"This is the **peer reviewed version** of the following article: Albaina, A., Iriondo, M., Velado, I., Laconcha, U., Zarraonaindia, I., Arrizabalaga, H., Pardo, M.A., Lutcavage, M., Grant, W.S. and Estonba, A. (2013), Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim Genet, 44: 678-692, which has been published in final form at https://doi.org/10.1111/age.12051. This article may be used for non-commercial purposes in accordance with **Wiley Terms and Conditions for Use of Self-Archived Versions**. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited."

SNP discove provides insig	ery in albacore and Atlantic bluefin tuna the population structure
A. Albaina, M. Iriondo, I. Velado, U. Laconcha, I. Zarraonaindia, H. Arrizabalaga, M. A. Pardo, M. Lutcavage, W. S. Grant, A. Estonba	
· · · · · · · · · · · · · · · · · · ·	Anim Genet, 44: 678-692.
DOI:	10.1111/age.12051

1	SNP discovery in albacore and Atlantic bluefin tuna provides
2	insights into world-wide population structure
3	
4	A. Albaina ¹ , M. Iriondo ¹ , I. Velado ¹ , U. Laconcha ^{1,2} , I. Zarraonaindia ¹ , H.
5	Arrizabalaga ² , N. Goñi ² , M. Lutcavage ³ , W. S. Grant ⁴ , A. Estonba ¹ *
6	
7	¹ Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila; Zientzia eta
8	Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box
9	48080, Leioa, Spain.
10	² AZTI Tecnalia. Herrera Kaia Portualdea z/g, P.O. Box 20110, Pasaia,
11	Gipuzkoa, Spain.
12	³ Environmental Conservation Department, University of Massachusetts
13	Amherst, Marine Fisheries Institute, P.O. Box 3188, Gloucester, MA 01931,
14	USA
15	⁴ Commercial Fisheries Division, Alaska Department of Fish and Game,
16	Anchorage, AK 995189, USA.
17	
18	
19	
20	* Corresponding author (also author to whom reprint requests should be
21	addressed): Andone Estonba, (<u>andone.estonba@ehu.es</u>) Tel:+0034
22	946015517, Fax: +0034 946013145
23	

24 Summary

The optimal management of the commercially important, but over-exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1978) and Atlantic bluefin tuna (*T. thynnus* L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and Atlantic bluefin tuna (BFT) and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded values of F_{ST} ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between-ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17 SNPs panel was developed in Atlantic BFT by cross-species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (F_{ST} = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.

Keywords Thunnus alalunga, Thunnus thynnus, Single Nucleotide
Polymorphism (SNP), SNP discovery, population genetics, fisheries
management.

Page 3 of 53

Animal Genetics

49	Introduction
----	--------------

50	Molecular genetics has led to considerable progress in understanding the
51	ecologies of marine species by providing new insights into the demographic
52	and evolutionary dynamics of wild populations (Hauser & Carvalho 2008).
53	Genetic markers are widely used to identify stocks, to estimate mixed stocks
54	in a fishery, to monitor genetic diversity within populations and to measure
55	connectivity between populations, among many other applications (e.g.
56	Nielsen et al. 2009; Waples & Naish 2009). These studies have overturned
57	the classic notion that large marine populations are genetically homogeneous
58	with limited local adaptation by showing extensive genetic population structure
59	in many marine species (reviewed in Hauser & Carvalho 2008). Moreover,
60	genetic structuring has been reported even across small spatial scales (e.g.
61	Knutsen et al. 2003; Jørgensen et al. 2005; Knutsen et al. 2007; Knutsen et al.
62	2011). However, data are still rare for the vast majority of highly exploited
63	species, even though a large number of studies on genetic population
64	structure of marine fish have been published in the past decades. Genetic
65	studies are needed to improve the management of species for which stock
66	structure and migration patterns are still unclear. An improper management of
67	these fishery resources can lead to the extirpation of small independent
68	stocks or to the under-utilization of large stocks.
69	This study focuses on two widely distributed pelagic tunas, albacore
70	(<i>Thunnus alalunga</i> Bonn., 1978) and Atlantic bluefin tuna (<i>T. thvnnus</i> L.,
71	1758). Albacore is one of the smallest tunas and Atlantic bluefin tuna (BFT)
72	one of the largest in the family Scombridae. While albacore is a widely

73 distributed species, inhabiting both temperate and tropical pelagic waters of

0		
2 3 1	74	all oc
4 5 6	75	Ocea
7 8	76	From
9 10	77	Harve
11 12	78	Atlan
13 14 15	79	(Mag
16 17	80	base
18 19	81	deve
20 21	82	make
22 23 24	83	press
24 25 26	84	Critic
27 28	85	matu
29 30	86	geog
31 32 32	87	perio
33 34 35	88	2005
36		
37 38	89	S
39 40	90	urger
41 42 42	91	inclue
43 44 45	92	(Juar
46 47	93	has t
48 49	94	popu
50 51	95	popu
52 53	96	of mo
54 55 56	97	and r
57 58	98	1999
59 60		

1

ceans, the distribution of Atlantic BFT is limited to the North Atlantic an and Mediterranean Sea (e.g. Nakamura 1969; Collette & Nauen 1983; nentin & Fonteneau 2001). Both species coexist in the Mediterranean Sea. ests of these species are large and of high economical value, especially tic BFT, which is sold for high prices in Japanese fish markets nuson et al. 1994). An important Atlantic BFT aquaculture industry, d on the fattening of locally collected fish in floating cages, has loped in the Mediterranean. Moreover, these tunas' life history traits e them susceptible to collapse under continued excessive fishing sure, as their population growth rates are low (De Roos & Persson 2002). al life-history traits include long life spans, large body sizes, late sexual rity (around 4-5 years but up to 8 years for the Western Atlantic BFT), raphically restricted spawning sites, and relatively short spawning ds of 1 or 2 months (Fromentin & Fonteneau 2001; Fromentin & Powers ; Rooker et al. 2007; Fromentin 2009; Juan-Jordá et al. 2011). ince stocks of albacore and Atlantic BFT are currently overexploited, an nt need exists to improve conservation and management efforts, ding the development of alternative methods of population assessment n-Jordá *et al.* 2011; Collette *et al.* 2011). The management of these tunas to be at the population level, because the extent and dynamics of lation structuring underlies the resilience and sustainability of harvested lations. Previous studies of population structure have used four classes olecular markers: allozymes, DNA blood groups, mitochondrial RFLPs microsatellite loci (Chow & Ushiama 1995; Yeh et al. 2007; Takagi et al. ; Takagi et al. 2001; Ely et al. 2002; Pujolar et al. 2003; Arrizabalaga et al.

Animal Genetics

100	
100	Carlsson et al. 2007; Boustany et al. 2008; Riccioni et al. 2010; Davies et al.
101	2011; Viñas et al. 2011). Despite these efforts to describe stock structure in
102	albacore and Atlantic BFT, the population structures of these species remain
103	controversial (Arrizabalaga <i>et al.</i> 2004; Walli <i>et al.</i> 2009; Galuardi <i>et al.</i> 2010).
104	Presently, albacore populations are divided into six management units
105	(namely the Mediterranean, North Atlantic, South Atlantic, Indian Ocean,
106	North Pacific and South Pacific stocks) and Atlantic BFT into two units
107	(namely the Western Atlantic stock and the Eastern Atlantic and
108	Mediterranean stock). However, the results of population surveys based on
109	microsatellite variability illustrate that these management units might not be
110	consistent with the genetic structures of both species (Riccioni et al. 2010;
111	Davies <i>et al.</i> 2011; Viñas <i>et al.</i> 2011).
112	Two factors explain the current lack of consensus on genetic structure
112	Two factors explain the current lack of consensus on genetic structure.
112 113 114	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used
112 113 114 115	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used
112 113 114 115	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used large numbers of molecular markers, such as multiple single nucleotide
112 113 114 115 116	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used large numbers of molecular markers, such as multiple single nucleotide polymorphisms (SNPs), which can be assayed rapidly in large numbers of fish to yield high statistical power to test population level genetic hypotheses (e.g.
112 113 114 115 116 117	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used large numbers of molecular markers, such as multiple single nucleotide polymorphisms (SNPs), which can be assayed rapidly in large numbers of fish to yield high statistical power to test population-level genetic hypotheses (e.g. Orden 2011: Helvar et al. 2011)
112 113 114 115 116 117 118	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used large numbers of molecular markers, such as multiple single nucleotide polymorphisms (SNPs), which can be assayed rapidly in large numbers of fish to yield high statistical power to test population-level genetic hypotheses (e.g. Ogden 2011; Helyar <i>et al.</i> 2011).
112 113 114 115 116 117 118 119	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used large numbers of molecular markers, such as multiple single nucleotide polymorphisms (SNPs), which can be assayed rapidly in large numbers of fish to yield high statistical power to test population-level genetic hypotheses (e.g. Ogden 2011; Helyar <i>et al.</i> 2011). The goals of the present study were to develop SNP markers in albacore
 112 113 114 115 116 117 118 119 120 	Two factors explain the current lack of consensus on genetic structure. First, none of the previous genetic studies included samples over the entire distributional areas of these tunas. Second, none of the previous studies used large numbers of molecular markers, such as multiple single nucleotide polymorphisms (SNPs), which can be assayed rapidly in large numbers of fish to yield high statistical power to test population-level genetic hypotheses (e.g. Ogden 2011; Helyar <i>et al.</i> 2011). The goals of the present study were to develop SNP markers in albacore and Atlantic BFT and to use these markers to make a preliminary survey

122 tunas (Table 1, Fig. 1). The development of SNP markers will aid in the ability

to conduct collaborative studies among laboratories without the need for
standardizing alleles. Further, the development of a large number of markers
will increase the power of genetic analysis to detect the small differences
among populations that are expected in high gene-flow species, such as the
tunas.

129 Material and methods

130 Sample collection

Samples of muscle, fin or heart tissue from 460 albacore were collected at 8 locations (representing samples from feeding grounds and including a mixture of juveniles and adults) over the distribution of the species (Table 1; Fig. 1). Additional tissue samples from 107 Atlantic bluefin tuna (BFT) were collected from 3 locations: Western Atlantic, Bay of Biscay and Mediterranean Sea (Table 1). While the Bay of Biscay sample included a mixture of juveniles and adults from a feeding ground, the samples of Western Atlantic and Mediterranean Sea were composed of young-of-the-year (YOY) individuals incapability of trans-oceanic migration and, thus, represented reference samples for both spawning areas (Rooker et al. 2008). Samples were either frozen and stored at -20° C, or were preserved in 96% ethanol at 4° C. DNA was extracted from tissues using the DNeasy 96 Blood & Tissue Kit (Qiagen, Hilden, Germany) and quantified using a NanoDrop 1000[™] spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA) prior to storage at -20°C for further analysis.

Animal Genetics

146	
147	SNP discovery in albacore (Thunnus alalunga)
148	Single nucleotide polymorphism (SNP) discovery via comparative sequencing
149	of nuclear DNA fragments was performed on 35 albacore from widely
150	separated areas. Specifically, five fish were selected from each of the six
151	currently hypothesized stocks, Mediterranean, Indian Ocean and Northern
152	and Southern parts of Atlantic and Pacific Oceans, except for the North
153	Atlantic, where 10 fish were used. SNPs were mined from 54 nuclear DNA
154	fragments (Table S1) and were amplified with primers designed with Primer3
155	(Rozen & Skaletsky 2000). In approach I, EPIC primers (Exon-Priming, Intron-
156	Crossing primers; Slate et al. 2009) for 19 DNA fragments (average length
157	318 bp) were obtained from the literature (references in Table S1). The
158	primers for the remaining 35 DNA fragments were designed from the
159	alignment of sequences from publically available databases (GenBank and
160	Ensembl). In approach II, 17 pairs of degenerate primers were designed from
161	several teleost sequences (average length 420 bp). In approach III, 18 pairs
162	of primers were designed from Thunnus DNA sequences (average length 487
163	bp).
164	Tables S1 and S2 show fragment amplification specifications. Briefly, we
165	used conventional polymerase chain reaction (PCR) to amplify 30 of 54
166	fragments and used touchdown (TD) methodology to amplify the remaining
167	fragments. Reactions were carried out in a thermo-cycler, GeneAmp [®] PCR
168	System 2700, GeneAmp [®] PCR System 9700 or Veriti 96 well Thermal Cycler
169	(Applied Biosystems, Foster City, CA), and iCycler (Biorad Laboratories,

3
4
5
6
7
י 8
a
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31 22
ა <u>∠</u>
33
34
35
36
37
38
39
40
41
42
43
44
45
46
<u>4</u> 7
- <u>-</u> -1 18
- - -0 /0
43 50
50
51
ວ2 ເວ
53
54
55
56
57
58
59
60

Hercules, CA). The purified PCR products were sequenced in one direction
with either the forward or the reverse PCR primer on an Applied Biosystems
(ABI) 3130X capillary electrophoresis Analyzer, with ABI BigDye Terminator
version 3.1 Chemistry (Applied Biosystems). Base-calling from
chromatograms was performed using SeqScape v2.5 (Applied Biosystems).
The BLASTN algorithm was used to verify that the target locus had been
amplified.

177 Nucleotide differences at a site in aligned sequences were considered to 178 be a SNP, but only when flanking sequences had high quality and the 179 alternative nucleotide was present in at least two individuals (out of 35; see 180 above). After filtering for SNPs matching the technical requirements of the 181 assays, we gave priority to selecting at least one SNP per fragment for a total of 128 SNPs for genotyping the 460 albacore with TagMan[®] OpenArray[®] 182 183 technology (Applied Biosystems). Moreover, a SNP was chosen if it was not 184 located near the ends of the sequence and if it was more than two bases 185 away from any other SNP (Custom TagMan Genomic Assays Protocol 186 Submission Guidelines).

187

188 Cross-species amplifications in Atlantic bluefin tuna (*Thunnus thynnus*)

189 SNP discovery in Atlantic BFT was performed by cross-species amplification

- 190 of the 128 SNPs selected for genotyping in albacore. The 128 SNPs were
- 191 genotyped with TaqMan ® OpenArray ® technology in 107 Atlantic BFT
- 192 samples. The same criteria used to validate SNPs in albacore were used to
- 193 validate individual SNPs in Atlantic BFT.

194	
195	Population analysis
196	Figure 2 outlines the procedures used in this study, starting from SNP
197	discovery in albacore, to the selection of a subset of SNPs (panel) with origin
198	assignment (including loci under selection) or demographic analysis.
199	Genotyping call rate and minor allele frequencies (MAF) were obtained for
200	each SNP locus using AutoCaller™ 1.1 (Applied Biosystems). A SNP was
201	validated if the polymorphism remained in the genotyping results and could be
202	reliably scored. SNPs with unclear genotypes and those with a call rate below
203	70% were discarded. Deviation from Hardy-Weinberg expectations (HWE)
204	was evaluated for each locus and each sampling location (Fisher's exact test
205	in GENEPOP 4.0; Rousset 2008). The exact test for linkage disequilibrium (LD),
206	as implemented in GENEPOP, was used to detect disequilibria between SNPs
207	on the same DNA fragment and between SNPs on different fragments; P <
208	0.001 was used as critical probability for LD tests. SNP loci exhibiting
209	significant LD were phased into haplotype blocks using the Bayesian
210	statistical method implemented in PHASE 2.1 for each sample independently
211	(Stephens et al. 2001).
212	Expected heterozygosity (H_e), F_{IS} and F_{ST} were estimated with FSTAT 2.9.3
213	(Goudet 2001). SNPs exhibiting significant departures from HWE ($P < 0.001$)
214	in one or more samples were deemed unsuitable for estimating population
215	structure and were discarded. When two or more loci occurred on the same
216	DNA fragment, including both haplotype blocks and individual SNP loci, the
217	locus with the largest $H_{\rm e}$ was selected to ensure independence among the

2
1
4 5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
15
40
40
47
48
49
50
51
52
52
55
34 55
55
56
57
58
59
60

1

218	markers. Loci with large heterozygosities provide more statistical power for
219	population structure analysis than loci with small heterozygosities (Haasl &
220	Payseur 2011; Morin <i>et al.</i> 2004; Rosenberg <i>et al.</i> 2003; Ryman <i>et al.</i> 2006)
221	The SNP panel consisted of these filtered SNPs.

222 We searched for candidate loci under selection (outlier loci) among the 223 remaining loci using the Bayesian likelihood method, as implemented in 224 BAYESCAN 2.0 (Foll & Gaggiotti 2008) and LOSITAN (Beaumont & Nichols 225 1996; Antao et al. 2008). Loci identified by BAYESCAN and LOSITAN as outliers 226 were removed from the SNP panel (Richter-Boix 2011). Briefly, two alternative 227 models were defined in BAYESCAN (including and excluding the effect of 228 selection) and their respective posterior odds (PO), the ratio of the posterior 229 probabilities of the two models, were calculated using 20 pilot runs of 5000 230 iterations and an additional burn-in of 50 000 iterations, for a total of 100 000 231 iterations (sample size of 5000 and thinning interval of 10). While only loci 232 with positive log₁₀PO values were considered, strong support for selection 233 was limited to loci with $log_{10}PO > 1$ (*P* < 0.09; BAYESCAN 2.0 user manual). 234 On the other hand, LOSITAN identifies outlier loci from a plot of heterozygosity 235 versus F_{ST} . To avoid an upward bias in quantiles, LOSITAN was first run for all 236 loci to estimate the mean neutral F_{ST} . Loci that were outside the 0.99 237 confidence interval were removed using only the putative neutral loci to 238 compute again the mean neutral F_{ST} . A second run was then conducted with 239 all loci using the last computed mean.

POWSIM 4.0 (Ryman *et al.* 2006) was used to estimate the statistical power
required to detect various levels of differentiation with the SNPs developed for

242	albacore and Atlantic BFT in this study. Burn-in consisted of 1000 steps
243	followed by 100 batches of 1000 steps. X^2 and Fisher's probabilities were
244	used to test the significance of an F_{ST} value for each replicate run. The
245	number of significant F_{ST} values in 1000 replicate simulations provided an
246	estimate of statistical power for a given level of divergence, which was
247	controlled by allowing frequencies to drift for a given number of generations.
248	Simulated effective populations sizes (N_e) equalled 2000 fish. For albacore, all
249	41 SNPs + blocks, 9 blocks only and 32 SNPs only were examined separately
250	for statistical power for divergences ranging from F_{ST} = 0.0005 to 0.016.
251	Population structure was estimated with F_{ST} between samples and with
252	Bayesian individual assignments implemented in STRUCTURE 2.3.3 (Pritchard
253	et al. 2000). Pairwise F_{ST} (Weir & Cockerham 1984) values were estimated
254	with FSTAT 2.9.3 (Goudet 2001) and with globally corrected <i>p</i> -values. FSTAT
255	combines individual locus <i>p</i> -values weighting them according to their
256	polymorphism level (Petit et al. 2001). Population groups were defined by
257	non-significant values of mean F_{ST} between samples and by significant values
258	of F_{ST} with other populations (e.g. Waples & Gaggiotti 2006). STRUCTURE
259	uses a Bayesian method to identify the number of clusters (K) of related
260	individuals using HWE and gametic disequilibria among multilocus genotypes.
261	We used the admixture model, independent allele frequencies between
262	populations and the LOCPRIOR option. We compared log-likelihood ratios in 10
263	STRUCTURE runs for values of $K = 1$ to 10 (Pritchard <i>et al.</i> 2000). Each run
264	consisted of 10 000 iterations with a burn-in of 10 000. CLUMPP 1.1.2
265	(Jakobsson & Rosenberg 2007) was used to determine optimal assignments
266	of individual to clusters by maximizing the similarity between pairs of

genotypes in different replicates. These groupings were visualized with DISTRUCT 1.1 (Rosenberg 2004). Outlier loci that were not used to estimate F_{ST} , were added for the STRUCTURE analyses as the latter does not require neutral markers, unlike the F_{ST} analysis. **Results** SNP discovery and validation in albacore tuna Fifty-four fragments of nuclear DNA were sequenced in 35 albacore tunas (Table S1). Thirty-five of the 54 fragments showed a high degree of homology with the orthologous sequences in several fishes (BLASTN; E-value < 10^{-5}). including 14 best hits corresponding to other species of *Thunnus* (Table S3). A total of 616 SNPs were discovered, in which an alternative allele was present in at least 2 individuals, with a mean of 11.4 (SD ±10) SNPs per fragment and a ratio of 1/36 bp. At least 1 SNP was present in each DNA fragment, except for a fragment coding for metallothionein (MT). A total of 195 SNPs were present in fragments amplified with EPIC primers (approach I); 182 SNPs were found in fragments amplified with degenerate teleost primers (approach II); and 239 SNPs were present in DNA fragments amplified with Thunnus spp. primers (approach III). In addition to SNPs, 19 small indels, 1–5 nucleotides in length, were found in 14 fragments with a majority corresponding to mono- or bi-nucleotide indels (84.2%).

28	A total of 128 candidate SNPs were selected to genotype the albacore
29	population samples and included 32, 47 and 49 SNPs selected from
29	fragments obtained with approaches I, II and III, respectively. A total of 23
29	(18%) SNPs failed to amplify for routine genotyping, and 2 SNP loci failed to
29	exceed call rates above 70%. Another 24 loci among the remaining 103 SNPs
29	could not be reliably scored. The remaining 79 validated SNPs (Table S4)
29	showed a mean call rate of 91 ±5% and an average minor allele frequency
29	(MAF) of 0.17 ±0.14 (range 0.001–0.489). Validation success was 72%, 66%
29	and 51% for approaches I, II and III, respectively.
29	
29	SNP panel for population genetic studies in albacore
30	Twelve of the 79 validated SNPs departed significantly from HWE in one or
30	more sampling locations and were discarded. The remaining 67 SNPs were
30	tested for linkage disequilibrium (LD). No SNPs were found in LD between
30	DNA fragments; however, 21 SNPs were in LD within fragments and were
30	phased into 9 haplotype blocks (Table S5). After selection of only one
30	independent locus per DNA fragment (see Methods), the final panel of
30	markers included 41 independent markers: 32 individual SNPs, plus 9
30	haplotype blocks (53 SNPs in total; Table 2). Analysis of these SNPs with
30	BAYESCAN showed no candidate loci influenced by selection. However,
30	LOSITAN detected 3 SNP loci, HIF1A4, MTF1 and MYC, with significantly
31	larger genetic divergences than expected from neutrality. These loci were
31	assumed to be embedded in candidate genes under divergent selection or in
31	DNA fragments linked to genes influenced by selection. In contrast, the low

313	level of divergence for PRDX2 suggested that balancing selection may be
314	influencing this locus, or a nearby locus. Interestingly, MTF1 and PRDX2
315	sequences showed the highest homology with orthologs of the teleosts Fugu
316	rubripes and Thunnus maccoyii, respectively (Table S3), but no homologies
317	were found for HIF1A4 and MYC in the teleosts tested. Overall, the average
318	expected heterozygosity over loci was $H_{\rm e}$ = 0.278 ±0.201 and the average
319	inbreeding coefficient was F_{IS} = 0.032 ±0.085 for the 41 SNP loci in the final
320	panel (Table 2).

322 Genetic structure in albacore tuna

POWSIM simulations indicated that the 41 independent markers (32 SNPs and 9 haplotype blocks) together were able to detect significant differences among samples with F_{ST} = 0.002 in about 84% of the tests and with $F_{ST} \ge 0.004$ in 100% of the tests (Table 3). The nine multi-allelic haplotype blocks alone provided about the same amount of statistical power for detecting differences among populations as did the 32 individual SNPs. Each set of markers was able to detect values of $F_{ST} \ge 0.004$ in at least 97% of the tests. Fisher's method for detecting significant differences among samples provided less statistical power than did the X^2 tests. Analyses using the 32 SNPs and nine haplotype blocks together revealed an overall F_{ST} = 0.017 ±0.003 (P < 0.05) among the eight albacore sampling locations. Levels of divergence were not significant between sampling locations within oceans, but were significant between oceans (Table 4). Samples from the NE Atlantic (IRE and BIS) were not significantly different

Animal Genetics

2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32 22		
აა 24		
34		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50 E4		
51 50		
02 52		
53		
55		
56		
57		
58		
59		
60		

337	from each other or from a sample from the SE Atlantic (SEA). Likewise, no
338	divergence was detected between the three samples from the Pacific (NP,
339	SEP, SWP). However, all comparisons between oceans were significant,
340	yielding four differentiated genetic entities: 1) NE Atlantic, 2) Mediterranean
341	Sea, 3) Pacific Ocean and 4) Indian Ocean). Fish from the western
342	Mediterranean (BAL) showed the highest divergence from the other locations
343	with an average F_{ST} = 0.034 (range: 0.021–0.050). Fish from the Indian
344	Ocean (IN) were most divergent from the Atlantic and Mediterranean sample
345	locations (mean: F_{ST} = 0.030), but less divergent from Pacific Ocean samples
346	(F_{ST} = 0.010). The individual Bayesian clustering (STRUCTURE) indicated the
347	largest likelihood of population structure was $K = 3$, placing samples into three
348	groups: Mediterranean Sea, Atlantic Ocean, and Indo-Pacific (Fig. 3).
349	Analysis with $K = 4$ showed that Indian Ocean albacore were differentiated to
350	a small degree from Pacific Ocean albacore, as reflected in the distribution of
351	F_{ST} values between these locations.
352	
353	SNP panel for Atlantic bluefin tuna
354	Primers for the 128 albacore SNPs were used in cross-species reactions to
355	develop SNPs in BFT. Although 32 SNPs successfully amplified, 9 SNPs had
356	low call rates (below 70%), had unclear genotypes, or were not polymorphic,
357	and hence were discarded. This yielded 23 validated SNPs (18%) for BFT.
358	Out of these 23, 18 had been validated also when genotyping albacore while
359	the other five SNPs (GNRH3-1-107, LDHB-129, CYCS-161, CS3-118, and
360	OPC02-45; Table S6) were reported as reliably scored and polymorphic only

~
2
2
3
4
_
5
6
0
7
8
0
9
10
10
11
12
10
13
1/
14
15
16
17
17
18
19
20
∠∪
21
<u> </u>
22
23
24
∠4
25
20
26
07
21
28
20
29
30
24
31
32
52
33
~ ~
34
25
35
36
00
37
00
১১
30
00
40
41
12
44
43
44
15
70
46
41
10
40
49
50
E 4
21
52
52
53
- A
54
66
55
56
57
FO
ъх
50
23
60

in BFT. The validation success rates in BFT for SNP that had been
discovered in albacore by approaches I, II and III were 28% (9 of 32 SNPs),
15% (7 of 47 SNPs) and 14% (7 of 49 SNPs), respectively. Additionally, one
SNP was discarded from the final panel due to a significant deviation from
HWE in at least one sample (Table S6). Tests for LD between the remaining
22 BFT SNPs detected two cases of two linked SNP loci in a single fragment
(Table S5). Linked loci were phased into haplotypes. Significant LD was not
detected among SNPs on different DNA fragments. A final set of 15
independent markers, 13 individual SNPs and 2 haplotype blocks, were
suitable for surveys of BFT populations (17 SNPs in total; Table 5).
Average expected heterozygosity among the 15 loci was $H_{\rm e}$ = 0.272
± 0.178 , and the average inbreeding coefficient was $F_{IS} = 0.096 \pm 0.133$. The
low number of markers tested in BFT precluded the use of outlier detection
software, as a larger number of SNPs are required to obtain a reliable
estimate of the neutral expectation from which the outliers are detected.
Therefore, all 15 loci were used to estimate population structure with F_{ST} and
STRUCTURE.
Genetic structure in Atlantic bluefin tuna
The POWSIM simulations and the average frequencies for the 13 SNPs and 2
blocks indicated that statistical power increased from only 0.064 for F_{ST} =

- 383 and to 1.0 for F_{ST} = 0.080 (Table 6). The 15 BFT SNPs showed significant
- 384 overall differentiation among populations in the NW Atlantic, NE Atlantic and

Animal Genetics

2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
10
-1-1 15
40
46
47
48
49
50
51
52
52
55
04 55
55
56
57
58
59

60

385	Mediterranean (F_{ST} = 0.029 ±0.024, $P < 0.05$). Populations in the Bay of
386	Biscay and the Mediterranean differed from the populations in the NW Atlantic
387	(BB–NWA, <i>F</i> _{ST} = 0.120 ±0.091, <i>P</i> < 0.01; MED–NWA 0.116 ±0.078, <i>P</i> < 0.01)
388	However, the Bay of Biscay and the Mediterranean did not differ significantly
389	from each other (F_{ST} = 0.004 ±0.007). STRUCTURE indicated that the three
390	samples most likely represented two populations ($K = 2$), 1) NW Atlantic and
391	2) Bay of Biscay and Mediterranean (Fig. 4).

392

393 **Discussion**

394 Our study outlines the development and validation of SNPs in the genomes of 395 albacore and Atlantic bluefin tuna and provides a basis for defining discrete 396 stocks to aid in the commercial harvests of these species. We developed de 397 novo 53 SNPs for albacore and 17 cross-species SNPs for Atlantic bluefin 398 tuna. While the focus of the study was on the development of SNP markers, 399 the distributions of our samples allow a preliminary analysis of large-scale 400 population structure. Several variables influence the ability of a set of 401 molecular markers to detect genetic differences between populations. In 402 addition to the well known effects of sample size on power, the geographical 403 extent of a set of samples is crucial to describing population structure. 404

405 SNP discovery in Albacore tuna

- 406 Our search for variable nucleotide sites yielded 128 SNPs. Of these, 79
- 407 (62%) could be validated and were selected for routine genotyping. From

408	these, we selected a final panel of 53 SNPs distributed over 41 loci. The 62%
409	validation success rate is similar to SNP validation success rates in other
410	studies of fishes, including Gadus morhua (54%) (Moen et al. 2008),
411	Oncorhynchus nerka (39%), O. keta (54%) and O. tshawytscha (64%) (Smith
412	et al. 2005) and Engraulis encrasicolus (59%) (Molecular Ecology Resources
413	Primer Development Consortium <i>et al.</i> 2012).
414	Our results allow an assessment of levels of polymorphism in the albacore
415	genome. A total of 616 SNPs were discovered with an overall ratio of 1 SNP
416	for each 36 base pairs. This value indicates higher levels of polymorphism in
417	albacore than has been reported, for example, in the salmonids,
418	Oncorhynchus keta (1/175 bp), O. nerka (1/242 bp) and O. tshawytscha
419	(1/301 bp) (Smith <i>et al.</i> 2005), <i>Salmo salar</i> (1/586 bp overall, Hayes <i>et al.</i>
420	2004) or in intronic (1/405 bp) and exonic (1/1448 bp) regions (Ryynänen &
421	Primmer 2006). The large value for albacore, however, is similar to that for
422	European anchovy (<i>Engraulis encrasicolus</i>) (1/54 bp, Zarraonaindia 2011).
423	
424	SNP development in Atlantic bluefin tuna
425	We used primers for the 128 SNPs detected in albacore to search for SNPs in
10(

Atlantic BFT and achieved an overall validation success rate of 18% (23

SNPs). This success rate indicates that the regions flanking these SNPs

contain highly conserved sequences so that the SNP primers developed for

albacore also work in Atlantic BFT. When successful, cross-species

- amplifications are a cost-effective method of SNP discovery (Malhi et al.
- 2011). Successful cross-species amplifications are thought to be free of

Page 19 of 53

1 2

Animal Genetics

3
4
5
6
7
8
à
3
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
53
54
55
00
20
5/
58
59
60

432	ascertainment bias, especially for SNPs embedded in conserved sequences
433	near or within coding regions (Malhi et al. 2011). Cross-species amplifications
434	have generally not been used to develop SNP markers in fish, because of
435	generally low success rates in other vertebrates (e.g. Seeb et al. 2011; Miller
436	et al. 2011). For example, only about 1% of the nearly 50 000 SNP loci
437	developed for domestic sheep were polymorphic in two related ungulates
438	(Miller et al. 2011). In a panel of a similarly large number of SNPs designed
439	for cattle, only about 2.5 and 3% of the cross-species amplifications were
440	successful in two lines of European bison and two species of antelopes,
441	respectively (Kaminski et al. 2012; Ogden et al. 2012). However, the species
442	used in these cross-amplification attempts were distantly related to one
443	another, unlike albacore and Atlantic BFT, which are phylogenetically closely
444	related (Chow & Kishino 1995; Chow et al. 2006) and are known to hybridize
445	(Viñas & Tudela 2009). Our results are similar to those of Mahli et al. (2011),
446	who reported up to 30% cross amplification successes between related
447	species of Old World monkeys.

448

449 Stock structure

- 450 The statistical power of the SNPs is influenced by several factors. First,
- 451 the power of the markers to detect population structure increases substantially
- 452 when locus heterozygosities are larger than $H_e \ge 0.2$ (Haasl & Payseur 2011).
- 453 In our study, about 60% of the SNP loci in both species showed $H_e > 0.2$.
- 454 Second, while individual SNPs show less power than multi-allelic
- 455 microsatellite loci (Ryman et al. 2006; Haasl & Payseur 2011), combining

4
5
6
7
γ Ω
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
36
27
31 20
38
39
40
41
42
43
44
45
46
- 1 0 //7
41
40 40
49
50
51
52
53
54
55
56
57
52
50
59
60

1 2 3

456	physically linked SNPs into haplotype blocks increases statistical power
457	(Gattepaille & Jakobsson 2012). For example, Mesnick et al. (2011) retrieved
458	the same population structure for sperm whales (Physeter macrocephalus)
459	with 6 microsatellites, or with 36 SNPs representing 24 independent markers,
460	including 8 haplotype blocks. In our study, POWSIM simulations showed that
461	haplotype 9 blocks of linked SNPs in albacore had about the same statistical
462	power as 32 individual SNPs. In any case, haplotype blocks and SNPs
463	together yielded a type II error rate (failure to detect a real difference) for both
464	species of 0% for divergences of F_{ST} = 0.004 or greater.

465

466 Stock structure in Atlantic bluefin tuna

467 The International Commission for the Conservation of Atlantic Tuna (ICCAT) 468 currently manages Atlantic BFT as two stock units that are divided by the mid-469 ocean longitude at 45°W (Fromentin & Powers 2005). This geographically 470 defined stock concept is supported by two spatially separated spawning areas, 471 one in the Mediterranean and the other in the Gulf of Mexico (Rooker et al. 472 2007). However, tagging and microchemical studies suggest a more complex 473 stock distribution pattern (Rooker et al. 2008; Walli et al. 2009; Galuardi et al. 474 2010). Foraging aggregations in the NE Atlantic and elsewhere may 475 potentially originate from both main spawning areas, because trans-Atlantic 476 migrations in both directions have been documented (Magnuson et al. 1994; 477 Mather et al. 1995; Lutcavage et al. 1999; Block et al. 2001; Block et al. 2005; 478 Rooker et al. 2006). However, homing to natal spawning areas (Boustany et 479 al. 2008; Block et al. 2005; Teo et al. 2007; Dickhut et al. 2009) appear to

480	isolate the two major groups. Recent studies with mtDNA and microsatellite
481	markers show that populations in the Mediterranean Sea may also be
482	structured into partially isolated subpopulations (Riccioni et al. 2010; Viñas et
483	<i>al</i> . 2011).

484	The Atlantic BFT SNP panel developed in the present study, although
485	limited in number due to the SNP discovery approach followed, is the
486	beginning of a valuable tool to improve the management of this overexploited
487	species. The advent of Next Generation Sequencing (NGS) technologies such
488	as Roche's 454 or Illumina's HiSeq platforms (see Garvin et al. 2010 and
489	Seeb et al. 2011 for a review) is making possible to discover hundreds-
490	thousands of SNP type markers in non-model organisms and, further
491	application of these techniques on BFT (and also in albacore) will improve the
492	relevance of the present reported tool. The preliminary analysis in the present
493	study confirms the genetic distinction between the two major spawning areas
494	on the western and eastern margins of the Atlantic (both F_{ST} and STRUCTURE
495	results) and is largely consistent with the ICCAT management plan. While
496	trans oceanic migrations of adults have been documented with tags, finer-
497	scale population structure may also exist. Our SNP analysis showed that the
498	foraging area sample from the Bay of Biscay clustered with the Mediterranean
499	samples indicating the Mediterranean origins of these fish. To our knowledge,
500	this is the first time a mixed age classes of Atlantic BFT in the NE Atlantic
501	have been assigned to a spawning area based on DNA data. Previous
502	insights have come from relatively expensive and laborious tagging
503	experiments (Rooker et al. 2007) and from an allozyme study comparing

samples from Azores (Mid-Atlantic) and the Mediterranean (Pujolar et al.2003).

The larger levels of differentiation than expected under neutrality may indicate that some SNP loci are embedded in genes under selection. Although the small number of SNPs for Atlantic BFT precluded tests of neutrality, the remarkably large value of F_{ST} = 0.116 indicating a high level of differentiation between populations of Atlantic BFT may result from directional selection on some SNPs. Markers influenced by directional selection often show higher F_{ST} values among populations of fishes than do neutral markers (e.g. André et al. 2011; Ackerman et al. 2011; Poulsen et al. 2011). Additional SNPs for Atlantic BFT are needed to test hypotheses of selection, to estimate population structure and to identify mixed-stock components in fishery areas.

517 Stock structure in Albacore tuna

ICCAT, the Indian Ocean Tuna Commission (IOTC), the Western and Central Pacific Fisheries Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC) manage albacore with a six-stock model, which includes 1) Mediterranean Sea, 2) North Atlantic, 3) South Atlantic, 4) Indian Ocean, 5) North Pacific Ocean and 6) South Pacific Ocean. These stocks are based on a limited understanding of spawning areas, the geographical distribution of fisheries, life-history variables and the results of tagging studies (Arrizabalaga et al. 2004).

Page 23 of 53

Animal Genetics

526	Our analyses resolved the genetic relationships among oceanic
527	populations. Pairwise F_{ST} values distinguish four albacore groups, 1)
528	Mediterranean Sea, 2) Atlantic Ocean, 3) Pacific Ocean and 4) Indian Ocean,
529	with no within-ocean heterogeneity (Table1, Fig. 1). The tests for
530	heterogeneity did not detect differences between northern and southern
531	populations within the Pacific or within the Atlantic. The Mediterranean group
532	appears to be most differentiated from other global populations, and this is in
533	agreement with previous results for microsatellites (Davies et al. 2011). Both
534	SNPs and microsatellites show that Mediterranean and North Atlantic
535	populations are partially isolated from each other, and this genetic separation
536	is consistent with tag-recapture analysis showing limited movement between
537	the North Atlantic and Mediterranean (Arrizabalaga et al. 2004). The SNP
538	data also showed that the Indian Ocean populations were genetically closer to
539	Pacific populations than to Atlantic populations. In contrast, a closer
540	relationship between Indian Ocean and Atlantic fish was reported from blood-
541	group frequencies (Arrizabalaga <i>et al.</i> 2004).
542	Overall, the genetic results together support the existence of at least 4
543	genetic entities, Mediterranean Sea, Atlantic, Pacific and Indian oceans that
544	are isolated from one another to some degree. These results support
545	management plans in which oceanic populations, including the Mediterranean,
546	are managed separately, but differ from the present use of six management
547	units (stocks). However, due to our relatively limited sampling of locations and
548	individuals within ocean basins, the current six-stock management model
549	represents a conservative approach that reduces the risk of inadvertently
550	overfishing some populations.

Conclusions

We developed 128 SNP markers de novo in albacore tuna and used a final panel 53 SNPs (41 SNPs, including 32 individual SNPs and 9 haplotype blocks) to genotyped over 400 individuals collected over the distributional range of the species. Although the coarse scale of sampling limits our inferences about population structure, the results for albacore are largely consistent with previous molecular studies in indicating the existence of at least four albacore populations: Mediterranean Sea, Atlantic, Pacific and Indian oceans. We then used SNP assays developed for albacore to develop 17 validated SNPs in Atlantic bluefin tuna (15 SNPs, including 13 individual SNPs and 2 haplotype blocks). This small number of SNPs discriminated the two major spawning areas of Atlantic BFT in the Gulf of Mexico and Mediterranean Sea, and identified the Mediterranean origin of juveniles foraging in the Bay of Biscay. The additional development of new SNPs will increase the statistical power needed to resolve the population structures of these two overfished tunas.

SNPs have two advantages over other markers, such as allozymes and microsatellites, for the international management of far ranging tunas. First, a large number of SNPs, individually or in haplotype blocks, provides a large amount of statistical power to detect biologically meaningful genetic differences between stocks of highly mobile tunas. High mobility is expected to produce only small differences between stocks. Second, and most importantly, SNP assays can be used in any laboratory without the need for standardizing allelic variants among research or management groups.

Animal Genetics

575	International cooperation in establishing a universal database is essential for
576	the conservation and management of these vulnerable species with stocks
577	that straddle international boundaries. The SNPs developed for both species
578	can provide valuable tools for population management and can additionally be
579	used as markers to trace fishery products.
580	
581	Acknowledgements
582	The authors thank I. Miguel and F. Rendo (Sequencing and Genotyping
583	Service of the UPV/EHU, SGIKer) for their technical assistance as well as C.
584	Manzano (UPV/EHU), M. A. Pardo (AZTI-Tecnalia), I. Cancio (UPV/EHU) and
585	G. Heinisch (University of New Hampshire) for their collaboration. We are
586	grateful to J. Areso, D. Fuller, K. Schaefer, V. Allain, S.Y. Yeh, I. Fraile and I.
587	Arregi for providing samples. This work was supported by ATM2010Hegaluze
588	(351BI20090047) ATM2009Hegalabur (351BI20090034) and
589	ATM2008Bonorte (ACM2008BONORTE) projects funded by the Basque
590	Government, and the ACEITUNA (CTM2011-27505) project funded by the
591	Spanish Ministerio de Economía y Competitividad. Urtzi Laconcha's work was
592	supported by a PhD grant by the Fundación Centros Tecnologicos Iñaki
593	Goenaga. Sequencing was performed at the General Research Services Unit,
594	SGIKer- University of the Basque Country (UPV/EHU).
595	
596	Conflict of interest
597	The authors have declared no potential conflicts.
	 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

References

60	0 Ackerman M.W., Habicht C. & Seeb L.W. (2011) Single-Nucleotide
60	Polymorphisms (SNPs) under diversifying selection provide Increased
60	2 accuracy and precision in mixed-stock analyses of sockeye salmon from
60	3 the Copper River, Alaska. <i>Transactions of the American Fisheries Society</i>
60	4 140 , 865–81.
60	5 André C., Larsson L.C., Laikre L., Bekkevold D., Brigham J., Carvalho G.R.,
60	6 Dahlgren T.G., Hutchinson W.F., Mariani S., Mudde K., Ruzzante D.E. &
60	7 Ryman N.(2011) Detecting population structure in a high gene-flow
60	8 species, Atlantic herring (<i>Clupea harengus</i>): direct, simultaneous
60	evaluation of neutral vs putatively selected loci. <i>Heredity</i> 106 , 270–80.
61	0 Antao T., Lopes A., Lopes R.J., Beja-Pereira A. & Luikart G. (2008) LOSITAN:
61	A workbench to detect molecular adaptation based on a FST-outlier
61	2 method. BMC Bioinformatics 9, 323–7.
61	3 Arrizabalaga H., Costas E., Juste J., González-Garcés A., Nieto B. & López-
61	4 Rodas V. (2004) Population structure of albacore <i>Thunnus alalunga</i>
61	5 inferred from blood groups and tag-recapture analyses. <i>Marine Ecology</i>
61	6 Progress Series 282 , 245–52.
61	7 Arrizabalaga H., López-Rodas V., Costas E. & González-Garcés A. (2007)
61	8 Use of Genetic data to assess the uncertainty in stock assessments due to
61	9 the assumed stock structure: The case of albacore (<i>Thunnus Alalunga</i>)
62	from the Atlantic Ocean. Fisheries Bulletin 105 , 140–46.
62	Beaumont M.A. & Nichols R.A. (1996) Evaluating loci for use in the genetic
62	2 analysis of population structure. <i>Proceedings of the Royal Society of</i>
62	3 London. Series B: Biological Sciences 263 , 1619–26.

Animal Genetics

624	Block B.A., Dewar H., Blackwell S.B., Williams T.D., Prince E.D., Farwell C.J.,
625	Boustany A., Teo S.L.H., Seitz A., Walli A. & Fudge D. (2001) Migratory
626	movements, depth preferences, and thermal biology of Atlantic bluefin
627	tuna. <i>Science</i> 293 , 1310–4.
628	Block B.A., Teo S.L.H., Walli A., Boustany A., Stokesbury M.J.W., Farwell
629	C.J., Weng K.C., Dewar H. & Williams T.D. (2005) Electronic tagging and
630	population structure of Atlantic bluefin tuna. Nature 434 , 1121–7.
631	Boustany A.M., Reeb C.A. & Block B.A. (2008) Mitochondrial DNA and
632	electronic tracking reveal population structure of Atlantic bluefin tuna
633	(Thunnus thynnus). Marine Biology 156 , 13–24.
634	Carlsson J., McDowell J.R., Carlsson J.E. & Graves J.E. (2007) Genetic
635	identity of YOY bluefin tuna from the eastern and western Atlantic
636	spawning areas. Journal of Heredity 98, 23–8.
637	Chow S. & Kishino H. (1995) Phylogenetic relationships between tuna species
638	of the genus Thunnus (Scombridae: Teleostei): Inconsistent implications
639	from morphology, nuclear and mitochondrial genomes. Journal of
640	Molecular Evolution 41 , 741–8.
641	Chow S. & Ushiama H. (1995) Global population structure of albacore
642	(Thunnus alalunga) inferred by RFLP analysis of the mitochondrial
643	ATPase gene. Marine Biology 123, 39–45.
644	Chow S., Nakagawa T., Suzuki N., Takeyama H. & Matsunaga T. (2006)
645	Phylogenetic relationships among Thunnus species inferred from rDNA
646	ITS1 sequence. Journal of Fish Biology 68 (Suppl. A), 24–35.
647	Collette B. & Nauen C. (1983) FAO species catalogue. Vol. 2 Scombrids of
648	the world. An annotated and illustrated catalogue of tunas, mackerels,

649	bonitos and related species known to date. FAO Fisheries Synopsis No.
650	125, Volume 2. FAO, Rome.
651	Collette B.B., Carpenter K.E., Polidoro B.A., Juan-Jordá M.J., Boustany A.,
652	Die D.J., Elfes C., Fox W., Graves J., Harrison L.R., McManus R., Minte-
653	Vera C.V., Nelson R., Restrepo V., Schratwieser J., Sun CL., Amorim A.,
654	Peres M.B., Canales C., Cardenas G., Chang SK., Chiang WC., de
655	Oliveira Leite Jr. N., Harwell H., Lessa R., Fredou F.L., Oxenford H.A.,
656	Serra R., Shao KT., Sumaila R., Wang SP., Watson R. & Yáñez E.
657	(2011) High Value and Long Life—Double Jeopardy for Tunas and
658	Billfishes. Science 333 , 291–2.
659	Davies C.A., Gosling E.M., Was A., Brophy D. & Tysklind N. (2011)
660	Microsatellite analysis of albacore tuna (Thunnus alalunga): population
661	genetic structure in the North-East Atlantic Ocean and Mediterranean Sea.
662	Marine Biology 158 , 2727–40.
663	De Roos A.M. & Persson L. (2002) Size-dependent life-history traits promote
664	catastrophic collapses of top predators. Proceedings of the National
665	Academy of Sciences of the USA 99 , 12907–12.
666	Dickhut R.M., Deshpande A.D., Cincinelli A., Cochran M.A., Corsolini S., Brill
667	R.W., Secor D.H. & Graves J.E. (2009) Atlantic Bluefin Tuna (Thunnus
668	thynnus) population dynamics delineated by organochlorine tracers.
669	Environmental Science and Technology 43 , 8522–7.
670	Ely B., Stoner D.S., Bremer A.J., Dean J.M., Addis P., Cau A., Thelen E.J.,
671	Jones W.J., Black D.E., Smith L., Scott K., Naseri I. & Quattro J.M. (2002)
672	Analyses of nuclear IdhA gene and mtDNA control region sequences of
673	Atlantic Northern bluefin tuna populations. Marine Biotechnology 4, 583–8.

674	Foll M. & Gaggiotti O.E. (2008) A genome scan method to identify selected
675	loci appropriate for both dominant and codominant markers: A Bayesian
676	perspective. Genetics 180, 977–93.
677	Fromentin J.M. & Fonteneau A. (2001) Fishing effects and life history traits: A
678	case study comparing tropical versus temperate tunas. Fisheries
679	<i>Research</i> 53 , 133–50.
680	Fromentin J.M., Powers J.E. (2005) Atlantic bluefin tuna: Population dynamics,
681	ecology, fisheries, and management. Fish and Fisheries 6 , 281–306.
682	Fromentin J.M. (2009) Lessons from the past: Investigating historical data
683	from bluefin tuna fisheries. Fish and Fisheries 10, 197–216.
684	Galuardi B., Royer F., Golet W., Logan J., Neilson J. & Lutcavage M. (2010)
685	Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus)
686	question current population structure paradigm. Canadian Journal of
687	Fisheries and Aquatic Sciences 67, 966–76.
688	Gattepaille L.M. & Jokobsson M. (2012) Combining markers into haplotypes
689	can improve population structure inference. <i>Genetics</i> 190 , 159–174.
690	Garvin M.R., Saitoh K. & Gharrett A.J. (2010) Application of single nucleotide
691	polymorphisms to non-model species: a technical review. Molecular
692	<i>Ecology Resources</i> , 10 , 915–934.
693	Goudet J. (2001) FSTAT, a program to estimate and test gene diversities and
694	fixation indices (version 2.9.3). Available:
695	http://www2.unil.ch/popgen/softwares/fstat.htm
696	Haasl R.J. & Payseur B.A. (2011) Multi-locus inference of population
697	structure: a comparison between single nucleotide polymorphisms and
698	microsatellites. <i>Heredity</i> 106 , 158–71.

1		
2 3 4	699	Hauser L. & Carvalho G.R. (2008) Paradigm shifts in marine fisheries
5	700	genetics: Ugly hypotheses slain by beautiful facts. Fish and Fisheries 9,
7 8	701	333–62.
9 10	702	Hayes B., Lærdahl J., Lien S., Berg P., Davidson W., Koop B., Adzhubei A. &
11 12	703	Høyheim B. (2004) Detection of single nucleotide polymorphisms (SNPs)
13 14 15	704	from Atlantic salmon expressed sequence tags (ESTs). In: Proceedings of
16 17	705	the 55th Annual Meeting of the European Association for Animal
18 19	706	Production: 5–9 September 2004; Bled, Slovenia. European Federation of
20 21	707	Animal Science.
22 23	708	Helyar S.J., Hemmer-Hansen J., Bekkevold D., Taylor M.I., Ogden R.,
24 25 26	709	Limborg M.T., Cariani A., Maes G.E. , Diopere E., Carvalho G.R. &
27 28	710	Nielsen E.E. (2011) Application of SNPs for populations genetics of non-
29 30	711	model organism: new opportunities and challenges. Molecular Ecology
31 32	712	Resources 11 (Suppl. 1), 123–36.
33 34 35	713	Jakobsson M. & Rosenberg N.A. (2007) CLUMPP: a cluster matching and
36 37	714	permutation program for dealing with label switching and multimodality in
38 39	715	analysis of population structure. <i>Bioinformatics</i> 23, 1801–6.
40 41	716	Jørgensen H.B.H., Hansen M.M., Bekkevold D., Ruzzante D.E. & Loeschcke
42 43	717	V. (2005) Marine landscapes and population genetic structure of herring
44 45 46	718	(Clupea harengus L.) in the Baltic Sea. Molecular Ecology 14, 3219–34.
47 48	719	Juan-Jordá M.J., Mosqueira I., Cooper A.B., Freire J. & Dulvy N.K. (2011)
49 50	720	Global population trajectories of tunas and their relatives. Proceedings of
51 52	721	the National Academy of Sciences of the USA 108 , 20650–5.
53 54 55	722	Kaminski S., Olech W., Olenski K., Nowak Z. & Rusc A. (2012) Single
56 57	723	nucleotide polymorphisms between two lines of European bison (Bison
58 59		

724	bonasus) detected by the use of Illumina Bovine 50 K BeadChip.
725	Conservation Genetics Resources 4 , 311–14.
726	Knutsen H., Jorde P.E., André C. & Stenseth N.C. (2003) Fine-scaled
727	geographical population structuring in a highly mobile marine species: the
728	Atlantic cod. <i>Molecular Ecology</i> 12 , 385–94.
729	Knutsen H., Jorde P.E., Albert O.T., Hoelzel A.R. & Stenseth N.C. (2007)
730	Population genetic structure in the North Atlantic Greenland halibut
731	(Reinhardtius hippoglossoides): influenced by oceanic current systems?
732	Canadian Journal of Fisheries and Aquatic Sciences 64, 857–66.
733	Knutsen H., Olsen E.M., Jorde P.E., Espeland S.H., André C. & Stenseth N.C.
734	(2011) Are low but statistically significant levels of genetic differentiation in
735	marine fishes 'biologically meaningful'? A case study of coastal Atlantic
736	cod. <i>Molecular Ecology</i> 20 , 768–83.
737	Lutcavage M.E., Brill R.W., Skomal G.B., Chase B.C. & Howey P.W. (1999)
738	Results of pop-up satellite tagging on spawning size class fish in the Gulf
739	of Maine: Do North Atlantic bluefin tuna spawn in the mid-Atlantic?
740	Canadian Journal of Fisheries and Aquatic Sciences 56 , 173–7.
741	Magnuson J.J., Block B.A., Deriso R.B., Gold J.R., Grant W.S., Quinn T.J.,
742	Saila S.B., Shapiro L. & Stevens E.D. (1994) An assessment of Atlantic
743	bluefin tuna. National Academy Press, Washington, DC.
744	Malhi R.S., Trask J.S., Shattuck M., Johnson J., Chakraborty D.,
745	Kanthaswamy S., Ramakrishnan U. & Smith D.G. (2011) Genotyping
746	single nucleotide polymorphisms (SNPs) across species in Old World
747	monkeys. American Journal of Primatology 73, 1031–40.

748	Mather F.J., Mason J.M. & Jones A.C. (1995) Historical document: life history
749	and fisheries of Atlantic bluefin tuna. NOAA Technical Memorandum 370,
750	NOAA, Miami.
751	Mesnick S.L., Taylor B.L., Archer F.I., Martien K.K., Treviño S.E., Hancock-
752	Hanser B.L., Moreno Medina S.C., Pease V.L., Robertson K.M., Straley
753	J.M., Baird R.W., Calambokidis J., Schorr G.S., Wade P., Burkanov V.,
754	Lunsford C.R., Rendell L. & Morin P.A. (2011) Sperm whale population
755	structure in the eastern and central North Pacific inferred by the use of
756	single-nucleotide polymorphisms, microsatellites and mitochondrial DNA.
757	Molecular Ecology Resources 11 (Suppl. 1), 278–98.
758	Miller J.M., Poissant J., Kijas J.W. & Coltman D.W. (2011) A genome-wide set
759	of SNPs detects population substructure and long range linkage
760	disequilibrium in wild sheep. <i>Molecular Ecology Resources</i> 11 , 314–22.
761	Moen T., Hayes B., Nilsen F., Delghandi M., Fjalestad K.T., Fevolden S.E.,
762	Berg P.R. & Lien S. (2008) Identification and characterisation of novel
763	SNP markers in Atlantic cod: evidence for directional selection. BMC
764	Genetics 9 , 18.
765	Molecular Ecology Resources Primer Development Consortium, Abreu A.G.,
766	Albaina A., Alpermann T.J., Apkenas V.E., Bankhead-Dronnet S., Bergek
767	S., Berumen M.L., Cho C.H., Clobert J., Coulon A., De Feraudy D.,
768	Estonba A., Hankeln T., Hochkirch A., Hsu T.W., Huang T.J., Irigoien X.,
769	Iriondo M., Kay K.M., Kinitz T., Kothera L., Le Hénanff M., Lieutier F.,
770	Lourdais O., Macrini C.M., Manzano C., Martin C., Morris V.R., Nanninga
771	G., Pardo M.A., Plieske J., Pointeau S., Prestegaard T., Quack M.,
772	Richard M., Savage H.M., Schwarcz K.D., Shade J., Simms E.L., Solferini

773	V.N., Stevens V.M., Veith M., Wen M.J., Wicker F., Yost J.M. &
774	Zarraonaindia I. (2012) Permanent genetic resources added to Molecular
775	Ecology Resources Database 1 October 2011-30 November 2011
776	Molecular Ecology Resources 12 , 374–6.
777	Morin P.A., Luikart G. & Wayne R.K. (2004) SNPs in ecology, evolution, and
778	conservation. Trends in Ecology and Evolution 19 , 208–16.
779	Nakadate M., Viñas J., Corriero A., Clarke S., Suzuki N. & Chow S. (2005)
780	Genetic isolation between Atlantic and Mediterranean albacore
781	populations inferred from mitochondrial and nuclear DNA markers. Journal
782	of Fish Biology 66 , 1545–57.
783	Nakamura H. (1969) Tuna Distribution and Migration. Fishing News (Books)
784	Ltd, London.
785	Nielsen E.E., Hemmer-Hansen J., Larsen P.F. & Bekkevold D. (2009)
786	Population genomics of marine fishes: identifying adaptative variation in
787	space and time. <i>Molecular Ecology</i> 18 , 3128–50.
788	Ogden R. (2011) Unlocking the potential of genomic technologies for wildlife
789	forensics. <i>Molecular Ecology Resources</i> 11 (Suppl. 1), 109–16.
790	Ogden R., Baird J., Senn H. & McEwing R. (2012) The use of cross-species
791	genome-wide arrays to discover SNP markers for conservation genetics: a
792	case study from Arabian and scimitar-horned oryx. Conservation Genetics
793	<i>Resources</i> 4 , 471–3.
794	Petit E., Balloux F. & Goudet J. (2001) Sex-biased dispersal in a migratory
795	bat: a characterization using sex-specific demographic parameters.
796	Evolution 55 , 635–40.

2	
2	
3	
4	
5	
6	
7	
6	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
<u>_</u> 2⊿	
24	
25	
26	
27	
28	
29	
20	
24	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	
60	
00	

1

797	Poulsen N.A., Hemmer-Hansen J., Loeschcke V., Carvalho G.R. & Nielsen
798	E.E. (2011) Microgeographical population structure and adaptation in
799	Atlantic cod Gadus morhua: spatio-temporal insights from gene-associated
800	DNA markers. Marine Ecology Progress Series 436, 231–43.
801	Pritchard J.K., Stephens M. & Donnelly P. (2000) Inference of population
802	structure using multilocus genotype data. Genetics 155 , 945–59.
803	Pujolar J.M., Roldán M.I. & Pla C. (2003) Genetic analysis of tuna populations,
804	Thunnus thynnus thynnus and T. alalunga. Marine Biology 143 , 613–21.
805	Riccioni G., Landi M., Ferrara G., Milano I., Cariani A., Zane L., Sella M.,
806	Barbujani G. & Tinti F. (2010) Spatio-temporal population structuring and
807	genetic diversity retention in depleted Atlantic bluefin tuna of the
808	Mediterranean Sea. Proceedings of the National Academy of Sciences of
809	<i>the USA</i> 107 , 2102–7.
810	Richter-Boix A., Quintela M., Segelbacher G. & Laurila A. (2011) Genetic
811	analysis of differentiation among breeding ponds reveals a candidate gene
812	for local adaptation in <i>Rana arvalis. Molecular Ecology</i> 20 , 1582–600.
813	Rooker J.R., Secor D.H., De Metrio G. & Rodríguez-Marín E. (2006)
814	Evaluation of population structure and mixing rates of Atlantic bluefin tuna
815	from chemical signatures in otoliths. The International Commission for the
816	Conservation of Atlantic Tuna Collective Volume of Scientific Papers 59,
817	813–8.
818	Rooker J.R., Alvarado Bremer J.R., Block B.A., Dewar H., de Metrio G.,
819	Corriero A., Krause R.T., Prince E.D., Rodríguez-Marín E. & Secor D.H.
820	(2007) Life history and stock structure of Atlantic Bluefin Tuna (Thunnus
821	thynnus). Reviews in Fisheries Science 15 , 265–310.

8	22	Rooker J.R., Secor D.H., De Metrio G., Schloesser R., Block B.A. & Neilson
8	23	J.D. (2008) Natal homing and connectivity in Atlantic bluefin tuna
8	24	populations. Science 322, 742–4.
8	25 I	Rosenberg N.A., Li L.M., Ward R. & Pritchard J.K. (2003) Informativeness of
8	26	genetic markers for inference of ancestry. American Journal of Human
8	27	<i>Genetics</i> 73 , 1402–22.
8	28 I	Rosenberg N.A. (2004) Distruct: a program for the graphical display of
8	29	population structure. Molecular Ecology Notes 4, 137–8.
8	30 I	Rousset F. (2008) Genepop'007: a complete reimplementation of the
8	31	Genepop software for Windows and Linux. Molecular Ecology Resources
8	32	8 , 103–6.
8	33 I	Rozen S. & Skaletsky H.J. (2000) Primer3 on the WWW for general users and
8	34	for biologist programmers. Methods in Molecular Biology 132, 365–86.
8	35	Humana Press.
8	36	Ryman N., Palm S., André C., Carvalho G.R., Dahlgren T.G., Jorde P.E.,
8	37	Laikre L., Larsson L.C., Palmé A. & Ruzzante D.E. (2006) Power for
8	38	detecting genetic divergence: differences between statistical methods and
8	39	marker loci. <i>Molecular Ecology</i> 15 , 2031–45.
8	40	Ryynänen H.J. & Primmer CR (2006) Single nucleotide polymorphism (SNP)
8	41	discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a
8	42	strategy for avoiding amplification of duplicated loci in Atlantic salmon
8	43	(Salmo salar) and other salmonid fishes. BMC Genomics 7, 192.
8	44	Seeb J.E., Carvalho G., Hauser L., Naish K., Roberts S. & Seeb L.W. (2011)
8	45	Single-nucleotide polymorphism (SNP) discovery and applications of SNP

846	genotyping in nonmodel organisms. <i>Molecular Ecology Resources</i> 11
847	(Suppl. 1) 1–8.
848	Slate J., Gratten J., Beraldi D., Stapley J., Hale M. & Pemberton J.M. (2009)
849	Gene mapping in the wild with SNPs: guidelines and future directions.
850	<i>Genetica</i> 136, 97–107.
851	Smith C.T., Elfstrom C.M., Seeb L. & Seeb J.E. (2005) Use of sequence data
852	from rainbow trout and Atlantic salmon for SNP detection on Pacific
853	salmon. <i>Molecular Ecology</i> 14, 4193–203.
854	Stephens M., Smith N. & Donnelly P. (2001) A new statistical method for
855	haplotype reconstruction from population data. American Journal of
856	<i>Human Genetics</i> 68 , 978–89.
857	Takagi M., Okamura T., Chow S. & Taniguchi N. (1999) PCR primers for
858	microsatellite loci in tuna species of the genus Thunnus and its application
859	for population genetic study. <i>Fisheries Science</i> 65 , 571–6.
860	Takagi M., Okamura T., Chow S. & Taniguchi N. (2001) Preliminary study of
861	albacore (Thunnus alalunga) stock differentiation inferred from
862	microsatellite DNA analysis. Fisheries Bulletin 99, 697–701.
863	Teo S.L.H., Boustany A., Dewar H., Stokesbury M.J.W., Weng K.C., Beemer
864	S., Seitz A.C., Farwell C.J., Prince E.D. & Block B.A. (2007) Annual
865	migrations, diving behavior, and thermal biology of Atlantic bluefin tuna,
866	Thunnus thynnus, on their Gulf of Mexico breeding grounds. Marine
867	<i>Biology</i> 151 , 1–18.
868	Viñas J., Alvarado Bremer J.R. & Pla C. (2004) Inter-oceanic genetic
869	differentiation among albacore (Thunnus alalunga) populations. Marine
870	Biology 145 , 225–32.

Animal Genetics

Animal Genetics

871	Viñas J. & Tudela S. (2009) A validated methodology for genetic identification
872	of tuna species (genus Thunnus). PLoS ONE 4, e7606.
873	Viñas J., Gordoa A., Fernández-Cebrián R., Pla C., Vahdet U. & Araguas R.M.
874	(2011) Facts and uncertainties about the genetic population structure of
875	Atlantic bluefin tuna (Thunnus thynnus) in the Mediterranean. Implications
876	for fishery management. Reviews in Fish Biology and Fisheries 21, 527–
877	41.
878	Walli A., Teo S.L.H., Boustany A., Farwell C.J., Williams T., Dewar H., Prince
879	E. & Block B.A. (2009) Seasonal Movements, Aggregations and Diving
880	Behavior of Atlantic Bluefin Tuna (Thunnus thynnus) Revealed with
881	Archival Tags. PLoS ONE 4, e6151.
882	Waples R.S. & Gaggiotti O. (2006) What is a population? An empirical
883	evaluation of some genetic methods for identifying the number of gene
884	pools and their degree of connectivity. <i>Molecular Ecology</i> 15 , 1419–39.
885	Waples R.S. & Naish K.A. (2009) Genetic and evolutionary considerations in
886	fishery management: Research needs for the future. In: The Future of
887	Fisheries Science in North America. Fish and Fisheries Series Volume 31
888	(ed. by R. Beamish & B. Rothschild) pp. 427–51. Springer, Netherlands.
889	Weir B.S. & Cockerham C.C. (1984) Estimating F statistics for the analysis of
890	population structure. Evolution 38, 1358–70.
891	Yeh S.Y., Treng T.D., Hui C.F. & Penney A.J. (2007) Mitochondrial DNA
892	sequence analysis on albacore, Thunnus alalunga, meat samples
893	collected from the waters off western South Africa and the eastern Indian
894	Ocean. Collective Volume of Scientific Papers. International Commission
895	for the Conservation of Atlantic Tunas 46 , 152–9.

4
5
6
7
1
8
9
10
10
11
12
13
14
14
15
16
17
10
18
19
20
21
<u>ک</u> ا
22
23
24
27
25
26
27
28
20
29
30
31
20
32
33
34
35
00
36
37
38
20
39
40
41
42
40
43
44
45
16
40
47
48
49
50
50
51
52
53
50
34
55
56
57
57
วช

1 2

- 896 Zarraonaindia I. (2011) Estudio genético de la estructura poblacional de la
 - 897 anchoa europea (*Engraulis encrasicolus*). *PhD thesis.* University of the
 - 898 Basque Country (UPV/EHU), Genetics, Physical Anthropology & Animal
 - 899 Physiology Department.

Table 1 Sampling details. Sample code, number of individuals per sample (N), sample location, current management stock, FAO

major fishing area and geographical coordinates along with year of capture.

Sample	Abbreviation	N	Location	Latitude	Longitude	Year	Current stock	FAO
Albacore	e tuna							
1	BAL	50	Balearic Sea	40.00	1.58	2005	Mediterranean	37
2	BIS	52	Bay of Biscay	45.10	-4.35	2009	North Atlantic	27
3	IRE	57	Ireland	54.17	-12.89	2008	North Atlantic	27
4	SEA	91	South Africa	-24.25	4.42	2009	South Atlantic	47
5	IN	24	Seychelles	-7.11	54.65	2008–2009	Indian	51
6	NP	101	California	43.50	-127.00	2008	North Pacific	77
7	SWP	30	New Caledonia	-18.53	165.97	2003–2008	South Pacific	71
8	SEP	55	French Polynesia	-19.01	-152.84	2003–2008	South Pacific	71
Atlantic	Bluefin tuna		•					
9	NEA	46	Bay of Biscay	45.10	-4.35	2009	East Atlantic	27
10	MED	46	Balearic Sea	40.58	1.21	2009	East Atlantic	37
11	NWA	15	Northwest Atlantic	36.24	74.49	2008	West Atlantic	21

907 Table 2 Selected set of SNPs for population genetic studies in *T*.

- *alalunga*. SNP code (in bold), the nuclear DNA fragment were it was
- 909 discovered and the discovery approach (I, II and III; see Methods) are shown,
- 910 for the panel of 53 SNPs, representing 41 loci including 32 individual SNPs
- 911 and 9 haplotype blocks (shaded), along with the number of alleles or
- 912 haplotypes and mean values, across samples, for both expected
- 913 heterozygosity (H_e) and inbreeding coefficient (F_{IS}).

Fragment	Method	SNP	no. alleles/ haplotypes	Mean H _e (±SE)	Mean F _{IS} (±SE)
ADRB2		ADRB2-97	2	0.025±0.016	-0.006±0.006
ALDOB1	I I	ALDOB1-47 ALDOB1-95	4	0.373±0.058	0.150±0.104
CALM4		CALM4-124	2	0.432±0.040	0.247±0.165
GNRH3-1	I	GNRH3-1-124	2	0.365±0.040	0.030±0.047
GNRH3-3	I	GNRH3-3-219	2	0.077±0.035	-0.033±0.018
LDHB	Ι	LDHB-287	2	0.362±0.061	0.176±0.205
LYZ	I	LYZ-128 LYZ-138 LYZ-340	8	0.579±0.079	-0.005±0.155
MLL25a	I.	MLL25a-144 MLL25a-183	4	0.526±0.057	0.092±0.076
MYC	. I .	MYC-91	2	0.043±0.082	-0.024±0.050
MYL3	I	MYL3-97	2	0.024±0.025	-0.009±0.009
RHO	I	RHO-111	2	0.033±0.039	-0.014±0.017
<i>RPS7-2</i>	I	RPS7-2-69	2	0.270±0.081	0.180±0.138
APOE	П	APOE-148	2	0.269±0.039	0.014±0.116
CYCS	Ш	<i>CYCS-132</i> <i>CYCS-218</i>	4	0.468±0.062	-0.050±0.096
DAD1		DAD1-444	2	0.088±0.021	-0.039±0.011
FGB	П	FGB-257	2	0.053±0.036	-0.024±0.020
FOS	П	FOS-107	2	0.154±0.084	-0.089±0.060
HGF	П	HGF-375	2	0.039±0.022	-0.015±0.011
HMOX1	П	HMOX1-416	2	0.316±0.102	0.181±0.214
MMP9	Ш	<i>MMP9-68</i> <i>MMP9-111</i>	4	0.220±0.107	0.051±0.074
MTF1		MTF1-263	2	0.316±0.110	0.077±0.104

Page 41 of 53

Animal Genetics

2							
3		PSM		<i>PSM-33</i>	8	0.737±0.037	-0.045±0.102
4				PSM-117			
5				<i>PSM-138</i>			
6		PTCS2	п	DTCS2 56	Λ	0 709+0 022	
/ 8		11052	11	PTCS2-30	4	0.708±0.022	-0.017±0.154
9		RASA3	П	RASA3-188	2	0.063±0.048	-0.028±0.022
10		RHOC	П	RHOC-55	2	0.054+0.056	-0.021+0.027
11		RPL12		RPI.12.213	_	0 111+0 169	0.042+0.042
12				RPL12-423	-	0.444±0.105	0.042±0.042
14		C MOS		a mas 212	r		
15				CS1 107	2	0.513±0.039	-0.033 ± 0.139
16		CSI	111	CS1-197	б	0.533±0.042	-0.030±0.124
17				CS1-442 CS1-512			
18				CS1-512			
19		CS3	III	CS3-394	2	0.449±0.039	0.006±0.220
21		CS5	III	<i>CS5-44</i>	2	0.494±0.013	0.209±0.161
22		ELOVL2	III	ELOVL2-519	2	0.253±0.052	0.095±0.239
23		ELOVL3		ELOVL3-365	2	0.129±0.081	-0.071±0.057
24		FGG	III	FGG-242	2	0.371±0.102	-0.009±0.148
25		GPX-458	Ш	GPX-458	2	0.495±0.009	0.107±0.115
20		<i>HIF1A2-3</i>	111	HIF1A2-3-350	2	0.449±0.027	0.073±0.083
28		HIF1A4	Ш	HIF1A4-219	2	0.145+0.122	-0.022+0.043
29		MB		MB-188	- 2	0.174+0.068	0.095+0.225
30		OPC02		OPC02-249	- 2	0 167+0 046	-0.032+0.111
31		PRDX2		PRDX2-452	2	0.013+0.023	-0.004+0.009
33		RAG2		RAG2-114	2	0 312+0 088	0 147+0 195
34		Tmo-4C4		Tmo_4C4_188		0.063+0.046	-0.026+0.027
35	015	11110 101	111	1110-404-100		0.005±0.040	-0.020±0.027
36	915						
38	910						
39							
40							
41							
42							
43							

917 Table 3 Probability of detecting a particular level of differentiation (*F*_{ST})

918 among populations of albacore. Power analysis conducted with POWSIM

919 (1000 replicates) with mean frequencies and sample sizes used for albacore

- 920 tuna.

	41 SNPs a	nd blocks	9 Block	S	32 SNP	5
F _{ST}	ΡX ²	P Fisher	ΡX ²	P Fisher	ΡX ²	P Fisher
0.0005	0.197	0.186	0.125	0.127	0.156	0.150
0.001	0.439	0.404	0.276	0.278	0.286	0.289
0.002	0.886	0.844	0.662	0.638	0.628	0.625
0.004	1.0	0.999	0.981	0.970	0.980	0.976
0.008	1.0	1.0	1.0	1.0	1.0	1.0
0.016	1.0	1.0	1.0	1.0	1.0	1.0

Page 43 of 53

Animal Genetics

 925 Table 4. Pairwise *F*_{ST} values between samples of albacore tuna (*Thunnus*

alalunga). *F*_{ST} values appear below the diagonal and standard errors above

927 the diagonal. Sample abbreviations as in Table 1, F_{ST} values significantly

928 larger than 0.0 are in bold (${}^{*}P < 0.05$, ${}^{**}P < 0.01$, ${}^{***}P < 0.001$)

	BAL	BIS	IRE	SEA	IN	NP	SEP	SWP
BAL		0.008	0.008	0.008	0.013	0.010	0.011	0.008
BIS	0.026 ^{***}		0.002	0.005	0.008	0.006	0.007	0.008
IRE	0.030***	0.000		0.002	0.007	0.004	0.005	0.008
SEA	0.033***	0.004	-0.001		0.008	0.005	0.004	0.007
IN	0.050 ^{***}	0.020***	0.017***	0.020***		0.004	0.005	0.006
NP	0.033 ^{***}	0.014***	0.019***	0.016 ^{***}	0.008 [*]		0.002	0.002
SEP	0.043 ^{***}	0.017***	0.016***	0.012***	0.007*	-0.000		0.003
SWP	0.021***	0.014 ^{**}	0.011**	0.012**	0.011 [*]	0.001	0.001	

931	Table 5 Selected set of SNPs for population genetic studies in T.
-----	---

thynnus. SNP code (in bold), the identity of the nuclear DNA fragment where

- 933 it was discovered in *T. alalunga* along with the applied SNP discovery
- 934 approach (see Methods) are shown for the panel of 17 SNPs, representing 15
- 935 independent loci including 13 SNPs and 2 haplotype blocks (shaded), along
- 936 with the number of alleles or haplotypes and mean values, pooling all
- 937 sampling locations, for both expected heterozygosity (H_e) and inbreeding
- 938 coefficient (F_{IS}).

Fragment	Method	SNP	no. alleles/	Mean H _e (±SE)	Mean F _{IS} (±SE)
			haplotypes		
ADRB2	I	ADRB2-97	2	0.046±0.040	-0.016±0.014
GNRH3-1	I	GNRH3-1-107	4	0.676±0.023	-0.056±0.178
		GNRH3-1-124			
LDHB	I.	LDHB-129	2	0.468±0.068	0.057±0.268
LYZ	I.	<i>LYZ-128</i>	2	0.062±0.054	0.439±0.380
RPS7-2-313	I	RPS7-2-313	2	0.084±0.079	0.083±0.176
TPMA	I.	TPMA-53	2	0.355±0.100	0.000±0.351
CYCS	Ш	CYCS-161	2	0.175±0.195	0.216±0.240
HGF	П	HGF-375	2	0.211±0.090	0.106±0.140
MTF1-263	Ш	MTF1-263	2	0.273±0.055	0.010±0.162
RPL12	П	RPL12-423	2	0.486±0.012	0.006±0.157
CS3	111	<i>CS3-118</i>	2	0.291±0.253	0.023±0.070
CS5	Ш	CS5-395	4	0.243±0.211	0.137±0.183
		CS5-425			
FGG	Ш	FGG-242	2	0.401±0.108	0.215±0.198
HIF1A2-3	Ш	HIF1A2-3-417	2	0.145±0.041	0.216±0.500
OPC02	Ш	OPC02-45	2	0.167±0.289	0.000±0.000

941 Table 6 Probability of detecting a particular level of differentiation (*F*_{ST})

942 among populations of Atlantic bluefin tuna. Power analysis conducted with

943 POWSIM (1000 replicates) with mean frequencies and sample sizes used for

- 944 Atlantic bluefin tuna.

	13 SNPs	s and 2 blocks	
F _{ST}	ΡX ²	P Fisher	_
0.001	0.091	0.064	
0.0025	0.159	0.104	
0.005	0.314	0.240	
0.010	0.654	0.579	
0.020	0.961	0.931	
0.040	1.000	0.998	
0.080	1.000	1.000	_

948 949	Figure legends
950	
951	Figure 1. Sampling locations and approximate locations of spawning
952	areas in Thunnus alalunga and T. thynnus. Respectively, black circles and
953	right-oriented hatching for <i>T. alalunga</i> , and black squares and left-oriented
954	hatching for <i>T. thynnus</i> ; both species spawn in Mediterranean waters.
955	
956	Figure 2: SNP selection design. Design of the filtering steps used to select
957	SNP panels for individual assignment and for genetic population surveys in <i>T</i> .
958	alalunga and T. thynnus (see Methods for further information)
959	
960	Figure 3. Thunnus alalunga STRUCTURE results. Individual clustering
961	analysis with STRUCTURE (respectively, $K = 2$, $K = 3$ and $K = 4$) of 460 T.
962	alalunga individuals for 53 SNPs located in 41 independent fragments. Each
963	vertical bar represents an individual, and sampling locations are separated by
964	vertical black lines. The colour proportions of each bar correspond to the
965	individual's estimated membership fraction to each of the clusters (cluster
966	membership coefficient).
967	
968	Figure 4. Thunnus thynnus STRUCTURE results. Individual clustering
969	analysis with STRUCTURE ($K = 2$) analysis of 107 <i>T. thynnus</i> individuals for 17
970	SNPs on 15 independent DNA fragments. Each vertical bar represents an
971	individual, and sampling locations are separated by vertical black lines. The
972	colour proportions of each bar correspond to the individual's estimated
973	membership fractions to each of the clusters (cluster membership coefficient).

Page 47 of 53

1 2

3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
20
21
28
29
30
31
32
22
33
34
35
36
37
38
30
40
40
41
42
43
44
45
16
40
47
48
49
50
51
52
52
23
54
55
56
57
58 58
50
59
60

974 Supplementa	ry material
-----------------	-------------

975	Table S1. Information on the 54 nuclear DNA fragments selected for SNP
976	discovery in Thunnus alalunga (see Methods): fragment name, gene region,
977	SNP discovery approach (1, 2 and 3; see Methods), source, forward and
978	reverse primer sequences, PCR annealing temperatures, sequenced
979	fragment lengths and recorded number of SNPs and indels. EPIC primers
980	(Exon-Priming, Intron-Crossing primers; SNP discovery approach I) were
981	obtained from the literature while primers for the remaining DNA fragments
982	were designed from the alignment of sequences from publically available
983	databases (GenBank and Ensembl), respectively, 17 pairs of degenerate
984	primers from several teleost species sequences (approach II) and 18 pairs of
985	primers from genus Thunnus DNA sequences (approach III).
986	
987	Table S2. Information for the polymerase chain reactions (PCR) and cycling
988	conditions used to amplify the 54 nuclear DNA fragments selected for SNP
989	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a
989 990	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing
989 990 991	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing
989 990 991 992	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing temperature started in the first cycle with that registered in Table S1
989 990 991 992 993	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing temperature started in the first cycle with that registered in Table S1 ("Touchdown temperature" column) for each fragment. Then, annealing
989 990 991 992 993 994	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing temperature started in the first cycle with that registered in Table S1 ("Touchdown temperature" column) for each fragment. Then, annealing temperature decreased 0.5°C in each subsequent cycle. ⁽²⁾ Fixed annealing
989 990 991 992 993 994 995	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing temperature started in the first cycle with that registered in Table S1 ("Touchdown temperature" column) for each fragment. Then, annealing temperature decreased 0.5°C in each subsequent cycle. ⁽²⁾ Fixed annealing temperature for each fragment. See "Fixed temperature" column in Table S1.
989 990 991 992 993 994 995 996	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing temperature started in the first cycle with that registered in Table S1 ("Touchdown temperature" column) for each fragment. Then, annealing temperature decreased 0.5°C in each subsequent cycle. ⁽²⁾ Fixed annealing temperature for each fragment. See "Fixed temperature" column in Table S1.
989 990 991 992 993 994 995 996 997	discovery in <i>T. alalunga</i> . While 30 fragments were amplified with a conventional PCR, touchdown (TD) methodology, involving a decreasing annealing T°, was applied for the remaining fragments. ⁽¹⁾ Annealing temperature started in the first cycle with that registered in Table S1 ("Touchdown temperature" column) for each fragment. Then, annealing temperature decreased 0.5°C in each subsequent cycle. ⁽²⁾ Fixed annealing temperature for each fragment. See "Fixed temperature" column in Table S1.

considered. Out of 54 fragments of nuclear DNA that were sequenced in T. alalunga, 35 fulfilled the required conditions. **Table S4.** Characteristics of the 79 validated SNPs, meaning reliably scored and polymorphic, in *Thunnus alalunga*. Marker name, SNP discovery approach (1, 2 and 3; see Methods), call rate (%), alleles and minor allele frequency (MAF) values are shown along with the global and per location deviation (P) from the Hardy-Weinberg equilibrium (HWE). "SIGN." means that at least 1 location was not in HWE for those markers (N.S. corresponds) to not significant); as multiple comparisons were involved, a probability of P <0.001 was considered significant. Last column shows NCBI Assay ID (rs#) for every individual SNP (NCBI's dbSNP database). Table S5. Results from tests of Linkage disequilibrium (LD) between all possible SNP pairs (validated SNPs only) within each DNA fragment, for both *T. alalunga* and *T. thynnus* (**P* < 0.001). No SNPs were found in LD when comparing among DNA fragments. Linked SNPs were phased into haplotypes using the Bayesian statistical method implemented in PHASE 2.1. Haplotypes were reconstructed by location to avoid biases from population structuring. Missing genotypes were classified as null genotypes to avoid haplotype reconstruction errors.
Table S6. Characteristics of the 23 validated SNPs in *Thunnus thynnus*.
 Marker name, SNP discovery approach (1,2 and 3), call rate (%), alleles and

1023 minor allele frequency (MAF) values are shown along with the global and per

Animal Genetics

1024	location deviation (P) from the Hardy-Weinberg equilibrium (HWE). "SIGN."
1025	means that at least 1 location was not in HWE for those markers (N.S.
1026	corresponds to not significant); as multiple comparisons were involved, a
1027	probability of $P < 0.001$ was considered significant. Out of the 23 SNPs
1028	validated in BFT by cross-species amplification of 128 SNPs discovered in
1029	albacore (see Methods and Fig. 2), 18 had been validated also when
1030	genotyping albacore while the other five SNPs (GNRH3-1-107, LDHB-129,
1031	CYCS-161, CS3-118, and OPC02-45) were reported as reliably scored and
1032	polymorphic only in BFT (last column shows their individual NCBI Assay IDs
1033	(ss#) in the NCBI's dbSNP database).

