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Abstract

This paper proposes a novel approach to select the individual classifiers to take part in a Multiple-Classifier System.
Individual classifier selection is a key step in the development of multi-classifiers. Several works have shown the
benefits of fusing complementary classifiers. Nevertheless, the selection of the base classifiers to be used is still an
open question, and different approaches have been proposed in the literature. This work is based on the selection of
the appropriate single classifiers by means of an evolutionary algorithm. Different base classifiers, which have been
chosen from different classifier families, are used as candidates in order to obtain variability in the classifications
given. Experimental results carried out with 20 databases from the UCI Repository show how adequate the proposed
approach is; Stacked Generalization multi-classifier has been selected to perform the experimental comparisons.
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1. Introduction

The Machine Learning (ML) research area, and more specifically Supervised Classification, addresses the problem
of building, from correctly classified datasets, models able to deal with new unclassified cases and assign them a
predicted class; it is worth mentioning that good classification accuracy is expected from the classifier.

It has been experimentally observed that the construction of a perfect classifier, using a single paradigm, is often
impossible. Therefore, designers have tried to combine several classifiers, and this idea has led to the development
of Multiple-Classifier Systems (MCS), which attempt to combine the advantages of different individual classifiers,
sometimes built using different training paradigms, to obtain better results. Classifier combination is a viable alterna-
tive to using a single classifier, and has become an established research area, thriving mostly on heuristic solutions.
Some theoretical results are also available but only for special cases, usually assuming independent classifier outputs
[1, 2, 3, 4].

Intuitively, it makes sense that a combination of classifiers provides better results than a single decision maker.
However, this depends on how independent and diverse the individual classifiers are [5], and thus the diversity among
the selected classifiers is one of the key design features within a successful multi-classifier.

There are different MCS strategies. Some approaches organize the different classifiers in a tree [6], other ap-
proaches create various classifiers by using different subsets of features to train them [7], and certain approaches
divide the multi-class classification problems in several two-class sub-problems, in the so called Class-Binarization
strategies [8] [9]. The most common strategies found in the literature are Boosting [10], Bagging [11] and Stacked
Generalization (SG) [12].

In Bagging and Boosting, diversity is achieved by manipulating the training examples in order to generate multiple
hypotheses. The base classifier is trained several times, each time with a different subset of the training examples,
thus creating different classifiers. Finally there should be a method to combine the outputs of this set of classifiers.

Stacked Generalization [13] basically follows a layered architecture. At the level-0, classifiers are trained using
the original dataset and each classifier outputs a prediction for each token. Successive layers receive as inputs the
predictions of the previous layer, and at the level-1, a single classifier, also called meta-classifier, outputs the final
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prediction. The overall performance not only depends on the individual classifiers used at the level-0, but also on
the correct selection of classifiers at other levels. One problem of Stacked Generalization is how to obtain the right
combination of level-0 classifiers and the meta-classifier, especially in relation to each specific dataset.

Two difficulties arise when a MCS has to be developed: the selection of base classifiers, and how to combine their
individual decisions.

By combining the outputs of a team of classifiers, we aim at a more accurate decision than that of the best member
of the team. The assumption is that developers should introduce diversity in the ensemble, and therefore enhance
the performance. There are different ways to tackle output combination; a weighted majority vote is the standard
combination method for ensembles but there are other combination methods which could also be successful. Many
combination methods and algorithms have been developed, including the use of a meta-classifier, which is the option
selected to construct a Stacked Generalization model.

The difficulty in choosing a suitable combination method for the problem at hand has been recognized and high-
lighted numerous times in the literature. Some theoretical works rely on simplifications and assumptions, and consider
mostly special cases [14, 15, 16]. However, even a discipline as mature as pattern recognition does not offer strict
guidelines about how to approach a data set and which classifier to select for it; many experimental studies have been
published in the search for such guidelines [17, 18]. This study also belongs to this experimental group.

This paper presents a methodology to incorporate into a Multiple-Classifier System a mechanism which attempts
to adapt the structure of the MCS to a given classification problem. This approach has the following properties:

1. To be a global optimisation technique which has been shown to be successful in complex domains, such as the
space of the possible configurations for a Multiple-Classifier System given a pool of individual classifiers.

2. To provide an easy way to express the problem of optimisation of the multiple-classifier structure.
3. To combine the individual classifier opinions in the form established by the MCS itself (voting, meta-classifier,...);

the searching process itself selects the appropriate base classifiers taking into account the mode in which the
final decision is taken.

We present a Multiple-Classifier System which incorporates an automatic self-configuration scheme based on
Estimation of Distribution Algorithms [19] (an evolutionary computation approach). Our main interest is focused on
the constituent classifiers of the resulting multi-classifier.

To show the behaviour of the proposed method, 20 datasets have been selected from the UCI repository [20] and
10 standard classifiers are used by the new Classifier Subset Selection (CSS) proposed method to construct a Stacked
Generalization MCS. Experiments are carried out comparing the results of the 10 single classifiers, state-of-the-art
multi-classifiers (Boosting, Bagging and StackingC) and the Stacked Generalization classifiers constructed with the
whole set of 10 base classifiers in the level-0. Results obtained show the goodness of the approach, as the new
paradigm statistically outperforms the remaining classifiers used.

The rest of the paper is organized as follows: In Section 2 related work in the area of multi-classifiers is presented.
Section 3 describes the proposed approach and section 4 the experimental setup. Finally, Section 6 depicts some
conclusions and future work lines.

2. Related work

Several papers can be found in the literature about construction and use of Multiple-Classifier Systems. In this
section we reflect three main aspects: different MCS which have been used in different tasks; in the next subsection
the revision is focused on the Stacked Generalization paradigm, as it will be that used in the experimental phase, and
in the third subsection we revise the use of evolutionary algorithms in order to obtain better multi-classifiers.

2.1. Multiple-Classifier Systems

Combination of classifiers has been widely used as a useful approach in several Machine Learning tasks [21].
In the field of people detection, several authors have used multi-classifier approaches: [22] use Histograms of Ori-

ented Gradients (HOGs) and Local Receptive Fields (LRFs), which are provided by a convolutional neural network,
and are classified by Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs) combining classifiers by
majority vote and fuzzy integral; [23, 24, 25] present a MCS to manage image based classification problems; Batista
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et al. [26], take advantage of unigrams, bigrams and trigrams to design a Multiple-Classifier System for Sentiment
Analysis and Opinion Mining.

In [27], to improve the performance of classification, three classifiers that have the best results among all applied
methods are combined; on the other hand, [28] present a Multiple-Classifier System based on color and texture
information for face image segmentation; Haibo et al. [29], present a hybrid MSC to improve the precision of remote
sensing image classification. Taking the characteristic of abstract level and measurement level into consideration, the
optimal sub-classifier, Bagging algorithm and the largest confidence algorithm are combined.

In [30], the problem of Multiple-Classifier System design is discussed and the reader is provided with a critical
survey of the state-of-the-art. The main conclusion in this chapter is that optimal design is still an open problem. More
information about Multiple-Classifier Systems can be found in [31].

2.2. Stacked Generalization

Ting and Witten [32] propose to extend Stacked Generalization using class probability distributions of the original
classifiers. Moreover, they propose to use the Multi-Response Linear Regression (MRLR) as meta-classifier. Seewald
[33] discovered that this new version worked correctly for two-class problems while it performed worse for multi-
class problems. In order to solve this problem, he proposes a new method called StackingC where, for each class
separately, a meta training set is created with the class probabilities associated with the class. In this case, he also use
MRLR as meta-classifier.

As can be seen in the literature the Stacked Generalization multi-classifier has been applied in different types of
problems: For example Ekbal et al. [34] use a Stacked Generalization multi-classifier for the extraction of biomedical
entities in the forms of genes and gene product mentions in text and Ibarguren et al. [35] use a Stacked Generalization
to real time recognition of the Fingerspelling Alphabet used by the deaf people.

2.3. Base classifier configuration by means of Evolutive Computation

Quian et al. investigate MSC as a multi-goal problem from a theoretical point of view [36]. Whereas Rahman
et al. [37] propose a novel cluster oriented ensemble classifier generation method and a Genetic Algorithm based
approach to optimize the parameters.

Impedovo et. al. [38] propose a new method for handwritten digit recognition where, for each individual classifier,
a feature selection is applied. They consider the problem of feature selection as an optimization problem so they use
the genetic algorithms in order to find the best performance of the combined classifier. On the other hand, in order
to predict subcellular localization of apoptosis proteins, Ding and Zhang [39] propose a new method where each
individual classifier is trained with different dimensions of protein sequences and they use the genetic algorithms to
find the optimal weight factors.

Zhou et al. [40] has proved that ensembling some of the available classifiers may be better than ensembling all of
them. Viewing that, Kim and Kang [41] propose a new method where they use the genetic algorithms for classifier
selection in ensembles. In this case they concentrate on the selection process of an ensemble containing diverse
classifiers.

In the literature we can also find some works that try to improve the performance of Stacked Generalization
by selecting the best classifiers using different evolutionary computation strategies. Chen [42], [43], proposes a new
ensemble construction method which applies Ant Colony Optimization (ACO) in the Stacked Generalization ensemble
construction process to generate domain-specific configurations. Shunmugapriya and Kanmani [44], use Artificial Bee
Colony(ABC) Algorithm as a meta-heuristic search algorithm to obtain a suitable Stacked Generalization model. To
this end, two versions of the ABC algorithm are used. Ledezma et al. [45] use the genetic algorithms and show that
selecting the right classifiers, their parameters and the meta-classifier is a critical issue.

3. Proposed approach

As explained in the introduction, the main goal of this work is optimal selection of base classifiers to construct
multi-classifiers. In this section, the elements and processing sequence that constitute the proposed approach are
explained in detail.
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3.1. Combination of classifiers

To combine the results of the base classifiers, we use Stacked Generalization (SG) as Multiple-Classifier System.
Stacked Generalization is a well known ensemble approach and is also called Stacking [12, 46]. While ensemble
strategies such as Bagging or Boosting obtain the final decision after a vote among the predictions of the individual
classifiers, SG applies another individual classifier to the predictions in order to detect patterns and improve perfor-
mance of the vote.

As can be seen in Figure 1, SG is divided into two levels: in the level-0 each individual classifier makes a prediction
independently, and in the level-1 these predictions are treated as the input values of another classifier, known as meta-
classifier, which returns the final decision.

SVM
IB1

BNC4.5

NB

Meta−classifier

New Case (to be classified)

FINAL DECISSION

Figure 1: Stacked Generalization schemata

The data for training the meta-classifier is obtained after a validation process, where the outputs of the level-0
classifiers are taken as attributes and the class is the real class of the example.

3.2. Classifier Subset Selection (CSS) as a search problem

Although using many classifiers may seem more effective, our believe is that selecting a subset of them can reduce
the computational cost and improve the accuracy, assuming that the selected classifiers are diverse and independent
between them.

In this paper we propose a new multi-classifier paradigm, which extends the Staking Generalization approach,
reducing the number of classifiers to be used in the final model. We call this new approach Classifier Subset Selection
(CSS) and a graphical example is illustrated in Figure 2. As can be seen, we added to the multi-classifier an inter-
mediate phase in which a subset of the level-0 classifiers is selected. The criterion to make the selection depends on
the goal of the classification task, and in this case, we have decided to use classification accuracy. As can be seen in
Figure 2, discarded classifiers -those with an X- are not used in the multi-classifier.

CSS can be contemplated in a similar way as Feature Subset Selection (FSS) in some ML problems. As reported
by Aha and Bankert [47], the objective of FSS in Machine Learning is to reduce the number of features used to
characterize a dataset so as to improve the performance of a learning algorithm on a given task. Our objective will
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Figure 2: Classifier Subset Selection Stacked Generalization.

be the maximization of the classification accuracy in a multi-classifier; CSS task can be thus exposed as a search
problem, each state in the search space identifying a subset of possible base classifiers selected.

The method used to select the classifiers could be any one, but in this type of scenarios evolutionary approaches are
often introduced with promising results. Today, some of the best known evolutionary algorithms for FSS, are based on
Estimation of Distribution Algorithms (EDAs) [19]. EDA combines statistical learning with population-based search
in order to automatically identify and exploit certain structural properties of optimization problems. Inza et al. [48]
proposed an approach that used an EDA called Estimation of Bayesian Network Algorithm (EBNA) [49] for a FSS
problem. Viewing that in [50] EBNA shows better behaviour than genetic and sequential search algorithms for FSS
problems (and hence for CSS in this approach), we decide to use EBNA. Moreover EBNA has been selected as the
model in the recent work that analyses the behaviour of the EDAs [51].

EBNA is an EDA that learns a Bayesian Network and it follows the typical EDA structure. It starts with a
population of candidate solutions to the problem, starting with a population generated with uniform distribution over
all admissible solutions. The population is then scored using a fitness function. This fitness function gives a numerical
ranking for each string, with the higher the number the better the string. From this ranked population, a subset of the
most promising solutions are selected by the selection operator. The characteristic of EBNA is that it uses a Bayesian
Network to deal with the probability distribution of the selected solutions. Once the model is constructed, new
solutions are generated by sampling the distribution encoded by this model. These new solutions are then incorporated
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back into the old population. The process is repeated until some termination criteria is met (usually when a solution of
sufficient quality is reached or when the number of iterations reaches some threshold). Figure 3 shows the pseudocode
of the algorithm.

EBNA
Dt=0 ← Generate N individuals (the initial population) randomly.
Repeat for l = 1, 2, . . . until a stop criterion is met.
Vi ← Evaluate the Value Vi for each of the N individuals.

Ds
t−1 ← Select S ≤ N individuals from Dt−1 according to a selection method.

pl(x) = p(x|Ds
l−1)← Estimate the joint probability distribution of an individual

being among the selected individuals with the trained Bayesian Network.
Dl ← Sample N individuals (the new population) from pl(x).

Figure 3: Main scheme of the EDA approach.

In our approach, an individual in the EDA algorithm will be defined as a n-tuple of binary 0, 1 values –the so called
Binary Encoding–, and each position in the tuple refers to a concrete base classifier, and the value indicates whether
this classifier is used (1 value) or not (0 value). An example with 10 classifiers (the value used in this paper) can be
seen in Figure 4. In this example, Cl1, Cl4 and Cl7 are the selected classifiers, and the remaining seven are not used.

        Cl1, Cl4, Cl7

1 0 0 00 0 010

Cl1 Cl4 Cl10

1

Individual: 10 base classifiers

Cl7

Selected Classifiers:

Cl2

Figure 4: The combinations of base classifiers as EDA individuals

Once an individual has been sampled, it has to be evaluated. The aim is to consider the predictive power of each
subset of base classifiers. For this, a multi-classifier is built for each individual using the corresponding subset of
classifiers and the obtained validated accuracy is used as fitness function. Thus, when looking for the individual that
maximizes the fitness function, the EDA algorithm is also searching the optimal subset of base classifiers.

For individual selection we decide to use the range-based selection, selecting the best S individuals from the N
individuals of the population. Although S can be any value, we decide to set it to N/2 since is the most common value
in EDA literature.

4. Experimental results

In this section we show the set-up of the experimental framework and the obtained results.

4.1. Data Sets

In order to evaluate the performance of the proposed approach, 20 databases have been selected from the UCI
repository [20]. In Table 1 the characteristics of these databases are shown. The number of cases ranges from 101 to
1,728, the number of attributes from 4 to 35 and the number of classes from 2 to 19, so a wide variety of problems is
represented.

4.2. Base Classifiers

To carry out the experiments, we have used 10 well-known ML supervised classification algorithms from a soft-
ware package for Machine Learning called WEKA [52].

Among the classifiers that WEKA offers, we have selected the following:
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Table 1: Characteristics of the databases

Database #Cases #Classes #Atributes
Balance-scale 625 3 4
Breast-cancer 286 2 9
Car 1728 4 6
Cmc 1473 3 9
Colic 368 2 22
Diabetes 768 2 8
Ecoli 336 8 7
Glass 214 7 9
Hepatitis 155 2 19
Iris 150 3 4
Limph 148 4 18
Liver-disorders 345 2 6
Solar-flare-1 323 6 12
Solar-flare-2 1066 6 12
Soybean 683 19 35
Vehicle 846 4 18
Vote 435 2 16
Vowel 990 11 13
Wine 178 3 13
Zoo 101 7 17

1R:. is a one level decision tree which tests just one attribute [53]. The chosen attribute is that which produces
minimum error.

KNN:. is a case-based, Nearest-Neighbor classifier [54]. To classify a new test sample, a simple distance measure is
used to find the training instance closest to the given test instance, and then it predicts the same class as this nearest
training instance.

RIPPER:. (Repeated Incremental Pruning to Produce Error Reduction) [55] is a rule-base learner, an optimized ver-
sion of IREP, that forms rules through a process of repeated growing (to fit training data) and pruning (to avoid
overfitting). RIPPER handles multiple classes by ordering them from least to most prevalent, and then treating each
in order as a distinct two-class problem.

Naive Bayes (NB):. The Naive-Bayes rule [56] uses the Bayes theorem to predict the class for each case, assuming
that the predictive genes are independent given the category. To classify a new sample characterized by d genes
X = (X1, X2, ..., Xd), the NB classifier applies the following rule:

cNB = arg max
c j∈C

p(c j)
d∏

i=1

p(xi|c j)

where cNB denotes the class label predicted by the Naive-Bayes classifier and the possible classes of the problem are
grouped in C = {c1, . . . , cl}.

C4.5:. The C4.5 [57] represents a classification model by a decision tree. The tree is constructed in a top-down way,
dividing the training set and beginning with the selection of the best variable in the root of the tree.

K*:. is an instance-based algorithm that uses an entropy-based distance function [58].

Bayesian Networks (BN):. A Bayesian network [59], belief network or directed acyclic graphical model is a proba-
bilistic graphical model that represents a set of random variables and their conditional independencies via a directed
acyclic graph (DAG).

Naive Bayes Tree (NBT):. uses a decision tree with naive Bayes classifiers at the leaves [60].

Random Forest (RF):. constructs a combination of many unpruned decision trees [61]. The output class is the mode
of the classes output by individual trees.
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Support Vector Machines (SVM):. are a set of related supervised learning methods used for classification and regres-
sion [62]. Viewing input data as two sets of vectors in an n-dimensional space, an SVM will construct a separating
hyperplane in that space, one which maximizes the margin between the two data sets.

As can be seen, we have selected classifiers with different approaches to learning, and widely used in different
classification tasks. The goal is to combine them in a multi-classifier to maximize the benefits of each modality by
intelligently fusing their information, and by overcoming the limitations of each modality alone. As we treat the
classifiers as black boxes, we have used the default parameters of the classifiers.

4.3. Method
The experimental phase is divided in four steps that are applied to each of the 20 databases:

1. Single classifiers: build 10 classifiers, applying the 10 base Machine Learning algorithms to the training data
set, and get validated classification accuracies.

2. Standard multi-classifiers: build 5 classifiers, applying Bagging (REPTree and C4.5), Boosting (DecitionStump
and C4.5) and StackingC Machine Learning algorithms to the training data set, and get validated classification
accuracies.

3. Stacked Generalization: applying classic Stacked Generalization algorithm (with the ten base classifiers at
level-0), build 10 classifiers, one for each base classifier at level-1, and get validated classification accuracies.

4. Classifier Subset Selection for Stacked Generalization: using our new approach, build 10 classifiers, one for
each base classifier at level-1, and each of them with only a subset of classifiers, selected by EDA algorithm.

4.4. Experimental setup
In all the experiments 10-fold cross-validation [63] has been used to get a validated classification accuracy (well

classified rate), and this accuracy has been the criterion to define the fitness of an individual, inside the evolutionary
algorithm.

For Classifier Subset Selection, the EDA algorithm used has been EBNA (Estimation of Bayesian Network Algo-
rithm) [49], with Algorithm B [64] for structural learning of the Bayesian Network. Population size N has been set to
50 individuals, representing 50 combination of classifiers, the number S of selected individuals at each generation is
20 (40% of the population size), and the number of generations of new individuals was set to 4.

4.5. Obtained Results
4.5.1. Single classifiers results

All base classifiers are evaluated independently for each dataset; it is worth mentioning that the obtained results
are supposed to be outperformed by multi-classifiers.

Table 2 shows the results obtained by each single classifier on each dataset. As can be seen, the type of classifier
that obtains the best accuracy for each classification problem varies considerably. As a matter of fact, all of the base
classifiers, except 1R, obtain the best validated result for at least one dataset.

4.5.2. Standard multi-classifiers results
In order to obtain a more honest comparison with the proposed approach, some state-of-the-art multi-classifier

results are also shown; we have used Bagging, Boosting and StackingC
Table 3 shows the result obtained by those standard multi-classifiers. The best results are obtained by different

approaches for different datasets as well.

4.5.3. Stacked Generalization results
Obtained results for Stacked Generalization classifier ensembles are shown in Table 4, using the 10 base paradigms

as meta-classifier (level-1) in the SG structure. All paradigms used as meta-classifier, except C4.5, obtain the best
result for at least one of the classification problems. It should be noticed that the meta-classifier with the best result
differs in general from the best single classifier obtained for the same dataset; only in five of the 20 datasets (diabetes,
lymph,solar-flare-2, soybean and zoo) is there a coincidence.

A graphical image of the results obtained by the SG paradigm is shown in Figure 5; it can be seen that, for
each dataset, the result varies significantly for each meta-classifier. This fact could indicate that the selection of an
appropriate meta-classifier is very important in the SG classifier design.
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Table 2: Single classifiers’ results

Dataset 1R KNN RIPPER NB C4.5 K* BN NBT RF SVM
Balance-scale 56.32 86.56 80.80 90.40 76.64 88.48 72.32 76.64 80.48 87.68
Breast-cancer 65.73 72.38 70.98 71.68 75.53 73.43 72.03 70.98 69.23 69.58
Car 70.02 93.52 86.46 85.53 92.36 87.56 85.71 94.21 92.65 93.75
Cmc 48.13 44.33 52.41 50.78 52.14 50.24 51.05 51.73 50.85 48.20
Colic 81.52 81.25 84.24 77.99 85.33 76.63 81.25 82.06 86.14 82.61
Diabetes 72.79 70.18 76.04 76.30 73.83 69.14 74.35 74.35 73.83 77.34
Ecoli 64.88 80.36 81.25 85.42 84.23 80.95 81.25 82.14 83.63 84.23
Glass 58.41 70.56 68.69 48.60 66.82 75.23 70.56 70.56 72.90 56.08
Hepatitis 83.23 80.64 78.06 84.52 83.87 81.94 83.23 80.00 82.58 85.16
Iris 93.33 95.33 94.00 96.00 96.00 94.67 92.67 94.00 95.33 96.00
Liver-disorders 59.42 62.90 64.64 55.36 68.70 66.96 56.23 66.09 68.99 58.26
Lymph 75.00 82.43 77.70 83.11 77.03 85.14 85.81 80.41 81.08 86.49
Solar-flare-1 54.80 68.11 72.45 65.64 72.14 69.35 66.87 70.59 68.42 70.28
Solar-flare-2 61.45 72.89 70.45 74.39 74.48 74.67 74.48 74.58 72.98 75.23
Soybean 39.97 91.22 91.95 92.97 91.51 87.99 93.27 91.51 91.66 93.85
Vehicle 51.42 69.86 68.56 44.80 72.46 71.39 60.05 72.93 77.07 74.35
Vote 95.63 92.41 95.40 90.11 96.32 93.33 90.11 95.63 95.86 96.09
Vowel 31.82 99.29 69.70 63.74 81.52 98.99 60.81 93.53 96.06 71.41
Wine 77.53 94.94 91.57 96.63 93.82 98.88 98.88 96.63 97.19 98.31
Zoo 42.57 96.04 86.14 95.05 92.08 96.04 94.06 94.06 89.11 96.04

Table 3: Bagging, Boosting and StackingC results

Dataset AdaBoost M1 Bagging AdaBoost M1 Bagging StackingC
(DS) (REPTree) (C4.5) (C4.5)

Balance-scale 72.32 82.72 78.88 82.24 88.96
Breast-cancer 70.28 68.88 69.58 73.43 73.08
Car 70.02 91.67 96.12 93.52 95.54
Cmc 42.70 54.24 50.78 54.11 53.77
Colic 81.25 84.78 83.42 85.60 84.51
Diabetes 74.35 74.48 72.40 74.09 76.17
Ecoli 64.58 83.33 81.25 84.82 86.01
Glass 44.86 71.03 74.30 71.03 74.77
Hepatitis 82.58 83.23 85.81 83.23 83.87
Iris 95.33 94.67 93.33 95.33 93.33
Liver-disorders 66.09 71.30 71.59 72.75 70.72
Lymph 74.32 79.05 81.08 79.05 85.14
Solar-flare-1 46.75 73.38 71.21 72.14 72.75
Solar-flare-2 53.47 74.86 73.17 73.83 75.42
Soybean 27.97 87.12 92.83 93.27 93.70
Vehicle 39.95 72.34 76.24 76.60 76.83
Vote 95.40 95.86 95.86 96.32 96.09
Vowel 17.37 86.87 93.33 90.40 99.09
Wine 91.57 94.94 96.63 94.94 97.75
Zoo 60.40 42.57 95.05 93.07 95.05

4.5.4. Classifier Subset Selection for Stacked Generalization
Finally CSS has been applied to each of the datasets and meta-classifiers; obtained results indicate the appropri-

ateness of the proposed approach.
It should be noticed that, although the learning time is time consuming (until the EDA search converges), the

classification time is very short, and it can be done in real time. In this way, and for any dataset used, once the
classifier is constructed it can be used at a very high frequency, as it is composed of fast classifiers.

The results obtained by the proposed approach are shown in Table 5; in this case, 1R is the only meta-classifier for
which a best result is not obtained in any dataset. Best SG meta-classifier is also different in 10 of the 20 classification
problems, which indicates different structures between the standard SG and the CSS approaches. Regarding the best
results obtained, RF appears as meta-classifier in 10 datasets, while KNN, NB and SVM obtain as meta the best results
in 5 classification problems.

A graphical image of the results obtained by the CSS paradigm is shown in Figure 6. Comparing them with the
results of standard SG (Figure 5), it can be seen that, together with the improvement of accuracy, the variance of results
for each database is reduced. In Table 6 means and standard deviations of accuracy values are listed for different types
of classifiers and for each database. The best means and lowest standard deviation have been marked. As it can be
seen. the proposed approach obtains the best mean in all the databases and the lowest standard deviation in most of
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Table 4: Stacked Generalization results

Dataset 1R KNN RIPPER NB C4.5 K* BN NBT RF SVM
Balance-scale 93.12 90.56 92.96 92.48 93.28 89.92 91.68 93.92 94.72 92.80
Breast-cancer 69.23 65.03 69.23 69.23 71.68 65.03 69.93 72.03 70.28 72.73
Car 93.92 96.70 99.07 95.72 98.90 97.22 96.70 98.21 99.31 98.03
Cmc 45.21 45.48 50.85 53.90 47.86 47.73 53.56 52.75 52.48 54.11
Colic 85.60 78.26 84.51 85.05 82.34 79.89 85.60 82.88 84.51 84.24
Diabetes 71.48 70.18 74.87 76.56 76.17 71.22 74.74 75.00 74.22 77.08
Ecoli 72.32 80.95 83.33 74.70 82.74 80.66 83.63 82.44 84.23 53.87
Glass 56.08 66.82 74.30 62.62 71.96 66.82 73.36 65.42 75.70 66.82
Hepatitis 81.29 80.64 81.94 85.16 83.23 81.29 83.23 84.52 83.87 84.52
Iris 92.00 93.33 92.67 95.33 94.67 96.00 95.33 94.67 94.67 93.33
Liver-disorders 62.90 59.42 66.96 71.30 64.06 58.84 70.72 68.12 66.67 70.44
Lymph 81.08 79.05 84.46 81.76 83.78 81.76 83.11 79.73 81.76 84.46
Solar-flare-1 61.30 65.94 66.25 58.51 68.73 69.97 65.64 64.40 67.80 70.90
Solar-flare-2 64.54 70.73 72.05 71.95 71.11 70.36 71.58 70.36 71.39 74.86
Soybean 45.68 93.12 90.34 92.24 90.78 6.04 93.85 91.95 93.27 93.85
Vehicle 54.26 73.88 77.19 75.06 76.60 75.77 78.01 74.94 77.42 78.49
Vote 95.86 95.40 95.40 96.32 96.09 95.86 96.09 95.40 97.01 96.09
Vowel 34.75 99.09 97.37 98.18 98.38 96.97 98.08 94.95 98.89 99.29
Wine 92.70 98.88 98.88 97.19 98.88 98.31 98.88 99.44 98.88 97.75
Zoo 73.27 97.03 95.05 96.04 92.08 97.03 93.07 89.11 93.07 94.06

SG − 1R
SG − KNN

SG − RIPPER
SG − NB

SG − C4.5
SG − K*

SG − BN
SG − NBT

SG − RF
SG − SVM
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Figure 5: Stacked Generalization results obtained for each database and meta-classifier

the databases. We consider that this fact shows the effectiveness of our method and that it is not related with the type
of classifier that is used as meta-classifier.

In Figures 7 and 8 comparisons of CSS, SG and single classifiers are shown for each database. These figures show
the best results obtained for each base classifier (single) and using this classifier type as meta (SG, CSS).

To emphasize the differences between paradigms, Figure 9 shows a comparison of best results (maximum accu-
racy) obtained for each database. As can be seen, CSS paradigm outperforms the others in all used datasets except
breast-cancer. It is worth noting that the aim of this paper is to present a new competitive approach; it is not the
authors’ intention to show a MSC that always sets the best results, although this has been obtained with the selected
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Table 5: Results obtained by the proposed approach

Dataset 1R KNN RIPPER NB C4.5 K* BN NBT RF SVM
Balance-scale 93.12 95.04 95.20 93.92 94.72 95.20 93.44 95.68 96.48 94.24
Breast-cancer 74.13 74.48 75.17 75.52 75.17 74.83 73.43 75.52 75.52 74.48
Car 93.92 99.13 99.48 98.15 99.48 99.42 98.78 99.42 99.77 98.67
Cmc 48.47 52.00 53.90 55.67 53.23 53.16 55.53 55.13 52.68 55.33
Colic 86.69 85.33 87.77 86.69 87.77 87.23 86.96 87.23 85.60 86.14
Diabetes 77.34 77.60 78.13 78.00 78.52 78.65 76.82 78.00 78.13 77.47
Ecoli 75.89 86.01 86.61 84.23 86.91 86.61 85.42 84.82 87.80 88.09
Glass 64.49 75.23 78.04 73.83 77.57 78.97 78.50 72.43 79.91 79.44
Hepatitis 85.81 85.16 87.74 86.45 87.74 85.81 85.81 87.74 87.74 85.16
Iris 96.00 97.33 96.67 96.67 96.67 97.33 96.67 96.67 96.67 96.67
Liver-disorders 71.01 68.70 72.46 73.04 71.88 71.30 71.88 71.59 70.44 72.75
Lymph 83.78 86.49 86.49 87.16 86.49 85.81 88.51 85.14 87.16 87.84
Solar-flare-1 63.78 75.23 73.06 70.59 73.99 74.30 73.06 73.38 73.99 73.99
Solar-flare-2 66.04 75.05 73.64 73.45 75.23 75.33 72.89 74.39 75.33 76.36
Soybean 50.22 94.14 93.70 93.56 93.41 93.41 92.83 91.65 94.44 94.44
Vehicle 63.00 77.54 78.72 77.31 78.49 78.84 78.84 77.19 80.38 79.79
Vote 96.78 96.78 96.78 97.01 96.32 97.01 97.24 97.24 97.24 96.55
Vowel 37.98 99.50 99.29 99.09 99.29 99.19 98.28 98.79 99.50 99.39
Wine 92.70 100.00 100.00 100.00 100.00 99.44 100.00 100.00 98.88 100.00
Zoo 75.25 98.02 96.04 98.02 97.03 98.02 95.05 95.05 98.02 98.02
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Figure 6: Results obtained by the proposed approach for each database and meta-classifier

datasets.
Finally, to have a more accurate idea of the kind of classifiers subsets selected by CSS method, Table 7 shows the

configurations that give the best results for each dataset.

4.5.5. Statistical tests
According to [65], we have used the Iman-Davenport test to detect statistical differences among the different

strategies. This test rejects the null hypothesis of equivalence between algorithms, since p-value (2.2e-16) is lower
than our α-value (0.1). Thus, we have applied Shaffer post-hoc test in order to find out which algorithms are distinctive
among them. Table 8 shows the statistical differences that our approach has obtained with the rest of methods. The
table shows that when RF or SVM are used as meta-classifier in CSS (CSS-RF and CSS-SVM) best results are
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Figure 7: Comparison of CSS, SG and single classifiers for each database with different meta-classifiers.12
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Figure 8: Comparison of CSS, SG and single classifiers for each database with different meta-classifiers13



Table 6: Mean and Standard Deviation results obtained for each of the classifier sets used: single, ensemble, Stacked Generalization and CSS

Classifier Set Single Ensemble Stacking CSS
Dataset Mean StDev Mean StDev Mean StDev Mean StDev
Balance-scale 79.63 10.13 79.04 4.79 92.54 1.46 94.70 1.04
Breast-cancer 71.15 2.63 70.54 2.01 69.44 2.63 74.83 0.70
Car 88.18 7.30 87.83 12.01 97.38 1.69 98.62 1.72
Cmc 49.99 2.47 50.46 5.41 50.39 3.51 53.51 2.20
Colic 81.90 2.98 83.76 1.90 83.29 2.48 86.74 0.84
Diabetes 73.82 2.59 73.83 0.97 74.15 2.39 77.86 0.56
Ecoli 80.83 5.86 78.50 9.39 77.89 9.32 85.24 3.50
Glass 65.84 8.58 65.30 13.72 67.99 6.01 75.84 4.70
Hepatitis 82.32 2.20 83.71 1.43 82.97 1.59 86.52 1.12
Iris 94.73 1.19 94.67 0.94 94.20 1.30 96.73 0.38
Liver-disorders 62.75 5.11 70.43 2.97 65.94 4.52 71.51 1.27
Lymph 81.42 3.92 78.38 2.87 82.09 1.86 86.49 1.35
Solar-flare-1 67.86 5.07 65.87 12.78 65.94 3.82 72.54 3.31
Solar-flare-2 72.56 4.15 68.83 10.26 70.89 2.58 73.77 2.91
Soybean 86.59 16.46 75.29 31.68 79.11 29.60 89.18 13.71
Vehicle 66.29 10.69 66.28 17.66 74.16 7.15 77.01 5.03
Vote 94.09 2.44 95.86 0.38 95.95 0.50 96.90 0.31
Vowel 76.69 21.60 71.99 36.51 91.60 20.01 93.03 19.35
Wine 94.44 6.38 94.52 2.12 97.98 1.97 99.10 2.28
Zoo 88.12 16.34 72.77 25.65 91.98 7.01 94.85 7.00
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Figure 9: Propossed approach versus best results obtained by the remaining paradigms

obtained, closely followed by CSS-K* and CSS-C4.5. In the case of CSS-RF and CSS-SVM, they significantly
improve most of the cases and draw with only 3 of them: StackingC, SG-RF and SG-SVM. On the other hand, CSS-
1R obtains the worst results because it draws with all the cases. We also want to emphasize that our algorithm never
gets worse results.

In Table 8 it can be seen that CSS does not significantly improve StackingC, SG-RF and SG-SVM with any of the
meta-classifiers. Because of that we have compared these 3 methods with our approach applying Wilcoxon signed-
rank test by pairwise. Table 9 shows the p-values obtained, where “+” symbol implies that the CSS is statistically
better than the confronting one, whereas “=” means that there are not significant differences between the compared
algorithms and “-” means that the CSS is statistically worse. It can be seen that, with the exception of 1R, the rest of
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Table 7: Configuration of the best multi-classifiers obtained for each dataset

Dataset Meta Base classifiers
Balance-scale RF 1R, RIPPER, NB, K*, BN, SVM

Breast-cancer
NB 1R, KNN, RIPPER, NB, K*, BN, NBT, RF, SVM

NBT 1R, KNN, RIPPER, NB, C4.5, BN, NBT, RF
RF 1R, KNN, RIPPER, NB, BN, RF

Car RF 1R, KNN, NB, C4.5, K*
Cmc NB 1R, RIPPER, C4.5, K*, NBT, SVM

Colic RIPPER KNN, K*, BN, NBT, RF
C4.5 NBT, RF, SVM

Diabetes K* RF, SVM
Ecoli SVM 1R, NB, K*,RF
Glass RF 1R, KNN, C4.5, K*

Hepatitis

RIPPER KNN, RIPPER, NB, SVM
C4.5 RIPPER, NB, BN, NBT,SVM
NBT 1R, KNN, RIPPER, NB, RF, SVM
RF 1R, NB, BN, RF, SVM

Iris KNN 1R, KNN, NB, C4.5, RF, SVM
K* KNN, NB, C4.5, K*, BN, SVM

Liver-disorders NB KNN, RIPPER,C4.5,RF, SVM
Lymph BN KNN, NB, C4.5, K*, BN, NBT, RF, SVM
Solar-flare-1 KNN 1R,SVM
Solar-flare-2 SVM KNN, NB, NBT, RF, SVM

Soybean RF 1R, RIPPER, C4.5, K*, BN, NBT, SVM
SVM NB, RF, SVM

Vehicle RF 1R, NB, C4.5, K*, BN, NBT, RF

Vote
BN C4.5, K*, NBT, RF, SVM

NBT KNN, RIPPER,C4.5, RF
RF 1R, KNN, NB, C4.5, NBT, RF, SVM

Vowel KNN KNN, NB, C4.5, K*, SVM
RF KNN, NB, C4.5, K*, RF

Wine

KNN RIPPER, NB, BN, NBT, RF
NB 1R, RIPPER, NB, K*, NBT, RF, SVM

C4.5 RIPPER, NB, C4.5, RF, SVM
BN 1R, C4.5, K*, BN,RF, SVM

NBT 1R, KNN, NB, C4.5, K*, RF, SVM
RF C4.5, K*, BN, RF

SVM 1R, KNN, RIPPER, C4.5, BN, SVM

Zoo

KNN 1R, KNN, RIPPER, NB, C4.5, RF, SVM
NB KNN, K*, BN, NBT, SVM
K* KNN, RIPPER, NB, C4.5, BN, NBT, SVM
RF NB, C4.5

SVM RIPPER, NB, BN, NBT, RF

meta-classifiers significantly improve the rest of algorithms. Viewing the results of both statistical tests, considerably
demonstrates the strength of our new method.

5. Conclusions and future work

In this paper an evolutionary computation based classifier subset selection process is presented to construct a
Multiple-Classifier System. To this end, ten base classifiers have been selected to construct an MCS. Stacked Gen-
eralization is the model used, although other possibilities can be considered as well: voting, hierarchical classifiers,
etc.

Estimation of Distribution Algorithm is the evolutionary computation algorithm selected to perform the Classifier
Subset Selection, but other approaches could be used: Genetic algorithms, Ant, Colony, etc.

The obtained experimental results are very good, and a better or equal result has been obtained by using the
proposed approach, compared to other state-of-the-art paradigms. It is not the aim of the authors to present an MCS
better then existing ones, but a competitive one. The results obtained in these datasets indicate the validity of the
approach, but certainly there would be some other datasets in which the results are worse than those obtained by other
paradigms.

As future work, the performance of the presented approach to a real problem is going to be investigated, and
compared to other models. More base classifiers can be included as well to improve the MCS accuracy.
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Table 8: Significant differences obtained with Shaffer post-hoc test

Individual Ensemble Stacked Generalization
CSS win draw loose win draw loose win draw loose

RF ALL - -

BAG-C4.5

STC -

1R KNN

-BAG-REP RIP NB RF
BOS-DS C4.5 K* SVM

BOS-C4.5 BN NBT

SVM ALL - -

BAG-C4.5

STC -

1R KNN

-BAG-REP RIP NB RF
BOS-DS C4.5 K* SVM

BOS-C4.5 BN NBT

K* ALL - -

BAG-C4.5

STC -

1R KNN BN

-BAG-REP RIP NB RF
BOS-DS C4.5 K* SVM

BOS-C4.5 NBT

C4.5 ALL - -

BAG-C4.5

STC -

1R KNN BN

-BAG-REP RIP NB RF
BOS-DS C4.5 K* SVM

BOS-C4.5 NBT

RIP ALL - -

BAG-REP

-

1R KNN BN

-BOS-DS STC RIP NB RF
BOS-C4.5 BAG-C4.5 C4.5 K* SVM

NBT

KNN

1R KNN

SVM - -

1R KNN NB

-RIP NB BAG-REP STC RIP BN
C4.5 K* BOS-DS BAG-C4.5 C4.5 RF
BN NBT BOS-C4.5 K* SVM

RF NBT

NB

1R KNN

SVM - -

1R KNN NB

-RIP NB BAG-REP STC RIP BN
C4.5 K* BOS-DS BAG-C4.5 C4.5 RF
BN NBT BOS-C4.5 K* SVM

RF NBT

NBT

1R KNN

-

BAG-REP

-

1R KNN NB

-RIP NB C4.5 BOS-DS STC RIP C4.5 BN
K* BN SVM BOS-C4.5 BAG-C4.5 K* RF

NBT RF NBT SVM

BN

1R KNN

-

BAG-REP

-

1R RIP NB

-RIP NB C4.5 BOS-DS STC KNN C4.5 BN
K* BN SVM BOS-C4.5 BAG-C4.5 K* RF

NBT RF NBT SVM
1R - ALL - - ALL - - ALL -

Table 9: The p-values obtained with Wilcoxon test

CSS SG-RF SG-SVM STC
1R -(0.01923) =(0.10540) -(0.02148)
KNN +(0.00032) +(0.00365) +(0.00584)
RIPPER +(0.00001) +(0.00058) +(0.00058)
NB +(0.00401) +(0.00199) +(0.00745)
C4.5 +(0.00027) +(0.00068) +(0.00008)
K* +(3.8E-006) +(0.00010) +(0.00008)
BN +(0.00032) +(0.00315) +(0.00745)
NBT +(0.00233) +(0.00121) +(0.02944)
RF +(0.00014) +(0.00050) +(0.00005)
SVM +(0.00004) +(1.9E-006) +(1.9E-006)

Based on this work, another approach is planned that takes into account the diversity among the different base
classifiers for each classification problem, and selects the classifier subset which increases, in a validation phase, the
obtained accuracy considering the different classifications given to each case.
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