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Abstract: IEEE 1588, also known as the Precision Time Protocol (PTP), is a standard protocol for
clock synchronization in distributed systems. While it is not architecture-specific, implementing
IEEE 1588 on Reduced Instruction Set Computer-V (RISC-V) low-power embedded devices demands
considering the system requirements and available resources. This paper explores various approaches
and techniques to achieve accurate time synchronization in such instruments. The analysis covers
software and hardware implementations, discussing each method’s challenges, benefits, and trade-
offs. By examining the state-of-the-art in this field, this paper provides valuable insights and guidance
for researchers and engineers working on time-critical applications in RISC-V-based embedded
systems, aiding in selecting the most-suitable stack for their designs.
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1. Introduction

The Precision Time Protocol (PTP), standardized in IEEE 1588 [1], defines a method
for precisely synchronizing the system clocks of different connected devices over a Local
Area Network (LAN) or even a sensor one. Employing the PTP standard, it is possible
to achieve clock synchronization with sub-microsecond accuracy, allowing real-time data
interchange in communication networks.

IEEE 1588-2002 (PTPv1) [2], IEEE 1588-2008 (PTPv2) [3], and its later version, IEEE
1588-2019 (PTPv2.1) [4], have been developed as a hierarchical Master–Slave clock synchro-
nization protocol. These standards can account for delays incurred at the end nodes and
delays introduced by other network elements, such as Ethernet switches supporting PTP
(boundary or transparent clocks).

PTPv1 established the fundamental framework for achieving sub-microsecond clock
synchronization in LAN environments, but it had some limitations, including a lack of
support for specific network topologies and scalability issues. PTPv2 addressed these
limitations and offered improvements, making it more suitable for complex and diverse
network infrastructures. This update brought the concept of boundary and transparent
clocks, which enabled more-robust time synchronization across networks with multiple
segments and heterogeneous devices.

The latest version of the standard, PTPv2.1, which is currently active, introduces
refinements to enhance accuracy, flexibility, and interoperability. PTPv2.1 includes ad-
ditional features, such as enhanced security mechanisms, support for unicast operation,
and optimizations for low-power and resource-constrained devices, making it an attrac-
tive option for modern time-critical applications. Table 1 provides a summary of the
standard’s evolution.

There are several ways of implementing PTP and its stack. The synchronization
accuracy varies depending on the chosen implementation method and the placement of
timestamps [5]. To achieve optimal accuracy, timestamping for incoming and outgoing
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messages is ideally performed as close as possible to the physical layer, often accomplished
through a hardware-based implementation. However, tasks related to the protocol, such
as message processing, data set updates, execution of the Best Master Clock Selection
Algorithm (BMC), and the clock control loop, are commonly carried out in software. The
combination of hardware and software implementations enables efficient and precise
time synchronization for distributed systems, making hardware-assisted PTP an attractive
solution for various applications [6].

Table 1. PTP versions.

Version Year Standard Features and Improvements

PTPv1 2002 IEEE 1588-2002 Initial release, basic clock
synchronization

PTPv2 2008 IEEE 1588-2008 Enhanced accuracy, boundary and
transparent clock support

PTPv2.1 2019 IEEE 1588-2019 Corrections and clarifications to PTPv2

The presented research investigates state-of-the-art solutions to enhance resource-
constrained RISC-V System-on-Chip (SoC) synchronization capabilities with high precision.
In contemporary applications, accurate timing plays a pivotal role in ensuring the seamless
operation and coordination of various systems, including, but not limited to Industrial
Automation [7], Power Grid Management [8,9], and Transportation Systems.

The RISC-V architecture provides a range of options for integrating peripheral modules
and expanding the capabilities of internal CPUs. Consequently, this study highlights the
limitations of current options for integrating PTP into RISC-V systems. This identification of
constraints serves as a valuable foundation for the subsequent phases of our research, which
are dedicated to proposing and developing a high-precision synchronization capability
tailored to RISC-V-based SoCs.

This paper explores the context and reviews the literature concerning the RISC-V archi-
tecture (Section 2). It provides insights into the PTP architecture’s components (Section 3)
and discusses existing general PTP implementations (Section 4). (Section 5) analyzes op-
timal alternatives for PTP on low-power RISC-V, concluding with future directions in
(Section 6).

2. Background Review

The IEEE 1588 standard is not specific to any particular processor architecture. Its
implementation on RISC-V low-power embedded devices may vary depending on the
system requirements and available resources. It can be categorized according to the imple-
mentation type as:

• Software-based implementation: The IEEE 1588 standard can be implemented using
software running on Master and Slave devices. However, software-based solutions
have limitations in terms of precision and accuracy, especially if the device’s hardware
lacks support for timestamping or high-resolution timers.

• Hybrid implementations: In some cases, software and hardware assistance can be
used to implement IEEE 1588 on low-power RISC-V devices. This approach improves
the accuracy and precision of the synchronization process.

• Hardware-based implementation: Certain RISC-V processors or Systems-on-Chips
(SoCs) may incorporate a full-stack PTP implementation without relying on any
software processing component. The central goal of this strategy is to attain better
levels of performance. With this hardware-based approach, the architecture places a
more-significant emphasis on accuracy and precision than previous implementations.
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The RISC-V architecture is an open-source Instruction Set Architecture (ISA) designed
to be modular, extensible, and highly customizable. It is not tied to a single company,
making it an attractive choice for tailored systems [10].

The modularity and variability characterize RISC-V. This means the architecture
can accommodate various word lengths, allowing for implementations with different bit
widths tailored to diverse applications. Additionally, RISC-V adheres to a coherent and
sequentially consistent memory model, simplifying programming and code porting across
various implementations. Moreover, the architecture offers the possibility of optimization
for low power consumption by selecting suitable extensions and configurations [11].

This architecture is a versatile foundation for creating customized processor cores,
particularly through RISC-V soft cores on FPGAs. It is an excellent fit for diverse projects
like embedded systems, real-time applications, and accelerators.

The central aim of this endeavor is to identify solutions tailored specifically to RISC-
V implementations that do not incorporate Memory Management Units (MMUs). These
solutions can optimize resource usage and simplify the process, excluding Linux-like systems.

These compact, low-power microprocessors are widespread for applications in the
IoT and industrial sectors. The spotlight has been on these small CPUs in academic
settings and recent open-source initiatives. In this context, the simplest PULP-based
systems are microcontrollers that can be configured to use any supported 32-bit RISC-V
core from the PULP platform [12], along with the addition of memory and some peripherals.
The mentioned RISC-V-compatible processors are RI5CY, Zero-Riscy, and Micro-Riscy.
Furthermore, advanced versions also allow for adding accelerators to the system. This
comprises a family of open-source heterogeneous cores ready to be employed in various
contexts. Additionally, they are designed to deliver high energy efficiency and low power
consumption for battery-powered IoT devices.

CV32E40P is a small and efficient in-order core based on the RISC-V architecture [13].
In 2016, under the name RI5CY, it became a RISC-V core, and in 2020, it started being
maintained by the PULP platform, contributing to the “Open Hardware Group”. RI5CY
was implemented to address energy efficiency in applications deployed on Digital Signal
Processors (DSPs).

Next, the need for a simpler and smaller core led to the creation of the Zero-Riscy
processor, designed as a straightforward and efficient core. The development of Ibex began
in 2015 under the name “Zero-Riscy” as part of the PULP platform for energy-efficient
computing. A significant portion of the code was generated by streamlining the RV32 CPU
core known as “RI5CY”, showcasing the potential for creating an exceptionally compact
RISC-V CPU core. In December 2018, lowRISC took over the development of Zero-Riscy
and renamed it Ibex [14].

Lastly, Micro-Riscy is a parameterized variation of Zero-Riscy with a minimal area,
designed to create the smallest-possible RISC-V core. To achieve this, support for the “E”
extension was added under the codename “Micro-Riscy”. Within the PULP ecosystem, this
core is employed as a control core for PULP, PULPino, and PULPissimo.

One notable solution designed for IoT applications is the PULPino platform [15].
This marked the initial open-source release within the PULP ecosystem and garnered
considerable attention. PULPino is a micro RISC-V controller offering a choice between
two processors: RI5CY or Zero-Riscy. Its open-source and parameterizable core design
make it adaptable to various scenarios.

The PULPissimo platform was developed [16], representing an advanced iteration of
the PULPino microcontroller. The critical alteration involves the logarithmic interconnec-
tion between the core and the memory subsystem, facilitating the existence of multiple
access ports. These ports are subsequently employed by an integrated Micro Direct Mem-
ory Access unit (uDMA), capable of directly transferring data between peripherals and
memory. Additionally, this platform incorporates optional accelerators known as Hardware
Processing Engines (HWPEs).
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3. Overview of Precision Time Protocol Architecture and the Protocol Stack

The IEEE 1588 standard is a comprehensive protocol architecture designed to achieve
clocks’ precise synchronization and syntonization across devices within networked dis-
tributed systems, providing accuracy at a sub-microsecond level. Clock syntonization is a
fundamental concept within this standard, encompassing harmonizing the frequencies of
two independent clocks to ensure they operate at an identical rate. This can be observed in
the relationship between Clock 1 and Clock 2 (b), as illustrated in Figure 1. Moreover, clock
synchronization pertains to coordinating the current time between these synchronized
clocks, ensuring they agree on the same time reference [17]. Clocks operating in perfect
harmony can be observed in Figure 1, particularly in the depiction of Clock 1 and Clock 2
in (c).

Clock 1

Clock 2

(a)

(b)

(c)

Figure 1. Clock syntonization and synchronization. (a) Clock 2 has a different rate than Clock 1.
(b) Clock 1 and Clock 2 operate at the same rate. (c) Clock 1 and Clock 2 are synchronized.

All device clocks are typically synchronized to a Grandmaster clock within the PTP
domain. The Grandmaster clock functions as the primary time reference for the entire
network, while other clocks, referred to as Slave clocks, synchronize their time with the
Grandmaster to attain precise time alignment. This process occurs through PTP message
exchanging and capturing the timestamping for transmitted and received packets, allowing
the Slave clocks to adjust their local time to match the time of the Grandmaster clock. This
continuous exchange and adjustment ensures that all devices in the network maintain
accurate and synchronized time.

The protocol distinguishes between two types of messages: Event messages, which
facilitate the exchange of timing information between devices, and General messages,
which serve various communication purposes within the PTP protocol [17]. Figure 2 is a
simplified PTP exchange message to understand synchronization:

• Sync messages: The Master clock sends Sync messages to all Slave clocks with its
current time.

• Follow-Up messages: Immediately after sending a Sync message, the Master sends a
Follow-Up message. This message carries more-precise timing information related
to the transmission of the Sync message. It allows the Slave clocks to calculate the
propagation delay more accurately.

• Delay Request (Delay-Req) messages: The Slave clocks send Delay-Req messages to
request the round-trip delay time between themselves and the Master clock. These
messages contain timestamps representing the time when the message was transmitted.
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• Delay Response (Delay-Resp) messages: In response to the Delay-Req messages, the
Master clock sends Delay-Resp messages back to the Slave clocks. These messages
carry the same timestamps as the received Delay-Req messages. By comparing the
timestamps in the Delay-Req and Delay-Resp messages, the Slave clocks can calculate
the propagation delay more accurately.

PTP Master PTP Slave

SYNC Message
Follow-up Message

DELAY_RESP Message

DELAY_REQ Message

t1

t2

t3

t4

Delay 1

Delay 2

Figure 2. Simplified PTP exchange messages.

At this point, the Slave can calculate the delay and the offset from the Master clock.

Delay =
(t2 − t1) + (t4 − t3)

2
(1)

O f f set =
(t2 − t1)− (t4 − t3)

2
(2)

The standard supports two mechanisms to calculate delay: End-to-End (E2E) and
Peer-to-Peer (P2P). In the E2E mechanism, the Slave measures the total delay between itself
and the Master, encompassing the entire path. On the other hand, the P2P mechanism
requires each device, including switches and routers, on the path between the Master and
Slave to measure the delay between itself and its direct neighbor. This distributed measure-
ment approach enables a more-accurate estimation of the propagation delay through the
network [17].

The PTP stack is a protocol implementation responsible for managing messages and
coordinating time synchronization among devices in a PTP network. Here are some of its
key features:

• Message handling: The stack handles the generation and processing of different
message types, such as the Sync, Delay-Req, Delay-Resp, Follow-Up, Announce,
Signaling, and Management messages.

• Timestamping: The stack captures precise timestamps for transmitted and received PTP
messages, which are used to calculate propagation delays and adjust clock frequencies.

• Best Master Clock Algorithm: This software algorithm selects the most-accurate clock
source (Grandmaster clock) among the available clocks in the network. The criteria to
determine the better clock are described in [18].
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• Clock synchronization: Using the information from the PTP messages and timestamps,
the stack facilitates the synchronization of Slave clocks with the Grandmaster clock.

• Event notification: The stack may provide event notification capabilities to inform
applications or other parts of the system when certain PTP events occur, such as
changes in clock status or network conditions.

• Management and configuration: In some cases, the stack may include management
and configuration functions, allowing users to customize settings, manage devices,
and monitor synchronization performance.

The PTP stack can be implemented in various programming languages and tailored to
specific hardware platforms, such as FPGA, ASIC, or general-purpose processors. It allows
devices to participate in PTP networks and achieve high-precision time synchronization,
making it essential in applications that require accurate timekeeping and coordination.

4. General Approach to Precision Time Protocol Implementation
4.1. Software-Based Precision Time Protocol Implementation

In software-based implementations, time synchronization is managed through the pro-
cessing power of general-purpose Central Processing Units (CPUs). These implementations
rely on software timers and algorithms to compensate for network delays and finely adjust
the clock frequencies [19], achieving accurate synchronization across distributed systems.

Software-only solutions can perform timestamping at the application layer or within
the Network Interface Card (NIC) driver, as shown in Figure 3. One of the notable ad-
vantages of software-based PTP is its compatibility with standard computing platforms,
eliminating the need for specialized hardware components. This seamless integration of
PTP functionality into existing systems reduces the implementation costs and enhances
overall deployment efficiency. However, a disadvantage of software-based PTP is the
relative variation of the message delay due to the protocol stack, which can introduce jitter
and impact synchronization accuracy.

PTP Implementation

Socket

UDP/IP

Ethernet Device Driver

Ethernet Adapter

PHY

Physical Network

Timestamp

Application

Linux API

Hardware

Figure 3. Timestamping in software-based implementations.

The PTP daemon (PTPd) [20] is an open-source software solution initially developed
to support the PTPv1 standard. Its first release in 2005 was tailored to Unix-based operating
systems. Over time, PTPd has evolved substantially, incorporating improved protocol stack
versions. By 2010, it had seamlessly integrated support for the PTPv2 standard.

Another notable solution for PTP software-based implementations is the LinuxPTP
project [21,22]. This open-source initiative, originally engineered to endorse PTPv2, has
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continuously adapted to address the evolving requirements of time-sensitive applications.
This adaptability has solidified its reputation as an invaluable tool for achieving highly
accurate time synchronization within Linux-based systems.

These solutions have gained widespread popularity in the industry. These well-
supported implementations offer reliable and high-performance solutions for time syn-
chronization tasks. The open-source nature of these software stacks allows continuous
improvements, bug fixes, and feature enhancements. These software stacks can operate as
software-only solutions or with hardware timestamps. In cases where software support is
not feasible, they work in software-only mode.

On the other hand, Domain Time II [23] represents another software solution for
achieving precise time synchronization across an entire network infrastructure. Its ver-
satility includes support for PTPv2 and PTPv2.1, empowering organizations to achieve
unmatched time accuracy and consistency across interconnected devices. It is worth noting
that it is offered under a commercial license.

It is essential to consider that software-based PTP implementations may face limita-
tions regarding latency and determinism [24,25]. In time-critical applications, the synchro-
nization accuracy can be adversely affected by jitters caused by the inherent variability
in software processing times and potential delays introduced by operating systems and
network stacks [26].

To mitigate these challenges, ongoing research optimizes software-based PTP imple-
mentations, reduces latency [27], and enhances determinism. In [28], a PTP clock architec-
ture implementation for the Linux Kernel to improve synchronization time was shown.

4.2. Hybrid Precision Time Protocol Implementation

A hybrid PTP implementation consists of a combination of software-based and
hardware-based approaches to achieve the IEEE 1588 protocol. In these implementa-
tions, specific tasks are handled by the software part, and the PTP stack can be run on both
operating systems and embedded CPUs. Conversely, critical tasks such as timestamping are
offloaded to specialized hardware components. Some implementations utilize the Physical
Layer Interface (PHY) to implement this [29], while others use Ethernet MAC IPs for this
purpose [30], as shown in Figure 4. This approach aims at leveraging the advantages of both
approaches to optimize performance, accuracy, and efficiency in real-time applications.

PTP Implementation

Socket

UDP/IP

Ethernet Device Driver

Ethernet Adapter

PHY

Physical Network

Timestamp

Application

Linux API

Hardware
HW Assist

Figure 4. Timestamping in hybrid implementations.
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Hardware assisting is a crucial element in achieving shorter synchronization times.
Specialized hardware components, such as hardware timestamping counters in NICs,
capture the precise time when PTP messages are received and transmitted at the hardware
level. Hardware significantly reduces message processing latency by bypassing software
processing, providing a more-accurate measurement of message propagation delays. In
some hybrid implementations [29], the clock control loop, responsible for adjusting the
local clock’s frequency and phase, is offloaded to hardware. This hardware-based clock
control loop offers better determinism and lower jitter, enhancing the overall precision of
time synchronization.

While hardware handles timestamping and the clock control loop, the message pro-
cessing and PTP stack functions remain in the software. The software-based message
processing manages the exchange and handling of PTP messages.

In [31], an example of the PTP protocol implementation using a mixed solution was
presented. This design utilizes the freeRTOS operating system running on a Xilinx platform
and incorporates PTPd for specific functionalities. In this solution, the software-based
components in the application layer are responsible for handling specific PTP tasks, in-
cluding the BMC algorithm and packet processing. Meanwhile, the hardware layer com-
plements the software implementation with dedicated timestamping and real-time clock
management modules. Figure 5 shows how synchronization times improve when using
hardware assistance.

Standard
Ethernet

NTP 1588 PTP

Software
IEEE 1588

TCP/IP/UDP

Standard MAC

Standard PHY

Hardware Assisted IEEE 1588

1588 PTP

TCP/IP/UDP

Standard MAC

Custom FPGA or uController

PHYTER
Precision PHYTER with

HW 1588 Timestamps + Clock + GPIO

100 ms 100 us - 10 us 100 ns - 50 ns 5 ns

Human Control Process Control Motion Control Precision Control

Figure 5. Implementation choices to achieve better time synchronization [32].

Numerous research papers have documented the implementation of the PTP protocol
using hybrid-based approaches. In [33], an IEEE 1588 prototype on wireless LAN was
implemented using an Altera Excalibur embedded development board. This board includes
an ARM9 processor and a Programmable Logic Device (PLD).

Another example of a hardware-assisted implementation can be found in [34]. The
Nios microprocessor is employed to implement the PTP protocol stack using PTPd without
reliance on an operating system or network API. This approach showcases the direct
integration of PTPd within the Nios microprocessor architecture, enabling PTP functionality
to be executed without the overhead of an operating system. The absence of an operating
system and network API simplifies the design, reducing potential latency and enhancing
the efficiency of the PTP implementation.
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Furthermore, Oregano Systems [35] provides a PTP stack solution known as “syn1588”,
designed as a user space application capable of running on standard PCs and various microcon-
trollers. A comprehensive PTP node implementation utilizing sys1588 was introduced in [36].

Alternative approaches to clock synchronization have been developed, with notable
examples including the White Rabbit (WR) project [37]. The WR project achieves excep-
tional synchronization accuracy, boasting synchronization times in the sub-nanosecond
range. This achievement is realized by extending the capabilities of the PTP protocol.

In the context of the WR project, a significant contribution is the development of a
PTP daemon named PTP Ported Silicon (PPSi) [38]. PPSi is meticulously designed for
streamlined portability across diverse hardware architectures and exhibits a high degree
of modularity to facilitate the incorporation of protocol extensions. Notably, the founda-
tional protocol code of PPSi remains consistent across all supported architectures. These
range from conventional Linux PCs to specialized softcore processors operating within
FPGA environments.

The flexibility and adaptability of PPSi across various hardware configurations offer a
promising avenue for achieving hardware-assisted PTP synchronization.

Hybrid solutions are commonly adopted by companies that develop and market IP
modules for FPGAs and Application-Specific Integrated Circuits (ASICs). By providing
hardware-assisted PTP IP cores, these companies enable customers to implement precise
time synchronization designs more efficiently and accurately. For instance, in the work
presented by [39], the authors shared key insights into implementing IEEE 1588 using an
Intel (Altera) FPGA IP core.

In [40], an open-core IP solution was presented, where a PTP software stack was
implemented using PTPd. This IP core includes the implementation of a Real-Time Clock
(RTC) and a Timestamping Unit (TSU).

Another notable solution employing the hybrid approach is offered by the System-
on-Chip engineering (SoC-e) company [41], which has developed solutions based on IP
modules over FPGA devices. They offer both IP cores for customers to integrate into their
designs and finished products that utilize the same technology.

By leveraging a hardware-assisted PTP implementation, these companies address
the challenges of achieving precise time synchronization in real-world applications. Their
solutions can significantly improve synchronization accuracy, reduce processing latency,
and enhance the overall performance of time-sensitive systems.

4.3. Hardware-Based Precision Time Protocol Implementation

A hardware-based PTP implementation relies on dedicated hardware components
to achieve precise time synchronization and coordination according to standards. In
this approach, all essential PTP tasks are exclusively executed by specialized hardware
modules, as illustrated in Figure 6, without the involvement of any software components.
Timestamping is typically implemented on the PHY or Ethernet MAC IPs.

Using only hardware implementations can achieve extremely high precision and low
latency in time synchronization. This makes them well-suited for applications that require
sub-microsecond or nanosecond accuracy.

These solutions offer deterministic and predictable performance, eliminating the vari-
ability introduced by software-based processing and operating systems. Using FPGA
or ASIC devices, hardware-only solutions can be customized to match specific applica-
tion requirements. This allows for tailored PTP functionality and adaptability to various
network setups.

However, it also has some limitations. It may require more-specialized hardware
expertise, and the initial development costs may be higher than off-the-shelf software
solutions. Additionally, it may have limited flexibility for future protocol updates or
changes, as they rely solely on the capabilities of the hardware modules.

As an illustrative example of a hardware-based PTP implementation, “1588tiny”, a
Slave node, was introduced in [42]. Remarkably, this solution operates entirely in hardware
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without needing a local or embedded CPU to execute the PTP stack. This approach
unquestionably outshines architectures that rely on a CPU regarding resource efficiency.
However, it is important to note that 1588tiny has certain limitations, such as being limited
to Slave-only mode. Despite these limitations, its hardware-focused design contributes to
its exceptional resource utilization efficiency.

PTP Stack

Ethernet Adapter

PHY

Physical Network

Timestamp

Hardware IEEE 1588 Clock

Reference Clock

Figure 6. Timestamping in hardware-based implementations.

Another full-hardware PTP implementation was presented in [43]. In this work, a
hardware-centric approach was taken to implement a switch with redundancy, and the core
functions of the PTP stack, including the BMC and management functions, were directly
realized using VHDL. Embedding the PTP stack directly into the hardware allows for
streamlined and low-latency time synchronization within the Ethernet switch.

Another advantage of hardware-only implementations is their portability. Integrating
PTP functionality into a CPU stack often demands extensive modifications and additions to
the existing software stack. On the other hand, incorporating PTP IP into a hardware solu-
tion typically necessitates only configuration adjustments and establishing interface signal
connections within the FPGA. This streamlined process enables more-accessible adapta-
tion and integration of PTP capabilities across different hardware platforms, reducing the
complexity associated with software modifications.

5. Analysis of Alternatives for Reduced Instruction Set Computer-V Architecture

Alternatives to PTP Implementations in the context of RISC-V provide a compre-
hensive examination of the various options available when considering the integration
of PTP protocols within the architecture. This analysis compares different PTP imple-
mentation strategies for RISC-V, evaluating simplicity, efficiency, portability, community
support, power consumption, latency considerations, and development effort. By explor-
ing these alternatives, this analysis equips decision-makers with the insights to select the
most-suitable PTP implementation approach that aligns with their project’s objectives and
RISC-V architecture considerations.

When implementing a solution on the RISC-V architecture, it is essential to consider
resource availability and whether to opt for an implementation with or without a Memory
Management Unit (MMU), depending on the requirement to run an OS. It is noteworthy
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that Linux can be tailored for deployment on RISC-V, even in scenarios where an MMU is
absent. An illustrative example is the Buildroot environment, configuring QEMU-emulated
machines with 32-bit RISC-V without an MMU [44]. The decision to opt for an MMU-
less configuration should be guided by a meticulous assessment of specific requirements,
performance goals, and resource constraints.

However, noteworthy attempts have been made to port PTPd to smaller OS options
such as Iwip-ptpd [45]. Additionally, the Zephyr project [46] supports PTP, showcasing
alternative solutions for achieving precise time synchronization in environments with
specific OS constraints.

Table 2 displays a selection of the previously discussed implementations that are
potential alternatives for implementing the PTP stack in RISC-V. Solutions such as Linux-
PTP [21], Domain Time II [23], FreeRTOS-Xilinx Zynq [31], and ha1588 [40] are OS-based
and in particular require an MMU and significant resources for implementation.

Table 2. Comparison between PTP implementations.

PTP
Implementation Stack PTP Supported

PTP Version
Supported

Modes License OS need Programming
Languages

Implementation
Type

LinuxPTP
project [21]

PTPd, PTP
clock API PTPV2 Master, Slave Open-source Yes C Software

PTPd project [20] PTPd PTPV1, PTPV2 Master, Slave Open-source Yes C Software

Domain Time
II [23] Proprietary PTPv2,

PTPv2.1 Master, Slave Proprietary Yes C Software

FreeRTOS-Xilinx
Zynq [31] PTPd PTPV2 Master, Slave Proprietary Yes VHDL, C Hybrid

PTP with Nios
Processor [34] PTPd PTPV1 Master, Slave Proprietary No VHDL, C Hybrid

Syn1588
(Oregano

Systems) [35]
Proprietary PTPV2.1 Master, Slave Proprietary No VHDL, C/C++ Hybrid

ha1588
(open-core) [40] PTPd PTPV1, PTPV2 Master, Slave Open-source Yes Verilog, C Hybrid

1588Tiny
(SoC-e) [42] Proprietary PTPV2 Slave Proprietary No Verilog/VHDL Hardware

White Rabbit
project [37] PTPd, PPSi PTPV2,

PTPV2.1 Master, Slave Open-source No VHDL, C/C++,
Phyton Hybrid

On the other hand, solutions like PTP with the Nios Processor [34], Syn1588 by
Oregano Systems [35], and 1588Tiny by SoC-e [42] distinguish themselves by not neces-
sitating an operating system or MMU implementation. Instead, they rely on proprietary
software and hardware components to fulfill their PTP functionalities. While these ap-
proaches offer distinct advantages in specific scenarios, they might present challenges in
understanding their development process and reusability.

The White Rabbit project is another compelling option. It operates under an open
license, does not require an MMU implementation, and can implement the IEEE 1588
stack based on open-source PTPd and PPSi daemons. Its versatility makes it particularly
attractive for projects prioritizing adaptability and open-source components.

Based on this latest implementation approach, it would be prudent to analyze these
two PTP daemons to understand them better and determine which is better for imple-
mentation in an RISC-V project. Table 3 provides a feature comparison between PTPd
and PPSi.

PTPd is primarily designed to run on systems with an MMU. It relies on dynamic
memory allocation, a feature typically facilitated by an MMU. Although adapting PTPd
for use on systems without an MMU is possible, it may require significant modifications
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and adjustments to the codebase to replace dynamic memory allocation with statically
allocated memory.

Additionally, PPSi was designed to be more lightweight and suitable for embedded
systems, including those without an MMU. PPSi minimizes resource usage and offers high
portability across different platforms, making it a strong choice for RISC-V implementations
with resource constraints.

Table 3. Comparison between PTPd and PPSi.

Features PTPd PPSi

Implementation Well-suited for complex network setups. Ideal for simpler network scenarios.

Flexibility Highly flexible. Basic functionality.

Adaptable to RISC-V platforms Yes Yes

Portability May require adjustments for
different architectures.

Designed for easy portability across
architectures.

Latency considerations May introduce slightly higher latency. Designed to minimize latency and jitter.

Power consumption May consume more power due to
advanced features. Optimized for reduced power usage.

Resource constraints May consume more resources than
optimized solutions. Ideal for platforms with limited resources.

Community support Strong community presence with
active contributors. Smaller community.

Supported PTP versions PTPV1, PTPV2 PTPV2

Programming languages C C, Python

Dependency on MMU-based OS Optimized for MMU-based OSs,
such as Linux.

Can be integrated into both MMU-based and
non-MMU-based OSs.

Memory management Utilizes dynamic memory allocation, which
may be facilitated by an MMU. Primarily uses statically allocated memory.

Suitable use cases
Well-suited for applications where precise time

synchronization is required and hardware
with an MMU is available.

Ideal for applications with strict memory
constraints, such as embedded systems, IoT
devices, and hardware platforms that lack

an MMU.

When comparing power consumption between them, it is important to consider
that PTPd offers more features, while PPSi is designed to be more resource-efficient and,
consequently, more power-efficient. However, power consumption may vary based on the
specific implementation and hardware used.

Regarding latency considerations, it is essential to analyze the performance and respon-
siveness of these implementations, as these factors are critical in time-sensitive applications.
PTPd may introduce slightly higher latency than PPSi due to the design features.

In conclusion, the decision between PTPd and PPSi for RISC-V architectures should
be guided by specific project requirements and constraints. PTPd offers many features and
benefits alongside strong community support, while PPSi emphasizes resource efficiency
and adaptability. However, considering crucial factors such as latency, power consumption,
resource limitations, portability, and the lack of MMU dependency, PPSi is the better choice
for RISC-V implementation, especially in scenarios with limited resources.

6. Conclusions

This paper addresses various aspects of implementing IEEE 1588 within the context
of low-power embedded devices based on the RISC-V architecture. We underscored
the significance of PTP in achieving precise time synchronization in distributed systems,
emphasizing its capability to synchronize system clocks with sub-microsecond accuracy,
thereby enabling real-time data exchange in communication networks.
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Moreover, different RISC-V devices’ time synchronization approaches have been
explored, each offering advantages and trade-offs. This allows developers to choose the
most-suitable method based on specific project requirements.

The presentation of an evaluation criteria framework has further contributed to in-
formed decision-making, considering factors such as simplicity, efficiency, portability,
community support, power consumption, latency, and development effort in selecting a
PTP stack implementation approach tailored to the RISC-V architecture.

Looking ahead, our research will address the constraints associated with existing
options for integrating the Precision Time Protocol into RISC-V systems. Leveraging the
inherent flexibility of the RISC-V ISA and emerging SoC architectures, we will focus on
formulating and implementing a finely tuned precision synchronization capability for
RISC-V-based SoCs. These efforts cater to targeted applications in sectors such as Industrial
Automation, Power Grid Management, and Transportation Systems.
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