
1 
 

Intraspecific variation in invertebrate cognition: a review 1 

Tyrone Lucon-Xiccato1*, Claudio Carere2, David Baracchi3 2 

 3 

1 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy 4 

2 Department of Ecological and Biological Science, Tuscia University, Viterbo, Italy 5 

3 Department of Biology, University of Florence, Sesto Fiorentino, Italy 6 

 7 

* Correspondence: tyrone.luconxiccato@unife.it 8 

 9 

 10 

Statements and Declarations 11 

Competing interests: We have no competing interests.  12 

 13 

Acknowledgements: TLX was funded under the National Recovery and Resilience Plan 14 

(NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15/03/2022 of 15 

Italian Ministry of University and Research funded by the European Union – 16 

NextGenerationEU Award Number: Project code PE0000006, Concession Decree No. 1553 17 

of 11/10/2022 adopted by the Italian Ministry of University and Research, CUP 18 

D93C22000930002, ‘A multiscale integrated approach to the study of the nervous system in 19 

health and disease’ (MNESYS). CC was supported by the PRIN projects HYBRIND 20 

(2017KLZ3MA ) and PL-ASTICI (20223EETLW), and by the Research project implemented 21 

under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 22 

Investment 1.4—call for tender no. 3138 of 16 December 2021, rectified by Decree no. 3175 23 

of 18 December 2021 of the Italian Ministry of University and Research funded by the 24 

European Union–Next Generation EU, Project code CN_00000033, Concession Decree no. 25 



2 
 

1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP 26 

J83C22000860007, project title ‘National Biodiversity Future Center—NBFC’. DB 27 

acknowledge the support of NBFC to University of Florence, Department of Biology, funded 28 

by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, “Dalla 29 

ricerca all’impresa”, Investimento 1.4, Project CN00000033 30 

 31 

Data statement: The manuscript has no associated data.  32 



3 
 

Abstract 33 

A well-established field of research in vertebrates focuses on the variability of 34 

cognitive abilities within species. From mammals to fish, numerous studies have revealed 35 

remarkable differences in the cognitive phenotype among individuals, particularly in terms of 36 

sex or personality. However, many aspects of the mechanisms, genetics, and selective 37 

pressures that underlie individual cognitive variation remain unclear. Surprisingly, 38 

intraspecific variability in cognition has received much less attention in invertebrates, despite 39 

the increasing evidence of remarkable cognitive abilities in this group and the insights that 40 

could be gained from examining simultaneously two distinct taxa, namely vertebrates and 41 

invertebrates. In this review, we provide evidence that certain invertebrate species exhibit all 42 

the key features of cognitive variation observed in vertebrates, including differences related 43 

to sex and personality. In many cases, invertebrate studies have provided insights into the 44 

genetic basis, evolvability and response to selection of cognitive variability. Moreover, we 45 

highlight evidence for caste differences in eusocial insects, which are linked to task 46 

specialisation within the colony. This makes insect eusociality a valuable system for 47 

understanding how selection influences cognitive variation. We propose that cognitive 48 

variation in invertebrates may be more widespread than currently thought, and that selection 49 

may operate in a similar manner on two distantly related cognitive systems (vertebrates and 50 

invertebrates). Finally, we suggest that invertebrates hold the potential to serve both as 51 

alternative and complementary models to vertebrates, contributing to a deeper understanding 52 

of cognitive evolution. 53 

 54 

Keywords: behavioural syndrome; cognitive ecology; cognitive evolution; individual 55 

differences; personality; invertebrate cognition.  56 
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Introduction 57 

 Interindividual variability has been a hallmark of research in human psychology (e.g., 58 

Conway and Kovacs 2013; Humphreys 1979; Maltby et al. 2010), and for at least three 59 

decades in animal behavioural biology (e.g., Carere and Maestripieri 2013; Laskowski et al. 60 

2022; Wilson 1998). We now know that intraspecific variability in cognitive abilities is not 61 

exclusive to our species, but it has been found in a number of mammalian (Banerjee et al. 62 

2009), avian (Ashton et al. 2018; Cole et al. 2011), and teleost fish species (reviewed in 63 

Lucon-Xiccato and Bisazza 2017), and based on initial evidence in some reptiles (e.g., 64 

Carazo et al. 2014).  65 

Several disciplines are interested in intraspecific variability in animal cognition, 66 

including comparative psychology, neuroscience, applied ethology, and pharmacology, as 67 

well as cognitive ecology. From the latter perspective, there are at least three reasons for this 68 

interest. First, individual differences in cognition are likely associated with individual 69 

differences in fitness (e.g., Ashton et al. 2018; Cole and Quinn 2012, Cole et al. 2012; Smith 70 

et al. 2015). Second, the well-known interspecific differences in cognition are thought to have 71 

evolved mostly through selection acting on intraspecific variation. Third, because many 72 

cognitive traits are expected, at least hypothetically, to enhance an animal’s interaction with 73 

its environment (Preiszner et al. 2017), their variation, including phenotypic plasticity driven 74 

by experience (Cauchoix et al. 2020; Dukas 2004; Montalbano et al. 2022), is a potentially 75 

relevant process in coping with responses to anthropogenic impacts. These reasons for 76 

interest, together with those related to other topics such as animal welfare (Berry et al. 2015; 77 

Mather and Carere 2019) and precision psychiatry (Fernandes et al. 2017), make the study of 78 

intraspecific variation in cognition particularly relevant.  79 

 However, despite the emphasis and growing literature on intraspecific cognitive 80 

variability in vertebrates, this phenomenon has received less attention in invertebrates, where 81 
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averaging has long obscured individual variation. This is surprising given that already in the 82 

early 20th century, the pioneering psychologist Charles Turner found that displaced homing 83 

ants differed in how quickly they returned to their nests, which he explained by suggesting 84 

there were individual differences in memory (Turner 1907). Furthermore, research on 85 

invertebrate cognition has expanded considerably over the last few decades, often yielding 86 

novel and significant insights (reviewed in Chittka and Skorupski 2011; Menzel and Giurfa 87 

2001; Perry et al. 2016; Perry et al. 2017; Vallortigara 2020). Similar advances in 88 

understanding cognitive variance could be achieved if invertebrate models were fully 89 

integrated. While vertebrate and invertebrate brains share several basic mechanisms (Cayre et 90 

al. 2002; Kammermeier and Reichert 2001), they also exhibit major differences that can be 91 

exploited for complementary research goals. Compared to vertebrates, invertebrates often 92 

provide tractable and accessible models because of their relatively simple nervous systems 93 

and a genetic background that is easy to manipulate. This has allowed researchers to carry out 94 

experiments in invertebrates that would be difficult or impossible with vertebrates, which 95 

have more complex nervous systems and ethical constraints. Invertebrates also have shorter 96 

life spans, allowing researchers to easily observe and manipulate behaviour over several 97 

generations. In addition, invertebrates are often less expensive to maintain and breed, making 98 

them ideal for large-scale studies. Therefore, studying cognitive variability in two systems 99 

with some degree of difference is likely to be advantageous for identifying general 100 

evolutionary phenomena. 101 

The aim of this review is to provide a collection of evidence for intraspecific cognitive 102 

variability in invertebrates, focusing on three typical explanatory factors of variation reported 103 

in vertebrates: sex differences, individual differences, and cognition-personality covariation 104 

(Fig. 1). Thereafter, the review aims to highlight one remarkable example of cognitive 105 

variation observed in eusocial insects that is lacking in vertebrates, that is caste-associated 106 
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cognitive variation (Fig. 1). The literature search was conducted on Scopus and Google 107 

Scholar, with relevant keywords (‘sex differences’ + ‘cognition’ + ‘invertebrates’, ‘individual 108 

differences’ + ‘cognition’ + ‘invertebrates’, ‘personality’ + ‘cognition’ + ‘invertebrates’, 109 

‘caste’ + ‘cognition’ + ‘invertebrates’) and by checking references and citations of the articles 110 

retrieved. In each of the aforementioned sections, the review additionally discusses a number 111 

of potential advantages of invertebrate research, which could become powerful, 112 

complementary tools for studying cognitive evolution alongside vertebrate models. 113 

 114 

Sex differences 115 

 Cognitive sex differences have been reported in a number of vertebrate species and 116 

for a range of abilities (reviewed in Jonasson 2005; Jones et al. 2003; Lucon-Xiccato 2022). 117 

This research has focused on two main lines of investigation complementary to a full 118 

understanding of the evolution of cognitive sex differences: cognitive ecologists have been 119 

particularly interested in understanding the adaptive explanations for sex differences, while 120 

physiologists have devoted considerable attention to the underlying neuroendocrine 121 

mechanisms. The evidence reported below suggests a role for invertebrates in the study of 122 

both adaptive explanations and underling mechanisms of cognitive sex differences. 123 

 124 

Adaptive value of cognitive sex differences 125 

The main adaptive explanation for cognitive sex differences relates to differential 126 

behaviour, life history, and ecology of the two sexes, which might determine sex-specific 127 

requirements (e.g., Astiè et al. 1998; Gaulin and Fitzgerald 1986; Lucon-Xiccato et al. 2016). 128 

For instance, if in a particular species, one sex (but not the other) is required to perform a 129 

certain cognitive task, selection could favour the evolution of a greater ability to solve such 130 

task in that sex. Invertebrates can potentially contribute significantly to test this hypothesis 131 
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considering that some groups display large sexual dimorphism (e.g., Hopkins and Kopp 132 

2001; Thornhill and Gwynne 1986). Moreover, it would interesting to understand whether the 133 

response to selection for sexual differentiation of cognition is similar in invertebrates and 134 

vertebrates. 135 

Spatial behaviour and ecology are among the most investigated functional contexts in 136 

which cognitive sex differences emerge in vertebrates (reviewed in Jones et al. 2003). They 137 

have also been studied in a few invertebrate species. In a cephalopod mollusc, the cuttlefish 138 

Sepia officinalis, males range over a larger area, suggesting greater spatial abilities than 139 

females. Jozet-Alves and colleagues (2008) tested this prediction in a T-maze spatial learning 140 

task: the cuttlefish had to enter one arm of the maze, either the right or the left, indicated by a 141 

visual cue, to reach a ‘comfortable’ habitat. Male and female cuttlefish showed no difference 142 

in the speed at which they learned the task. However, probe trials demonstrated that males 143 

learned to choose the correct arm by using egocentric cues (right or left), whereas females 144 

used the visual cue. This aligns with findings in vertebrates, including humans, suggesting 145 

that selection may determine sex differences in spatial navigation strategy (Chai and Jacobs 146 

2009; Rodríguez et al. 2010). Our literature search also showed that that spatial learning and 147 

strategy have been investigated in two other invertebrate species, with no evidence of sex 148 

differences (crayfish Orconectes rusticus: Tierney and Andrews 2013; texas field crickets 149 

Gryllus texensis: Kozlovsky et al. 2022). 150 

 In some vertebrate species, it has been hypothesised that cognitive sex differences 151 

may arise in relation to the reproductive strategy (Laland and Reader 1999). This idea has led 152 

to a study of the Japanese pygmy squid Idiosepius paradoxus (Takeshita and Sato 2016). 153 

Eggs in this species can exceed five times the weight of the female’s body, determining 154 

higher energy requirements and possibly a different foraging decision-making system 155 

compared to males. Accordingly, Takeshita and Sato demonstrated that females tend to 156 
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overestimate their optimal prey size, while males tend to underestimate it. Another sex 157 

difference in judgment has been described in the field cricket Gryllus integer in the context of 158 

reproduction (Leonard and Hedrick 2009). When presented with a simultaneous choice 159 

between recordings of conspecific calls, both males and females preferred calls with long 160 

elements. However, only females showed such a preference when the calls were presented in 161 

isolation. This suggests that female crickets use an absolute rule to estimate call length, 162 

whereas males use a comparative strategy. Finally, in a study on the fruit fly Drosophila 163 

melanogaster, males were maintained in a regime of either monogamy or polygamy for 100 164 

generations (Hollis and Kawecki, 2014). Polygamous males were able to learn to discriminate 165 

between receptive and unreceptive females, while monogamous males were not. 166 

Monogamous males also failed to learn an aversive olfactory conditioning task. Although it 167 

does not provide a direct investigation of sex differences, the fruit fly study suggests that 168 

different reproductive scenarios affect cognitive abilities of one sex. 169 

A third recognised context in which cognitive sex differences in vertebrates arise is 170 

sociality (Choleris and Kavaliers,1999; Geary 2022; Lucon-Xiccato et al. 2016). In many 171 

species, males and females live in different social environments, determining selection for 172 

solving different social tasks. For instance, in a fish species in which females are more social 173 

than males, the females judged more efficiently the size of social groups (Lucon-Xiccato et 174 

al. 2016). While we are not aware of direct studies in invertebrates, one paper has 175 

hypothesised a similar role for social behaviour. Whitehouse (2016) found a greater ability to 176 

learn a novel foraging technique in males than females of the group-living spider Argyrodes 177 

antipodianus proposing that sex differences may be related to the increased complexity of 178 

males’ intrasexual interactions. Indeed, males are reported to compete for access to both food 179 

and reproductive partners, often learning to adapt flexibly to new winner-loser relationships.  180 
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Besides the hypothesis-testing studies mentioned above, we found relevant research 181 

conducted using a more descriptive approach (e.g., conditioning learning in mosquitoes: 182 

Sanford and Tomberlin 2011). The results of these studies are in some cases difficult to 183 

interpret. For example, domestic crickets Acheta domesticus showed sex differences in an 184 

olfactory learning task (Albers and Reichert 2022) but not in a shuttle-box avoidance learning 185 

task (Stauch et al. 2021), a difference that could be due to methodological differences 186 

between the studies or to task-specific sex differences. One study also suggested that sex 187 

differences in learning are expressed only at certain developmental phases (Sanford and 188 

Tomberlin 2011). While these exploratory studies are useful in discovering new effects to 189 

investigate, the hypothesis-driven approach will certainly advance our understanding of the 190 

adaptive significance of cognitive sex differences. 191 

 192 

Mechanisms of cognitive sex differences 193 

Much of the research on cognitive sex differences of vertebrates aimed to elucidate 194 

the proximate mechanisms. While these studies have usually used animals as a model for 195 

understanding the human nervous system, their findings are also relevant to disciplines 196 

interested in cognitive evolution. Most of the available data on mechanisms involve rodents 197 

such as rats and mice (e.g., Brake and Lacasse 2018), and primates (e.g., Bachevalier and 198 

Hagger 1991). Overall, these studies have outlined a central role for gonadal hormones in 199 

determining sex differences via developmental and/or activation mechanisms. The 200 

contribution of other underpinning mechanisms, such as genes and specific neural circuits, 201 

remains less understood (e.g., Agate et al. 2003; Dewing et al. 2003).  202 

Currently, it is difficult to identify a contribution of invertebrates to the study of sex 203 

hormones and cognitive sex differences. Vertebrates’ sex steroids are generally absent in 204 

invertebrates, although experimental evidence suggests possible biological effects (Köhler et 205 
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al. 2007) and even enzymes necessary for their synthesis (LaFont 2000). However, 206 

invertebrate models may provide complementary insights to what we currently know about 207 

other mechanisms of sex differences, although in our search we identified only two relevant 208 

studies. In the first study, the nematode Caenorhabditis elegans shows an interesting sex 209 

difference in learning. Males actively approach hermaphroditic individuals to mate. Sakai and 210 

colleagues (2013) found that the males could be conditioned to associate a chemical cue with 211 

the presence of hermaphrodites, but hermaphrodites could not. However, hermaphroditic 212 

individuals could learn non-sexual associations through conditioning. In the second study, 213 

Sammut and colleagues (2015) found expression of the neuropeptide pdf-1 in a bilateral pair 214 

of cells in males, in an area that does not contain known neurons in hermaphrodites. Ablation 215 

of these cells prevented sexual conditioning in males. This simple model may be interesting 216 

for investigating the development, and possibly evolution, of sex specific neural circuits 217 

involved in cognition. A typical neuroscience model, the fruit fly D. melanogaster, is also 218 

promising in this respect. In this species, approximately 50 % of the genome has sex-specific 219 

expression, and studies are already characterising pathways that determine sex differences in 220 

behaviour (Jazin and Cahill 2010). 221 

 222 

Sex differences and caste 223 

 Eusocial insects offer a powerful system for studying the evolution of cognitive sex 224 

differences, as males and females in this group often exhibit behavioural and sexual 225 

dimorphism to a greater degree than vertebrates. These sex differences are ultimately related 226 

to the division of labour in colonies, resulting in reproductive and non-reproductive 227 

individuals (Oster and Wilson 1978). Our literature review found that bumblebees (Bombus 228 

sp.) have been extensively investigated in this context. Worker bumblebees are sterile 229 

females whose primary role is to forage for the colony (Free 1955). This activity requires 230 
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workers to memorise features and the spatial location of key foraging sites. For this reason, 231 

sterile female workers typically look back to memorise the foraging site when they leave. 232 

Male bumblebees also forage, but only for themselves, without returning to the colony. The 233 

sex differences in bumblebee foraging behaviour suggest that spatial and associative learning 234 

may be more important for the sterile female workers than for males, and thus a potential 235 

source of sex-specific selection. Separate studies have analysed associative learning in males 236 

and sterile female workers of four bumblebee species (Bombus impatiens, B. terrestris, B. 237 

vancouverensis nearcticus, and B. vosnesenskii) and found no sex differences in learning 238 

performance (Lichtenstein et al. 2015; Manning et al. 2021; Muth et al. 2021; Wolf and 239 

Chittka 2016) and memory retrieval (Lichtenstein et al. 2015). Moreover, factors such as the 240 

degree of similarity between cues indicating food sources had comparable effects on learning 241 

performance in males and females (Wolf and Chittka 2016). One study also found that males 242 

performed learning flights similar to those observed in sterile female workers, likely to 243 

remember the location of a food source (Robert et al. 2017). All this suggests that male and 244 

worker bumblebees have similar learning abilities and strategies when foraging. However, it 245 

should be noted that males responded less quickly to a sucrose reward (Muth et al. 2021) and 246 

were less responsive in learning experiments (Manning et al. 2021). Therefore, while the 247 

learning system may not show sex differences in this species, the motivational system may do 248 

so, with potential indirect effects on learning performance in nature (Rowe and Healy 2014).  249 

Understanding sex-specific selection on cognition through sociability is another 250 

interesting opportunity offered by studying eusocial species. The wasp Polistes fuscatus is 251 

particularly attractive for this purpose because males and females display different social 252 

behaviour. Female wasps live in cooperative social groups in which individual recognition is 253 

critical. Conversely, males leave the colony as adults to find mates. DesJardins and Tibbetts 254 

(2018) tested the cognitive hypothesis that follows directly from sex differences in social 255 
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behaviour: females may have evolved better social skills than males. The results of their 256 

study supported this hypothesis. Females outperformed males in a task where they had to 257 

recognise conspecifics. The authors elegantly demonstrated that this effect was specifically 258 

restricted to social learning by performing an analogous task that involved colour learning in 259 

which the two sexes performed similarly. A similar system has been studied in the honey bee 260 

Apis mellifera anatolica, where workers (sterile females) live in the colony and are highly 261 

social, but drones (males) tend to be solitary. Using an aversive learning paradigm, Dinges 262 

and colleagues (2013) found greater cognitive performance in the workers. These sex 263 

differences may be related to the fact that males are mostly required to find and remember 264 

mating sites, while workers are involved in a number of colony-related social tasks. 265 

Interestingly another study in the honey bees, Apis mellifera, which did not directly compare 266 

the two sexes, found that the learning performance of sterile female workers, but not drones, 267 

was affected by a chemical cue of social distress (alarm pheromone; Avalos et al. 2017). The 268 

two sexes may therefore differ in the way they modulate their response to social cues. 269 

 270 

Summary of evidence of cognitive sex differences 271 

When compared to other aspects of intraspecific variability, studying sex differences 272 

is relatively easier experimentally, as it involves comparing two distinct groups of subjects. 273 

This provides a good starting point for understanding cognitive variability in invertebrates. 274 

The main finding of this review is that the literature contains some evidence for sex 275 

differences in invertebrates. The observed sex differences cover a relatively wide range of 276 

cognitive abilities, and, at least in some cases, could be predicted on the basis of sex 277 

differences in ecology, reproduction, and behaviour. It is worth highlighting that in one case, 278 

the sex difference was found in a specific task and the two sexes had comparable 279 

performance in another, similar task (DesJardins and Tibbetts 2018). This leads to the idea 280 
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that cognitive sex differences in invertebrates arise through selection on specific tasks’ 281 

performance. However, it is clear that data on cognitive sex differences in invertebrates 282 

pertain to very few species and lineages (Fig. 2). Notably, some of the cognitive sex 283 

differences were found in invertebrate species with relatively limited sexual dimorphism. 284 

Invertebrates with higher levels of sexual dimorphism should be investigated, as they may 285 

have much larger cognitive sex differences. Finally, the existence of reproductive and non-286 

reproductive castes within eusocial insect colonies provides another tool for studying sex 287 

differences with the advantage of potentially discerning between the effects of sex and the 288 

effect of reproductive status. 289 

 290 

Individual differences 291 

 In vertebrates, attention has been devoted to a form of cognitive variation that is more 292 

subtle than sex differences. Individuals (even of the same sex) often perform differently on 293 

cognitive tasks in a range of species, from tetrapods (e.g., Thornton and Lukas 2012) to 294 

teleosts (reviewed in Lucon-Xiccato and Bisazza 2017). These differences could be due to 295 

random measurement fluctuations but also to a number of genetic and ontogenetic factors. If 296 

the differences have biological significance, they should have at least two characteristics. 297 

First, they should be statistically repeatable over time (i.e., temporal consistency; Cauchoix et 298 

al. 2018; Rowe and Healy 2014). In other words, the rank order of performance should be 299 

virtually constant when a set of individuals is tested multiple times in the same cognitive task. 300 

This repeatability approach has been initially applied to study behavioural variation and 301 

personality and can be implemented in different manners, from the use of simple correlations 302 

to mixed-effects modelling (e.g., O’Dea et al. 2021). More recently, studies in vertebrates 303 

have begun to adopt the within-task repeatability approach to identify individual differences 304 

in cognition (Ashton et al. 2022; Davidson et al. 2022; De Meester et al. 2022b; Lucon-305 
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Xiccato et al. 2020a). Second, when individuals are tested in two or more different tasks that 306 

arguably involve the same cognitive function, individual differences with biological 307 

significance should result in a positive correlation of the performance between tasks (e.g., 308 

Montalbano et al. 2020). Repeatability within and between tasks is considered evidence of 309 

cognitive individual differences that have biological significance and cannot be regarded as 310 

random fluctuations in performance (Rowe and Healy 2014). This is a prerequisite for 311 

considering their importance for fitness and evolutionary processes. 312 

 313 

Repeatability of cognitive performance  314 

Surprisingly, there has been little emphasis on formally testing the two forms 315 

repeatability of cognition that are indicative of individual differences in vertebrates. Our 316 

review identified only four studies that tested within-task repeatability. In the first study, the 317 

behaviour of Frontinella communis spiders after removal of prey from their webs was 318 

observed to infer the subjects’ mnemonic abilities (Rodríguez and Gloudeman 2011). The 319 

spiders’ search behaviour was highly repeatable, suggesting individual differences in the 320 

mnemonic abilities involved in the task. Finke and colleagues (2021) demonstrated within-321 

task repeatability of individual honey bee performance in visual (shape) discrimination tasks. 322 

In the same species, consistent learning abilities were recently found for simple visual, simple 323 

odour, and complex visual discrimination tasks (Finke et al. 2023). The last study showed 324 

that in the ant Aphenogaster senilis tool use by workers was a repeatable performance across 325 

trials (Maák et al. 2020).  326 

Regarding between-tasks repeatability, few relevant studies were identified in the 327 

invertebrate literature. One of these studies involved D. melanogaster flies (Smith et al. 2022) 328 

that were tested with different olfactory aversive conditioning tasks, consisting of learning 329 

the association between an odour and a shock and between an odour and a bitter taste. In line 330 
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with the presence of repeatability between tasks, some of the flies performed well in all the 331 

tasks. The remaining studies involved social insects. Chittka et al. (2003) found that, across 332 

different experiments, certain bumblebees consistently made rapid but imprecise foraging 333 

decisions, whereas others took longer but achieved higher accuracy in their decisions. This 334 

trade-off between speed and accuracy in foraging has been shown to be adaptive (Burns and 335 

Dyer 2008: Muller and Chittka 2008) but it did not appear to apply to nestmate recognition in 336 

wasps and ants (Baracchi et al. 2015; Baracchi et al. 2021). Muller and Chittka (2012) found 337 

that some individual bumblebees learned better than other individuals in three types of 338 

discrimination tasks (colour, shape, and odour), but Smith and Raine (2014) reported no 339 

correlation between bumblebee performance across colour and odour discrimination learning 340 

tasks. Finke and colleagues (2021) reported that some individual honey bees performed better 341 

on visual tasks of varying complexity, suggesting a consistent aptitude for these types of 342 

tasks. However, there was no correlation between performance in the visual task and the 343 

equivalent olfactory task. Moreover, Finke and collaborators (2023) found a positive 344 

correlation between an individual bee's ability to learn the simple discrimination task and 345 

their performance in both reversal learning and negative patterning, suggesting that correlated 346 

performance across learning paradigms is a distinct trait of honey bees. Interpreting the 347 

discrepancies between the studies on bumblebees is currently challenging, and the differences 348 

may be attributed, at least partially, to methodology. However, it seems reasonable to 349 

conclude that individual differences across tasks are clearly present in certain species, such as 350 

the honey bee. Last, in the European shore crab Carcinus maenas, a weak covariance 351 

between learning and memory has been observed through a maze task, although it was not 352 

attributed to consistent individual differences by the authors (Davies et al. 2019). 353 

 354 

Indirect evidence of individual differences  355 
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From our research, it emerged that the invertebrate literature contains relatively few 356 

studies that tested the repeatability of cognitive performance. One might conclude that 357 

cognitive individual differences are less pronounced or less common in invertebrates than in 358 

vertebrates. However, in this section, we present evidence that challenges this assumption: 359 

additional invertebrate studies did not specifically test for repeatability, but their findings 360 

support the presence of robust performance differences that are likely to be biological and 361 

functionally relevant. A first set of relevant studies concerns cognitive performance and is 362 

listed in Table 1. The species involved are mostly insects, but two species of cephalopods are 363 

also included. The cognitive tasks investigated in insects are simple learning tasks. For 364 

instance, Pamir and colleagues (2011) analysed a large data set (1640 subjects) of honey bees 365 

tested with an olfactory conditioning task. They found that the group-average performance 366 

was characterised by a progressively increasing learning curve. However, the learning curves 367 

of individual subjects indicated rapid learning limited to short phases of the training. This 368 

suggested the presence of individuality in learning performance. Similarly, in a reversal 369 

learning task performed under the influence of the nectar alkaloid nicotine, Baracchi and 370 

colleagues (2017) observed significant variability between individual bees in learning and, 371 

thus, in terms of their response to nicotine and posited that this variability may be ascribed to 372 

individual differences in susceptibility of learning to the alkaloid (Baracchi et al. 2017). The 373 

two studies in cephalopods adopted more complex paradigms. Richter and colleagues (2016) 374 

found systematic differences between seven octopuses trained on problem-solving tasks, such 375 

as opening a container to retrieve a food reward. Huang and Chiao (2013) reported that some 376 

individual cuttlefish, but not others, were able to learn a task by observing experienced 377 

demonstrators. 378 

Interestingly, two studies on bumblebees linked individual variation in learning tasks 379 

to foraging performance in the field. Results from one study showed that bumblebees with 380 
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enhanced learning abilities foraged for fewer days than bumblebees with reduced learning 381 

abilities (Evans et al. 2017). Conversely, the second study reported that individuals with 382 

reduced learning had shorter foraging careers (Evans et al. 2021). It is not clear whether this 383 

discrepancy is related to the two types of learning investigated (visual versus olfactory, 384 

respectively). Notably, bumblebee colonies with higher learning abilities collected more 385 

nectar than colonies with reduced learning abilities (Raine and Chittka 2008). This link 386 

between individual cognitive differences and proxies of fitness has been reported several 387 

times for vertebrates (e.g., Ashton et al. 2018; Cole et al. 2012; Huebner et al. 2019; Smith et 388 

al. 2015). For the purposes of this review, the fact that individual cognitive differences are 389 

linked to fitness components in invertebrates strengthens the hypothesis of their biological 390 

significance.  391 

A second set of studies, which indirectly supports the existence of individual 392 

differences in invertebrate cognition, has focused on brain morphology. Van der Woude and 393 

colleagues (2018) reported that brain size affects memory retention in the parasitic wasp 394 

Nasonia vitripennis (although this effect was not detected in another parasitic wasp, 395 

Trichogramma evanescens). Li and colleagues (2017) used whole-brain immunolabelling to 396 

demonstrate that the density of synaptic complexes (microglomeruli) within the mushroom 397 

bodies of the bumblebee brain was negatively correlated with learning and memory retention 398 

in a visual discrimination task. These associations between cognitive variation and brain 399 

morphology are common in vertebrates (e.g., Buechel et al. 2018; MacLean et al. 2014) and 400 

support the idea of a biological basis for individual differences in cognition. Overall, this 401 

literature containing indirect evidence suggests that solely considering repeatability 402 

underestimates the existence of individual differences in invertebrates. 403 

 404 

Heritable individual differences 405 
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 The cognitive individual differences observed in vertebrates at the phenotypic level 406 

are thought to be due in part to genetic variance (e.g., Gonzàlez et al. 2019; Gnanandesikan et 407 

al. 2020; Langely et al. 2020; Smith et al. 2015) and in part to experiential factors, including 408 

phenotypic plasticity (e.g., Ferrari 2014; Lucon-Xiccato et al. 2023). It is reasonable to 409 

assume that the same may occur in invertebrates: heritability of performance on a cognitive 410 

task in an invertebrate supports the presence of cognitive individual differences. 411 

Heritability of cognitive functions has been extensively investigated in two 412 

invertebrate models, the honey bee Apis mellifera and the fruit fly D. melanogaster. In the 413 

honey bee, an early study estimated heritability values (h2) of learning between 0.39 and 0.54 414 

(Brandes et al. 1988). These values indicated that genetic differences can contribute up to 415 

approximately half of the variation observed in the cognitive phenotype. More recent work 416 

has focused on latent inhibition, which consists of ‘ignoring’ a stimulus that in the past was 417 

not associated with consequences, resulting in a reduced ability to associate that stimulus 418 

with a specific outcome. This learning trait is naturally variable in bumblebees. In several 419 

studies, bumblebees were artificially selected for latent inhibition by controlled breeding of 420 

queens and drones with similar latent inhibition abilities (Bennet et al. 2021; Cook et al. 421 

2020; Lemanski et al. 2021; Sezen et al. 2021). The success of artificial selection implies a 422 

significant heritability of the trait. Interestingly, bumblebees selected for enhanced inhibition 423 

exhibited improved learning than controls. However, this improvement was observed only 424 

when the learning tasks involved stimulation that engaged both the antennae and the 425 

proboscis, rather than only the antennae (Sezen et al. 2021). Additionally, the artificial 426 

selection also impacted foraging success (Cook et al. 2020; Lemanski et al. 2021), suggesting 427 

a relationship between individual’s cognitive abilities and fitness. 428 

 The second major line of investigation on heritability involved the learning abilities of 429 

fruit flies. Mery and Kawecki (2002; see also Kawecki and Mery 2006) exposed eight 430 
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populations of fruit flies to an experimental condition in which females could lay their eggs 431 

in one of two available substrates with different mediums (e.g., A and B). In a first trial, one 432 

of the two substrates (e.g., A) also contained quinine (an aversive tastant). Therefore, the flies 433 

were expected to associate the presence of quinine with the A substrate, but not with the B 434 

substrate. Subsequently, the flies were exposed again to the two substrates but without the 435 

quinine. Here, flies that learned the association between substrate A and quinine were 436 

expected to avoid the A substrate and lay their eggs in B. Only eggs laid in substrate B (i.e., 437 

the eggs of the flies that learned the association) were allowed to develop. After several 438 

generations, the flies of this line showed an increased ability to avoid the substrate previously 439 

associated with quinine, suggesting an evolution of learning ability. Research on these 440 

artificially selected lines showed that the evolution of enhanced learning abilities came at the 441 

cost of reduced competitive abilities at the larval stage (Mery and Kawecki 2003). Further 442 

evidence supporting the heritability of cognition comes from a study on a D. melanogaster 443 

line homozygous for one natural allelic variant at the foraging (for) locus (Mery et al. 2007). 444 

The aforementioned study by Hollis and Kawecki (2014) also demonstrated the heritability of 445 

cognitive abilities in fruit flies by detecting a correlated response to experimental evolution 446 

for different levels of sexual selection. A response to experimental evolution for different 447 

levels of sexual selection was also found in the seed beetle Callosobruchus maculatus with a 448 

spatial chemosensory learning task (Baur et al. 2019). 449 

A final example of the heritability of cognition was found in the parasitic wasp 450 

Cotesia glomerata. In this species, a form of long-term memory is observed after a single 451 

conditioning trial. Van den Berg and colleagues (2011) artificially selected a population of 452 

wasps based on their ability to form long-term memories. This produced a line of wasps that 453 

formed only a transitory memory (anaesthesia-sensitive memory) after a single conditioning 454 

trial. Interestingly, a congeneric parasitic wasp C. rubecula showed only a form of short-term 455 
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memory, suggesting that selection based on natural individual differences can lead to 456 

interspecific differences in mnemonic abilities. Last, evidence of heritability of the ability to 457 

detect host cues was found in the parasitic wasp N. vitripennis (Koppik et al. 2015). 458 

 459 

Summary of evidence of cognitive individual differences 460 

 Overall, based on the repeatability approach, there is limited evidence supporting the 461 

presence of individual differences in cognitive abilities among invertebrates. It should be 462 

noted that this approach may be problematic to apply to many invertebrate species due to 463 

their short life span. If two measures are taken across different life stages and if trade-offs 464 

between investment in cognition across stages exist, significant repeatability may be difficult 465 

to detect. Using less restrictive inclusion criteria, the number of studies supporting the 466 

existence of individual differences in invertebrates increases (Table 1). In line with the 467 

vertebrate literature, we also found evidence for the heritability of cognitive differences in 468 

invertebrates as well as evidence for a link with fitness. A limitation of invertebrate research 469 

so far is that individual differences have been clearly shown in relatively few species (Fig. 3), 470 

but with the advantage of an extensive knowledge about their behavioural ecology and 471 

biology (e.g., fruit flies and Hymenoptera such as bees and bumblebees). Extending the 472 

research to more species and higher clades will certainly increase the evidence of individual 473 

differences. It is also worth considering the application of the formal repeatability approach 474 

to studying individual differences that has been often applied to vertebrates. One finding that 475 

deserves attention in future research is the existence of correlations between different tasks in 476 

invertebrates, even when the tasks themselves are quite distinct. This may indicate the 477 

presence of individual differences not only within specific cognitive abilities, but also of 478 

covariation between different cognitive abilities, a well-known phenomenon in vertebrates 479 

that is often associated with the presence of a general intelligence factor (e.g., Banerjee et al. 480 
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2019; Hopkins et al. 2014). A final noteworthy aspect is the abundance of artificial selection 481 

studies in invertebrates. Conducting such studies is considerably more feasible in 482 

invertebrates due to the lower costs associated with maintaining large populations and the 483 

shorter generation time compared to vertebrates. The artificial selection approach in 484 

invertebrates may also lead to understand more deeply trade-offs between cognition and other 485 

traits. All these advantages make invertebrate models very useful for investigating cognitive 486 

abilities and their evolution.  487 

 488 

Covariation with personality 489 

One hypothesis that has recently received substantial attention in vertebrate research 490 

is that individual cognitive differences covary with consistent individual differences in 491 

behavioural traits such as activity, boldness and sociability, the so-called animal personality 492 

(Carere and Locurto 2011). For instance, it could be expected that more active individuals 493 

would be hardwired to learn quickly because they encounter novel information at a higher 494 

rate than less active individuals. The cognition-personality covariation hypothesis has 495 

received considerable theoretical (Sih and Del Giudice 2012) and empirical support across 496 

different vertebrate taxa (e.g., mammals: Brust and Guenther 2017; Mazza et al. 2018; birds: 497 

Guillette et al. 2011; Medina-García et al. 2017; reptiles: Carazo et al. 2014; De Meester et al. 498 

2022a; fish: Savaşçı et al. 2021; Trompt and Brown 2014). The covariance between cognition 499 

and personality is particularly important in the context of cognitive variability. Individuals’ 500 

cognitive abilities positively affect fitness in many contexts (e.g., Cole et al. 2012; Smith et 501 

al. 2015), so one would expect directional selection to reduce cognitive variability, unless 502 

other forms of selection, trade-offs, or multiple trait selection are involved. Since a number of 503 

studies have reported evolutionary explanations for variation in personality traits (Bergeron et 504 

al. 2013; Dingemanse and Réale 2005; Le Coeur et al. 2015; Nicolaus et al. 2016), these 505 
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would likely favour cognitive variability via the indirect link between these two types of traits 506 

(Lucon-Xiccato et al. 2020b), including cognitive sex differences (Lucon-Xiccato 2022). 507 

The literature on cognition-personality covariation in invertebrates is growing in 508 

parallel with the realization of the promising avenues offered by the study of invertebrate 509 

personality (Kralj-Viser and Schuett 2014; Mather and Carere 2019; Mather and Logue 510 

2013). Yet, it is still much less extensive than that available in vertebrates. Our review 511 

highlights that insects appear to be the most promising taxonomic group for investigating this 512 

topic (Table 2). This conclusion aligns with a recent meta-analysis that also examined the 513 

association between personality traits and cognition, finding support for this association in 514 

insects (Dougherty and Guillette 2018). Social insects are particularly informative because 515 

they have evolved remarkable cognitive abilities including functional colony variation in 516 

learning speed (Raine and Chittka 2008), and at the same time there is increasing evidence of 517 

personality at the colony, caste, and individual level (e.g., Jandt et al. 2013, Perez et al. 2013; 518 

Wray et al. 2011). 519 

From the literature retrieved with our search (Table 2), three studies on ants revealed a 520 

clear association between personality and cognitive traits. In carpenter ants (Camponotus 521 

aethiops) consistent individual differences in exploratory activity were found to predict 522 

learning performance. Active explorers were slower at learning than inactive explorers 523 

(Udino et al. 2017). However, it is worth noting that Udino et al. (2017) also reported a lack 524 

of personality-cognition covariation for two other behavioural traits in ants. In the same 525 

species, differences in exploration tendency among individuals also predicted cognitive 526 

judgement bias (d’Ettorre et al. 2017). Finally, in Aphenogaster senilis, ants that exhibited a 527 

higher tendency to explore their environment and responded more strongly to novel prey 528 

items were more likely to use tools (Maàk et al. 2020). Interestingly, when tool-using ants 529 

were removed, new tool-users could be predicted based on their personality scores.  530 
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Results comparable to those described for ants were found in two studies on crickets 531 

(Table 2). In G. texensis, boldness, assessed through thigmotaxis behaviour, was correlated 532 

with spatial learning abilities (Doria et al. 2019). Additionally, in A. domesticus, boldness 533 

was correlated with olfactory discrimination learning (Albers and Reichert 2022). However, 534 

two other behavioural traits measured in A. domesticus, namely neophobia and 535 

aggressiveness, did not correlate with cognitive performance. It is worth noting that a recent 536 

study by Beydizada et al. (2023) discovered a lack of correlation between boldness and a 537 

basic form of learning, namely habituation, in Menemerus semilimbatus, a non-insect 538 

arthropod. When spiders were tethered to a locomotor compensator, they displayed 539 

habituation and dishabituation responses to visual stimuli projected on a screen. Moreover, 540 

when tested in a shelter-equipped walking arena, they exhibited personality variations along a 541 

shy-bold continuum. However, the habituation process was not influenced by individual 542 

personality traits (Beydizada et al. 2023). 543 

Two additional studies in insects from the list of Table 2 deserve special mention 544 

because the cognitive traits investigated are directly related to the natural activities of the 545 

species investigated. In the wasp Polistes metricus, the ability to recognise eggs introduced in 546 

their nest by parasitic wasp was positively correlated with boldness and negatively correlated 547 

with neophobia to olfactory stimuli (Wright et al. 2019). In the congeneric P. dominula, the 548 

ability to recognise parasitic eggs was positively correlated with neophobia (Wright et al. 549 

2019). A similar study has been performed in another phylum of invertebrates, the molluscs. 550 

In cuttlefish S. officinalis, personality traits were correlated with measures of predatory 551 

performance that could be attributed to cognitive traits such as attention (Zoratto et al. 2018). 552 

The methodologies employed in these invertebrate studies clearly differ from the standard 553 

paradigms of cognitive research typically used in vertebrates, such as discrimination learning 554 

tasks. While these differences may pose challenges in directly comparing findings between 555 
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the two taxa, the fact that invertebrate studies often focus on natural-like cognitive tasks is 556 

also a strength. 557 

 558 

Conclusions on cognition/personality covariance 559 

We found evidence of relevant research in invertebrates, but it was mostly limited to a 560 

few insect species (Table 2). There are numerous promising invertebrate taxa that could be 561 

further investigated to understand the links between personality and cognition. Cephalopods, 562 

for instance, exhibit individual personality and possess remarkable cognitive abilities. Despite 563 

extensive research on their cognitive abilities (e.g., Marini et al. 2017) the association 564 

between personality and cognition in cephalopods remains largely unexplored, with only a 565 

few studies touching upon the topic (e.g., Zoratto et al. 2018). Even within the insect group 566 

itself, there is a vast potential for studying the correlation between personality and cognition. 567 

In eusocial species, an interesting development of research on cognition/personality 568 

covariation has been the analysis of group-level effects (e.g., Carere et al. 2018). Despite 569 

these limitations, studies in invertebrate have provided insights, including what is probably 570 

the first clear link between tool use and personality differences (Maàk et al. 2020). 571 

Invertebrate models might be particularly useful for addressing complex evolutionary 572 

questions, such as the genetic basis of the covariation between personality and cognitive traits 573 

that have implications for how behaviour and cognition evolves (e.g., independently or not). 574 

 575 

Caste differences 576 

One aspect of invertebrates that is likely to be important for the understanding of 577 

cognitive variation, but it is lacking in vertebrates is caste differentiation. Caste 578 

differentiation in social species involves the development of distinct morphological and 579 

behavioural traits among individuals within the same species, resulting in individuals that 580 
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specialise in different tasks within the colony (Oster and Wilson 1978). Caste differences in 581 

behaviour and morphology have been well studied (e.g., Jeanson and Weidenmüller 2014), 582 

but less is known about caste differences in cognitive abilities. It is worth noting that these 583 

caste differences may in part overlap with sex differences, which we discussed in the earlier 584 

section of this review. In this section, we will focus on within-sex differences, specifically 585 

among females, in different castes or subcastes within social insect colonies.  586 

Cognitive demands can vary between castes because they have different reproductive 587 

roles and tendencies towards specific tasks. In the paper wasp Polistes dominula, a 588 

primitively eusocial species in which females are organised in a flexible caste system, 589 

reproductive females had larger mushroom bodies (MBs) (centres of learning, memory and 590 

sensory integration) than workers, as predicted by their sensory requirements for extensive 591 

intra-colony interactions (Gandia et al. 2022). Similar trends have been found in highly 592 

eusocial swarming wasps in the tribe Epiponini (O'Donnell et al. 2017), suggesting a link 593 

between brain investment, social dominance, and castes. However, it is worth noting that in 594 

other caste systems, such as that of termites, reproductive status was not associated with 595 

increased investment in either antennal neuropils or MBs, suggesting that reproductive status 596 

poses relatively little cognitive challenge (O'Donnell et al. 2022). 597 

Studies on other social insects have also revealed caste-related differences in 598 

cognitive abilities. Queens of both wild eusocial and parasitic bumblebee species were better 599 

than workers at learning to associate a floral colour and nectar reward (Muth et al. 2021). 600 

Similarly, queens of Bumbus terrestris outperformed daughter foragers in visual 601 

discrimination learning (Evans and Raine 2014), and young unmated Apis mellifera queens 602 

showed better olfactory learning abilities than age-matched workers (Gong et al. 2018). 603 

Finally, queens of P. fuscatus, a species of paper wasp with variable cuticular facial markings 604 
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that are used for social communication and individual recognition, were better than workers 605 

at learning and remembering the faces of individual conspecifics (Tibbetts et al. 2018).  606 

In honey bees, the worker caste system is based on age, with younger individuals 607 

performing tasks such as brood care, queen care and nest building, while older individuals are 608 

engaged in foraging and nest defence. Within the worker class, the age-based division of 609 

labour results in subcaste-specific cognitive differences, as different tasks require different 610 

cognitive abilities. Foraging activity in honey bees is linked to changes in the synaptic 611 

boutons of MBs in their brains (Farris et al. 2001; Ismail et al. 2006; Withers et al. 1993). 612 

Foragers have larger calyxes of MBs than nurse bees (Farris et al. 2001; Withers et al. 1993), 613 

due to an increase in dendritic arbours and synaptic connections (Fahrbach et al. 1995; Farris 614 

et al. 2001; Groh et al. 2012). Similar to honey bees, ants experience similar changes in brain 615 

structure, with foraging associated with larger and more complex MBs than those in nest 616 

workers (Gronenberg et al. 1996; Stieb et al. 2012). 617 

In addition to differences in brain morphology, castes and subcastes in social insects 618 

also differ in the titres of neurohormones and neuromodulators. In particular biogenic amines 619 

play an important role in determining sub caste differences in cognitive abilities (Scheiner et 620 

al. 2017). Division of labour among honey bee workers is achieved through variations in how 621 

individual bees respond to stimuli that relate to particular tasks (Besher and Fewell 2001). 622 

For instance, young bees have a heightened sensitivity to sucrose and are more likely to 623 

collect pollen or water in the future. On the other hand, bees with lower gustatory sensitivity 624 

tend to collect only nectar (reviewed in Scheiner 2004). It is well known that gustatory 625 

response-thresholds to sucrose can be affected by octopamine (OA) and its precursor 626 

tyramine (Scheiner et al. 2002). Foragers have higher levels of tyramine in their brains and 627 

show different mRNA expressions of a tyramine receptor in their brains than nurse bees. 628 
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Accordingly, foragers are better at sensing gustatory stimuli and had higher success rates than 629 

nurses in appetitive learning and memory recall. 630 

The adaptive value of differences in cognitive abilities among insect castes and 631 

subcastes likely varies depending on the specific ecological and social context in which they 632 

have evolved. A prevailing hypothesis for the adaptive value of caste-specific cognitive 633 

abilities is that different castes have evolved to specialize in different tasks within the colony, 634 

and that their cognitive abilities have evolved to support these specialized roles. Such 635 

specialized cognitive abilities may allow castes to perform their tasks more efficiently and 636 

effectively, ultimately benefiting the colony (Raine and Chittka 2008). Indeed, in social 637 

groups, it may be advantageous to have individuals with varying cognitive abilities due to the 638 

high energy cost of developing important learning and problem-solving skills. This has been 639 

observed in bumblebee colonies, where some individuals make quick but inaccurate foraging 640 

decisions, while others decide more slowly but with higher accuracy (Chittka et al., 2003; 641 

Burns, 2005). The success of the colony benefits from having both highly skilled but costly 642 

foragers and less accurate but cheaper animals, as this heterogeneity improves the 643 

exploitation of different food sources and information distribution within the colony (Burns, 644 

2005; Raine and Chittka, 2008). Cook et al. (2019) compared latent inhibition (LI), a non-645 

associative learning process that helps individuals to ignore familiar information in scouts 646 

and recruits of honey bees and found that scouts, who encounter new odours while searching 647 

for resources, had stronger LI than recruits who consistently forage from the same source. 648 

This difference in learning ability may reflect the scouts' need to distinguish between high 649 

and low-quality forage. Cook et al. (2019) also found that scouts had higher levels of 650 

tyramine and octopamine than recruits, which may contribute to their better foraging skills. 651 

Red wood ants (Formica aquilonia), which are characterized by huge colonies sizing up to a 652 

million individuals and deep specialization, showed differences in aversive learning 653 
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depending on their task specialization (Iakovlev and Reznikova 2019). By contrast, in species 654 

with small colony sizes such as Temnothorax species, specialists are no better at their tasks 655 

than generalist workers (Dornhaus, 2008). In Camponotus ants, foragers possess a heightened 656 

capacity to detect intruders compared to nurses and appear to have a greater inclination 657 

towards attacking them (Larsen et al., 2016). This heightened sensitivity in foragers is 658 

probably advantageous as younger workers usually remain in the nest and hardly come across 659 

intruders. Having a sensitive recognition system would not be a useful trait for them and 660 

would only add to the cost at the colony level.  661 

 662 

Summary of caste differences 663 

Overall, the existing literature suggests that caste-related differences in cognitive 664 

abilities are common among social invertebrates and may be linked to the specific tasks and 665 

roles that individuals perform within the colony. The adaptive value of caste-specific 666 

cognitive abilities in social insects is likely to be context-dependent, as previously described 667 

for similar behavioural variability (Jeanson and Weidenmüller 2014). Given the unique 668 

characteristics of each social species and the presence of individual variation, including 669 

tendencies and personalities, it can be challenging to make generalisations. A notable study 670 

by Maak and collaborators (2020) exemplifies this complexity. The authors found that only a 671 

few foragers within the worker class in an ant colony engage in tool use, and that this 672 

behaviour is related to the personality of the individual worker. Therefore, the presence of 673 

individual personalities within castes further adds to the complexity of apparently hard-wired 674 

behaviours. Despite these challenges, exploring the fitness implications of cognitive variance 675 

and cognition response to selective pressures through caste comparison holds considerable 676 

potential to enhance our understanding beyond that from studies focused solely on vertebrate 677 
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species. It is encouraging to note that we already possess data concerning the potential 678 

underlying mechanisms and substrates related to this aspect of cognitive variation. 679 

 680 

General conclusions 681 

 Our literature search has highlighted that at least some invertebrate species and groups 682 

exhibit all the forms of cognitive variation that have been described and are routinely 683 

investigated in vertebrates, namely sex differences, individual differences, and correlations 684 

between personality and cognition. The amount of evidence appears to be in rapid growth 685 

(Fig. 4), with both practical and theoretical implications. From a practical standpoint, more 686 

cognitive ecologists and researchers in other related fields should consider using invertebrate 687 

species to answer questions concerning cognitive variation. On a theoretical level, the 688 

parallelism observed between cognitive variance in vertebrates and invertebrates may 689 

indicate that the evolutionary processes shaping cognition are fundamentally similar in both 690 

groups. In other words, despite major differences in their nervous system, both vertebrates 691 

and invertebrates exhibit convergent cognitive responses in terms of intraspecific variation 692 

due to the selective pressure imposed upon them.  693 

 Several limitations in the existing invertebrate literature have been recognized, 694 

especially in comparison to the extensive body of research available on vertebrates. First, we 695 

need to broaden the number of species and taxa investigated in relation to cognitive variation. 696 

Although we acknowledge that our literature search may have missed some of the existing 697 

studies, there is a clear bias towards a few insect species, for instance Hymenoptera such as 698 

bees and bumblebees (Fig. 2; Fig. 3). Other arthropods such as crustaceans and spiders, and 699 

molluscs of the class Cephalopoda, which display complex cognitive abilities, are excellent 700 

candidates for future research on intraspecific variability. Second, it is essential to diversify 701 

the range of cognitive functions examined and move beyond a focus on relatively simple 702 
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forms of learning. For instance, sex-specific and caste-specific selection may act on highly 703 

specialised forms of cognition rather than on general learning and memory functions. A 704 

similar issue concerns the application of few standardised tasks to each species (e.g., 705 

olfactory discrimination in insects): at least between sexes and castes there may be sensory 706 

differences (e.g., Bailey and Römer 1991; Willemart and Hebets, 2012) that affect the results 707 

of cognitive tasks. By applying multiple paradigms to the same species, including some based 708 

on different sensory modalities, it will be possible to disentangle the intraspecific variability 709 

due to perception from that involving other cognitive domains. Third, it is important that 710 

future research tries to adopt more closely some of the well-established approaches used in 711 

vertebrates, such calculating repeatability to detect consistent individual differences. 712 

 As a future research direction, it is worth considering other forms of variance that 713 

have not been directly addressed in this review. For instance, in vertebrate species, the 714 

environment is known to have a pronounced effect on the cognitive phenotype due to 715 

plasticity (e.g., Sauce et al. 2018; Lucon-Xiccato et al. 2023). Preliminary evidence suggests 716 

that similar plasticity may occur in invertebrates (e.g., Black et al. 2018; Tsvetkov et al. 717 

2019). Moreover, this cognitive plasticity is often related to stress responses (Lukowiak et al. 718 

2014; Muth et al. 2015; Stefano et al. 2002; Templé and Richard 2015) and may be relevant 719 

to animal responses to human-induced environmental change (Cabirol et al. 2023), including 720 

for the evolution of novel traits (Badyaev 2005). Consistent with this idea, there is already 721 

evidence of non-adaptive cognitive plasticity in invertebrate response to anthropogenic 722 

stressors (Siviter and Muth 2022; Siviter et al. 2018). A final source of cognitive variability 723 

that may be of interest for future studies is the age of individuals. In various vertebrates, age 724 

has profound effects on cognitive abilities, both during development and senescence 725 

(Chapagain et al. 2018; Gower and Lamberty 1993). In invertebrates, the study of aging 726 
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cognitive variability has not been undertaken so far, although it may be simplified by the 727 

short life-span of many species. 728 

 Our review highlights that the study of cognitive variation in invertebrates offers 729 

several advantages compared to vertebrate research, suggesting the importance of using the 730 

two taxa as complements in future investigations. One notable advantage is the greater 731 

feasibility of investigating the genetic basis of cognitive variation in invertebrates. In 732 

particular, species such as the fruit fly and bumblebees have already provided a significant 733 

amount of evidence regarding the genetic component of cognitive variation. The second 734 

advantage lies in the study of eusocial insect species, which show marked biological 735 

differences among individuals of different castes. This social organisation makes it possible 736 

to formulate evolutionary hypotheses about what drives cognitive variation, including its 737 

social component (Chittka and Rossi, 2022), and then, to test them by comparing well-738 

defined groups of individuals, a situation that in vertebrates is only possible for sex 739 

differences. These advantages are currently underexploited. Once they are systematically 740 

explored, many invertebrate taxa have the potential to become indispensable tools for 741 

understanding the evolution of cognitive variation. 742 

  743 
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Table 1. Studies that provide indirect support for individual differences in the cognitive 1382 

performance of invertebrates, with detail on the species investigated and the cognitive task 1383 

adopted. 1384 

Species Task Study 

Apis mellifera 
Classical conditioning 

(odour) 
Pamir et al. 2011 

Apis mellifera 
Classical conditioning 

(odour) 
Pamir et al. 2014 

Apis mellifera Learning feeder location Bar-Shai et al. 2011 

Bombus terrestris 
Classical conditioning 

(odour) 
Smith and Raine 2014 

Bombus terrestris 
Classical conditioning 

(visual, colour) 
Smith and Raine 2014 

Bombus terrestris 
Classical conditioning 

(odour) 
Evans et al. 2017 

Bombus terrestris 
Classical conditioning 

(odour) 
Evans et al. 2021 

Bombus terrestris audax 
Operant conditioning 

(visual, colour) 
Baracchi et al. 2015 

Periplaneta americana 
Classical conditioning 

(visual, colour) 
Arican et al. 2020 

Periplaneta americana 
Operant conditioning 

(spatial, T maze) 
Arican et al. 2020 

Octopus vulgaris Problem solving Richter et al. 2016 

Sepia pharaonis Social learning Huang and Chiao 2013 
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Table 2. Correlations between personality traits and cognitive traits in insects. The symbols 1385 

+, -, and NS indicate positive correlation, negative correlation, and no significant correlation, 1386 

respectively. 1387 

Species Cognitive trait Personality trait Correlation Study 

Aphaenogaster 

senilis (ant) 
Tool use Exploration + 

Maák et al. 

2020 

Camponotus 

aethiops (ant) 

Cognitive 

judgment bias 
Exploration 

- (considering 

optimistic bias) 

d’Ettorre et al. 

2017 

Camponotus 

aethiops (ant) 

Classical 

conditioning 

(olfactory) 

Exploration - 
Udino et al. 

2017 

Camponotus 

aethiops (ant) 

Classical 

conditioning 

(olfactory) 

Sociability NS 
Udino et al. 

2017 

Camponotus 

aethiops (ant) 

Classical 

conditioning 

(olfactory) 

Aggressiveness NS 
Udino et al. 

2017 

Gryllus texensis 

(cricket) 

Spatial learning 

(radial arm 

maze) 

Boldness 

(thigmotaxis 

behaviour) 

- 
Doria et al. 

2019 

Acheta 

domesticus 

(cricket) 

Discrimination 

learning 

(olfactory) 

Boldness 

(thigmotaxis 

behaviour) 

- 
Albers and 

Reichert 2022 
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Acheta 

domesticus 

(cricket) 

Discrimination 

learning 

(olfactory) 

Aggressiveness NS 
Albers and 

Reichert 2022 

Acheta 

domesticus 

(cricket) 

Discrimination 

learning 

(olfactory) 

Boldness 

(neophobia) 
NS 

Albers and 

Reichert 2022 

Nebria 

brevicollis 

(beetle) 

Associative 

learning 

(olfactory) 

Boldness NS 
Harris et al. 

2020 

Nebria 

brevicollis 

(beetle) 

Associative 

learning 

(olfactory) 

Exploration NS 
Harris et al. 

2020 
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Figure captions 1389 

Fig. 1 Conceptual framework illustrating the different forms of cognitive variation under 1390 

investigation (sex differences, individual differences, personality differences, and caste 1391 

differences) and their relationships. Cognitive sex differences in invertebrates are partly 1392 

related to the caste differentiation in eusocial insects, although some caste distinctions are 1393 

unrelated to sex. Cognitive variations that covary with personality are likely to represent 1394 

specific forms of individual differences. 1395 

 1396 

Fig. 2 Taxonomic distribution of invertebrate species investigated for cognitive sex 1397 

differences. The articles have been retrieved with keywords search and references/citation 1398 

checking as described in the main text. 1399 

 1400 

Fig. 3 Taxonomic distribution of invertebrate species investigated for cognitive individual 1401 

differences. The articles have been retrieved with keywords search and references/citation 1402 

checking as described in the main text. 1403 

 1404 

Fig. 4 Trend in the number of publications per year (left axis, red) and in the cumulative 1405 

number of publication (right axis, blue) on variance in cognitive abilities of invertebrates. 1406 

One earlier study published in 1988 and the studies published in 2023 are not included in the 1407 

plot. The articles have been retrieved with keywords search and references/citation checking 1408 

as described in the main text. 1409 
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