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A B S T R A C T

Imbalanced datasets can impair the learning performance of many Machine Learning techniques. Nevertheless,
many real-world datasets, especially in the healthcare field, are inherently imbalanced. For instance, in the
medical domain, the classes representing a specific disease are typically the minority of the total cases. This
challenge justifies the substantial research effort spent in the past decades to tackle data imbalance at the data
and algorithm levels. In this paper, we describe the strategies we used to deal with an imbalanced classification
task on data extracted from a database generated from the Electronic Health Records of the Mental Health
Service of the Ferrara Province, Italy. In particular, we applied balancing techniques to the original data, such
as random undersampling and oversampling, and Synthetic Minority Oversampling Technique for Nominal and
Continuous (SMOTE-NC). In order to assess the effectiveness of the balancing techniques on the classification
task at hand, we applied different Machine Learning algorithms. We employed cost-sensitive learning as well
and compared its results with those of the balancing methods. Furthermore, a feature selection analysis was
conducted to investigate the relevance of each feature. Results show that balancing can help find the best
setting to accomplish classification tasks. Since real-world imbalanced datasets are increasingly becoming the
core of scientific research, further studies are needed to improve already existing techniques.
1. Introduction

In classification problems, learning from imbalanced data, where
one class is under-represented, poses peculiar challenges to Machine
Learning (ML) algorithms and has received considerable attention from
the community [1,2]. The degree of imbalance is considered mild when
the proportion of the minority class is 20%–40% of the dataset, moder-
ate when the proportion is 1%–20%, and extreme when the proportion
is <1%. One of the most commonly used measures to describe the
imbalance of a dataset is the Imbalance Ratio (IR), defined as the ratio
between the number of examples in the majority class and the number
of examples in the minority class. When IR=1, the dataset is perfectly
balanced, while an IR> 1 indicates that the dataset is imbalanced, and
the higher the IR, the greater the imbalance.

Imbalanced datasets are widespread and also expected in those
fields where the class of interest is usually underrepresented, such as
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fraud detection [3], or intrusion detection [4,5], where the number of
fraudulent situations is usually extremely smaller than legal ones. Class
imbalance is also a major issue in healthcare, especially in diagnosis
prediction models where individuals affected by the disease of interest
are often the minority of the sample [6–8].

Class imbalance heavily affects the performances of standard super-
vised ML techniques [9] used for classification tasks, such as decision
trees and Support Vector Machines (SVMs), as they often assume that
classes are equally distributed. Consider, for example, the following
example: given an imbalanced dataset with 90% of negative examples,
a ML model that classifies every example as negative will achieve an
accuracy of 90%, because the accuracy does not take into account data
imbalance. Since using accuracy alone as a performance metric might
result in misleading conclusions, other metrics are computed as well,
such as balanced accuracy, recall, and F1-score [9,10].
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The problem of imbalanced classes can be solved using data-level
and algorithm-level methods. Data-level methods, such as random re-
sampling or the Synthetic Minority Oversampling Technique (SMOTE)
[11], deal with the problem by modifying the number of training sam-
ples in order to decrease the imbalance ratio. Random undersampling
discards samples from the majority group, which might result in the
loss of valuable information. On the other hand, random oversampling
duplicates samples from the minority class, introducing, however, a
possibility of overfitting. SMOTE is a type of oversampling that creates
new examples close to real ones by randomly selecting an example
of the minority class, computing its k-nearest neighbors, and then
randomly choosing one of them to add to the dataset. For this reason,
it should perform better than standard random undersampling and
oversampling. SMOTE for Nominal and Continuous (SMOTE-NC) is a
particular version of SMOTE in which the dataset to resample contains
both numerical and categorical features. In all the cases detailed above,
the goal is to use one or more techniques in such a way that the
smallest amount of data is lost and the duplicated data are useful to
strengthen class boundaries and improve discrimination. Once these
techniques are applied, the analysis will turn to the robustness of the
ML methodologies.

On the other hand, unlike data-level methods, algorithm-level meth-
ods such as cost-sensitive learning [12] do not alter the training dataset
distribution, instead, they change the learning rule, in order to keep
track of the imbalance ratio. Penalties are given to the different classes
in order to increase the cost of misclassification for members of the
minority group (i.e., increasing its importance) and decrease the cost
of misclassification for members of the majority group (i.e., decreasing
its importance). The costs corresponding to false positive and false
negative errors are adjusted in the same way.

Starting from a real-world mental health records dataset, we will
analyze how different data balancing strategies impacted on the per-
formance of different supervised ML algorithms. This manuscript is
organized as follows. Section 2 discusses related work. Section 3 de-
scribes the dataset preprocessing and the methodologies used to deal
with the dataset. Section 4 describes the experimental results. Finally,
Section 5 discusses the findings and Section 6 provides the conclusions
of the study.

2. Related work

In this section, we will try to include some of the approaches already
known to the field to address dataset imbalance in the medical context
and to highlight their differences and similarities with respect to our
context and approach.

Rahman and Davis [13] analyzed data from a cardiovascular con-
text, in particular they examined a dataset that had a balancing percent-
age of about 17%, quite similar to the case examined in this paper. The
balancing techniques they applied are also similar to those analyzed in
this paper, but they considered a set containing only 823 patients, far
less than our case study (see Section 3).

Among the published literature on this challenge, Belarouci and
Chikh’s study stood out for several reasons [14]. The authors proposed
a new complex technique to deal with imbalanced datasets and apply
it to different ML and Deep Learning (DL) techniques. On the other
hand, they only considered datasets containing less than 1,000 entities.
Conversely, in this work, we applied the same ML techniques, but
taking into account a new dataset and real data, not prepared ad hoc
for classification. Similarly, Li et al. [15] presented a work that dealt
with the approach towards imbalanced datasets in the medical field,
considering in this case milder unbalancing percentages for datasets
with cardinality of a few hundreds.

Gerych et al. [8] tried to classify depressed vs not-depressed users.
The authors stated that ‘Machine learning classification on significantly
imbalanced datasets can be reformulated as an anomaly detection prob-
lem, where instances of the minority class are considered anomalies’.
2

They also proposed a DL technique called autoencoder to address the
problem of classification on imbalanced datasets, however, they used
only datasets available in the literature.

In their work, Khushi et al. [16] applied different balancing methods
to state-of-the-art ML algorithms (logistic regression, random forest,
and LinearSVC) on different imbalanced medical datasets, and showed
that class imbalance learning can effectively improve the classification
ability of the model. Zeng et al. [17] combined SMOTE [11] with
Tomek links technique [18] to preprocess imbalanced medical data.
They compared the performance of classifiers with this combination to
the classifiers who applied only SMOTE on three imbalanced datasets of
different diseases. The results obtained using both SMOTE and Tomek
links techniques were superior in terms of all metrics considered by the
authors up to 4 percentage points compared to those obtained using
only SMOTE.

Regarding algorithm-level methods and cost-sensitive learning,
Sheng et al. [19] compared different algorithms for cost-sensitive
learning applied to several heterogeneous domains. Focusing on health-
care, different works studied the application of cost-sensitive learning
techniques to imbalanced medical data [20–23]. In particular, in [20]
the authors applied cost-sensitive learning to four widespread ML
algorithms, namely logistic regression, decision tree, extreme gradient
boosting (XGBoost), and random forest, They compared the results
with the performances of the standard version of the algorithms. They
tested the algorithms on four popular medical datasets and found that
the cost-sensitive methods performed better compared to the standard
algorithms. The authors of [22] proposed a cost-sensitive XGBoost
model and applied it to four breast cancer imbalanced datasets. In
[21] the authors proposed a class weights voting based on a random
forest and obtained good results on five different imbalanced medical
datasets. Finally, Ali et al. [23] developed a cost-sensitive ensemble fea-
ture ranking. Each of these works showed that applying cost-sensitive
learning improved the performances of the chosen ML algorithms used
on imbalanced medical data.

3. Methods

3.1. Data source

The data used in this study come from FEPSY (FErrara-PSYchiatry)
[24], a research database created by extracting information from
EFESO, the Electronic Health Record (EHR) employed by the Local
Health Trust of Ferrara for Mental Health in Adults, which covers a
catchment of 342,061 inhabitants. The Local Health Trust of Ferrara
began to accurately collect data regarding mental health services in the
late 1970s, with the constitution of the Departments of Mental Health
in the Region in agreement with the Italian mental health reform (13
May 1978, Law 180) [25], and introduced the first EHR in 1991, as
the availability of informatics had expanded by then. In the following
years, many different EHRs were adopted, and each new EHR replaced
the previous one by importing already existing data and adding new
features to the software. FEPSY includes 46,222 individuals who had
access to the mental health services of the province of Ferrara from
1991 to February 2021. Included data are both socio-demographic and
clinical (e.g., medical records, diagnoses, medical services, treatment
plans, psychometric tests, medication prescriptions, and distribution).

In this study, we tried to classify patients with a diagnosis of
psychotic spectrum disorders (295.xx, 297.xx, and 298.xx – excl. 298.0
– International Classification of Diseases, Ninth Revision (ICD-9) codes
[26]), in order to find potential predictors for these illnesses. For this
study, we selected a subset of the subjects included in FEPSY. First,
we excluded those individuals who had at least one medical record or
product (e.g., consulting, hospitalization) with inconsistent start and
end dates (i.e., it ended before it started). After that, we excluded those
individuals who had not received any diagnosis. Then we excluded
those who were still receiving care as of February 2021. Finally, we



Computer Methods and Programs in Biomedicine Update 5 (2024) 100132E. Gentili et al.
Fig. 1. Graphic representation of the process of inclusion/exclusion of patients data included in the FEPSY database.
excluded those for whom the birth year was missing or equal to the year
of the first visit to mental health services, as it indicates that there was
an error during the registration of the patient. The resulting dataset in-
cluded socio-demographic (e.g., nationality, birth area, residence area,
. . . ) and clinical (e.g., compulsory and voluntary hospitalizations, total
days of treatment, received diagnoses other than psychosis, . . . ) data
of 39,241 individuals. The dataset generation process is summarized in
Fig. 1.

The features included in the dataset and used for the classification
experiments are listed in Table 1. In order to predict a diagnosis of
psychotic spectrum disorders, users were labeled with ‘‘Yes’’ if they had
received a diagnosis of psychosis at least once during the observation
period, and with ‘‘No’’ otherwise. As previously reported, and based on
the international incidence of psychotic disorders [27], we expect the
dataset to be imbalanced regarding diagnosis. As a matter of fact, only
the 7.06% of the users had psychosis and the IR is 13.166. The resulting
labeled dataset is therefore considered imbalanced.

To perform classification experiments, the dataset was divided in
two parts: the training set, including 70% of the original dataset, and
the test set, including the remaining 30%. Class distributions were
preserved as observed in the original dataset.

3.2. Balancing techniques

In order to solve the class imbalance problem, different training sets
with different percentages of class imbalance, namely 50%–50%, 60%–
40%, and 70%–30% were created. Imbalanced-learn [28] is an
open-source library for Python programming language, that provides
various sampling techniques to use when working with imbalanced
datasets. Imbalanced-learn’s RandomOverSampler (ROS), SMOTE-
NC, and RandomUnderSampler (RUS) methods were applied to the
original training set to reduce the IR.

3.3. Machine learning methods

All the classification experiments were conducted with the Waikato
Environment for Knowledge Analysis (Weka) [29,30] data mining tool,
an open-source software developed by the University of Waikato, in
3

New Zealand, which provides several algorithms and tools for data
preprocessing and visualization, classification, clustering, and feature
selection.

For classification experiments, different Weka’s classifiers were cho-
sen:

• Logistic, a multinomial logistic regression model with a ridge
estimator [31];

• J48, i.e. Weka’s implementation of the C4.5 algorithm [32] to
build a decision tree;

• RandomForest [33], an ensemble learning method that builds
multiple decision trees and assigns the label returned by the
majority of the trees;

• AdaBoostM1, a boosting algorithm [34];
• PART [35], that builds a decision list, i.e. an ordered set of rules

expressed in the form of IF-THEN rules, that together form a
classifier [36,37];

• Vote, which builds a voting classifier by combining the classifiers
listed above [38,39].

The classifiers were first trained on the different training sets and
then tested on the imbalanced test set.

At the end of the training, an example falls in exactly one of four
cases:

• True Positive (TP): a positive example classified as positive
• True Negative (TN): a negative example classified as negative
• False Positive (FP): a negative example classified as positive
• False Negative (FN): a positive example classified as negative

The result of the classification can be summarized in a confusion
matrix, which gathers the numbers of TP, TN, FP, and FN, as shown
in Fig. 2.

We evaluated the classifiers in terms of:

• accuracy, the proportion of correct predictions:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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Table 1
Demographic and clinical characteristics of the individuals included in this study.

Variable Total (%) Non-Psychosis (%) Psychosis (%)
(n=39,241) (n=36,471) (n=2,770)

Sex
Female 24140 (61.52) 22673 (93.92) 1467 (6.08)
Male 15101 (38.48) 13798 (91.37) 1303 (8.63)

Born in/outside Italy
Italy 36189 (92.22) 33752 (92.54) 2437 (87.98)
Outside Italy 2917 (7.43) 2607 (7.15) 310 (11.19)
Unknown 135 (0.34) 112 (0.31) 23 (0.83)

Birth Area
Other province 10480 (26.71) 9688 (26.56) 792 (28.59)
Ferrara 10391 (26.48) 9638 (26.43) 753 (27.18)
Codigoro 4804 (12.24) 4478 (12.28) 326 (11.77)
Portomaggiore 3877 (9.88) 3671 (10.07) 206 (7.44)
Copparo 3509 (8.94) 3341 (9.16) 168 (6.06)
Cento 3128 (7.97) 2936 (8.05) 192 (6.93)
Outside Italy 2917 (7.43) 2607 (7.15) 310 (11.19)
Unknown 135 (0.34) 112 (0.31) 23 (0.83)

Residence Area
Ferrara 14410 (36.72) 13446 (36.87) 964 (34.80)
Codigoro 5901 (15.04) 5465 (14.98) 436 (15.74)
Other province 4622 (11.78) 4127 (11.32) 495 (17.87)
Cento 4511 (11.50) 4278 (11.73) 233 (8.41)
Portomaggiore 4507 (11.49) 4270 (11.71) 237 (8.56)
Copparo 3948 (10.06) 3755 (10.30) 193 (6.97)
Unknown 984 (2.51) 838 (2.30) 146 (5.27)
Outside Italy 358 (0.91) 292 (0.80) 66 (2.38)

Age at first visit
<18 266 (0.68) 248 (0.68) 18 (0.65)
18–24 3144 (8.01) 2914 (7.99) 230 (8.30)
25–34 5796 (14.77) 5256 (14.41) 540 (19.49)
35–44 7140 (18.20) 6576 (18.03) 564 (20.36)
45–54 6731 (17.15) 6208 (17.02) 523 (18.88)
55–64 5812 (14.81) 5370 (14.72) 442 (15.96)
65–74 5275 (13.44) 4969 (13.62) 306 (11.05)
75+ 5077 (12.94) 4930 (13.52) 147 (5.31)

Age at discharge
<18 146 (0.37) 143 (0.39) 3 (0.11)
18–24 1688 (4.30) 1606 (4.40) 82 (2.96)
25–34 4291 (10.93) 4005 (10.98) 286 (10.32)
35–44 6737 (17.17) 6278 (17.21) 459 (16.57)
45–54 6944 (17.70) 6450 (17.69) 494 (17.83)
55–64 5962 (15.19) 5522 (15.14) 440 (15.88)
65–74 5620 (14.32) 5135 (14.08) 485 (17.51)
75+ 7853 (20.01) 7332 (20.10) 521 (18.81)

Total no. of diagnoses
(mean ± sd [min;max]) 2.03 ± 2.67 [0;121] 1.87 ± 2.35 [0;121] 4.13 ± 4.83 [1;60]

No. of distinct diagnoses
(mean ± sd [min;max]) 1.14 ± 0.76 [0;7] 1.10 ± 0.71 [0;7] 1.77 ± 1.01 [1;7]

Anxiety disorders
no 26770 (68.22) 24371 (66.82) 2399 (86.61)
yes 12471 (31.78) 12100 (33.18) 371 (13.39)

Depression
no 35120 (89.50) 32658 (89.55) 2462 (88.88)
yes 4121 (10.50) 3813 (10.45) 308 (11.12)

Drug and substance use/abuse
no 37529 (95.64) 34904 (95.70) 2625 (94.77)
yes 1712 (4.36) 1567 (4.30) 145 (5.23)

Eating disorders
no 38953 (99.27) 36190 (99.23) 2763 (99.75)
yes 288 (0.73) 281 (0.77) 7 (0.25)

Intellectual Disability
no 38124 (97.15) 35478 (97.28) 2646 (95.52)
yes 1117 (2.85) 993 (2.72) 124 (4.48)

Mania and Bipolar Disorders
no 37737 (96.17) 35180 (96.46) 2557 (92.31)
yes 1504 (3.83) 1291 (3.54) 213 (7.69)

Organic Psychosis
no 35120 (89.50) 32658 (89.55) 2462 (88.88)
yes 4121 (10.50) 3813 (10.45) 308 (11.12)

Personality Disorders
no 35992 (91.72) 33549 (91.99) 2443 (88.19)
yes 3249 (8.28) 2922 (8.01) 327 (11.81)

Infantile autism
no 39177 (99.84) 36439 (99.91) 2738 (98.84)
yes 64 (0.16) 32 (0.09) 32 (1.16)

(continued on next page)
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Table 1 (continued).
Variable Total (%) Non-Psychosis (%) Psychosis (%)

(n=39,241) (n=36,471) (n=2,770)

Other mental disorders
no 34892 (88.92) 32213 (88.32) 2679 (96.71)
yes 4349 (11.08) 4258 (11.68) 91 (3.29)

No. of visits
1 27857 (70.99) 26524 (72.73) 1333 (48.12)
2+ 10253 (26.13) 9099 (24.95) 1154 (41.66)
5+ 1131 (2.88) 848 (2.33) 283 (10.22)

No. of hospitalizations
0 35798 (91.23) 34249 (93.91) 1549 (55.92)
1 2138 (5.45) 1491 (4.09) 647 (23.36)
2+ 1305 (3.33) 731 (2.00) 574 (20.72)

Avg. duration of hosp.
Never hospitalized 35798 (91.23) 34249 (93.91) 1549 (55.92)
1-7 days 1423 (3.63) 1046 (2.87) 377 (13.61)
> 7 days 2020 (5.15) 1176 (3.22) 844 (30.47)

Had compulsory
psychiatric hospitalization

no 38780 (98.83) 36267 (99.44) 2513 (90.72)
yes 461 (1.17) 204 (0.56) 257 (9.28)

Total duration of
treatment (in days)

1–15 10324 (26.31) 10031 (27.50) 293 (10.58)
>15 1638 (4.17) 1567 (4.30) 71 (2.56)
>30 2527 (6.44) 2462 (6.75) 65 (2.35)
>60 1296 (3.30) 1264 (3.47) 32 (1.16)
>90 2600 (6.63) 2504 (6.87) 96 (3.47)
>180 2665 (6.79) 2562 (7.02) 103 (3.72)
>365 4441 (11.32) 4120 (11.30) 321 (11.59)
>1095 3040 (7.75) 2736 (7.50) 304 (10.97)
>1825 4685 (11.94) 4146 (11.37) 539 (19.46)
>3650 6025 (15.35) 5079 (13.93) 946 (34.15)
c
n

m
a
t
k
t
i

• precision, the proportion of positive examples found among all
those classified as positive:

𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

• recall (sensitivity, true positive rate), the proportion of positive
examples found among all the positive ones:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

• specificity (true negative rate) is the proportion of negative exam-
ples found among all the negative ones:

𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

• F1-score, the harmonic mean of precision and recall:

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

• balanced accuracy, the arithmetic mean of sensitivity and speci-
ficity (the proportion of negative examples found among all the
negative ones):

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦

2
In this study, we focused especially on the recall. Since a high

alue of the recall reflects a low number of false negatives, we were
ore interested in correctly classifying patients with psychosis, that

s, decreasing the number of false negatives. We also took into con-
ideration the F1-score, as it reflects both the ability of the model to
ind the majority of all positive examples (recall) and its ability to
dentify only positive examples (precision). Ideally, a model should
ave a high F1-score, meaning high precision and recall. However, in
eal-world applications the higher the precision, the lower the recall
or vice versa), and a model is tuned based on its application. Having
n imbalanced dataset, we were also interested in balanced accuracy,
hich is a more reliable metric than accuracy in this scenario. In fact,
5

aking into account both the true positive rate and the true negative o
rate gives a better idea on how well the model is able to predict both
classes.

3.4. Cost-sensitive learning

Most ML algorithms assume not only that class distribution is the
same, but also that misclassification errors (i.e., false negative and false
positive costs) are equally important [18].

In real-world settings, and especially in healthcare, this is not true:
the cost of misclassifying an ill patient is greatly higher than the cost of
misclassifying a healthy patient [19]. Cost-sensitive learning techniques
have been widely employed in the medical field for diagnosis [6–8,20–
23], but other examples can be found in other fields as well, such as
fraud detection [3,40,41], manufacturing for predicting product fail-
ures [42], intrusion detection [4,5,43], and anomaly detection [44]. In
each of these fields, the class of interest is always the underrepresented
one.

Cost-sensitive learning refers to those algorithm-level techniques in
which the goal of the training is to minimize the cost of a model on
a training set. They are especially used to deal with class imbalance.
Models are trained while taking into account a cost matrix. In the
notation introduced by [12], a cost matrix C has the same structure as a
confusion matrix, and each cell 𝐶(𝑖, 𝑗) represents the cost of predicting
lass i when the actual class is j. For example, if we assign 0 to the
egative label and 1 to the positive label, then 𝐶(0, 0) is the cost of

predicting a negative label when the true one is negative. The structure
of a generic cost matrix is depicted in Fig. 2.

In binary classification, the default cost matrix has a cost of 0 for
correct predictions (𝑖 = 𝑗) and a cost of 1 for incorrect ones (𝑖 ≠ 𝑗). By

odifying cost values it is possible to assign a greater weight to one or
nother type of error. Since defining the cost matrix is a challenging
ask (starting from the definition of cost) and costs are hardly ever
nown in real applications, a good starting point consists in assigning
he number of instances of the opposite class [19], or equivalently the
nverse class distribution ratio. We confronted the performances on the

riginal dataset with two Cost-sensitive learning algorithms included
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Fig. 2. Structures of a confusion matrix (a) and of a cost matrix (b).
in Weka: MetaCost [45] and CosSensitiveClassfier [30]. As stated in
Weka, MetaCost builds an ensemble classifier using bagging and uses
it to label each training instance with the prediction that minimizes
the expected cost, based on the probability estimates obtained from
bagging. If an interpretable base learner is chosen, then the output
will be interpretable as well. On the other hand, CosSensitiveClassfier
makes its base classifier cost-sensitive, using two methods: predicting
the class with minimum expected misclassification cost (CSC) (done by
setting the attribute minimizeExpectedCost = true); reweighting training
instances according to the total cost assigned to each class (CSC-W)
(minimizeExpectedCost = false).

In the first case, we actually perform cost-sensitive classification,
which adjusts the output of the classifier to optimize the given cost
matrix; in this case, costs are ignored at training time and used only at
prediction time. Conversely, with reweighting the cost matrix is taken
into account during training and ignored at prediction time. We applied
Bagging, an ensemble method that improves the performances of the
base classifier [45], with 10 iterations and used J48 as base classifier.
We first tested the above-mentioned cost-sensitive learning techniques
with a cost ratio of 1:13.166, where 13.166 was the IR of the dataset.
Then, in order to make the ratio independent of the IR, we tried also
other ratios: 1:5, 1:10, and 1:15.

3.5. Feature selection

With the term feature selection (or attribute selection) we refer to
the automatic process of selecting a subset of relevant features (at-
tributes, variables, predictors) used in the construction of the predictive
model. It is a fundamental process of ML algorithms as it helps (a) to
remove unnecessary, irrelevant and/or distracting variables that will
not help increase the model accuracy (they might in fact deteriorate
it); (b) to find more effective predictors; and (c) to reduce the model
complexity, making it more comprehensible by humans [46]. In order
to investigate the relevance of each feature of the dataset used in this
study, we conducted a feature selection analysis. Four different Weka’s
feature evaluators were employed to assign a score to each feature, and
the Ranker method to create a ranking based on that score. We then
averaged these scores to find the most relevant features. Below is the
list of the selected evaluators:

• CorrelationAttributeEval, which evaluates the worth of an attribute
by measuring the correlation (Pearson’s) between it and the class;

• GainRatioAttributeEval, which scores attributes by measuring their
gain ratio with respect to the class;

• SymmetricalUncertAttributeEval, which evaluates the worth of an
attribute by measuring the symmetrical uncertainty with respect
to the class.
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4. Experimental results

Table 2 shows the average performances of the selected classifiers
on the original and on the resampled training sets. Although we focused
on balanced accuracy, recall, and F1-score during the experiments, Ta-
ble 2 also shows accuracy to make clear the metric’s lack of usefulness
in the case of imbalanced datasets, precision to show the trade-off with
recall (intercepted by F1-score), and sensitivity, used to calculate the
balanced accuracy. On the original training set, we obtained relatively
high balanced accuracy and precision. All the classifiers seemed to be
able to distinguish quite well patients without psychosis. By applying
the different balancing techniques, all the classifiers were in fact able to
identify a higher number of patients with psychosis (i.e., true positives),
leading to an increase in the recall at the price of a lower precision
(i.e., a higher number of false positives). In some cases, the F1-score
improved as well, although remaining around 0.5.

Table 3 reports in detail the balanced accuracy, recall, and F1-score
obtained on the test set by each classifier trained on the different train-
ing sets. The Logistic regression trained on 50-50 ROS achieved both
the highest balanced accuracy and recall, while the voting classifier
trained on the 70-30 SMOTE-NC achieved the highest F1-score.

In Table 4 we reported the training times (in seconds) taken to build
each model on each training set. Being the simplest algorithm, J48
was always the fastest; on the other hand, Vote required a significantly
higher amount of time to train, having to train different models inside
to take their votes. The RUS setting provided the lowest times, building
the smaller datasets. On the contrary, ROS and SMOTENC were reason-
ably the most time-consuming to train on. Despite all, training times
were always under 20 s, and thus even the slowest technique could be
applied in scenarios that do not require real-time decisions.

Table 5 shows the results of the three algorithms we used for
cost-sensitive learning with different cost ratios, obtained on the test
set. Using the IR proved to be a good choice, leading each model to
high values of both recall and balanced accuracy with all algorithms.
However, the setting that obtained the highest values was the CSC with
the 1:15 cost ratio. Nonetheless, ratios with lower costs for false posi-
tives errors achieved comparable results. Training times were relatively
higher than those of the single ML algorithms, due to the fact that we
used 100 iterations for the bagging.

Table 6 shows the average scores of the features obtained on the
original and resampled training sets using Weka’s attribute evaluators.
Hospitalizations (compulsory and voluntary) and number of diagnoses
(distinct and total) appear to be the most relevant ones. On the other
hand, socio-demographic features such as birth area and residence area,
age at first visit and at discharge do not seem to affect much the
classification.
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Table 2
Average classification results obtained on the test set, using Weka’s classifiers trained on the original and on the resampled
training sets.

Training Average metric

dataset Balanced Accuracy Precision Recall F1-score Specificity
accuracy

Original 0.686 0.946 0.719 0.383 0.496 0.912

50–50
RUS 0.856 0.846 0.302 0.868 0.447 0.929
ROS 0.819 0.906 0.419 0.718 0.520 0.899
SMOTE-NC 0.808 0.904 0.407 0.696 0.508 0.895

60–40
RUS 0.847 0.880 0.355 0.809 0.492 0.930
ROS 0.809 0.917 0.447 0.684 0.536 0.897
SMOTE-NC 0.799 0.920 0.456 0.658 0.536 0.899

70–30
RUS 0.826 0.911 0.432 0.725 0.539 0.930
ROS 0.792 0.929 0.498 0.632 0.554 0.900
SMOTE-NC 0.785 0.929 0.501 0.618 0.551 0.904
Table 3
Balanced Accuracy, Recall, and F1-score obtained on the test set, with each Weka’s classifier trained on the original and on
the sampled training sets.

Training Balanced accuracy

dataset AdaBoostM1 J48 Logistic PART RandomForest Vote

Original 0.626 0.683 0.724 0.732 0.658 0.693

50–50
RUS 0.849 0.853 0.890 0.853 0.818 0.876
ROS 0.853 0.795 0.892 0.797 0.743 0.833
SMOTE-NC 0.828 0.789 0.863 0.789 0.759 0.819

60–40
RUS 0.828 0.851 0.884 0.839 0.817 0.867
ROS 0.832 0.797 0.884 0.781 0.742 0.818
SMOTE-NC 0.809 0.783 0.857 0.785 0.753 0.808

70–30
RUS 0.786 0.830 0.862 0.827 0.804 0.845
ROS 0.784 0.795 0.862 0.778 0.730 0.800
SMOTE-NC 0.786 0.782 0.836 0.764 0.741 0.803

Training Recall

dataset AdaBoostM1 J48 Logistic PART RandomForest Vote

Original 0.258 0.375 0.460 0.485 0.327 0.392

50-50
RUS 0.821 0.887 0.909 0.864 0.834 0.897
ROS 0.819 0.664 0.913 0.655 0.532 0.724
SMOTE-NC 0.787 0.645 0.830 0.644 0.575 0.697

60-40
RUS 0.734 0.836 0.863 0.807 0.779 0.838
ROS 0.747 0.664 0.859 0.620 0.528 0.687
SMOTE-NC 0.692 0.627 0.789 0.626 0.554 0.663

70-30
RUS 0.621 0.742 0.787 0.744 0.704 0.755
ROS 0.616 0.649 0.786 0.606 0.497 0.638
SMOTE-NC 0.625 0.615 0.729 0.572 0.525 0.640

Training F1-score

dataset AdaBoostM1 J48 Logistic PART RandomForest Vote

Original 0.389 0.497 0.567 0.553 0.442 0.530

50–50
RUS 0.476 0.416 0.503 0.437 0.376 0.471
ROS 0.495 0.505 0.506 0.535 0.500 0.578
SMOTE-NC 0.450 0.511 0.518 0.514 0.492 0.562

60–40
RUS 0.529 0.464 0.553 0.459 0.422 0.523
ROS 0.527 0.515 0.564 0.520 0.503 0.585
SMOTE-NC 0.517 0.518 0.565 0.533 0.505 0.580

70–30
RUS 0.547 0.523 0.603 0.507 0.475 0.579
ROS 0.547 0.538 0.604 0.532 0.503 0.599
SMOTE-NC 0.538 0.539 0.589 0.530 0.504 0.609
5. Discussion

This study explored the applicability of a ML model to identify
patients with a diagnosis of psychotic spectrum disorders using real-
world EHR data. The extracted dataset was heavily imbalanced, with
only 7.06% of patients with at least one diagnosis of psychosis (IR =
13.166). The different balancing techniques we adopted showed that
7

they can effectively help to find the best setting to accomplish the clas-
sification task. Balancing the dataset led to a substantial improvement
of the recall: in the best case, we could achieve a balanced accuracy of
around 80% and a recall of around 90%. Even though the improvement
of the F1-score was negligible and the precision decreased, the results
we obtained were far better compared to those obtained on the original

dataset, since we were more interested in correctly classifying patients
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Table 4
Training times to build each model on each training set, in seconds.

Training Classifier

dataset AdaBoostM1 J48 Logistic PART RandomForest Vote

Original 1.91 0.19 2.55 0.67 1.85 6.64

50–50
RUS 0.29 0.04 0.35 0.11 0.44 1.07
ROS 3.87 0.36 4.89 4.88 3.19 16.89
SMOTE-NC 4.11 0.44 5.10 3.94 3.61 16.84

60–40
RUS 0.37 0.04 0.44 0.11 0.50 1.48
ROS 3.21 0.26 4.00 3.51 2.69 13.88
SMOTE-NC 3.25 0.31 4.19 2.70 2.98 13.27

70–30
RUS 0.47 0.09 0.56 0.16 0.60 1.77
ROS 2.69 0.24 3.40 2.75 2.48 11.56
SMOTE-NC 2.70 0.28 3.55 2.07 2.70 11.12
Table 5
Cost-sensitive learning results obtained on the test set. For each metric of interest (balanced accuracy, recall, F1-score, and
training time), the best result is written in bold.

Cost ratio Balanced Accuracy Precision Recall F1-score TNR Training
accuracy time

CSC

1:5 0.811 0.932 0.515 0.670 0.582 0.952 11.54
1:10 0.837 0.904 0.404 0.759 0.528 0.915 11.97
1:13.166 0.840 0.876 0.339 0.798 0.476 0.882 11.81
1:15 0.842 0.869 0.328 0.811 0.467 0.874 11.67

CSC-W

1:5 0.814 0.932 0.516 0.676 0.585 0.952 15.87
1:10 0.828 0.914 0.434 0.728 0.544 0.928 15.43
1:13.166 0.835 0.905 0.407 0.752 0.529 0.917 14.75
1:15 0.835 0.900 0.392 0.759 0.517 0.911 15.42

MetaCost

1:5 0.779 0.935 0.537 0.597 0.566 0.961 12.14
1:10 0.832 0.911 0.426 0.739 0.541 0.925 12.82
1:13.166 0.834 0.882 0.350 0.779 0.482 0.890 12.51
1:15 0.833 0.873 0.331 0.786 0.466 0.880 11.93
Table 6
Average scores of the features resulting from the evaluation on the original and
resampled training sets with Weka’s attribute evaluators.

Feature Average score

Avg. duration of hospitalization 0.21960
No. of hospitalization 0.21613
Had compulsory psychiatric hospitalization 0.11560
No. of distinct diagnoses 0.10384
Anxiety disorder 0.10299
Total no. of diagnoses 0.09776
No. of visits 0.09343
Other mental disorders 0.09314
Depression 0.07451
Total duration of treatment 0.06669
Infantile autism 0.04008
Sex 0.03524
Mania and Bipolar Disorders 0.02779
Eating disorders 0.02698
Born in/outside Italy 0.02400
Intellectual Disability 0.01781
Residence Area 0.01760
Age at first visit 0.01703
Personality Disorders 0.01461
Birth Area 0.01451
Drug and substance use/abuse 0.01174
Age at discharge 0.00789
Organic Psychosis 0.00764

with psychosis, that is, decreasing the number of false negatives. In
general, having a low number of false negatives is especially important
and preferable in healthcare: it is better to label a healthy patient as
‘‘ill’’ (eventually a more thorough diagnosis will prove it wrong) rather
than to label an ill patient as ‘‘healthy’’ [47]. Therefore, the goal was to
decrease the number of false negatives (and consequently increase the
number of true positives). Among all the balancing techniques, 50-50
ROS appeared to be the best balancing approach in this case. Overall,
none of the classifiers significantly outperformed the others.
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The feature analysis suggested that clinical features play a more
relevant role in the classification rather than socio-demographic ones.

The ML models we tried, the evaluation metrics we chose, and the
results we obtained were comparable to those listed in Chung and Teo’s
[48] review of ML approaches for mental health prediction.

Aside from good performances, recently there has also been an
increasing interest in interpretable ML models, that is, models whose
output is easily understood by humans [49]. Interpretability is espe-
cially important in those fields where the decision of a ML model needs
to be trusted, such as healthcare [47,50]. In this regard, three of the
models we chose, namely logistic regression, decision list and decision
tree, are known for being easily understood also by non-experts [49].
The logistic regression is also the model that overall performed better.

After selecting one or an ensemble of ML models and the most
suitable balancing technique, if the ML model is sufficiently reliable
in its performances, an approach built with this methodology could
be employed to assist clinicians and researchers in detecting and diag-
nosing mental health disorders and improve treatment [48,51–53]. In
the absence of clear differences in the performances, if interpretability
is important for the application, the decision tree (J48) could be
employed, being the most interpretable and fastest.

As mentioned in the introduction, ML often deals with synthetic
experiments considering ideal dataset balancing conditions, as each
class has about the same number of examples in a binary or multi-
ple classification context. When datasets originate from industrial or
medical applications, the scenario is often very different and more
challenging. First, very frequently these datasets were not created with
the intent of using them in learning from examples contexts, therefore
they need to be cleaned up and preprocessed before they are ready for
real use in a ML context. Second, since these data were not collected for
classification purposes, they must be labeled according to the question
they are intended to answer. The medical context, along with anomaly
detection context, is by far one of the major contexts in which datasets
are usually particularly imbalanced. The application of the above-
mentioned balancing techniques can improve the performance in the
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training phase; on the other hand, modifying the nature of the dataset
can worsen the results in the testing phase. Cost-sensitive learning does
not alter the dataset by adding or removing instances, but instead it
assigns costs to the different types of error, trying to penalize more
errors on the class of interest. In fact, it is already successfully applied
in such scenarios.

6. Conclusion

In this work, we presented a classification task applied to a real-
world mental health imbalanced dataset. We compared the results of
both data-level and algorithm-level techniques, obtained using several
classifiers of the Weka data mining tool. The presented findings suggest
that the application of both ML and balancing techniques to an imbal-
anced dataset may be useful for the prediction of a specific diagnosis.
However, before the described approach could be employed in routine
clinical practice, more studies are needed to improve the techniques for
treating imbalanced datasets to increase their reliability. The obtained
results can be considered a good starting point for future works, which
will aim to improve also the precision. Other sampling techniques, such
as generative models, can be investigated as well.
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