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Abstract: Cyber–physical systems (CPS) integrate diverse elements developed by various vendors,
often dispersed geographically, posing significant development challenges. This paper presents an
improved version of our previously developed co-simulation interface based on the non-proprietary
Distributed Co-Simulation Protocol (DCP) standard, now optimized for broader hardware platform
compatibility. The core contributions include a demonstration of the interface’s hardware-agnostic
capabilities and its straightforward adaptability across different platforms. Furthermore, we pro-
vide a comparative analysis of our interface against the original DCP. It is validated via various
X-in-the-Loop simulations, reinforcing the interface’s versatility and applicability in diverse scenar-
ios, such as distributed real-time executions, verification and validation processes, or Intellectual
Property protection.

Keywords: Distributed Co-Simulation Protocol; simulation interface; real-time; verification and
validation; intellectual property protection

1. Introduction

Model-based design (MBD) is a widely adopted methodology for the development of
cyber–physical systems (CPS) [1]. This process consists of developing virtual models that
reproduce certain behaviors of a real system, avoiding the need to create costly physical
prototypes and facilitating the process of validation and verification [2]. These models often
reside in disparate modeling and simulation (M&S) environments, either because they
have been developed by different vendors and they want to preserve confidentiality [3], or
because it is wanted to implement part of the model on a specific hardware platform in
order to verify its performance in a specific environment [4]. Testing the correct interaction
between these elements at an early stage of the development phase facilitates the process
of validation and verification of them. However, as stated in [5], it is common to solve the
challenge of linking such elements using ad hoc methods.

The motivation for this work is to develop a tool-agnostic method that enables the
linking of different modeling and simulation tools and various hardware platforms. In [6],
we argued the lack of a language and platform-independent co-simulation architecture to
address this problem, and in [7], we proposed a solution, presenting an architecture based
on the non-proprietary Distributed Co-Simulation Protocol (DCP) standard. Nevertheless,
we did not explore how this could be deployed on different hardware platforms nor
demonstrate how the verification and validation process can be simplified. Implementing
such a tool would not only save time and resources, but also reduce costs, as it facilitates
the coupling of elements, minimizes the need for physical integration testing, and aids in
preserving Intellectual Property.
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Furthermore, beyond its applications in CPS, this methodology can be also highly
beneficial for any distributed system that requires synchronized and unified operations
across different components. It can be particularly valuable in the development of battery
management systems (BMS), which involve combining inputs from various software and
hardware components [8], or in smart-grid systems that need the coupling of simulators to
dynamically simulate several aspects of their infrastructures [9]. By offering a standardized
approach to co-simulation, our interface can significantly assist in simplifying the develop-
ment process, allowing users to focus on the system’s development while it handles the
complexities of interconnection tasks.

Accordingly, this article contributes to the field of distributed co-simulation by pre-
senting the new capabilities added to the co-simulation interface we have developed. It
has been designed to facilitate co-simulation in the development of CPSs; however, it can
also be applicable to the communication needs of other distributed systems. Specifically,
we discuss three distinct capabilities of this interface.

First, we illustrate the adaptability and ease of implementation of our interface across
various hardware platforms, including but not limited to the Xilinx Zynq UltraScale+, Xilinx
Zynq-7000 SoC ZC702, NVIDIA Jetson Nano, and Raspberry Pi. Our hardware-agnostic
approach, developed in Simulink and adaptable to standard C/C++ code generation,
enables effortless migration between platforms, reinforcing its versatility and reducing the
need for complex reconfiguration.

Second, taking into account that the use of X-in-the-Loop (XIL) simulations is widely
extended in the development of CPSs, we assess its ability to manage a real-time communi-
cation between Simulink and these diverse platforms.

Finally, we demonstrate the interface’s effectiveness in enabling communication be-
tween systems developed by geographically distributed suppliers. This is exemplified by
establishing a real-time simulation that connects the Xilinx Zynq-7000 SoC ZC702 with the
Raspberry Pi using UDP communication via our interface.

The paper is structured as follows. Section 2 addresses the need for a generic architec-
ture for co-simulation. Section 3 introduces the generic interface that enables performing
co-simulations between a variety of simulation environments. Section 4 explains the tests
that we executed to demonstrate the applicability of the interface. Section 5 exposes the
results of the conducted tests. Section 6 analyses the results of the previous section. Finally,
Section 7 presents the conclusions and future work.

2. Background and Related Work

Co-simulation is used to couple different simulation environments (e.g., a continuous
and an event driven simulation environment) in order to use an appropriate simulation
environment for each part of the system [10]. It is also applicable for linking spatially
distributed models [11]. Additionally, in the development and verification process of
control systems, different co-simulation techniques referred to as X-in-the-Loop (XIL) [12]
are used, encompassing the well-known Model-in-the-Loop (MIL), Software-in-the-Loop
(SIL), Processor-in-the-Loop (PIL), or Hardware-in-the-Loop (HIL) techniques. Despite
being a widely used technique, coupling problems often arise and there is no generic
methodology for linking different simulation environments. This problem is detected in
several works, where different co-simulation architectures are proposed to solve it.

Some research focuses on domain-specific solutions, such as [13], which presented a
co-simulation architecture for elevator validation and testing, or [14], which introduces an
architecture for the co-simulation of energy systems integration. Although these solutions
are valuable, their applicability is limited to specific use cases.

Our focus is on generic co-simulation solutions that enable the linking of software
models and hardware applications regardless of the application domain. In this area, works
like [12] propose an architecture applicable across various XIL approaches, designed for
real-time and distributed co-simulations across different geographical locations. However,
it relays on a proprietary architecture that is not standardized, and details on its implemen-
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tation in diverse modeling and simulation environments are not provided, suggesting that
integration may not be straightforward.

In the search for language- and platform-independent solutions, studies such as [15],
which presents a co-simulation framework based on the Functional Mock-up Interface
(FMI), and [16], which utilizes the High-Level Architecture (HLA) standard, are noteworthy.
The authors of [5] also propose an architecture aiming to avoid ad hoc approaches, focusing
on guaranteeing IP protection. However, their major drawback is that they have not
considered the integration of real-time systems or hardware-in-the-loop simulations.

To bridge this gap, we proposed [6] and presented [7], a co-simulation architecture
based on non-proprietary standards that facilitates coupling between different M&S envi-
ronments and hardware platforms. By relying on a non-proprietary standard such as the
Distributed Co-Simulation Protocol (DCP) [17], the architecture is implementable without
any intellectual property restrictions and, on top of that, it is compatible with any other
DCP secondary. Additionally, thanks to the DCP nature, it enables both non-real-time and
real-time co-simulation.

DCP is a non-proprietary standard designed to integrate real-time systems into co-
simulation environments. It follows the primary–secondary principle and it is independent
of the communication medium, as it works over common transport protocols such as
Bluetooth, UDP, or CAN. However, as the DCP is a relatively new standard, it has a limited
applicability in terms of simulation environments. Furthermore, its operation resides in
encapsulating the systems to be communicated; thus, a particular DCP secondary must
be created for each application. In comparison with the DCP, we propose a generic co-
simulation interface, i.e., the system to be communicated is independent to the interface
and there is no need to develop a specific secondary for each application. This is explained
in [7], where we extended the scope of the DCP by creating a Simulink library, allow-
ing for Simulink to be easily integrated not only into our architecture, but also into any
DCP application.

Previously, we presented the Simulink implementation of the proposed co-simulation
interface, testing it against a DCP secondary developed via the C++ DCP library [18],
provided by Modelica Association. In this new work, we improved it to be compatible
with the automatic code generation capability of Simulink, allowing the user to convert our
interface into source code (e.g., C or C++) and to deploy it on a wide variety of platforms.
This enhancement enables cross-platform migration and facilitates the validation of the
system under development. Consequently, we offer a solution for real-time communication
between models executed on these platforms.

Additionally, as our architecture is agnostic to both the simulation platform and the
communication medium, it enables the inclusion of technologies like FPGAs or GPUs in co-
simulations, opening up possibilities for its application in areas like simulation acceleration
or artificial intelligence. Indeed, to our knowledge, this represents the first instance of
the DCP being utilized on a platform with an FPGA execution. This article delves into
demonstrating this hardware-agnostic enhancement via various X-in-the-Loop simulations.

As this paper deals with real-time (RT) simulations, it is worth having a little back-
ground on the characteristics of these systems. First, it is worth mentioning that, in real-time
systems, the instant in which the response occurs is as important as the response itself [19].
If the response does not arrive at a predefined time, called deadline, the response may be
unusable and may have adverse consequences for the system. Another characteristic of
these systems is the so-called wall clock. All computational elements involved in a real-time
simulation must have a common clock reference and be synchronized to it. The higher the
accuracy of this synchronization, the better the system will be able to temporally carry out
more constrained simulations. Determinism is another characteristic of these systems, of
which it indicates the reproducibility of the system. That is, if we run several simulations
of the same system, where all its components start at the same time and with the same
starting conditions, then the determinism means the ability of the system to replicate the
results at the same time instants.
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On the other hand, there are non-real-time (NRT) simulations. These are controlled
simulations that usually repeat a read-compute-write sequence, where they first wait for
the receiving data, then process it, and finally write the result at the output port. Once
this cycle is finished, the next cycle starts following the same sequence. Comparing with
real-time systems, they do not have to provide a temporally accurate response. It is to
say, the message transport latency can vary without affecting the behavior of the system.
Simulink, for example, is a tool that, by default, runs in NRT; however, it also has a tool
called Simulink Desktop Real-Time [20], which allows us to synchronize the simulation
with the wall clock. This tool has two modes of use: I/O mode and kernel mode. The
first one synchronizes the I/O drivers with the real-time clock and allows us to perform
real-time executions up to 1 kHz (1 ms sampling time); this is the one that we use in
this work.

3. Proposed Interface

The interface we propose is based on the non-proprietary DCP standard; thus, it must
be configured as a DCP secondary. Nevertheless, as depicted in Figure 1, its behavior is
not that of a conventional DCP secondary. Our implementation focuses on transmitting
information from one environment to another and it is completely model independent,
whereas in conventional usage, the secondary wraps the model [21], having to link them
internally by hand. From a practical point of view, there is a big difference, since in the
original paradigm, a specific DCP secondary has to be developed for each application,
whereas our proposal is designed to indicate only the number of input/outputs plus an
easy configuration of them.

Model

DCP Slave I/O

(a)

Model

DCP Slave I/OI/O

(b)
Figure 1. Comparison between original DCP Secondary design and our interface. (a) Original DCP
Secondary design representation: internally linked DCP Secondary and Model, with one specific DCP
Secondary for each Model; (b) Proposed interface of new DCP Secondary design: externally linked
DCP Secondary and Model, using the same secondary with easily configurable Input/Outputs.

To achieve this independence between the model and the DCP secondary, in addition to
implementing a specific DCP secondary, we also developed a series of peripheral modules,
which are explained in [7]. Thus, our interface is composed of these modules and a DCP
secondary. Our goal in developing this interface as a Simulink library was to take advantage
of its tools so that we could generate C/C++ code for our interface and implement it on a
variety of hardware platforms without additional modifications.

This modularity, apart from providing flexibility during the design process, allows
for the separation of modeling tasks from communication tasks, enabling the user to focus
on the system development aspects. Moreover, it extends the applicability of the DCP
standard itself, as will be demonstrated later, allowing for the inclusion of technologies
such as FPGAs in co-simulations, which is a novel application for the standard. All this
contributes to time savings in conducting co-simulations and offers greater adaptability
regarding the software and hardware technologies one wishes to employ.



Electronics 2023, 12, 4919 5 of 14

3.1. Configuration of the Interface

We have advanced that the configuration of the interface is based on the DCP standard;
therefore, we will use the DCP standard specification document [22] for the explanations of
this section. The references to specific clauses of the standard will be in italics to better guide
the reader. In this section, we will only focus on the essential parameters (in monospace
font) to define our interface; however, there are also other optionally modifiable parameters
whose explanation can be found in the standard specification document. Figure 2 will be
helpful to understand certain concepts.

Interface Master (ID 0)
Host: 192.168.0.20

Port: 8080

Ubuntu 18.04

dataId_cntrl = 1

single

dataId_enable = 3

boolean

dataId_fdb = 2

single

Co-simulation platform 2

Model 2:
Plant & Sync. 

algorithm

dataId_interface = 0

Interface Slave 2 (ID 2)
Host: 192.168.0.10
Port: 8082

in_cntrl
(vr = 2)

out_enable
(vr = 6)

in_enable
(vr = 5)

out_cntrl
(vr = 1)

out_fdb
(vr = 3)

in_fdb
(vr = 4)

Co-simulation platform 1

Model 1:
Control 

Algorithm

dataId_interface = 0

Interface Slave 1 (ID 1)
Host: 192.168.0.30
Port: 8081

in_cntrl
(vr = 1)

out_enable
(vr = 5)

in_enable
(vr = 6)

out_cntrl
(vr = 2)

out_fdb
(vr = 4)

in_fdb
(vr = 3)

Figure 2. Interface configuration of the employed use case.

Some parameters are set in each secondary, while others are set in the primary. The
secondaries are limited to set their internal parameters (see 5.4 Definition of dcpSlaveDescrip-
tion Element, pp. 80–82), of which the essential parameters for configuring the interface are
defined by the following elements:

• Time resolution (5.9 Definition of TimeRes Element, pp. 87–88). It defines one atomic step
of the secondary and is represented by an element that contains a list of permissible
single time resolutions or a list of resolution ranges. To set a single resolution, which
is what we are going to do next, we have to set two sub-parameters: numerator and
denominator, where the numerator divided by the denominator represents the time
resolution of the secondary.

• Transport protocol (5.11 Definition of TransportProtocols Element, p. 88). The DCP
supports multiple transport protocols and this element is used to store their specific
settings. For instance, if the UDP transport protocol is used, this element must indicate
it and contain the host and port data of the secondary.

• Variables (5.13 Definition of Variables Element, pp. 92–98). This element contains the in-
formation about the variables of the secondary, they can be either an Input, an Output,
a Parameter, or a Structural Parameter. Among its sub-parameters, the indispensable
ones to configure our interface are valueReference, dataType, and declaredType.
valueReference is the identifier of each variable and its value must be unique; in
Figure 2, it can be seen how each I/O of each secondary has different valueReference
(vr) values. With dataType, we declare the data type of the variable, see Table 174:
Data type elements to know the accepted data types by the DCP standard. Finally, with
declaredType, we indicate whether the variable is used as an input/output that con-
nects to another secondary, or as an input/output that connects to an external model.
For this purpose, we have two predefined options: default, for communication
between secondaries, and interface for communication with the models.

As the task of the interface is to communicate between different co-simulation envi-
ronments, inputs and outputs will always have to be declared in pairs. Each pair will be
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internally linked in an automatic way as long as their valueReferences are consecutive. In
other words, the valueReference parameters of an input–output pair must be consecutive.
These values shall consist of the pairs 1–2, 3–4, ..., regardless of which of the two is the
value of the input and which of the output. Additionally, if an output of one interface com-
municates with an input of another interface, both must have the same valueReference.
This is shown in Figure 2. In this way, we determine the link between interfaces and certify
a correct communication.

The primary, on the other hand, configures how the inputs and outputs of the secon-
daries should communicate with each other. That is to say, it indicates to each secondary
where the inputs corresponding to its outputs are and vice versa. In addition, it estab-
lishes the sending frequency of each output. To do this, the following parameters must
be configured:

• Step Size. The primary defines the step size of each output of all secondaries. The
step size is a multiple of the time resolution parameter mentioned in the secondary
configuration. That is, the step size of each output is defined by the time resolution of
its secondary multiplied by the step parameter.

• Data Identifier (data_id). When exchanging information between secondaries, Out-
puts are communicated to Inputs via DAT_input_output PDUs. Thanks to the data_id
parameter, the values of several outputs of a secondary can be grouped in a single
DAT_input_output PDU. Only outputs that have the same configuration, i.e., sender,
receiver, and step size, can be grouped together.

4. Methodology

In this section, we explain the experiments that we performed to show how the
architecture presented in [6] is applicable on several hardware platforms and how it is
applicable on a distributed real-time co-simulation application. To do so, we apply it on
four different platforms, which are introduced in Section 4.1. As the proof-of-concept use
case, we use a closed-loop control model explained in Section 4.2. In Section 4.3, we present
the co-simulation scenarios we use to demonstrate the applicability of the interface. Finally,
in Section 4.4, we explain how to configure our generic co-simulation interface for this
particular use case.

4.1. Hardware Platforms

In order to test the applicability of our architecture, and thus of our interface, it has
been decided to work with hardware platforms designed for different purposes, where
concretely we used

• Hardware platforms with integrated FPGA, such as Xilinx Zynq UltraScale+ and
Xilinx Zynq-7000 SoC ZC702.

• Hardware platforms with integrated GPU, such as NVIDIA Jetson Nano.
• Generic hardware platforms such as Raspberry Pi 3B, which is very accessible and

widely used.

By working with platforms that integrate FPGAs or GPUs, we are able to introduce
these technologies into co-simulations, expanding our design to new applications such as
simulation accelerators, artificial intelligence, or image processing.

However, for now, our interface has two limitations. Firstly, it is only implemented
to run on soft real-time (SRT) and hard real-time (HRT) operation modes, of which the
non-real-time (NRT) operation mode has not yet been implemented. Therefore, as both
implemented modes require a common clock reference shared by all computing elements,
the interface must be implemented in an environment that can provide it. Secondly, for the
moment, we have only implemented UDP communication, so the boards must have an
Ethernet port.
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4.2. Use Case: Control of a Closed-Loop System

As was performed in [7], as a proof of concept, we use a closed-loop control system.
This system consists of two parts: a plant, which is modeled as a discrete time first-order
system, represented by Equation (1), and a PI control algorithm, represented by Equation (2).
The simulation analysis is performed by observing the time evolution of the closed-loop
system response to a step input, comparing both the transient and steady-state parts. It
is worth pointing out that this work is focused on testing the capability of the interface
to communicate distributed systems in real time. Therefore, in order to facilitate the
demonstration process, we have chosen this simple use case.

y(k) = a · y(k − 1) + b · u(k) (1)

where

• u is the control signal;
• y is the plant output or feedback signal;
• a is a constant parameter, and it was permanently set to a = 0.99;
• b is a constant parameter, and it was permanently set to b = 0.01.

u(k) =
[

Kp + KiTs
1

z − 1

]
e(k) (2)

where

• u is the control signal;
• Kp is the proportional gain coefficient;
• Ki is the integral gain coefficient;
• Ts is the sampling period;
• e(k) = r(k)− y(k) is the error signal;
• r(k) is the target reference signal;
• z is the unit delay operator.

4.3. Co-Simulation Scenarios

In [7], we presented different scenarios to explain the development process of the
interface. We started with a scenario composed only of Simulink and ended up with
a scenario where the control algorithm was running in an UltraScale+ and the plant in
Simulink. However, in order to implement the control subsystem on the UltraScale+ board,
we manually created a DCP secondary using C++ code that was specifically adapted
to work on this board and be compatible with the control algorithm. Now, we want to
progress in the development of the interface and test its applicability. To do so, following
the MBD methodology, we have automatically generated interface code from the Simulink
model, using the Embedded Coder tool. In order to be able to generate code correctly, we
adapted the Simulink model by adding blocks and creating functions compatible with this
generation. After that, we were able to generate directly implementable code, without the
need for any changes, in any of the platforms presented in Section 4.1.

Figure 2 represents the co-simulation scenario. In it, we can see the two models
that compose the use case, defined in the Section 4.2, located in different simulation
environments and communicated via two entities/secondaries of our interface. On the left,
we can see Model 1, where the control algorithm is located. On the right, we can see Model
2, which is composed of the plant and a synchronization mechanism. The latter has the
function of ensuring a controlled start of closed-loop control applications. Guaranteeing
identical starts in all executions help us analyze the interface behavior. For a detailed
description of its operation, refer to [7]. The communication medium used to link both
systems is UDP.

To demonstrate the easy implementation capability of the interface on different hard-
ware platforms and, at the same time, to analyze its scope for performing real-time XIL
simulations, we have considered the following scenarios:
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• Scenario 1.A: Control algorithm and interface in the ARM-based processor of the
ZC702 and Plant in Simulink.

• Scenario 1.B: Control algorithm and interface in the ARM-based processor of the
UltraScale+ and Plant in Simulink.

• Scenario 2: Control algorithm and interface in the ARM-based processor of the Jetson
Nano and Plant in Simulink.

• Scenario 3: Control algorithm and interface in the CPU of the Raspberry-Pi and Plant
in Simulink.

• Scenario 4.A: Control algorithm in the FPGA of the ZC702, interface in the ARM-based
processor of the ZC702, and Plant in Simulink.

• Scenario 4.B: Control algorithm in the FPGA of the UltraScale+, interface in the ARM-
based processor of the UltraScale+, and Plant in Simulink.

Additionally, to demonstrate its applicability in distributed real-time executions, we
have proposed the following scenario:

• Scenario 5: Control algorithm in the FPGA of the ZC702, interface in the ARM-based
processor of the ZC702, and Plant in the CPU of the Raspberry-Pi, see Figure 3.

Figure 3. Scenario 5.

It is worth mentioning that in all scenarios, we have kept the same interface configura-
tion (see Section 4.4), thus facilitating the interoperability between simulation tools.

As we mentioned in Section 4.1, our interface is limited to work in real-time operation
mode; therefore, all the scenarios have to be executed in real time. The DCP standard defines
that in its real-time mode, all components within the simulation must be synchronized
with POSIX time. That is to say, they have to synchronize their clock by reference to
1 January 1970, 00:00:00 UTC. Consequently, we have to make all the components run in an
environment that supports it and make them synchronized with each other. To make this
possible on the platforms, we have installed an Ubuntu operating system on the CPUs of
all of them, whose clock will be synchronized with the POSIX time. Therefore, the interface
and the system (plant or controller) will run on it. Regarding Simulink, as explained above,
by default, it works in non-real-time mode. However, we will use its Simulink Desktop
Real-Time tool in I/O mode, which allows us to synchronize the UDP ports with the wall
clock. This way, it will be also be synchronized to the POSIX time. It should be noted
that we will run Simulink on a conventional PC that contains a 6-core Intel Core i7 CPU
processor and uses a Windows 10 operating system.

The use of the interface must not alter the behavior of the closed-loop system in any of
the scenarios. Therefore, we need a reference in order to be compared with the scenarios.
To this end, using the Embedded Coder and HDL Coder tools provided via Simulink, we
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conducted Processor-in-the-Loop (PIL) and FPGA-in-the-Loop (FIL) simulations equivalent
to the scenarios. In this way, we obtained a reference response for each of the scenarios.
In other words, for scenarios 1.A, 1.B, 2, and 3, we performed PIL simulations, one with
each hardware platform, while for scenarios 4.A and 4.B, we performed FIL simulations.
Each of these simulations are used as a reference for their respective scenario. Regarding
scenario 5, we compare its responses to those of the system running entirely in Simulink.

4.4. Interface and Simulations Configuration

Two types of configurations were applied to conduct the experiment: the configuration
of the models to be simulated and the configuration of the interface.

Regarding the configuration of the models, in [7], we saw that the behavior of the
interface varied depending on the execution time; therefore, we performed the tests using
six different configurations. In the current article, instead, we are going to focus on working
only with the most limiting configuration that we encountered, which is shown at Table 1.

Table 1. Configuration for the simulation.

Configuration I Ts = 10 ms Kp = 10 Ki = 10

Regarding the configuration of the co-simulation interface. In Section 3.1, we explain
the indispensable parameters to be configured. Now, we specify which values we chose for
our particular use case:

• Time resolution. With this parameter, we indicate under which step size the state
machine of the interface is executed. We set it to the lowest resolution that Simulink
Desktop Real-Time allows for when working in I/O mode. Therefore, we set it to 1 ms:
numerator = 1 and denominator = 1000. It is also worth mentioning that the step size
of the interface must be lower than that of the model [7].

• Transport protocol. As mentioned, we use UDP. In Figure 2, we can see the chosen
host and port values.

• Variables. We declared three inputs and three outputs to each interface. In Figure 2,
we can see the data types and the value reference of each one.

• Data identifier. In Figure 2, we can see that each secondary has been assigned four
data_id. This means that each variable that is transmitted between secondaries has
grouped independently, while the outputs that go from the interfaces to each of the
models have been grouped together.

• Step size. We assigned a step value of 3 to the three data_ids that are transmitted
between secondaries (i.e., dataId_cntrl, dataId_fdb, and dataId_enable) and a step
value of 10 to dataId_interface. With this configuration, we could have assigned the
same data_id to the three signals that are transmitted between secondaries, but this
makes it easier in case of future modifications.

5. Results

In this section, we present the simulation results of the scenarios explained in Section 4.3.
They will be discussed in Section 6. In order to prove that the system behaves identically for
every execution, as conducted in [7], we perform 25 executions of each scenario. Between
each run, the system is reset in order to ensure identical starting conditions in each of them.
Subsequently, we compare the time response of the y(k) output of each scenario with the
respective reference. From this comparison, we obtain the error, which is calculated by
means of Equation (3).

err =

√√√√ 1
N

N

∑
k=1

[
y(k)− yre f (k)

]2 (3)

where N represent the steps executed in a simulation, y(k) is the response of the closed-loop
system at step k under a specific scenario, and yre f (k) is the response of the closed-loop
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system under the corresponding reference. Table 2 reports the maximum, the minimum,
the mean, and the standard deviation of the error over the 25 repetitions.

Figure 4 helps us understand the results of the table. It comprises two graphs, each
comparing the response y(k) of a scenario (red line) with its corresponding reference (green
line). There are 25 red lines in each graph, corresponding to the 25 repetitions that were
executed for each configuration. We have decided to show only these two scenarios because
they are sufficient to explain the behavior of the rest.

Table 2. Comparison between MathWorks PIL/FIL solution and the proposed interface.

Scenario 1.A—PIL in ZC702
max = 0.23479 min = 0.042779 mean = 0.12957 sd = 0.05131

Scenario 1.B—PIL in UltraScale+
max = 0.21266 min = 0.024876 mean = 0.13098 sd = 0.048035

Scenario 2—PIL in Jetson Nano
max = 0.20944 min = 0.030067 mean = 0.11274 sd = 0.043965

Scenario 3—PIL in RaspberryPi
max = 0.20592 min = 0.050682 mean = 0.13517 sd = 0.04197

Scenario 4.A—FIL in ZC702
max = 0.14277 min = 0 mean = 0.04963 sd = 0.0404

Scenario 4.B—FIL in UltraScale+
max = 0.12031 min = 0 mean = 0.051518 sd = 0.036303

Scenario 5—Distributed co-simulation
max = 0 min = 0 mean = 0 sd = 0
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Figure 4. Comparison of the responses of Scenarios 1A and 5 with their respective References.
(a) Scenario 1A. (b) Scenario 5. The responses overlap.

6. Results Analysis

There are three topics we have discussed in this article, so this analysis will also be
divided into three parts.

The first point focuses on evaluate the viability and ease of implementation of the
interface in a variety of hardware platforms. Since we developed it in Simulink and adapted
all its functions to be compatible with the generation of generic C/C++ code, we were
able to implement it easily on all the platforms mentioned in Section 4.1. This way we
demonstrate that the interface can be migrated between platforms without any extra effort.

As for our second point, we evaluated the viability of the interface to perform real-
time executions between Simulink and the platforms described in Section 4.1. In Table 2,
from Scenario 1A to Scenario 4.B, we find the results of the tests carried out for this point.
Additionally, Figure 4a displays graphically the results obtained in Scenario 1A. As the



Electronics 2023, 12, 4919 11 of 14

graphs obtained in Scenarios 1A to 4B are very similar, we decided to omit the rest and
display only this one to assist in the interpretation of Table 2. Analyzing this table, we
observe that there is an error in every scenario. Simplifying the results, we can say that the
mean error of PIL simulations (from Scenarios 1A to 3) is in the order of 0.215 units (±0.02),
whereas the mean error of FIL simulations (Scenarios 4A and 4B) is about 0.13 units (±0.01).
This error occurs because the PIL and FIL simulations made with MathWorks tools exhibit
identical behavior in each run, while our simulations vary in each of the 25 runs. This can
be seen in Figure 4a, where there is single green line (corresponding to the MathWorks
response) and multiple red lines (each corresponding to one of the 25 tests). Nevertheless,
it can also be seen that this error is focused in the transient state, while in the steady state,
it is minimum. In fact, in the steady state, from second 0.4 onwards, the mean error is of
the order of 0.019 units (±0.008), with a standard deviation of another 0.019 units (±0.007).

The appearance of this error means that our solution is not deterministic, which is
an indispensable quality in the real-time executions for the verification and validation
processes of the CPS. Therefore, we can say that our interface is not suitable for linking
Simulink and hardware platforms in real time. However, we did not test how our interface
would behave with these scenarios working in non-real-time mode, that is, following the
controlled read-compute-write sequence explained previously. In fact, this is the way that
MathWorks performs PIL and FIL simulations. Nevertheless, as explained before, this is an
operation mode that we have yet to implement.

Analyzing the cause of this non-deterministic response, we have not been able to
link Simulink simulation time with POSIX time. In other words, POSIX time is constantly
moving forward, and in a period of time, the simulation time becomes blocked and it does
not advance. Figure 5 demonstrates this behavior, where the graph, instead of showing
a perfect diagonal line, shows “jumps”, which are sometimes more pronounced. As we
discussed previously, real-time systems must guarantee a response every predefined period
and this break does not allow it. This can be caused, for instance, due to an interruption in
the computing platform. This is the reason why we have not been able to benefit from all
the power that the Simulink Desktop Real-Time tool provides.

0 200 400 600 800 1000
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Figure 5. Desynchronisation between POSIX and Simulation time.

The effect of this desynchronization in our scenarios is that the plant, which is exe-
cuting in Simulink, stops running for an indefinite period, while the control algorithm on
the hardware platform continues to run. During this period, the control will not receive
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updated input values from the plant; however, they will be processed, provoking incorrect
output control signals. When the plant resumes running, it reads the last of this unwanted
values, resulting in an incorrect feedback value being sent to the controller. This way, a
single desynchronization in the execution can significantly impact the system’s behavior,
leading to non-deterministic behavior. It is worth mentioning that the faster the system
runs, the smaller its execution steps will be. As a result, a pause in the simulation time will
involve more simulation steps, creating a more adverse effect on the system’s response.

Finally, it remains to analyze the response of our implementation in real-time dis-
tributed applications, i.e., Figure 4b. Contrary to what happens in the previous tests, we
can see how the 25 red lines are overlapped. On top of that, they have the same behavior as
the reference (green line). The fact that we obtained identical results in all executions means
a deterministic simulation. Therefore, we can be assured that our interface is suitable for
real-time distributed simulations. At the same time, these results demonstrate that the
problem we had in linking Simulink with hardware platforms lies in the fact we were not
able to link Simulink with the wall clock correctly.

7. Conclusions and Future Work

In this paper, we present an empirical demonstration of the applicability of the previ-
ously developed generic co-simulation interface. Specifically, we demonstrated (i) its easy
implementation on a variety of hardware platforms and (ii) how it can be used in real-time
distributed simulations. Both capabilities are very useful in the process of verification and
validation of cyber–physical systems, especially in those whose components are developed
by different suppliers; in those where the system is split into smaller modules to spread
the computational load across different processors; or in those where the integration of
different simulators into a single system is required. Therefore, our interface could save
time, resources, and money, as it facilitates the coupling of elements, saves displacements
for integration testing, and helps to preserve Intellectual Property.

To test the interface, we deployed it in different hardware boards and performed a
closed-loop simulation between them, obtaining reliable responses. Consistent with the
MBD methodology, as we have developed it in Simulink and take advantage of its code
generation capabilities, our interface is easily implementable in a wide variety of simulation
environments. Additionally, as our interface is based on the non-proprietary DCP standard,
it is fully compatible with any other DCP secondary.

Looking to extend our work to the future, in order to improve the linking capability to
Simulink, we want to develop the non-real-time simulation mode. Additionally we have
planned to test the applicability of this interface in a more complex use case involving
hardware-in-the-loop simulations.
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Abbreviations
The following abbreviations are used in this manuscript:

DCP Distributed Co-Simulation Protocol
MBD Model-based design
CPS Cyber–physical system
M&S Modeling and simulation
XIL X-in-the-Loop
MIL Model-in-the-Loop
SIL Software-in-the-Loop
PIL Processor-in-the-Loop
HIL Hardware-in-the-Loop
HIL FPGA-in-the-Loop
UDP User Datagram Protocol
FMI Functional Mock-up Interface
RT Real-time
NRT Non-real-time
SRT Soft real-time
HRT Hard real-time
FPGA Field-programmable gate array
GPU Graphics processor unit
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