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Abstract— Thermal ratings are usually considered for planning 
the operating conditions for overhead lines and are usually 
obtained with static parameters. These conditions can be 
improved using dynamic ratings based on the region weather 
forecasts, and this improvement can be ever higher when a local 
prediction is performed at the point where the line is located. In 
this work, a model based on artificial neural networks techniques 
is applied to predict the ampacity property of a transmission 
overhead line, in order to adjust and optimize the operation point 
of the grid under safety conditions. These predictions are 
calculated for a time horizon of 24 hours and are validated with 
actual conditions of a real overhead line monitored by sensors. 
With the conclusion that applying the selected model, the 
operational security of the conductor can be improved, passing 
from a 17.82% of overheating conditions to only a 3.91%. 

Index Terms—ampacity prediction; artificial neural networks; 
line rating; overhead line; safety operating conditions 

I. INTRODUCTION 

Overhead conductors must be able to transmit large amount 
of energy without overheating. This point has a huge influence 
in the decision-making for power conductor engineering and 
operation. For this reason, knowing in advance the information 
about the maximum current capacity that a conductor can 
tolerate on its working conditions, without risking deterioration 
or damage, can be really helpful [1]. This limitation, property 
that defines the maximum acceptable electric current that can 
be transmitted without damaging the conductor due to its 
physical properties, is defined as ampacity [2, 3]. 

The classical Static Line Rating (SLR) based on fixed 
conservative weather assumptions, used by many power system 
operators, is starting to be substituted by new Dynamic Line 
Rating (DLR), new approaches that modify overhead line 

current-carrying capacity based on more realistic weather 
assumptions, obtained from mathematical models [4-6]. These 
models can predict weather conditions that help to calculate the 
ampacity or directly can predict the ampacity obtained 
according to the thermal rating obtained with the weather 
conditions [7, 8]. 

The potential benefits of consider DLR over SLR are 
multiple and have been discussed in many studies [9, 10], 
although in this work the focus is paid in reducing the 
deterioration or damage of the conductor, extending its working 
life, making a combination of both line ratings. For this 
purpose, a dynamic line-rating model is selected based on its 
prediction capacity from a proposed group of machine-learning 
algorithms based on Artificial Neural Networks (ANN). And 
the final model is applied to predict the ampacity up to 24 hours 
ahead in an overhead line located in the Basque Country, Spain.  

The use of mathematical modelling has been studied to 
improve operating conditions in overhead lines previously in 
the literature, but always using different techniques and focused 
on improvements of other operation conditions aspects. For 
example, [11] and [12] applied some machine learning 
algorithms to obtain dynamic line ratings but based on another 
kind of variables. [13] and [14] based the prediction on the use 
of time series techniques. And [15] worked applying statistical 
prediction. 

In the proposed approach, 18 variables were computed 
based on past information of the ampacity [16]. These 18 
variables were selected due to the knowledge obtained from the 
trend and seasonality in the time series data gathered from the 
monitoring of the line [17]. Later, a multivariate analysis of 
these variables was performed to understand better the 
information provided by them and its relation with the predicted 
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variable, ampacity 24 hours ahead. Then the most significant 
variables to perform the most accurate models to solve the 
proposed problem were selected [18, 19].  

Then, several ANN algorithms were applied to build 
accurate models: extreme learning feedforward neural 
networks, model averaged multi-layer perceptron neural 
network, Bayesian regularized neural networks and quantile 
regression neural network. During the building and training, 
parameters of ANN algorithms were fully tuned trying to 
reduce the prediction error. Also, and to demonstrate the 
efficiency of the model, the resulting models were tested and 
validated with instances not previously used in the training 
stage, showing in this way the real prediction capacity of the 
models [20]. 

And finally, the selected ANN model and the static rating 
were combined to obtain the ampacity prediction that optimize 
the safety conditions of the conductor. 

II. MATERIALS AND METHODS 

A. Line rating calculation 

Thermal conditions of overhead transmission lines limit the 
amount of energy that can be transported by a conductor. These 
thermal conditions are not fixed and change due to the 
conductor heat balance and determinate the possible limits of 
conductor current. Hence real time monitoring of electrical and 
environmental conditions can help to optimize line capacity 

utilization, and the deterioration risk and damage. Although this 
optimization is a complex task due to the complexity of 
monitoring this system, thus it is usually applied the steady state 
heat balance in the conductor following IEEE and CIGRE 
models (Fig. 1)  (Eq. 1). 

𝑃 𝑃 𝑃 𝑃  (1) 

where 𝑃  is the Joule effect heating term, 𝑃  solar heating 
term, 𝑃  convective cooling term due to wind conditions, and 
𝑃  radiative cooling condition [5, 21].  

Many electric companies, in addition to use this steady state 
heat balance, fix values of solar radiation, temperature and wind 
speed and direction throughout the whole year in this balance. 
These values are fixed with a high margin of safety to protect 
the conductors, even reducing the transport capacity of the line 
below of its possible admissible values.  

But this heat balance can be optimized by knowing the 
environmental conditions at the line location. And in this way, 
improve transport capacity and reduce risk of damage on the 
conductors. Wind speed, wind direction, ambient temperature, 
and solar radiation are the variables that usually are analyzed to 
obtain the ampacity value of a line. Based on these parameters, 
ampacity was calculated in a pilot line, to subsequently built 
models to predict this property 24 hours ahead. 

B. Test pilot line description  

The studied pilot line site is located in the Basque Country, 
northern area of Spain, and consists of one transmission 
corridor with a north-south distribution line segment. The test 
grid is owned by Iberdrola, one of the biggest electric utilities 
companies in Spain. The segment under study is designed based 
on a conductor wire type ACSR-LA-180 to deliver 25.06 MVA 
in summer and 28.25 MVA in winter. 

The study focus in this distribution line allows to make a 
dynamic heat balance in the conductor based on readings of 
temporal variation of local weather condition. A measurement 
system (Fig. 2) was placed on the distribution line to gather 
ambient temperature and solar radiation at 4 m height, and wind 
speed and direction at 10 m height.  

These data were collected with 1-minute frequency for 
nearly three years (July 25, 2010 to June 30, 2013). Based on 
these data a dynamic value of ampacity was obtained and 
subsequently compared with the static values used by Iberdrola. 

C. Data processing 

The measurements gathered from the pilot line were 
preprocessed [21] to obtain an ampacity time series with 10 
minutes steps based on the average value of the instances 
gathered during each period. Since some missing data were 
collected, an interpolation for gaps shorter than 1 hour was 
performed.  

Then and based on the resulting ampacity time series, the 
18 variables used as inputs in the models were calculated:  

 Ampacity at studied actual time. 

 

Figure 2. Implementation of the measurement system in the 
transmission line structure 

 

Figure 1. Steady state heat balance in the conductor 



 

 

 Measured ampacity with several periods lagged on time 
(10 minutes, 20 minutes, 30 minutes, 60 minutes, 120 
minutes, 240 minutes and 1440 minutes). 

 Average ampacity during the several periods (last 30 
minutes, last 1 hour, last 2 hours, last 4 hours and last 24 
hours). 

 Several forecasts of the Spanish State Meteorological 
Agency (AEMET) (30 minutes ahead, 1 hour ahead, 2 
hours ahead, 4 hours ahead and 24 hours ahead). 

D. Multivariate analysis 

To compute and study these variables and its relations with 
the prediction feature, several techniques like data pre-
processing, outlier detection, analysis of variance, analysis of 
covariance, analysis of correlation, multivariate data 
visualization, and principal components analysis were applied. 
The final dataset was normalized between 0 and 1 to balance 
the weight of all variables and improve the statistical-analysis 
quality.  

In this study, the statistical software tool R v3.4.1 [22] was 
used to conduct the multivariate analysis tasks and the ampacity 
modelling process.  

E. Artificial Neural Networks 

There is a diverse range of techniques that can be applied 
for the prediction of a quantitative feature of nonlinear 
behavior. Among them, ANN [23, 24] are a widely used 
technique. Based on biological neural networks, this technique 
interconnects neurons through dendrites, generating an output 
signal that is sent to another neuron using an axon. This 
biological system is modified to predict a quantitative value, 
assigning numeric bias and weights to the neurons 

interconnection, and generating neuron output signals 
according to an activation function inside of each neuron. 

There are many approaches of how artificial neural 
networks can make a prediction of a variable, feedforward 
ANN and recurrent or feedback ANN. In this work, four 
feedforward approaches, where signals travel one way from 
inputs to outputs, based on four of the most applied neural 
networks techniques are performed: 

 Averaged Multi-layer Perceptron Neural Network 
(AMPNN) [24, 25]. 

 Bayesian Regularized Neural Networks (BRNN) 
[26, 27]. 

 Extreme Learning Feedforward Neural Networks 
(ELFNN) [28, 29].  

 Quantile Regression Neural Network (QRNN) 
[30]. 

F. Model selection criteria 

The neural networks models were trained based on the 
methodology 10 fold cross-validation and was repeated 50 
times [31]. Also during the training stage, some of the most 
significant parameters of each algorithm were tuned to 
optimize the predictive performance of the models. The 
criterion to evaluate the accuracy of the predictions were the 
Root Mean Square Error (RMSE). 

Then, the selected models from the training stage were 
validated on the testing stage. The RMSE was obtained again, 
but this time with new instances. And finally, it can be said that 
these new results give a real degree of generalization of the 
selected models. 

III. RESULTS 

From the original 125547 instances under study, one year 
(From July 25, 2010 to July 24, 2011. 46790 instances) was 
selected to train the models, and the rest of the experiment time 
(78757 instances) to test and validate the models. Also, from 
the instances selected to train the models, a subsample of a 
random 10% of this dataset was performed to really train the 
models. This was due to the computational cost of using all the 
instances. For example, applying the methodology to the 
original problem with one of the algorithms costs around 168 
hours, while using the reduced subsampled dataset, the 
computational cost was reduced to two and a half hours. 

During the training stage, the RMSE was calculated based 
on 50 random repetitions of 10-fold cross-validation. In the 
same process, the most significant parameter of each of the 
algorithms under study were tuned, optimizing the prediction 
capability of each of the models. For example in Fig. 3 is shown 
the RMSE of the predicted variable during the training using 
AMPNN algorithm, when parameters like number of neurons 
or weight decay are varying in two cases, whether bagging 
sampling is applied or not. Table I shows the applied algorithms 
with the tuned parameters, and the final optimized value of 
these parameters. During this process, it was observed that the 
number of instances, even after subsampling, is high enough, 

 

Figure 3. Results obtained from training period (50 times repeated 10 
fold cross-validation) using AMPNN to predict ampacity. Values of the 
most accurate configuration: weight decay = 0.01, hidden neurons = 19, 

and bagging method not applied. 
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since the use or not of the bagging method gives quite similar 
results. 

TABLE I.  TUNED PARAMETERS FOR EACH TECHNIQUE AND ITS OPTIMAL 
SELECTION 

Method Adjustments 
BRNN neurons = 2 
ELFNN neurons = 13; actfun = sig 
AMPNN neurons = 19; decay = 0.01; bag = FALSE 
QRNN neurons = 1, decay = 0.1; bag = FALSE 

The models were trained and tested obtaining the results 
shown in Table II. Based on these results the most accurate 
model among the obtained was selected to predict the ampacity, 
in this case the one obtained with the AMPNN algorithm. In 
Fig. 4 this prediction 24 hours ahead can be observed (red 
dashed line) compared with the real values (black solid line) of 
ampacity during one week of the testing period. 

TABLE II.  RESULTS OBTAINED DURING TRAINING AND TESTING STAGE 
(VALUES IN %) 

Method Training RMSE Testing RMSE 
BRNN 10.35 9.87 
ELFNN 10.36 9.97 
AMPNN 10.12 9.84 
QRNN 10.71 10.07 

 

Once the model was selected, a study of the residuals was 
performed. This study was focused on statistically ensure that 
with a 95% of confidence the model was an accurate predictor 
and the prediction was under the real value. The residuals were 
considered Gaussian, even when it was verified that they show 
a small skewness (0.6244) to the left. Therefore, as the study 
zone was at the left of the distribution, or what is the same, the 
lower margin of the prediction, this value was applied to ensure 

statistically that the value of the ampacity was predicted lower 
to the real value with a 95% of security. In this case the margin 
was equal to 144.58 A for a 95% of confidence on the ampacity 
prediction. 

The final prediction was the one obtained from the selected 
model minus the margin of error established by the lower 95% 
prediction interval (green dotted line in Fig. 4).  

Once the final prediction model was selected, this model 
was combined with the static ampacity applied by Iberdrola 
(blue dotted-dashed line in Fig. 4). When the model prediction 
was lower than the static ampacity, the prediction of the model 
was taken. On the other hand, when the model prediction was 
higher than the static ampacity, the static ampacity was taken. 
This combination allows to optimize the safety scenario of an 
overhead line, goal of this study. Fig. 4 shows the effect of this 
combination (grey long-dashed line). 

Using this prediction, the time when the conductor can 
suffer damage or deterioration pass from a 17.82% (14040 
instances out of 78757) of the validation time to a 3.91% (3081 
instances out of 78757). Also the number of consecutive 
periods where the real ampacity is lower than the predicted is 
reduced considerably (Fig. 5). The benefits of this optimization 
in the safety condition of the system affects to the power that 
the line can transport. The line reduce the capacity to deliver 
power in a 9.69% during summer, from 25.06 MVA based on a 
fix ampacity to 22.63 MVA using the proposed ampacity 
model. In the same way, during winter the capacity is reduced 
in a 10.17%, from 28.25 to 25.38 MVA. 

 

Figure 4. Comparison of the different ampacity values under study (from 2013-06-24 to 2013-06-29). The original value (black solid line), the predicted 
value from AMPNN (red dashed line), the predicted value with a 95% of prediction interval (green dotted line), the static model used by Iberdrola (blue 

dotted-dashed line), and the combined final model (grey long-dashed line). 
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Figure 5. Histograms of consecutive periods where the real ampacity is under 
the predicted ampacity. Comparison between the real case and the study case.  

IV. CONCLUSIONS 

This work proves that machine learning algorithms can be 
useful in the prediction of electrical variables, such as ampacity. 
More specifically, algorithms based on artificial neural 
networks allow obtaining models with reduced prediction 
errors working with non-linear variables complex to predict. In 
addition, combining the results of the trained models with 
statistical analysis, it is possible to obtain a final prediction with 
a prediction interval of 95%, assuring the accuracy within the 
lower margin of ampacity levels in the prediction. All this 
process allows obtaining a dynamic ampacity model that 
reduces the periods in which the conductor of an overhead line 
is exposed to possible deterioration and damage by 
approximately 14%, reducing at the same time the number and 
duration of these periods. 
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