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Abstract
Electrolyzers can help in restoring the balance to the biogeo-
chemical cycles of carbon and nitrogen while producing valu-
able chemical compounds. Before that happens on a global
scale, various hurdles need to be overcome, some of which are
related to the activity and selectivity of the materials used to
catalyze electrolysis reactions. For instance, CO and NO are
important electrolysis feedstocks and/or reaction intermediates
and their hydrogenation is often energetically demanding. Here
it is shown how the most favorable hydrogenation product
among *CHO or *COH, and *NHO or *NOH on late transition
metals can be ascertained by classification methods based on
adsorption-energy scaling relations and “catalytic matrices”. In
particular, late transition metals can be split into weak-binding
and strong-binding and there is a noble-nonnoble energy gap
between them. Such a simple categorization helps outline the
metals and facets that selectively favor the making of O–H,
C–H and N–H bonds.
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Introduction
After more than a decade of focalized research on CO2

reduction and akin reactions within the carbon cycle
[1e4], some electroreduction reactions belonging to the
nitrogen cycle are regaining considerable attention

[5e9]. This is a timely diversification of the research
efforts, as the imbalance of the nitrogen cycle is larger
than that of the carbon cycle but far less publicized to
this date [10]. In this new wave of nitrogen electro-
catalysis it is worth noting that some authors have called
for and put forward rigorous experimental protocols for
product detection and quantification of reaction prod-
ucts, with the aim of enabling one-to-one comparisons
across different laboratories [11e13]. In addition, the
co-electrolysis of oxidized C- and N-containing species
is an appealing, low-temperature route toward urea and

other compounds with CeN bonds, which can help in
reaching the much-needed but arduous rebalance of
both biogeochemical cycles [4,14e18].

Because CO hydrogenation and NO hydrogenation are
both energy-intensive and impact the overall perfor-
mance of catalysts for CO and NO electroreduction
[19e25], it is useful to compare the trends among
various materials to establish key differences and simi-
larities. Specifically, it is of great interest for the rational
design of electrocatalysts to ascertain whether a given

active site drives *CO hydrogenation toward *CHO or
*COH, and whether it drives *NO hydrogenation
toward *NHO or *NOH (here, an asterisk next to a
species indicates that the species is adsorbed), following
the reactions shown below.

�COþHþ þ e�/ � COH (1)

�COþHþ þ e�/ � CHO (2)

�NOþHþ þ e�/ � NOH (3)

�NOþHþ þ e�/ � NHO (4)
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Establishing general trends in the selectivity of mate-
rials toward those four electrochemical steps is useful for
the following reasons:

� It is still widely believed that *CO hydrogenation
most often leads to *CHO, and that the persistent
scaling relation between those two species is respon-
sible for the large overpotentials of CO and CO2

electroreduction to methane [23,26].
� It is not yet clear when *NO hydrogenation leads to
*NHO or *NOH on late transition metals, and fac-
tors such as electrode composition and morphology,
and adsorbate coverage seem to play a role
[20,21,25,27,28].

� Co-electrolysis pathways to urea may involve *NO,
*CO and their most favorable hydrogenated coun-
terparts [16e18].

� It is a widespread practice to represent polycrystalline
electrodes and nanoparticles by means of a single

surface site, often located at (111) terraces.
As I think that the classifications based on adsorption
energies and the scaling relations thereof put forward
by Bagger, Rossmeisl and coworkers are intuitive and
insightful [9,16,25,29e31], I provide in the following a

comparison of *NO and *CO hydrogenation on late
transition metals along similar lines and supplement
the observations by the structure-sensitive insights
of “catalytic matrices” [22,27]. Detailed analyses
toward various final products are available else-
where [9,21,23,32].

My aim is not to connect the selectivity of *CO or *NO
hydrogenation with the product distribution of their
overall reduction reactions. Indeed, the C1 vs C2

selectivity of CO electroreduction depends on whether

*CO is dimerized or hydrogenated, and the ethylene/
ethanol selectivity depends on the product of
*CH2CHO hydrogenation [33,34]. I aim to show that
*NO and *CO hydrogenations may generally be energy-
intensive and potential-limiting. Enhancing their elec-
trocatalysis entails stabilizing the hydrogenation prod-
ucts of *NO and *CO. Because the geometric and
electronic structures, adsorption configurations and
solvent-adsorbate interactions of *NHO and *NOH are
different and the same applies to *CHO and *COH, it is
paramount to ascertain the one formed depending on

the catalyst structure and reaction conditions.

Trends in CO and NO hydrogenation on late
transition metals
The following analysis is based on thermodynamic
considerations. The adsorption energies of *CO,
*CHO, *COH [22], *NO, *NHO and *NOH [27] on
Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au were assessed by
means of density functional theory (DFT) calculations,
see Table S1. Both datasets were produced with VASP
Current Opinion in Electrochemistry 2023, 42:101409
[35], making use of the PBE functional [36] and the
PAW method [37]. The free energies are based on the
DFT total energy (EDFT ), the zero-point energy (ZPE)
and include entropic corrections (TS) and adsorbate-
solvent stabilization corrections (Esolv):
GzEDFT þ ZPE� TSþ Esolv. The adsorption energies
are defined with respect to COðgÞ, NOðgÞ, and
ðHþ þ e�Þ. The total energies of COðgÞ and NOðgÞ
include gas-phase corrections [38e40], which ensure
that the reaction energies and equilibrium potentials
agree with experiments. The energetics of ðHþ þe�Þ is
calculated using the computational hydrogen electrode
[41]. Metal-independent adsorbate-solvent interaction
corrections were added to the adsorption energies of
*CO, *CHO and *COH (�0.10, �0.10, �0.38 eV)
[22,33], while metal-, facet-, and adsorbate-specific
corrections obtained using an iterative micro-solvation
method were added to the adsorption energies of
*NO, *NHO and *NOH [27,42,43].

Before continuing, I stress that incorporating or
neglecting the aforementioned gas-phase and adsorbate-
solvent corrections may substantially affect the predic-
tiveness of computational models. For instance, signifi-
cant differences between the slopes and offsets of
scaling relations in vacuum and with an implicit solvent
have been shown for metalloporphyrins [44]. That ac-
tivity trends remain untouched in spite of the DFT
errors present in the calculations used to establish them
is an extended, widely accepted yet inaccurate percep-

tion [38,42,45].

Of course, other effects such as reaction kinetics,
adsorbate coverage, bulk and local pH, mass transport,
cation effects, electrode potential, etc.
[1,2,11,20,46e49] also ought to be incorporated into
computational electrocatalysis models, preferably in
simple terms. For example, previous works showed that
the adsorption energies of species under an electric field
may undergo sizeable shifts depending on the magni-
tude and sign of the field, and the polarizability and
dipole moment of the adsorbates [50]. Hence,

adsorption-energy scaling relations might be appreciably
modified under electrochemical conditions. Besides,
high adsorbate coverages modify scaling relations
[51,52] and have a direct impact on the reaction
pathway, voltametric profile and catalytic activity of
Pt(111) and Pt(100) for NO electroreduction [20,28].

The adsorption sites considered here comprise terraces
((111) and (100)), steps ((211) and (211) kinked), and
metal adatoms (3AD @ (111)), as schematized in
Figure S1. Those adsorption sites span a range of coor-

dination numbers (cn) between 5 and 9. A disclaimer is
necessary here: the offsets of adsorption-energy scaling
relations on metals tend to vary as a function of cn,
except when the slope is unity (or 3/4 for C-bound
species) [32,53,54]. Here, however, to simplify the
www.sciencedirect.com
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analysis, I made a single linear fit for all datapoints,
which comes at the expense of increasing the mean
absolute errors (MAEs) and decreasing the correlation
coefficients (r). Anyway, the MAEs in Figures 1e4 are
below 0.20 eV, and r is larger than 0.90 in all cases.
Classifications based on scaling relations
According to Figure 1aeb, there exist adsorption-energy
scaling relations [53,55] between *CHO, *COH, and
*CO, and between *NHO, *NOH and *NO. Figure 1c
shows that *NO and *CO also scale. Thus, Figure 1
indicates that, within certain accuracy, all six adsor-
bates scale with each other, such that linear co-
Figure 1

Adsorption-energy scaling relations among C- and N-containing species. a) *C
*CO vs. *NO. In each case, the least-squares linear fit, correlation coefficient (r
this figure were taken from previous works [22,27] and appear in Table S1.

www.sciencedirect.com
electrolysis models based on a reduced number of pa-
rameters are possible [16]. However, the appreciably
different fits in Figure 1aeb attest to specific binding
differences. In particular, the slope of the *CHO vs.
*CO relation isz1 and that of *COH vs. *CO isz3=2.
These values suggest that the valency of *CHO and
*CO is nearly identical, whereas that of *COH and *CO
differs by one [22]. For *NHO vs. *NO the slope is

between 1/2 and 1, and close to 1 for *NOH vs. *NO
[27]. In addition, the slope of *CO vs *NO in Figure 1c
is also in the range of 1/2 and 1, which is indicative of
their different valency. In sum, the slopes are in the
approximate range between 1/2 and 3/2, and it is
HO vs *CO, and *NHO vs. *NO. b) *COH vs. *CO, and *NOH vs. *NO. c)
) and mean absolute error (MAE ) are provided. The adsorption energies in

Current Opinion in Electrochemistry 2023, 42:101409
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Figure 2

Selectivity of *NO hydrogenation (left) and *CO hydrogenation (right), as described by the combination of scaling relations and a parity line. Active sites
above the parity line are thermodynamically inclined to produce *NOH and *COH, while those below produce *NHO and *CHO. In each case, the least-
squares linear fit, correlation coefficient (r ) and mean absolute error (MAE ) are provided. The adsorption energies were taken from previous works [22,27]
and appear in Table S1.

Figure 3

Catalytic matrices for *CO hydrogenation (left) and *NO hydrogenation (right) on nine late transition metals and five surface facets. Sites for which
absðDGNOH �DGNHOÞ<0:1 eV and absðDGCOH �DGCHOÞ<0:1 eV are referred to as “both” and their slight preference is indicated. Left: reprinted
(adapted) with permission from Ref. [22], copyright 2017 American Chemical Society. Right: replotted from Ref. [27], licensed under CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/).
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interesting that the relationships with a slope close to
unity are *CHO vs. *CO and *NOH vs. *NO.

The classifications by Bagger, Rossmeisl and coworkers
are usually based on a vertical line that intersects a
Current Opinion in Electrochemistry 2023, 42:101409
horizontal one. The lines are not arbitrarily set but
rather correspond to equilibrium adsorption energies.
Metals to the left or below the lines bind strongly,

whereas those to the right or above the lines bind
weakly. Figure S2 shows that the positions of the metals
www.sciencedirect.com
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Figure 4

Catalytic matrix illustrating the preference of various active sites on tran-
sition metals upon hydrogenation. O–H: active sites inclined toward the
formation of O–H bonds. C/N–H: active sites inclined toward the forma-
tion of C–H and N–H bonds. N.S.: Not selective, namely, active sites that
may indistinctively form O–H or C–H and N–H bonds.
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with respect to the equilibrium binding energies do not
play a role in their selectivity toward *NHO/*NOH and
*CHO/*COH. Alternatively, overall selectivity trends
can be inferred from the intersection of scaling relations
and the parity line (y ¼ x), as in Figure 2. Datapoints
above the parity line correspond to *NOH- and *COH-
producing materials, while those below the line are se-

lective to *NHO and *CHO. Both scaling relations in
Figure 2 can be divided into two parts: a weak-binding
region and a strong-binding region. The two regions
are separated by a “noble-nonnoble gap” or “3n gap”,
which is the region between the red and blue rectangles.
In it, no materials are observed when analyzing trends
for late transition metals. Although I cannot currently
justify the existence of such a gap, it can also be noticed
in previous works for other C-containing species adsor-
bed on metals [32] and materials such as single-atom
catalysts and metalloporphyrins [56,57]. As the gap

tends to be relatively wide, it may facilitate the making
of alternative activity and selectivity classifications.

Ag and Au are always in the weak-binding region,
whereas Co, Ni, Rh, Pd, Ir and Pt are always in the
strong-binding region. Interestingly, Cu switches sides:
it is a weak-binding metal for *CO hydrogenation and a
strong-binding metal for *NO hydrogenation and is
close to the 3n gap in both cases. In terms of selectivity,
Figure 2 indicates that weak-binding metals are selec-
tive to *NHO and *CHO. Conversely, strong-binding

metals are selective to *COH but have mixed selec-
tivity toward *NOH and *NHO.
www.sciencedirect.com
Catalytic matrices
Although scaling relations are rather insightful, there is a

limit as to how much they can visually display before a
given figure looks cluttered. In such a case, one can
resort to “catalytic matrices”, which help in identifying
structure-sensitive activity and selectivity patterns
[22,27]. In those, adsorption-energy datasets are
presented as a matrix in which the entries depend on
the element and its surface coordination. Moreover,
catalytic matrices can be approximated by means of
simple multivariate regressions [27].

As shown in Figure 3, catalytic matrices condense all the

selectivity data present in the scaling relations of *CHO
vs. *COH and *NHO vs. *NOH in an organized
manner. I often find valuable the ascertainment of how
representative of an entire electrode is a specific facet.
For instance, it is common to represent polycrystalline
electrodes of fcc metals by their (111) facet, allegedly
because it is the most stable one. Catalytic matrices give
hints on the suitability of this simplification.

According to Figure 3, (111) terraces are an acceptable
qualitative approximation of a polycrystalline electrode

for *CO hydrogenation, as the selectivity does not vary
strongly as a function of cn. This is clear in Figure 2
(right), where the intersection between the parity line
and the scaling relation takes place within the 3n gap,
such that the selectivity depends only on whether a
material binds strongly or weakly. However, for *NO
hydrogenation this approximation is only advisable for
Pd, Cu, Ag, and Au, as the intersection of the parity line
and the scaling relation occurs within the red rectangle
in Figure 2 (left).

For comparison, the two matrices in Figure 3 are com-
bined in Figure 4, which allows one to extract some
overall conclusions for late transition metals. Specif-
ically, Cu, Ag and Au tend to produce species with
CeH and NeH bonds (*CHO/*NHO). In turn, Pd is
inclined to produce species with OeH bonds (*COH/
*NOH). This is also true for the (111) facet of strong-
binding metals. For all those specific elements and
facets, the trends in *NO and *CO hydrogenation are
certainly analogous. Nevertheless, there are various
sites in Figure 4 predicted to produce *COH and

*NHO and classified as “not selective (N.S.)”. Inter-
estingly, no active site in the matrix produces *CHO
and *NOH.

Finally, based on Figures 2 and 3, it is not advisable to
assume that the preferred hydrogenation product of
*CO is always *CHO, as often assumed in the literature
[23,26]. In fact, kinetic analyses using single-crystal
electrodes have shown that the preference for *CHO
or *COH is facet- and potential-dependent on Cu
electrodes [46].
Current Opinion in Electrochemistry 2023, 42:101409
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Concluding remarks
Scaling relations are one of the cornerstones of

contemporary computational electrocatalysis, and cata-
lytic matrices help summarize and analyze large data-
sets. Both tools are useful in materials screening studies,
the accuracy of which might increase if the effects of
various parameters are probed, understood and routinely
considered. Catalytic matrices should in the future
incorporate information on *H, as hydrogen evolution
usually competes with numerous electrochemical re-
actions [25].

Delving into *CO and *NO hydrogenation with the help

of these two tools, I conclude that, although those two
adsorbates may at first sight seem similar, their adsorp-
tion energies and hydrogenation products on late tran-
sition metals differ qualitatively and quantitatively. The
main features of *NO and *CO hydrogenation from a
computational standpoint are:

� *CO and *NO scale linearly but not with a unity
slope, so their valency is different. *CO scales with
*CHO with a slope close to 1. Conversely, *NO does
so with *NOH.

� Late transition metals can be classified into strong-
and weak-binding. There is a noble-nonnoble gap (or
3n gap) separating the two groups. Only Cu moves
between groups, while Ag and Au are in both cases
weak-binding, and Co, Ni, Rh, Pd, Ir and Pt are in
both cases strong-binding.

� Catalytic matrices show that the (111) facet of strong-
binding metals and all facets of Pd favor OeH bond
formation during *NO and *CO hydrogenation.
Conversely, Cu, Ag, and Au favor the formation of
CeH and NeH bonds.

� Qualitatively, it is fair to assume that the (111) facet
of late transition metals approximates well the selec-
tivity of polycrystalline electrodes for *CO hydroge-
nation. Nevertheless, this is true only for weak-
binding metals and Pd for *NO hydrogenation.
Except for weak-binding metals, assuming that *CO
hydrogenation always leads to *CHO is not a good
approximation.
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