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Abstract: Background: prostate-specific membrane antigen (PSMA) ligand PET has been recently
incorporated into international guidelines for several different indications in prostate cancer (PCa)
patients. However, there are still some open questions regarding the role of PSMA ligand PET in
castration-resistant prostate cancer (CRPC). The aim of this work is to assess the clinical value of
PSMA ligand PET/CT in patients with CRPC. Results: PSMA ligand PET has demonstrated higher
detection rates in comparison to conventional imaging and allows for a significant reduction in
the number of M0 CRPC patients. However, its real impact on patients’ prognosis is still an open
question. Moreover, in CRPC patients, PSMA ligand PET presents some sensitivity and specificity
limitations. Due to its heterogeneity, CRPC may present a mosaic of neoplastic clones, some of
which could be PSMA−/FDG+, or vice versa. Likewise, unspecific bone uptake (UBU) and second
primary neoplasms (SNPs) overexpressing PSMA in the neoangiogenic vessels represent potential
specificity issues. Integrated multi-tracer imaging (PSMA ligand and [18F]FDG PET) together with a
multidisciplinary discussion could allow for reaching the most accurate evaluation of each patient
from a precision medicine point of view.

Keywords: prostate cancer; PCa; castration-resistant prostate cancer; PSMA PET; FDG PET; pitfalls;
UBU; second primary neoplasm

1. Introduction

Castration-resistant prostate cancer (CRPC) is a widely recognized clinical condition
characterized by rising prostate-specific antigen (PSA) despite castrate levels of serum
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testosterone [1,2]. CRPC represents an advanced heterogeneous disease setting still as-
sociated with a severe prognosis [3]. There are two distinct clinical subtypes of CRPC:
non-metastatic CRPC (nmCRPC) and metastatic CRPC (mCRPC). The primary distinguish-
ing factor is the presence of metastatic lesions in conventional imaging, such as computed
tomography (CT) or bone scan [4,5]. Over the past decade, there have been significant
advancements in the management of CRPC, both in the metastatic and non-metastatic
settings. However, the determination of the most suitable treatment approach is primarily
guided by the currently available imaging techniques [4].

In recent years, the introduction of next-generation imaging (NGI) into clinical practice
has profoundly impacted the management of CRPC. Prostate-specific membrane antigen
(PSMA) ligand positron emission tomography (PET)/computed tomography (CT) has
demonstrated tangible results across various aspects of (PCa) and has been incorporated
into international guidelines for several different indications [6]. One such indication is
the evaluation of nmCRPC in conventional imaging. In this patient group, PSMA ligand
PET/CT has proven to enhance the detection of PCa lesions, offering a more precise as-
sessment of the extent of the disease and resulting in significant stage reclassification [7–9].
Furthermore, PSMA ligand PET/CT has shown superiority over conventional imaging
in assessing mCRPC. In this subset of patients, PSMA ligand PET/CT outperforms bone
scans in detecting skeletal metastases and surpasses radiologic imaging (CT and magnetic
resonance imaging—MRI) in evaluating lymph node and visceral metastases [10,11].

However, besides the aforementioned insights, there are still some open questions
regarding the role of PSMA ligand PET/CT in CRPC, to which we have yet to find a clear
answer. The objective of this review is to assess the clinical value of PSMA ligand PET/CT
in patients with CRPC. We aim to analyze the current indications and address the most
crucial issues related to its clinical application.

2. Materials and Methods

Critical literature research was performed up to 31 August 2023 using the following
electronic databases: PubMed, Scopus, and Web of Science. The articles considered were
those regarding PSMA ligand PET imaging in CRPC. Only papers in the English language
were assessed. The literature retrieved was carefully screened and evaluated by three
authors (L.U., L.F., A.C.). We identified 4 topics regarding current challenges related to
the use of PSMA PET/CT in CRPC: (a) switch from M0 to M1 disease; (b) unspecific bone
uptake (UBU); (c) dual-tracer (PSMA/FDG) imaging; and (d) second primary neoplasms.
Relevant articles retrieved were subdivided and discussed according to these 4 topics.

3. Results
3.1. From M0 to M1 Castration-Resistant Prostate Cancer: Bargain or Lost Opportunity?

nmCRPC is a condition distinguished by increasing values of prostate-specific anti-
gen (PSA), castrate testosterone levels, and the absence of detectable metastases in cross-
sectional imaging (abdomen–pelvis CT) and bone scans (BS) [1]. Until 2018, the primary
approach to treating nmCRPC relied on maximal androgen blockade achieved by combin-
ing first-generation anti-androgen (bicalutamide) with androgen deprivation therapy. More
recently, nmCRPC has been revolutionized by the implementation of androgen signaling
inhibitors (ARSIs), which were proven to delay the development of metastases in patients
with nmCRPC and a PSA doubling time (PSAdt) ≤ 10 months [12]. In particular, some
phase 3 clinical trials (SPARTAN, PROSPER, ARAMIS) resulted in the approval of multiple
ARSI compounds, including enzalutamide, apalutamide, and darolutamide, by regulatory
authorities such as the Food and Drug Administration (FDA) and European Agency of
Medicine (EMA) for the effective clinical management of nmCRPC [12,13]. Nevertheless, it
is important to emphasize that, in all the above-mentioned clinical trials, the determination
of nmCRPC status relied on BS and CT rather than on the advanced NGI techniques, such
as PET/CT using molecular tracers [14,15]. NGI offers significantly enhanced sensitivity
and specificity compared to conventional imaging, particularly when performed with
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PSMA ligands [16]. In this context, a few published papers specifically investigated the
impact of PET/CT with PSMA ligands in nmCRPC patients (Table 1).

Table 1. Main findings of the selected papers on the applications of PSMA ligand PET/CT in
nmCRPC.

Reference Location/Year/ Study N. of
Patients Primary Endpoint PSMA

Ligands Comment

Fendler et al.
[9]

Germany/USA
2019

Retrospective,
investigator-

initiated,
multicenter

200

Detection rate of
lesions, on a

per-patient basis,
by PSMA-PET.

68Ga-
PSMA-11/

18F-
DCFPyL

Almost all cases showed
positive findings in spite of

negative conventional
imaging: 55% of patients

had distant metastases (M1).

Fourquet et al.
[7] France/2020 Retrospective 31

Impact of PSMA
PET in the

restaging of
nmCRPC patients.

68Ga-
PSMA-11

PSMA-PET detected at least
1 focus of tracer uptake in
90% of cases and changed

clinical management in 87%
of cases.

Wang et al.
[17] China/2021 Prospective,

observational 37

To assess
metabolic

heterogeneity
(PSMA+/FDG−
disease) in early

progressive
nmCRPC.

68Ga-
PSMA-11/
[18F]FDG

A total of 114 lesions were
detected among 29 out of 37
nmCRPC patients. N+/M+
disease was detected in 73%

of patients.

Weber et al.
[18]

Germany/
2021 Retrospective 55

To investigate the
ability of PSMA

PET to detect
metastatic lesions

in early CRPC.

68Ga-
PSMA-11

PSMA PET resulted in
positive results in 75% of

patients, of whom 45% had
M1 status.

nmCRPC: non-metastatic castration-resistant prostate cancer, M1: extra-pelvic metastases; PSMA: prostate-specific
membrane antigen; FDG: [18F]-fluorodexoyglucose.

In a multicenter retrospective analysis carried out by Fendler et al. [9], the impact of
PSMA ligands was assessed in a large cohort (n = 200) of patients defined as nmCRPC
according to conventional imaging, but deemed at high risk of developing metastases due
to PSAdt (i.e., ≤10 months) or Gleason score at diagnosis (≥8). Notably, PSMA ligand
PET resulted in positive findings in almost all cases (196/200, 98%), of whom 55% had
distant metastases to extra-pelvic lymph nodes and bones (M1). Notably, among the
metastatic patients, 29 subjects (15%) had a single lesion while 28 cases (14%) presented an
oligometastatic condition. Furthermore, information on clinical management after PSMA-
PET was available in 148 cases, 122 of whom received new treatments after the execution
of the PET/CT scan. Most interestingly, the authors identified some clinical variables
(such as PSA ≥ 5.5 ng/mL, pN1) predicting M1 status on PSMA-PET and employed the
aforementioned M1 predictors in a post hoc analysis of a subgroup of patients with similar
characteristics to those included in the SPARTAN clinical trial (SPARTAN-like subgroup).
The authors found that apalutamide maintained its benefit for metastasis-free survival
(MFS) in all patients, including the SPARTAN-like population.

Fourquet and coworkers [7] reported at least one PSMA-avid lesion in 90% of patients
otherwise classified as nmCRPC at conventional imaging, and defined the presence of
oligometastatic disease in 20% of cases. The authors reported a change in clinical manage-
ment in many cases being considered appropriate in 78% of patients.

Weber and colleagues [18] focused their retrospective analysis on patients affected by
“early” CRPC, defined as a condition characterized by a PSA level of less than 3 ng/mL.
PSMA ligand PET resulted in a positive finding in 75% of patients, of whom 45% had M1
status, while CT alone detected prostate cancer lesions in 18 out of 55 (33%) patients. No-
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tably, PSMA ligand PET was capable of identifying oligometastatic disease in 68% of cases;
however, the impact on clinical management in the included patients was not reported.

Wang and colleagues [17] utilized a dual-tracer PET/CT approach, employing [68Ga]Ga-
PSMA-11 and [18F]FDG to investigate the metabolic heterogeneity of the disease
(i.e., PSMA−/FDG+) in early-stage progressive cases with PSA levels ≤ 2 ng/mL. In
their prospective trial, the authors enrolled 37 patients with high-risk (PSAdt ≤ 10 months)
early progressive nmCRPC. Overall, 114 lesions were detected among 29 out of 37 patients,
indicating a notably high prevalence (73%) of N+/M+ disease; 81 exhibited PSMA+/FDG±
uptakes, while the remaining 33 were PSMA−/FDG+.

Upon reviewing the existing literature on the role of PSMA ligand PET in nmCRPC,
several key observations emerge. Firstly, it becomes apparent that PSMA ligand PET
exhibits superior sensitivity in detecting positive lesions compared to conventional imaging
methods such as BS and CT [10,11]. Furthermore, it can successfully identify patients with
extra-pelvic metastases that might otherwise go undetected. Based on the findings reported
in published papers, it appears that nmCRPC may be a rarity, and a substantial number of
patients experience the ‘Will Rogers phenomenon’, a phenomenon characterized by stage
migration attributed to advancements in technology or changes in staging algorithms [19].
Secondly, PSMA ligand PET can identify oligometastatic disease in a substantial number
of patients, thereby laying the foundation for PET-guided stereotactic treatments [20].
Furthermore, PSMA ligand PET can prompt changes in clinical management, potentially
shifting patients from radiotherapy to systemic treatments, and vice versa, depending on
their specific needs [21]. While PSMA ligand PET is promising in the context of nmCRPC, it
is essential to underscore that the existing studies are predominantly retrospective and have
not thoroughly examined whether PSMA ligand PET, apart from detecting more lesions and
influencing clinical management, confers any survival benefits, both in terms of progression-
free and/or overall survival. Hence, within this perspective, this pioneering imaging
modality still represents an untapped opportunity, and additional research—preferably
prospective and with larger cohorts—is imperative to better evaluate the significance of
PSMA-PET in nmCRPC. To date, no specific recommendations are available in this setting
of disease, although a balance should be found among early detection, treatment approach,
and outcome.

3.2. Unspecific Bone Uptake: Mind the Gap!

PSMA ligand PET imaging has gained a primary role both in primary staging and
restaging of PCa patients [22,23]. Despite several PSMA molecules having been investi-
gated, in recent years, those labeled with [18F] are progressively replacing [68Ga]-labeled
compounds due to several advantages, including lower positron energy, better spatial
resolution, and the lack of need for a generator [24]. In parallel, several pitfalls have been
described in the literature following the introduction of PSMA agents. In particular, un-
specific bone uptake (UBU) on [18F]F-PSMA-1007 PET has been reported in a considerable
fraction of PCa patients, leading to a potential increase in false-positive metastases and,
consequently, to inadequate treatments [25,26].

Arnfield et al. [27] investigated whether patients with UBU at [18F]F-PSMA-1007 repre-
sent a higher-risk category of PCa. Almost half of the patients (94/214) showed at least one
UBU, although none of them met the criteria for malignant lesions after a median follow-up
of 16 months. Moreover, they showed that an SUVmax cut-off value ≥ 7.2, achieved a sen-
sitivity of 100%, and a specificity of 98.6% for bone metastases. Likewise, Grünig et al. [28]
analyze the frequency, anatomical distribution, characteristics, and potential impact on
treatment selection of UBU in 348 PCa patients undergoing [18F]F-PSMA-1007. Again,
approximately 50% of patients showed UBU, with higher frequency when using digital
PET/CT than analog scanners.

Few studies have evaluated the rates of false-positive findings, including UBU, be-
tween [68Ga]Ga-PSMA-11 and [18F]F-PSMA-1007 [24,29,30]. Initially, Rauscher et al. [24]
retrospectively investigated 102 patients with biochemical recurrent PCa. Overall, [18F]-F-
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PSMA-1007 revealed five times more benign lesions than [68Ga]Ga-PSMA-11 (245 vs. 52,
respectively), as well as SUVmax was significantly higher for [18F]F-PSMA-1007 than
[68Ga]Ga-PSMA-11. Although the frequency of bone lesions was slightly higher for
[68Ga]Ga-PSMA-11 (24% vs. 27%), in absolute terms, UBU was substantially higher
on [18F]F-PSMA-1007 (36 vs. 6), predominantly in the ribs. Hoberuck et al. [29] com-
pared [68Ga]Ga-PSMA-11 and [18F]F-PSMA-1007 intra-individually for unspecific lesions in
46 PCa patients. No significant difference between [18F]F-PSMA-1007 and [68Ga]Ga-PSMA-
11 was found in the SUVmax of primary lesions, lymph nodes, and skeletal metastases.
However, unspecific uptake in the lymph nodes, bones, and ganglia was significantly higher
in patients who underwent [18F]F-PSMA-1007. Recently, Seifert et al. [30] investigated the
frequency of UBU (defined as focal bone uptake with SUVmax > 4 and PSA < 5 ng/mL)
and skeletal metastases in patients who had a [18F]F-PSMA-1007 (n = 409) and [68Ga]Ga-
PSMA-11 (n = 383) for biochemical recurrence of PCa. Of note, [18F]F-PSMA-1007 showed
a higher rate of UBU than [68Ga]Ga-PSMA-11 (140 vs. 64; p = 0.001), whereas the rate of
bone metastases was not different between the two radiopharmaceuticals. Among patients
with UBU on [18F]F-PSMA-1007, 17 also had [68Ga]Ga-PSMA-11 PET/CT, and 12 had an
additional bone scintigraphy and whole-body MRI. UBU was considered a false-positive
when seen only on [18F]F-PSMA-1007.

Despite the different reasons that have been raised to explain UBU, such as unconju-
gated fluorine or activated bone marrow immune cells, the etiology is still unknown. In
a recent paper, Ninatti et al. [31] explored the potential association between osteoporosis
and UBU at [18F]F-PSMA-1007. Body mass index (BMI) and bone density were lower in
the patients with UBU, although not statistically significant. However, UBU has also been
reported in other [18F]-PSMA-targeting tracers [32,33].

To summarize, the high incidence of UBU using [18F]F-PSMA-1007 compared to
[68Ga]Ga-PSMA-11 is challenging. Therefore, the evaluation of the images should be
carefully considered, also by analyzing the corresponding CT findings. Furthermore, a
complementary evaluation with other available radiotracers, including historical PCa
radiotracers (i.e., [18F]F-choline and [18F]F-Fluciclovine) may be helpful in challenging
cases [34–36]. Hopefully, the availability of new radiotracers currently under experimental
examination, such as [18F]F-FDHT, may also contribute as an additional resource available
for the future [37]. To overcome the limitation of UBU when PSMA-based PET images are
interpreted, we suggest considering the clinical history of the patients, previous traumatic
accidents, as well as CT characteristics.

Table 2 shows some hints for correct discrimination between UBU and bone metastases,
and Figure 1 represents a case of mCRPC showing UBU at [18F]F-PSMA-1007.

Table 2. Some useful hints helping to discriminate between metastases and UBU.

Malignant Findings UBU Findings

Sclerotic/blasting change at any follow-up
imaging

PSA < 0.1 ng/mL after curative surgical
treatment

SUVmax increase (e.g., ≥30%) on follow-up
18F-PSMA-1007 PET, independent from any

treatments

Unchanged uptake on follow-up
18F-PSMA-1007 PET with or without therapy

after >6 months

Treatment-related changes (e.g., reduction in
size or increased sclerosis) on follow-up

No longer present on follow-up
18F-PSMA-1007

Appearance of metastatic lesion on different
imaging techniques (e.g., 68Ga-PSMA-11 PET,

MRI, bone scan, CT)
Benign aspect on a different imaging modality

Association with typical symptoms of
malignancy

Managed as likely benign after clinical
evaluation

Association with blood biomarkers (i.e., PSA
and ALP increasing/decreasing) PSA stable or undetectable PSA
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Figure 1. A patient with biochemical recurrence of PCa undergoing [18F]F-PSMA-1007 PET/CT
(PSA = 0.22 ng/mL). Axial fused (A,B), CT axial (C), and maximum intensity projection (MIP) (D)
images show multiple spots of focal uptake involving several ribs and the right ischio-pubic branch.
The low PSA value leads to suspicion of UBU; therefore, a second [18F]F-PSMA-1007 PET/CT is
performed 6 months later ((E): MIP image; (F,G): axial fused images; (H): CT axial image). While the
rib uptakes appear stable for number, size and uptake intensity are suggestive of UBU; the uptake
at the right ischio-pubic branch is considerably increased and an osteo-structural alteration can be
detected at CT images. Combining imaging suspicion with increased PSA value (1.20 ng/mL), the
lesion at the right ischio-pubic branch is considered a PCa metastasis.

3.3. Dual-Tracer PSMA/18F-FDG: Is It a Must?

When considering CRPC, we are dealing with a very complex and heterogeneous
disease [38]. The progressive development of castration resistance is defined by the acqui-
sition of biochemical and genetic alterations that converge toward the selection of clones
resistant to androgen deprivation therapy (ADT) [39]. Among these acquired alterations,
we surely find the suppression of androgen receptor (AR) expression and activity. The
final stage of CRPC is often represented by neuroendocrine dedifferentiation, which is
an under-recognized, late, and aggressive manifestation of PCa (particularly associated
with a high Gleason score), with a poor survival expectancy [40,41]. Available litera-
ture data have already hinted that neuroendocrine dedifferentiation is associated with
a reduced PSMA expression and with the parallel activation of genes related to glucose
uptake [40,42,43]. Therefore, these patients are characterized by a mosaic of lesions, poten-
tially including PSMA-negative (PSMA−) and [18F]FDG-positive (FDG+) ones in molecular
imaging (Figure 2). Notably, the identification of FDG+ lesions is a negative prognostic
factor in mCRPC [44]. Bauckneht et al. [45] reported that the activation of [18F]FDG-related
genes is usually parallel to a reduced expression of the FOLH1 gene, which encodes for
PSMA expression. Interestingly, this genetic pattern was found to be also activated in
some patients without neuroendocrine dedifferentiation [46]. These findings are consis-
tent with several literature evidence reporting mCRPC patients without neuroendocrine
dedifferentiation showing PSMA− lesions [42,46,47]. The main studies are reported in
Table 3.
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Figure 2. An 82-year-old man with a high-risk prostate cancer (Gleason score: 4 + 5) undergoing
hormonal therapy. Serial [18F]FDG and [18F]-PSMA-1007 PET/CT examinations were performed to
monitor the response to treatment (from right to left).

Table 3. Main findings of the selected papers on double-tracer PET imaging (PSMA ligands plus
[18F]FDG) in nmCRPC.

Reference Location
Year

Study
Type

N. of
Pa-

tients
Primary Endpoint Radiotracers Comment

Michalski et al.
[48]

Germany
2021

Retrospective
bicenter 54

Assessment of
mismatched lesions
in mCRPC patients

before RLT.

[68Ga]-
PSMA-11
[18F]FDG

33% of mCRPC patients show
mismatched PSMA- [18F]FDG+

lesions and these patients present
shorter OS.

Seifert et al.
[30]

Germany,
USA
2022

Retrospective 89

Assessment of
mismatched lesions
in mCRPC patients

before RLT.

[68Ga]-
PSMA-11

[18F]-PSMA-
1007

[18F]FDG

18% of patients had mismatched
lesions between PSMA and

[18F]FDG PET, however only 3% of
patients had mismatch findings not

detected using only PSMA PET.

Chen et al.
[42]

China
2022 Retrospective 56

To assess metabolic
heterogeneity of
mCRPC patients

[68Ga]-
PSMA-11
[18F]FDG

[68Ga]-PSMA-11 PET/CT showed
higher detection rate than [18F]FDG

PET/CT (75% vs. 51.8%).
However, 23.2% of patients showed

at least 1 mismatched PSMA-
[18F]FDG+ lesion.

Güzel et al.
[49]

Turkey
2023 Retrospective 71

To investigate the
prognostic role of
dual-tracer PET

imaging in
[18F]FDG+ mCRPC

treated with
chemotherapy

68Ga-PSMA-
11

[18F]FDG

Volumetric parameters and
Pro-PET scores obtained from
dual-tracer PET/CT imaging

predict OS in patients with mCRPC
treated with taxane chemotherapy.

Dual-tracer imaging should be
performed in these patients as

78.9% of visceral metastases were
PSMA−/FDG+

mCRPC: metastatic castration-resistant prostate cancer; OS: overall survival; RLT: radioligand therapy.

Chen et al. [42] compared the detection rate of [68Ga]Ga-PSMA-11 and [18F]FDG
PET/CT in 56 mCRPC patients. [68Ga]Ga-PSMA-11 showed a higher detection rate than
[18F]FDG (75% vs. 51.8%; p = 0.004), although 23.2% of patients showed at least 1 mis-
matched PSMA−/FDG+ lesion. In the study by Güzel et al. [49], the authors recommend
dual-tracer PET imaging in mCRPC undergoing taxane chemotherapy, as 78.9% of vis-
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ceral metastases were PSMA−/FDG+, representing a strong negative prognostic factor
in multivariate Cox regression analysis. Similarly, semiquantitative parameters, such as
the sum of total lesion glycolysis (TLG) and total lesion PSMA (TLP), were also predictors
of shorter OS at multivariate analysis. Interestingly, in this study, patients were reported
according to the Pro-PET scoring system, a six-tier integrated dual-tracer (PSMA ligands
and [18F]FDG) PET/CT image scoring system ideated for mCRPC patients [50]. In the
future, the validation of this scoring system could represent a valuable tool for reporting
the imaging patterns of mCRPC patients by using a dual-tracer approach.

The majority of the remaining available data about double-tracer PET imaging in
mCRPC patients is derivable from studies assessing patients’ eligibility for radioligand
therapy (RLT) with [177Lu]Lu-PSMA. In the Lu-PSMA trial, 16% of patients were excluded
from RLT due to mismatched PSMA−/FDG+ lesions [51]. Other studies are consistent
with this finding, reporting that 18–33% of mCRPC patients show mismatched lesions in
dual-tracer PET imaging [30,48]. Remarkably, FDG+ tumor volume is reported among
prognostic factors in mCRPC patients receiving [177Lu]-PSMA [52].

Finally, in an ongoing prospective trial, Pouliot and colleagues [53] will assess the
metabolic heterogeneity of 100 mCRPC patients with a triple-tracer PET imaging ([68Ga]Ga-
PSMA-617, [68Ga]Ga-DOTATATE, and [18F]FDG). Hopefully, their results will clarify the
different patterns of mCRPC patients from NGI.

Considering all these premises, which is the best NGI for mCRPC patients? Unfortu-
nately, we actually do not have a clear answer to this crucial question. Nevertheless, current
evidence pushes towards the possible synergic role of the dual-tracer PET imaging (PSMA
ligands and [18F]FDG) in mCRPC. PSMA ligand PET/CT seems to have better diagnostic
accuracy than [18F]FDG PET/CT, although it may not reflect patients’ whole burden of
disease [42]. Nevertheless, the identification of PSMA−/FDG+ lesions is a negative prog-
nostic factor that should be considered in particular for selecting patients as candidates for
RLT with radiolabeled PSMA ligands [30,48,54]. According to Chen et al. [42], dual-tracer
PET imaging could be suggested in mCRPC patients with high Gleason scores (≥8) and
prostate-specific antigen (PSA) serum levels (i.e., >7.9 ng/mL in their cohort) in order to
avoid undetected PSMA−/FDG+ lesions. In this subgroup of patients, the double-tracer
PET imaging could increase the overall detection rate from 69.2% to 100%. However, this
would considerably increase the number of PET/CT scan requests to nuclear medicine
units, which would need a re-organization in terms of personnel and time resources. More-
over, the lack of cost-effectiveness analysis in the literature regarding dual-tracer imaging
in mCRPC does not allow for finalizing conclusions on its applicability in daily clinical
practice [55]. Therefore, the scarce evidence about this dual-imaging modality does not
allow us to recommend the routine use of it in selecting patients who are candidates for
[177Lu]Lu-PSMA.

3.4. Second Primary Neoplasms: Is PSMA Really “Prostate Specific”?

Despite its misleading name, PSMA is surely not a prostate-specific membrane antigen.
The evidence that PSMA is overexpressed in the endothelium surface of the neoangiogenic
vessels in several solid tumors has been largely demonstrated since the late 90 s [56]. In
the most recent years, we saw an increased interest in the potential application of PSMA
ligand imaging in non-prostate neoplasms, with encouraging results in renal cell carcinoma
(RCC) and gliomas, while less favorable evidence for thyroid and gastro-enteric neoplasms
exists [57–64]. Moreover, case reports or small-sized cohort studies have been published
regarding PSMA-avid lesions from other neoplasms, including breast cancer, hepatocellular
carcinoma, lung cancer, urothelial carcinoma, and salivary gland cancer [65–69].

Overall, the evidence that PSMA ligands are useful for imaging and—in a potential
theranostic approach—treating other neoplasms is good news. Nevertheless, the finding
that the “magic bullet” for PCa lacks specificity is also somewhat alarming. PCa is usually
a neoplasm of the elder age. Moreover, CRPC is the last phase of the natural history of
PCa, often occurring in multi-treated patients, several years after the diagnosis [70,71].
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Considering all these risk factors, mCRPC patients have an increased risk of developing
second primary neoplasms (SPNs), with a reported incidence rate ranging between 59
and 115 cases/year [72,73]. In a large cohort of 76,614 PCa patients, Chattopadhyay and
colleagues [74] reported that 11.3% of patients received a diagnosis of SPN. In a cohort of
2234 CRPC patients, Saltus et al. [75] reported 172 cases of SPN, with an incidence rate of
5.9 cases per 100 persons/year. The most frequent SPNs were lung/bronchus cancer, fol-
lowed by bladder and colorectal cancers (16.9%, 12.8%, and 12.2% of all SPNs, respectively).
In another study by Mehtälä et al. [73], 100 SPNs were diagnosed among 693 mCRPC
patients. Once again, the SPNs most frequently associated with PCa were bladder cancer,
colorectal cancer, and lung cancer. On the other hand, in 3795 RCC patients with a diagno-
sis of SPN, Chakraborty et al. [76] reported that PCa was the most frequently associated
malignancy, particularly in the first 6 months following the diagnosis of the renal disease.

Considering that most of these SPNs may overexpress PSMA in their neoangiogenic
vessels, it can be expected to find patients with two different PSMA-avid primary malignan-
cies in daily clinical practice (Figure 3). Indeed, several case reports have been published
in the literature regarding patients with PCa and another PSMA-avid SPN [77–82]. This
condition could represent a potential specificity issue in the Mcrpc setting, which is the
PCa scenario most frequently associated with SPN. In particular, the identification of the
primary tumor of a given PSMA-avid metastasis could represent a challenge for the nu-
clear medicine physician. Moreover, some PSMA-avid lesions could be in the differential
diagnosis between PCa metastases and SPN (i.e., a lung nodule).
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Figure 3. 86-year-old CRPC patient undergoing bone scan ((A): anterior and posterior planar bone
scan images) for rising PSA values (3.22 ng/mL). The scan shows no pathological uptakes; there-
fore, the patient underwent [68Ga]Ga-PSMA-11 PET/CT ((B): maximum intensity projection (MIP);
(C,D): coronal-fused and CT images. (E,F): Axial-fused and CT images), with evidence of several
bone focal uptakes, suggestive for metastases. Moreover, the scan shows a large area of increased
uptake in the lower pole of the right kidney (SUVmax 6.8), associated with loco-regional lymph
nodes with pathological uptake, compatible with renal SPN. In this case, a biopsy of bone lesions will
be needed to discriminate their nature (PCa vs. RCC metastases).

The nuclear medicine physician may usually have a hard time finding the right answer,
and clinicians could be forced to perform a biopsy on uncertain lesions. SPN usually
presents lower PSMA-avidity if compared to PCa; therefore, commonly used quantitative
parameters (i.e., SUVmax) could allow for speculation in case of the impossibility of
performing a biopsy [81]. However, RCC metastases have been documented with very
high PSMA ligand uptake, comparable to those of PCa metastases [60,83,84]. A possible
solution could be to perform [18F]FDG PET/CT and to make a double molecular imaging
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assessment of the patient’s pool of lesions. Nevertheless, in case of suspicious SPN, the
results of PSMA PET/CT should be carefully considered in metastatic PCa patients, and a
multidisciplinary board discussion should always be considered.

4. Conclusions

The development of a range of PSMA ligand PET in the diagnostic management of
PCa patients surely represents one of the most relevant recent revolutions in the field of
diagnostic imaging. However, some challenges still need to be solved, particularly in
the CRPC setting. While PSMA ligand PET has demonstrated a higher detection rate in
comparison to conventional imaging, allowing a significant reduction in the number of
nmCRPC patients, its real impact on patients’ prognosis is still an open question [9–11].
Indeed, the upstaging from nm to mCRPC precludes some therapeutic possibilities, as
conventional imaging was performed in the registering trials. Hopefully, new prospective
trials will include PSMA ligand PET imaging in their workflows.

Moreover, in the CRPC setting, PSMA ligand PET presents some limitations in sensi-
tivity and specificity. Due to its heterogeneity, CRPC may present a mosaic of neoplastic
clones, some of which could be PSMA−/FDG+. Therefore, to have a reliable assessment
of the whole burden of disease, dual-tracer imaging could be considered in mCRPC, par-
ticularly in those already subjected to multiple lines of treatment, or if neuroendocrine
dedifferentiation is suspected [42,49].

Finally, UBU (at [18F]F-PSMA PET) and SPN represent specific issues for PSMA ligand
PET in PCa patients. Their misinterpretation could be particularly relevant in mCRPC,
determining a wrong treatment selection both in terms of timing and type of therapy.
Once again, an integrated multi-tracer or multi-imaging approach could hypothetically
provide the answer to this issue, although a cost-effective analysis is needed to reach a final
recommendation. However, CRPC is a very complex and heterogeneous disease, and a
multidisciplinary discussion should be encouraged to reach the most accurate evaluation
of each patient from a precision medicine point of view.
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