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ABSTRACT To improve the performance of hydraulic press position control and eliminate the need to
manually define control signals, this paper proposes a multi-input-multi-output (MIMO) Iterative Learning
Control (ILC) algorithm. The MIMO ILC algorithm design is based on the inversion of the known low
frequency dynamics of the hydraulic press, whereas the unknown and uncertain high frequency dynamics
are discarded due to their low influence in the learning transient. Moreover, for the MIMO ILC convergence
condition, a graphical method is proposed, in which the ILC learning filter eigenvalues are analyzed. This
method allows studying the stability and convergence rate of the algorithm intuitively. Theoretical analysis
and results prove that with theMIMO ILC algorithm the position control is automated and that high precision
in the position tracking is gained. A comparison with other model inverse ILC approaches is carried out and it
is shown that the proposed MIMO ILC algorithm outperforms the existing algorithms, reducing the number
of iterations required to converge while guaranteeing system stability. Furthermore, experimental results in
a hydraulic test rig are presented and compared to those obtained with a conventional PI controller.

INDEX TERMS Iterative learning control, position control, MIMO, electro-hydraulics.

I. INTRODUCTION
Hydraulic presses have traditionally been used for high-force
applications due to their easy operation and adaptability to
suit a wide range of forming conditions. One of the advan-
tages of hydraulic presses is that the force can be applied
throughout the stroke, unlike mechanical presses where the
force is maximum at the bottom.

During the hydraulic press operation, shown in Fig. 1,
position and force control needs to be done to guarantee
the correct forming of the workpiece. The position control
ensures the correct trajectory tracking during the Free fall
and Drawing phases, whereas the force control maintains a
specific force level during theMaking Force phase.

Nowadays, in the working operation of a hydraulic press
the proportional valve control signals are defined manually,
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with a predefined closing ramp, so the position is correctly
tracked during the Free fall and Drawing phases. This is a
tedious and time-consuming process that typically includes
several days and can involve high costs. Furthermore, the
success of such a control depends on the valve pre-defined
signals design, which usually depends on the operator’s abil-
ity and experience.

We seek to automate the rather tedious manual position
control, with no need to manually define any signal. Nowa-
days, the desired falling velocity during the Free Fall phase
is obtained by manually setting a constant spool position to
the auxiliary chamber proportional valve, see Fig. 2. Further-
more, during the Free Fall and Drawing phases transition,
a closing rampmust be defined to this valvewhich ismodified
every time the position reference changes.

We propose to control the auxiliary chamber pressure
with the variable axial piston pump, while controlling the
slide position with the auxiliary chamber proportional valve.
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FIGURE 1. Hydraulic slide press cycle.

FIGURE 2. Slide hydraulic circuit.

This changes the press position control from a single-
input-single-output (SISO) problem to a multiple-input-
multiple-output (MIMO) problem, as the pump and the valve
control the cylinder pressure and position, respectively. The
MIMO position controller will not differentiate between
phases, as the control will be carried out continuously from
the start of the Free Fall phase to the end of the Drawing
phase, regardless of the position reference.

It is necessary to guarantee a certain pressure level in the
auxiliary chamber during the Drawing phase, as the forming
of the workpiece is carried out in this phase. In the event
that more force is required for the workpiece forming, if the
auxiliary chamber is pressurized at a certain level it will take
less effort for the pump to supply said force. Else, if no
pressure existed in the auxiliary chamber, the main chamber
would have to be pressurized completely before more force
could be applied.

Therefore, in order to be prepared for a higher force
demand during the workpiece forming, maintaining a spe-
cific pressure level in the auxiliary chamber is also of great
importance.

However, a hydraulic circuit is highly nonlinear regarding
flow and pressure relationship, friction, oil temperature vari-
ation, component coupling, etc. These nonlinear behaviors
make the process of designing a combined position and force
control algorithm a challenge.

In [1], fuzzy laws are designed to overcome the coupling
effects and to improve the position and force control perfor-
mance of an electro-hydraulic system. Although successful
results were obtained, we aim to design a self-learning con-
troller that adapts automatically to every force and position
scenario, eliminating the need to manually redefine control
signals as is the case with fuzzy logic.

A decoupling compensation method is proposed in [2]
for an electro-hydraulic circuit. The study focuses on the
pressure coordinate control with the pump and valve, rather
than decoupling the valve and pump for position and force
control.

In [3], a single-input-multiple-output (SIMO) PI control
system is developed for the force applied by 12 actuators
in a stamping machine. The SIMO PI controller gains are
designed based on the estimated perturbation model, how-
ever, as the authors point out, the fine-tuning of the controller
could result in time-consuming and expensive.

In [4] the pressure and velocity of a hydraulic actuator
are decoupled by means of velocity feedback. In [5],
a feed-forward control scheme is presented for decou-
pled pressure control in an actuator. In [6], a MIMO
inversion-based feed-forward controller is derived by
input-output linearization for a hydraulic system. However,
these works focus on the energy efficiency of the hydraulic
system rather than on the control performance.

Considering the limitations of the existing MIMO
controllers in hydraulic systems and taking advantage of
the repetitive process of a hydraulic press, we try Iterative
Learning Control (ILC) as a solution to the MIMO position
control problem. With the MIMO ILC algorithm, the valve
and pump control loops coupling will be counteracted and,
as a result, a self learning MIMO position and force control
will be obtained.

Several studies have been realized regarding the design of
MIMO ILC algorithms. In [7], a conjugate-gradient ILC was
proposed to guarantee fast monotonic convergence without
the need to calculate the inverse of the system matrix. This
method converged fast at the first iterations, but the algo-
rithm performance suffered from the control loop couplings,
penalizing the convergence rate later on. This was improved
in [8], with a Quasi-Newton optimized ILC. However, a gain
was included in the learning function to counteract for model
mismatches, which penalized the convergence rate of the
algorithm.

To improve the convergence rate, optimization based
MIMO algorithms have been proposed, in which the learning
function is based on an error minimization function [9]–[11].
These approaches rely on the tuning of the weighting matrix
in order to obtain a globalminimum in theminimization prob-
lem. It is hard to explicitly define the ILC multiple objectives
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in a cost function. In such a cost function we would have to
include a condition for fast convergence, robustness towards
uncertainties, long-term stability and satisfy the input con-
straints. This approach requires a too complex optimization
problem.

To reduce the model dependent design, model-free MIMO
ILC approaches were proposed in [12], [13], to reduce the
modeling requirement. However, these approaches directly
affect the convergence rate of the ILC algorithm, and the
learning process requires more iterations to converge.

The advantages of using model-based approaches were
shown in [14], where an overview of which MIMO
ILC design approach to use, illustrated on an industrial
printer, is given. It concludes that the centralized, model-
based, approach achieves the better performance in terms
on convergence, however it requires more designing and
computation effort, in comparison to the decentralized,
model-free, approach. In the position control problem of a
hydraulic press, we canmanage themodeling designing effort
better than a slow convergence. Investing in an accurate plant
model design can optimize the convergence of the algorithm,
which results in commissioning cost savings. Else, the slower
the convergence, the more iterations will be required to obtain
an appropriate workpiece forming that fulfills all the design
requisites.

So far, no studies have been done regarding the imple-
mentation of a MIMO ILC algorithm in hydraulic systems.
Previous works have just focused on the application of SISO
ILC algorithms either for the position control or for the force
control of hydraulic circuits.

An ILC algorithm for the position control of an
electro-hydraulic system is developed in [15]. The ILC algo-
rithm improves the PID controller performance, however no
analysis of the robustness and the convergence rate of the
algorithm is provided.

In [16] the tuning of the learning gain and the delay
time is analyzed. Increasing the learning gain value the
convergence rate is improved, however the system response
oscillates harshly. Increasing the delay time the tracking error
is decreased, but as iterations go on the system becomes
unstable.

Most of the ILC studies in hydraulic systems do not con-
sider the convergence rate of the algorithm, the focus has been
on the applicability of ILC in hydraulic systems, nomatter the
number of iterations required to converge.

One should aim to obtain the fastest convergence rate
possible to reduce the number of iterations needed. The fewer
iterations required, the shorter the commissioning time of
the hydraulic press control will be, which translates into a
reduction of the production costs.

The convergence rate of the ILC is improved in [17],
to track the displacement curve of the hydraulic press slide.
A fuzzy ILC is developed, to adapt the ILC gains based on
the error and change in the error. The requirement of defining
fuzzy strategies manually opposes the objective of this study
to automate the control process.

A PD-type ILC is implemented for the trajectory tracking
in [18]. The number of iterations required to converge is con-
siderably reduced compared to a conventional proportional
type ILC, as it is also shown in [19]. However, no analysis of
how to design the PD-type ILC gains is provided. The only
procedure followed is that the higher the gain the faster the
convergence will be. However, this design method can lead to
stability problems as if the gains are set too high the learning
transients will not converge.

One can conclude that there exists a gap in the literature
regarding the design of MIMO ILC algorithms in hydraulic
systems. No analysis of the convergence rate improvement
of the MIMO ILC algorithm to optimize the press work-
ing operation has been done. Furthermore, this improvement
should be enhanced with a stability analysis of the algorithm,
as stability is an essential property for industrial practice.

The main contributions of this paper are summarized as
follows. A MIMO ILC is proposed for the position control
of a hydraulic press, to automate the press operation and
eliminate the position control reliance on pre-defined con-
trol inputs. With the MIMO ILC controller, we can control
simultaneously the pump outflow and the valve spool posi-
tion, to control the cylinder pressure and piston position,
respectively. The MIMO ILC algorithm design is based on
the inversion of the low frequency hydraulic press dynam-
ics, discarding the high frequency dynamics. This design
method obtains a better convergence rate compared to other
model inverse ILC algorithms in the literature. Furthermore,
a graphical method is proposed which provides the user the
possibility to analyze the convergence rate and the stability of
the MIMO ILC algorithm intuitively.

In Section II, the MIMO ILC algorithm is introduced for
the position control. The results of the MIMO ILC algorithm
are shown in Section III. A comparison of the proposed ILC
design with other ILC methods is carried out in Section IV.
The proposed MIMO ILC is implemented in a hydraulic
test rig in Section V. Lastly, the conclusions are provided in
Section VI.

II. MIMO ITERATIVE LEARNING CONTROL
ILC is ideal for a system that performs the same process
repeatedly and where uncertainties abound, as it is capable of
learning the necessary control action via the repeated process.
ILC was first proposed for improving the reference tracking
of a system that follows a repeated trajectory by Uchiyama
in [20]. It was further extended by Arimoto et al. [21], for
a mechanical robot operation. The learning control scheme
proposed by Arimoto was:

U j+1(s) = Q(s)(U j(s)+ L(s)Ej(s)) (1)

which is a past-error feed-forward law. U j(s) is the Laplace
transform of the entire input vector to the system G(s) at the
j-th learning iteration. The iteration error Ej(s) is given by the
difference between the position reference and the iteration
system output, Ej(s) = R(s) − Y j(s). L(s) is the learning
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FIGURE 3. ILC parallel arrangement with feedback controller.

filter and Q(s) is a gain that enlarges the stability region of
the algorithm.

A. MIMO ILC ALGORITHM ANALYSIS
In the position control loop, the slide hydraulic circuit can be
regarded as a general time invariant MIMO linear continuous
state-variable equation:

ẋ(t) = Asx(t)+ Bsu(t); y(t) = Csx(t) (2)

where x is the four-dimensional state vector, consisting of the
piston position and velocity, and the pressure inside the two
cylinder chambers. u is the two-dimensional learning control
input vector, consisting of the pump swash angle and the
valve spool position. y is the two-dimensional output vector,
consisting of the piston position and the cylinder auxiliary
chamber pressure. The Laplace transform of the system equa-
tion is: G(s) = Cs(sI − As)−1Bs. Note that G(s) is a two-
by-two transfer matrix.

In [22] the ILC error propagation equation for a SISO
system is shown. Transforming it into a MIMO problem
results in:

Ej+1(s) = (I − S(s)G(s)L(s))Ej(s) (3)

where S(s) is the sensitivity transfer matrix S(s) = (I +
G(s)C(s))−1, and L(s) the learning transfer matrix. C(s) is the
controller transfer matrix containing the pump PI controller,
CP(s), and the valve PI controller, CV (s):

C(s) =
[
CP(s) 0
0 CV (s)

]
. (4)

From equation (3), if the term 3(s) = I − S(s)G(s)L(s) is
less than one, then the error vector at the next iteration will
be smaller than the error at the current iteration. Otherwise,
the error would increase causing instability in the system.
This brings a sufficient condition for the stability and the
convergence of the error vector for the design of L(s), which
is given for the frequency domain by [23]:

|λi(3(s))| ≤ 1 for s = jω, ∀ω ∈ [−∞,∞]. (5)

The tracking error will converge to zero as iterations go on
if 3(s) has all its eigenvalues, λi, less than one.
From equation (5), the learning transfer matrix L(s) must

be designed so the eigenvalues values of 3(s) are less than
one. The two-by-two L(s) learning transfer matrix will have
the following structure:

L(s) =
[
L11(s) L12(s)
L21(s) L22(s)

]
. (6)

For the L(s) design the plant dynamics inversion is a
benchmark method to achieve convergence in one iteration.
However, the uncertainty present in plant models can lead
to sub-optimal tracking, stability issues and convergence rate
penalization. Therefore, onemust accept that without an exact
plant model perfect tracking of the reference is unattainable.
Several studies have addressed the incorporation of model

dynamics in the L(s) design, to increase the convergence
rate of the ILC algorithm. The convergence condition and
the robustness of an inverse model-based ILC are analyzed
in [24]. A quadratic criterion is introduced to analyze the
convergence on a model-based ILC in [25]. The optimization
problem for the ILC controller is also developed in [26],
[27]. As it has been explained in Section I, it would be too
laborious to solve the optimization problem of a cost function
that considers the algorithm convergence rate, stability and
input constraints.

For systems with unstable zeros, pseudo-inverse and
stable inversion methods have been proposed in [28]
and [29], respectively. A thorough analysis of which inversion
approach to use depending on the system characteristics is
carried out in [30]. The hydraulic slide circuit in Fig. 2 is
a minimum-phase system, therefore, direct inversion can be
applied.

In [31] direct inversion was applied in an electronic
printer, where the learning filter was designed as L(s) =
(G(s)S(s))−1. Instead of including a low-pass filter in the L(s)
design, the Q(s) filter was used to guarantee robustness to
modeling errors. However, Q(s) should be designed properly,
as a Q(s) with a module different from one penalizes the
algorithm performance [32].

Direct inversion was also applied in [33], for a linear SISO
motor of a wafer system. In [33], it is proposed to include
the controller in the model inverse ILC design based on the
series and parallel ILC designs. The series,Ps(s), and parallel,
Pp(s), ILC architectures have the following model transfer
functions:

Ps(s) =
G(s)C(s)

1+ G(s)C(s)
, Pp(s) =

G(s)
1+ G(s)C(s)

. (7)

Ps(s) and Pp(s) are the process sensitivity functions, which
are used as a parametric model of the system to design the
learning filter. In [33], unlike in [31], the low-pass filter was
applied to the inverse of the process sensitivity functions to
deal with the high frequency differences.

This is the most common procedure that one can find
in the literature when applying direct inversion [33]–[36].
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Although fast convergence tracking is achieved, the algorithm
performance is penalized as the inclusion of the low-pass
filter to counteract model mismatches affects both G(s)
and C(s).
We claim that it is not necessary that the inclusion of the

low-pass filter in the learning filter design affects C(s). One
can design the learning filter so that the model differences
only affect the inverse of G(s). For MIMO systems with a
parallel structure consisting of an ILC algorithm and feed-
back controllers, we propose the followingmodel inverseL(s)
design:

L(s) = G−1(s)S−1(s) = G−1(s)(I + G(s)C(s))

= G−1(s)+ C(s). (8)

In (8), only G(s) is inverted and C(s) is completely known,
see (4). The low-pass filters to deal with high frequency
differences will only apply to G−1(s), not affecting C(s).
With this L(s) design, the convergence rate is improved with
respect to the traditional model inverse approach, as the
model differences are reduced.
Furthermore, in the G(s) inversion we only include the

plant low frequencies that we are interested in, discarding the
high frequencies. The low frequencies provide us with infor-
mation about the pressure change due to the velocity, which
is necessary for the position and force control. The hydraulic
press model uncertainties abound at high frequencies, such as
pump and valve dynamics and friction forces, these uncertain
high frequencies will be attenuated with zero-phase filtering.

B. HYDRAULIC MODELING
In order to carry out the model inverse L(s) design, the
hydraulic press modeling is derived in this section.

The axial-piston pump outflow is proportional to the swash
plate angle:

qA = qN
ω

ωN
α (9)

where qA is the volumetric flow out of the pump (m3/s), qN is
the nominal flow (m3/s), ω the shaft rotational speed (rad/s),
ωN the nominal shaft rotational speed (rad/s) and α is the
swash plate angle. The terms qN andωN are used to normalize
α within [0-1] interval.
Equation (10) shows the relationship between the pressure

into the cylinder main chamber and the volumetric flow out
of the pump [37]:

qA = AAẋ + (VA + AAx)βṖA (10)

where AA is the cylinder main chamber area (m2), VA is the
main cylinder chamber dead volume (m3), β is the hydraulic
compressibility (1/bar), x is the piston position (m) and PA is
the main chamber pressure (bar).

The relationship between the pressure in the cylinder aux-
iliary chamber and the volumetric flow out of the chamber is
as follows [37]:

qB = −ABẋ + (VB + AB(l − x))βṖB (11)

where qB is the volumetric flow out of auxiliary
chamber (m3/s), AB is the auxiliary chamber area (m2), VB is
the auxiliary chamber dead volume (m3), l is the cylinder pis-
ton length (m) and PB is the auxiliary chamber pressure (bar).

The relationship between the pressure in the auxiliary
chamber and the flow through the valve is shown [38]:

qB = Kv(yv)qref
√
PB/1Pref (12)

where Kv(yv) is the hydraulic conductance (m3/(bar·s)),
which is function of the valve spool position yv. qref and
1Pref are included to normalize Kv(yv) with respect to
the nominal flow and the nominal pressure of the valve,
respectively.

The force balance equation of the cylinder is:

F = mẍ = PAAA − PBAB (13)

wherem is the cylinder moving mass (kg) and F is the output
force of the rod (N).

During the Free Fall and Drawing phases, the oil flow
rate into the cylinder main chamber will be equal to the
pump outflow. Likewise, the oil flow rate out of the auxiliary
chamber will equal the oil flow through the proportional
valve.

Rearranging (9) with (10), (11) with (12), and using (13)
to relate both cylinder chamber pressures, we can obtain
the slide hydraulic circuit system equations, from which the
linearized state-space system is derived in equation (14):


δẍ
δẋ
δṖA
δṖB

=


0 0 A13 A14
1 0 0 0
A31 0 0 0
A41 0 0 A44



δẋ
δx
δPA
δPB

+


0 0
0 0
B31 0
0 B42

[ δαδyv
]

[
δx
δPB

]
=

[
0 1 0 0
0 0 0 1

] [
δẋ δx δPA δPB

]T
, (14)

The cylinder piston position and velocity, and the pressure
in both chambers are chosen as state variables. The swash
plate angle and the valve spool position are the system inputs;
the piston position and the main chamber pressure are the
system outputs.
δPx = Px − P̄x , δx = x − x̄, δyv = yv − ȳv and

δα = α− ᾱ, are the small-signal deviation from an operating
point obtained in steady-state conditions, P̄x , x̄, ȳv and ᾱ
respectively. The definition of every term Axx is shown in
Appendix A.

C. HYDRAULIC PRESS MIMO ILC DESIGN
By Laplace transforming equation (14), the system transfer
matrix G(s) is obtained, from which the system inverse will
be calculated to carry out the L(s) = G−1(s)+ C(s) design.
G(s) is a two-by-two transfer matrix with four transfer

functions with a common denominator, from which the sys-
tem poles can be obtained. To analyze how the system param-
eters affect the poles of the system, the G(s) denominator
based on the system parameters is obtained. The denominator
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is a fourth-order polynomial, each coefficient is shown in
Table 1, with V1 = VA + AAx̄ and V2 = VB + AB(l − x̄).

TABLE 1. G(s) system denominator coefficients.

We can put the polynomial in Table 1 into numbers, with
the values provided by the data-sheets, shown in Appendix B,
and obtain the poles of our system:

TABLE 2. G(s) system poles.

From Table 2 we can see that we have a pole in zero,
a low frequency pole and a high frequency complex pole.
The high frequency poles have really small damping, as the
hydraulic slide energy does not dissipate anywhere as no
friction has been included in the system model, e.g. friction
between the slide and the rails or between the cylinder piston
and the chambers. Although some authors include the friction
forces in the force balance equation of the cylinder, see [39],
we will discard them as they will only affect our plant at high
frequencies. The low frequency pole describes the cylinder
pressure change due to the velocity.

In the G(s) inverse design, we will not include the high
frequencies, as these frequencies are where the uncertainties
of our plant abound. The effects of the oil compressibility
appear at high frequencies, so we could discard every term
containing β in the coefficients shown in Table 1. However,
the terms containing β and PB provide us with information of
the rate at which the pressure is increasing, necessary for the
pressure control.

As shown in Appendix B, β is a small number. In Table 1,
in the fourth-order coefficient β appears squared, so the value
of the coefficient will be insignificant in comparison to the
others. In the third-order coefficient, β does not multiply
any pressure variable, therefore we can discard it as well,
it will not provide us with any valuable information at low
frequencies. After these considerations the resulting polyno-
mial, with the low frequency poles is as follows:

The numerators, bgxx (s), corresponding to each transfer
function of G(s) = [g11(s) g12(s); g21(s) g22(s)] are
shown:

bg11 (s)=−AAV1V2qNω(qref Kv(ȳv)− 4V2β
√
P̄B1Pref s)

bg12 (s)=−2ABP̄BV
2
1 V2βωNqref

√
1Pref s

bg21 (s)= AAABqNω
√
P̄B1Pref

(
2V2s+ Kv(ȳv)qref

√
P̄B

)
bg22 (s)= 2P̄BV2qref

√
1Pref (ωNA2AV1s

+qNωA2A + βmωNV
2
1 s

3) (15)

TABLE 3. Low-frequency G(s) system denominator coefficients.

In the same way as for the poles, the zeros at high frequen-
cies are undesired. In bg22 (s), a high frequency zero appears
in the terms multiplied by β and no pressure variable appears.
This term is discarded resulting in:

b̂g22 (s) = 2P̄BV2qref
√
1Pref

(
ωNA2AV1s+ qNωA

2
A

)
(16)

The Bode diagram of the system shown in (14), G(s), and
the system without the high frequency poles and zeros, Ĝ(s),
is shown in Fig. 4. At low frequencies, both systems have
the same response and as frequency increases, both systems’
responses deviate.

The new learning transfer matrix design will be L(s) =
Ĝ
−1

(s)+ C(s), with the simplified system.
Not incorporating the high frequencies in L(s) will affect

our learning rate, however, it will have little impact as the low
frequencies have the greatest influence on the convergence
rate. Furthermore, we will obtain an equivalent lower-order
system from which the inverse calculation will be simpler.

We include a low-pass filter, to attenuate the high fre-
quencies of the system that are not included in the plant
design. Furthermore, with this filter, we will attenuate the
non-modeled physical dynamics of the proportional valve and
the pump plate, as they are unknown.

Incorporating a fourth-order low-pass filter to the plant
inverse modeling we obtain the following L(s) design:

L(s) = Ĝ
−1

(s)
ω4
c

(s+ ωc)4︸ ︷︷ ︸
Ĝ
−1
f (s)

+C(s). (17)

where ωc is the filter cutoff frequency in rad/s.
ωc is set to 2 rad/s to ensure the robustness of the learning

law to the high frequency dynamics that we have not mod-
eled. However, producing a cutoff we introduce a consider-
able phase lag in our system, see the response of Ĝ

−1
f (s) in

Fig. 5.
To avoid the additional phase lag, zero-phase low-pass

filters (ZPF) are widely used in ILC design [22], [23], as they
allow to filter the error signal forward and then, apply back-
ward filtering to the filtered signal. Backward filtering gen-
erates phase lead to compensate for the phase loss of the
forward filtering to achieve a zero-phase effect.
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FIGURE 4. Bode diagram of G(s) and Ĝ(s).

The fourth-order filter is divided into two second-order
low-pass filters, by which the iteration is filtered twice, once
in the positive direction of time and once in the negative
direction of time. The resulting plant inverse transfer matrix
is:

L(s) = Ĝ
−1

(s)
ω2
c

(s+ ωc)2
ω2
c

(s− ωc)2︸ ︷︷ ︸
Ĝ
−1
zpf (s)

+C(s). (18)

To perform the filtering the entire iteration error vector
must be available for processing, therefore the ZPF cannot be
done in real time, but one can perform the filtering between
iterations. In Fig. 5, the Bode diagram of the resulting plant
inverse with ZPF is shown, Ĝ

−1
zpf (s), where the unknown high

frequencies are attenuated without losing phase.
In order to show the advantages of not affecting C(s)

with the low-pass filter, we compare the plant inverse design
proposed in (18), LMIC (s), and the traditional direct model
inverse design used in literature [33]–[36], LMI (s), with the
inverse design without system simplifications nor low-pass
filter introduction LD(s). The learning filters are defined as
follows:

LMIC (s)= Ĝ
−1

(s)
ω2
c

(s+ ωc)2
ω2
c

(s− ωc)2
+ C(s)

LMI (s)=
(
Ĝ
−1

(s)+ C(s)
) ω2

c

(s+ ωc)2
ω2
c

(s− ωc)2

LD(s)=G−1(s)+ C(s) (19)

The Bode diagrams of the three different model inverse
approaches are shown in Fig. 6. It can be seen that LD(s)
contains the high frequency dynamics of the slide hydraulic

FIGURE 5. Bode diagram of the plant inverse G−1(s), with low-pass filters
Ĝ
−1
f (s) and with zero-phase filtering Ĝ

−1
zpf (s).

system, as no simplifications have been done and no low-pass
filter has been applied.

We can see, in Fig. 6, that the Bode diagrams (b) and (c) are
not affected by where the low-pass filter is placed, as C(s)
only consists of elements in the diagonal. However, in (a) and
(d) both systems LMIC (s) and LMI (s) have different frequency
responses from 0.2 rad/s on. In (d) it is more visible how
LMIC (s) is closer to the exact model thanLMI (s). Indeed, from
frequency 0.2 rad/s to 100 rad/s, LMIC (s) behaves in the same
way as LD(s).

This is a consequence of applying a really low cutoff
frequency in the low-pass filter introduced, as we want to get
rid of most of the high frequencies and just kept those very
low frequencies that we are interested in. In case we applied a
higher cutoff frequency, the differences between LMIC (s) and
LMI (s) would reduce at low frequencies, there would only be
differences at the high frequency regions.

D. ZERO-PHASE FILTER WITH ANTI-WINDUP
The ZPF is applied to obtain the control inputs for the pump
swash plate and the proportional valve position. Both actu-
ators have a physical limitation, the input obtained from the
ZPF must not exceed the range [-1, 0] and [0, 1] for the valve
and pump, respectively. To limit the signal obtained from
the ZPF, an anti-windup has been included to the filtering
process.

The general recursive formulation for discrete-time filters
in z-transform holds as follows:

H (z) =
Y (z)
X (z)
=
b0 + b1z−1 + b2z−2 + · · · + bM z−M

a0 + a1z−1 + a2z−2 + · · · + aJ z−J
(20)

The forward and backward filters have been designed
as second-order filters, therefore, we set M = J = 2.
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FIGURE 6. Bode diagram of LMIC (s), LMI (s) and L(s).

The resulting linear differential equation is:

y(n) =
b0
a0
x(n)+

b1
a0
x(n− 1)+

b2
a0
x(n− 2)

−
a1
a0
y(n− 1)−

a2
a0
y(n− 2) (21)

where n is a nonnegative integer.
The static gain of the filters is given as:

Ks =

∑M
i=1 bi∑J
i=1 ai

(22)

The filter output is given by (21). However, the obtained
output value of the filter must not exceed the specified ranges,
else the valve and pump control inputs will saturate.

If the output of the filter exceeds the ranges of interest,
the anti-windup is applied to the recursive filter for the last
J outputs andM inputs. In this way, we avoid the integration
of the error for the recursive outputs and inputs, increasing
the performance of the filter.

The resulting filter algorithm including the anti-windup is
shown in Algorithm 1.

E. MIMO ILC STABILITY ANALYSIS
The convergence condition of the ILC problem has been
widely considered in the literature to guarantee algorithm
stability. The Hurwitz stability is used in [40], the Schur
stability is applied in [41] and vertex Markov parameters are
used in [42].

These methods require a large number of computations and
cannot be applied directly to ILC. A more intuitive method is
to analyze the stability graphically, from a frequency point of
view, as it is done for SISO systems in [22], [24], [42], [43].

Algorithm 1 Recursive Filtering With Anti-Windup
input: b (numerator coefficients), a (denominator coef-
ficients), u (input), ymax (upper saturation), ymin (lower
saturation)

1: for k = 1→ length(u) do

2: y(k) = b0
a0
x(k)+ b1

a0
x(k − 1)+ b2

a0
x(k − 2)− a1

a0
y(k −

1)− a2
a0
y(k − 2) F Filter the inputs signal sample by

sample using (21)
3: if y(k) ≤ ymin then
4: for i = 1→ length(a) do
5: y(i) = ymin F Saturate previous outputs
6: end for
7: for i = 1→ length(b) do
8: u(i) = ymin(i) ∗ 1

Ks
F Saturate previous

inputs by multiplying the minimum value by the inverse
of the static gain

9: end for
10: end if
11: if y(k) ≥ ymax then
12: for i = 1→ length(a) do
13: y(i) = ymax F Saturate previous outputs
14: end for
15: for i = 1→ length(b) do
16: u(i) = ymax(i) ∗ 1

Ks
F Saturate previous

inputs by multiplying the maximum value by the inverse
of the static gain

17: end for
18: end if
19: end for
20: return: y F The entire filtered signal is returned

In these studies, the frequency response for all the frequen-
cies up to the Nyquist frequency is plotted to analyze the
convergence condition:

|1− G(jw)S(jw)L(jw)| ≤ 1/Q(jw) ∀ω ∈ [−∞,∞].(23)

Equation (23) can be interpreted on a Nyquist plot; if the
frequency response remains inside the unit circle, the ILC
algorithm will converge to zero error. Else, if the response
gets out of the unit circle, the ILC algorithm will be unstable.

For the convergence condition of a MIMO ILC problem,
the eigenvalues should be analyzed at all frequencies, instead
of the frequency response as in the SISO case. We introduce
again the MIMO convergence condition with the new L(s)
design:

|λi(I − S(s)G(s)(Ĝ
−1
zpf (s)+ C(s)))| ≤ |Q

−1(s)|. (24)

for s = jω, ∀ω ∈ [−∞,∞].
So far, no studies have been done regarding the graphi-

cal analysis of the convergence condition of a MIMO ILC
algorithm. We propose to apply the same procedure as in the
SISO ILC, however, instead of looking to a Nyquist plot of
the frequency response, we analyze the eigenvalues of (24) at
all frequencies.
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From equation (24), if every eigenvalue of the term
32(s) = I−S(s)G(s)(Ĝ

−1
zpf (s)+C(s)) is less than one, then the

convergence condition of the MIMO ILC will be guaranteed.
32(s) is a two-by-two transfer matrix from which two

eigenvalues can be obtained at each frequency point. There-
fore, in order to guarantee the stability for all frequencies we
evaluate the frequency response of the term 32(s) up to the
Nyquist frequency.

Ideally, if an accurate model inverse is included in the L(s)
design,32(s) would be a zero matrix with every eigenvalue at
zero for all frequencies. However, our L(s) design is far from
being ideal as some simplifications have been considered in
the inverse model and low-pass filters have been added to
attenuate the uncertain high frequencies.

Hence, one should aim to obtain every eigenvalue as
close as possible to the origin. The closer the eigenval-
ues to the origin, the faster those error frequencies will
be corrected by the ILC algorithm. Figure 7 shows each
eigenvalue obtained from 32(s) at each frequency. We are
not interested in the phase of the eigenvalues, but in their
module, else the error would not asymptotically converge.
It would in general oscillate around a value and eventually
decay to it.

At low frequencies, the eigenvalues are close to zero, as it
has been pointed out in Fig. 7 for a frequency of ω =
2 rad/s. At high frequencies the eigenvalues value increases,
therefore, it will take more iterations to correct the high
frequencies of the error. Although the eigenvalues increase,
none of them get out of the unit circle, which guarantees the
stability of the algorithm at high frequencies.

If the eigenvalues got out of the unit circle at a specific
frequency, we could make use of Q(s) to enlarge the stability
circle so the eigenvalues at all frequencies remain inside the
new stability circle. By setting a |Q(s)| < |I| the stability
circle increases accordingly, see in (24) that the smaller the
value of Q(s) the bigger the value of the right-hand side.
However, one should be cautious in theQ(s) design, as aQ(s)
value different from one affects the convergence performance
of the ILC algorithm, as it was shown in [44].

Some authors designQ(s) as a low-pass filter, to ensure the
condition for stability is met [44], [45]. Using thisQ(s) design
approach, one can determine which frequencies are empha-
sized in the learning process. However, perfect tracking will
not be achieved.

III. SIMULATION RESULTS
The designed MIMO control ILC algorithm has been imple-
mented in a nonlinear model of a hydraulic press in Matlab/
Simulink. The press model has been developed in a novel
library made by Ikerlan [46]. With this library, compo-
nents are easily parametrized with data-sheet information
in contrast to Simscape, which requires acquiring construc-
tive parameters obtainable only from laboratory experiments.
This novel approach allows reproducing the physical behav-
ior of industrial components with high precision without
losing Real-Time capabilities.

FIGURE 7. 32(s) eigenvalues plot at each frequency.

The ILC algorithm is compared to the performance of a
PI controller, which is the most prevalent controller applied
in hydraulic circuits. Two different PI controllers have been
designed, for the pump swash plate angle and the auxiliary
chamber proportional valve spool position. The proportional
valve PI controller gains have been set to KPv = 3 and
KIv = 3. The pump PI controller gains have been set toKPp =
3.86e-05 and KIp = 0.82. Both PI controllers have been
discretized applying Tustin approximation as the hydraulic
press models run in discrete time with a fixed step-size of
0.002s.

A. POSITION CONTROL RESULTS
As explained in Sec. I, the control objective is to track a
predefined slide trajectory by controlling the pump swash
plate angle and the proportional valve spool position.

Figure 8 shows both Free Fall and Drawing phases, where
the position control is carried out. The ILC signal is intro-
duced at t ≈ 0.5s, before the transition between the two
phases.

At the first iteration, with the PI controller, there exists a
manifest rebounding which results in the deceleration of the
slide velocity. After the rebounding, the proportional valve
spool position oscillates around -0.2, see Fig. 9, and it is not
until t ≈ 3.5s that the position reference is reached.
As iterations go on, the ILC corrects the proportional valve

spool position during both phases transition, introducing an
overshoot before oscillating around -0.2 input signal value.
This overshoot avoids the slide rebounding, resulting in a
perfect tracking of theFree Fall andDrawing transition. After
this transition, the input signal reaches the value -0.2 and then,
oscillates smoothly around this value to maintain the constant
falling velocity of the slide.

This effect can be seen in the slide velocity progress
through iterations in Fig. 10. At the first iteration, there
exists a notorious overshoot in the velocity signal which is
attenuated as iterations go on. With the introduction of the
ILC signal, once the slide reaches -100 mm/s speed it is
maintained at this level.
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FIGURE 8. Free Fall and Drawing phases slide position control.

The pump swash plate angle normalized between [0-1],
and the auxiliary chamber pressure are shown in Fig. 11 and
Fig. 12, respectively. During the Free Fall phase the auxiliary
chamber pressure is given by the slide weight and no pressure
control is done. This can be seen in Fig. 11 where the pump
plate is closed until t ≈ 1.0s.
Once the Drawing phase starts, from t ≈ 1.0s onwards,

the pump swash plate is opened completely to reach the
pressure reference of 180 bar. At the first iteration, with the PI
controller, the pressure signal oscillates harshly around the
reference as the swash plate angle total input has large oscilla-
tions. These swash plate oscillations are reduced as iterations
go on, and the total input settles around 0.7 value. With this
improvement the pressure reference signal is reached faster
and the oscillations are considerably reduced.

It should be pointed out that perfect pressure tracking is not
needed, it is sufficient to keep the auxiliary chamber pressure
close to the reference so, when the slide strikes the workpiece
during the Drawing phase, the extra pressure needed can be
supplied by the auxiliary chamber pressure.

As a performance index for the proposed position control
ILC algorithm, the RMSE between the desired trajectory and
the slide trajectory over iterations is shown in Fig. 13. The
RMSE is reduced by a factor of 7 in the position tracking, and
a fast convergence is obtained as at the seventh iteration the
error is considerably reduced, with respect to the first iteration
with a PI controller.

IV. ILC PERFORMANCE COMPARISON
In this study, we propose an ILC algorithm design based
on the simplified model inverse and the feedback controller
(MIC-ILC). With this design, we optimize the convergence
rate of the ILC algorithm to reduce the required number of
iterations.

To analyze the performance of the MIC-ILC, we compare
it with the proportional-type ILC (P-ILC) [47] and the
traditional direct model-inverse ILC (MI-ILC) algorithm
approach with direct inversion and the low-pass filter influ-
encing the controller [34]. The comparison will be done for

FIGURE 9. Total input to the valve and ILC input to the valve over
iterations.

FIGURE 10. Slide velocity during Free Fall and Drawing phases.

the MIMO position control problem, and the RMSE between
the position reference and the slide positionwill be used as the
performance index.

A. P-ILC DESIGN
The P-ILC is one of the most used ILC algorithms in the
literature due to its simplicity, as it calculates an input signal
proportional to the error. In this section we will extend the
P-ILC algorithm proposed by Arimoto in [47] to the MIMO
case. The MIMO P-ILC learning control law is as follows:

U j+1(s) = U j(s)+ KPEj(s) (25)

where KP is the proportional learning matrix, which is used
to maximize the convergence rate of the algorithm. The fol-
lowing KP design is proposed:

KP =

[
0.001 0.2
0.0001 2.5

]
(26)

The eigenvalues of the P-ILC algorithm at each frequency
are shown in Fig. 14, which we compare with the response
obtained with MIC-ILC in Section II-E. With the P-ILC,
at zero frequency, the eigenvalues lie at (+1,0), whereas with
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FIGURE 11. Total input to the pump swash plate and ILC input to the
pump swash plate over iterations.

FIGURE 12. Auxiliary chamber pressure through iterations.

MIC-ILC, at zero frequency, the eigenvalues lie at the origin.
This is due to the cancellation of the model dynamics at low
frequencies, that optimizes the convergence rate of the ILC
algorithm.

The low frequencies will be corrected faster withMIC-ILC
algorithm than with the P-ILC, however, we can still obtain
fast convergence with the P-ILC if KP is increased so that
the eigenvalues are as close as possible to the origin at low
frequencies. However, the very low frequencies will always
be close to (+1,0), penalizing its performance. As it is pointed
out in Fig. 14, in both designs at 2 rad/s frequency the
eigenvalues are close to the origin, remarkably closer with
the MIC-ILC.

The RMSE between the position reference and the slide
position with the P-ILC and the MIC-ILC algorithm is shown
in Fig. 15. A similar convergence rate is obtained with
both algorithms, although the P-ILC converges to a bigger
steady-state error.

As it was shown in [19], the P-ILC can become unstable in
the presence of measurement noise and state disturbance, and
one would expect to obtain a noisy signal from the hydraulic
press position sensor. Therefore, we add a varyingwhite noise

FIGURE 13. RMSE between the position reference and slide position over
iterations.

to the position sensor to analyze the P-ILC performance under
noisy conditions. The noisy slide position error during the
Free Fall and Drawing phases is shown in Fig. 16.

The RMSE over iterations is shown in Fig. 17, the P-ILC
algorithm converges fast at the first iterations, however,
as iterations go on it gets unstable and the error increases.
We could decrease the gains in (26), so the amplification of
the error is not that severe. However, decreasing the P-ILC
gains the convergence rate is also decreased, see Fig. 17. The
MIC-ILC algorithm remains stable due to the low-pass filters
included in its design.

B. TRADITIONAL MODEL INVERSE DESIGN
In this section the traditional model inverse ILC (MI-ILC)
will be designed, in which the low-pass filter is applied to the
entire sensitivity function. The approach proposed by [34] is
followed and the learning filter is designed as follows:

LMI (s) = Ĝ
−1

(s) (I + G(s)C(s))︸ ︷︷ ︸
S−1(s)

. (27)

In order to attenuate the model high frequency uncertain-
ties and the noise added to the position sensor, a fourth-order
low-pass filter is added to LMI (s) and zero-phase filtering is
carried out to avoid the phase loss. Following [33] design, the
filter is added to the entire LMI (s) transfer matrix:

LMI (s) = Ĝ
−1

(s)(I + G(s)C(s))
ω2
c

(s+ ωc)2
ω2
c

(s− ωc)2
. (28)

with ωc = 2 rad/s.
Note that the placement of the low-pass filter changes with

respect to theMIC-ILC algorithm, recall equation (18), where
the low-pass filter is only applied to G−1(s). This variation
directly affects the convergence, as the model differences are
bigger and the eigenvalues lie further from the origin, see
Fig. 18.

In both MI-ILC and MIC-ILC designs, at zero frequency
the eigenvalues lie at the origin as a result of the model
dynamics cancellation. Therefore, the MI-ILC will perform
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FIGURE 14. Eigenvalues plot at each frequency for the P-ILC and MIC-ILC
algorithms.

FIGURE 15. RMSE comparison with P-ILC and the MIC-ILC algorithm.

better than the P-ILC as the very low frequencies lie close
to the origin. However, due to the application of the low-pass
filter to the entire LMI (s), the eigenvalues grow apart from the
origin faster in the MI-ILC than in the MIC-ILC algorithm.
This can be seen in particular at 2 rad/s frequency point.

In Fig. 19, a faster convergence rate is obtained with
the MIC-ILC in comparison to the MI-ILC. The former
converges in 10 iterations and the latter in 20 iterations.
Although the MI-ILC obtains fast convergence, from itera-
tion 20 onwards the convergence rate gets reduced and the
error converges gradually. This is a consequence of the eigen-
values distance from the origin as the frequency increases.
With the MIC-ILC, the eigenvalues are closer to the origin
so the low frequency components of the error are corrected
faster.

Apart from the RMSE as a performance indicator, the
Power Spectral Density (PSD) also provides useful insights
for the comparison between ILC algorithms. In Fig. 20,
the PSD of the error signal over iterations is shown. It can
be seen that the energy is concentrated on the frequency
band [0 ∼ +30] Hz.

FIGURE 16. Position error with and without noise during the Free Fall
and Drawing phases.

FIGURE 17. RMSE comparison with P-ILC and the MIC-ILC algorithm
under noisy conditions.

The simulation has been carried out without noise, so the
performance of the three algorithms can be analyzed in an
ideal scenario. The main enhancement is at low frequencies,
where the MIC-ILC outperforms the other ILC algorithms.
At the first 10 iterations, the MIC-ILC reduces faster the low
frequency components of the error. Especially the frequency
band from 0 Hz to 5 Hz is decreased considerably, as those
frequencies are where the eigenvalues lie close to the origin.

At higher frequencies, the three algorithms perform simi-
larly as, at those frequencies, we only seek stability regardless
of the convergence rate. It can be seen that at high frequencies
the error reduction is slower, however, the MIC-ILC still
achieves a faster correction rate. In line with the results
obtained with the RMSE, at iteration 20, the three algorithms
learning process has already converged and the difference
between iterations is minimal, the frequency component of
the error remains similar.

V. EXPERIMENTAL VALIDATION IN HYDRAULIC TEST RIG
The proposed MIC-ILC position control algorithm has been
implemented in the hydraulic test rig shown in Fig 21.
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FIGURE 18. Eigenvalues plot at each frequency for the MI-ILC and
MIC-ILC algorithms.

It consists of two identical hydraulic circuits and each circuit
comprises of: a double-acting cylinder, a 4-way proportional
valve, a hydraulic pump, a pressure relief valve, an accumu-
lator, a pressure sensor at each cylinder chamber and a flow
sensor.

The hydraulic pumps are fixed displacement pumps, which
flow displacement varies depending on the rotational speed
of the pump. With a fixed displacement pump, instead
of controlling the swash angle, as in the pump shown in
Section II-B, the pump’s angular velocity is controlled. The
relationship between the fixed displacement axial piston
pump outflow and the shaft speed is as follows:

q =
qN
ωN

ωs (29)

where ωs is the shaft rational speed (rad/s).
Every system actuator and sensor are connected via

Ethernet communication to a Beckhoff 6930-0050. The
Beckhoff Industrial PC (IPC) acts as a control cabinet and
enables real-time communications and high-performance to
control the hydraulic test rig. The Beckhoff IPC receives
and processes the sensor signals, and delivers back the
corresponding control inputs to the actuators. The position
MIC-ILC algorithm is implemented in TwinCAT 3, which is
a platform developed by Beckhoff, where PLC programming
is carried out.

The position reference the press must follow during the
Free Fall and Drawing phases is shown in Fig. 22. From
the figure, the difference between the two phases falling
velocity can be seen, this transition takes place at t ≈ 2s.
For the pressure reference tracking, a 60 bar pressure level
is specified, so it can be maintained during the Free Fall and
Drawing phases.

As a first approach we design two PI controllers, to control
the pump and the valve. The pump PI controller gains values
are: KPp = 4 and KI p = 3.8. The valve PI controller gains
values are: KPv = 1.5 and KI v = 0.25. The resulting position
and force control is shown in Fig. 23 where the coupling

FIGURE 19. RMSE comparison with MI-ILC and the MIC-ILC algorithm
under noisy conditions.

between the two control loops can be seen. The pressure
signal oscillates around the pressure reference of 60 bar.
When the pressure is higher than the reference is due to an
excessive pump velocity, which yields faster falling velocity
of the slide. On the contrary, when the pressure is lower than
the reference, is due to insufficient pump velocity, which
translates into a slide velocity slowing down.

To improve the PI controller performance the MIC-ILC
algorithm is implemented. The MIC-ILC input signals are
introduced from the start of the Free Fall phase to the end
of the Drawing phase.
We design the learning gain based on (18). The two PI con-

trollers’ gains are depicted above, and the system is modeled
following (14) state space design with the test rig parameters
depicted in Appendix C. The resulting eigenvalues of the
frequency response matrix are shown in Fig. 24.

A similar response to that shown in Fig. 7 for the sim-
ulations is obtained. At low frequencies, the eigenvalues
are close to zero, as it has been pointed out for a frequency
of ω = 2 rad/s. At high frequencies the eigenvalues value
increases, diverging from the origin. However, the responses
get out of the unit circle, therefore we make use of the Q
matrix to enlarge the stability circle. A Q = 0.93I is set,
which will penalize the convergence of the algorithm but will
keep it stable.

The result is shown in Fig. 25. The position tracking has
already converged at iteration 10, where the oscillations exist-
ing with the PI controllers are reduced. In Fig. 26, how the
MIC-ILC has adjusted the valve spool position to the slide
velocity change can be seen. At iteration 10, from t ≈ 0s to
t ≈ 2.2s, the valve spool position is reduced progressively
from -0.2 to -0.1, to achieve fast velocity during the Free Fall
phase. Once in the Drawing phase, the valve spool position
is maintained at a -0.1 value, so a constant falling velocity is
achieved.

The oscillations in the pressure reference tracking are also
reduced, as shown in Fig. 27. At the beginning of the step the
MIC-ILC introduces a positive velocity, see Fig. 28, to reach
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FIGURE 20. Power spectrum of the pressure error signal, for the four different controllers.

FIGURE 21. The available hydraulic test rig at Ikerlan Technology
Research Center.

the reference pressure as fast as possible, and then, a negative
signal, to reduce the overshoot. From t ≈ 2s on, theMIC-ILC

FIGURE 22. Press trajectory, Free Fall and Drawing phases.

introduces a constant velocity signal to maintain the pressure
level at the reference.

As a performance index for the proposed MIMO ILC
algorithm, the RMSE between the position reference and
the slide position signal is shown in Fig. 29. The RMSE is
reduced by a factor of 4 in the position tracking, and a fast
convergence is obtained as at the tenth iteration the error is
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FIGURE 23. Position and pressure signal during Free Fall and Drawing
phases with PI controller.

FIGURE 24. Eigenvalues plot at each frequency for the hydraulic test rig
model inverse design.

FIGURE 25. Position signal during Free Fall and Drawing phases in
hydraulic test rig.

considerably reduced, with respect to the first iteration with
the PI controller.

FIGURE 26. Valve input signal during Free Fall and Drawing phases in
hydraulic test rig.

FIGURE 27. Pressure tracking for a 60 bar reference during Free Fall and
Drawing phases in hydraulic test rig.

FIGURE 28. Pump velocity during Free Fall and Drawing phases in
hydraulic test rig.

The RMSE between the 60 bar pressure reference and
auxiliary chamber pressure signal is shown in Fig. 30. The
error is reduced by a factor of 2.6 regarding the first iteration
with the PI controller.
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FIGURE 29. RMSE between the position reference and press position
over iterations.

FIGURE 30. RMSE between the pressure reference and the auxiliary
chamber pressure over iterations.

VI. CONCLUSION
A new hydraulic press multiple-input-multiple-output
(MIMO) position control based on Iterative Learning Con-
trol (ILC) is proposed. The MIMO ILC position control
eliminates the need to manually define control signals and
reduces the number of iterations required to converge with
respect to other ILC algorithms.

The proposed ILC algorithm design is based on the simpli-
fication of the model inverse and the existing plant feedback
controller (MIC-ILC) to increase the error convergence rate.
A graphical evaluation is provided to analyze the stability
and convergence condition. With this method, the stability
of the algorithm is fulfilled if the learning filter eigenvalues
lie inside the unit circle. The closer the eigenvalues lie to the
origin, the faster the MIMO ILC algorithm will converge.

The MIMO ILC position control has been implemented
in a nonlinear hydraulic press model in Matlab/Simulink for
which satisfactory results have been obtained. The proposed
MIC-ILC algorithm has been compared to the most common
ILC algorithms in the literature. By means of the proposed
graphical stability design, as the MIC-ILC eigenvalues lie

closer to the origin than the other algorithms, faster conver-
gence rate has been achieved.

This is one of the main contributions of the MIC-ILC,
the ability of correcting the low frequency components
faster than the existing ILC algorithms in the literature. The
enhancement of the MIC-ILC has been verified in the fre-
quency domain, with the Power Spectral Density, analyzing
the error signal at each iteration for each ILC algorithm. The
evolution of the error signal in the frequency domain also
shows that the MIC-ILC outperforms other ILC methods in
terms of stability and convergence rate.

The MIC-ILC has been implemented in a hydraulic test
rig available at Ikerlan Research Center. The implementation
results correspond to the results obtained through simula-
tions. The MIC-ILC not only achieves good tracking in the
position and pressure signals but also gets fast convergence.

The proposed algorithm has shown to perform correctly in
hydraulic press tests, in which the experiments are mainly
carried out at low frequencies. It remains to analyze the
performance of the algorithm at higher frequency response
experiments, such as in fatigue testing machines or servo
drives.

Although ILC yields satisfactory results and the conver-
gence rate that we obtain is high with respect to other works,
it requires starting the learning from scratch every time the
reference is modified. This could be a drawback when imple-
menting it in a real press operation, as every time the design
of a workpiece is modified the ILC algorithm would need to
perform the entire learning task to obtain the optimal input.

Techniques such as Reinforcement Learning (RL) could be
of use, to obtain a nonlinear policy from a specific cost func-
tion. Some works have used PILCO probabilistic model [48],
for learning a throttle valve control in a combustion engine
with successful results [49]. It is to be analyzed whether via
RL techniques the performance of a PI controller could be
further improved.

APPENDIX.
A. LINEARIZED SYSTEM PARAMETERS
The complete expressions of the terms introduced in the lin-
earized state-space model, introduced in (14), are as follows:

A13 =
AA
m

A14 =−
AB
m

A31 =−
A1

(VA + AAx̄)β

A41 =
A2

(VB + AB(l − x̄))β

A44 =
Kv(ȳv)qref

(VB + AB(l − x̄))β
1

2
√
P̄B/1Pref

B31 =
qN
ωN
ω

(VA + AAx̄)β

B42 =

√
P̄B/1Pref

(VB + AB(l − x̄))β
K̇v(ȳv)qref (30)

VOLUME 9, 2021 146865



I. Trojaola et al.: Innovative MIMO Iterative Learning Control Approach for Position Control of Hydraulic Press

B. NOMINAL VALUES FOR HYDRAULIC
CIRCUIT PARAMETERS
The system parameters appearing in the terms introduced
in the linearized state-space model, shown in (14), are as
follows:

• Cylinder moving mass: m = 26500 kg.
• Cylinder main chamber area: AA = 0.16 m2.
• Cylinder auxiliary chamber area: AB = 0.02 m2.
• Main chamber dead volume: V1 = 0.35 m3.
• Auxiliary chamber dead volume: V2 = 0.14 m3.
• Cylinder stroke length: l = 1.2 m.
• Hydraulic compressibility: β = 1.23 · 10−4 1/bar.
• Pump nominal flow: qN = 0.0088 m3/s.
• Shaft rotational speed: ω = 150 rad/s.
• Nominal shaft rotational speed: ωN = 138.23 rad/s.
• Auxiliary chamber operating point: P̄B = 180 bar.
• Hydraulic conductance operating point: Kv(ȳv) m3/s.

C. HYDRAULIC TEST RIG PARAMETERS
The hydraulic rig system parameters are shown:

• Cylinder main chamber area: AA = 0.000804 m2.
• Cylinder auxiliary chamber area: AB = 0.000424 m2.
• Cylinder stroke length: l = 0.2 m.
• Valve nominal pressure: 1Pref = 35 bar.
• Valve nominal flow rate qref = 1.667 · 10−4 m3/s.
• Hydraulic compressibility: β = 1.23 · 10−4 1/bar.
• Nominal shaft rotational speed: ωN = 1000 rad/s.
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