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a b s t r a c t 

The orienteering problem is a route optimization problem which consists of finding a simple cycle that 

maximizes the total collected profit subject to a maximum distance limitation. In the last few decades, 

the occurrence of this problem in real-life applications has boosted the development of many heuristic 

algorithms to solve it. However, during the same period, not much research has been devoted to the field 

of exact algorithms for the orienteering problem. The aim of this work is to develop an exact method 

which is able to obtain the optimum in a wider set of instances than with previous methods, or to 

improve the lower and upper bounds in its disability. 

We propose a revisited version of the branch-and-cut algorithm for the orienteering problem which in- 

cludes new contributions in the separation algorithms of inequalities stemming from the cycle problem, 

in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of 

the problem. Our proposal is compared to three state-of-the-art algorithms on 258 benchmark instances 

with up to 7397 nodes. The computational experiments show the relevance of the designed components 

where 18 new optima, 76 new best-known solutions and 85 new upper-bound values were obtained. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The Orienteering Problem (OP) is a well-known routing prob- 

em proposed in the 80s ( Golden et al., 1987; Tsiligirides, 1984 ) 

nd the first survey in OP was published by Vansteenwegen et al. 

2011) . 

The OP goal can be defined as finding a cycle, within a 

eighted complete graph with associated vertex profits, so that the 

um of the profits of the vertices in the cycle is maximized and its 

ength is lower or equal to a given constant d 0 . In addition to the

ength constraint, every feasible cycle solution must visit a given 

epot vertex. The OP can be seen as a combination of the Knap- 

ack Problem (KP) and the Travelling Salesperson Problem (TSP). 

The KP goal can be defined as finding the subset of items, 

ithin a larger set of items with associated weights and profits, 

o that the sum of the profits of the items in the subset is maxi-
∗ Corresponding author at: Basque Center for Applied Mathematics - BCAM, 

pain. 
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um and their total weight is lower than or equal to a given con- 

tant w 0 . In the KP, the feasibility of a subset is checked in linear

ime. In the OP, however, the feasibility of a solution is checked by 

olving a TSP-decision problem. A subset of vertices is feasible if 

here exists a cycle (Hamiltonian in the subgraph obtained by the 

ertices) whose length does not exceed d 0 , finding such a cycle is 

n NP-complete problem. This simple but non-trivial combination 

f two NP-hard problems makes the OP an interesting problem to 

tudy. 

The OP is classified as one of the three generic problems in 

SPs with profits ( Feillet et al., 2005 ). The TSPs with profits have

wo opposite criteria: one that motivates the salesperson to travel 

nd another that imposes a constraint in the route length, e.g., the 

oute must have a minimum length or the route length must 

e not greater than a given value. The other two problems of 

SPs with profits are the Profitable Tour Problem (PTP) ( Dell’Amico 

t al., 1995 ) and the Price Collecting TSP (PCTSP) ( Balas, 1989 ). In

he PTP the goal is to maximize the difference between the to- 

al collected profit and the cost of the tour. Particularly, the PCTSP 

s closely related to the OP. In both problems, the solutions are 

imple cycles that contain a given depot vertex. The two prob- 
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Table 1 

Exact approaches for the OP. 

Publication Approach Contributions Benchmark 

Laporte & Martello (1990) B&B KP bounds Laporte & Martello (1990) 

Ramesh et al. (1992) B&B Lagrangian relaxation Ramesh et al. (1992) 

Leifer & Rosenwein (1994) B&C Logical, Connectivity, Tsiligirides (1984) 

Edge Cover 

Fischetti et al. (1998) B&C Cycle Cover Fischetti et al. (1998) 

Path Inequalities 

Column Generation 

Primal Heuristics 

Gendreau et al. (1998) B&C Vertex Cover Gendreau et al. (1998) 

Alternative Obj 

Primal Heuristics 

l

t

t

S

l

i

a

a

a

T

b

(

t

b

T

f

&

p

a

b

a

(

K

f

&

p

fi  

a

p

i

n

s

S

h

(

K  

2

G

i  

s

(

n

n

t

t

t

t

a

s

m

i

v

c

t

p

O

t

s

b

t

t

t

2  

b

l

ems differ in two aspects. First, the constraint of the problem in 

he PCTSP is limited to the minimum collected vertex profit rather 

han limited to the maximum length of the route as in the OP. 

econdly, the objective function in PCTSP is to minimize the route 

ength while in the OP it is to maximize the collected vertex prof- 

ts. See Angelelli et al. (2014) for the study on the complexity and 

pproximation algorithms for TSPs with profits. 

The occurrence of the OP in many real-life applications, such 

s logistics and tourism, has boosted the emergence of many vari- 

nts and algorithms to solve the problem over the last decades. 

wo surveys of the OP variants, approaches, and applications can 

e seen in Gunawan et al. (2016) and Vansteenwegen & Gunawan 

2019) . In this paper, we have focused on solving the classical OP 

hrough an exact algorithm that takes advantage of the similarities 

etween the OP and other related problems, such as the KP or the 

SP. In this direction, some exact algorithms have been proposed 

or the OP ( Gendreau et al., 1998; Laporte & Martello, 1990; Leifer 

 Rosenwein, 1994; Ramesh et al., 1992 ). The most competitive ap- 

roach thus far was proposed by Fischetti et al. (1998) two decades 

go. To our knowledge, no exact algorithm for the classical OP has 

een published after this work. The first exact algorithm, a Branch- 

nd-Bound (B&B) algorithm, was published in Laporte & Martello 

1990) where bounds for the problem were provided based on the 

napsack relaxation of the OP. In Ramesh et al. (1992) , new bounds 

or the B&B were obtained by Lagrangian relaxation. In Leifer 

 Rosenwein (1994) a Branch-and-Cut (B&C) algorithm was pro- 

osed, which included logical, connectivity, and cover cuts for the 

rst time. In Gendreau et al. (1998) a B&C was proposed for a vari-

nt of the OP which considers multiple depot nodes. The B&C ap- 

roach in Fischetti et al. (1998) outperformed the previous ones 

n middle-sized OP instances by considering column generation, 

ew valid inequalities (cycle cover and path inequalities), problem- 

pecific separation algorithms, and an efficient primal heuristic. 

ee Table 1 for a summary of exact algorithms for the OP. 

In the last two decades, authors dealing with exact approaches 

ave focused on solving variants of the problem, such as Team OP 

 Bianchessi et al., 2018; Boussier et al., 2007; Dang et al., 2013; 

eshtkaran et al., 2015; Poggi et al., 2010 ), Arc OP ( Archetti et al.,

016 ), Team Arc OP ( Archetti et al., 2014; Riera-Ledesma & Salazar- 

onzález, 2017 ) and Probabilistic OP ( Angelelli et al., 2017 ). 

Recent results for large-sized instances of the OP, presented 

n Kobeaga et al. (2018) ; Santini (2019) and Sun et al. (2022) , have

hown that the state-of-the-art B&C algorithm in Fischetti et al. 

1998) does not obtain satisfactory results when the number of 

odes is larger than 400. In half of the large-sized instances, the 

amed B&C algorithm does not produce any output. In many of 

he other half of instances, the returned solution value is far from 

he values obtained by the heuristic algorithms. The motivation of 

his work is to develop a B&C algorithm which is able to improve 

he values of the best-known lower and upper bounds in the liter- 

ture, and if possible, to obtain optimality certifications in a wider 

et of instances than the state-of-the-art B&C algorithm. By opti- 
0

45 
ality certification we are referring to the fact that the algorithm 

s able to guarantee that the global optimum was found. In our 

iew, there is room for improvement for B&C algorithms in the 

ase of the OP, mainly if we consider that some of the successful 

echniques developed for the TSP, such as shrinking and efficient 

ricing ( Applegate et al., 2007 ), have not yet been adapted for the 

P. This paper is an attempt to combine the adaptation of some of 

hose techniques with our OP specific contributions. 

In this work, we have developed and adapted techniques to 

cale the B&C algorithm to large OP instances. Our main contri- 

utions are the following: 

• Develop a joint separation algorithm for Subcycle Elimi- 

nation Constraints and Connectivity Constraints using the 

shrinking techniques in Kobeaga et al. (2021) ( Section 4.2.1 ), 

and blossom separation algorithms for Cycle Problems which 

generalize the heuristics in Padberg & Hong (1980) and 

Grötschel & Holland (1991) ( Section 4.2.2 ).The combination 

of the previous separation algorithms with a three-level sep- 

aration loop for the OP ( Section 4.4 ), which treats the cuts 

according to their relevance, allows the algorithm to be 

speeded up providing a considerable improvement in the so- 

lution quality and running time. 
• Design an efficient variable pricing procedure for the OP in- 

spired by the one developed in Applegate et al. (2007) for 

the TSP. It enables repetitive calculations to be avoided and 

the exact calculation of the reduced cost of some variables 

to be skipped ( Section 4.3 ). 
• Devise a combination of two alternative primal heuristics, 

a greedy by Fischetti et al. (1998) in the separation loop 

and a metaheuristic based at the beginning of branch nodes 

by Kobeaga et al. (2018) . The new combination boosts the 

quality of the obtained solutions in large-sized problems 

( Section 4.5 ). 
• Formulate the computation of the global upper bound in the 

branching phase for the OP in a way which enables the up- 

per bound obtained in the branching root node to be up- 

dated ( Section 4.6 ). 

The computational experiments presented in this paper show 

he importance of the proposed techniques and components for 

he B&C algorithm for the OP. We compare our B&C algorithm with 

hree state-of-the-art algorithms, two heuristics ( Kobeaga et al., 

018; Santini, 2019 ) and an exact ( Fischetti et al., 1998 ), on 258

enchmark instances with up to 7397 nodes. In comparison to the 

iterature, the revisited B&C obtains: 

• 180 optimum values, from which 18 are new. 
• 245 best-known solution values, from which 76 are new. 
• 249 best-known upper-bound values, from which 85 are 

new. 

The rest of the paper is organized as follows. In Section 2 the 

-1 Integer Linear model of the OP is introduced. In Section 3 we 
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Fig. 1. Example of a comb tuple with t = 3 teeth with exactly two vertices each. 
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resent the valid inequalities for the OP. In Section 4 we detail the 

roposed B&C algorithm for the problem. In Section 5 the results 

f the computational experiments are shown. The detailed experi- 

ental results can be found in the appendices. 

. OP modelling and polyhedral considerations 

The OP can be defined by a 5-tuple 〈 G, d, s, o, d 0 〉 , where G =
 n = (V, E) is a complete graph with vertex set V and edge set E;

 = (d e ) where d e is the positive distance value (time or weight)

ssociated to each e ∈ E; s = (s v ) , where s v is a positive value that

epresents the score (profit) of vertex v ∈ V ; o ∈ V is a vertex se-

ected as the depot; and d 0 is a positive value that limits the cycle

ength. 

Let us define the following sets: 

Q : W ) := { [ u, v ] ∈ E : u ∈ Q, v ∈ W } Q, W ⊆ V (1a) 

(Q ) := (Q : V − Q ) Q ⊆ V (1b) 

(Q ) := (Q : Q ) Q ⊆ V (1c) 

 (T ) := { v ∈ V : T ∩ (v : V ) � = ∅} T ⊆ E (1d) 

here (Q : W ) are the edges connecting Q and W , δ(Q ) is the set

f edges in the coboundary of Q also known as the star-set of Q , 

(Q ) is the set of edges between the vertices of Q , and V (T ) is

he set of vertices incident with an edge set T . For simplicity, we

ometimes denote { e } and { v } by e and v , respectively, e.g., δ(v )
nd V (e ) . 

We denote by R 

V , and R 

E , the space of real vectors whose com-

onents are indexed by elements of V , and E respectively. In the 

odel of the OP, two types of decision variables are used, y = 

y v ) ∈ R 

V and x = (x e ) ∈ R 

E , associated with the nodes and edges

f G, respectively, where: 

 v = 

{
1 if node v is visited 

0 otherwise 

x e = 

{
1 if edge e is traversed 

0 otherwise 
46 
or (y, x ) ∈ R 

V ×E , S ⊆ V and T ⊆ E, we define y (S) = 

∑ 

v ∈ S y v and

 (T ) = 

∑ 

e ∈ T x e . 
The OP goal is to determine a simple cycle that maximizes the 

um of the scores of the visited vertices, such that it contains the 

epot node o ∈ V and whose length is equal to or lower than the

istance limitation, d 0 . Then, the OP can be formulated as the fol- 

owing 0–1 Integer Linear model: 

ax 
∑ 

v ∈ V 
s v y v (2a) 

.t. 
∑ 

e ∈ E 
d e x e ≤ d 0 (2b) 

 (δ(v )) − 2 y v = 0 , v ∈ V (2c) 

 (δ(H)) − 2 y l − 2 y r ≥ −2 , l ∈ H ⊆ V, r ∈ V − H (2d) 

3 ≤ | H| ≤ | V | − 3 

y v − x e ≥ 0 , v ∈ V, e ∈ δ(v ) (2e) 

 ≤ y v ≤ 1 , v ∈ V (2f) 

 ≤ x e ≤ 1 , e ∈ E (2g) 

 o = 1 (2h) 

 e ∈ Z e ∈ E (2i) 

here the objective function (2a) is to maximize the total collected 

rofit. The constraint (2b) limits the total cycle length. The de- 

ree Eq. (2c) , together with the logical constraints (2e) , the variable 

ound constraints (2f) and (2g) and the integrality constraints (2i) , 

nsure that the visited vertices have exactly two incident edges 

nd the unvisited vertices none. The Subcycle Elimination Con- 

traints (SEC) (2d) ensure that only one connected cycle exists. 

hroughout the paper, we use the notation 〈 H, l, r〉 for the SEC

efined by the set H ⊆ V and the vertices l ∈ H and r / ∈ H. The

onstraints (2g) and (2i) impose that the edge variables are 0–

, consequently, considering these together with the Logical Con- 

traints (2e) and the (2f) , the vertex variables are also 0–1. The 

onstraint (2h) defines the depot condition. 

As mentioned in the introduction, the OP can be seen as a com- 

ination of the TSP-decision and the KP problems. Particularly, the 

P is a Cycle Problem (CP) where the solutions, which are cycles, 

eed to satisfy a certain length constraint. This relation with the 

wo classical optimization problems is useful when identifying the 

alid inequalities and their respective separation algorithms for the 

P. Let us show how the solution space of the OP is related to 

hose well-known problems. The OP Polytope ( P OP ) of the complete 

raph K n is defined by: 

 OP : = con v ({ (y, x ) ∈ R 

V ×E : (y, x ) satisfies (2b), (2c), (2d), 

(2 e ) , (2 f ) , (2 g) , (2 h ) , (2 i ) } ) (3) 

here con v (S) is the convex hull of the set S, i.e., the smallest con-

ex set that contains it. 

The Knapsack Polytope ( P KP ) ( Balas, 1975 ) is a well-studied 

olytope closely related to the P OP : 

 KP := con v ({ x ∈ R 

E : x satisfies (2b), (2g), (2i) } ) (4) 
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Fig. 2. Flowchart of the Branch-and-Cut algorithm considered in this work. BRANCH is an oracle which returns an unevaluated node in the branching tree. SEP refers to the 

separation algorithms. At each action box of the flowchart the subproblem LP 0 is updated and solved. 
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Since the solutions of the OP are cycles, the Cycle Polytope ( P CP ),

lays a crucial role when solving the OP with B&C. Based on Bauer 

1997) , the P CP can be characterized as: 

 CP : = con v ({ (y, x ) ∈ R 

V ×E : (y, x ) satisfies (2c), (2d) , x (E) 

≥ 3 , (2e), (2f), (2g), (2i) } ) (5) 

We have the following relationship: 

 OP ⊆ P CP ∩ (R 

V × P KP ) ∩ { (y, x ) ∈ R 

V ×E : y o = 1 } (6) 

Consequently, the potential valid inequalities for the OP are 

hose which are valid for P CP and the P KP . However, the P OP and

he intersected polytopes in the relationship (6) are not equal and 

lternative valid inequalities are needed to deal with the OP. An 

xample of a point in P CP ∩ (R 

V × P KP ) ∩ { (y, x ) : y o = 1 } but not in

 OP is given in Fig. 2 of Fischetti et al. (1998) . 

. Valid inequalities 

In this section, we present valid inequalities for the OP . The 

traightforward inequalities, as motivated in Section 2 , are based 

n the P KP (Edge Cover inequalities) and P CP (Comb inequali- 

ies) relaxations of the P OP and they were mainly proposed in 

ischetti et al. (1998) and Gendreau et al. (1998) . Additional valid 

nequalities to those based on P KP and P CP have also been pro- 

osed in the literature: the Connectivity Constraints in Leifer & 
47 
osenwein (1994) , the Vertex Cover inequalities in Gendreau et al. 

1998) , and the Cycle Cover and the Path inequalities in Fischetti 

t al. (1998) . The novelty of this section is an alternative repre- 

entation of comb inequalities, which is then used for the efficient 

ricing in Section 4.3 . 

.1. Connectivity constraints 

The Connectivity Constraints (CC) are well-known inequalities 

or the OP ( Gendreau et al., 1998; Leifer & Rosenwein, 1994 ), and

re a particular case of the conditional cuts proposed in Fischetti 

t al. (1998) . The CCs exploit the depot constraint (2h) . Given a

ower bound, LB, of the OP, let T be a subset of nodes such that

 ∈ T , | T | ≥ 2 and 

∑ 

v ∈ T s v ≤ LB . The inequality defined by T 

 (δ(T )) ≥ 2 (7) 

s valid for the OP. Since x (δ(T )) = x (δ(V − T )) , the inequality can

lso be defined for T ⊆ V such that o / ∈ T and 

∑ 

v / ∈ T s v ≤ LB . So, it is

lways possible to assume that | T | ≤ | V | / 2 . 

.2. Comb inequalities 

The comb inequalities were generalized from the TSP to cycle 

roblems in Bauer (1997) . A comb is a tuple 〈 H, { T , . . . , T t } , L, R 〉 of
1 
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hree vertex subsets and a family T = { T 1 , . . . , T t } of vertex subsets

uch that satisfies the following properties: 

(i) t ≥ 3 and an odd integer 

(ii) T i ∩ T j = ∅ for 1 ≤ i < j ≤ t

(iii) T i ∩ H � = ∅ and T i − H � = ∅ for i = 1 , . . . , t

(iv) L = { l 1 , l 2 , . . . , l t } , where l i ∈ T i ∩ H for all 1 ≤ i ≤ t . 

(v) R = { r 1 , r 2 , . . . , r t } , where r i ∈ T i − H for all 1 ≤ i ≤ t . 

The set H is called the handle, the sets in T are called the teeth, 

he set R is called the Root set, and L is called the Link set. Then,

he inequality 

 (δ(H)) + 

t ∑ 

j=1 

x (δ(T j )) − 2 y (R ) − 2 y (L ) ≥ 1 − t (8) 

s facet-defining for P CP , as was shown in Bauer (1997) , and there-

ore, a valid inequality for OP . When all the teeth consist of exactly 

wo vertices, the comb inequalities are known as blossom inequal- 

ties. 

Fig. 1 shows a violated comb inequality, where the vertex y ∗

nd edge x ∗ values are detailed in the bottom legend. We repre- 

ent a comb tuple with t = 3 teeth with exactly two vertices each,

nd the handle set H so that one of the vertices in each tooth T i 
elongs to the intersection T i ∩ H, i.e., the Link set, while the other

elongs to the difference T i − H, i.e., the Root set. 

.3. Edge cover inequalities 

The maximum length constraint (2b) , which is a capacity con- 

traint for the edge variables, defines a KP polytope, as explained 

n Section 2 . For every feasible (y, x ) , the edge variable, x , belongs

o P KP . For the OP, the Edge Cover inequalities are the cover in-

qualities of the associated P KP ( Balas, 1975 ). These inequalities 

ere first introduced for the OP in Leifer & Rosenwein (1994) and 

lso used in Fischetti et al. (1998) and Gendreau et al. (1998) . Let

 ⊆ E be a subset with 

∑ 

e ∈ F d e > d 0 , then: 

 (F ) ≤ | F | − 1 (9) 

efines an Edge Cover inequality for the OP. We assume that F is a

inimal cover, i.e. for every F 0 ⊂ F , we have 
∑ 

e ∈ F 0 d e ≤ d 0 . 

.4. Cycle cover inequalities 

Every feasible cycle F ⊆ E satisfies the equation x (F ) = y (V (F )) .

et F ⊆ E be a subset that defines a cycle with 

∑ 

e ∈ F d e > d 0 , then

he inequality 

 (F ) ≤ y (V (F )) − 1 (10) 

s valid for the OP. These cuts were used in Fischetti et al. 

1998) and Gendreau et al. (1998) . 

.5. Vertex cover inequalities 

Let UB be an upper bound of the OP and Q ⊆ V be a subset

ith 

∑ 

v ∈ Q s v > UB , then: 

 (Q ) ≤ | Q| − 1 (11) 

efines a Vertex Cover inequality for the OP. We assume that S

s a minimal cover. These inequalities were first used for the OP 

n Gendreau et al. (1998) . 

.6. Path inequalities 

The goal of these cuts is to exclude the paths that due to 

he length constraint (2b) cannot be part of a feasible solution. 
48 
et P = { [ i 1 , i 2 ] , [ i 2 , i 3 ] , . . . , [ i k −1 , i k ] } be any simple path through

 (P ) = { i 1 , . . . , i k } ⊆ V − { o} , and define the vertex set: 

 (P ) := 

{ 

v ∈ V − V (P ) : d o,i o + 

∑ 

e ∈ P 
d e + d i k , v + d v ,o ≤ d 0 

} 

(12) 

hen the following Path inequality 

 (P ) − y (V (P )) + y i,o + y i,k −
∑ 

v ∈ W (P) 

x i k , v ≤ 0 (13) 

s valid for the OP, see the explanation in Fischetti et al. (1998) . 

. Branch-and-cut algorithm 

In this section, we present the principal contributions of this 

aper. These contributions deal with the separation algorithms of 

nequalities stemming from the cycle problem (SECs and comb in- 

qualities), the design of the separation loop, the pricing of vari- 

bles for the column generation and the calculation of the lower 

nd upper bounds of the problem. In Fig. 2 a flowchart represent- 

ng a simplified B&C algorithm can be consulted. 

.1. Initialization 

First of all, we obtain an initial heuristic solution. To that 

im, we make use of the EA4OP metaheuristic in Kobeaga et al. 

2018) considering a small size population. Next, we build the 

nitial subproblem, LP 0 . Given the computational requirements of 

onsidering all the variables and constraints that define the OP, an 

nitial subproblem LP 0 is built. The LP 0 is initialized considering 

he following subset of constraints and variables: 

(i) All the vertex variables. 

(ii) Edges in the 10 nearest neighbourhood graph, that is, the 

graph created by keeping the edges of the 10 nearest neigh- 

bours of each node and removing the rest. 

(iii) Maximum length constraint (2b) , degree constraints (2c) , 

and depot constraint (2h) . 

(iv) Variable bounds, (2f) and (2g) . 

Due to the large number of subtour elimination constraints 

nd logical constraints, we consider the relaxation of constraints 

2d) and (2e) as explained in Section 4.2 , and the integrality con- 

traints (2i) are also relaxed. Immediately after the initialization, 

he edge variables are priced, see Section 4.3 . In the rest of the pa-

er, we use the LP 0 symbol to refer to any subproblem of the OP, 

egardless of whether it is the initial one or not. 

.2. Separation algorithms 

In this section, we present the heuristic and exact separation 

lgorithms used to find the violated inequalities. Our contributions 

re concentrated in the separation algorithms for SECs, CCs and 

lossom inequalities. Hence, we only give details of these sepa- 

ation algorithms in the section. The details of separation algo- 

ithms for the rest of the inequalities (Logical Constraints, Edge 

over, Vertex Cover, Cycle Cover, and Path inequalities) can be 

ound in Fischetti et al. (1998) . Let (y ∗, x ∗) be a solution of a partic-

lar LP 0 problem and define V ∗ = { v ∈ V : y ∗v > 0 } and E ∗ = { e ∈ E :

 

∗
e > 0 } . Then, G 

∗ = (V ∗, E ∗) is called the support graph associated

ith the solution (y ∗, x ∗) . 

.2.1. SECs and CCs 

Violated SECs (2d) and CCs (7) are found using a common sep- 

ration algorithm. This is natural since, in both constraint families, 

he incidence vector of the arcs, x in the inequality can be written 

s the star-set value, x (δ(Q )) of a subset Q of vertices. Since δ(Q ) 
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s the cut associated with Q , the separations of both inequalities 

re closely related to the minimum cut problem. In Kobeaga et al. 

2021) it was shown that the shrinking techniques substantially 

peed up the SEC separation algorithms. However, as explained be- 

ow, the shrinking might also have a negative impact on the find- 

ng of violated CCs. In this section, we study how to efficiently use 

he shrinking to speed up the joint separation algorithm by reduc- 

ng the adverse effects for CCs. 

A violated SEC and a violated CC can appear simultaneously 

hen considering a solution (y ∗, x ∗) and a subset Q . In general,

he CCs tend to be more violated and stable than the SECs in the 

ense that they remain active in subsequent updates of the LP 0 . 

he reason for this is that the CCs do not depend on the value of

he vertices while the SECs do. Therefore, we treat the CCs with 

 higher priority. Although SECs are part of the OP model, in or- 

er to control the size of the working LP 0 , they are included only

hen required. This strategy is reasonable since there exist poly- 

omial exact separation algorithms for SECs. In contrast, the sepa- 

ation problem for CCs is not known to be polynomial, and it can 

e modeled as follows: 

in 2 

∑ 

v ∈ V ∗
y ∗v z v − 2 

∑ 

v ∈ V ∗
x ∗(v ,u ) z v z u (14a) 

.t : 
∑ 

v ∈ S 
s v z v ≤ LB (14b) 

z o = 1 (14c) 

z v ∈ { 0 , 1 } ∀ v ∈ V (14d) 

here z = (z v ) are binary variables whose values are z v = 1 if the

ode v is selected and 0 otherwise. The problem (14) is a Quadratic 

napsack Problem (QKP) with a fixed variable. Consequently, there 

xists a violated CC for (y ∗, x ∗) if and only if the optimal solution

f Problem (14) has a value lower than 2. Taking into consideration 

hat repeatedly solving QKPs during the B&C is not viable, the CCs 

re not separated exactly, but in a heuristic manner take advan- 

age of the SEC separation algorithm. The well-known approaches 

or the separation of SECs in the TSP, the connected component 

euristic and Hong’s approach can be extended to jointly separate 

he SECs and CCs: 

Connected components heuristic . The straightforward heuristic to 

nd violated SECs and CCs is to search for the connected compo- 

ents of G 

∗ using the depth-first-search algorithm. When a con- 

ected component contains the depot vertex o and the sum of the 

ertices scores in the component is lower than LB , we record the 

ssociated CC of the component, otherwise, we record the associ- 

ted SECs. On the other hand, if the S component does not con- 

ain the depot, we consider its complement in the support graph, 

 

′ = G 

∗ − S. If S ′ contains only two vertices, we record the two as-

ociated logical constraints. Otherwise, since S ′ contains the depot, 

e record the associated CC or SECs following the above criteria. 

Extended Hong’s approach . There are two main strategies to ex- 

ctly separate SEC inequalities in cycle problems, which are ex- 

ensions of Hong’s approach and the Padberg–Grötschel approach 

also known as the Gomory–Hu tree-based approach) for the TSP 

 Kobeaga et al., 2021 ). In both approaches, the separation is carried 

ut by solving a sequence of | V ∗| − 1 (s, t) -minimum cut problems.

n the one hand, in the extended Hong’s approach, the vertex with 

 higher y ∗ value (the depot vertex o) is fixed to be the source, s ,

nd the sink vertices, t , are chosen from the set V ∗ − { o} . On the

ther hand, the extended Padberg–Grötschel approach is based on 

he so-called Gomory–Hu tree (directed and rooted in o), which is 

onstructed by solving | V ∗| − 1 (s, t) -minimum cut problems. 
49 
As mentioned above, and as already proposed in the literature, 

he SEC separation strategies are leveraged to find violated CCs as 

ell. Although the extended Padberg–Grötschel approach obtains 

 larger number of violated SECs, it is not appropriate to find vio- 

ated CCs, since the obtained sets do not contain the depot vertex 

. Contrarily, the extended Hong’s approach for SECs can be eas- 

ly adapted to additionally find violated CCs. It can be achieved, 

y solving at each step of the separation algorithm the (o, v ) - 
inimum cut (useful to find violated SECs) and (v , o) -minimum 

ut (useful to find violated CCs) problems. For these reasons, we 

se the extended Hong’s approach as the base strategy for the joint 

eparation algorithm. 

The running time of these SEC separation algorithms can be im- 

roved using the shrinking techniques for cycle problems, as was 

een in Kobeaga et al. (2021) . In that publication, three general 

hrinking rules (C1, C2, and C3) and three SEC specific shrinking 

ules (S1, S2, and S3) for cycle problems were presented. However, 

lthough the shrinking is a key strategy for efficiently separating 

he SECs, it might be unfavorable for the separation of CCs. The 

oint is that when the vertices are contracted and grouped, the 

hance to obtain the subset of vertices with a score sum lower 

han LB decreases, consequently, some violated CCs might vanish. 

ote that, the mentioned shrinking techniques are safe for valid 

nequalities of the cycle polytope and CCs are not. Therefore, since 

Cs are important cuts for the OP, shrinking might have a negative 

mpact on the performance of the overall B&C algorithm for the OP. 

ne contribution in this paper is to propose strategies to minimize 

he possible disadvantages of the shrinking (which is important to 

peed up the separation) in the joint separation algorithm for SECs 

nd CCs. 

Following this, not all the shrinking strategies for cycle prob- 

ems described in Kobeaga et al. (2021) are adequate for the OP 

roblem. Particularly, we exclude the S2 shrinking rule (which 

eads to excessively aggressive shrinking strategies and hence to 

anish violated CCs in some cases) and only consider the shrinking 

trategy S1 (or alternatively, the strategies C1C2) in the preprocess 

f the joint separation algorithm. Once entered in the separation 

lgorithm, the shrinking rule S3, which contracts the sink and tar- 

et of the solved minimum cut, contributes positively to separate 

oth families of constraints since it enables a wider family of sub- 

et candidates to be obtained. Hence, the S3 rule is used in com- 

ination with the S1 (or alternatively, C1C2) shrinking strategy in 

he separation algorithm. After the S3 rule is applied, we search 

or new shrinkable sets using the selected shrinking strategy. 

Classically, the candidate subsets for SECs and CCs are obtained 

y the minimum cut algorithm. However, considering the impor- 

ance of CCs, we intensify the search for extra candidate subsets for 

Cs, which is made more efficient by taking advantage of the ver- 

ex clustering obtained by the shrinking. We propose new strate- 

ies based on the following lemma: 

emma 4.1. Let (y, x ) be a vector that satisfies the degree constraints. 

f U and W are subsets of V such that W ⊆ U, the following inequality 

s satisfied: 

 (δ(U − W )) ≤ x (δ(U)) + x (δ(W )) (15) 

roof. It is straightforward since the following holds when W ⊆ U: 

 (δ(U)) + x (δ(W )) = x (δ(U − W )) + 2 x (δ(U) ∩ δ(W )) �

We use the following notation for shrinking. Let Ḡ = ( ̄V , Ē ) be 

he graph and ( ̄x , ̄y ) the vector obtained by applying a shrinking 

trategy to G 

∗ and (y ∗, x ∗) , respectively, and π : P( ̄V ) → P(V ) the

nshrinking function. Let S̄ be the subset obtained by the ( ̄v , ̄o ) - 
inimum cut (where ō is the contracted vertex that contains the 
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epot vertex o), so o ∈ π( ̄S ) , and suppose that x̄ (δ( ̄S )) < 2 . Note

hat, x (δ(S)) = x̄ (δ( ̄S )) , where S = π( ̄S ) . If 
∑ 

v ∈ S us v ≤ LB , the sub-

et S defines a violated CC. Otherwise, after each ( ̄v , ̄o ) -minimum 

ut problem is solved, and in the case that x̄ (δ( ̄S )) < 2 , we test the

ollowing strategies to find candidate subsets for CCs: 

(i) First, when | π( ̄o ) | > 2 , we check if y ō < 1 and 

∑ 

v ∈ π( ̄o ) s v ≤
LB . If this is the case, the subset Q = π( ̄o ) defines a violated

CC. 

(ii) Then, we check if there exists v̄ ∈ S̄ − ō , such that x (δ( ̄S )) +
2 y v̄ < 2 and

∑ 

v ∈ π( ̄S −v̄ ) s v ≤ LB . If both inequalities are satis- 

fied for v̄ , the subset π( ̄S − v̄ ) defines a violated CC. 

(iii) Finally, we sort the vertices in S̄ − ō in non-decreasing 

order of ȳ , and check greedily for the greatest subset 

S 
′ = { v̄ 1 , . . . , v̄ k } of S̄ such that x̄ (δ( ̄S )) + 2 

∑ 

v ∈ S ′ y v̄ < 2 . If∑ 

v̄ ∈ π( ̄S −S 
′ 
) 

s v ≤ LB , the subset π( ̄S − S 
′ 
) defines a violated 

CC. 

.2.2. Comb Inequalities (blossoms) 

For the B&C presented in this work, we only use the blossom 

ubfamily of comb inequalities. In this section, we present two 

euristics to search for violated blossom inequalities in cycle prob- 

ems, and in particular, for the OP. The heuristics are extensions of 

he Padberg & Hong (1980) and Grötschel & Holland (1991) sepa- 

ation algorithms, developed in the context of the TSP. 

The key point of the heuristics for blossom inequalities is to 

dentify a subset of candidate handles to restrict the search of vi- 

lated blossoms. In the literature related to the OP, a heuristic to 

nd handle candidates is detailed in Fischetti et al. (1998) . In this 

euristic, the search is guided by the greedy algorithm of Kruskal 

or the Minimum Spanning Tree. At each iteration of the Kruskal 

lgorithm, a new edge is inserted into the tree, and the connected 

omponent containing the edge is chosen as a candidate handle. 

n this work, we consider two alternative approaches to find can- 

idate handles: the Extended Padberg–Hong heuristic and the Ex- 

ended Grötschel–Holland heuristic. 

Extended Padberg–Hong heuristic (EPH) . Padberg & Hong 

1980) proposed a blossom separation heuristic for the TSP, which 

s known as the odd-component heuristic. In this heuristic for the 

SP, the violated blossoms are found by restricting the set of candi- 

ate handles to the connected components of the fractional graph 

 

∗
o = (V ∗o , E ∗o ) , where E ∗o = { e ∈ E ∗ : 0 < x ∗e < 1 } and V ∗o = V (E ∗o ) . We

eneralize this heuristic for the general cycle problems by apply- 

ng the Padberg–Hong algorithm by levels. A level, λ, is defined 

y each different value of the set { y ∗v } v . We call L the set of dis-

inct levels. Note that, the number of levels, | L | , is bounded by

 V | . Associated with a level we have the level graph G 

∗
λ

= (V ∗
λ
, E ∗

λ
) ,

here E ∗
λ

= { e ∈ E ∗ : 0 < x ∗e < λ} and V ∗
λ

= V (E ∗
λ
) . A faster heuristic

o find the handle candidates can be designed by omitting some 

onnected components of G 

∗
λ

. At every level, λ, we discard the con- 

ected components, C λ
i 

, such that y v � = λ for all v ∈ C λ
i 

. Now, we

dentify the connected component of vertices with y v = λ. So, in 

otal, we search for | V ∗| different connected components of, in the 

orst case, G 

∗
o . 

Once we have identified an initial list of candidate handles, the 

ext step is to find the associated teeth for these handles. Let H be 

 candidate handle, and define the set of teeth as T H = { e ∈ δ(H) :

 

∗
e ≥ λ} . Recall that the teeth of blossoms are edges. Not all the 

eeth families obtained using this strategy satisfy the comb (blos- 

om) definition. If two teeth overlap in v / ∈ H, then these two teeth 

re removed from the family of teeth T H and the handle is updated 

s H = H ∪ { v } . If, eventually, the list of teeth T H consists of an odd

umber of at least three disjoint teeth, 〈 H, T H , L, R 〉 forms a blos-

om inequality where L i = T 
j 

i 
∩ H and R i = T 

j 
i 

− H. If there is just

ne tooth i.e., T H = { T } , we test if H defines a violated CC. In the

ase that it does not, then H alone defines a violated SEC. 
50 
In Fig. 3 we illustrate the EPH blossom heuristic for cycle prob- 

ems. In Fig. 3 (a)) the given support graph is presented, where 

here are three distinct levels, L = { 1 , 1 / 2 , 1 / 4 } . In Fig. 3 (b)) the

andidate handles are presented. Three candidate handles are ob- 

ained in level 1: { 1 , 2 , 3 } , { 5 , 6 , 7 } and { 10 , 11 , 12 , 13 , 14 , 15 , 16 } .
wo candidate handles are obtained in level 1 / 2 : { 10 , 11 , 12 }
nd { 14 , 15 , 16 } . There are no candidate handles obtained in

evel 1 / 4 . Next, we check for violated cuts. The star-set of 

 10 , 11 , 12 , 13 , 14 , 15 , 16 } is formed by two non-overlapping edges,

o it is excluded. The candidates { 5 , 6 , 7 } and { 10 , 11 , 12 } define

iolated blossoms, e.g., 〈{ 10 , 11 , 12 } , {{ 8 , 10 } , { 9 , 11 } , { 12 , 13 }} , L, R 〉
here L = { 10 , 11 , 12 } and R = { 8 , 9 , 13 } as shown in Fig. 3 (c).

he candidates { 1 , 2 , 3 } and { 14 , 15 , 16 } define violated SECs, e.g.

{ 1 , 2 , 3 } , 1 , 4 〉 and 〈{ 14 , 15 , 16 } , 14 , 1 〉 , but first for { 1 , 2 , 3 } it

hould be checked whether it defines a violated CC. 

Extended Grötschel–Holland heuristic (EGH) . Another fast heuris- 

ic for the TSP was proposed in Grötschel & Holland (1991) whose 

im was to minimize the influence of small perturbations of x ∗ in 

he separation algorithm. We have adapted this heuristic for the OP 

sing the strategy of levels mentioned above. In this approach, the 

andles are considered as the vertex sets of the connected compo- 

ents of the graph G 

∗
λ,ε

= (V ∗, E ∗
λ,ε

) where 

 

∗
λ,ε = 

{
e ∈ E ∗λ : ε ≤ x ∗e ≤ (1 − ε) λ

}
or a small ε, 0 < ε < 1 . Let H denote the vertex set of such a com-

onent, a candidate handle, and let e 1 , . . . , e t be the edges in the

et 

 H = 

{
e ∈ δ(H) ⊆ E ∗ : x ∗e > (1 − ε) λ

}
n the non-increasing order of x ∗e . If t is even, then append to T H 
he edge with the highest x ∗e in 

e ∈ δ(H) ⊆ E ∗ : x ∗e < ε
}

f the edges intersect, the strategy outlined above is followed to 

btain a handle H and a teeth family T H that satisfies the blossom 

efinition. 

.3. Column generation 

During the B&C algorithm, only a subset of edges is included 

n the working LP 0 . Therefore, we need to price the excluded edge 

ariables and add them to the LP 0 with two goals in mind: 1) to 

uarantee that the working relaxation is an upper bound of the 

roblem or branched subproblem and 2) to recover, if possible, a 

easible LP 0 after feasibility breaking cuts have been added to the 

P 0 . Taking into account that usually only a small subset of vari- 

bles is included in the LP 0 , and that the excluded variables could 

articipate in multiple cuts of the LP 0 , the pricing phase could con- 

titute a bottleneck of the B&C algorithm. In this section, we de- 

elop a technique, inspired by that used in Applegate et al. (2007) , 

hich enables us to avoid repetitive calculations and to skip the 

xact calculation of the reduced cost of some variables. 

Let us call L 

V the family of SECs (2d) , CC (7) , and comb (8) cuts.

n these cuts, the edge variables with non-negative coefficients can 

e represented as the sum star-set of subsets of vertices. Comple- 

entarily, let us call L 

E the family of Logical (2e) , Edge Cover (9) ,

ycle Cover (10) and Path (13) cuts. Note that the Vertex Cover 

11) inequalities do not contribute to the reduced cost of the edge 

ariables. So, in the OP, the reduced cost of an edge variable, 

 = [ v , w ] , can be calculated by: 

c e = −d e πd 0 − πv − πw 

+ rc V e + rc E e (16) 

here πd 0 
is the dual variable of the maximum length constraint 

2b) , πv and πw 

are the dual variables of the degree constraints 

2c) of v and w respectively, and rc V e and rc E e are the contributions 

ade by the cuts in L 

V and L 

E , respectively. We will see that the
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Fig. 3. Illustration for the Extended Padberg–Hong blossom heuristic. Figure a) represents the support graph, with the vertex and edge values detailed in the bottom legend. 

Figure b) shows all the handle candidates obtained by the heuristic. Figure c) a violated blossom found by the heuristic involving vertices with different y values. 
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c E e values can be obtained in linear time in terms of | V | and |L 

E | ,
nd we will reproduce the pricing strategy used in Applegate et al. 

2007) to calculate the rc V e values. It can be seen that the cost of

he calculation of all the rc E e is O (|L 

E || V | ) . To that aim, it is suffi-

ient to check that the number of edges with a non-negative coef- 

cient in each cut of L 

E is bounded by | V | . In the case of Logical,

ycle Cover, and Path inequalities, it is derived from the definition 

f the valid inequality. For Edge Cover inequalities, this bound is 

btained in Lemma 4.2 . 

emma 4.2. Let T ⊆ E denote a subset defining a violated edge cover 

nequality. If the degree Eq. (2c) are satisfied by (y, x ) ∈ R 

V ×E then

 T | ≤ | V | . 
roof. When the degree constraints are satisfied by (y, x ) , as 

 consequence of the well-known equality x (δ(S)) = 2 y (S) −
 x (E(S)) , the inequality x (E(V (T ))) ≤ y (V (T )) is always satisfied.

uppose that T violates the cover inequality (9) then 

 T | − 1 < x (T ) ≤ x (E(V (T ))) ≤ y (V (T )) ≤ | V | (17) 

�

Calculating all the rc V e values has a O (|L 

V || V | 2 ) complexity

hen the cuts are stored externally as edge variable coefficient ar- 

ays. The strategy used in Applegate et al. (2007) speeds up the 

ricing by obtaining a fast lower bound of the reduced cost rc V e 

TSP is a minimization problem) and excluding for exact pricing 

he edges that have a negative lower bound. In order to use this 

trategy for the OP, first, the edge variables of the cuts in L 

V must

e represented and stored as a family of subsets of vertices, as we 

ave done in Section 3 . Let S = F 1 ∪ . . . ∪ F r be the family of all the

ubsets involved in the cuts of L 

V where F i = { H i } ∪ T i . For combs,

 i and T i represent the handle and teeth set, respectively. For SECs 

nd CCs we can assume that T i = ∅ and H i = ∅ , respectively. 

Based on the representation of the cuts in L 

V by means of sub- 

ets of vertices, the cuts are stored in an efficient data structure by 

ointing to the subsets involved in the cut. This way each subset is 

aved once at most for all the cuts. Moreover, it allows us to speed

p the evaluation of rc V e values as follows. Since the OP is a maxi-

ization problem, during the pricing, we need to identify the edge 

ith positive reduced cost. We aim to define upper bounds, ˆ rc e , of 

he reduced costs rc e , to exclude for exactly pricing the edges that 

ave a non-positive upper bound ˆ rc 
V 
e . For each subset, S ∈ S , let us
51 
all πS the dual of the subset S defined as: 

S = 

r ∑ 

j=1 

χ j (S) π j (18) 

here χ j (S) = 1 if S ∈ F j and 0 otherwise, and π j is the dual vari-

ble associated with the cut j. Then, the contribution of the cuts 

n L 

V in the reduced cost of an edge e can be written as: 

c V e = 

∑ 

S ∈ F 
V (e ) ∩ S � = ∅ 
V (e ) − S � = ∅ 

πS (19) 

here πS is the dual of a subset S. Since, for the edge e = [ v , w ] ,

ach S must contain either v or w , an upper bound, ˆ rc 
V 
e , of rc V e can

e obtained by: 

ˆ c 
V 
e = 

∑ 

S ∈ F 
v ∈ S 

πS + 

∑ 

S ∈ F 
w ∈ S 

πS 

hich satisfies rc V e ≤ ˆ rc 
V 
e . Therefore, we have the desired upper 

ound: 

ˆ c e = −d e πn +1 − πv − πw 

+ rc E e + 

ˆ rc 
V 
e (20) 

Note that, each edge appears at most twice in a comb inequal- 

ty, so the calculation of all the ˆ rc 
V 
e has a O (M|L 

V || V | ) time com-

lexity where M is the maximum number of subsets involved in a 

ut. Therefore, the calculation of all the ˆ rc e has a O (M|L 

V || V | ) time

omplexity. In our B&C, the value of M is related to the number of 

eeth in the combs. To ensure a true linear time complexity proce- 

ure, one could limit the number of teeth in the combs. However, 

n practice, the number of teeth tends to be small and it can be 

ssumed that M << | V | . We can exclude exactly pricing the edges

hat ˆ rc e ≤ 0 . For those edges that ˆ rc e > 0 , the exact reduced cost, 

c e , can be calculated by using the upper bound value: 

c e = 

ˆ rc e − 2 

∑ 

S ∈ F 
V (e ) ⊆ S 

πS (21) 

The pricing loop is done in batches. In the first step, a fixed 

umber of ˆ rc e are calculated, the first batch of variables and those 

ith positive values are preselected. In the next step, for those 

reselected variables, we calculate the exact reduced cost, rc e , and 

dd to the LP 0 the edges whose value is positive. Then, the LP 0 
s updated. Next, we select the second batch of variables and we 
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epeat the procedure. When the pricing aims to obtain the upper 

ound of the branched subproblem, we exit the pricing loop when 

 whole round of evaluation is performed without introducing a 

ariable to the LP 0 . When the pricing aims to recover a feasible 

P 0 , we exit the pricing loop once a feasible LP 0 is obtained with-

ut the need to price all the excluded variables. 

.4. Separation loop 

The separation loop to find the violated cuts is accomplished 

n three subloops. In the inner loop, we consider the separation 

f logical constraints (2e) and the connected components heuristic 

or SECs and CCs. In the middle loop, we consider the separations 

f cuts which are related to the cycle essence of the OP, i.e., SECs, 

Cs, blossoms, and Cycle Cover cuts. In the outer loop, we consider 

he rest of the cuts, i.e., the Edge Cover, Vertex Cover, and the Path 

nequalities. The separation loop is illustrated in Fig. 4 . 

At each subloop, the separation of the considered cuts is per- 

ormed sequentially, instead of restarting from the beginning of the 

ist. This is, we always carry out the next separation in the subloop 

ist, regardless of whether or not we are coming from an interior 

ubloop. This way, we give the same chance to all separations in 

 subloop and decrease the probability of bounding in the same 

eparation algorithm in consecutive iterations of the subloop. 

The separation algorithms of the inner loop are fast since 

oth have a O (| E ∗| ) time complexity. First, we carry out the con-

ected components heuristic and then the separation of logical 

onstraints. In the inner loop, intending to keep it as a fast loop, 

e price the edge variables only when the floor part of the objec- 

ive value is equal to the lower bound of the OP, i.e., if � s · y ∗� = LB .

hen both separations fail and no new edges have been added, 

e find a feasible solution using the PB primal heuristic (see 

ection 4.5 ) and update the LB if needed. We add the associated 

C of the heuristic solution if it is violated and then we price the 

ariables. When a new CC cut or a priced edge has been added 

o the LP 0 , the inner loop is repeated. Otherwise, we return to the 

iddle loop. 

The middle and outer loops only differ in the considered con- 

traint families. In the middle loop, we consider the separation al- 

orithms in the following order: the extended Padberg–Hong algo- 

ithm for blossom, the extended Grötschel-Holland algorithm for 

lossom, the joint SEC/CC separation algorithm, and Cycle Cover 

eparation algorithm. In the outer loop, we consider the Edge 

over algorithm, the Vertex Cover algorithm, the Path algorithm. 

hen we enter in any of the loops, the first step is to execute 

he lower level subloops. Then, we start with the first algorithm 

n the list. If no violated cuts are found we move on to the next

lgorithm. If violated cuts are found, we first add the cuts and op- 

imize the LP 0 . Then, we search for a feasible solution using a pri-

al heuristic and update the LB if needed. We add the associated 

C of the heuristic solution in case it is violated and then we price

he variables. At this point, we move to the lower level loop and 

ontinue with the next separation in the list. 

In the separation loop, after adding the violated cuts found in 

 separation algorithm, we check if any edge variable or constraint 

an be removed from the LP 0 . We remove an edge variable from 

he LP 0 if, during a number of consecutive evaluations, its associ- 

ted value, x ∗e , has been zero. We remove a constraint from the LP 0 
f during a number of consecutive evaluations its slack has been 

igher than zero. 

.5. Primal heuristics and lower bounds 

We use two primal heuristics to obtain feasible solutions from a 

ractional solution (y ∗, x ∗) . In the first heuristic, we obtain a single

olution, by using the x ∗ values related to edges, inspired by the 
52 
euristic proposed in Fischetti et al. (1998) . In the second heuris- 

ic, first, we build a population of cycles and then evolve it using 

he EA4OP metaheuristic ( Kobeaga et al., 2018 ). The cycles in the 

opulation are constructed by selecting first the subset of vertices 

n each cycle using the y ∗ values. 

Path Building primal heuristic (PB) . The PB heuristic was pre- 

ented in Fischetti et al. (1998) . First, the edges e ∈ E ∗ are sorted

n decreasing order of x ∗e , and the ties are randomly broken. The 

rocedure starts with an empty path T = ∅ . At each step we select

n edge e ∈ E ∗ whose x ∗e has the largest value from the set of edges

hich have not been considered yet. If the inclusion of e in T does

ot lead to a vertex with a degree larger than 2, then T = T ∪ { e }
therwise we exclude e and repeat the process. The path building 

euristic finishes when the inclusion of e leads to T being a cycle 

r when there are no edges left to check. If the depot vertex is not

n one of the paths in T , it is included as a single point path. If

 consists of multiple paths, we extend it to a cycle by randomly 

onnecting the extreme vertices (in the original paper the paths 

ere joined using the nearest neighbor heuristic). Since this pri- 

al heuristic is fast, it is used in the separation loop. 

Vertex picking primal heuristic (VP) with the EA4OP metaheuris- 

ic . In the VP heuristic, we first select a collection of vertices in V ∗

nd then build a random cycle through the selected vertices. Each 

ertex v is selected according to a Bernouilli distribution with pa- 

ameter y ∗v . By applying multiple times the VP strategy to obtain 

easible solutions from (y ∗, x ∗) , we build a small population. Once 

e have a population, we ensure that the solutions in the pop- 

lation are feasible and evolve it using the EA4OP metaheuristic 

roposed by Kobeaga et al. (2018) . The EA4OP with VP heuristic is 

sed to find feasible solutions after an edge is branched, as shown 

n Fig. 2 . 

We improve the route lengths of the solutions obtained by the 

B and VP heuristics using the Lin-Kernighan heuristic for the TSP. 

fterwards, we check if the resulting solutions satisfy the con- 

traint (2b) . If it does not, we apply the drop operator which con- 

ists in deleting vertices from the solution until the cycle satisfies 

he length constraint. Then we try to improve the solution by the 

-d tree based vertex inclusion procedure as explained in Kobeaga 

t al. (2018) . 

.6. Branching and upper bounds 

The branching is carried out in a classical way following a 

epth-first-search, where the edges are branched first to 1 and 

hen to 0. In order to select the edge variable to branch, we use the

lassical branching strategy: the edge e , with the fractional value 

losest to 0.5 is selected, i.e., the edge that minimizes | x ∗e − 0 . 5 | . 
The global upper bound and branch node upper bound are 

alculated just before pruning a branch. The branch node upper 

ound, UB N , is used to verify the pruning, i.e, that LB ≥ � UB N � . The

lobal upper bound is calculated with two aims: firstly, to use it 

n Vertex Cover separation, and secondly, to compute the optimal- 

ty gap when the algorithm finishes due to time limitations. The 

lobal upper bound, UB G of the OP, is obtained using the dual so- 

ution π ∗ of the solution (y ∗, x ∗) of the LP 0 : 

B 

G = 

c ∑ 

i =1 

π ∗
i b i + rc ∗o + 

∑ 

v ∈ V −{ o} 
rc ∗v > 0 

rc ∗v + 

∑ 

e ∈ E 
rc ∗e > 0 

rc ∗e (22) 

here the reduced costs rc ∗v and rc ∗e are calculated using the dual 

ariables π ∗ and c is the number of constraints. The upper bound 

f a branch node, UB N , can be calculated by subtracting the contri- 

utions of the branched edges to UB G . Let B 0 , B 1 ⊆ E be the subset

f edges branched to 0 and 1, respectively. Then, we obtain UB N 
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Fig. 4. Illustration of the separation loop. The symbol ✄ represents that some cuts have been added to the LP 0 . 
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Table 2 

Generations for instances based on TSPLIB. 

Generation Score for the i th node, i ∈ [ n ] α # medium # large 

n ≤ 400 n > 400 

Gen1 1 0.5 45 41 

Gen2 1 + (7141 · (i − 1) + 73) mod 100 0.5 45 41 

Gen3 1 + � 99 · d o,i / max j∈ [ n ] d o, j � 0.5 45 41 

Table 3 

Different RB&C configurations. The first column represents the name of the configurations and each column on the right represents a different component of the algorithm 

that is included or not. 

SEC/CC Blossom Literature Loop B. HEUR 

C1 C2 S1 S3 CC EGH EPH FST CL VX EE PH 2 3 PB VP EA 

Reference ✗ ✗ 
√ √ √ √ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

-SRK ✗ ✗ ✗ ✗ 
√ √ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

SRK = C1C2S3 
√ √ 

✗ 
√ √ √ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

-CC STRATS ✗ ✗ 
√ √ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

-EPH ✗ ✗ ✗ ✗ 
√ √ 

✗ ✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

-EGH ✗ ✗ ✗ ✗ 
√ √ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

+ FST ✗ ✗ ✗ ✗ 
√ √ √ √ √ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

EPH EGH = FST ✗ ✗ 
√ √ √ 

✗ ✗ 
√ √ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

-CYCLE COVER ✗ ✗ 
√ √ √ √ √ 

✗ ✗ ✗ 
√ √ 

✗ 
√ 

✗ 
√ √ 

-EDGE COVER ✗ ✗ 
√ √ √ √ √ 

✗ 
√ 

✗ ✗ 
√ 

✗ 
√ 

✗ 
√ √ 

-PATH ✗ ✗ 
√ √ √ √ √ 

✗ 
√ √ √ √ 

✗ 
√ 

✗ 
√ √ 

+ VERTEX COVER ✗ ✗ 
√ √ √ √ √ 

✗ 
√ 

✗ 
√ 

✗ ✗ 
√ 

✗ 
√ √ 

SEP = TWO ✗ ✗ 
√ √ √ √ √ 

✗ 
√ 

✗ 
√ √ √ 

✗ ✗ 
√ √ 

B. HEUR = PB ✗ ✗ 
√ √ √ √ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ √ 

✗ ✗ 

B. HEUR = VP ✗ ✗ 
√ √ √ √ √ 

✗ 
√ 

✗ 
√ √ 

✗ 
√ 

✗ 
√ 

✗ 

SEC/CC (separation algorithms in Section 4.2.1 ); Blossom (separation algorithms in Section 4.2.2 ); Literature (separation algorithms from the literature: CL-CYCLE, VX-VERTEX, 

EE-EDGE, PH-PATH); Loop (loop separation strategy in Section 4.4 ); B. HEUR (branch heuristic in Section 4.5 ). 
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B 

N = 

c ∑ 

i =1 

π ∗
i b i + rc ∗o + 

∑ 

v ∈ V −{ o} 
rc ∗v > 0 

rc ∗v + 

∑ 

e ∈ E 
rc ∗e > 0 

rc ∗e −
∑ 

e ∈ B 0 
rc ∗e > 0 

rc ∗e + 

∑ 

e ∈ B 1 
rc ∗e < 0 

rc ∗e 

(23) 

. Computational experiments 

In this section, we present the results of the computational ex- 

eriments. Firstly, we evaluate the new designed components for 

he revisited B&C algorithm (RB&C); and secondly, we compare the 

erformance of RB&C with state-of-the-art B&C and heuristic algo- 

ithms. The software used for the experiments is publicly available 

n github.com/gkobeaga/op-solver . 

The experiments are carried out using well-known instances in 

he literature. These instances, which are based on the TSPLIB li- 

rary, were first proposed in Fischetti et al. (1998) and then ex- 

ended to larger problems in Kobeaga et al. (2018) . The instances 

re split into two groups: medium-sized instances (up to 400 

odes) and large-sized instances (up to 7397 nodes). In total, we 

onsider 258 benchmark instances. They are also classified into 

hree generations (Gen1, Gen2 and Gen3) according to the defini- 

ion of scores ( Fischetti et al., 1998 ). 

The definition of the scores is depicted in Table 2 . For all of

hese three generations, the distance limitation is set as half of the 

SP solution value. These instances are publicly available at github. 

om/bcamath-ds/OPLib . 

In order to measure the performance of the algorithms, we 

ompare the quality of the returned best solutions (LB) and the 

ean running time (in seconds) of the algorithms. In addition, in 

he case of the B&C algorithms, we also compare the obtained up- 

er bounds (UB). All the experiments for the compared algorithms 

ave been carried out using a 5-hour time limit. 
54 
.1. Evaluation of components 

In this section, we evaluate the designed components for the 

B&C algorithm in Section 4 . We have carried out experiments 

ith several alternative configurations of the components.To that 

im, a subset of 15 OP instances was selected: 5 TSP instances 

pr76, att532, vm1084, rl1323 and vm1748, inspired by the subsets 

elected by Goldberg & Tsioutsiouliklis (2001) ) with their respec- 

ive score generations proposed by Fischetti et al. (1998) . Then, for 

ach instance and generation, we execute the different configura- 

ions 5 times. 

In order to evaluate our contributions, we compare several 

onfigurations of the proposed RB&C algorithm. The problem of 

xploring the different alternative configurations can be framed 

ithin the hyper-parameter configuration framework, which is by 

tself an active area of research Waring et al. (2020) . In our context, 

yper-parameters can represent many concepts and behaviours. 

or example, the presence or absence of some components of the 

roposed algorithm can be considered a Boolean hyper-parameter. 

imilarly, some other common parameters such as the maximum 

umber of cuts or the minimum violation of a cut can also be 

odelled as discrete hyper-parameters. In our work, we use man- 

al hyper-parameter configuration as we are interested in how 

pecific components affect the performance of the overall algo- 

ithm rather than finding hyper-parameter values for some specific 

roblem instances. 

In our experiments, we use fixed values for some common pa- 

ameters for all the simulations of the RB&C algorithm that are de- 

ailed in appendix Section Appendix C - Table C.22 . The values of 

uch common parameters were chosen inspired by the parameters 

sed in Applegate et al. (2007) and our preliminary experiments 

or the OP. In the case of the components proposed in Section 4 ,

hey are modelled as hyper-parameters that are tuned in the dif- 

erent ways presented in Table 3 . Among the different proposed 

onfigurations, the reference configuration deserves special atten- 

ion as it includes all the components proposed in Section 4 . The 

http://github.com/gkobeaga/op-solver
http://github.com/bcamath-ds/OPLib
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Table 4 

Results of the REFERENCE and alternative configurations for RB&C. The values are the mean relative differences to the best overall achieved, in percentages. In italics, the 

values of the alternatives that are worse than those obtained by the REFERENCE configuration are shown. 

Strategy Gap 

Gen1 Gen2 Gen3 

LB UB Time LB UB Time LB UB Time 

REFERENCE 0.05 0.00 262.06 0.05 0.04 23.11 0.02 0.01 44.02 

- SRK 0 . 13 0.00 532 . 37 0 . 10 0.04 25 . 86 0.02 0 . 02 134 . 74 

SRK = C1C2S3 0.02 0.00 88.32 0 . 09 0.04 31 . 72 0.01 0.01 79 . 81 

- CC STRATS 0.02 0.00 115.91 0.04 0.01 21.85 0.01 0.01 449 . 90 

- EPH 0 . 09 0 . 15 208.65 0 . 12 0 . 15 33 . 64 0 . 10 0 . 22 199 . 79 

- EGH 0.02 0.00 296. 71 0.04 0.04 26. 18 0 . 03 0.01 91 . 83 

+ FST 0.00 0.00 345 . 32 0.04 0.00 26. 43 0 . 04 0.00 66. 54 

EPH EGH = FST 0 . 09 0 . 13 54.73 0 . 10 0 . 08 6.58 0 . 12 0 . 13 39.90 

- EDGE COVER 0 . 11 0.00 137.73 0 . 13 0.04 30 . 04 0 . 05 0.01 35.50 

- CYCLE COVER 0 . 06 0.00 124.79 0.02 0.04 25 . 60 0 . 03 0.01 48 . 18 

- PATH 0 . 08 0.00 183.86 0 . 10 0.04 32 . 00 0 . 03 0.01 69 . 01 

+ VERTEX COVER 0.05 0.00 61.10 0.03 0.04 22.33 0 . 03 0.01 104 . 82 

SEP = TWO 0.05 0.00 315 . 34 0 . 06 0.04 17.05 0 . 03 0.01 164 . 44 

B. HEUR = PB 0 . 08 0.00 179.14 0 . 12 0.01 2.37 0 . 04 0.01 62 . 74 

B. HEUR = VP 0.02 0.00 222.46 0 . 07 0.04 7.17 0.01 0.01 168 . 63 

Table 5 

Comparison of the number of instances in which a feasible solution (#), an optimal (OPT), a best-known solution (LB) 

or a best upper bound value (UB) were obtained. 

Size Gen # OPT LB UB 

FST RB&C FST RB&C FST RB&C FST RB&C 

Medium Gen1 45 45 45 44 45 45 45 44 

Gen2 45 45 45 45 45 45 45 45 

Gen3 45 45 45 45 45 45 45 45 

Large Gen1 21 41 12 24 13 39 13 40 

Gen2 22 41 9 10 9 36 13 38 

Gen3 29 41 9 12 13 35 12 37 

All 207 258 165 180 170 245 173 249 
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s  
ther alternative configurations are obtained by adding, removing 

r replacing a single component of the reference configuration. 

In Table 4 we summarize the mean relative difference to the 

est achieved LB and UB and the mean relative difference to the 

est-performing configuration in terms of running time. The re- 

ults grouped by instances are presented in Appendix A . The corre- 

ponding results of the REFERENCE and alternative configurations 

n the root node (initialization phase) are shown in Table D.23 of 

ppendix D . 

The results show that the alternative configurations decrease, 

ost of the times, the performance of the REFERENCE configura- 

ion for the RB&C algorithm either in terms of solution quality, 

pper bound value, or running time. In general, we observe that 

he REFERENCE configuration is never dominated (in the multi- 

bjective sense) by any other alternative configuration, in the sense 

hat no other alternative configuration outperforms the REFERENCE 

onfiguration in all generations and evaluation metrics. Further- 

ore, we observe that the REFERENCE configuration outperforms 

any other alternative configurations, especially in the problem 

nstances within Gen3, which are more difficult than the other 

roblem instances in Gen1 and Gen2. 

The experiments restate the importance of the shrinking tech- 

iques for the SEC/CC separation algorithm, as can be seen in the 

esults for -SRK. It is not only worse not using the shrinking in 

erms of time, but indeed, the obtained LB values are also worse. In 

ddition, the results suggest that the S1 shrinking technique, which 

s considered in REFERENCE, might be preferable to the C1C2 tech- 

ique. Regarding the CC STRATS, the results for Gen3 suggest that 

ot considering the strategies to find extra violated CCs might have 

 negative impact on the running time of the algorithm. 

Next, looking at the separation algorithms for blossoms, the re- 

ults show that the EPH heuristic is crucial in the RB&C, particu- 
A

55
arly, if we focus on the obtained LB and UB values. From the table, 

e can also extract that the EGH heuristic improves the running 

ime of the B&C algorithm. Alternatively, although the FST blos- 

om heuristic might improve the quality of the solutions, it reports 

orse running times. 

With respect to the rest of the separation algorithms proposed 

n the literature for the OP, we include in REFERENCE all but Ver- 

ex Cover inequalities. This way, the RB&C uses the same families 

f cuts as in Fischetti et al. (1998) , which enables us to evaluate

he contributions in this paper in a better way. Finally, the experi- 

ents show that the VP primal heuristic plays an important role in 

btaining better LB values, particularly for large problems, as can 

e seen in the detailed results in Appendix A . However, solving the 

P primal heuristic in the branch node is more costly than PB pri- 

al heuristic, hence the running time of the RB&C is worsened in 

he smallest instances. Similarly, by using the EA4OP to improve 

he results by VP heuristic, the obtained LB values are improved in 

arge problems at the expense of worsening the running time in 

he smallest instances. 

.2. Comparison with state-of-the-art algorithms 

The proposed reference RB&C has been compared with the 

tate-of-the-art B&C algorithm in Fischetti et al. (1998) (FST) 

nd two state-of-the-art heuristics, Kobeaga et al. (2018) (EA4OP) 

nd Santini (2019) (ALNS). Each configuration has been executed 

ve times with a 5-hour execution time limit taking the best 

ower-bound values and upper-bound values for each configura- 

ion, i.e., the maximum for LB and the minimum for the UB of 

he five runs and the average of the running time. The detailed re- 

ults can be found in Tables B.15 , B.16 , B.17 , B.18 , B.19 , B.20 , B.21 of

ppendix B . 
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Table 6 

Comparison of the number of obtained optimal solutions (OPT), number of best- 

known solutions (LB), number of best upper bounds (UB) and number of instances 

in which the considered B&C algorithm is faster than the competitor (Time), in the 

instances that FST does return a solution. 

OPT LB UB Time 

# FST RB&C FST RB&C FST RB&C FST RB&C 

Gen1 66 1 4 0 6 2 8 15 40 

Gen2 67 1 0 0 11 3 9 25 27 

Gen3 74 1 3 1 14 4 17 23 33 

All 207 3 7 1 31 9 34 63 100 
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Table 7 

Comparison in medium-sized instances against state-of-the-art algorithms in terms 

of quality, time and Pareto efficiency. 

Gen1 Gen2 Gen3 

EA4OP tie RB&C EA4OP tie RB&C EA4OP tie RB&C 

Quality 0 30 15 0 14 31 0 15 27 

Time 15 0 30 37 0 8 39 0 3 

Pareto 7 0 30 10 0 8 13 0 3 

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C 

Quality 0 40 5 0 29 16 0 29 13 

Time 1 0 44 4 0 41 8 0 34 

Pareto 1 0 44 1 0 41 5 0 34 

FST tie RB&C FST tie RB&C FST tie RB&C 

Quality 0 45 0 0 45 0 0 45 0 

Time 14 6 25 17 2 26 18 1 26 

Pareto 14 6 25 17 2 26 18 1 26 

Table 8 

Comparison in large-sized instances against state-of-the-art algorithms in terms of 

quality, time and Pareto efficiency. 

Gen1 Gen2 Gen3 

EA4OP tie RB&C EA4OP tie RB&C EA4OP tie RB&C 

Quality 1 0 40 5 0 36 3 0 33 

Time 39 0 2 40 1 0 35 1 0 

Pareto 1 0 2 5 0 1 3 0 1 

ALNS tie RB&C ALNS tie RB&C ALNS tie RB&C 

Quality 2 2 37 4 1 36 4 0 32 

Time 6 11 24 13 25 3 13 19 4 

Pareto 4 0 34 5 0 24 4 0 20 

FST tie RB&C FST tie RB&C FST tie RB&C 

Quality 0 13 28 0 9 32 3 11 27 

Time 1 5 35 8 13 20 5 17 19 

Pareto 1 1 39 8 0 33 7 2 32 
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Three notes before moving on to the discussion. First, the FST 

ode reports the running times using one trailing digit while the 

est of the algorithms report the times using two trailing digits. 

n order to make use of the reported times in the literature of 

he FST, we round the obtained times by the RB&C to one trailing 

igit when we compare it with the FST algorithm. Secondly, the 

ST returns a false optimum for pa561 in Gen1. We assume that 

his is a consequence of the rounding sensibility and we accept 

s valid the rest of the reported optima by FST. Thirdly, eight in- 

tances (rat99, rat195, tsp225, pa561, rat575, rat783, nrw1379, and 

nl4461) of Gen3 have been excluded for the comparison of the 

B&C with the EA4OP and the ALNS, due to an issue in the gen-

ration of scores of the instances used by those algorithms. Since 

he results of the current comparison are clear enough, we have 

iscarded rerunning the experiments with the updated scores. 

We compare the RB&C algorithm with the B&C by Fischetti 

t al. (1998) . The results of the FST algorithm were updated us- 

ng CPLEX12.5 in Kobeaga et al. (2018) , which is the same version 

f CPLEX used for the experiments of RB&C. Moreover, the new 

xperiments are run on the same machine with the same amount 

f reserved memory (4GB). In Table 5 we summarize, by size and 

eneration, the number of instances returning a feasible solution, 

, the obtained optimality certifications, OPT, the number of best- 

nown solution (LB), and upper bound (UB) values. 

In Table 5 it can be seen that the RB&C algorithm is able to

btain the best-known solutions value in all the medium-sized in- 

tances. Moving on to large-sized instances, the superiority of the 

B&C algorithm compared to the FST approach becomes evident. 

hile the FST algorithm fails to output a solution in almost half 

f the instances (mainly because of running out of memory), the 

B&C algorithm returns a solution for every instance. Moreover, 

t obtains the best-known solution in significantly more instances 

han FST (245 against 170) and UB (249 against 173) values. Even 

ore, it obtains more optimality certifications (180 against 165). 

In Table 6 we compare the quality of the solutions and running 

imes, restricted to those instances in which FST actually returns 

 solution. We mainly focus on the number of solutions (optimal- 

ty certifications, best-known solutions and upper bounds) that are 

ew in the literature, i.e., values not obtained by the rest of the 

lgorithms. Thus, for the lower-bound values, we also take into 

ccount the results obtained by the EA4OP and ALNS heuristics. 

dditionally, we show the number of instances in which the con- 

idered B&C algorithms are faster than the competitor and the 

umber of instances in which the solution was found in the root 

f the RB&C tree. When we restrict the considered instances to 

he instances where the FST obtains a feasible solution, the RB&C 

utperforms the results of the FST. While the FST obtains 1 new 

est-known solution (not obtained by any other algorithm) and 9 

ew UB values, the RB&C obtains 31 LB and 34 UB new values. 

n the same set of instances, the FST obtains 3 optimality certi- 

cations that the RB&C cannot obtain, while the RB&C obtains 7 

ptimality certifications that the FST cannot obtain. Moreover, it 

urns out that the RB&C is faster than the FST in 100 instances 
56 
hile the FST is faster than the RB&C in 63 instances. More de- 

ails on the obtained results in the root of the tree can be found 

n Appendix D, Tables D.24 , D.25 and D.26 for medium-sized in- 

tances and in Tables D.25 and D.27 for large-sized instances. 

Next, we compare the RB&C algorithm against state-of-the-art 

lgorithms in terms of solution quality, running time, and Pareto 

fficiency. In Tables 7 and 8 the algorithms are compared pair- 

ise and instance-by-instance for medium-sized and large-sized 

nstances respectively. The aim is to measure the number of in- 

tances where an algorithm is simultaneously as least as fast as 

he opponent and obtains a better quality solution. 

Table 7 shows that the RB&C algorithm is competitive in 

edium-sized instances. Compared to the ALNS heuristic and FST 

lgorithm, it obtains better Pareto efficiency results in the three 

enerations. Comparing it to EA4OP, the Pareto efficiency is lower 

ecause the heuristic is a faster algorithm. Nevertheless, the RB&C 

btains much better quality solutions. Table 8 shows that RB&C is 

he best performing algorithm in large-sized instances. Particularly, 

t behaves better than the FST algorithm, obtaining the best qual- 

ty and time solutions in most of the instances, hence obtaining 

etter Pareto results. The ALNS algorithm is able to return some 

olutions with better quality or running time, however, overall, the 

B&C performs better in large-sized instances. The EA4OP meta- 

euristic is faster than the B&C but, in general, obtains worse qual- 

ty solutions. In particular, according to the results shown in the 

ables of Appendix B , the EA4OP is faster than the B&C in 64% of

he medium-sized instances and faster in all the large-sized ones. 

he EA4OP obtains worse quality solutions in 56% of the medium- 

ized instances and 46% of the large-sized ones. 



G. Kobeaga, J. Rojas-Delgado, M. Merino et al. European Journal of Operational Research 313 (2024) 44–68 

Table 9 

New best-known optimum, lower bound and upper bound values. 

OPT LB UB 

Gen1 12 25 28 

Gen2 2 27 28 

Gen3 4 24 29 

All 18 76 85 
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Finally, in Table 9 , we summarize the new best-known results 

btained in the experiments. The RB&C algorithm obtains 18 new 

ptimality certifications, 76 new best-known solution values and 

5 new upper-bound values. When considering Gen1, in the case of 

he FST algorithm, the largest problem in which an optimality cer- 

ification is obtained is vm1084, while in the case of the RB&C the 

argest problem in which an optimality certification is obtained is 

2152 (plus another 7 optimality certifications in instances larger 

han vm1084). When considering Gen2, in the case of the FST al- 

orithm, the largest problem in which an optimality certification is 

btained is u724, while in the case of the RB&C the largest prob- 

em in which an optimality certification is obtained is d2013 (plus 

at783). 

. Conclusions and future work 

We have presented a revisited version of the B&C algorithm for 

he OP that brings multiple contributions together. We have pro- 

osed a joint separation algorithm for SECs and CCs, which effi- 

iently uses the shrinking technique for cycle problems by reduc- 

ng the adverse effects of the shrinking for CCs. We have developed 

wo blossom heuristics for cycle problems which generalize the 

ell-known approaches in the literature of the TSP. We have de- 

igned an efficient variable pricing procedure for the OP which en- 

bles us to avoid repetitive calculations and to skip the exact cal- 

ulation of the reduced cost of some variables. We have proposed 

 separation loop for the OP that takes into consideration the dif- 

erent contributions and separation costs of the valid inequalities. 

e have used alternative primal heuristics, one of which is based 

n a metaheuristic, and a mechanism to update the global upper 

ound during the branching phase to tighten the lower and up- 

er bounds for the cases when the algorithm finishes without an 

ptimality certification. 

The experiments have shown that the RB&C algorithm for the 

P is a more efficient approach than the state-of-the-art B&C al- 

orithm. The introduced algorithm has increased the number of 
able A.10 

r76. 

Strategy Gen 

Gen1 Gen2 

LB UB Time LB 

Best Gap Best Gap Mean Gap Best Gap

REFERENCE 49 0 49 0 0.04 123.66 2,708 0 

- SRK 49 0 49 0 0.04 119.35 2,708 0 

SRK = C1C2S3 49 0 49 0 0.04 111.83 2,708 0 

- CC STRATS 49 0 49 0 0.04 124.73 2,708 0 

- EPH BLOSSOM 49 0 49 0 0.03 64.52 2,708 0 

- EGH BLOSSOM 49 0 49 0 0.02 0.00 2,708 0 

+ FST BLOSSOM 49 0 49 0 0.09 398.92 2,708 0 

- EDGE COVER 49 0 49 0 0.03 83.87 2,708 0 

- CYCLE COVER 49 0 49 0 0.05 174.19 2,708 0 

- PATH 49 0 49 0 0.04 116.13 2,708 0 

+ VERTEX COVER 49 0 49 0 0.04 104.30 2,708 0 

SEP: TWO SUBLOOPS 49 0 49 0 0.07 266.67 2,708 0 

BRANCH HEUR = PB 49 0 49 0 0.05 175.27 2,708 0 

BRANCH HEUR = VP - EA4OP 49 0 49 0 0.04 119.35 2,708 0 

57 
olved problems, obtained better running times in more instances, 

ucceeded in returning new optimality certifications, new best 

nown solutions, and new upper-bound values for large problems. 

dditionally, it has been shown that the RB&C algorithm obtains 

etter quality solutions than the state-of-the-art heuristics for the 

P within the 5-hour running time limit. 

Nevertheless, there are many research lines that remain open 

fter this work. One of the most demanding aspects to improve in 

he presented approach is the implementation of advanced branch- 

ng techniques. The use of more general cuts, such as combs and 

lique trees, and the development of their respective separation 

lgorithms for cycle problems might help to improve the perfor- 

ance of the RB&C algorithm. All these future contributions might 

elp to solve the remaining instances until optimality, but we can 

nticipate it will not be an easy challenge. Implementing the con- 

ributions in this paper to other cycle problems which are dif- 

erent from the OP will definitely help to comprehend their im- 

ortance in the context of cycle problems with a more general 

iew. 
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ppendix A. Configuration of components: detailed results 

In this section, we show the detailed results of the alternative 

B&C configurations by instances and generations. Each configura- 
Gen3 

UB Time LB UB Time 

 Best Gap Mean Gap Best Gap Best Gap Mean Gap 

2,708 0 1.13 90.94 2,430 0 2,430 0 1.03 39.55 

2,708 0 1.21 104.70 2,430 0 2,430 0 1.06 42.60 

2,708 0 1.38 133.98 2,430 0 2,430 0 0.90 21.84 

2,708 0 1.13 90.57 2,430 0 2,430 0 1.04 39.74 

2,708 0 1.44 143.58 2,430 0 2,430 0 0.74 0.00 

2,708 0 1.22 106.29 2,430 0 2,430 0 0.97 30.56 

2,708 0 1.32 123.29 2,430 0 2,430 0 0.85 14.47 

2,708 0 1.33 125.56 2,430 0 2,430 0 1.76 136.91 

2,708 0 1.20 103.38 2,430 0 2,430 0 0.97 30.70 

2,708 0 1.39 135.40 2,430 0 2,430 0 0.79 7.02 

2,708 0 1.11 87.02 2,430 0 2,430 0 0.98 31.94 

2,708 0 0.95 60.62 2,430 0 2,430 0 1.00 34.99 

2,708 0 0.59 0.00 2,430 0 2,430 0 1.41 90.47 

2,708 0 0.66 11.22 2,430 0 2,430 0 0.96 29.35 
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Table A.11 

att532. 

Strategy Gen 

Gen1 Gen2 Gen3 

LB UB Time LB UB Time LB UB Time 

Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap 

REFERENCE 363 0.00 363 0.00 359.51 1,031.58 19,633 0.06 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 166.80 29.99 

- SRK 363 0.00 363 0.00 643.50 1,925.50 19,635 0.05 19,800 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 219.86 71.34 

SRK = C1C2S3 363 0.00 363 0.00 120.89 280.53 19,634 0.05 19,800 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 284.01 121.34 

- CC STRATS 363 0.00 363 0.00 118.09 271.70 19,633 0.06 19,802 0.02 18,000.00 0.00 15,498 0.00 15,498 0.00 2,696.49 2,001.40 

- EPH BLOSSOM 363 0.00 363 0.00 31.77 0.00 19,643 0.01 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 316.47 146.63 

- EGH BLOSSOM 363 0.00 363 0.00 420.83 1,224.61 19,634 0.05 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 252.53 96.80 

+ FST BLOSSOM 363 0.00 363 0.00 423.05 1,231.61 19,644 0.00 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 210.91 64.36 

- EDGE COVER 363 0.00 363 0.00 176.79 456.47 19,636 0.04 19,800 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 180.40 40.59 

- CYCLE COVER 363 0.00 363 0.00 110.11 246.59 19,642 0.01 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 221.88 72.91 

- PATH 363 0.00 363 0.00 252.18 693.77 19,629 0.08 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 212.04 65.25 

+ VERTEX COVER 363 0.00 363 0.00 81.69 157.14 19,637 0.04 19,799 0.00 18,000.00 0.00 15,498 0.00 15,498 0.00 305.62 138.18 

SEP: TWO SUBLOOPS 363 0.00 363 0.00 300.17 844.81 19,631 0.07 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 146.51 14.18 

BRANCH HEUR = PB 363 0.00 363 0.00 190.93 500.97 19,611 0.17 19,800 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 194.63 51.68 

BRANCH HEUR = VP - EA4OP 363 0.00 363 0.00 270.75 752.20 19,619 0.13 19,801 0.01 18,000.00 0.00 15,498 0.00 15,498 0.00 1,000.74 679.89 

Table A.12 

vm1084. 

Strategy Gen 

Gen1 Gen2 Gen3 

LB UB Time LB UB Time LB UB Time 

Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap 

REFERENCE 777 0.00 777 0.00 5,378.5 144.79 40,770 0.02 40,954 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 4,735.9 150.57 

- SRK 777 0.00 777 0.00 9,969.9 353.75 40,777 0.00 40,952 0.01 18,000.0 0.00 37,669 0.00 37,669 0.00 12,469.7 559.74 

SRK = C1C2S3 777 0.00 777 0.00 2,731.9 24.34 40,765 0.03 40,953 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 6,725.9 255.85 

- CC STRATS 777 0.00 777 0.00 4,937.8 124.73 40,772 0.01 40,953 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 5,828.3 208.36 

- EPH BLOSSOM 777 0.00 777 0.00 13,669.6 522.14 40,777 0.00 41,006 0.15 18,000.0 0.00 37,665 0.01 37,758 0.24 18,000.0 852.33 

- EGH BLOSSOM 777 0.00 777 0.00 7,073.6 221.94 40,773 0.01 40,948 0.00 18,000.0 0.00 37,669 0.00 37,669 0.00 8,161.1 331.78 

+ FST BLOSSOM 777 0.00 777 0.00 2,197.2 0.00 40,775 0.00 40,946 0.00 18,000.0 0.00 37,669 0.00 37,669 0.00 6,688.2 253.86 

- EDGE COVER 777 0.00 777 0.00 3,303.3 50.34 40,773 0.01 40,954 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 1,890.1 0.00 

- CYCLE COVER 777 0.00 777 0.00 4,072.0 85.33 40,775 0.00 40,950 0.01 18,000.0 0.00 37,669 0.00 37,669 0.00 4,485.4 137.31 

- PATH 777 0.00 777 0.00 4,103.7 86.77 40,775 0.00 40,952 0.01 18,000.0 0.00 37,669 0.00 37,669 0.00 7,045.8 272.77 

+ VERTEX COVER 777 0.00 777 0.00 3,165.5 44.07 40,777 0.00 40,953 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 8,580.9 353.99 

SEP: TWO SUBLOOPS 777 0.00 777 0.00 5,145.1 134.17 40,773 0.01 40,950 0.01 18,000.0 0.00 37,669 0.00 37,669 0.00 16,501.5 773.05 

BRANCH HEUR = PB 777 0.00 777 0.00 2,596.3 18.16 40,767 0.02 40,955 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 5,133.0 171.57 

BRANCH HEUR = VP - EA4OP 777 0.00 777 0.00 3,767.8 71.48 40,763 0.03 40,956 0.02 18,000.0 0.00 37,669 0.00 37,669 0.00 4,421.5 133.93 

Table A.13 

rl1323. 

Strategy Gen 

Gen1 Gen2 Gen3 

LB UB Time LB UB Time LB UB Time 

Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap 

REFERENCE 814 0.00 814 0.00 3,565.7 10.26 43,377 0.00 43,454 0.18 18,000.0 24.62 47,162 0.11 47,373 0.00 18,000.0 0.00 

- SRK 814 0.00 814 0.00 11,747.3 263.25 43,378 0.00 43,452 0.17 18,000.0 24.62 47,195 0.04 47,408 0.08 18,000.0 0.00 

SRK = C1C2S3 814 0.00 814 0.00 4,039.8 24.92 43,378 0.00 43,457 0.18 18,000.0 24.62 47,212 0.01 47,382 0.02 18,000.0 0.00 

- CC STRATS 814 0.00 814 0.00 5,121.9 58.38 43,378 0.00 43,378 0.00 17,145.6 18.71 47,213 0.00 47,386 0.03 18,000.0 0.00 

- EPH BLOSSOM 814 0.00 819 0.61 18,000.0 456.60 43,371 0.02 43,543 0.38 18,000.0 24.62 47,075 0.30 47,698 0.69 18,000.0 0.00 

- EGH BLOSSOM 814 0.00 814 0.00 4,431.3 37.02 43,377 0.00 43,455 0.18 18,000.0 24.62 47,190 0.05 47,394 0.05 18,000.0 0.00 

+ FST BLOSSOM 814 0.00 814 0.00 6,341.4 96.09 43,378 0.00 43,378 0.00 15,722.3 8.85 47,200 0.03 47,371 0.00 18,000.0 0.00 

- EDGE COVER 814 0.00 814 0.00 6,401.6 97.95 43,273 0.24 43,456 0.18 18,000.0 24.62 47,109 0.22 47,381 0.02 18,000.0 0.00 

- CYCLE COVER 814 0.00 814 0.00 7,045.5 117.86 43,378 0.00 43,449 0.16 18,000.0 24.62 47,193 0.05 47,385 0.03 18,000.0 0.00 

- PATH 814 0.00 814 0.00 3,965.2 22.61 43,378 0.00 43,446 0.16 18,000.0 24.62 47,201 0.03 47,379 0.02 18,000.0 0.00 

+ VERTEX COVER 814 0.00 814 0.00 3,233.9 0.00 43,377 0.00 43,450 0.17 18,000.0 24.62 47,171 0.09 47,379 0.02 18,000.0 0.00 

SEP: TWO SUBLOOPS 814 0.00 814 0.00 13,939.5 331.04 43,373 0.01 43,451 0.17 18,000.0 24.62 47,196 0.04 47,378 0.01 18,000.0 0.00 

BRANCH HEUR = PB 814 0.00 814 0.00 9,743.9 201.30 43,378 0.00 43,378 0.00 16,153.4 11.84 47,215 0.00 47,387 0.03 18,000.0 0.00 

BRANCH HEUR = VP - EA4OP 814 0.00 814 0.00 8,707.5 169.25 43,378 0.00 43,449 0.16 18,000.0 24.62 47,195 0.04 47,376 0.01 18,000.0 0.00 

58 
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Table A.14 

vm1748. 

Strategy Gen 

Gen1 Gen2 Gen3 

LB UB Time LB UB Time LB UB Time 

Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap Best Gap Best Gap Mean Gap 

REFERENCE 1,276 0.23 1,282 0.00 18,000 0 68,013 0.16 68,305 0.01 18,000 0 71,903 0.01 72,018 0.02 18,000 0 

- SRK 1,271 0.63 1,282 0.00 18,000 0 67,812 0.45 68,306 0.01 18,000 0 71,853 0.08 72,012 0.01 18,000 0 

SRK = C1C2S3 1,278 0.08 1,282 0.00 18,000 0 67,863 0.38 68,306 0.01 18,000 0 71,887 0.03 72,010 0.01 18,000 0 

- CC STRATS 1,278 0.08 1,282 0.00 18,000 0 68,016 0.15 68,304 0.01 18,000 0 71,894 0.02 72,012 0.01 18,000 0 

- EPH BLOSSOM 1,273 0.47 1,284 0.16 18,000 0 67,735 0.57 68,460 0.23 18,000 0 71,755 0.21 72,118 0.16 18,000 0 

- EGH BLOSSOM 1,278 0.08 1,282 0.00 18,000 0 68,029 0.14 68,311 0.02 18,000 0 71,854 0.08 72,016 0.02 18,000 0 

+ FST BLOSSOM 1,279 0.00 1,282 0.00 18,000 0 67,986 0.20 68,300 0.00 18,000 0 71,773 0.19 72,003 0.00 18,000 0 

- EDGE COVER 1,272 0.55 1,282 0.00 18,000 0 67,877 0.36 68,306 0.01 18,000 0 71,873 0.05 72,017 0.02 18,000 0 

- CYCLE COVER 1,275 0.31 1,282 0.00 18,000 0 68,055 0.10 68,302 0.00 18,000 0 71,845 0.09 72,014 0.02 18,000 0 

- PATH 1,274 0.39 1,282 0.00 18,000 0 67,831 0.43 68,309 0.01 18,000 0 71,808 0.14 72,013 0.01 18,000 0 

+ VERTEX COVER 1,276 0.23 1,282 0.00 18,000 0 68,032 0.13 68,300 0.00 18,000 0 71,883 0.04 72,016 0.02 18,000 0 

SEP: TWO SUBLOOPS 1,276 0.23 1,282 0.00 18,000 0 67,967 0.23 68,314 0.02 18,000 0 71,830 0.11 72,017 0.02 18,000 0 

BRANCH HEUR = PB 1,274 0.39 1,282 0.00 18,000 0 67,830 0.43 68,300 0.00 18,000 0 71,779 0.18 72,017 0.02 18,000 0 

BRANCH HEUR = VP - EA4OP 1,278 0.08 1,282 0.00 18,000 0 67,981 0.21 68,307 0.01 18,000 0 71,890 0.03 72,016 0.02 18,000 0 

Table B.15 

Generation 1, n ≤ 400 . 

Instance Best FST EA4OP ALNS RB&C 

LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time 

att48 31 31 31 ∗ 31 0.00 31 ∗ 0.25 31 ∗ 6.77 31 ∗ 31 ∗ 0.03 

gr48 31 31 31 ∗ 31 0.00 31 ∗ 0.13 31 ∗ 9.99 31 ∗ 31 ∗ 0.02 

hk48 30 30 30 ∗ 30 0.00 30 ∗ 0.24 30 ∗ 7.20 30 ∗ 30 ∗ 0.01 

eil51 29 29 29 ∗ 29 0.00 29 ∗ 0.24 29 ∗ 9.51 29 ∗ 29 ∗ 0.01 

berlin52 37 37 37 ∗ 37 0.00 37 ∗ 0.30 37 ∗ 9.42 37 ∗ 37 ∗ 0.02 

brazil58 46 46 46 ∗ 46 0.00 46 ∗ 1.00 46 ∗ 9.13 46 ∗ 46 ∗ 0.07 

st70 43 43 43 ∗ 43 0.10 43 ∗ 0.32 43 ∗ 15.99 43 ∗ 43 ∗ 0.05 

eil76 47 47 47 ∗ 47 0.10 46 2.13 0.33 47 ∗ 20.51 47 ∗ 47 ∗ 0.04 

pr76 49 49 49 ∗ 49 0.10 49 ∗ 0.61 49 ∗ 18.64 49 ∗ 49 ∗ 0.06 

gr96 64 64 64 ∗ 64 0.10 64 ∗ 1.44 64 ∗ 20.31 64 ∗ 64 ∗ 0.08 

rat99 52 52 52 ∗ 52 0.40 52 ∗ 0.66 52 ∗ 27.75 52 ∗ 52 ∗ 0.47 

kroA100 56 56 56 ∗ 56 0.40 55 1.79 0.34 56 ∗ 34.75 56 ∗ 56 ∗ 0.41 

kroB100 58 58 58 ∗ 58 95.40 57 1.72 0.63 58 ∗ 43.06 58 ∗ 58 ∗ 0.27 

kroC100 56 56 56 ∗ 56 0.40 56 ∗ 0.48 56 ∗ 34.32 56 ∗ 56 ∗ 0.25 

kroD100 59 59 59 ∗ 59 0.10 58 1.69 0.65 59 ∗ 34.61 59 ∗ 59 ∗ 0.09 

kroE100 57 57 57 ∗ 57 159.20 57 ∗ 0.50 57 ∗ 32.26 57 ∗ 57 ∗ 5.53 

rd100 61 61 61 ∗ 61 0.20 61 ∗ 0.74 61 ∗ 29.49 61 ∗ 61 ∗ 0.12 

eil101 64 64 64 ∗ 64 0.10 64 ∗ 0.79 64 ∗ 31.73 64 ∗ 64 ∗ 0.06 

lin105 66 66 66 ∗ 66 0.30 66 ∗ 1.42 66 ∗ 32.11 66 ∗ 66 ∗ 0.48 

pr107 54 54 54 ∗ 54 0.30 54 ∗ 0.93 54 ∗ 78.46 54 ∗ 54 ∗ 0.08 

gr120 75 75 75 ∗ 75 0.10 74 1.33 1.20 75 ∗ 29.58 75 ∗ 75 ∗ 0.28 

pr124 75 75 75 ∗ 75 0.30 75 ∗ 1.11 75 ∗ 49.64 75 ∗ 75 ∗ 0.35 

bier127 103 103 103 ∗ 103 0.30 103 ∗ 1.18 103 ∗ 40.84 103 ∗ 103 ∗ 0.38 

pr136 71 71 71 ∗ 71 1.40 71 ∗ 0.96 71 ∗ 29.97 71 ∗ 71 ∗ 1.75 

gr137 81 81 81 ∗ 81 1.50 78 3.70 3.44 81 ∗ 59.21 81 ∗ 81 ∗ 0.24 

pr144 77 77 77 ∗ 77 1.30 77 ∗ 2.61 77 ∗ 87.82 77 ∗ 77 ∗ 1.46 

kroA150 86 86 86 ∗ 86 175.40 86 ∗ 1.17 86 ∗ 82.79 86 ∗ 86 ∗ 33.87 

kroB150 87 87 87 ∗ 87 1.20 86 1.15 1.00 87 ∗ 61.64 87 ∗ 87 ∗ 2.21 

pr152 77 77 77 ∗ 77 1.40 77 ∗ 3.64 77 ∗ 91.38 77 ∗ 77 ∗ 1.29 

u159 93 93 93 ∗ 93 3.40 92 1.08 1.11 93 ∗ 99.63 93 ∗ 93 ∗ 1.82 

rat195 102 102 102 ∗ 102 2.60 99 2.94 1.78 102 ∗ 195.57 102 ∗ 102 ∗ 3.71 

d198 123 123 123 ∗ 123 3.20 123 ∗ 6.68 123 ∗ 65.57 123 ∗ 123 ∗ 5.28 

kroA200 117 117 117 ∗ 117 1.20 117 ∗ 1.74 117 ∗ 114.75 117 ∗ 117 ∗ 2.50 

kroB200 119 119 119 ∗ 119 14.10 119 ∗ 1.67 119 ∗ 86.58 119 ∗ 119 ∗ 9.91 

gr202 145 145 145 ∗ 145 12.70 145 ∗ 6.89 145 ∗ 187.56 145 ∗ 145 ∗ 2.71 

ts225 124 124 124 ∗ 124 10,216.30 124 ∗ 1.28 124 ∗ 279.52 124 ∗ 126 1.59 18,000.00 

tsp225 129 129 129 ∗ 129 94.40 127 1.55 2.29 128 0.78 198.47 129 ∗ 129 ∗ 4.31 

pr226 126 126 126 ∗ 126 166.20 126 ∗ 6.61 126 ∗ 181.94 126 ∗ 126 ∗ 107.69 

gr229 176 176 176 ∗ 176 0.90 176 ∗ 8.81 173 1.70 108.27 176 ∗ 176 ∗ 0.32 

gil262 158 158 158 ∗ 158 0.90 156 1.27 2.83 158 ∗ 240.02 158 ∗ 158 ∗ 0.35 

pr264 132 132 132 ∗ 132 21.20 132 ∗ 5.62 132 ∗ 314.29 132 ∗ 132 ∗ 3.92 

a280 147 147 147 ∗ 147 13.60 143 2.72 3.00 144 2.04 239.06 147 ∗ 147 ∗ 40.65 

pr299 162 162 162 ∗ 162 111.50 160 1.23 3.12 162 ∗ 410.90 162 ∗ 162 ∗ 48.85 

lin318 205 205 205 ∗ 205 22.40 202 1.46 7.15 203 0.98 294.23 205 ∗ 205 ∗ 5.49 

rd400 239 239 239 ∗ 239 37.40 234 2.09 6.59 237 0.84 422.56 239 ∗ 239 ∗ 36.71 

average ∗ 248.05 0.62 2.12 0.14 99.51 ∗ 0.04 407.20 
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Table B.16 

Generation 1, n > 400 . 

Instance Best FST EA4OP ALNS RB&C 

LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time 

fl417 228 230 228 ∗ 230 18,000.00 224 1.75 11.84 228 ∗ 1,056.07 228 ∗ 231 1.30 18,000.00 

gr431 350 350 350 ∗ 350 139.90 349 0.29 32.84 347 0.86 533.55 350 ∗ 350 ∗ 29.05 

pr439 313 313 313 ∗ 313 833.30 310 0.96 9.92 307 1.92 1,263.74 313 ∗ 313 ∗ 414.00 

pcb442 251 251 251 ∗ 251 14.90 244 2.79 6.94 249 0.80 1,328.72 251 ∗ 251 ∗ 7.21 

d493 320 320 320 ∗ 320 347.30 315 1.56 19.10 317 0.94 1,291.93 320 ∗ 320 ∗ 13.37 

att532 363 363 363 ∗ 363 593.00 347 4.41 23.14 359 1.10 1,380.54 363 ∗ 363 ∗ 312.50 

ali535 425 426 . . . . 424 0.24 73.03 422 0.71 1,846.10 425 ∗ 426 0.23 18,000.00 

pa561 357 357 356 0.28 – 2,103.60 348 2.52 23.18 346 3.08 1,605.42 357 ∗ 357 ∗ 245.42 

u574 354 354 354 ∗ 354 61.40 344 2.82 17.93 347 1.98 1,204.18 354 ∗ 354 ∗ 24.00 

rat575 322 322 322 ∗ 322 59.50 309 4.04 13.76 317 1.55 3,109.65 322 ∗ 322 ∗ 42.82 

p654 343 396 327 4.66 553 18,000.00 336 2.04 28.89 343 ∗ 10,866.70 342 0.29 396 13.64 18,000.00 

d657 386 386 386 ∗ 386 715.70 377 2.33 23.24 380 1.55 3,152.17 386 ∗ 386 ∗ 92.48 

gr666 503 503 503 ∗ 503 634.20 497 1.19 109.54 486 3.38 660.30 503 ∗ 503 ∗ 400.56 

u724 439 439 439 ∗ 439 1,077.10 429 2.28 27.77 434 1.14 4,157.30 439 ∗ 439 ∗ 188.61 

rat783 438 438 438 ∗ 438 594.30 422 3.65 34.59 428 2.28 2,962.52 438 ∗ 438 ∗ 514.68 

dsj1000 656 656 . . . . 632 3.66 81.20 630 3.96 17,284.30 656 ∗ 656 ∗ 3,828.50 

pr1002 606 606 604 0.33 608 18,000.00 572 5.61 45.92 581 4.13 18,000.00 606 ∗ 606 ∗ 4,483.81 

u1060 660 660 . . . . 627 5.00 90.04 644 2.42 18,000.00 660 ∗ 660 ∗ 16,716.01 

vm1084 777 777 777 ∗ 777 4,927.40 770 0.90 56.29 765 1.54 18,000.00 777 ∗ 777 ∗ 5,012.60 

pcb1173 675 675 . . . . 633 6.22 60.65 652 3.41 18,000.00 675 ∗ 675 ∗ 6,819.83 

d1291 715 715 . . . . 646 9.65 434.87 699 2.24 18,000.00 715 ∗ 715 ∗ 7,916.85 

rl1304 802 802 . . . . 766 4.49 102.45 788 1.75 18,000.00 802 ∗ 802 ∗ 6,269.39 

rl1323 814 814 811 0.37 846 18,000.00 782 3.93 89.68 785 3.56 14,585.10 814 ∗ 814 ∗ 7,740.17 

nrw1379 815 817 . . . . 771 5.40 106.97 790 3.07 18,000.00 815 ∗ 817 0.24 18,000.00 

fl1400 1,048 1,084 909 13.26 1,230 18,000.00 1,043 0.48 518.25 1,048 ∗ 18,000.00 1,003 4.29 1,084 7.47 18,000.00 

u1432 754 764 . . . . 738 2.12 121.46 749 0.66 14,573.50 754 ∗ 764 1.31 18,000.00 

fl1577 897 900 . . . . 880 1.90 286.47 748 16.61 18,000.00 897 ∗ 900 0.33 18,000.00 

d1655 922 924 . . . . 846 8.24 757.70 890 3.47 18,000.00 922 ∗ 924 0.22 18,000.00 

vm1748 1,276 1,282 873 31.58 . 18,000.00 1,246 2.35 178.50 1,252 1.88 16,959.80 1,276 ∗ 1,282 0.47 18,000.00 

u1817 983 983 . . . . 879 10.58 975.58 947 3.66 18,000.00 983 ∗ 983 ∗ 11,226.88 

rl1889 1,226 1,226 890 27.41 1,296 18,000.00 1,167 4.81 269.81 1,156 5.71 18,000.00 1,226 ∗ 1,226 ∗ 17,010.43 

d2103 1,200 1,200 . . . . 1,069 10.92 951.27 1,171 2.42 18,000.00 1,200 ∗ 1,200 ∗ 15,855.62 

u2152 1,151 1,151 . . . . 1,048 8.95 1,350.23 1,111 3.48 18,000.00 1,151 ∗ 1,151 ∗ 14,703.25 

u2319 1,170 1,171 . . . . 1,167 0.26 423.26 1,170 ∗ 6,088.42 1,170 ∗ 1,171 0.09 18,000.00 

pr2392 1,316 1,415 1,140 13.37 . 18,000.00 1,292 1.82 402.29 1,294 1.67 18,000.00 1,316 ∗ 1,415 7.00 18,000.00 

pcb3038 1,727 1,730 . . . . 1,572 8.98 681.94 1,626 5.85 18,000.00 1,727 ∗ 1,730 0.17 18,000.00 

fl3795 1,965 2,249 . . . . 1,815 7.63 2,994.90 1,818 7.48 18,000.00 1,965 ∗ 2,249 12.63 18,000.00 

fnl4461 2,541 2,570 . . . . 2,350 7.52 2,462.65 2,342 7.83 18,000.00 2,541 ∗ 2,570 1.13 18,000.00 

rl5915 3,593 3,786 . . . . 3,358 6.54 5,361.54 3,328 7.38 18,000.00 3,593 ∗ 3,786 5.10 18,000.00 

rl5934 3,632 3,752 . . . . 3,145 13.41 5,382.25 3,276 9.80 18,000.00 3,632 ∗ 3,752 3.20 18,000.00 

pla7397 5,289 5,657 . . . . 5,141 2.80 15,981.78 5,140 2.82 18,000.00 5,289 ∗ 5,657 6.51 18,000.00 

average 4.35 7,433.41 4.32 990.82 3.12 11,802.68 0.11 1.49 10,387.02 
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ion has been executed five times with a 5-hour execution time 

imit. We show the obtained results of the configuration in terms 

f lower-bound values, LB, upper-bound values, UB, and time (in 

econds) performance, Time. For the LB and UB, the obtained best 

alue for each configuration (the maximum for LB and the mini- 

um for the UB) is presented in the Best column. Regarding the 

ime, the Mean column shows the meantime of the five execu- 

ions. The Gap column represents the relative distance to best- 

nown value (higher Best value in the case of LB, and lower Best 

n the case of UB and Mean in the case of Time, respectively). 

 Tables A .10 –A .14 ) 

ppendix B. Comparison with state-of-the-art algorithms: 

etailed results 

In this appendix, we detail the experimental results for the four 

lgorithms (FST B&C, EA4OP, ALNS and RB&C). Table B.15 shows the 

esults for medium-sized instances of generation 1, Table B.16 for 

arge-sized instances of generation 1, Table B.17 for medium-sized 

nstances of generation 2, Table B.18 for large-sized instances of 

eneration 2, Table B.19 for medium-sized instances of generation 

 and Table B.20 for large-sized instances of generation 3. 

In the Best column, we show the global best-known lower and 

pper-bound values. For each algorithm, we detail the best LB, the 
60 
oodness gap GGap, the best UB, and the meantime (in seconds). 

he GGap represents the relative distance between the algorithm’s 

est LB and the global best-known LB. For the RB&C algorithm we 

lso detail the optimality gap OGap which represents the relative 

istance between the obtained LB and UB by RB&C. 

For each algorithm, generation and size, we have calculated the 

verage gap and running time over the instances where a feasible 

olution was obtained by the algorithm. In those instances where 

he time limit was reached, a running time of 5 hours has been 

sed. These averages are shown in the last row of the tables. The 

ymbols in the tables mean the following: 

∗: best-known solution achieved 

–: not comparable result 

.: the code finished unexpectedly 

Finally, we present the extended lower bound and upper bound 

esults for all problem instances. Table B.21 reports the minimum, 

verage and maximum values of the LBs and UBs in the five run- 

ings of RB&C for the large-sized instances ( n > 400 ). It can be ob-

erved that the relative differences are very small in general. More- 

ver, the medium-sized instances ( n ≤ 400 ) are not reported be- 

ause all the five executions for every instance are equal in terms 

f LBs and UBs and correspond to the optimal solutions for all the 

nstances (except ts225 instance in generation 1). 
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Table B.17 

Generation 2, n ≤ 400 . 

Instance Best FST EA4OP ALNS RB&C 

LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time 

att48 1,717 1,717 1,717 ∗ 1,717 0.00 1,717 ∗ 0.32 1,717 ∗ 6.77 1,717 ∗ 1,717 ∗ 0.04 

gr48 1,761 1,761 1,761 ∗ 1,761 0.20 1,749 0.68 0.20 1,761 ∗ 7.87 1,761 ∗ 1,761 ∗ 1.32 

hk48 1,614 1,614 1,614 ∗ 1,614 0.10 1,614 ∗ 0.15 1,614 ∗ 7.19 1,614 ∗ 1,614 ∗ 0.10 

eil51 1,674 1,674 1,674 ∗ 1,674 0.40 1,668 0.36 0.18 1,674 ∗ 10.13 1,674 ∗ 1,674 ∗ 0.96 

berlin52 1,897 1,897 1,897 ∗ 1,897 93.40 1,897 ∗ 0.35 1,897 ∗ 10.74 1,897 ∗ 1,897 ∗ 3.23 

brazil58 2,220 2,220 2,220 ∗ 2,220 0.10 2,218 0.09 1.52 2,220 ∗ 12.32 2,220 ∗ 2,220 ∗ 0.46 

st70 2,286 2,286 2,286 ∗ 2,286 19.40 2,285 0.04 0.31 2,286 ∗ 21.65 2,286 ∗ 2,286 ∗ 1.77 

eil76 2,550 2,550 2,550 ∗ 2,550 0.10 2,550 ∗ 0.43 2,550 ∗ 16.06 2,550 ∗ 2,550 ∗ 0.62 

pr76 2,708 2,708 2,708 ∗ 2,708 0.40 2,708 ∗ 0.48 2,708 ∗ 19.48 2,708 ∗ 2,708 ∗ 1.46 

gr96 3,396 3,396 3,396 ∗ 3,396 1.70 3,394 0.06 1.44 3,394 0.06 31.98 3,396 ∗ 3,396 ∗ 9.50 

rat99 2,944 2,944 2,944 ∗ 2,944 0.90 2,944 ∗ 0.49 2,944 ∗ 32.08 2,944 ∗ 2,944 ∗ 3.25 

kroA100 3,212 3,212 3,212 ∗ 3,212 0.90 3,212 ∗ 0.57 3,212 ∗ 32.85 3,212 ∗ 3,212 ∗ 0.70 

kroB100 3,241 3,241 3,241 ∗ 3,241 6.70 3,238 0.09 0.52 3,239 0.06 48.39 3,241 ∗ 3,241 ∗ 13.28 

kroC100 2,947 2,947 2,947 ∗ 2,947 85.60 2,931 0.54 0.60 2,947 ∗ 39.27 2,947 ∗ 2,947 ∗ 2.22 

kroD100 3,307 3,307 3,307 ∗ 3,307 45.00 3,307 ∗ 0.65 3,307 ∗ 30.52 3,307 ∗ 3,307 ∗ 3.62 

kroE100 3,090 3,090 3,090 ∗ 3,090 230.10 3,082 0.26 0.50 3,090 ∗ 39.57 3,090 ∗ 3,090 ∗ 11.31 

rd100 3,359 3,359 3,359 ∗ 3,359 0.20 3,359 ∗ 0.50 3,359 ∗ 30.80 3,359 ∗ 3,359 ∗ 0.36 

eil101 3,655 3,655 3,655 ∗ 3,655 153.00 3,655 ∗ 0.82 3,655 ∗ 26.19 3,655 ∗ 3,655 ∗ 4.15 

lin105 3,544 3,544 3,544 ∗ 3,544 67.30 3,530 0.40 1.10 3,544 ∗ 36.22 3,544 ∗ 3,544 ∗ 2.51 

pr107 2,667 2,667 2,667 ∗ 2,667 0.60 2,667 ∗ 1.05 2,667 ∗ 69.67 2,667 ∗ 2,667 ∗ 0.20 

gr120 4,371 4,371 4,371 ∗ 4,371 35.80 4,356 0.34 1.37 4,371 ∗ 40.41 4,371 ∗ 4,371 ∗ 6.57 

pr124 3,917 3,917 3,917 ∗ 3,917 0.50 3,899 0.46 1.34 3,917 ∗ 55.25 3,917 ∗ 3,917 ∗ 1.07 

bier127 5,383 5,383 5,383 ∗ 5,383 58.80 5,381 0.04 1.71 5,366 0.32 23.01 5,383 ∗ 5,383 ∗ 0.96 

pr136 4,309 4,309 4,309 ∗ 4,309 2.10 4,309 ∗ 1.15 4,309 ∗ 35.63 4,309 ∗ 4,309 ∗ 1.25 

gr137 4,286 4,286 4,286 ∗ 4,286 196.90 4,099 4.36 3.09 4,286 ∗ 639.80 4,286 ∗ 4,286 ∗ 10.65 

pr144 4,003 4,003 4,003 ∗ 4,003 90.40 3,965 0.95 3.02 3,969 0.85 100.20 4,003 ∗ 4,003 ∗ 32.23 

kroA150 4,918 4,918 4,918 ∗ 4,918 241.40 4,902 0.33 1.26 4,918 ∗ 80.06 4,918 ∗ 4,918 ∗ 60.43 

kroB150 4,869 4,869 4,869 ∗ 4,869 24.80 4,869 ∗ 1.19 4,869 ∗ 61.96 4,869 ∗ 4,869 ∗ 16.94 

pr152 4,279 4,279 4,279 ∗ 4,279 2.20 4,245 0.79 3.47 4,279 ∗ 67.41 4,279 ∗ 4,279 ∗ 1.85 

u159 4,960 4,960 4,960 ∗ 4,960 192.20 4,941 0.38 1.44 4,950 0.20 109.59 4,960 ∗ 4,960 ∗ 14.96 

rat195 5,791 5,791 5,791 ∗ 5,791 128.80 5,703 1.52 1.55 5,782 0.16 263.23 5,791 ∗ 5,791 ∗ 46.09 

d198 6,670 6,670 6,670 ∗ 6,670 74.20 6,660 0.15 7.33 6,661 0.13 88.47 6,670 ∗ 6,670 ∗ 298.24 

kroA200 6,547 6,547 6,547 ∗ 6,547 68.70 6,534 0.20 1.71 6,547 ∗ 116.11 6,547 ∗ 6,547 ∗ 16.18 

kroB200 6,419 6,419 6,419 ∗ 6,419 34.70 6,278 2.20 1.97 6,413 0.09 189.98 6,419 ∗ 6,419 ∗ 20.62 

gr202 7,789 7,789 7,789 ∗ 7,789 85.70 7,789 ∗ 8.77 7,719 0.90 188.27 7,789 ∗ 7,789 ∗ 139.90 

ts225 6,834 6,834 6,834 ∗ 6,834 6.60 6,819 0.22 1.47 6,782 0.76 394.00 6,834 ∗ 6,834 ∗ 95.22 

tsp225 6,987 6,987 6,987 ∗ 6,987 174.50 6,936 0.73 1.87 6,980 0.10 299.73 6,987 ∗ 6,987 ∗ 54.09 

pr226 6,662 6,662 6,662 ∗ 6,662 74.10 6,658 0.06 7.29 6,662 ∗ 201.68 6,662 ∗ 6,662 ∗ 2,894.81 

gr229 9,177 9,177 9,177 ∗ 9,177 182.60 9,174 0.03 13.19 9,177 ∗ 1,379.35 9,177 ∗ 9,177 ∗ 16.67 

gil262 8,321 8,321 8,321 ∗ 8,321 89.60 8,175 1.75 3.47 8,269 0.62 487.41 8,321 ∗ 8,321 ∗ 64.63 

pr264 6,654 6,654 6,654 ∗ 6,654 23.00 6,173 7.23 5.94 6,654 ∗ 314.27 6,654 ∗ 6,654 ∗ 13.33 

a280 8,428 8,428 8,428 ∗ 8,428 103.80 8,304 1.47 2.85 8,404 0.28 215.31 8,428 ∗ 8,428 ∗ 519.95 

pr299 9,182 9,182 9,182 ∗ 9,182 426.50 9,112 0.76 3.23 9,147 0.38 393.12 9,182 ∗ 9,182 ∗ 623.34 

lin318 10,923 10,923 10,923 ∗ 10,923 862.40 10,866 0.52 8.29 10,801 1.12 370.64 10,923 ∗ 10,923 ∗ 367.53 

rd400 13,652 13,652 13,652 ∗ 13,652 293.50 13,442 1.54 6.80 13,562 0.66 1,174.91 13,652 ∗ 13,652 ∗ 769.66 

average ∗ 92.89 0.63 2.38 0.15 173.77 ∗ ∗ 136.63 

6
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Table B.18 

Generation 2, n > 400 . 

Instance Best FST EA4OP ALNS RB&C 

LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time 

fl417 11,933 12,294 11,894 0.33 12,294 18,000.00 11,787 1.22 16.73 11,923 0.08 2,144.94 11,933 ∗ 12,387 3.67 18,000.00 

gr431 18,318 18,318 18,318 ∗ 18,318 969.50 18,287 0.17 51.38 18,318 ∗ 2,740.82 18,318 ∗ 18,318 ∗ 2,809.41 

pr439 16,171 16,171 16,171 ∗ 16,171 1,298.30 16,085 0.53 11.77 16,128 0.27 629.44 16,171 ∗ 16,171 ∗ 3,765.86 

pcb442 14,484 14,484 14,484 ∗ 14,484 6,259.10 14,273 1.46 6.83 14,411 0.50 4,410.74 14,484 ∗ 14,484 ∗ 13,760.94 

d493 16,995 17,007 . . . . 16,729 1.57 17.15 16,820 1.03 6,231.42 16,995 ∗ 17,007 0.07 18,000.00 

att532 19,635 19,800 19,598 0.19 19,800 18,000.00 19,265 1.88 23.43 19,465 0.87 1,564.89 19,635 ∗ 19,800 0.83 18,000.00 

ali535 21,954 21,954 21,954 ∗ 21,954 2,099.70 21,910 0.20 95.05 21,761 0.88 1,537.87 21,954 ∗ 21,973 0.09 18,000.00 

pa561 19,576 19,576 19,576 ∗ 19,576 1,487.10 18,894 3.48 23.45 19,092 2.47 790.31 19,576 ∗ 19,576 ∗ 1,961.95 

u574 19,351 19,351 19,351 ∗ 19,351 612.50 18,966 1.99 16.33 19,028 1.67 5,389.10 19,351 ∗ 19,351 ∗ 1,026.82 

rat575 18,251 18,251 18,251 ∗ 18,251 931.10 17,705 2.99 14.97 17,984 1.46 2,089.02 18,251 ∗ 18,251 ∗ 9,616.70 

p654 17,900 21,566 17,160 4.13 21,566 18,000.00 17,821 0.44 42.82 17,900 ∗ 18,000.00 17,753 0.82 22,248 20.20 18,000.00 

d657 21,503 21,503 21,503 ∗ 21,503 2,682.40 21,162 1.59 22.90 21,231 1.26 4,161.44 21,503 ∗ 21,503 ∗ 554.67 

gr666 26,514 26,569 . . . . 26,336 0.67 136.48 25,971 2.05 1,024.22 26,514 ∗ 26,569 0.21 18,000.00 

u724 24,223 24,223 24,223 ∗ 24,223 5,830.50 23,793 1.78 28.71 23,878 1.42 5,755.06 24,223 ∗ 24,223 ∗ 9,829.42 

rat783 25,474 25,474 . . . . 24,861 2.41 32.36 24,987 1.91 6,622.62 25,474 ∗ 25,474 ∗ 12,246.90 

dsj1000 35,835 35,915 35,772 0.18 35,917 18,000.00 34,463 3.83 83.34 34,641 3.33 18,000.00 35,835 ∗ 35,915 0.22 18,000.00 

pr1002 33,030 33,092 27,066 18.06 . 18,000.00 31,746 3.89 46.19 32,120 2.76 18,000.00 33,030 ∗ 33,092 0.19 18,000.00 

u1060 36,151 36,291 . . . . 35,110 2.88 77.78 35,284 2.40 18,000.00 36,151 ∗ 36,291 0.39 18,000.00 

vm1084 40,777 40,952 40,687 0.22 40,954 18,000.00 40,308 1.15 55.67 40,240 1.32 18,000.00 40,777 ∗ 40,952 0.43 18,000.00 

pcb1173 37,035 37,100 . . . . 35,826 3.26 69.94 35,946 2.94 18,000.00 37,035 ∗ 37,100 0.18 18,000.00 

d1291 37,778 37,854 . . . . 35,153 6.95 289.25 36,815 2.55 18,000.00 37,778 ∗ 37,854 0.20 18,000.00 

rl1304 42,275 42,359 . . . . 40,561 4.05 97.68 40,893 3.27 12,853.40 42,275 ∗ 42,359 0.20 18,000.00 

rl1323 43,377 43,450 43,347 0.07 43,450 18,000.00 41,459 4.42 89.78 41,210 5.00 18,000.00 43,377 ∗ 43,450 0.17 18,000.00 

nrw1379 46,676 46,787 . . . . 45,602 2.30 117.51 45,576 2.36 18,000.00 46,676 ∗ 46,787 0.24 18,000.00 

fl1400 56,692 64,298 53,222 6.12 64,726 18,000.00 56,258 0.77 794.15 56,692 ∗ 18,000.00 54,124 4.53 64,298 15.82 18,000.00 

u1432 46,946 47,018 . . . . 44,810 4.55 100.91 44,982 4.18 18,000.00 46,946 ∗ 47,018 0.15 18,000.00 

fl1577 45,505 50,154 . . . . 45,505 ∗ 334.28 41,148 9.57 18,000.00 45,326 0.39 50,154 9.63 18,000.00 

d1655 49,319 53,083 . . . . 47,211 4.27 683.17 49,319 ∗ 18,000.00 46,158 6.41 53,083 13.05 18,000.00 

vm1748 68,042 68,303 . . . . 66,685 1.99 195.85 66,636 2.07 18,000.00 68,042 ∗ 68,303 0.38 18,000.00 

u1817 54,245 54,554 . . . . 50,366 7.15 734.39 51,676 4.74 18,000.00 54,245 ∗ 54,554 0.57 18,000.00 

rl1889 63,308 64,425 52,047 17.79 . 18,000.00 60,084 5.09 286.07 60,928 3.76 18,000.00 63,308 ∗ 64,425 1.73 18,000.00 

d2103 63,426 63,426 . . . . 57,202 9.81 682.28 61,636 2.82 18,000.00 63,426 ∗ 63,426 ∗ 16,593.51 

u2152 64,649 64,775 53,976 16.51 . 18,000.00 60,211 6.86 1,164.38 61,052 5.56 18,000.00 64,649 ∗ 64,775 0.19 18,000.00 

u2319 80,914 81,139 72,790 10.04 . 18,000.00 78,102 3.48 447.06 77,610 4.08 18,000.00 80,914 ∗ 81,139 0.28 18,000.00 

pr2392 72,843 78,237 64,577 11.35 . 18,000.00 71,018 2.51 440.57 71,851 1.36 18,000.00 72,843 ∗ 78,237 6.89 18,000.00 

pcb3038 97,902 97,995 83,951 14.25 . 18,000.00 91,842 6.19 820.37 91,457 6.58 18,000.00 97,902 ∗ 97,995 0.09 18,000.00 

fl3795 103,397 142,895 . . . . 103,397 ∗ 4,788.96 102,642 0.73 18,000.00 98,998 4.25 142,895 30.72 18,000.00 

fnl4461 147,109 150,189 . . . . 140,424 4.54 2,618.15 135,515 7.88 18,000.00 147,109 ∗ 150,189 2.05 18,000.00 

rl5915 184,424 197,729 . . . . 176,678 4.20 5,512.40 173,500 5.92 18,000.00 184,424 ∗ 197,729 6.73 18,000.00 

rl5934 187,034 196,805 . . . . 171,649 8.23 5,757.80 166,368 11.05 18,000.00 187,034 ∗ 196,805 4.96 18,000.00 

pla7397 281,977 297,246 . . . . 272,452 3.38 18,000.00 266,038 5.65 18,000.00 281,977 ∗ 297,246 5.14 18,000.00 

average 4.51 11,644.10 3.13 1,093.37 2.87 12,827.93 0.40 3.06 15,369.91 
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Table B.19 

Generation 3, n ≤ 400 . 

Instance Best FST EA4OP ALNS RB&C 

LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time 

att48 1,049 1,049 1,049 ∗ 1,049 38.50 1,049 ∗ 0.26 1,049 ∗ 7.18 1,049 ∗ 1,049 ∗ 1.17 

gr48 1,480 1,480 1,480 ∗ 1,480 0.20 1,480 ∗ 0.13 1,480 ∗ 8.87 1,480 ∗ 1,480 ∗ 0.72 

hk48 1,764 1,764 1,764 ∗ 1,764 0.00 1,764 ∗ 0.22 1,764 ∗ 8.51 1,764 ∗ 1,764 ∗ 0.06 

eil51 1,399 1,399 1,399 ∗ 1,399 0.20 1,398 0.07 0.22 1,399 ∗ 6.87 1,399 ∗ 1,399 ∗ 1.46 

berlin52 1,036 1,036 1,036 ∗ 1,036 124.70 1,034 0.19 0.64 1,036 ∗ 12.84 1,036 ∗ 1,036 ∗ 4.61 

brazil58 1,702 1,702 1,702 ∗ 1,702 0.00 1,702 ∗ 0.71 1,702 ∗ 11.09 1,702 ∗ 1,702 ∗ 0.02 

st70 2,108 2,108 2,108 ∗ 2,108 0.40 2,108 ∗ 0.31 2,108 ∗ 9.65 2,108 ∗ 2,108 ∗ 0.49 

eil76 2,467 2,467 2,467 ∗ 2,467 0.40 2,467 ∗ 0.36 2,467 ∗ 20.48 2,467 ∗ 2,467 ∗ 2.96 

pr76 2,430 2,430 2,430 ∗ 2,430 0.20 2,430 ∗ 0.57 2,430 ∗ 20.43 2,430 ∗ 2,430 ∗ 1.07 

gr96 3,170 3,170 3,170 ∗ 3,170 61.50 3,166 0.13 1.41 3,166 0.13 15.22 3,170 ∗ 3,170 ∗ 5.66 

rat99 2,908 2,908 2,908 ∗ 2,908 4.90 – – – – – – 2,908 ∗ 2,908 ∗ 3.01 

kroA100 3,211 3,211 3,211 ∗ 3,211 63.30 3,180 0.97 0.38 3,211 ∗ 32.31 3,211 ∗ 3,211 ∗ 1.81 

kroB100 2,804 2,804 2,804 ∗ 2,804 0.60 2,785 0.68 0.51 2,804 ∗ 35.83 2,804 ∗ 2,804 ∗ 0.35 

kroC100 3,155 3,155 3,155 ∗ 3,155 1.50 3,155 ∗ 0.44 3,155 ∗ 34.67 3,155 ∗ 3,155 ∗ 1.82 

kroD100 3,167 3,167 3,167 ∗ 3,167 10.70 3,141 0.82 0.58 3,167 ∗ 31.08 3,167 ∗ 3,167 ∗ 0.70 

kroE100 3,049 3,049 3,049 ∗ 3,049 1.50 3,049 ∗ 0.47 3,049 ∗ 31.96 3,049 ∗ 3,049 ∗ 1.36 

rd100 2,926 2,926 2,926 ∗ 2,926 113.20 2,923 0.10 0.48 2,926 ∗ 16.35 2,926 ∗ 2,926 ∗ 23.20 

eil101 3,345 3,345 3,345 ∗ 3,345 29.80 3,345 ∗ 0.56 3,345 ∗ 28.61 3,345 ∗ 3,345 ∗ 1.37 

lin105 2,986 2,986 2,986 ∗ 2,986 51.90 2,973 0.44 2.09 2,986 ∗ 38.24 2,986 ∗ 2,986 ∗ 16.02 

pr107 1,877 1,877 1,877 ∗ 1,877 660.90 1,802 4.00 0.82 1,877 ∗ 65.16 1,877 ∗ 1,877 ∗ 3,297.37 

gr120 3,779 3,779 3,779 ∗ 3,779 1.50 3,748 0.82 1.36 3,777 0.05 37.94 3,779 ∗ 3,779 ∗ 2.65 

pr124 3,557 3,557 3,557 ∗ 3,557 1,021.50 3,455 2.87 0.88 3,557 ∗ 99.87 3,557 ∗ 3,557 ∗ 4,507.38 

bier127 2,365 2,365 2,365 ∗ 2,365 79.90 2,361 0.17 2.62 2,361 0.17 49.9 2,365 ∗ 2,365 ∗ 40.07 

pr136 4,390 4,390 4,390 ∗ 4,390 86.70 4,390 ∗ 1.13 4,390 ∗ 61.84 4,390 ∗ 4,390 ∗ 30.50 

gr137 3,954 3,954 3,954 ∗ 3,954 8.60 3,954 ∗ 1.88 3,954 ∗ 637.09 3,954 ∗ 3,954 ∗ 14.01 

pr144 3,745 3,745 3,745 ∗ 3,745 112.60 3,700 1.20 2.41 3,744 0.03 112.92 3,745 ∗ 3,745 ∗ 116.68 

kroA150 5,039 5,039 5,039 ∗ 5,039 330.70 5,019 0.40 1.07 5,037 0.04 104.23 5,039 ∗ 5,039 ∗ 46.43 

kroB150 5,314 5,314 5,314 ∗ 5,314 107.60 5,314 ∗ 1.04 5,314 ∗ 63.05 5,314 ∗ 5,314 ∗ 28.53 

pr152 3,905 3,905 3,905 ∗ 3,905 1,122.40 3,902 0.08 3.63 3,539 9.37 184.38 3,905 ∗ 3,905 ∗ 83.51 

u159 5,272 5,272 5,272 ∗ 5,272 52.20 5,272 ∗ 0.95 5,272 ∗ 94.27 5,272 ∗ 5,272 ∗ 8.59 

rat195 6,195 6,195 6,195 ∗ 6,195 49.90 – – – – – – 6,195 ∗ 6,195 ∗ 33.56 

d198 6,320 6,320 6,320 ∗ 6,320 286.10 6,290 0.47 7.15 6,320 ∗ 105.7 6,320 ∗ 6,320 ∗ 461.18 

kroA200 6,123 6,123 6,123 ∗ 6,123 122.30 6,114 0.15 1.72 6,118 0.08 232.2 6,123 ∗ 6,123 ∗ 92.41 

kroB200 6,266 6,266 6,266 ∗ 6,266 40.10 6,213 0.85 1.78 6,266 ∗ 188.77 6,266 ∗ 6,266 ∗ 3.87 

gr202 8,616 8,616 8,616 ∗ 8,616 224.80 8,605 0.13 10.45 8,564 0.60 57.88 8,616 ∗ 8,616 ∗ 315.26 

ts225 7,575 7,575 7,575 ∗ 7,575 171.20 7,575 ∗ 1.14 7,575 ∗ 450.25 7,575 ∗ 7,575 ∗ 6.62 

tsp225 7,740 7,740 7,740 ∗ 7,740 150.30 – – – – – – 7,740 ∗ 7,740 ∗ 38.61 

pr226 6,993 6,993 6,993 ∗ 6,993 32.60 6,908 1.22 8.01 6,993 ∗ 177.59 6,993 ∗ 6,993 ∗ 1,170.00 

gr229 6,328 6,328 6,328 ∗ 6,328 10.20 6,297 0.49 11.66 6,328 ∗ 1,298.8 6,328 ∗ 6,328 ∗ 42.63 

gil262 9,246 9,246 9,246 ∗ 9,246 133.40 9,094 1.64 3.94 9,210 0.39 649.54 9,246 ∗ 9,246 ∗ 83.29 

pr264 8,137 8,137 8,137 ∗ 8,137 20.70 8,068 0.85 3.63 8,137 ∗ 357.8 8,137 ∗ 8,137 ∗ 186.59 

a280 9,774 9,774 9,774 ∗ 9,774 213.30 8,684 11.15 3.22 8,789 10.08 378.8 9,774 ∗ 9,774 ∗ 126.80 

pr299 10,343 10,343 10,343 ∗ 10,343 363.60 9,959 3.71 3.95 10,233 1.06 549.11 10,343 ∗ 10,343 ∗ 913.13 

lin318 10,368 10,368 10,368 ∗ 10,368 534.80 10,273 0.92 6.33 10,337 0.30 528.2 10,368 ∗ 10,368 ∗ 327.58 

rd400 13,223 13,223 13,223 ∗ 13,223 293.20 13,088 1.02 7.74 13,122 0.76 727.58 13,223 ∗ 13,223 ∗ 214.40 

average ∗ 149.66 0.85 2.35 0.55 180.55 ∗ ∗ 272.43 
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Table B.20 

Generation 3, n > 400 . 

Instance Best FST EA4OP ALNS RB&C 

LB UB LB GGap UB Time LB GGap Time LB GGap Time LB GGap UB OGap Time 

fl417 14,220 14,220 14,220 ∗ 14,220 6,227.60 14,186 0.24 12.45 14,220 ∗ 1,131.05 14,219 0.01 14,387 1.17 18,000.00 

gr431 10,911 10,911 10,911 ∗ 10,911 1,046.90 10,817 0.86 54.50 10,907 0.04 2,411.45 10,911 ∗ 10,911 ∗ 7,814.17 

pr439 15,176 15,296 15,160 0.11 15,296 18,000.00 15,097 0.52 10.96 15,080 0.63 1,328.74 15,176 ∗ 15,331 1.01 18,000.00 

pcb442 14,819 14,819 14,819 ∗ 14,839 18,000.00 14,522 2.00 6.58 14,695 0.84 1,192.19 14,819 ∗ 14,819 ∗ 11,574.76 

d493 25,167 25,188 25,167 ∗ 25,188 18,000.00 24,981 0.74 19.18 24,849 1.26 3,829.32 25,167 ∗ 25,195 0.11 18,000.00 

att532 15,498 15,498 15,498 ∗ 15,498 933.20 15,342 1.01 22.75 15,335 1.05 4,533.36 15,498 ∗ 15,498 ∗ 318.44 

ali535 9,414 9,472 . . . . 9,328 0.91 94.09 9,308 1.13 13,313.5 9,414 ∗ 9,472 0.61 18,000.00 

pa561 14,482 14,482 14,482 ∗ 14,482 10,543.80 – – – – – – 14,482 ∗ 14,482 ∗ 2,539.41 

u574 20,064 20,064 20,064 ∗ 20,064 1,409.30 19,691 1.86 19.77 19,841 1.11 1,671.01 20,064 ∗ 20,064 ∗ 2,693.59 

rat575 20,109 20,109 20,109 ∗ 20,109 1,426.50 – – – – – – 20,109 ∗ 20,109 ∗ 929.99 

p654 24,492 24,518 24,492 ∗ 31,914 18,000.00 24,130 1.48 18.54 24,427 0.27 7,543.02 24,492 ∗ 24,518 0.11 18,000.00 

d657 24,562 24,562 24,562 ∗ 24,562 4,053.30 23,772 3.22 21.89 23,829 2.98 4,600.87 24,562 ∗ 24,562 ∗ 8,777.39 

gr666 17,023 17,048 17,020 0.02 17,048 18,000.00 16,902 0.71 143.87 16,709 1.84 2,734.75 17,023 ∗ 17,060 0.22 18,000.00 

u724 28,348 28,348 28,348 ∗ 28,348 5,870.60 27,932 1.47 29.26 28,033 1.11 12,058.6 28,348 ∗ 28,348 ∗ 10,332.54 

rat783 27,566 27,566 27,566 ∗ 27,566 7,232.30 – – – – – – 27,566 ∗ 27,566 ∗ 3,812.98 

dsj1000 31,434 31,454 . . . . 30,943 1.56 79.18 31,040 1.25 15,962 31,434 ∗ 31,454 0.06 18,000.00 

pr1002 39,526 39,526 39,449 0.19 39,545 18,000.00 38,762 1.93 47.30 38,502 2.59 18,000 39,526 ∗ 39,526 ∗ 13,955.69 

u1060 37,492 37,569 . . . . 36,570 2.46 75.88 36,598 2.38 18,000 37,492 ∗ 37,569 0.20 18,000.00 

vm1084 37,669 37,669 37,653 0.04 37,694 18,000.00 37,508 0.43 54.21 37,178 1.30 3,286.89 37,669 ∗ 37,669 ∗ 8,710.50 

pcb1173 41,257 41,257 . . . . 40,069 2.88 66.16 40,513 1.80 18,000 41,257 ∗ 41,257 ∗ 15,133.74 

d1291 41,509 42,153 30,106 27.47 . 18,000.00 38,132 8.14 299.87 39,919 3.83 18,000 41,509 ∗ 42,153 1.53 18,000.00 

rl1304 41,881 42,075 40,478 3.35 . 18,000.00 41,214 1.59 81.11 41,679 0.48 18,000 41,881 ∗ 42,075 0.46 18,000.00 

rl1323 47,213 47,384 44,458 5.84 . 18,000.00 46,641 1.21 93.53 45,500 3.63 8,544.44 47,213 ∗ 47,384 0.36 18,000.00 

nrw1379 42,920 42,975 . . . . – – – – – – 42,920 ∗ 42,975 0.13 18,000.00 

fl1400 57,470 59,491 54,792 4.66 67,053 18,000.00 57,226 0.42 599.81 57,470 ∗ 18,000 54,661 4.89 59,491 8.12 18,000.00 

u1432 47,778 47,895 . . . . 46,657 2.35 138.02 47,242 1.12 18,000 47,778 ∗ 47,895 0.24 18,000.00 

fl1577 45,935 48,809 . . . . 45,692 0.53 295.62 45,935 ∗ 18,000 45,768 0.36 48,809 6.23 18,000.00 

d1655 62,048 62,945 51,168 17.53 . 18,000.00 58,728 5.35 674.25 60,956 1.76 18,000 62,048 ∗ 62,945 1.43 18,000.00 

vm1748 71,885 72,010 68,979 4.04 . 18,000.00 70,958 1.29 225.29 71,244 0.89 18,000 71,885 ∗ 72,010 0.17 18,000.00 

u1817 63,639 67,670 52,186 18.00 . 18,000.00 63,639 ∗ 1,302.35 63,016 0.98 18,000 63,618 0.03 67,670 5.99 18,000.00 

rl1889 70,065 71,106 43,374 38.09 . 18,000.00 68,422 2.34 244.97 68,096 2.81 18,000 70,065 ∗ 71,106 1.46 18,000.00 

d2103 82,787 82,973 76,035 8.16 . 18,000.00 77,333 6.59 1,168.90 81,081 2.06 18,000 82,787 ∗ 82,973 0.22 18,000.00 

u2152 74,007 78,066 52,091 29.61 . 18,000.00 73,400 0.82 1,619.61 72,733 1.72 18,000 74,007 ∗ 78,066 5.20 18,000.00 

u2319 79,351 81,050 79,351 ∗ 81,619 18,000.00 78,113 1.56 569.76 79,130 0.28 18,000 79,343 0.01 81,050 2.11 18,000.00 

pr2392 85,409 90,261 60,225 29.49 . 18,000.00 84,094 1.54 422.73 85,084 0.38 18,000 85,409 ∗ 90,261 5.38 18,000.00 

pcb3038 106,928 112,006 96,356 9.89 . 18,000.00 104,667 2.11 917.39 105,337 1.49 18,000 106,928 ∗ 112,006 4.53 18,000.00 

fl3795 97,707 116,792 . . . . 97,707 ∗ 3,158.89 95,580 2.18 18,000 89,218 8.69 116,792 23.61 18,000.00 

fnl4461 146,995 152,562 . . . . – – – – – – 146,995 ∗ 152,562 3.65 18,000.00 

rl5915 203,695 217,366 . . . . 199,336 2.14 5,593.23 201,814 0.92 18,000 203,695 ∗ 217,366 6.29 18,000.00 

rl5934 212,021 229,405 . . . . 207,385 2.19 5,881.87 203,667 3.94 18,000 212,021 ∗ 229,405 7.58 18,000.00 

pla7397 322,285 334,885 . . . . 320,744 0.48 18,000.00 312,645 2.99 18,000 322,285 ∗ 334,885 3.76 18,000.00 

average 6.78 13,749.78 1.80 1,168.44 1.47 12,837.26 0.34 2.24 14,843.74 
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Table B.21 

Minimum, average and maximum values of lower bounds and upper bounds for RB&C, n > 400 . 

Instance Generation 1 Generation 2 Generation 3 

LB UB LB UB LB UB 

min av. max min av. max min av. max min av. max min av. max min av. max 

fl417 227 228 228 231 233 239 11,914 11,928 11,933 12,387 12,383 12,965 14,210 14,215 14,219 14,387 14,386 14,388 

gr431 350 350 350 350 350 350 18,318 18,318 18,318 18,318 18,318 18,318 10,896 10,906 10,911 10,911 10,919 10,938 

pr439 313 313 313 313 313 313 16,171 16,171 16,171 16,171 16,171 16,171 15,150 15,161 15,176 15,331 15,341 15,361 

pcb442 251 251 251 251 251 251 14,429 14,476 14,484 14,484 14,496 14,568 14,806 14,815 14,819 14,819 14,826 14,845 

d493 320 320 320 320 320 320 16,988 16,993 16,995 17,007 17,010 17,011 25,150 25,164 25,167 25,195 25,211 25,216 

att532 363 363 363 363 363 363 19,610 19,622 19,635 19,800 19,802 19,806 15,498 15,498 15,498 15,498 15,498 15,498 

ali535 425 425 425 426 427 427 21,949 21,952 21,954 21,973 21,980 21,993 9,257 9,389 9,414 9,472 9,472 9,473 

pa561 357 357 357 357 357 357 19,576 19,576 19,576 19,576 19,576 19,576 14,482 14,482 14,482 14,482 14,482 14,482 

u574 354 354 354 354 354 354 19,351 19,351 19,351 19,351 19,351 19,351 20,064 20,064 20,064 20,064 20,064 20,064 

rat575 322 322 322 322 322 322 18,251 18,251 18,251 18,251 18,251 18,251 20,109 20,109 20,109 20,109 20,109 20,109 

p654 311 329 342 396 420 430 16,760 17,153 17,753 22,248 23,839 25,772 24,492 24,492 24,492 24,518 24,817 26,403 

d657 386 386 386 386 386 386 21,503 21,503 21,503 21,503 21,503 21,503 24,545 24,557 24,562 24,562 24,574 24,605 

gr666 503 503 503 503 503 503 26,467 26,499 26,514 26,569 26,575 26,616 16,993 17,015 17,023 17,060 17,065 17,069 

u724 439 439 439 439 439 439 24,064 24,188 24,223 24,223 24,235 24,259 28,287 28,341 28,348 28,348 28,351 28,371 

rat783 438 438 438 438 438 438 25,291 25,412 25,474 25,474 25,499 25,511 27,566 27,566 27,566 27,566 27,566 27,566 

dsj1000 656 656 656 656 656 656 35,762 35,803 35,835 35,915 35,918 35,922 31,424 31,428 31,434 31,454 31,459 31,460 

pr1002 606 606 606 606 606 606 32,950 33,005 33,030 33,092 33,088 33,115 39,504 39,521 39,526 39,526 39,536 39,548 

u1060 656 658 660 660 661 661 35,911 36,042 36,151 36,291 36,267 36,309 37,414 37,454 37,492 37,569 37,574 37,577 

vm1084 777 777 777 777 777 777 40,720 40,747 40,777 40,952 40,959 40,962 37,667 37,669 37,669 37,669 37,679 37,702 

pcb1173 675 675 675 675 675 675 36,972 37,013 37,035 37,100 37,104 37,108 41,252 41,256 41,257 41,257 41,300 41,335 

d1291 711 714 715 715 715 715 37,649 37,724 37,778 37,854 37,856 37,864 40,508 41,021 41,509 42,153 42,176 42,186 

rl1304 802 802 802 802 802 802 41,840 42,171 42,275 42,359 42,363 42,369 41,548 41,728 41,881 42,075 42,085 42,094 

rl1323 812 814 814 814 814 816 43,131 43,324 43,377 43,450 43,449 43,466 46,886 47,078 47,213 47,384 47,402 47,417 

nrw1379 811 814 815 817 816 817 46,317 46,542 46,676 46,787 46,790 46,792 42,869 42,889 42,920 42,975 42,978 42,983 

fl1400 944 993 1,003 1,084 1,100 1,122 49,774 51,622 54,124 64,298 64,505 64,717 52,471 53,677 54,661 59,491 60,643 61,317 

u1432 744 748 754 764 765 765 46,450 46,730 46,946 47,018 47,025 47,037 47,005 47,575 47,778 47,895 48,003 48,644 

fl1577 892 894 897 900 901 902 43,627 44,510 45,326 50,154 51,351 51,912 41,744 43,322 45,768 48,809 49,706 51,334 

d1655 757 854 922 924 928 959 42,470 43,682 46,158 53,083 53,216 53,470 51,376 56,559 62,048 62,945 63,527 65,094 

vm1748 1,267 1,272 1,276 1,282 1,282 1,282 67,499 67,750 68,042 68,303 68,311 68,320 71,678 71,775 71,885 72,010 72,023 72,029 

u1817 978 982 983 983 983 984 53,152 53,817 54,245 54,554 54,557 54,563 56,826 59,419 63,618 67,670 67,837 67,982 

rl1889 1,209 1,218 1,226 1,226 1,229 1,229 62,009 63,216 63,308 64,425 64,438 64,448 69,194 69,592 70,065 71,106 71,132 71,148 

d2103 1,197 1,198 1,200 1,200 1,202 1,203 63,350 63,397 63,426 63,426 63,428 63,428 59,444 79,489 82,787 82,973 82,980 82,985 

u2152 1,148 1,150 1,151 1,151 1,151 1,152 61,913 63,667 64,649 64,775 64,779 64,783 69,556 70,859 74,007 78,066 78,395 78,594 

u2319 1,161 1,164 1,170 1,171 1,171 1,171 80,733 80,925 80,914 81,139 81,143 81,147 78,944 79,144 79,343 81,050 81,346 81,613 

pr2392 1,287 1,301 1,316 1,415 1,424 1,433 69,108 70,788 72,843 78,237 78,486 78,683 84,604 84,895 85,409 90,261 90,849 91,279 

pcb3038 1,713 1,718 1,727 1,730 1,730 1,730 97,624 97,789 97,902 97,995 97,998 98,000 105,837 106,473 106,928 112,006 112,433 112,698 

fl3795 1,446 1,667 1,965 2,249 2,303 2,346 83,307 92,105 98,998 142,895 143,273 144,004 85,258 87,174 89,218 116,792 118,555 119,805 

fnl4461 2,514 2,523 2,541 2,570 2,570 2,570 145,486 146,114 147,109 150,189 150,195 150,200 144,953 145,494 146,995 152,562 152,950 153,237 

rl5915 3,475 3,549 3,593 3,786 3,786 3,787 176,501 180,424 184,424 197,729 199,104 202,253 196,346 199,558 203,695 217,366 219,184 220,548 

rl5934 3,528 3,595 3,632 3,752 3,752 3,753 179,939 182,320 187,034 196,805 196,899 197,214 203,602 206,779 212,021 229,405 231,124 232,486 

pla7397 5,198 5,230 5,289 5,657 5,664 5,668 273,669 278,230 281,977 297,246 297,530 297,815 316,534 319,604 322,285 334,885 335,307 335,551 

6
5
 



G. Kobeaga, J. Rojas-Delgado, M. Merino et al. European Journal of Operational Research 313 (2024) 44–68 

Table C.22 

Common parameters used by the RB&C algorithm. The values for the different parameters are manually chosen based on our preliminary 

experiments and previous values in the literature. 

Parameter Value Description 

ZERO 10 −7 Sensibility of fractional numbers 

ADD_CUT_BATCH 250 Maximum number of cuts added to the LP 0 at once 

ADD_MIN_VIOL 10 −6 Minimum violation of a cut to include it in the LP 0 
SUBLOOP_IMPR 1% Minimum improvement to repeat the subloops ( Section 4.2 ) 

ADD_SEC_PER_SET 50 Amount of SECs considered for each subset ( Section 4.2 ) 

ADD_PATH_MAX 500 Maximum cuts for Path inequalities separation ( Section 3.6 ) 

ADD_EGH_EPSILON 0.3 Epsilon value for the EGH blossom heuristic ( Section 4.2.2 ) 

PRICE_MAX_ADD 200 Maximum number of variables added to the LP 0 ( Section 4.3 ) 

PRICE_RC_THRESH 10 −5 Minimum penalty of a variable to add to the LP 0 ( Section 4.3 ) 

DEL_DUST_VAR 10 −3 Minimum y value to consider an edge as active ( Section 4.3 ) 

DEL_DUST_CUT 10 −3 Maximum slack value to consider a cut as active ( Section 4.3 ) 

DEL_MAX_AGE_CUT 5 Consecutive inactivity to delete a cut from the LP 0 ( Section 4.3 ) 

DEL_MAX_AGE_VAR 100 Consecutive inactivity to delete an edge from the LP 0 ( Section 4.3 ) 

XHEUR_GREEDY_XMIN 0.3 Use arcs larger than this value in PB primal heuristic ( Section 4.5 ) 

XHEUR_EA4OP_POP_SIZE 10 Population size for EA4OP ( Section 4.5 ) 

XHEUR_EA4OP_D2D 5 Iterations before checking feasibility in EA4OP ( Section 4.5 ) 

XHEUR_EA4OP_NPAR 3 Number of parents preselected in EA4OP ( Section 4.5 ) 

Table D.23 

Results of the REFERENCE and alternative configurations for RB&C on the root node. The values are the mean relative differences to the best 

overall achieved, in percentages. In italics, the values of the alternatives that are worse than those obtained by the REFERENCE configuration 

are shown. 

Strategy Gap 

Gen1 Gen2 Gen3 

LB UB Time LB UB Time LB UB Time 

REFERENCE 0.33 0.00 41.90 0.18 0.01 49.90 0.26 0.01 43.55 

-SRK 0.03 0.00 63.36 0.25 0.01 71.30 0.19 0.02 62.04 

SRK = C1C2S3 0.35 0.00 40.82 0.28 0.01 36.53 0.16 0.00 43.16 

-CC STRATS 0.34 0.00 31.76 0.23 0.02 40.09 0.31 0.01 41.26 

-EPH 0.38 0.13 10.72 0.34 0.13 11.15 0.35 0.21 15.28 

-EGH 0.37 0.02 33.24 0.15 0.04 37.85 0.36 0.02 48.14 

+ FST 0.20 0.00 57.27 0.18 0.00 60.14 0.18 0.00 59.61 

EPH EGH = FST 0.54 0.09 6.85 0.18 0.10 26.66 0.41 0.23 44.72 

-CYCLE COVER 0.45 0.00 34.50 0.11 0.01 49.66 0.18 0.01 48.60 

-EDGE COVER 0.11 0.00 43.48 0.17 0.01 52.93 0.27 0.01 49.51 

-PATH 0.58 0.00 38.27 0.15 0.01 39.81 0.21 0.03 44.86 

+ VERTEX 0.24 0.00 46.06 0.18 0.01 52.46 0.37 0.01 47.95 

SEP = TWO 0.25 0.00 61.07 0.18 0.01 67.42 0.26 0.01 61.98 
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ppendix C. Common parameters 

In Table C.22 , we detail the values of the common parameters 

or all the simulations of the RB&C algorithm. They were chosen 

nspired by the parameters used in Applegate et al. (2007) and our 

reliminary experiments for the OP. 

ppendix D. Initialization of the RB&C algorithm: detailed 

esults 

1. Evaluation of components in the root of the tree 

In Table D.23 we summarize the mean relative difference 

o the best achieved LB and UB and the mean relative dif- 

erence to the best-performing configuration in terms of run- 

ing time for RB&C on the root node for the instances an- 

lyzed in Section 5.1 . The REFERENCE configuration is never 

ominated by any other alternative configuration in the multi- 

bjective sense. Furthermore, we can observe that the LB on the 

oot node of the REFERENCE outperforms most of the alterna- 

ive configurations and the UB on the root node of the REFER- 

NCE configuration is not worse than almost all the alternative 

onfigurations. 
66 
2. Lower bounds in the root of the tree 

In Tables D.24 and D.25 we reproduce for medium-sized and 

arge-sized instances, respectively, the relative difference (in per- 

entage) between the best known solution obtained with RB&C 

nd (i) the EA4OP meta-heuristic implemented during the ini- 

ialization (EA4OP column) and (ii) the best lower bound of the 

nitialization (root column) in the first and second columns, re- 

pectively. In the third ones (status column) we show: OP, when 

he optimality of the root solution is verified in the initialization 

hase (i.e., initial lower and upper bounds are equal); BR, when 

he branching is performed; and TL, when the RB&C algorithm 

tops after the initialization phase because running time limit is 

chieved. This way, we can compare the initial lower bounds ob- 

ained after the EA4OP and the whole initialization phase with re- 

pect to the final lower bounds. In the last row, we report the av- 

rage relative differences by generation. Globally, in relation with 

he best known solution, the EA4OP is at 12.64% and 25.46% for 

edium-sized and large-sized instances, respectively, while the 

ower bound obtained at the end of the whole initial phase is at 

.63% and 1.64%, respectively. Finally, note that in 27 out of 135 

edium-sized instances, optimality is verified in the initial phase, 

nd for all the large-sized instances branching is required. 
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Table D.24 

Relative difference between the best known solution and (i) the output of the ini- 

tial EA4OP meta-heuristic (EA4OP), (ii) lower bound after the initial phase of the 

RB&C algorithm (root) and status after the initialization (OP: optimality verified, 

BR: branching required) for medium-sized instances ( n ≤ 400 ). 

Instance Generation 1 Generation 2 Generation 3 

EA4OP root status EA4OP root status EA4OP root status 

att48 3.23 0.00 OP 10.08 0.00 OP 4.58 0.48 BR 

gr48 9.68 0.00 OP 4.20 0.91 BR 8.45 0.07 BR 

hk48 6.67 0.00 OP 9.85 0.00 BR 8.45 0.00 BR 

eil51 10.34 0.00 OP 8.54 0.36 BR 2.79 0.07 BR 

berlin52 2.70 0.00 OP 6.96 0.00 BR 6.95 0.19 BR 

brazil58 6.52 0.00 OP 5.50 0.00 OP 0.00 0.00 OP 

st70 2.33 0.00 OP 6.21 0.52 BR 14.71 0.90 BR 

eil76 17.02 0.00 OP 8.20 0.00 BR 7.42 0.00 BR 

pr76 6.12 0.00 OP 8.35 0.00 BR 22.84 0.41 BR 

gr96 9.38 0.00 OP 3.03 0.06 BR 8.71 0.54 BR 

rat99 11.54 3.85 BR 8.87 0.54 BR 8.84 0.79 BR 

kroA100 10.71 0.00 BR 17.96 0.00 BR 8.66 0.06 BR 

kroB100 15.52 1.72 BR 15.24 0.25 BR 11.77 0.00 BR 

kroC100 21.43 0.00 OP 14.66 0.92 BR 13.12 0.00 BR 

kroD100 13.56 0.00 OP 12.73 0.24 BR 12.88 0.00 BR 

kroE100 12.28 3.51 BR 5.83 2.49 BR 14.50 0.52 BR 

rd100 11.48 0.00 OP 11.97 0.42 BR 2.84 0.31 BR 

eil101 4.69 0.00 OP 11.46 0.57 BR 17.73 0.06 BR 

lin105 28.79 0.00 BR 2.57 0.31 BR 6.80 1.11 BR 

pr107 0.00 0.00 OP 0.00 0.00 OP 6.45 0.43 BR 

gr120 10.67 1.33 BR 7.07 0.75 BR 13.18 0.05 BR 

pr124 20.00 0.00 OP 21.27 0.41 BR 13.13 4.69 BR 

bier127 9.71 0.00 BR 6.67 0.00 BR 9.26 0.42 BR 

pr136 7.04 0.00 OP 18.10 0.00 BR 15.60 0.39 BR 

gr137 19.75 0.00 OP 11.64 1.98 BR 12.85 0.03 BR 

pr144 33.77 0.00 BR 11.87 1.67 BR 10.28 0.93 BR 

kroA150 10.47 1.16 BR 8.78 1.00 BR 8.77 0.04 BR 

kroB150 13.79 3.45 BR 13.27 0.06 BR 16.80 0.06 BR 

pr152 3.90 1.30 BR 7.46 0.23 BR 21.51 2.77 BR 

u159 9.68 1.08 BR 7.84 0.38 BR 13.56 0.34 BR 

rat195 18.63 2.94 BR 14.16 1.05 BR 18.95 0.26 BR 

d198 9.76 2.44 BR 4.15 1.93 BR 10.59 2.22 BR 

kroA200 11.11 2.56 BR 21.92 0.00 BR 18.72 0.03 BR 

kroB200 11.76 0.84 BR 15.06 0.09 BR 24.93 0.00 BR 

gr202 11.03 0.00 BR 9.77 0.26 BR 11.11 0.32 BR 

ts225 8.87 0.00 BR 11.40 0.28 BR 16.55 0.00 BR 

tsp225 20.93 1.55 BR 13.47 1.07 BR 19.46 0.40 BR 

pr226 30.16 2.38 BR 8.17 1.58 BR 5.65 0.34 BR 

gr229 9.09 0.00 OP 15.95 0.01 BR 14.66 0.00 BR 

gil262 22.78 0.00 OP 7.62 0.30 BR 21.11 0.05 BR 

pr264 44.70 0.00 OP 16.43 0.00 OP 28.34 0.02 BR 

a280 20.41 4.76 BR 20.93 0.95 BR 16.79 0.00 BR 

pr299 19.14 2.47 BR 10.26 4.02 BR 28.50 0.01 BR 

lin318 16.59 0.00 OP 13.30 0.66 BR 17.29 0.57 BR 

rd400 32.78 0.84 BR 21.63 0.21 BR 18.23 0.33 BR 

average 13.83 0.85 10.90 0.59 13.21 0.45 

s

B

q

Table D.25 

Relative difference between the best known solution and (i) the output of the initial 

EA4OP meta-heuristic (EA4OP), (ii) lower bound after the initial phase of the RB&C 

algorithm (root) and status after the initialization (BR: branching required or TL: 

time limit achieved) for large-sized instances ( n > 400 ). 

Instance Generation 1 Generation 2 Generation 3 

EA4OP root status EA4OP root status EA4OP root status 

fl417 37.72 1.32 BR 28.74 3.44 BR 13.55 0.12 BR 

gr431 3.43 0.29 BR 4.21 0.22 BR 17.23 0.87 BR 

pr439 18.21 0.00 BR 23.32 1.00 BR 11.57 1.88 BR 

pcb442 23.51 0.80 BR 19.57 0.99 BR 27.75 0.40 BR 

d493 29.06 0.00 BR 21.35 0.34 BR 12.64 0.32 BR 

att532 15.43 0.28 BR 24.28 0.81 BR 22.51 0.57 BR 

ali535 10.35 0.71 BR 8.06 0.10 BR 12.26 3.57 BR 

pa561 23.81 1.12 BR 20.18 0.17 BR 29.25 1.43 BR 

u574 25.99 0.56 BR 13.85 0.91 BR 29.91 1.16 BR 

rat575 17.39 0.31 BR 20.86 1.64 BR 29.33 0.07 BR 

p654 15.79 0.58 BR 16.99 2.86 BR 4.94 0.63 BR 

d657 17.36 0.52 BR 14.69 0.44 BR 30.35 0.22 BR 

gr666 19.88 0.20 BR 8.87 0.36 BR 19.12 0.38 BR 

u724 15.95 1.37 BR 16.76 0.32 BR 26.64 0.64 BR 

rat783 30.59 1.83 BR 22.01 1.40 BR 17.90 0.48 BR 

dsj1000 23.17 0.91 BR 20.76 0.51 BR 23.86 0.06 BR 

pr1002 31.68 0.99 BR 24.54 1.40 BR 25.50 0.02 BR 

u1060 18.33 2.88 BR 26.22 1.45 BR 25.13 0.19 BR 

vm1084 10.30 0.13 BR 9.38 0.38 BR 24.24 0.02 BR 

pcb1173 27.41 2.07 BR 28.03 0.71 BR 36.55 0.27 BR 

d1291 35.10 15.94 BR 35.80 0.47 BR 42.60 7.48 BR 

rl1304 27.43 0.37 BR 24.70 0.73 BR 11.78 3.08 BR 

rl1323 21.25 1.23 BR 16.83 0.33 BR 25.22 0.62 BR 

nrw1379 27.24 0.98 BR 27.20 1.30 BR 29.89 0.17 BR 

fl1400 24.53 0.00 TL 9.83 0.00 TL 9.70 0.37 TL 

u1432 16.84 2.79 BR 25.09 1.19 BR 20.45 0.08 BR 

fl1577 43.59 0.78 BR 33.00 0.00 TL 21.54 0.00 TL 

d1655 40.13 16.92 BR 27.15 2.17 TL 43.19 11.23 BR 

vm1748 19.04 0.94 BR 11.27 0.87 BR 18.40 0.38 BR 

u1817 33.37 9.56 BR 31.30 13.48 BR 32.12 0.00 TL 

rl1889 18.84 2.85 BR 19.14 2.75 BR 15.79 0.85 BR 

d2103 42.17 0.83 BR 38.69 0.10 BR 48.51 26.26 BR 

u2152 39.53 12.34 BR 36.25 7.56 BR 38.13 0.00 TL 

u2319 12.14 1.11 BR 19.61 0.56 BR 25.29 0.00 TL 

pr2392 19.00 0.38 TL 17.66 0.00 TL 31.47 0.00 TL 

pcb3038 29.42 0.81 BR 32.20 0.25 BR 28.66 0.00 TL 

fl3795 37.05 0.00 TL 25.00 0.00 TL 28.01 0.00 TL 

fnl4461 29.75 1.22 BR 30.40 0.88 BR 34.21 0.00 TL 

rl5915 34.43 0.00 TL 26.99 0.00 TL 18.91 0.00 TL 

rl5934 40.42 0.00 TL 31.44 0.00 TL 28.30 0.00 TL 

pla7397 37.17 0.00 TL 29.98 0.00 TL 38.36 0.00 TL 

average 25.46 2.10 22.49 1.27 25.14 1.56 

s

I

s

s

a

In Tables D.26 and D.27 we compare for medium- and large- 

ized instances, respectively, the number of cases in which each 

ranch-and-Bound algorithm obtains better solutions in terms of 

uality and running times for the root node. We have again re- 
Table D.26 

Comparison for the root node of medium-sized instances of th

of best-known solutions (LB), number of best upper bounds (UB

algorithm is faster than the competitor (Time). 

OPT LB 

# FST RB&C FST 

Gen1 45 34 22 11 

Gen2 45 19 4 30 

Gen3 45 17 1 28 

All 135 70 27 69 

67 
tricted to those instances in which FST actually returns a solution. 

n general, the RB&C outperforms the results of the FST for large- 

ized instances, while the latter obtains better root node results for 

maller instances, what clearly shows the scaling behaviour of our 

pproach. 
e number of obtained optimal solutions (OPT), number 

) and number of instances in which the considered B&C 

UB Time 

RB&C FST RB&C FST RB&C 

3 14 0 37 5 

3 40 0 25 15 

7 42 1 22 21 

13 96 1 84 41 
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Table D.27 

Comparison for the root node of large-sized instances of the number of obtained optimal solutions (OPT), number of 

best-known solutions (LB), number of best upper bounds (UB) and number of instances in which the considered B&C 

algorithm is faster than the competitor (Time) in the instances that FST does return a solution. 

OPT LB UB Time 

# FST RB&C FST RB&C FST RB&C FST RB&C 

Gen1 21 1 1 2 19 4 8 5 14 

Gen2 22 0 0 5 17 12 7 1 19 

Gen3 29 0 0 8 21 10 16 4 19 

All 72 1 1 15 57 26 31 10 52 

R

A

A

A  

A  

A  

B

B

B

B

B

D

D

F

F

G

G

G  

G

G

K

K

K

L

L

P

P

R  

R

S

S  

T

V

V

W

eferences 

ngelelli, E., Archetti, C., Filippi, C., & Vindigni, M. (2017). The probabilistic orien- 
teering problem. Computers & Operations Research, 81 , 269–281 . 

ngelelli, E., Bazgan, C., Speranza, M. G., & Tuza, Z. (2014). Complexity and approx- 
imation for traveling salesman problems with profits. Theoretical Computer Sci- 

ence, 531 , 54–65 . 

pplegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2007). The traveling salesman
problem: A computational study (princeton series in applied mathematics) . Prince- 

ton, NJ, USA: Princeton University Press . 
rchetti, C., Corberán, A., Plana, I., Sanchis, J. M., & Speranza, M. G. (2016). A

branch-and-cut algorithm for the orienteering arc routing problem. Computers 
& Operations Research, 66 , 95–104 . 

rchetti, C., Speranza, M. G., Corberán, A., Sanchis, J. M., & Plana, I. (2014). The team

orienteering arc routing problem. Transportation Science, 48 (3), 442–457 . 
alas, E. (1975). Facets of the knapsack polytope. Mathematical Programming, 8 (1), 

146–164 . 
alas, E. (1989). The prize collecting traveling salesman problem. Networks, 19 (6), 

621–636 . 
auer, P. (1997). The circuit polytope: Facets. Mathematics of Operations Research, 

22 (1), 110–145 . 
ianchessi, N., Mansini, R., & Speranza, M. G. (2018). A branch-and-cut algorithm 

for the team orienteering problem. International Transactions in Operational Re- 

search, 25 (2), 627–635 . 
oussier, S., Feillet, D., & Gendreau, M. (2007). An exact algorithm for team orien- 

teering problems. 4OR quarterly Journal of the Belgian, French and Italian Opera- 
tions Research Societies, 5 , 211–230 . 

ang, D.-C., El-Hajj, R., & Moukrim, A. (2013). A branch-and-cut algorithm for solv- 
ing the team orienteering problem. In C. Gomes, & M. Sellmann (Eds.), Integra- 

tion of AI and OR techniques in constraint programming for combinatorial opti- 

mization problems, Berlin, Heidelberg (pp. 332–339). Springer Berlin Heidelberg . 
ell’Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize-collecting tours and 

the asymmetric travelling salesman problem. International Transactions in Op- 
erational Research, 2 (3), 297–308 . 

eillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with prof- 
its. Transportation Science, 39 (2), 188–205 . 

ischetti, M., Salazar-González, J. J., & Toth, P. (1998). Solving the orienteering prob- 

lem through branch-and-cut. INFORMS Journal on Computing, 10 , 133–148 . 
endreau, M., Laporte, G., & Semet, F. (1998). A branch-and-cut algorithm for the 

undirected selective traveling salesman problem. Networks, 32 , 263–273 . 
oldberg, A. V., & Tsioutsiouliklis, K. (2001). Cut tree algorithms: An experimental 

study. Journal of Algorithms, 38 (1), 51–83 . 
olden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research

Logistics, 34 , 307–318 . 
68 
rötschel, M., & Holland, O. (1991). Solution of large-scale symmetric travelling 
salesman problems. Mathematical Programming, 51 (1), 141–202 . 

unawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A sur- 

vey of recent variants, solution approaches and applications. European Journal of 
Operational Research, 255 , 315–332 . 

eshtkaran, M., Ziarati, K., Bettinelli, A., & Vigo, D. (2015). Enhanced exact solution 
methods for the Team Orienteering Problem. International Journal of Production 

Research, 54 (2), 591–601 . 
obeaga, G., Merino, M., & Lozano, J. A. (2018). An efficient evolutionary algorithm 

for the orienteering problem. Computers & Operations Research, 90 , 42–59 . 
obeaga, G., Merino, M., & Lozano, J. A. (2021). On solving cycle problems with 

branch-and-cut: extending shrinking and exact subcycle elimination separation 

algorithms. Annals of Operations Research, 305 , 107–136 . 
aporte, G., & Martello, S. (1990). The selective travelling salesman problem. Discrete 

Applied Mathematics, 26 (2), 193–207 . 
eifer, A. C., & Rosenwein, M. B. (1994). Strong linear programming relaxations 

for the orienteering problem. European Journal of Operational Research, 73 (3), 
517–523 . 

adberg, M., & Hong, S. (1980). On the symmetric travelling salesman problem: A com- 

putational study (pp. 78–107). Springer Berlin Heidelberg, Berlin, Heidelberg . 
oggi, M., Viana, H., & Uchoa, E. (2010). The team orienteering problem: Formula- 

tions and branch-cut and price. In T. Erlebach, & M. Lübbecke (Eds.), 10th work- 
shop on algorithmic approaches for transportation modelling, optimization, and sys- 

tems (ATMOS’10), volume 14 of openaccess series in informatics (OASIcs), Dagstuhl, 
Germany (pp. 142–155). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik . 

amesh, R., Yoon, Y.-S., & Karwan, M. H. (1992). An optimal algorithm for the ori-

enteering tour problem. ORSA Journal on Computing, 4 (2), 155–165 . 
iera-Ledesma, J., & Salazar-González, J. J. (2017). Solving the team orienteering arc 

routing problem with a column generation approach. European Journal of Oper- 
ational Research, 262 (1), 14–27 . 

antini, A. (2019). An adaptive large neighbourhood search algorithm for the orien- 
teering problem. Expert Systems with Applications, 123 , 154–167 . 

un, Y., Wang, S., Shen, Y., Li, X., Ernst, A. T., & Kirley, M. (2022). Boosting ant colony

optimization via solution prediction and machine learning. Computers & Opera- 
tions Research, 143 , 105–769 . 

siligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Op- 
erational Research Society, 35 , 797–809 . 

ansteenwegen, P., & Gunawan, A. (2019). State-of-the-art solution techniques for OP 
and TOP (pp. 41–66). Springer International Publishing, Cham . 

ansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering 

problem: A survey. European Journal of Operational Research, 1 , 1–10 . 
aring, J., Lindvall, C., & Umeton, R. (2020). Automated machine learning: Review 

of the state-of-the-art and opportunities for healthcare. Artificial Intelligence in 
Medicine, 104 , 101822 . 

http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0015
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0017
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0021
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0022
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0026
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0027
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0029
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0031
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0032
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0033
http://refhub.elsevier.com/S0377-2217(23)00593-3/sbref0034

	A revisited branch-and-cut algorithm for large-scale orienteering problems
	1 Introduction
	2 OP modelling and polyhedral considerations
	3 Valid inequalities
	3.1 Connectivity constraints
	3.2 Comb inequalities
	3.3 Edge cover inequalities
	3.4 Cycle cover inequalities
	3.5 Vertex cover inequalities
	3.6 Path inequalities

	4 Branch-and-cut algorithm
	4.1 Initialization
	4.2 Separation algorithms
	4.2.1 SECs and CCs
	4.2.2 Comb Inequalities (blossoms)

	4.3 Column generation
	4.4 Separation loop
	4.5 Primal heuristics and lower bounds
	4.6 Branching and upper bounds

	5 Computational experiments
	5.1 Evaluation of components
	5.2 Comparison with state-of-the-art algorithms

	6 Conclusions and future work
	Acknowledgements
	Appendix A Configuration of components: detailed results
	Appendix B Comparison with state-of-the-art algorithms: detailed results
	Appendix C Common parameters
	Appendix D Initialization of the RB&C algorithm: detailed results
	D1 Evaluation of components in the root of the tree
	D2 Lower bounds in the root of the tree

	References


