
Noname manuscript No.
(will be inserted by the editor)

Verified Model Checking for Conjunctive Positive
Logic

Alex Abuin · Unai Diaz de Cerio ·
Montserrat Hermo · Rustan Leino · Paqui
Lucio

the date of receipt and acceptance should be inserted later

Abstract We formalize, in the Dafny language and verifier, a proof system PS
for deciding the model checking problem of the fragment of first-order logic, de-
noted FO(∀, ∃,∧), known as Conjunctive Positive Logic (CPL). We mechanize the
proofs of soundness and completeness of PS ensuring its correctness. Our formal-
ization is representative of how various popular verification systems can be used
to verify the correctness of rule-based formal systems on the basis of the least
fixpoint semantics. Further, exploiting Dafny automatic code generation, from
completenes proof we achieve a mechanically verified prototype implementation of
a proof search mechanism that is a model checker for CPL. The model checking
problem of FO(∀, ∃,∧) is equivalent to the quantified constraint satisfaction prob-
lem (QCSP), and it is PSPACE-complete. The formalized proof system provides
a way of detecting tractability cases for the general QCSP and it can be applied
to arbitrary formulae of CPL.

Keywords Conjunctive Positive Logic · Quantified Constraint Satisfaction
Problem · Proof System · Model Checking · Verification · Dafny.

Corresponding Author: Paqui Lucio

Paqui Lucio
Computer Languages and Systems, University of the Basque Country, San Sebastián, Spain
E-mail: paqui.lucio@ehu.eus

A. Abuin · U. Diaz de Cerio
Dependable Embedded Systems, Ikerlan Research Center, Mondragón, Spain E-mail:
{aabuin,UDiazCerio}@ikerlan.es

Montserrat Hermo
Computer Languages and Systems, University of the Basque Country, San Sebastián, Spain
E-mail: montserrat.hermo@ehu.eus

Rustan Leino
Amazon Web Services, Seattle, USA E-mail: leino@amazon.com

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer
Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at: https://doi.org/10.1007/s42979-020-00417-3 [SN COMPUT. SCI. 2,
344 (2021)]

https://doi.org/10.1007/s42979-020-00417-3

2 Alex Abuin et al.

1 Introduction

Model checking [14,40] is the problem of deciding whether a logical sentence holds
for a structure or not. It is a fundamental computational task that appears in
areas such as computational logic, verification, artificial intelligence, constraint
satisfaction, and computational complexity. The case where the logical sentence is
a first-order sentence and the structure is finite is of interest mainly in database
theory. In general, model checking problem is intractable. To be precise, model
checking for first-order logic is PSPACE-complete [46]. All in all, model checking
for fragments of first-order logic appears as an important challenge.

The (quantified) conjunctive positive fragment of first-order logic, in symbols
FO(∀,∃,∧), contains all first-order sentences built on atoms using only logical
symbols in {∀,∃,∧}, where an atom is the application of a predicate R(x1, . . . , xn)
where x1, . . . , xn are variable symbols (in a fixed countable set) and R is a relation
(or predicate) symbol. This fragment is commonly called Conjunctive Positive
Logic (CPL). The fragment FO(∃,∧) is called Existential Conjunctive Positive
Logic and its model checking problem is equivalent to the much-studied Constraint
Satisfaction Problem (CSP), whereas the model checking problem of FO(∀,∃,∧)
is equivalent to the Quantified Constraint Satisfaction Problem (QCSP)[35].

CSP provides a general framework in which a wide variety of combinatorial
search problems can be expressed in a natural way [17,18]. An instance of the
CSP can be viewed as a collection of predicates over a set of variables. The aim
is to determine whether there exist values for all of the variables such that all of
the specified predicates hold simultaneously. Henceforth, from a logic approach,
the CSP is viewed as the model checking problem for FO(∃,∧). This approach
has proven to be very successful due to the connection between the logic notion of
definability and the complexity of the CSP [11]. The CSP is NP-hard (actually, it
is NP-complete). Indeed, in [12] a 3SAT instance is expressed by a CSP instance
where all variables range over a boolean domain and predicates correspond to the
clauses (thus the arity of each predicate is 3). Although the CSP is NP-complete
in general, there are additional restrictions on the input instances that make the
problem easier. One of the main aims of research in CSP is to identify and classify
tractable special cases of the general problem. The theoretical literature on CSP
mainly investigates two kind of restrictions. The first type is to restrict the type
of predicates that are allowed. This direction includes the classical work of Schae-
fer [43] and its many generalizations. The second type is to restrict the structure
induced by the predicates on the variables [25,38]. QCSP is a natural generalization
of the CSP and it can be viewed as the model checking problem for Conjunctive
Positive Logic (or FO(∀,∃,∧)). A study of complexity of the model checking prob-
lem of various fragments of first-order logic can be found in [36], whereas a good,
and quite recent, survey on the QCSP and close problems is [37]. QCSP is actively
studied in artificial intelligence, where it is used to model problems, for example, in
non-monotonic reasoning [19] and in planning [42]. Various general (superpolyno-
mial or incomplete) algorithms for the QCSP over the boolean domain have been
suggested [9,10,24,50], and quite recently researchers have started investigations
on solving non-boolean QCSP problems [7,23,34,50]. Since QBF can be expressed
as a QCSP instance [12], the general QCSP is PSPACE-complete. Like in the CSP
case, a lot of research is being done nowadays trying to find tractable instances.It
is in this context where a proof system for QCSP, called PS, was introduced in [1].

Verified Model Checking for Conjunctive Positive Logic 3

This proof system provides a way of detecting tractability cases for the general
QCSP. PS is a slight variant of the proof system previously defined in [13]. The
study of the proofs that can be generated by PS is a good tool to discover lower
bounds in proof complexity, and even on the running time of algorithms that de-
termine the satisfiability of formulas. A good understanding of how PS proofs are
generated provides clues on the very nature of PSPACE-complete problems [13].
So far, the main motivation to formalize PS. Besides, the restriction of PS to the
boolean domain turns out PS into a proof system that simulates Q-resolution [13],
which many of the so-called QBF-solvers are based on. Q-resolution was introduced
in [9]. After, many different extensions and variants has been proposed, such as
Long-Distance resolution [3,52], QU-resolution [22], and LQU-resolution [4] which
combines Long-Distance and universal resolution. It is worth noting that all these
systems are defined in the propositional setting whereas PS works over any finite
domain. This is a strength of PS because some scenarios are more naturally and
cleanly modelled by allowing variables to be quantified over domains of size greater
than two.

Automated reasoners have turned out to be useful tools in a wide range of ar-
eas from pure mathematics to smart contracts. Automated reasoners play a vital
role in formalizing and certifying computation related engines, such as compilers,
virtual machines, operating systems, protocols, programming languages, solvers,
checkers, etc. Very often, formalizations are very long and complicated, and cer-
tificate proofs are error-prone and difficult to check by hand. Henceforth, there is
genuine value in having mechanized (machine-checked) proofs. Interactive theorem
provers or proof assistants, such as Agda [8], Coq [49] and Isabelle/HOL [39], have
been successfully used for this task for many years, producing an extensive collec-
tion of system formalizations and mechanized proofs. An excellent extensive re-
view on proof-assistants developments of different kinds of software systems is [41].
Machine-checked formalizations of logical systems [51] and checkers (or solvers) [5,
20,44,45] are quite recent. In [20,45] executable code is generated from the veri-
fied formalization of the system. Automatic program verifiers –such as ACL2 [27],
VCC [16], F* [47], VeriFast [26], Why [21] and Dafny [28]– are dedicated reasoners
to verify behavioral properties of programs written in some specific programming
language. It has been recently shown [15] that program verifiers environments
are also suitable for formalization of rule-based systems. Consequently, the pro-
gram verification ‘style’ has joined the challenge of formalizing logical systems and
automatically generating the code of verified checkers or solvers. Proving meta-
properties of proof systems –such as soundness, completeness, and many others re-
lated to proof search– makes heavy use of advanced logic constructs, thus typically
involves complex reasoning steps, beyond first-order logic. Program verifiers has
extended their specification language (beyond first-order logic) with, among other,
constructions that allow to reason about fixpoints in an automated way. Fixpoint
reasoning is crucial to encode rule-based systems (hence, logical systems) and to
prove meta-logical properties of the inference system, respectively. The reason for
that is that well-founded (or terminating) recursive functions and predicates (i.e.
whose recursive calls are made on arguments that are structurally smaller) are,
in general, not expressive enough to represent the set of all the statements that
can be proved using a set of rules. In other words, the least derivability relation
induced by the a set of inference rules cannot be defined using well-founded recur-
sion. Proof assistants provide, since long, support for fixpoint reasoning, typically

4 Alex Abuin et al.

with user-interaction. More recently a mostly-automatic kind of fixpoint reasoning
has been introduced in program verification tools. In [6] the authors explain some
examples using fixpoint formalizations in Why3. In [15] the first formalization
of a rule-based system, using mostly-automatic fixpoint reasoning, is introduced.
In [33] fixpoint reasoning for Dafny was introduced, providing a novel support
for automatically proving lemmas using fixpoint induction. Consequently, Dafny
provides a strong support to formalize logical systems, to verify its soundness
and completeness (and other interesting properties), and also to generate code for
their corresponding provers, checker or solvers. In addition, a significant challenge
to construct large mechanized proofs is the ability to control the logical context
of the proved properties, in two senses. On one hand, for clarity and easy human
reading, well-defined dependencies between definitions and properties are really
helpful. On the other hand, the performance of automated provers is improved as
the set of logical premises needed to prove a lemma is well delimited. Dafny also
provides a module system that allows the user to split formalizations into small
components and to make explicit scopes and dependencies. Another Dafny feature
we exploit in this work is automatic code generation that allows to generate .NET
code for any verified program. To the best of our knowledge, there is no pub-
lished work that substantiates all these Dafny features by presenting a (modular)
formalization of a dedicated formal system and the prover-style tool obtained by
automatic code generation.

In this paper we present a Dafny formalization of the proof system [1], called
PS, the machine-checked proofs of its soundness and completeness, and the model
checker obtained by automatic code generation. Along the presentation, we expose
the constructors used inside Dafny to encode the system and to prove the main
lemmas. We emphasize the fixpoint reasoning from, both, the theoretical view ap-
plied to PS and its practical use in proving the soundness of PS. We also report
on our experience doing this work. The MVS-project can be downloaded from
site http://github.com/alexlesaka/VMC_CPL, and the verified model checker is
available as a web application at http://qcspmc.ikerlan.es.

Outline of the paper. In Section 2 we introduce the proof system PS and its
least fixpoint operator. In Section 3 we provide basic notions of the Dafny language
and verifier. In Section 4 we describe the formalization of the proof system PS as an
inductive predicate with all the technical details. In Section 5, we explain the main
ideas behind the mechanized proofs of soundness and completeness. In Section 6
we explain the structure of modules and its dependencies of our formalization,
whereas in Sections 7 and 8 we respectively give implementation and experience
details.

2 A Proof System for QCSP

In this section we introduce the proof system PS, along with all the necessary basic
notions on QCSP, taken from [1,13]. We also relate PS with the least fixpoint of
the derivability relation.

We focus on the sublogic of relational first-order logic known as Conjunctive
Positive Logic (CPL). A signature σ is a finite set of relation symbols; each relation
symbol R ∈ σ has an associated arity ar(R) which is an element of N. An atom

http://github.com/alexlesaka/VMC_CPL
http://qcspmc.ikerlan.es

Verified Model Checking for Conjunctive Positive Logic 5

is an application of a predicate R(x1 . . . xar(R)), where x1 . . . xar(R) are variable
symbols (in a fixed countable set) or constant symbols, and R ∈ σ. A formula (over
signature σ) is built from atoms (over σ), conjunction (∧), universal quantification
(∀), and existential quantification (∃). A sentence is a formula having no free
variables.

A structure B on signature σ consists of a domain B of B, which is a finite
non-empty set and, for each symbol R ∈ σ, a relation RB ⊆ Bar(R). We call an
interpretation to the map that associates to each symbol R a relation Bar(R). For
a structure B and a sentence φ over the same signature, we write B |= φ if the
sentence φ is true in the structure B.

A QCSP instance is a pair (φ,B) where φ is a sentence in CPL, and B is a
structure, such that all the relation symbols in φ belong to the signature of B.
The QCSP is the problem of deciding, given a QCSP instance (φ,B), whether or
not B |= φ.

Example 1 We show that 3-QBF –the case of the QBF problem where every
clause has exactly three literals– can be expressed as a QCSP. Define the rela-
tions R0,3, R1,3, R2,3, and R0,3 by

R0,3 = {0, 1}3 \ {(0, 0, 0)},
R1,3 = {0, 1}3 \ {(1, 0, 0)},
R2,3 = {0, 1}3 \ {(1, 1, 0)},
R3,3 = {0, 1}3 \ {(1, 1, 1)},

Then, for any variables x, y, z, we have the following equivalences:

R0,3(x, y, z) = (x ∨ y ∨ z),
R1,3(x, y, z) = (¬x ∨ y ∨ z),
R2,3(x, y, z) = (¬x ∨ ¬y ∨ z),
R3,3(x, y, z) = (¬x ∨ ¬y ∨ ¬z),

in the sense that, for example, the constraint R1,3(x, y, z) is satisfied by an as-
signment if and only if the clause (¬x ∨ y ∨ z) is satisfied by the assignment. In
general, let σ be the signature {R0,3, R1,3, R2,3, R3,3} and B the structure with
domain ={0, 1} and such that RB

0,3, R
B
1,3, R

B
2,3, and RB

3,3 are defined as above. Ev-
ery instance of the 3-QBF problem can be readily translated into an instance of
QCSP having the same satisfying assignments. For example, the 3-QBF instance

∀s ∃t ∀u ∃v ((¬u ∨ s ∨ ¬t) ∧ (¬s ∨ t ∨ v) ∧ (s ∨ t ∨ ¬v) ∧ (v ∨ u ∨ s)).

is equivalent to the QCSP instance (ϕ,B) where

ϕ = ∀s ∃t ∀u ∃v(R2,3(u, t, s) ∧R1,3(s, t, v) ∧R1,3(v, s, t) ∧R3,3(v, u, s)).

For our purposes, formulas are seen as trees. The proof system enables to
derive what we call constraints at the various nodes of the tree. To facilitate the
discussion, we will assume that each sentence φ has, associated with it, a set Iφ of
indices that contains one index for each subformula occurrence of φ, that is, for
each node of the tree corresponding for φ. In other words, we use an indexing, by
a set Iφ, of the tree that represents a formula φ. Let us remark that (in general)
the collection of constraints derivable at an occurrence of a subformula does not
depend only on the subformula and on the structure, but also on the subformula’s

6 Alex Abuin et al.

1 ∃x

2 ∀y

3 ∧

4 E(x, y) 5 ∃x

6 E(x, y)

Fig. 1 Formula discussed in Example 2 (from [13]).

location in the full formula φ. When i is an index, we use φ(i) to denote the actual
subformula of the formula occurrence corresponding to i; we will also refer to i as
a location.

Example 2 Consider the sentence φ = ∃x∀y(E(x, y)∧ (∃xE(x, y))) (see Figure 1).
When viewed as a tree, this formula has 6 nodes. We can index the representation
of φ as a tree, according to the depth-first search order, by the index set {1, · · · , 6}.
Then, we have that φ(6) = E(x, y), φ(5) = ∃xφ(6), φ(4) = E(x, y), φ(3) =
φ(4) ∧ φ(5), φ(2) = ∀yφ(3), and φ(1) = ∃xφ(2).

We say that an index i is a parent of an index j, and also that j is a child of i,
if, in viewing the formula φ as a tree, the root of the subformula occurrence of i
is the parent of the root of the subformula occurrence of j. Note that, when this
holds, the formula φ(i) either is of the form Qvφ(j) where Q is a quantifier and v
is a variable, or is a conjunction where φ(j) appears as a conjunct. For example,
with respect to the sentence and indexing in Example 2, index 3 has two children
whose index are 4 and 5, and index 3 has one parent whose index is 2.

Definition 1 (Judgement) Let (φ,B) be a QCSP instance. A constraint on
(φ,B) is a pair (V, F) where V is a set of variables occurring in φ, and F is a set
of mappings from V to B. A judgement on (φ,B) is a triple (i, V, F) where i ∈ Iφ
and (V, F) is a constraint with V ⊆ freeVar(φ(i)); it is empty if F = ∅.

Roughly speaking, the role of a judgement (i, V, F) on (φ,B) is to collect in F the
mappings f on the variables V that are “candidates” to satisfy B, f |= φ(i). The
construction of judgements is based on operations over mappings (from variables
to elements of the domain) and sets of mappings. When B is a structure, φ is a
formula over the vocabulary of B and f is a mapping from the free variables of φ
to the universe of B, we write B, f |= φ to indicate that φ is satisfied in B under
f .When f is a mapping and z ∈ B, we use f [x 7→ v] to denote the extension or
update of f that maps x to v. This notation is also used multiple updating as
f [x1 7→ v1, . . . , xn 7→ vn] and also f [X 7→ V] where X,V respectively represents
the tuples (x1 . . . , xn) and (v1 . . . , vn). When f is mapping from V to B and U is
a subset of V , we use f � U to denote the restriction of f to U .

Definition 2 (Operations over sets of mappings) Let (U1, F1), (U2, F2) be
two constraints on the same QCSP instance, we define the join of F1 and F2,
denoted by F1 on F2, to be

F1 on F2 = {f : U1 ∪ U2 → B | (f � U1) ∈ F1, (f � U2) ∈ F2}.

Verified Model Checking for Conjunctive Positive Logic 7

Let (V, F) be a constraint and U ⊆ V with {w1, w2, . . . , wr} = V \ U , we define
the projection and the dual-projection of F on U , respectively denoted by F � U
and F#U , to be

F � U = {f � U : U → B | f ∈ F}

F#U = {f : U → B | f [w1 7→ b1, . . . , wr 7→ br] ∈ F for all b1, b2, . . . , br ∈ B}.

The dual-projection is used to deal with universally quantified variables. Dually,
projection can be used to cope with existential quantification. We adopt the con-
vention that (relative to a QCSP instance) there is exactly one map e : ∅ → B
defined on the empty set, so there are two constraints whose variable set is the
empty set: the constraint (∅, ∅), and the constraint (∅, {e}) where e is the afore-
mentioned map.

The proof system PS is refutation-based in the sense that it aims to find a
proof of the empty judgement (−, ∅, ∅) on (φ,B), which means that B 6|= φ. The
next definition introduces the inference rules of the proof system PS, as it was
defined in [1].

Definition 3 (PS proof system) A judgement proof on a QCSP-instance (φ,B)
on signature σ is a finite sequence of judgements, each of which is obtained by the
application of the following inference rules:

(atom)
(i, V, F)

where


R ∈ σ such that ar(R) = k
V = {v1, · · · , vk}
φ(i) = R(V)

F = {f : V → B | (f(v1), ..., f(vk)) ∈ RB}

(join)
(i, U1, F1) (i, U2, F2)

(i, U1 ∪ U2, F1 on F2)

(projection)
(i, V, F)

(i, U, F � U)
where U ⊆ V

(∀-elimination)
(j, V, F)

(i, V \ {y}, F# (V \ {y})) where


y ∈ V
φ(i) = ∀yφ(j)
i is the parent of j

(upward flow)
(j, V, F)

(i, V, F)
where i is the parent of j

Given an instance (φ,B), we say that a judgement (i, V, F) is derivable on (φ,B)
if there exists a judgement proof on (φ,B) that contains (i, V, F).

It is worthy noting that Definition 1 requires of a triple (i, V, F), to be a
judgement, that all variables in V must be free variables of φ(i). Consequently,
since PS only deals with judgements, the (upward flow) rule can only be applied
to a judgement (j, V, F) if all variables in V are free variables of φ(i), where i is
the parent of j.

In Example (3) we present a judgement proof according to PS, where (1, ∅, ∅)
is derived. It also shows how the combination of both the upward flow rule and
the projection rule derives judgements where the number of variables is minimum.

8 Alex Abuin et al.

Obviously, the correctness of the upward flow rule relies in the fact that CPL
logical symbols (∀,∃,∧) are ‘positive’.

Example 3 Let φ be the sentence from Example 2 over signature σ={E} with
ar(E) = 2. Consider φ to be indexed as shown in Figure 1, where φ(6) = E(x, y),
φ(5) = ∃xφ(6), φ(4) = E(x, y), φ(3) = φ(4) ∧ φ(5), φ(2) = ∀yφ(3), and φ(1) =
∃xφ(2). Let B be the structure over σ with domain B = {a, b, c} such that EB =
{(a, a), (a, c), (b, a)}. Let GE be the set of mappings from {x, y} to B that satisfy
E(x, y) (over B):

GE = {{x 7→ a, y 7→ a}, {x 7→ a, y 7→ c}, {x 7→ b, y 7→ a}}.

A possible judgement proof on (φ,B) is the following.

(1)– (atom): (6, {x, y}, GE)

(2)– From (1) by (projection): (6, {y}, {{y 7→ a}, {y 7→ c}})

(3)– From (2) by (upward flow): (5, {y}, {{y 7→ a}, {y 7→ c}})

(4)– From (3) by (upward flow): (3, {y}, {{y 7→ a}, {y 7→ c}})

(5)– From (4) by (∀-elimination): (2, ∅, ∅)

(6)– From (5) by (upward flow): (1, ∅, ∅)

The work presented in this paper is based on viewing the set of statements that
can be derived by a proof system as the least fixpoint of the derivability relation
that is induced by the set of inference rules of the considered proof system. Next,
we illustrate this view of the proof system PS to provide a good basis of the
general theory underlying our formalization.

The set of all judgements that are derivable on a given QCSP instance (φ,B)
can be seen as a least fixpoint of an operator that we call D(φ,B). Next, we formally
define this operator. Let J be the set of all derived judgements on a QCSP instance
(φ,B). The set P(J) (all subsets over J) is a partial ordered defined by the
⊆-relation among sets. D(φ,B) is a map from P(J) to P(J) which, given any
S ∈ P(J), is defined as

D(φ,B)(S) = S ∪ { j ∈ J | j is obtained by applying one of the inference

rules to a judgement s ∈ S }.

Given any QCSP instance (φ,B), the least fixpoint of D(φ,B) is the set of all
derivable judgementes according to the fixpoint semantics.

Example 4 Let φ be the sentence φ = ∃x∀yP (x, y) where φ(3) = P (x, y); φ(2) =
∀yφ(3); φ(1) = ∃xφ(2). Consider φ as a sentence over signature {P} with ar(P) =
2. Define B to be a structure over this signature having domain B = {a, b, c} and
where PB = {(a, a), (a, b)}

Let FP be the set of mappings from {x, y} to B that satisfy P (x, y) (over B):

FP = {{x 7→ a, y 7→ a}, {x 7→ a, y 7→ b}}.

Verified Model Checking for Conjunctive Positive Logic 9

For this QCSP instance we calculate the fixpoint of D(φ,B).

D(φ,B) ↑ 0 = ∅

D(φ,B) ↑ 1 = D(φ,B)(∅) = {(3, {x, y}, FP)}

D(φ,B) ↑ 2 = D(φ,B)(D(φ,B) ↑ 1)

= D(φ,B) ↑ 1 ∪ {(2, {x}, ∅), (3, {x}, (FP � {x})), (3, {y}, (FP � {y})), (3, ∅, {e})}

D(φ,B) ↑ 3 = D(φ,B) ↑ 2 ∪ {(2, ∅, ∅), (2, {x}, (FP � {x})), (2, ∅, {e})}

D(φ,B) ↑ 4 = D(φ,B) ↑ 3 ∪ {(1, ∅, ∅), (1, ∅, {e})}

D(φ,B) ↑ 5 = D(φ,B)(D(φ,B) ↑ 4) = D(φ,B) ↑ 4 which is the least fixpoint.

Therefore, the empty judgement (1, ∅, ∅) belongs to the least fixpoint of the deriv-
ability relation associated to the studied QCSP-instance.

Example 5 Let φ be the sentence from Example 2 over signature σ={E} with
ar(E) = 2. Consider φ to be indexed as shown in Figure 1, where φ(6) = E(x, y),
φ(5) = ∃xφ(6), φ(4) = E(x, y), φ(3) = φ(4) ∧ φ(5), φ(2) = ∀yφ(3), and φ(1) =
∃xφ(2). Let B be the structure over σ with domain B = {a, b, c} such that EB =
{(a, a), (a, b), (a, c), (b, a)}. Let FE be the set of mappings from {x, y} to B that
satisfy E(x, y) (over B):

FE = {{x 7→ a, y 7→ a}, {x 7→ a, y 7→ b}, {x 7→ a, y 7→ c}, {x 7→ b, y 7→ a}}.

The least fixpoint of D(φ,B) is calculated below, where K is the set of mappings
{{x 7→ a}, {x 7→ b}}.

D(φ,B) ↑ 0 = ∅

D(φ,B) ↑ 1 = {(4, {x, y}, FE), (6, {x, y}, FE)}

D(φ,B) ↑ 2 = D(φ,B) ↑ 1 ∪ {(4, {y}, H), (4, ∅, {e}), (4, {x},K),

(6, {y}, H), (6, ∅, {e}), (6, {x},K), (3, {x, y}, FE)}

D(φ,B) ↑ 3 = D(φ,B) ↑ 2 ∪ {(3, {y}, H), (3, ∅, {e}), (3, {x},K),

(5, {y}, H), (5, ∅, {e}), (2, {x}, G)}

D(φ,B) ↑ 4 = D(φ,B) ↑ 3 ∪ {(2, ∅, {e}), (2, {x},K)}

D(φ,B) ↑ 5 = D(φ,B) ↑ 4 ∪ {(1, ∅, {e})}

D(φ,B) ↑ 6 = D(φ,B) ↑ 5 which is the least fixpoint.

Hence, the empty judgement (1, ∅, ∅) is not in the fixpoint of D(φ,B). This means
that the empty judgement cannot appear in any judgement proof on the considered
QCSP-instance.

It is obvious, by construction, that the least fixpoint of D(φ,B) is the set of all
judgements that are derivable on (φ,B). Consequently, metalogical properties of
the set of all judgements that are derivable on (φ,B) can be proved by induction
on the number of iterations of the operator D(φ,B). By Tarski’s Theorem [48],
the existence of the least fixpoint of the operator D(φ,B) (over the boolean lattice)
requires D(φ,B) to be monotonic, hence such fact should be also ensured to validate

10 Alex Abuin et al.

any inductive proof on the number of iterations.
The next theorem establishes the correctness and completeness of PS. Its proof
has been made in Dafny on the basis of the least fixpoint semantics, and it is one
of the main contribution of this work.

Theorem 1 (Correctness and Completeness of PS) Let (φ,B) be a QCSP
instance. Assume the root of φ has index r. The empty judgement (r, ∅, ∅) is deriv-
able if and only if B 6|= φ.

In Example 4, the empty judgement (1, ∅, ∅) is derivable. Therefore, by Theorem 1,
B 6|= φ. In Example 5, the empty judgement (1, ∅, ∅) is not in the least fixpoint of
D(φ,B), by Theorem 1, it holds that B |= φ.

3 Dafny: Language, Verifier and IDE

Dafny [28] is a program verifier that includes a programming language and spec-
ification constructs. The Dafny user creates and verifies both specifications and
implementations. Dafny specification language extends first-order logic with al-
gebraic data types, extreme/inductive predicates, induction (also co-induction),
generic types, abstracting and refining modules, assertions and many others built-
in specification features that makes Dafny a good candidate for our work. In this
section, we briefly introduce the main notions of Dafny that facilitates the under-
standing of the rest of the paper.

The basic unit of a Dafny program is the method. A method is a piece of exe-
cutable code with a head where multiple named parameters and multiple named
results are declared. Dafny has also built-in specification constructs for assertions,
such as requires for preconditions, ensures for postconditions, and assert for inline
assertions. Using requires and ensures we specify methods and lemmas. Assertions
specify properties that are satisfied at some point. Assertions are mainly used
to provide hints to the verifier. In other words, once the assertion is proved, it
turns into a usable property for completing the proof. Indeed, “assert ϕ” tells
Dafny to check that ϕ holds and to use the condition ϕ (as a lemma) to prove
the properties beyond this point. Dafny distinguishes between ghost entities and
executable entities. Ghost entities are used only during verification; the compiler
omits them from the executable code. The lemma declarations are like methods,
but no code is generated for them, i.e. a lemma is equivalent to ghost method.
The body of a lemma is its proof. Dafny also offers user-defined specification con-
structs (which are ghost), such as function and predicate that can be defined by
well-founded inductive definitions, built-in immutable types, polymorphic (induc-
tive and coinductive) algebraic datatypes, inductive and co-inductive predicates.
Dafny also provides built-in immutable type, such as set, multiset, map and seq

–which respectively denote the types of finite sets, multisets, maps, tuples, and
sequences– that are very useful in specification. These built-in types are equipped
with the usual operations, including set comprehension expressions:

set x1 : T1, x2 : T2, . . . | P(x1 ,x2,. . .) • E(x1,x2 ,. . .)

Verified Model Checking for Conjunctive Positive Logic 11

for defining the set of all values given by the expression E(x1,x2,. . .) for all finite
tuples (x1,x2,. . .) such that P(x1,x2,. . .).1 For lemma proofs, Dafny provides a spe-
cial notation that is easy to read and understand: calculations [30]. A calculation in
Dafny is a statement that proves a property. This notation was extracted from the
calculational method [2], whereby a theorem is established by a chain of formulas,
each transformed in some way into the next. The relationship between successive
formulas (for example, equality, implication, double implication, etc.) is notated,
or it can be omitted if it is the default relationship (equality). In addition, the hints
(usually asserts or lemma calls) that justify a step can also be notated (in curly
brackets after the relationship). Calculations are written inside the environment
calc{ }.

The Dafny specification constructor inductive predicate (also called extreme
predicates) [33] allows the definition of a predicate as an extreme solution: a least
fixpoint of a set of recursive rules.2 Inductive predicates are essential to formally
define the set of judgments that can be proved by the proof system PS (intro-
duced in the previous section). Properties of inductive predicates can be proved
by induction in the construction of the least fixpoint of an inductive predicate
P(x). Such properties must be coded as inductive lemmas for least fixpoint. Dafny
offers a standard way to set up the proof of these kind of lemmas, by induction
on the number of iterations of the operator whose least fixpoint is the meaning of
P(x). To validate such inductive proofs, according to Tarski’s Theorem [48], Dafny
verifies the monotonicity of P, by checking out that every call to P (in its defini-
tion) is under an even number of negations. Very detailed and helpful explanations
on inductive predicates and inductive lemmas can be found in [33]. In Section 4
we introduce an inductive predicate (is_derivable) and prove an inductive lemma
(models_Lemma).

The Dafny integrated development environment (IDE) is an extension of Mi-
crosoft Visual Studio (VS). The IDE is designed to reduce the effort required by
the user to make use of the system. The IDE runs the program verifier in the
background and provides design time feedback. Assertions are sent to the SMT
solver Z3 (a fully automatic theorem prover) to check its satisfiability that will
be reported to the Dafny user. Assertion violations in lemma proofs, as well as
verification errors, are reported along with different informations such as the lo-
cations (of the properties) related to the error. The interested reader is referred
to [31] for further information on the several ways that Dafny IDE helps to build
both lemma proofs and verified software. Dafny is able to export executable files
(.exe), libraries (.dll) and .Net source code (.cs) with the implementation of the
functionality specified, whenever the automatic verification is successful and every
lemma is proved.

1 For easy reading, in the Dafny code snippets, we show the usual mathematical symbols,
instead of real Dafny notation. For example, we show • for ::(such that), ∪ for union instead
of +, ⊆ for set inclusion instead of <=, also for the logical symbols and quantifiers, for example
&& is shown as ∧ and forall as ∀, etc.

2 Dafny also provides co-induction based on greatest fixpoints (see [33]), but they are not
used in this paper.

12 Alex Abuin et al.

4 Formalization of the Proof System PS in Dafny

In this section we explain the main types and definitions that make up our for-
malization. We first formalize what are (well-formed) structures, formulas, QCSP-
Instances and judgements. Then, we define the operations on judgements and the
inductive predicate that formalizes the derivability relation of PS.

Structures A structure is given by a triple formed by a signature, a domain (i.e.
a non-empty finite set), and an interpretation, which is a map from the names in
the signature to relations on the domain of the arity determined in the signature.

type Name = string

type Signature = map <Name ,int >

type Interpret <T> = map <Name ,set <seq <T>>>

datatype Structure <T> =
Structure(Sig : Signature ,Dom : set <T>,I : Interpret <T>)

predicate wfStructure <T>(B : Structure <T>)
{
B.Dom 6= {} ∧
∀ r • r in B.Sig.Keys =⇒ (r in B.I ∧

∀ t • t in B.I[r] =⇒ |t| = B.Sig[r])
}

The variable of type T represents the type of the elements in the domain, relations
in the domain are represented by the set of sequences (viewed as tuples) that
belongs to the relation. Hence, the predicate wfStructure decides the non-emptiness
of the domain along with every relation symbol is interpreted by sequences whose
length is its arity.

Formulas and QCSP-instances We define the syntax of Conjunctive Positive Logic
formulas as a datatype, where for example an atom R(x1, x2, x3) is represented as
Atom("R",[x1,x2,x3]). In the datatype Formula each constructor has two destructors
giving access to each component of the formula.

datatype Formula = Atom(rel : Name , par : seq <Name >)
| And(0 : Formula , 1 : Formula)
| Forall(x : Name , Body : Formula)
| Exists(x : Name , Body : Formula)

predicate wfFormula(S : Signature , phi : Formula)
{
match phi

case Atom(R, par) => R in S.Keys ∧ |par| = S[R]
case And(phi0 , phi1) => wfFormula(S, phi0) ∧ wfFormula(S, phi1)
case Forall(x, alpha) => wfFormula(S,alpha)
case Exists(x, alpha) => wfFormula(S,alpha)

}

function freeVar(phi : Formula) : set <Name >
{
match phi

case Atom(R, par) => setOf(par)
case And(ph1 , phi1) => freeVar(ph1) + freeVar(phi1)

Verified Model Checking for Conjunctive Positive Logic 13

case Forall(x, phi) => freeVar(phi) - {x}
case Exists(x, phi) => freeVar(phi) - {x}

}

predicate sentence(phi : Formula) { freeVar(phi) = {} }

The predicate wfFormula decides whether a formula is well-formed with respect
to a given signature, that is if the number of parameters of all its atoms coincides
with its arity. The function freeVar gives the set of its free variables, and the
predicate sentence decides whether a formula has no free variables.

predicate wfQCSP_Instance(phi : Formula , B : Structure)
{
wfStructure(B) ∧ wfFormula(B.Sig ,phi) ∧ sentence(phi)
}

A weel-formed QCSP-instance consist of a well-formed structure, a well-formed for-
mula with symbols in the signature of the structure that must be a sentence. For
example, if phi is Exists(x,Forall(y,And(Atom(E,[x, y]),Exists(x,Atom(E,[x,y])))))

and B is Structure(map[E 7→2],set{a, b, c},map[E 7→ set{[a, a], [a, b], [a, c], [b, a]}]) which
represents the QCSP-intance of Example 3, then wfQCSP_Instance(phi, B) is True.

Judgements We also declare judgements and the predicate for checking its well-
formedness as follows: 3

type Valuation <T> = map <Name , T>

datatype Judgement <T> = J(i : Index ,V : set <Name >,F : set <Valuation <T>>)

predicate wfJudgement <T>(j : Judgement <T>, phi : Formula , B : Structure <T>)
requires wfQCSP_Instance(phi ,B)
{
j.i in setOfIndex(phi) ∧
j.V ⊆ freeVar(FoI(j.i,phi ,B.Sig)) ∧
(∀ f • f in j.F =⇒ j.V = f.Keys) ∧
(∀ f, v • f in j.F =⇒ v in f.Values =⇒ v in B.Dom)
}

A (well-formed) judgement on a (well-formed) QCSP-instance (φ,B), as defined
in Section 2, is a triple formed by an index i on the set of index of φ, a set of
variables included in the free variables of the subformula of index i of φ and a set
of maps from exactly these variables to elements of the domain of the structure.
For that, setOfIndex is a function that computes the set of indexes in the nodes of a
given formula (seen as a tree, see Figure 1). In our formalization, for easy access to
formula nodes, indexes are sequences of zeros and ones, instead of natural numbers.
We do not explain here the technical details of that formalization. Given an index
i, a formula phi and a signature S, the function called FoI(i, phi, S) returns the
subformula of phi of index i. The parameter S is added for expressing that the
function FoI preserves the well-formedness property with respect to the signature
of phi.

Operations on judgements The inference rules in PS rely upon apply the oper-
ations join, projection and dual-projection on the sets of valuations, which are

3 In Dafny code, one line comments start by // and are coloured in green.

14 Alex Abuin et al.

part of one or two judgements (the component F in the datatype) associated to a
QCSP-instance given by a formula φ and a structure B. We define (in Dafny) the
following predicates on judgements to decide whether a judgement is a projection
or a dual-projection of another judgement, and also whether a judgement is the
joint of two given judgements.

predicate is_projection <T> (j1 : Judgement <T>, j2 : Judgement <T>,
phi : Formula , B : Structure <T>)

// j1 is a projection of j2
requires wfJudgement(j1,phi ,B) ∧ wfJudgement(j2 ,phi ,B)
{
j1.i = j2.i ∧ j1.V ⊆ j2.V ∧
j1.F = (set f | f in j2.F • projectVal(f,j1.V))
}

predicate is_dualProjection <T> (j1 : Judgement <T>, v : Name ,
j2 : Judgement <T>,
phi : Formula , B : Structure <T>)

// j1 is a dual projection of j2 (on variable v)
requires wfJudgement(j1,phi ,B) ∧ wfJudgement(j2 ,phi ,B)
{
j2.i = j1.i + [0] ∧ j1.V = j2.V - {v} ∧ v in j2.V ∧
j1.F = (set h : Valuation <T> | h in allMaps(j1.V, B.Dom) ∧

∀ b • b in B.Dom =⇒ h[v :=b] in j2.F)
}

predicate is_join <T> (j : Judgement <T>, j1 : Judgement <T>,
j2 : Judgement <T>, phi : Formula , B : Structure <T>)

// j is the join of j1 and j2
requires wfJudgement(j,phi ,B)
requires wfJudgement(j1,phi ,B) ∧ wfJudgement(j2 ,phi ,B)
{
j.i = j1.i = j2.i ∧ j.V = j1.V + j2.V ∧
j.F = (set f : Valuation <T> | f in allMaps(j1.V+j2.V, B.Dom) ∧

projectVal(f,j1.V) in j1.F ∧
projectVal(f,j2.V) in j2.F)

}

For a judgement j, the expression j.i is the index in the tree that represents the
formula, and j.i + [0] (respectively j.i + [1]) is the index of its left-hand (resp.
rigth-hand) child. If it has only one child, it is j.i + [0]. Function projectVal,
when applied to any f : Valuation<T> and any U : set<Name>) such that U ⊆ f.Keys,
calculates (map s | s in U • f[s]) : Valuation<T>, hence projectVal(f,U).Keys =U is
ensured. In the above predicate is_join, Dafny checks the finiteness of the set
allMaps(j1.V+j2.V, B.Dom). Indeed, Dafny checks the finiteness of X for any ex-
pression x in X where X is a set. Function allMaps is applied to two parameters
keys : set<A> and values : set). Function allMaps gives the set of all maps whose
domain is keys and whose range is a subset of values. Indeed, we prove this fact in
lemma allMaps_Correct_Lemma.

The above three predicates is_join, is_projection and is_dualProjection, along
with the following predicate is_upwardFlow respectively enable the encoding of the
inference rule (join), (projection), (∀-elimination) and (upward flow), which are
given in Definition 3.

predicate is_upwardFlow <T> (j1 : Judgement <T>, j2 : Judgement <T>,
phi : Formula , B : Structure <T>)

// j1 is the upwardFlow of j2

Verified Model Checking for Conjunctive Positive Logic 15

requires wfJudgement(j1,phi ,B) ∧ wfJudgement(j2 ,phi ,B)
{
j2.V = j1.V ∧ j2.F = j1.F ∧
(
(FoI(j1.i,phi ,B.Sig).And? ∧ (j2.i = j1.i+[0] ∨ j2.i = j1.i+[1]))
∨
((FoI(j1.i,phi ,B.Sig). Forall? ∨ FoI(j1.i,phi ,B.Sig). Exists ?) ∧

j2.i=j1.i+[0])
)
}

Derivability predicate The following inductive predicate is_derivable defines, in a
very natural way, the least fixpoint of the derivabilty relation induced by the five
rules in Definition 3.

inductive predicate is_derivable <T(!new)> (j : Judgement <T>,
phi : Formula ,
B : Structure <T>)

requires wfQCSP_Instance(phi ,B) ∧ wfJudgement(j,phi ,B)
{
var phii := FoI(j.i,phi ,B.Sig);
(// rule (atom)
phii.Atom?
∧ j.V = setOf(phii.par)
∧ j.F = (set f : Valuation <T> | f in allMaps(j.V, B.Dom)

∧ HOmap(f,phii.par) in B.I[phii.rel])
) ∨ (// rule (projection)
∃ j’ • wfJudgement(j’,phi ,B) ∧ is_projection(j,j’,phi ,B)

∧ is_derivable(j’,phi ,B)
) ∨ (// rule (join)
phii.And?
∧ ∃ j0,j1 • wfJudgement(j0 ,phi ,B) ∧ wfJudgement(j1 ,phi ,B)

∧ j0.i = j1.i
∧ is_join(j,j0 ,j1,phi ,B)
∧ is_derivable(j0,phi ,B) ∧ is_derivable(j1,phi ,B)

) ∨ (// rule (∀-elimination)
phii.Forall?
∧ ∃ j’ • wfJudgement(j’,phi ,B)

∧ phii=Forall(phii.x,FoI(j’.i,phi ,B.Sig))
∧ is_dualProjection(j,phii.x,j’,phi ,B)
∧ is_derivable(j’,phi ,B)

) ∨ (// rule (upward flow)
∃ j’ • wfJudgement(j’,phi ,B)

∧ is_upwardFlow(j,j’,phi ,B) ∧ is_derivable(j’,phi ,B)
)
}

In Dafny, inductive predicate definitions are not allowed to depend on the
allocation state. The suffix (!new), on parameter type T (it is shown as super-
index in the Dafny code snippets), restricts the instances of T to types that do
not contain any reference to an object (or pointer), and thus does not depend on
the allocation state. This is a quite recently added type-parameter characteristic
(!new), in the same vein as the suffix (==) restricts instances to be equality-
supporting types.

In the encoding of the rule (atom), we use the auxiliary function HOmap for
applying the function f to the list of arguments phii.par, this gives a tuple that is
checked to belong to the interpretation of relation phii.R in the structure B.

16 Alex Abuin et al.

5 Dafny Proofs of Soundness and Completeness

In this section we explain the main ingredients of the Dafny proof for Theorem 1,
which ensures that PS is a sound and complete proof system for QCSP instances.
The forward direction of Theorem 1 states the soundness result that is proved
in Dafny lemma soundness_Theorem. The backward direction is the completeness
statement that is proved by the Dafny lemma completeness_Theorem. For expressing
these meta-logical results we use the following predicate that states whether a
QCSP-instance (B,f) is a model of a formula phi.

predicate models <T>(B : Structure <T>, f : Valuation <T>, phi : Formula)
requires wfStructure(B) ∧ wfFormula(B.Sig ,phi) ∧ f.Values ⊆ B.Dom
decreases phi
{
(freeVar(phi) ⊆ f.Keys) ∧
match phi

case Atom(R,par) => HOmap(f,par) in B.I[R]
case And(phi0 ,phi1) => models(B,f,phi0) ∧ models(B,f,phi1)
case Forall(x,alpha) => ∀ v • v in B.Dom

=⇒ models(B,f[x :=v],alpha)
case Exists(x,alpha) => ∃ v • v in B.Dom

∧ models(B,f[x :=v],alpha)
}

The above three recursive cases are obvious. The case Atom(R,par), using the
auxiliary function HOmap, applies the function f to the list of arguments par, and
checks if the resulting tuple belongs to the interpretation of relation R in the
structure B.

On the basis of the above predicate models, we define:

predicate valuationModel <T> (h : Valuation <T>, j : Judgement <T>,
phi : Formula , B : Structure <T>)

{
h in allMaps(j.V, B.Dom) ∧
wfStructure(B) ∧ wfFormula(B.Sig ,phi) ∧ wfJudgement(j,phi ,B) ∧
models(B,h,existSq(freeVar(FoI(j.i,phi ,B.Sig))-j.V,

FoI(j.i,phi ,B.Sig)))
}

Given a valuation h and a judgement j on a QCSP-instance (phi,B), predicate
valuationModel decides whether (B,h) models the subformula of phi given by the
index of j.i properly closed with existential quantifiers on all the variables that do
not belong to j.V. The expression FoI(j.i,phi,B.Sig)) represents the formula φ(i),
the expression freeVar(FoI(j.i,phi,B.Sig))-j.V represents freeVar(φ(i))\j.V and the
function existSq enables the existential closing (for its definition see Figure 3 at
the end of Section 6). Hence, the Dafny expression

existSq(freeVar(FoI(j.i,phi,B.Sig))-j.V,FoI(j.i,phi,B.Sig))

encodes the formula ∃x1 . . .∃xnφ(i) provided that freeVar(φ(i))\j.V = {x1, . . . , xn}.
The soundness_Theorem will be prove as an easy consequence of the following:

Lemma 1 Let (φ,B) be a QCSP instance and (i, V, F) a derivable judgement (on
it). Let {v1, v2, . . . vn} be the variables in freeVar(φ(i)) \ V . For all h : V → B it
holds that B, h |= ∃v1 . . .∃vnφ(i) implies h ∈ F .

which is encoded in Dafny as the following inductive lemma, whose proof is par-
tially shown:

Verified Model Checking for Conjunctive Positive Logic 17

inductive lemma models_Lemma <T> (j : Judgement <T>, phi : Formula ,
B : Structure <T>)

requires wfQCSP_Instance(phi ,B) ∧ wfJudgement(j,phi ,B)
requires is_derivable(j,phi ,B)
ensures ∀ h • valuationModel(h,j,phi ,B) =⇒ h in j.F
{
var phii := FoI(j.i, phi ,B.Sig);
if phii.Atom? ∧ j.V = setOf(phii.par)
∧ j.F = (set f : Valuation <T> | f in allMaps(j.V,B.Dom)

∧ HOmap(f,phii.par) in B.I[phii.rel])
{// (atom)
∀ h | valuationModel(h,j,phi ,B) {allMaps_Correct_Lemma(h,B.Dom);}

}
else if ∃ j’ • wfJudgement(j’,phi ,B) ∧ is_projection(j,j’,phi ,B)

∧ is_derivable(j’,phi ,B)
{// (projection)
var j’ : | wfJudgement(j’,phi ,B) ∧ is_projection(j,j’,phi ,B)

∧ is_derivable(j’,phi ,B);
models_Lemma(j’,phi ,B);
projection_Lemma(j,j’,phi ,B);

}
else if . . . {// (join)
}
else if . . . {// (∀-elimination)
}
else {// (upward flow)
}
}

Since models_Lemma is an inductive lemma with hypothesis is_derivable(j,phi,B), the
proof makes induction in the construction of the inductive predicate is_derivable,
the inductive proof of models_Lemma has a base case for the rule (atom) and one
inductive case for each of the remaining four rules. In the base case (atom), for
all valuation h such that B, h |= ∃v1 . . .∃vnφ(i), we call the auxiliary lemma
allMaps_Correct_Lemma to show that the set allMaps(h, B.Dom) really contains all the
maps with domain in h.Keys that give values in B.Dom. In the inductive case where
the judgement j is a projection of another derivable judgement j’, we recursively
call models_Lemma(j’,phi,B) for the induction hypothesis that ensures that all (valu-
ations that are) models of j’ are in j’.F. Then, the call projection_Lemma(j,j’,phi,B)
invokes the following auxiliary lemma:

lemma projection_Lemma <T>(j : Judgement <T>, j’ : Judgement <T>,
phi : Formula , B : Structure <T>)

requires wfStructure(B) ∧ wfFormula(B.Sig ,phi)
requires wfJudgement(j,phi ,B) ∧ wfJudgement(j’,phi ,B)
requires is_projection(j,j’,phi ,B) // (H1)
requires ∀ h • valuationModel(h,j’,phi ,B) =⇒ h in j’.F //(H2)
ensures ∀ h • valuationModel(h,j,phi ,B) =⇒ h in j.F

The lemma projection_Lemma assumes, the well-formedness of all its parameters
along with, the hypothesis (H1): j is the projection of j’ and the fact (as hypothesis
(H2)) that j’ satisfies the ensures of lemma models, then it ensures that also all
valuations that are models of j belongs to j.F. Next, we explain the Dafny proof
of projection_Lemma whose code is:4

4 We use to include commented assertions whenever Dafny does not need them as hints, but
serve as documentation to the reader, who could check its validity by uncommenting them.

18 Alex Abuin et al.

var phii := FoI(j.i,phi ,B.Sig);
var W := freeVar(phii)-j’.V;
var Y := j’.V - j.V;
var X := freeVar(phii)-j.V;
∀ h : Valuation <T> | valuationModel(h,j,phi ,B)

ensures h in j.F;
{
// assert models(B,h,existSq(X,phii));
assert X = Y+W;
// assert models(B,h,existSq(Y+W,phii));
existSq_Sum_Lemma(B, h, Y, W, phii);
assert models(B,h,existSq(Y,existSq(W,phii)));
existSqSem_Lemma(B, h, Y, existSq(W,phii));
var U, Z : | setOf(Z) ≤ B.Dom ∧ |U| = |Z| = |Y|

∧ setOf(U) = Y ∧ noDups(U)
∧ setOf(U) 6 ∩ h.Keys
∧ extVal(h,U,Z). Values ≤ B.Dom
∧ models(B,extVal(h,U,Z),existSq(W,phii));

extValDomRange_Lemma(h, U, Z);
assert extVal(h,U,Z).Keys = j’.V;
extValallMaps_Lemma(h, U, Z, B);
assert extVal(h,U,Z) in allMaps(j’.V, B.Dom);
assert valuationModel(extVal(h,U,Z),j’,phi ,B);
// assert extVal(h,U,Z) in j’.F; // by hypothesis (H2)
// assert h.Keys = j.V;
projectOfExtVal_Lemma(h, U, Z);
assert projectVal(extVal(h,U,Z),j.V) = h;
// assert j.F = (set f | f in j’.F • projectVal(f,j.V));

// by hypothesis (H1)
// assert h in j.F;
}

Firstly, we define the variable phii which represents the subformula φ(i) of index
i of the parameter formula φ (denoted in code by phi). Then, we define the three
sets of variables W,Y and X occurring in φ(i) and in the judgements j and j’.
Next, we proof that any valuation h such that B, h |= ∃X(φ(i)) belongs to j.F.
This is the meaning of the ∀-ensures in the code, whose proof is inside the curly
brackets that completes the proof. This proof calls five auxiliary lemmas, but it
is easy to follow because the assertions after each lemma call explain what they
add to prove. By the hypothesis, we have that B, h |= ∃X(φ(i)) where X =
Y + W , from here, the auxiliary lemma existSq_Sum_Lemma ensures that B, h |=
∃Y ∃W (φ(i)). Then, by auxiliary lemma existSqSem_Lemma, we basically prove that
B, h[Y 7→ Z] |= ∃W (φ(i)) for some values set of values Z in B. In the code, U

is a sequence representing the set Y with no repetitions and disjoint with h.Keys

and extVal(h,U,Z) is the Dafny code for h[Y := Z]. After the calls to lemmas
extValDomRange_Lemma and extValDomRange_Lemma we prove that hypothesis (H2) can
be applied to the mapping h[Y 7→ Z] so that h[Y 7→ Z] ∈ j′.F holds. Therefore, its
projection h[Y 7→ Z] � j.V , which is proved to coincide with the mapping h (using
the auxiliary lemma projectOfExtVal_Lemma), should belong to j.V . The latter is due
to hypothesis H1, since by definition of projection j.F is the set of all projection
on j.V of all valuations in j′.F . Therefore, h ∈ j.F is proved. The other three
inductive cases –for derivability using (join), (∀-elimination), and (upward flow)–
follows the same lines of the case for (projection) and their code is above omitted.
Next, the soundness_Theorem, which states the soundness of the proof system PS,
can be easily proved by calling the previous models_Lemma.

Verified Model Checking for Conjunctive Positive Logic 19

lemma soundness_Theorem <T> (phi : Formula ,B : Structure <T>)
requires wfQCSP_Instance(phi ,B)
requires is_derivable(J([],{},{}),phi ,B)
ensures ¬models(B,map[],phi)
{
var cj := J([] ,{} ,{});
models_Lemma(cj,phi ,B);
assert ¬valuationModel(map[],cj,phi ,B);
}

Since the empty judgement is derivable, by models_Lemma, every valuation that is
a model of phi belongs to the empty set of valuations. Therefore, every possible
valuation with empty domain is not a valuation model of phi. Since the empty
function map[] is the only valuation in the set of valuations with empty domain,
then (B,map[]) cannot models phi.

Completeness, i.e. the backward direction of Theorem 1, is encoded in the fol-
lowing completeness_Theorem which is proved with the help of the following auxiliary
lemma:

Lemma 2 Let (φ,B) be a QCSP instance. Let Iφ be the index set of φ. For each
i ∈ Iφ, let F be the set of all valuations such that B, h |= φ(i). Then, the judgement
(i, freeVar(φ(i)), F) is derivable.

We provide a constructive proof of Lemma 2 that associates a judgement to each
index i of the formula φ. We call it the canonical judgement. It is recursively
defined by the following function:

function canonical_judgement <T> (i : seq <int >,phi : Formula ,
B : Structure <T>) : (cj : Judgement <T>)

requires wfQCSP_Instance(phi ,B)
requires i in setOfIndex(phi)
ensures cj.i = i
ensures cj.V = freeVar(FoI(i,phi ,B.Sig))
ensures wfJudgement(cj,phi ,B)
decreases FoI(i,phi ,B.Sig)

{
var phii := FoI(i,phi ,B.Sig);
indexSubformula_Lemma(i,phi ,B.Sig);
match phii
case Atom(R,par) => var F := (set f : Valuation <T> |

f in allMaps(setOf(par),B.Dom)
∧ HOmap(f,par) in B.I[R]);

J(i,setOf(par),F)
case And(phi0 ,phi1) => var j0 ’ := canonical_judgement(i+[0],phi ,B);

var j1’ := canonical_judgement(i+[1],phi ,B);
var j0 := J(i,j0 ’.V,j0 ’.F);
var j1 := J(i,j1 ’.V,j1 ’.F);
join(j0 ,j1,phi ,B)

case Forall(x,phik) => var j0 := canonical_judgement(i+[0],phi ,B);
if x in j0.V then dualProjection(x,j0 ,phi ,B)

else J(i,j0.V,j0.F)
case Exists(x,phik) => var j0 := canonical_judgement (i+[0],phi ,B);

var jp := projection(j0,j0.V-{x},phi ,B);
if x in j0.V then J(i,jp.V,jp.F)

else J(i,j0.V,j0.F)
}

20 Alex Abuin et al.

Note that we name by cj the result produced by the function canonical_judgement.
Therefore, the name cj is used in the specification of the function as the shorter
name of canonical_judgement(i, phi, B). The well-foundedness of this function is
given by the decreasing expression FoI(i,phi,B.Sig), which represents the subfor-
mula of phi whose index is i (or (φ(i)). The call to indexSubformula_Lemma ensures
that the indexes of the subformulas of phi,phi1,phik, in the succeeding recursive
definition given by a match statement, are correct. In that recursive definition, we
use three auxiliary functions join, dualProjection and projection whose definitions
has been ensured to satisfy the respective predicates is_join, is_dualProjection

and is_projection (see Section 4). Consequently, Lemma 2 is encoded in the fol-
lowing Dafny lemma

lemma canonical_judgement_Lemma <T>(i : seq <int >,phi : Formula ,
B : Structure <T>,cj : Judgement <T>)

requires wfQCSP_Instance(phi ,B) ∧ i in setOfIndex(phi)
requires cj = canonical_judgement(i,phi ,B)
ensures cj.F = setOfValmodels(FoI(i,phi ,B.Sig),B)
ensures is_derivable(cj,phi ,B)
decreases FoI(i,phi ,B.Sig)

�{. . .}

that uses the following function

function setOfValModels <T> (phi : Formula ,B : Structure <T>)
: set <Valuation <T>>

requires wfStructure(B) ∧ wfFormula(B.Sig ,phi)
{
(set f : Valuation <T> | f in allMaps(freeVar(phi),B.Dom)

∧ models(B,f,phi))
}

for representing the set of all valuations that are models of a given formula in
a given structure. The lemma canonical_judgement_Lemma is proved by structural
induction on phi (we do not show here the proof), with the help of auxiliary lemmas
given inductive properties of the definition of setOfValModels for the three different
types of composed formulas (And, Forall and Exists) in terms of their component
subformula(s). Next, the completeness_Theorem, calling canonical_judgement_Lemma,
proves that whenever the sentence phi is not satisfied by the structure B, then the
empty judgement of index [] is derivable, indeed it is the cannonical judgement
for ([], phi, B,).

lemma completeness_Theorem <T> (phi : Formula ,B : Structure <T>)
requires wfQCSP_Instance(phi ,B)
requires ¬models(B,map[],phi)
ensures is_derivable(J([],{},{}),phi ,B)

{
var cj : | cj = canonical_judgement ([],phi ,B);
canonical_judgement_Lemma ([],phi ,B);

// assert cj.V = {};
// assert cj.F = (set f : Valuation <T> | f in allMaps ({}, B.Dom)
// ∧ models(B,f,phi)) = {};

}
}

The completeness proof proceeds by calling the canonical_judgement_Lemma with
canonical judgement associated to the root index [], Dafny infers that this judge-
ment cj is derivable. Moreover, cj.V must be empty and cj.F is the set of all

Verified Model Checking for Conjunctive Positive Logic 21

valuations with empty domain that are valuation models of phi (paired with B)
must be empty.

6 Modular Structure

In previous sections, we described the essentials of our formalization and the proofs
of the main meta-logical properties: soundness and completeness. However, many
technical details and auxiliary properties are proved for that. In our opinion, a
modular structure with explicit declarations of the definitions and lemmas that
are exported from one module and imported in other module, is essential for refac-
toring and reuse a large formalization. Moreover, in our experience, modularity
demonstrates to be helpful during the development phase. In this section, we give
an idea of the whole encoding by describing how it is structured using modules.

Utils

QCSP-Instance

Proof-System Conjunctive-Pos-Logic

PS-SoundnessPS-Completeness

Implementation

Fig. 2 Module dependencies (w.r.t. include clauses)

Dafny provides modules (keyword module) to group together related entities
(such as datatypes, lemmas, functions, predicates, methods, etc.), as well as to
control the scope of declarations. and clauses include to include one module in
other. In the head of modules, Dafny allows clauses import and export and differ-
ent qualifiers. In the case of import the qualifier opened allows to use the name of
the imported units without the additional prefix of the imported module name. By
declaring an export set, a module makes available a subset of its declarations to the
module’s importers. In the case of export, Dafny supports multiple export sets per
module and also allows to name the different exported list. In addition, the quali-
fiers provides and reveals allows us to export respectively the specification-part or
also the body-part of the exported unit. In other words, each export set indicates
the translucency of its exported declarations. For a function, the specification-part
includes the function’s parameters/results type signature as well as the function’s
specification, whereas the body-part includes its definition. In Dafny, the verifier
always reasons about calls to lemmas (also to methods) in terms of their specifica-
tions, never in terms of their bodies. Thus, there would be no difference between

22 Alex Abuin et al.

providing and revealing a method or lemma in an export set. For that reason
methods and lemmas are disallowed to be mentioned in reveals clauses. Therefore,
exported lemmas are always provided, but not revealed. An export set has to be
self consistent. This means that everything mentioned in the exported declarations
must make sense separately. In particular, this means that every symbol that is
mentioned in the portions (specification-part or specification-part plus body-part)
that are exported must also be part of the export set. The interested reader can
find motivations and explanations about the design of the module system of Dafny
in [29].

Our formalization is structured in seven modules whose dependencies are de-
scribed in Figure 2, where the arrows represent the clauses include in each module.
The module at the tail of each arrow includes the one at the head of the arrow.
The proof system formalization and the proofs of its soundness and completeness
consists of six modules: Utils, QCSP-instance, Proof-System, Conjunctive-Pos-Logic,
PS-Soundness and PS-Completeness. In addition, the module Implementation contains
some additional (verified) methods necessary for implementing the model checker
as a web application. More details on the latter are given in Section 7.

Module Utils contains a few auxiliary concepts and properties on sets, se-
quences and maps that are of general utility. Here we show part of it:

module Utils {
export reveals setOf , noDups

provides allMaps ,allMaps_Correct_Lemma ,ExtMap_Lemma ,
ProyectMap_Lemma

function setOf <T>(s : seq <T>) : set <T>
{ set x | x in s }

predicate noDups <T(=)>(U : seq <T>)
{ ∀ i,j • 0 ≤ i < j < |U| =⇒ U[i] 6= U[j] }

function allMaps <A,B>(keys : set <A>, values : set) : set <map <A,B>>
ensures ∀ m • m in allMaps(keys , values)

=⇒ m.Keys = keys ∧ m.Values ⊆ values
ensures keys = {} =⇒ allMaps(keys ,values) = {map[]}
�{. . .}

. . .//one (unrevealed) auxiliary function

. . .// lemmas allMaps_Correct_Lemma , ExtMap_Lemma and ProyectMap_Lemma
}

The export list of module Utils reveals a function setOf for the set of elements of a
sequence, a predicate noDups for deciding whether a given sequence has duplicates,
which has not ensures clauses. However, it provides (but does not reveal) the func-
tion allMaps (see Section 4), hence importer modules know its two ensure clauses,
but not its body. Module Utils also provides a lemma allMaps_Correct_Lemma, which
complements the first ensures clause of allMaps with the backward implication,
along with other two lemmas on operations over sets of maps.

In Sections 4 and 5 we explained the most revelant componentes of the four
modules QCSP-Instance, Proof-System, PS-Soundness and PS-Completeness. In what fol-
lows, we explain the role of the module Conjunctive-Pos-Logic in our formaliza-
tion. For that, we first give more details about the module QCSP-Instance. This
module contains 19 lemmas proving basic properties of the operations on valua-

Verified Model Checking for Conjunctive Positive Logic 23

tions, and also properties on the relation between these operations and the pred-
icate models. Some of this units are auxiliary in the module, to prove the lemmas
that are provided to other modules. Next, we show a partial view of the module
QCSP-Instance placing emphasis on the relevant elements in the export list to the
module Conjunctive-Pos-Logic.

module QCSP_Instance {
import opened Utils
export Lemmas_for_Conj_Pos_Logic

reveals . . ., extVal , . . .
provides . . ., extValDomRange_Lemma , extValOrder_Lemma ,

NoFreeVarInExists_Lemma , Exists_Commutes_Lemma
. . . // export lists for other modules

function extVal <T>(f : Valuation <T>,W : seq <Name >,S : seq <T>)
: Valuation <T>

requires |W| = |S| ∧ noDups(W)
decreases W
{ if W = [] then f else extVal(f[W[0] :=S[0]],W[1..],S[1..]) }

. . . // other function and predicate definitions

lemma extValDomRange_Lemma <T>(f : Valuation <T>,W : seq <Name >,S : seq <T>)
requires |W| = |S| ∧ noDups(W)
ensures extVal(f,W,S).Keys = setOf(W) + f.Keys
ensures extVal(f, W, S). Values ⊆ f.Values + setOf(S)
decreases W
�{. . .}

lemma extValOrder_Lemma <T>(k : int ,U : seq <Name >,S : seq <T>,f : Valuation <T>)
requires 0 ≤ k < |U| = |S| ∧ noDups(U)
ensures extVal(f, U, S)

= extVal(f[U[k] :=S[k]], U[..k]+U[k+1..], S[..k]+S[k+1..])
�{. . .}

. . . // other 15 lemmas

lemma NoFreeVarInExists_Lemma <T>(B : Structure ,f : Valuation <T>,
x : Name ,beta : Formula)

requires wfStructure(B) ∧ wfFormula(B.Sig ,beta) ∧ f.Values ⊆ B.Dom
requires x 6∈ freeVar(beta)
ensures models(B,f,beta) ⇐⇒ models(B,f,Exists(x,beta))
�{. . .}

lemma Exists_Commutes_Lemma <T>(x : Name , y : Name , alpha : Formula ,
f : Valuation <T>, B : Structure <T>)

requires wfStructure(B) ∧ wfFormula(B.Sig , alpha)
requires f.Values ⊆ B.Dom
requires models(B, f, Exists(x, Exists(y, alpha)))
ensures models(B, f, Exists(y, Exists(x, alpha)))
�{. . .}

Dotted lines in the export list substitute the elements that are necessary for self
consistency, but are not relevant for the present discussion. In other words, 4 of
the 19 lemmas proved in QCSP-Instance are basic for proving the 13 lemmas in
module Conjunctive-Pos-Logic. The objective of the latter module is to provide the
properties of Conjunctive Positive Logic that we need to prove soundness. Indeed,
all them are properties about the models of formulas of the form ∃x1 . . .∃xnφ,
which is written in Dafny as existSq(W,phi) where W is the sequence [x1 . . . xn].

24 Alex Abuin et al.

The function existSq is defined and exported by module Conjunctive-Pos-Logic, see
Figure 3.

module Conjunctive_Pos_Logic{
. . .// import opened clauses

export Lemmas_for_PS_Soundness
reveals existSq
provides existSq_ExtVal_Lemma , existSq_Project_Lemma ,

existSq_Sum_Lemma , existSq_And_Lemma ,
existSq_Forall_Lemma , existSq_Exists_Lemma ,
existSqSem_Lemma

function existSq(X : set <Name >, alpha : Formula) : Formula
ensures freeVar(existSq(X,alpha)) = freeVar(alpha)-X
ensures ∀ S • wfFormula(S,alpha) =⇒ wfFormula(S,existSq(X,alpha))
{
if |X| = 0 then alpha else var x : | x in X;

Exists(x,existSq(X-{x},alpha))
}

lemma existSq_And_Lemma <T>(B : Structure <T>,f : Valuation <T>,
W : set <Name >,phi : Formula)

requires wfStructure(B) ∧ wfFormula(B.Sig ,phi)
requires f.Values ⊆ B.Dom
requires phi.And?
requires models(B,f,existSq(W,phi))
ensures wfFormula(B.Sig ,existSq(W ∩ freeVar(phi.0),phi .0))
ensures wfFormula(B.Sig ,existSq(W ∩ freeVar(phi.1),phi .1))
ensures models(B,f,existSq(W ∩ freeVar(phi.0), phi .0))
ensures models(B,f,existSq(W ∩ freeVar(phi.1), phi .1))
decreases W
�{. . .}

. . . // other 12 lemmas
}

Fig. 3 One of the lemmas exported from Conjunctive-Pos-Logic to prove the soundness of
proof system PS.

The specification-part of lemma existSq_Distr_And_Lemma is shown in Figure 3
as an example of the kind of properties about models of existSq-formulas that
module Conjunctive-Pos-Logic provides to module PS-Soundness. Basically, it proves
that

if B, f |= ∃x1 . . .∃xn(φ0 ∧ φ1),
then B, f |= ∃y1 . . .∃ym(φ0) and B, f |= ∃z1 . . .∃zk(φ1)

where {y1, . . . , ym} is the set of all variables in {x1, . . . , xn} that occur free in φ0

and {z1, . . . , zk} is the set of all variables in {x1, . . . , xn} that occur free in φ1. All
the lemmas exported (provided) by the module Conjunctive-Pos-Logic are related
to (semantic) models of CPL. In particular, the seven lemmas exported by mod-
ule Conjunctive-Pos-Logic to be imported by the module PS-Soundness, (see export
list Lemmas_for_PS_Soundness in Figure 3) assist in the task of proving the lemma
models_Lemma that is crucial in the soundness proof, as explained in Section 5. Since

Verified Model Checking for Conjunctive Positive Logic 25

models_Lemma (or Lemma 1) refers to an existentially closed formula, the metalogical
properties in module Conjunctive-Pos-Logic are related to these existentially closed
formulas.

7 Implementation

On the basis of our formalization of proof system PS, we have implemented a
verified model checker for Conjunctive Positive Logic. The interface of our model
checker asks the user to successively provide the different components of a QCSP-
instance (B, φ), and when completed it returns the result of whether B |= φ. In
this section, we describe our conversion process to generate code and integrate it
into the web application. We report on the challenges that arise along this process.

To obtain code from the verified proof system, we basically convert the func-
tions (and predicates) that would take part in the implementation of the web
application into methods. By default, Dafny functions (and predicates) are ghost
(non-executable), and cannot be called from non-ghost code. Predicates receive
the same treatment as functions, they really are boolean functions. To make a
function non-ghost, Dafny gives the option, when feasible, to replace the keyword
function with the two keywords function method. When a function f defined by an
expression E is turned to non-ghost, every function called in the expression E should
be turned to non-ghost. Not every expression can be changed from ghost to non-
ghost, because not every ghost expression is compilable into real code. As a typical
example, consider any expression of the form ∀ i : nat • P(i) that is body/defini-
tion of a predicate Q. If property P does not bound the possible values of i in
some way that enables Dafny’s heuristics to get a finite set, then the change to
predicate method Q raises an error in Dafny that complains: “a quantifier in a non-
ghost context is allowed only whenever a bounded set of values for its variables (i,
in this case) can be computed”. In this case, the required function (or predicate)
should be implemented by a method whose requires-ensures specification (a.k.a.
contract) states that it computes the original function.

The web application checks the well-formedness of the QCSP-instance given
by the user, and then compute the canonical judgement to answer “no” if it is
empty and “yes” otherwise. Henceforth, at a first glance, we have to convert into
non-ghost the predicate wfQCSP_Instance and the function canonical_judgement. As a
consequence, all ghost code used in each of these three units has to be also trans-
formed into real code, and the same applies to the ones called from the just trans-
formed into non-ghost. We made this until Dafny has not more complains telling
us that“function calls are allowed only in specification context (consider declaring
the function as function method)”. Dafny marks the affected calls and shows that
messages as hover text, which is a valuable help. The predicate wfQCSP_Instance is
easily turned non-ghost by simply adding the keyword method in other two predi-
cates and functions definitions. The transformation of function canonical_judgement

requires that eight different functions must be also non-ghost. Five of them are
solved by simply adding the keyword method. One of the other three functions,
which is allMaps, does not satisfy the required conditions for that easy conversion
into code, whereas the other two (join and dualProjection) call allMaps. Indeed,
the function allMaps makes use of the Hilbert epsilon operator ([32]) declaring
var a :| a in s, where s is a set, raises the error “to be compilable the value of a

26 Alex Abuin et al.

let-such-that-expression must be uniquely determined”. To fix this problem, we
developed the module Implementation in which we provide a method compute_f for
each of the four functions canonical_judgement, allMaps, join and dualProjection as
f, and verify the equivalence of each method with the original function. Actually
the contract of the methods compute_f specify that it conputes the function f. For
example, the contracts of compute_canonical_judgement and compute_allMaps are:

method compute_canonical_judgement <T>(i : seq <int >,phi : Formula ,
B : Structure <T>)
returns (cj : Judgement <T>)

requires wfQCSP_Instance(phi ,B)
requires i in setOfIndex(phi)
ensures cj = canonical_judgement(i,phi ,B)

method compute_allMaps <T(=)>(keys : set <Name >,values : set <T>)
returns (am : set <map <Name ,T>>)

requires values 6= {}
ensures am = allMaps(keys , values)

After that, by compiling our formalization, Dafny automatically generates a li-
brary of methods in .NET code (i.e. C#, Visual Basic, and F#). Since .NET does
not have a standard format for inductive datatypes, the data format used by the
Dafny compiler may not agree with the data formats used by other .NET lan-
guages. Therefore, the use of our verified encoding from C# has required some
data conversions. The compilation process transforms datatypes, such as Structure,
Judgement and Formula, into C# classes. For each constructor C of a datatype D

a class is created named as D_C. All these classes extend a generic abstract one
called Base_D. In addition, there is a class D that has a single constructor with
a parameter of type Base_D. To illustrate this, the datatype Formula has four con-
structors in Dafny specification: Atom, And, Forall and Exists. Dafny generates the
classes Formula, Base_Formula (abstract), Formula_Atom, Formula_And, Formula_Exists

and Formula_Forall. Auxiliary functions are automatically generated to help devel-
opers to handle with the classes. For example, a function is_C is generated for each
constructor C. With the previous classes and auxiliary functions we can instantiate
C# objects. These can be used as input in methods that require them.

The fact that our formalization has already been verified guarantees that
every call that satisfies the precondition complies with the postcondition. As
a consequence, our web application checks the requires clauses before calling
the methods. In other words, the only method called by the web application is
compute_canonical-judgement whose preconditions are:

requires wfQCSP_Instance(phi ,B)
requires i in setOfIndex(phi)

Hence, before the call compute_canonical-judgement([],pbi,B), we only check that
wfQCSP_Instance(phi,B), because [] in setOfIndex(phi) is trivial for any phi.

8 Experience

Our formalization and implementation has been developed in the Dafny IDE ([31])
which lends itself to increase user productivity. The main features of the Dafny
IDE are well described in [31]. Our development experience can be termed as

Verified Model Checking for Conjunctive Positive Logic 27

highly positive, mainly because interaction with the tool is easy and it provides
good support and helpful information for verification failures, in an agile and fast
way. In addition, Dafny supports a number of proof features traditionally found in
only interactive proof assistants like Coq or Isabelle/HOL. The task is interesting
from the point of view of given a detailed formalization and for debugging the
proofs which were previously written with pen and paper in a more imprecise
form. Automated proofs often require proving some essential properties that are
usually assumed (in the concerned area) without any proof. This is especially the
case of many of the lemmas in the module Conjunctive-Pos-Logic which mainly
contain logical equivalences that are usually assumed. Moreover, it is feasible that
the process of proving some of these properties raised some issue non-properly
defined in the formalization. Actually, this was our experience, as we explain in
the next paragraph.

There is no doubt that formal verification is useful and important in soft-
ware development. Details can be subtle and formal verification helps in detecting
subtle details that otherwise remain in hiding. The more noteworthy are assump-
tions that the programmer assume, but she (or he) does not make explicit in the
specification. Along the development of our proof many subtle details has been
fixed. For example, we forgot to specify, as part of the predicate wfStructure, that
the domain of the given structure must be warranted to be non-empty. We re-
alized that when we were not able to proof lemma existSqSem_Lemma in module
Conjunctive-Pos-Logic. The interested reader could commented the first line in the
body of predicate wfStructure to check that the proof of lemma existSqSem_Lemma is
not verified.

Another worthy mistake we made was when we defined the canonical judgement
for the universal and existential formulas without taking into account the case
when the quantified variable is not in the variables of the judgement. Hence, when
we initially tried to prove canonical_judgement_Lemma, the postcondition:

ensures cj.F = setOfValmodels(FoI(i,phi ,B.Sig),B)

couldn’t be proved, leading us to see where we were missing.

Among the many interesting lessons learned, we would like to report on the
details of the definition of function allMaps in module Utils. For that, we use the
function

function choose <A>(s : set <A>) : A
requires s 6= {}
{
var a : | a in s; a
}

to encapsulate into this function the application of the Hilbert epsilon operator
:|. Otherwise, if we used the operator :|directly in two places: the definition
of function allMaps and the proof of lemma allMaps_Correct_Lemma, then each place
would choose a different element, which makes the proof of the lemma much harder
than putting the expression into a function, because a function produces a unique
result for a given argument.

The Dafny formalization, which consists of 1963 lines (including white and
commented lines), is structured in seven modules. We take advantage of the im-
port/export mechanism of Dafny for organizing the dependencies between the

28 Alex Abuin et al.

components. Moreover, in Dafny, the exported components can be provided or re-
vealed, which enables to export just the specification, or also the body, of functions
and methods.

module lines datatypes functions lemmas methods proof obl. secs

Utils 65 0 4 3 0 39 2.90

QCSP-Instance 358 2 8 19 8 697 16.99

Proof-System 218 1 7 4 1 469 14.22

Conjunctive-Pos-Logic 363 0 2 13 0 1,042 46.34

PS-Soundness 288 0 1 8 0 1,004 32.22

PS-Completeness 231 0 4 5 1 698 17.84

Implementation 204 0 0 4 7 256 10.58

TOTAL 1727 3 26 56 17 4,205 141.09

Table 1 Some figures on lines, different Dafny units (datatypes, functions, ...), generated
proof obligations, and seconds required for verification, breakdown per module.

In Table 1 we summarize the size of the modules, in terms of the total (non-
comment, non-blank) lines of code, the number of datatypes, the number of func-
tions (including predicates), proved lemmas, and methods. The function/predicate
methods are counted as methods. The right-most two column respectively reports
the number of proof obligations (i.e. queries discharged to Z3) and the seconds
required to verify each module by Dafny 2.3.0 for Windows(x64) running by a
processor i5-7500 CPU at 2.60GHz 3.40GHz with 16 GB of RAM.

The proof of lemma existSq_Distr_And_Lemma takes about 17,45 seconds, which
is the most costly proof, for solving 152 proof obligations. However, the largest set
of proof obligations, which consists of 423, is generated by models_Lemma_h is proved
in 0,42 seconds. To give some global figures about the proof obligations (PO)
generated by lemmas, from the 51 lemmas, there are 18 lemmas that generate
at most 20 PO, 16 lemmas that generate from 21 to 60 proof obligations, 21
lemmas that generates from 61 to 250, and only one lemma that produces more
than 250 which is the above mentioned models_Lemma_h. Just below it, the lemma
canonical_judgement_Lemma produces the number of PO closer to 250, exactly 218,
and it is verified in 9,06 seconds.

The amount of effort required to develop the whole system (seven modules of
formalization and the web application) is about 250 person-hours.

9 Compliance with Ethical Standards

Funding: This research has been supported by the European Union (FEDER
funds) under grant TIN2017-86727-C2-2-R, and by the University of the Basque
Country under Project LoRea GIU18-182.
Conflict of Interest: The authors declare that they have no conflict of interest.

Verified Model Checking for Conjunctive Positive Logic 29

References

1. Abuin, A., Chen, H., Hermo, M., Lucio, P.: Towards the automatic verification of QCSP
tractability results. In: Proceedings of the XVII Jornadas sobre Programación y Lenguajes
(PROLE 2017) (2017). URL http://hdl.handle.net/11705/PROLE/2017/017

2. Backhouse, R. (ed.): The calculational method, Information Processing Letters, vol. 53.
Elsevier (1995). DOI 10.1016/0020-0190(94)00212-H

3. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal
Methods in System Design 41(1), 45–65 (2012). DOI 10.1007/s10703-012-0152-6

4. Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their proof complex-
ities. In: C. Sinz, U. Egly (eds.) Theory and Applications of Satisfiability Testing – SAT
2014, pp. 154–169. Springer International Publishing, Cham (2014)

5. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework with learn,
forget, restart, and incrementality. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pp. 4786–4790 (2017). DOI 10.24963/ijcai.
2017/667. URL https://doi.org/10.24963/ijcai.2017/667

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s Verify This with Why3.
Software Tools for Technology Transfer (STTT) 17(6), 709–727 (2015). DOI 10.1007/
s10009-014-0314-5. URL https://hal.inria.fr/hal-00967132

7. Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints. In:
P. Van Hentenryck (ed.) Principles and Practice of Constraint Programming - CP 2002,
pp. 371–386. Springer Berlin Heidelberg (2002). DOI 10.1007/3-540-46135-3 25

8. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda — a functional language
with dependent types. In: Proceedings of the 22nd International Conference on The-
orem Proving in Higher Order Logics, TPHOLs’09, pp. 73–78. Springer-Verlag (2009).
DOI 10.1007/978-3-642-03359-9 6

9. Buning, H., Karpiński, M., Flogel, A.: Resolution for quantified boolean formulas. Infor-
mation and Computation 117(1), 12 – 18 (1995). DOI 10.1006/inco.1995.1025

10. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quan-
tified boolean formulae and its experimental evaluation. Journal of Automated Reasoning
28(2), 101–142 (2002). DOI 10.1023/A:1015019416843

11. Chen, H.: A rendezvous of logic, complexity, and algebra. ACM Computing Surveys 42(1),
2:1–2:32 (2009). DOI 10.1145/1592451.1592453

12. Chen, H.: A rendezvous of logic, complexity, and algebra. ACM Comput. Surv. 42(1),
2:1–2:32 (2009). DOI 10.1145/1592451.1592453

13. Chen, H.: Beyond Q-resolution and prenex form: A proof system for quantified con-
straint satisfaction. Logical Methods in Computer Science 10(4) (2014). DOI 10.2168/
LMCS-10(4:14)2014

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: D. Kozen (ed.) Logics of Programs, pp. 52–71. Springer
Berlin Heidelberg (1982). DOI 10.1007/BFb0025774

15. Clochard, M., Filliâtre, J.C., Marché, C., Paskevich, A.: Formalizing Semantics with an
Automatic Program Verifier, pp. 37–51. Springer International Publishing (2014). DOI
10.1007/978-3-319-12154-3 3

16. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: S. Berghofer,
T. Nipkow, C. Urban, M. Wenzel (eds.) Theorem Proving in Higher Order Logics: 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings, pp. 23–42. Springer (2009). DOI 10.1007/978-3-642-03359-9 2

17. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean constraint sat-
isfaction problems, SIAM Monographs on Discrete Mathematics and Applications,, vol. 7.
Society for Industrial and Applied Mathematics (2001). DOI 10.1137/1.9780898718546

18. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc. (2003). DOI
10.1016/B978-1-55860-890-0.X5000-2

19. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using
quantified boolean formulas. In: H.A. Kautz, B.W. Porter (eds.) Proceedings of the 17th
National Conf. on Artificial Intelligence and 12th Conf. on Innovative Applications of
Artificial Intelligence, pp. 417–422. AAAI Press / The MIT Press (2000). URL http:
//www.aaai.org/Library/AAAI/2000/aaai00-064.php

20. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A fully
verified executable ltl model checker. In: N. Sharygina, H. Veith (eds.) Computer Aided
Verification, pp. 463–478. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

http://hdl.handle.net/11705/PROLE/2017/017
https://doi.org/10.24963/ijcai.2017/667
https://hal.inria.fr/hal-00967132
http://www.aaai.org/Library/AAAI/2000/aaai00-064.php
http://www.aaai.org/Library/AAAI/2000/aaai00-064.php

30 Alex Abuin et al.

21. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: M. Felleisen,
P. Gardner (eds.) Programming Languages and Systems — 22nd European Symposium on
Programming, ESOP 2013, Lecture Notes in Computer Science, vol. 7792, pp. 125–128.
Springer (2013). DOI 10.1007/978-3-642-37036-6 8

22. Gelder, A.V.: Contributions to the theory of practical quantified boolean formula solv-
ing. In: M. Milano (ed.) Principles and Practice of Constraint Programming - 18th In-
ternational Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Pro-
ceedings, Lecture Notes in Computer Science, vol. 7514, pp. 647–663. Springer (2012).
DOI 10.1007/978-3-642-33558-7\ 47

23. Gent, I.P., Nightingale, P., Rowley, A., Stergiou, K.: Solving quantified constraint satis-
faction problems. Artificial Intelligence 172(6), 738 – 771 (2008). DOI 10.1016/j.artint.
2007.11.003

24. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for quantified boolean logic
satisfiability. Artificial Intelligence 145(1-2), 99–120 (2003). DOI 10.1016/S0004-3702(02)
00373-9

25. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of The ACM pp. 552–552 (2007)

26. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast:
A powerful, sound, predictable, fast verifier for C and Java. In: M. Bobaru, K. Havelund,
G. Holzmann, R. Joshi (eds.) NASA Formal Methods, pp. 41–55. Springer Berlin Heidel-
berg (2011). DOI 10.1007/978-3-642-20398-5 4

27. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-aided reasoning : an approach.
Advances in formal methods. Kluwer Academic Publishers (2000). DOI 10.1007/
978-1-4615-4449-4

28. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: E.M.
Clarke, A. Voronkov (eds.) Logic for Programming, Artificial Intelligence, and Reasoning,
Lecture Notes in Computer Science, vol. 6355, pp. 348–370. Springer (2010). DOI 10.
1007/978-3-642-17511-4 20

29. Leino, K.R.M., Matichuk, D.: Modular verification scopes via export sets and translucent
exports. In: Principled Software Development - Essays Dedicated to Arnd Poetzsch-
Heffter on the Occasion of his 60th Birthday, pp. 185–202 (2018). DOI 10.1007/
978-3-319-98047-8\ 12

30. Leino, K.R.M., Polikarpova, N.: Verified calculations. In: E. Cohen, A. Rybalchenko (eds.)
Verified Software: Theories, Tools, Experiments — 5th International Conference, VSTTE
2013, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8164, pp. 170–190.
Springer (2014). DOI 10.1007/978-3-642-54108-7 9

31. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
C. Dubois, D. Giannakopoulou, D. Méry (eds.) Proceedings 1st Workshop on Formal
Integrated Development Environment, F-IDE 2014, Electronic Proceedings in Theoreti-
cal Computer Science, vol. 149, pp. 3–15. Open Publishing Association (2014). DOI
10.4204/eptcs.149.2

32. Leino, R.: Compiling hilbert’s epsilon operator. In: A. Fehnker, A. McIver, G. Sutcliffe,
A. Voronkov (eds.) LPAR-20. 20th International Conferences on Logic for Programming,
Artificial Intelligence and Reasoning - Short Presentations, EPiC Series in Computing,
vol. 35, pp. 106–118. EasyChair (2015). DOI 10.29007/rkxm. URL https://easychair.
org/publications/paper/dM

33. Leino, R.: Well-founded functions and extreme predicates in Dafny: A tutorial. In:
B. Konev, S. Schulz, L. Simon (eds.) IWIL-2015. 11th International Workshop on the Im-
plementation of Logics, EPiC Series in Computing, vol. 40, pp. 52–66. EasyChair (2016).
DOI 10.29007/v2m3

34. Mamoulis, N., Stergiou, K.: Algorithms for quantified constraint satisfaction problems. In:
Proceedings of CP’04, LNCS, vol. 3258, pp. 752–756. Springer (2004)

35. Martin, B.: Dichotomies and duality in first-order model checking problems. CoRR (2006).
URL http://arxiv.org/abs/cs/0609022

36. Martin, B.: First-order model checking problems parameterized by the model. In: A. Beck-
mann, C. Dimitracopoulos, B. Löwe (eds.) Logic and Theory of Algorithms, pp. 417–427.
Springer Berlin Heidelberg (2008). DOI 10.1007/978-3-540-69407-6 45

37. Martin, B.: Quantified constraints in twenty seventeen. In: A. Krokhin, S. Zivny (eds.) The
Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups,
vol. 7, pp. 327–346. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017). DOI
10.4230/DFU.Vol7.15301.327

https://easychair.org/publications/paper/dM
https://easychair.org/publications/paper/dM
http://arxiv.org/abs/cs/0609022

Verified Model Checking for Conjunctive Positive Logic 31

38. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of The ACM 60(6) (2013). DOI 10.1145/2535926

39. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283. Springer (2002)

40. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in cesar. In:
M. Dezani-Ciancaglini, U. Montanari (eds.) International Symposium on Programming,
pp. 337–351. Springer Berlin Heidelberg (1982). DOI 10.1007/3-540-11494-7 22

41. Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: Qed at large: A survey
of engineering of formally verified software. Foundations and Trends R© in Programming
Languages 5(2-3), 102–281 (2019). DOI 10.1561/2500000045. URL http://dx.doi.org/
10.1561/2500000045

42. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial
Intelligence Research 10(1), 323–352 (1999). URL http://dl.acm.org/citation.cfm?id=
1622859.1622870

43. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pp. 216–226. ACM, New
York, NY, USA (1978). DOI 10.1145/800133.804350. URL http://doi.acm.org/10.1145/
800133.804350

44. Schlichtkrull, A.: Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning 61(1–4), 455–484 (2018). DOI 10.1007/s10817-017-9447-z

45. Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based on ordered res-
olution. In: Proceedings of the 8th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2019, p. 152–165. Association for Computing Ma-
chinery, New York, NY, USA (2019). DOI 10.1145/3293880.3294100. URL https:
//doi.org/10.1145/3293880.3294100

46. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory and Logic.
MAC TR. Massachusetts Institute of Technology, Project MAC (1974). URL https:
//books.google.es/books?id=zFbQMQAACAAJ

47. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure distributed
programming with value-dependent types. Journal of Functional Programming 23(4),
402–451 (2013). DOI 10.1017/S0956796813000142

48. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics 5(2), 285–309 (1955). URL https://projecteuclid.org:443/euclid.pjm/
1103044538

49. The Coq Development Team: The logical project, INRIA. The Coq proof assistant (Version
8.10.0, 2019). URL https://coq.inria.fr

50. Williams, R.: Algorithms for quantified boolean formulas. In: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pp. 299–
307. Society for Industrial and Applied Mathematics (2002). URL http://dl.acm.org/
citation.cfm?id=545381.545421

51. Xavier, B., Olarte, C., Reis, G., Nigam, V.: Mechanizing focused linear logic in Coq.
In: The 12th Workshop on Logical and Semantic Frameworks, with Applications (LSFA
2017), Electronic Notes in Theoretical Computer Science, vol. 338, pp. 219 – 236 (2018).
DOI 10.1016/j.entcs.2018.10.014

52. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver.
In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD ’02, p. 442–449 (2002). DOI 10.1145/774572.774637

http://dx.doi.org/10.1561/2500000045
http://dx.doi.org/10.1561/2500000045
http://dl.acm.org/citation.cfm?id=1622859.1622870
http://dl.acm.org/citation.cfm?id=1622859.1622870
http://doi.acm.org/10.1145/800133.804350
http://doi.acm.org/10.1145/800133.804350
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1145/3293880.3294100
https://books.google.es/books?id=zFbQMQAACAAJ
https://books.google.es/books?id=zFbQMQAACAAJ
https://projecteuclid.org:443/euclid.pjm/1103044538
https://projecteuclid.org:443/euclid.pjm/1103044538
https://coq.inria.fr
http://dl.acm.org/citation.cfm?id=545381.545421
http://dl.acm.org/citation.cfm?id=545381.545421

	Introduction
	A Proof System for QCSP
	Dafny: Language, Verifier and IDE
	Formalization of the Proof System PS in Dafny
	Dafny Proofs of Soundness and Completeness
	Modular Structure
	Implementation
	Experience
	Compliance with Ethical Standards

