devices and confining
potentials. A crucial role in the tuning of wg is played by the
orientation of the magnetic field with respect to the crystal and
dot axes. The dependence of the Rabi frequency on the angles
0 and ¢, that we obtain here, qualitatively coincides with the
results reported elsewhere for SQDs [40]. In the following, we
focus of the field orientation defined by & = 60° and ¢ = 90°,
which represents a good compromise between the conflicting
requirements of obtaining large Larmor and Rabi frequencies.
Both wg and its derivative with respect to D decrease mono-
tonically with the distance D [Figs. 8(c) and 8(d)], in analogy
to what is obtained for the Larmor frequency [Figs. 8(a) and
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FIG. 8. Dependence of the Larmor and Rabi frequencies on the
position of the charge, for a specific orientation of the magnetic field
(6 = 60° and ¢ = 90°) with intensity B = 1 T and fixed half-interdot
distance @ = 12 nm. The panels show (a) the Larmor frequency fi.
and (b) its derivative, (c) the Rabi frequency fr and (d) its derivative,
and the ratios (e) fi./fr and (f) dpfr/0pfL. The dashed lines repre-
sent the values of fi, fr and their ratio in the absence of a charge.

8(b)]. The comparison between the two quantities shows that
the Larmor frequency, aside from being much larger than the
Rabi frequency in absolute terms, displays a much stronger
dependence on the position of the charge [Figs. 8(e) and 8(f)].
This will have important implications in the identification of
the optimal parameter estimation protocols.

B. Quantum state discrimination

As shown in the previous subsection, both Larmor and
Rabi frequencies are modified by the interaction between the
hole and the remote charge, localized in a given (known)
position. In analogy to what was discussed in Sec. III B for
the static approach, this results in the generation of two dif-
ferent qubit states in the two cases, hereafter denoted as |.)
(charge) and |¥,.) (no charge), after a given pulse sequence.
The problem of inferring the presence of the charge is thus re-
duced to that of discriminating between these two qubit states.
In the case where |(O|yc)|> > |{O|yne)|?, from the outcome
0 (1) of the qubit readout one infers the presence (absence)
of the remote charge. The discrimination probability p,; =
pe p(0]c) + pue p(1inc) in the case of a coherent qubit state
evolution thus reads as

Pacoh = Pel(O1Y? + pucl (1) 2,

where p. and p,. are the a priori probabilities, which are
assumed to coincide with %
In the Rabi measurement scheme the qubit readout takes

place after a pulse of duration 7" and frequency w (Fig. 9). For

as)

043159-7



GAIA FORGHIERI et al.

PHYSICAL REVIEW RESEARCH §, 043159 (2023)

D= — 60nm — 70 nm 80 nm
100nm — 120 nm — 140 nm — 160 nm
(a) 10 ; ‘
L
sl /\\ ,
0.8 1 ]
© / -
Q ' \
0.7r :
0.6F ﬁ A
(BT N X =
38550 38560 38570 38580 38590 38600 38610
w [MHz]
b) 1.0~ -
(b) an\

70.00 0.02 0.04 0.06 0.08 0.10
T [us]

FIG. 9. Discrimination probability based on the Rabi measure-
ment as a function of the pulse (a) frequency and (b) duration, in
the absence of decoherence, for a fixed half-interdot distance of a =
12nm and B=1T (0 = 60° and ¢ = 90°). Different colors corre-
spond to different values of the distance D between the qubit and
the remote charge. In (a) the pulse duration is fixed to T = 7 /wg’,
where wf’ is the Rabi frequency in the absence of a remote charge. In
(b) we fix the pulse frequency in resonance to the Larmor frequency
in the absence of a remote charge w = w{. The gray dashed line
corresponds to the implementation of 7 rotations in the absence of
charge.

D < 100 nm, the maxima in the discrimination probabilities
Pd.con are obtained with pulses that implement a 7 pulse
in the absence of remote charge (dotted gray lines). As D
increases, the Larmor and Rabi frequencies become more and
more similar to those characterizing the qubit in the absence
of the remote charge, and consequently the maxima of the
discrimination probability decrease. The reported results are
well above those obtained, for the same values of D, within
the static approach (Fig. 4).

Decoherence tends to erase the information on the presence
of the external charge encoded in the qubit state. In the follow-
ing, we consider for simplicity the case of an environment that
acts as a depolarizing channel (see Ref. [53] and Appendix C),
so that the final density matrix corresponds to a mixture of the
target state, with probability g, and of the fully mixed state.
The resulting discrimination probability reads as

Pd = qPacon + 5(1 —q). (16)

The probability g is in general a decreasing function of the
measurement duration 7;,,, with a functional dependence on T,
and a characteristic timescale 7; that depend on the dominant
decoherence mechanism [6,18,19,54] and on the measure-
ment scheme [2] (see discussion in Sec. IV C). As a result,

the oscillations between % and 1 that characterize the discrim-
ination probability in the coherent case [Fig. 9(b)] would be
multiplied by a decaying envelope ¢(T) (being T,, = T).

C. Fisher information of the qubit state

Once the dependence of the Larmor and Rabi frequencies
on D has been derived, one can also devise a strategy for
precisely estimating the charge distance, in the case where the
presence of the charge is known. This consists in identifying a
manipulation protocol that results in a strong dependence on
D of the qubit state |¢), and specifically of the measurement-
outcome probabilities pg = (0|p|0) and p; = (1|p|1). In the
following, we focus on the Rabi and Ramsey measurement
schemes. In both cases, the key figure of merit is the Fisher
information (FI) associated with the observable 0. For a qubit
in a generic state |y), the FI related to the parameter D reads
as

7 \2 / \2
Flp.oy) = Z (Pk) _ (p1)

=9 ; a7
i—oq Pr (I =po)p:

where the prime denotes differentiation with respect to the
unknown parameter D.

Decoherence tends to erase the information on the value
of D encoded in the qubit state, and thus to reduce the FI. In
order to account for this effect, we compare in the following
the values of F(p, oz) obtained in the presence and in the
absence of decoherence. If decoherence is mainly induced by
the hyperfine interactions [6,18,19], the coherent component
of the density operator undergoes a Gaussian decay: ¢(7,,) =
e~ Tn/T’ being T,, and T the overall duration of the qubit
manipulation and the relevant decoherence time, respectively
(see Appendix C). The FI in the presence of decoherence can
be expressed as a function of that obtained in the coherent
case:

I-(1- 2pl,coh)2
q_2 - (1 - 2pl,c0h)2 '
where po.con = [(01¥)[* and picon = [(11%)[*. This shows
how the ratio F/F.,, varies from 1 in the limit where T,
is much smaller than the decoherence time Ty, to q2 in the
opposite limit.

a. Rabi measurement. In the Rabi scheme and under the
rotating-wave approximation, the occupation probability of
state |1), for a qubit initialized in |0) and addressed by a rect-
angular pulse of frequency w and duration 7', is given by [55]

2 TQ
Pleoh = - sin? (—) , (19)

F = Fon (18)

Q2 2

where Q= +vwi+ A%, and A=w—o.. Combining
Egs. (17)—(19), one obtains the expression of the FI, which
reads as

[C1 cos (%) + G sin (%)]2

Frabi.coh = , 20
Rabi,coh 94[A2+a)]2{ COSZ (%)] ( )
where the terms C; and C, are given by
C = TwRQ(wa]Q — AO)L), (21)
Cy = 2A(wrwy + Awp). (22)
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FIG. 10. Color plots, related to the Rabi measurement, of the
probability p; (a), (b) and of the Fisher information F (c), (d) for
a DQD with half-interdot distance ¢ = 12 nm (a), (c) and a SQD (b),
(d), as functions of the defect coordinate D and the pulse duration 7'.
The dashed lines in [(a)—(d)] show the values of Ty, (black line) for
both systems, as defined in the text. (e), (f) Show the profile of F' as
a function of D for selected values of T close to Trai, respectively,
for the DQD and the SQD.

For each pulse duration (7)) and central frequency (w), the
qubit readout thus allows the estimate of D with a precision
whose upper bound is fixed by the above Frypi. We stress that
the above expression is valid for a generic Rabi measurement,
irrespective of the involved physical system.

In local quantum parameter estimation, the goal is the
precise estimate of a parameter, whose possible values are
already restricted to a limited range by an a priori knowledge.
In order to account for this, we consider hereafter values of the
charge distance from the (double) quantum dot ranging from
Dpin = 140 nm to Dy = 160 nm. A suitable choice of the
pulse is crucial in order to optimize the estimation process.
The uncertainty on the value of D also implies an uncertainty
on wr and wr,, and thus on the pulse duration and frequency
that are required to generate a given qubit state |). However,
if the variation of the Larmor and Rabi frequencies within the
range of possible values of D is sufficiently small, then a given
pulse leads to the implementation of well-defined rotations.
More specifically, we consider a value of the pulse frequency
equal to @, defined as the integral average of the Larmor
frequency in the interval [Dpin;Dmax]- By doing so, we ef-
fectively show in Fig. 10 that the final occupation probability
of the qubit state |1) displays a negligible dependence on the
exact value of D for both the double [Fig. 10(a)] and single
dot [Fig. 10(b)]. We also evaluate the integral average of the

Rabi frequency @g, which allows us to define a reference time
for the duration of the pulse, Trai = 7 /@g. We note that the
value of @g is approximately 25 times larger for the DQD than
for the SQD, which determines a much shorter pulse duration
Trabi in the former case (0.038 vs 0.95 ps).

As to the FI, the regions of interest clearly coincide with
those where @wrT ~ (2n + 1) [Figs. 10(c) and 10(d)]. In
order to gain further insight into the parameter dependence
of Frapi, we focus hereafter on the case n = 0 [Figs. 10(e)
and 10(f)], where the assumption that 7, = Trai < Ty (and
thus ¢ ~ 1) is better satisfied. The FI, plotted as a function
of D for slightly different values of the pulse duration, dis-
plays a nontrivial behavior. It generally tends to decrease with
the distance between the hole and the charge. However, the
curves also display a marked minimum in correspondence of
the resonance condition (A = 0), where the FI approaches
zero. Besides, such dip becomes increasingly narrow as &r7T
approaches the value of . While such complex behavior can
only be described by the full expression of the FI [Eq. (20)],
the trend obtained away from the resonance condition at 7 =
Trabi is reflected by the simplified expression
4w} (o) )?

Q4
This is obtained from Eq. (20) if Q7r,p &~ 7 for any charge
distance within the considered range, and exploiting the fact
that |y | > |wg| (see Sec. IV A).

Overall, the values of the FI are comparable to those ob-
tained for the QFI in the static approach, and larger for the
single than for the double quantum dot. On the other hand,
the pulse duration Tr,y; required for the DQD is about 25
times shorter than that for the SQD, which might represent a
significant advantage in dots with shorter decoherence times.

b. Ramsey measurement. In the Ramsey measurement, one
ideally applies two 7 /2 pulses to the system, separated by a
waiting time t. The final occupation probability of the state
|1) depends on the phase difference between the two basis
states accumulated during the waiting time 7, and thus on @ .
The inference of D is based on such dependence, but also on
the dependence on wy, and wg of the rotations implemented
by the two pulses. Within the RWA, and in the absence of
decoherence, the expression of the final p; reads as [56]

4|a)R|2 . (QT QT At
= sin“ | — )| cos | — ) cos | —
P1,coh 92 D) ) D)
A . (QT\ . (At\]?
— —sin| — )sin| — , 24)
Q 2 2

where T is the duration of each pulse.

We report hereafter the analytical expression of the FI.
Even though it is quite complex, it applies to any qubit within
the Ramsey measurement scheme. The FI is given by

4B?
FRamsey,coh = m’ (25)

~

Fravi =~ (23)

where the terms A and B read as

AT\ . . AT
A = cos <7> sin (QT) — Y sin <7>[1 —cos (27)]
(26)

043159-9



GAIA FORGHIERI et al.

PHYSICAL REVIEW RESEARCH §, 043159 (2023)

and

wp —XQ T ,
B:AT +A1T + A QT + As

In the above equations, we have introduced the dimensionless
quantities X = o /Q and Y = A/, defined such that X* +
Y? = 1. As usual the prime denotes the derivative with respect
to the unknown parameter A = D. Finally, the three terms Ay,
A,, and A3, which appear in the expression of B, are given by

/ YQ/
o Y82 .27
Q

. (AT . At
Aj =sin (7) sin (RT)+ Y cos (7>[1 —cos (27)],
(28)

AT . (AT .
Ay =cos (7) cos (2T) — Y sin (7) sin (2T), (29)

. AT
Az =sin <7>[1 —cos (27)]. 30)

The sensitivity allowed by the Ramsey measurement can
ideally increase with the duration of the waiting time t, but
it is in practice limited by decoherence. In order to account
for such effect, and being in general T > T, we assume that
the effect of decoherence is mainly manifest during the free-
evolution phase [T, =t 4+ 2T ~ 1, and thus g = g(t) (see
Appendix C for details)]. The FI in the presence of decoher-
ence thus reads as

16X2A%B?
(g2 — 1)+ 4X2A2(1 — X2A2) "

The general expressions of the qubit occupation probabilities
and of the corresponding FI are finally applied to the case of
the hole-spin qubit in the single and double quantum dots,
where we include the specific values of the Larmor and Rabi
frequencies and of their derivatives with respect to A =D
obtained from our k - p simulations. In particular, we plot p;
and Framsey as a function of D and of the waiting time T,
for Ty = T, = 2.5 ps and q(1) = e~ /Y’ (Fig. 11). We fix
the pulse duration to a reference time T = Tramsey = 7 /2R
In the case of the DQD, the dependence of p; on t and on
D [Fig. 11(a)] recalls the one typically obtained in Ramsey
spectroscopy [57], with D modulating w;, and thus being the
cause of detuning. In both cases, the oscillations as a function
of D are damped for values of the waiting time t that are
much larger than 7;*. The FI displays analogous oscillations
as a function of D and t, with a shorter periodicity and a
similar damping at long waiting times [Fig. 11(c)]. Further
details can be appreciated from the sections of the contour
plots, corresponding to given values of t [Fig. 11(e)]. The
dependence of the frequency in the oscillations on t reflects
the fact that the sensitivity of the accumulated phase on the
exact value of wr, (and thus of D) increases with t. This should
also imply a monotonic increase of the local maxima with ,
which however does not occur in the presence of decoherence.
The effect of decoherence can be appreciated by comparing
these plots with those obtained for larger values of 7,* and for
the coherent case (Appendix C).

The difference with respect to the SQD case [Figs. 11(b),
11(d), and 11(f)] is striking. On the one hand, in the SQD
case one hardly observes an oscillatory behavior for either p,
and F because wp varies much less than in the case of the

FRamsey = (€29)]
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FIG. 11. Color plots related to the Ramsey measurement in the
presence of dephasing. The panels show the probability p; (a),
(b) and the Fisher information F (c), (d) as functions of the defect
coordinate D and the waiting time 7, for a DQD with half-interdot
distance a = 12 nm (a), (c) and for a SQD (b), (d). (e), (f) Show the
dependence of F on D in the case of DQD and SQD, respectively.
The curves refer to given values of t, also highlighted by the dashed
lines in (c) and (d): 1 ps (red), 1.75 us (yellow), and 2.5 ps (green).

DQD in the considered range of values of D. On the other
hand, the maximal values of the Fisher information in the
DQD are two orders of magnitude larger than in the SQD.
For optimal values of T, Framsey 18 roughly 10 times larger than
FRrapi for the SQD, while it is 1000 times larger for the DQD. In
fact, since Frqp; is similar in both systems, the discriminating
factor in Framsey 18 the value of wg, which we found to be
an order of magnitude larger in the DQD with respect to the
SQD. This conclusion results from a simplified expression
of the Fisher information, derived for Q7ramsey ~ 7/2 and
| T| > |X'|, |Y’|. In this case, one has that

4w (@) )

Q4

where C is a factor that oscillates as a function of A (and
thus of D), whose expression in reported in Appendix C.
The second factor in the above formula coincides with the
approximate expression of Fruy; given in Eq. (23). The third
factor increases quadratically with the free-evolution time t.
Since wr Tramsey = 7 /2, when T 3> Tramsey the factor (wrT)?
might become very large, allowing the maximal values of

Framsey to be much larger than those of Fgapi. On the other
hand, 7 cannot be chosen to be large at will since C also

FRamsey ~C (wR":)2 , (32)
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includes an exponentially decreasing dependence on t /7.,
which suppresses Framsey at T > T,*. Therefore, the optimal
value of 7 should represent a compromise between these con-
flicting requirements.

The strongly oscillating behavior of Framsey With respect to
both D and 7 should be taken into account in devising the mea-
surement strategy. The oscillations as a function of the charge
distance imply no problem if their period is larger than the a
priori uncertainty on the value of D. If this is not the case, one
can either enhance the period by reducing the free-evolution
time 7, or make use of a composite measure, which combines
two Ramsey measurements, obtained with different values
of the pulse frequency w, and thus with different positions
of the minima. This approach would lead to a smearing of
the oscillating features, and thus to an enhancement of the
minimal precision, at the cost of reducing the maxima.

V. CONCLUSIONS AND OUTLOOK

The purpose of this paper is to explore the potentialities
of hole-spin qubits for performing quantum sensing and re-
mote charge sensing. These potentialities ultimately lie in the
multiband character of the eigenstates, which can be signif-
icantly influenced by the electrostatic environment. This, in
turn, affects the coupling of the qubit to the external (electric
and magnetic) fields, and thus the qubit state |¢) that is
generated by a given pulse sequence. We have considered
different approaches for inferring the presence of a remote
charge and, in the case where such presence is known in
advance, for precisely estimating its distance D from the qubit.
The computed figures of merit are, in the two cases, the dis-
crimination probability and the classical Fisher information,
upper bounded by the Helstrom bound and by the quantum
Fisher information, respectively.

Beyond the dependence of these quantities on the specific
properties of the quantum dots, some general aspects emerge
from our investigation. First, the use of double, rather than
single, quantum dots allows for a significant enhancement
of the precision in the estimate. In fact, at the static level,
the hole ground state is more polarizable, and thus more
sensitive to the position of the external charge, especially in
the range where the charge-induced bias is comparable to the
interdot tunneling amplitude. Besides, at the dynamic level,
when the hole is localized in the double quantum dot, its
Larmor and Rabi frequencies w, and wg are more sensitive to
the charge position. Second, a dynamic approach, where the
value of D is encoded in the statistics of a Rabi or a Ramsey
measurement, allows for better estimates than any possible
static approach where the distance of the charge determines
the statistics of an arbitrary measurement performed on the
hole ground state. Third, among the dynamic approaches, the
Ramsey measurement performs better than the Rabi scheme
for quantum estimation because it allows for more efficient
exploitation of the dependence of w;, on the charge distance,
which is stronger than that of wr. Comparable values of the
discrimination probability are obtained instead for the Rabi
and Ramsey schemes.

Finally, while the dependence on D of the ground state,
wr, and wg is specific to the hole-spin qubit, the analytical
expressions of the Fisher information corresponding to the

Rabi and Ramsey measurements that we have derived are
completely general and apply to any physical implementation
of the qubit.
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APPENDIX A: NUMERICAL EVALUATION OF THE QFI
VIA THE EXTENDED HELLMANN-FEYNMAN THEOREM

The evaluation of the QFI for a parameter-dependent state
|;.) requires the evaluation of the state derivative |9, ;).
Here, the unknown parameter is the charge distance from
the origin (A = D), but the discussion that follows is more
general. Each state |y,) is obtained by numerically diago-
nalizing the Hamiltonian for a given value of L. The state
[, is thus given with a global phase factor (gauge) that is
fixed randomly, i.e., without any defined or user-controlled
relation with the phase assigned to the state |y,/), resulting
from another diagonalization. In order to compute the deriva-
tive |0, 1) via, e.g., the finite-differences method, one should
perform two numerical calculations at the values A & §A/2,
for sufficiently small values of §A, and then fix the gauge
in order to remove the random nonderivable global phase.
One possible choice would consist in requiring that the scalar
product of the state of interest with a fixed reference (basis)
state is real. Then, one can compute the derivative

[Yats12) — [Va—sn/2)
[0,9.) ~ Y :

Although well defined, this procedure has two drawbacks: (1)
it requires two numerical calculations for each value of A, and
(2) in practice, the result might depend on §A and, ultimately,
be inaccurate. In fact, if A is too large, then Eq. (Al) is
not a good approximation of the derivative. Instead, if it is
too small, the derivative is given by the ratio between two
very small quantities, which might be prone to significant
numerical noise.

To avoid this problem, we apply the extended Hellmann-
Feynman theorem [58], whose statement can be summarized
as follows. Let us consider the Schrodinger equation H|v,,) =
en|¥n), where the Hamiltonian, its eigenstates and eigenvalues
depend on the parameter A. Then, the following relations hold:

(AD)

dne, = H;Z’n (A2)
and
|03 3) = iwnl¥a) + Z ) (A3)
m#n €n
where H;n,n = <wm|(am)|¢,l>, while w,, is an undetermined

real number. By an appropriate choice of the overall phase of
the state |y,), w, can be set to zero, even though this is not
required in what follows.

The advantage of the present approach lies in the fact
that it does not require to perform and combine the results
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of two independent numerical calculations, and avoids the
above-mentioned drawbacks. In fact, the derivative with re-
spect to X is only applied to the Hamiltonian, which is a known
analytical function of the parameter, and can thus be computed
by performing calculations for a single value of A. In partic-
ular, the numerical evaluation of the QFI for the ground state
(n = 1) can be performed by combining Eqgs. (A3) and (12).
The result is

lm ml

(em —e1)?’ (A9

_42

m#l1

independent of w,,. In calculating the QFI with Eq. (A4), one
should only take care that the sum converges.

In order to compute the QFI for the state generated by
the Rabi and Ramsey experiments, one needs to numerically
evaluate the derivatives with respect to D of the Larmor and
Rabi frequencies. We use the extended Hellmann-Feynman
theorem for this purpose as well. The derivative of the Larmor
frequency is obtained by applying Eq. (A2):

3DwL = %(H/z,z - H/l,l)' (A5)
The derivative of the Rabi frequency, instead, requires the
application of Eq. (A3), which yields

(A6)

j : lm
+ZZ] )

— €
m#1 €l m

where z,,, = (¥n|Z|¥,). This procedure can be applied to
the numerical calculation of analogous differential quantities,
corresponding to the derivative with respect to A of diagonal
or off-diagonal matrix elements.

APPENDIX B: TUNNELING PARAMETER AND ENERGY
LEVELS IN THE HUBBARD MODEL

In the absence of external charges and magnetic field, the
gap 83,1 = e3 — e; between the lowest Kramers doublets is
identified with the corresponding energy gap in the solutions
of the Hubbard model, given by 2|¢| (Sec. II B). In general,
the tunneling parameter is expected to decrease exponentially
with the height of the barrier between the two dots, due to the
exponential decay of the dot-localized envelope functions on
each side of the barrier. For the potential defined in Eq. (2),
the barrier height is Vpop(0) = ka® /8, and thus quadratic in
a. It is thus reasonable to try and fit the dependence on a of
the energy gap obtained from the diagonalization of the k - p
Hamiltonian by means of the function

failasto, y) = 267" (B1)

where the parameters 7y € R* and y are determined with the
nonlinear least-squares method. As shown in Fig. 12, the
fitting can indeed reproduce the dependence of the gap on
the half-interdot distance with a high degree of accuracy for a
significant range of values.

204 to = 1.757 £ 0.014 meV.
v =0.00724 + 0.00005 nm
1.5+
S
[0]
E
o 1.0
0.5+

a (nm)

FIG. 12. Energy gap between the lowest Kramers doublets as a
function of the half-interdot distance a. The blue dots are the values
obtained from the multiband calculations in the absence of an exter-
nal charge and for zero magnetic field. The red curve corresponds
to the fitting function f3,(a;ty, y), with values of the parameters
specified in the inset.

Given the functional dependence of the tunneling param-
eter on the half-interdot distance, one can also analytically
express the energy levels and the quantum Fisher informa-
tion as a function of a. The QFI derived from the Hubbard
model is shown to reproduce qualitatively the behavior of
the one derived from the multiband approach (Sec. III). The
same applies to the energy levels and to the gap between
the ground and first excited levels. Figure 13(a) shows the
energies e"® obtained from Eq. (8) in the presence of an
external charge after identifying the hopping parameter §3 |
with the e =" . The corresponding energy gap b — eHub g
shown in Fig. 13(b), for different values of D. The comparison
between these results and those reported in Fig. 3 shows that
the Hubbard model qualitatively reproduces also the behavior
of the energy levels obtained from the six-band calculations.

APPENDIX C: EFFECT OF QUBIT DECOHERENCE ON
THE RABI AND RAMSEY MEASUREMENTS

The precision that one can achieve both in the Rabi and in
the Ramsey schemes is limited by the environment-induced
decoherence that affects the time evolution of the qubit state.
For the sake of simplicity, we assume here that the environ-
ment acts as a depolarizing channel [53], with depolarization
probability p = 1 — g. Therefore, if |) is the qubit state in
the absence of decoherence, the state density matrix at the end
of the pulse sequence reads as

1— n
a1+ 2‘”1,

p (ChH
where the occupation probabilities corresponding to the two
basis states are related to those in the absence of decoherence
by the relations

Pk =qPren +5(1—q) (k=1,2). (623
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a [nm]

FIG. 13. (a) Hole energies €'{"" and (b) energy gap e*® — '™ as

a function of the half-interdot distance a. The energies are computed
in the absence of an external charge (dashed lines) and with a charge
at a distance D of 60 (solid red curves), 70 (orange), 80 (green), and
100 nm (blue).

As aresult, the discrimination probability is given by Eq. (16).
As to the Fisher information, its expression can be derived by
combining the above expression with Eq. (17):

(g xlo)*
1 — (g Xcon)*’

x)?
1—x2

F = (C3)

where x = po — p1 = ¢ Xcoh, and the prime denotes the dif-
ferentiation with respect to D.

In order to highlight the effect of decoherence on the
final occupation probability p; and on the Fisher informa-
tion within the Ramsey measurement scheme, we plot these
quantities in the case of a fully coherent evolution and for de-
creasing values of T}, for ¢ = e~ /T ~ ¢=(/T))’ (Fig. 14).
All quantities are shown as a function of the charge distance
D and the waiting time 7, for a DQD with half-distance
a = 12 nm, while the pulse duration 7 is fixed in each case to
the corresponding value of Tramsey (defined in the main text).
The probability p; con [Fig. 14(a)] displays features similar to
those obtained in the presence of decoherence [Figs. 14(c),
14(e), and 14(g)], with a contrast in the oscillations which
increases with 7,". As to the Fisher information, the maxima

T [us]

(a)5 (b)

‘ ’ \ . F oy 2]
(c)” '/ 3

! P1 1.0
()’ 7 A

i P 1.0

0
140 145 150 155 160 140 145 150 155 160

D [nm] D [nm]

7 [ps]

7 [ps]

T [ps]

FIG. 14. Occupation probability p; (left panels) and correspond-
ing Fisher information Framsey (right) as a function of D and 7, in
the absence of decoherence (a), (b) and for 7" equal to 25 (c), (d), 5
(e), (), and 2.5 pus (g), (h). All the calculations refer to a DQD with
half-distance a = 12 nm.

progressively move from the region of small z, for the small-
est value of the decoherence times [Fig. 14(h)], to the one of
large 7 in the coherent case [Fig. 14(b)]. Correspondingly,
the contrast in the oscillations as a function of D decreases,
resulting in a qualitative difference between the behaviors in
the presence and in the absence of decoherence.

We finally report the expression of the oscillating prefactor
that appears in the approximate expression of Framsey, given in
Eq. (32):

B [cos (4F) — sin (AZT)Y]Z[COS (55)Y + sin ( 2’)]

q2 {1—2X2[cos(A2f)—s1n (55) }2

(o))

where A is the detuning, X = o} /2, and Y = A/Q.
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