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We compute the structure-dependent axial and vector form factors for the radiative leptonic decays
Ds → lνlγ, where l is a charged lepton, as functions of the energy of the photon in the rest frame of theDs

meson. We work in the electroquenched approximation, using gauge-field configurations with 2þ 1þ 1

sea-quark flavors generated by the European Twisted Mass Collaboration and the results have been
extrapolated to the continuum limit. For the vector form factor we observe a very significant partial
cancellation between the contributions from the emission of the photon from the strange quark and that
from the charm quark. The results for the form factors are used to test the reliability of various Anzätze
based on single-pole dominance and its extensions, and we present a simple parametrization of the
form factors which fits our data very well and which can be used in future phenomenological analyses.
Using the form factors we compute the differential decay rate and the branching ratio for the process
Ds → eνeγ as a function of the lower cutoff on the photon energy. With a cutoff of 10 MeV for example,
we find a branching ratio of BrðEγ > 10 MeVÞ ¼ 4.4ð3Þ × 10−6 which, unlike some model calculations,

is consistent with the upper bound from the BESIII experiment BrðEγ > 10 MeVÞ < 1.3 × 10−4 at
90% confidence level. Even for photon energies as low as 10 MeV, the decay Ds → eνeγ is dominated by
the structure-dependent contribution to the amplitude (unlike the decays with l ¼ μ or τ), confirming its
value in searches for hypothetical new physics as well as in determining the Cabibbo-Kobayashi-Maskawa
parameters at OðαemÞ, where αem is the fine-structure constant.

DOI: 10.1103/PhysRevD.108.074505

I. INTRODUCTION

The comparison between experimental measurements and theoretical predictions for flavor-changing processes
accompanied by photon emission represents an important tool in the search of new physics (NP) beyond the Standard
Model (SM). In this paper we consider radiative weak leptonic decays of the form P → lνlγ, where P is a pseudoscalar
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meson, lνl a lepton-neutrino pair, and γ a real photon. For
each meson P, in addition to the leptonic decay constant
fP, the computation of the corresponding decay rate
requires the calculation of two structure-dependent (SD)
hadronic form factors, FV and FA, which depend on the
energy of the photon in the meson rest frame. If instead
the structure dependence of the meson is neglected, i.e. in
the “pointlike” approximation, the only nonperturbative
input required to determine the decay rate is fP. An
interesting feature of these decays is that, because of
helicity suppression, the pointlike contribution to the decay
rate is suppressed with respect to the SD contribution by the
square of the ratio rl ¼ ml=mP, where ml and mP are the
masses of the charged lepton l and meson P respectively.
For heavy mesons P and light final-state charged leptons l,
the SD contribution, which is sensitive to the internal
structure of the decaying meson, can already be dominant
at relatively low photon energies, and in particular those
well below the typical energy cutoff imposed in exper-
imental measurements. This makes such decay channels an
ideal place to probe the internal structure of the meson and
the presence of possible NP contributions. While for pion
and kaon decays several experimental measurements of the
axial and vector form factors exist (see e.g. Refs. [1–6]), for
heavy mesons only very little is known. For charmed
meson decays the BESIII Collaboration recently searched
for signals of the Cabibbo-suppressed decay Dþ → eþνeγ
[7] and of the Cabibbo-favored one Dþ

s → eþνeγ [8],
finding no events with emission of photons with energies
Eγ > 0.01 GeV, and setting the following upper bounds
on the branching ratios; Br½D → eνeγ� < 3 × 10−5 and
Br½Ds → eνeγ� < 1.3 × 10−4 at 90% confidence level.
For the B meson, the Belle Collaboration has recently
set the bounds [9,10] Br½B→eνeγ�<4.3×10−6 and
Br½B→μνμγ�<3.4×10−6, and observed photons with
energies Eγ > 1 GeV. We believe that by providing accu-
rate predictions from first principles for the axial and vector
form factors for heavy mesons, we will motivate further
experimental studies.
We have recently computed the rates for P → lνlγ

decays where P is a light meson, P ¼ π or K, [11] and
compared our results to experimental measurements find-
ing some puzzling and interesting discrepancies yet to be
resolved [12]. In Ref. [11] we have also computed the
amplitude for the decays of the Ds meson, but only over
part of the physical phase space; specifically for photon
energies up to 0.4 GeV, as measured in the rest frame of the
Ds meson. In this paper, we return to the radiative decays
of Ds mesons and compute the relevant axial and vector
form factors FV and FA over the full physical kinematic
range and with high-statistical accuracy, thus improving
significantly upon the previous study of Ref. [11]. The
computation is performed using the Nf ¼ 2þ 1þ 1

Wilson-Clover twisted-mass gauge ensembles generated
by the Extended Twisted Mass Collaboration (ETMC)

with quark masses tuned very close to their physical
values, for almost all the ensembles [13–16]. The ensem-
bles correspond to four values of the lattice spacing a in the
range ½0.56; 0.9� fm, with the spatial extent of the lattice, L,
ranging from 4.4 fm to 7.6 fm.
Our main results for theDs radiative form factors FV and

FA are collected in Table V and plotted in Fig. 8, and we
provide their correlation matrices in Appendix B. Recently,
numerical results for the lattice computation of FV and FA
of theDs meson also have been published in Ref. [17]. The
primary focus of that paper however, is on developing and
testing different strategies for the lattice computation of the
form factors. Their numerical results are based on a single-
gauge ensemble at an unphysical pion mass, and for this
reason a direct comparison with our results is not possible
at present. In the future, it would be interesting to compare
our results with those obtained from other lattice regula-
rizations in the continuum limit.
We use our results for the form factors to compute the

branching fraction of the Ds → eþνeγ decay, as a function
of the lower cutoff,ΔEγ , on the photon energy, as measured
in the meson rest frame. Our results are showed in Fig. 10.
For ΔEγ ¼ 0.01 GeV, our prediction for the branching
fraction lies well below the experimental upper limit set by
the BESIII Collaboration [8]. Due to the strong helicity
suppression, the branching fraction is dominated by the SD
contribution, even for a lower cut on the photon energy as
small as 0.01 GeV. In Fig. 11, we show the SD contribution
to the differential Ds → eþνeγ decay rate, as a function of
the photon energy in the meson rest frame; this goes to zero
at the edge of phase space and reaches a maximum in the
region kinematic xγ ≡ 2Eγ=MDs

≃ 0.6–0.7.
Having calculated the form factors from first principles

in a lattice computation, we test how well model calcu-
lations based on single-pole dominance and light cone
sum rules (LCSR) reproduce our results. Such a test is
important because model calculations are commonly used
to describe the form factors of heavy mesons, in particular
the B meson [18–20], for which a direct lattice calculation
is currently missing. We fit our results for the vector and
axial form factors of the Ds meson to several polelike
Ansätze, finding that, in general, a pure vector-meson-
dominance (VMD) Ansatz does not describe very well the
momentum dependence of the data, particularly for the
axial form factor FA. However, by including the leading
nonsingular corrections in the Laurent expansion around
the pole, we obtain a very good description of our lattice
data. The resulting fit parameters are collected in Table VI
and can be used for future phenomenological analyses.
From the polelike fits to FV we extract the coupling

gD�
sDsγ , which is the form factor describing the D�

s → Dsγ
decay. Our estimate of gD�

sDsγ is in good agreement with
the direct lattice determination of Ref. [21] but strongly
disagrees with the value predicted by light cone sum rules
(LCSR) at next-to-leading order (NLO) [22], from which it
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differs by a factor 5. LCSR at NLO order were also used to
estimate the radiative form factors FV and FA of the Ds
meson, at one specific kinematical point [23]. Their
estimates disagree very significantly with those from our
direct lattice computation, differing by a factor 4 for the
vector form factor FV, and by an order of magnitude and
a relative minus sign, for the axial form factor FA. We
conclude that caution should be exercised when using such
calculations based on LCSR to predict the heavy-meson
radiative form factors. A similar message is conveyed in a
recent paper on the Bs → μþμ−γ decay [24].
The plan for the remainder of this paper is as follows. In

Sec. II we explain how the two structure dependent form
factors contributing to the amplitude for Dþ

s → lþνlγ
decays, FV and FA, can be determined from suitable
Euclidean lattice correlation functions. In Sec. III we
briefly describe the mixed-action lattice framework which
we use and present detailed information on the technical
aspects of the simulations. Section IV contains the deter-
mination of the form factors, together with our estimates
of the systematic errors, including a description of the
extrapolations to the continuum and infinite volume limits.
In this section we also present the determination of the
differential decay rate and branching fraction, as a function
of ΔEγ , for the Ds → eνeγ decay. In Sec. V we provide a
simple polelike parametrization of our data for FV and FA,
which may be useful for those interested in using our data for
phenomenological analyses. We also compare the results
presented in Sec. IV with predictions from models based on
pole dominance or light-cone sum-rules. Finally in Sec. VI
we present our conclusions. There are three appendixes to
supplement the information in the main text. In Appendix A
we explain the reason for the observed deterioration of the
signal-to-noise ratio at large photon energies. The results for
the form factors FV and FA, together with the corresponding
correlation matrices are tabulated in Appendix B so that they
can be used in phenomenological studies. In Appendix C we
present a detailed analysis of single-pole parametrizations of
our results for the form factors.

II. DEFINITION OF THE FORM FACTORS

In order to make this paper self contained, in this section
we briefly summarize our conventions and notation, and in
particular recall the definition of the structure-dependent
form factors which had previously been introduced in
Refs. [11,25–27]. The nonperturbative contribution to
the radiative leptonic decay rate for the processes Dþ

s →
lþνlγ is encoded in the hadronic matrix element

Hrν
Wðk; pÞ ¼ ϵrμðkÞHμν

W ðk; pÞ

¼ ϵrμðkÞ
Z

d4yeik·yh0jT̂½jνWð0ÞjμemðyÞ�jDþ
s ðpÞi;

ð1Þ

where T̂ implies time ordering of the two currents, ϵrμ is the
polarization vector of the outgoing photon with four-
momentum k, p is the three-momentum of the Ds meson,
and jνWðxÞ and jμemðxÞ are the weak- and electromagnetic-
hadronic currents respectively:

jνWðxÞ ¼ jνVðxÞ − jνAðxÞ ¼ ψ̄ sðxÞðγν − γνγ5ÞψcðxÞ;
jμemðxÞ ¼

X
f

qfψ̄fðxÞγμψfðxÞ; ð2Þ

where qf is the electric charge of the flavor f. The hadronic
tensor Hμν

W can be decomposed in terms of a “pointlike”
contribution Hμν

pt (i.e. the expression obtained by treating
the Ds meson as a pointlike particle) and four structure-
dependent (SD) scalar form factors, FV; FA;H1 and
H2 [11,25–27]1:

Hμν
W ðk; pÞ ¼ Hμν

SDðk; pÞ þHμν
pt ðk; pÞ ð3Þ

Hμν
SDðk; pÞ ¼

H1ðp · k; k2Þ
MDs

½k2gμν − kμkν� þH2ðp · k; k2Þ
MDs

×
½ðp · k − k2Þkμ − k2ðp − kÞμ�

ðp − kÞ2 −M2
Ds

ðp − kÞν

− i
FVðp · k; k2Þ

MDs

εμνγβkγpβ þ
FAðp · k; k2Þ

MDs

× ½ðp · k − k2Þgμν − ðp − kÞμkν� ð4Þ

Hμν
pt ðk; pÞ ¼ fDs

�
gμν þ ð2p − kÞμðp − kÞν

2p · k − k2

�
; ð5Þ

where MDs
is the mass of the Ds meson and p ¼ ðE; pÞ its

four momentum, with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Ds
þ p2

q
. The pointlike

contribution Hμν
pt saturates the Ward identity (WI) satisfied

by Hμν
W :

kμH
μν
W ðk; pÞ ¼ kμH

μν
pt ðk; pÞ ¼ ih0jjνWð0ÞjDþ

s ðpÞi ¼ fDs
pν:

ð6Þ

which implies that kμH
μν
SDðk; pÞ ¼ 0. Moreover, when

integrating over the full three-body phase space, it is only
the square of the pointlike term which is infrared divergent.
At orderOðαemÞ, this infrared divergence is canceled by the
virtual photon correction to the purely leptonic decay.
Equation (5) is valid for generic (off shell) values of

the photon four-momentum k and can also be used to

1Here, we use the dimensionless definitions of H1;2 introduced
in Ref. [27] which differ by simple factors from those used in our
earlier papers [11,25]. As explained below, the form factors H1;2
do not contribute to the decays studied here, i.e. those with a real
photon in the final state.
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study the four-body decay Dþ
s → lþνll0þl0−, where the

l0 are charged leptons, or more generally the decays
P → lνll0þl0− of any pseudoscalar meson P, as we
showed in an exploratory work with P ¼ K [27]. In this
paper we study the emission of a real photon, so that k2 ¼ 0
and ϵr · k ¼ 0, and therefore only the axial form factor
FAðp · kÞ and the vector form factor FVðp · kÞ, together
with the pointlike term, contribute to the decay rate for the
process Dþ

s → lþνlγ.
In the following, as in our previous study [11], we find

it convenient to evaluate the form factors FV and FA as
functions of the dimensionless variable

xγ ≡ 2p · k
M2

Ds

; 0 ≤ xγ ≤ 1 −
m2

l

M2
Ds

< 1; ð7Þ

where ml is the mass of the charged lepton l. In the rest
frame of theDs meson (p ¼ 0) xγ ¼ 2Eγ=MDs

, where Eγ is
the energy of the photon. The above discussion applies to
other pseudoscalar mesons (π, K, D, BðsÞ) with the natural
replacement of Ds in Eqs. (1)–(7) by the meson being
studied and the corresponding change of the quark flavors
in the weak current in Eq. (2).

A. Evaluating FV and FA from Euclidean
lattice-correlation functions

In Sec. III and Appendix B of Ref. [11] we showed in
detail that for the emission of a real photon, the hadronic
tensor Hμν

W can be extracted for all values of xγ from the
Euclidean three-point correlation function:

Cμν
W ðt; k; pÞ ¼ −i

XT
ty¼0

X
y

X
x

ðθðT=2 − tyÞ

þ θðty − T=2Þe−EγTÞetyEγ−ik·yþip·x

× h0jT̂½jνWðt; 0Þjμemðty; yÞϕ†
Ds
ð0; xÞ�j0i; ð8Þ

where T is the temporal extent of the lattice,2 ϕ†
Ds

is an
interpolating operator with the quantum numbers to create
the Ds meson, k ¼ ðEγ; kÞ, and Eγ is the energy of the
photon. In the forward half of the lattice 0 ≪ t ≪ T=2 for
example, one has

Rμν
W ðt;Eγ; k; pÞ≡ 2E

e−tðE−EγÞhDsðpÞjϕ†
Ds
ð0Þj0iC

μν
W ðt; Eγ; k; pÞ

¼ Hμν
W ðk; pÞ þ � � � ; ð9Þ

where the ellipsis indicates terms that vanish exponentially

in the large t limit and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

Ds

q
. Equation (8) is

valid for t < T=2, however, as explained in Appendix B
of Ref. [11], Hμν

W ðk; pÞ can be obtained also from the
backward half of the lattice T=2 ≪ t ≪ T exploiting time-
reversal symmetry. In order to determine the form factors
FV and FA it is convenient to distinguish the contributions
from the vector and axial-vector components of the weak
current, jνW ¼ Vν − Aν, and to write

Rμν
W ðt;Eγ; k; pÞ ¼ Rμν

V ðt;Eγ; k; pÞ − Rμν
A ðt;Eγ; k; pÞ: ð10Þ

The Wick contractions of the correlation function in
Eq. (8) give rise to two distinct topologies of Feynman
diagrams, namely to quark-line connected and quark-line
disconnected diagrams; these are illustrated in Fig. 1. In
the disconnected diagrams the photon is emitted from a sea
quark. This contribution vanishes in the SU(3)-symmetric
limit and is neglected in the present study; this is the so-
called electroquenched approximation. We focus instead on
the calculation of the dominant, quark-connected contri-
butions for which as explained in Ref. [11], it is possible
to use twisted boundary conditions to assign arbitrary
values to momenta of the photon and Ds-meson, k and
p respectively, at the price of violations of unitarity which
vanish exponentially with the lattice extent L [28,29]. This
is achieved by treating the two quark propagators related to
the electromagnetic current in the right-hand diagram of
Fig. 1 as corresponding to two distinct quark fields ψ0;ψ t

having the same mass and quantum number, but satisfying
different spatial boundary conditions. Defining ψ s to be the
spectator quark-field in the right-hand diagram of Fig. 1,
we set the spatial boundary conditions of the three quark
fields ψ0;ψ t;ψ s as follows:

ψ rðxþ nLÞ ¼ exp ð2πin · θrÞψ rðxÞ; r ¼ f0; t; sg;
ð11Þ

where θf0;t;sg are arbitrary spatial-vectors of angles, in
terms of which the photon and meson lattice momenta are
given by

p ¼ 2

a
sin

�
aπ
L

ðθ0 − θsÞ
�
; k ¼ 2

a
sin

�
aπ
L

ðθ0 − θtÞ
�
;

ð12Þ

where a is the lattice spacing. The results presented in the
following sections have been obtained in the rest frame of
the Ds meson (p ¼ 0) and with the photon momentum
chosen to be in the z-direction, k ¼ ð0; 0; kzÞ, i.e. by setting

θ0 ¼ θs ¼ 0; θt ¼ ð0; 0; θtÞ: ð13Þ

With such a choice of kinematics, the two form factors FV
and FA can be obtained from the large-time behavior,
0 ≪ t ≪ T=2, of the following two estimators:

2T is not to be confused with T̂ which represents “time
ordered”.
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RVðt; kÞ≡ 1

2kz
ðR12

V ðt; k; 0Þ − R21
V ðt; k; 0ÞÞ⟶

0≪t≪T=2
FVðxγÞ;

ð14Þ

RAðt; kÞ≡ 1

2Eγ
½ðR11

A ðt; k; 0Þ − R11
A ðt; 0; 0ÞÞ þ ðR22

A ðt; k; 0Þ

− R22
A ðt; 0; 0ÞÞ�⟶

0≪t≪T=2
FAðxγÞ; ð15Þ

where xγ ¼ 2Eγ=MP and, since for a real photon Eγ is
determined by k, we have redefined

Rμν
V;Aðt; k; 0Þ≡ Rμν

V;Aðt; EγðkÞ; k; 0Þ;

EγðkÞ ¼
2

a
sinh−1

�
ajkj
2

�
; ð16Þ

where we used the lattice dispersion relation for the photon
energy. Notice that in the estimator RAðt; kÞ of the axial
form factor, the zero-momentum subtraction serves to
remove the pointlike contribution proportional to fP. As
discussed in Sec. IV of Ref. [11], the subtractions in
Eq. (15) of R11

A and R22
A at k ¼ 0 allow us to isolate the SD

form factor FAðxγÞ without generating infrared-divergent
cutoff effects of order Oða2=xγÞ. Such dangerous discre-
tization effects, which could hinder the determination of
FAðxγÞ at small values of xγ , are present instead if one
subtracts the pointlike contributionHμν

pt in Eq. (1), using the
value of the decay constant fDs

determined from two-point
correlation functions.

III. DETAILS OF THE COMPUTATION

Our results have been obtained using the gauge field
configurations generated by the ETMC employing the
Iwasaki gluon action [30] and Nf ¼ 2þ 1þ 1 flavors of

Wilson-Clover twisted-mass fermions at maximal twist [31].
This framework guarantees the automatic OðaÞ improve-
ment of parity-even observables [32,33]. A detailed descrip-
tion of the ETMC ensembles can be found in Refs. [13–16],
while essential informations on the ensembles we have used
in the present work are collected in Table I. The ensembles
listed in Table I correspond to four values of the lattice
spacing a in the range ½0.058; 0.09� fm, and lattice extent L
in the range ½4.36; 5.46� fm. The mass of the light sea quarks
on the three finest ensembles, has been tuned so as to give
almost physical-mass pions, while on the coarsest ensemble
the pion mass3 isMπ ≃ 175 MeV. For all the ensembles, the
strange and charm sea-quark masses are set to within about
5% of their physical values, defined through the requirement
that (see Refs. [13,14,16] for more details)

MDs

fDs

¼ 7.9� 0.1;
mc

ms
¼ 11.8� 0.2: ð17Þ

We work in a mixed-action framework in which the
valence strange and charm quarks are discretized as
Osterwalder-Seiler fermions [33,35]. The corresponding
valence bare-quark mass parameters μs and μc, have been
tuned to reproduce the value of the pseudoscalar ηss0 mass4

determined in Ref. [36] and the PDG value [37] of the
pseudoscalar ηc mass (see Appendix C of Ref. [16] for
more details)

FIG. 1. The diagram on the left represents the quark-line disconnected contributions to the correlation function Cμν
W in which the

photon is emitted by a sea quark. In our numerical simulations we work in the electroquenched approximation and neglect such
diagrams. The one on the right represents the quark-line connected contributions and illustrates our choice of the spatial boundary
conditions, which allow us to set arbitrary values for the meson and photon spatial momenta. The spatial momenta of the valence quarks,
modulo 2π=L, in terms of the twisting angles are as indicated. Each diagram implicitly includes all orders in QCD.

3For the present study of the Ds meson, the presence of a
heavier-than-physical pion, with mass Mπ ≃ 175 MeV, on the
coarsest ensemble does not require a chiral extrapolation since we
expect that the form factors are largely insensitive to the value of
the masses of the light sea quarks.

4The ηss0 is a fictitious pseudoscalar meson made of two
different mass-degenerate quarks s and s0 having mass equal to
that of the strange quark. Its mass is equivalent to that of the s̄γ5s
meson if one neglects quark-line disconnected contributions.
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Mphys
ηss0 ¼ 689.89ð49Þ MeV; Mphys

ηc ¼ 2.984ð4Þ GeV;
ð18Þ

where the error in Mphys
ηc includes, in addition to the

experimental uncertainty, an estimate of the contribution
from the neglected disconnected diagrams [38,39]. The
values of μs and μc used for each of the ensembles of
Table I are collected in Table II. Since the strange and
charm quark masses have been fixed using the mass of
the ηss0 and ηc mesons, the mass of the Ds meson deviates
from the physical value by Oða2Þ cutoff effects, as we
show in Fig. 2.
On each ensemble, we have analyzed Oð100Þ gauge

configurations and performed the inversions of the Dirac
operator on four stochastic sources. The sources are
randomly distributed over time, diagonal in spin and dense
in the color. The interpolating operator ϕ†

Ds
ð0Þ has been

smeared as in our previous works using Gaussian smearing
(see e.g. Ref. [40] for more details). We employ a local
discretization of the weak current,

jνWðt; xÞ ¼ jνVðt; xÞ − jνAðt; xÞ ¼ ZAj
ν;bare
V − ZVj

ν;bare
A

¼ ZAψ̄ sðt; xÞγνψcðt; xÞ − ZV ψ̄ sðt; xÞγνγ5ψcðt; xÞ:
ð19Þ

Note that at maximal twist the renormalization constants
(RCs) to be used for jν;bareV and jν;bareA are chirally rotated
with respect to the ones of standard Wilson fermions, and
the bare vector (jν;bareV ) and axial-vector (jν;bareA ) currents
renormalize respectively with multiplicative renormaliza-
tion constants ZA and ZV . For the electromagnetic current
jμem, we use the exactly-conserved point-split current

jμemðxÞ ¼ −
X
f

qf

�
ψ̄fðxÞ

irfγ5 − γμ

2
UμðxÞψfðxþ μ̂Þ

− ψ̄fðxþ μ̂Þ irfγ5 þ γμ

2
UμðxÞ†ψfðxÞ

�
; ð20Þ

where UμðxÞ are the QCD gauge links, and rf ¼ �1 is the
sign of the chirally-rotated Wilson term used for flavor f.
In the electroquenched approximation only the f ¼ s and

TABLE I. Parameters of the ETMC ensembles used in this work. We present the light-quark bare mass, aμl ¼ aμu ¼ aμd, the lattice
spacing a, the pion massMπ , the lattice size L, and the number of gauge configurations Ng that have been used for each ensemble. The

values of the lattice spacing are determined as explained in Appendix B of Ref. [16] using the 2016 PDG value fphysπ ¼ fisoQCDπ ¼
130.4ð2Þ MeV [34] of the pion decay constant.

Ensemble β V=a4 a ðfmÞ aμl Mπ ðMeVÞ L ðfmÞ Ng

cA211.12.48 1.726 483 · 128 0.09075 (54) 0.00120 174.5 (1.1) 4.36 109
cB211.072.64 1.778 643 · 128 0.07957 (13) 0.00072 140.2 (0.2) 5.09 199
cC211.060.80 1.836 803 · 160 0.06821 (13) 0.00060 136.7 (0.2) 5.46 72
cD211.054.96 1.900 963 · 192 0.05692 (12) 0.00054 140.8 (0.2) 5.46 100

FIG. 2. The value of the Ds meson mass on the ensembles of Table I is plotted as a function of squared lattice spacing. The red band
corresponds to the result of the continuum extrapolation using a linear fit Ansatz in a2. The black data point at a2 ¼ 0 is the experimental
value Mexp

Ds
¼ 1.96847ð33Þ GeV.
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f ¼ c terms in jμem contribute to the correlation function
in Eq. (8). In our numerical simulations, we have chosen
opposite signs for the chirally-rotated twisted term of the
strange and charm valence quarks, rc ¼ −rs ¼ 1. We evalu-
ate the correlation functions Cμν

W in Eq. (8) and the estimators
Rμν
W in Eq. (9) using the bare currents jν;bareV;A in Eq. (19) and

the point-split electromagnetic current in Eq. (20).
The RC ZV which renormalizes the current jν;bareA , is

determined from the large-time behavior of the following
estimator:

Z̄VðtÞ ¼ −
2fDsP

i¼1;2R
ii
Aðt; 0; 0Þ

⟶
0≪t≪T

ZV: ð21Þ

In the twisted-mass framework which we are using, the
decay constant fDs

can be determined from the large-time
behavior of the two-point correlation function CPPðtÞ,
without the need of additional renormalization, using

CPPðtÞ≡
X
x

h0jðψ̄ sðt; xÞγ5ψcðt; xÞÞðψ̄cð0Þγ5ψ sð0ÞÞj0i

⟶
0≪t≪T

jZj2 e
−MDsT=2

2MDs

cosh ðMDs
ðt − T=2ÞÞ; ð22Þ

and

fDs
¼

ffiffiffiffiffiffiffiffiffi
jZj2

q aμs þ aμc
MDs

sinh aMDs

; ð23Þ

where the strange and charm quark fields entering CPPðtÞ
in Eq. (22) carry opposite signs of the chirally-rotated
twisted term. In practice, we find it convenient to define the
following estimators to extract the physical form factors FV
and FA

R̄Aðt; kÞ ¼ Z̄VðtÞRAðt; kÞ; R̄Vðt; kÞ ¼
ZA

ZV
Z̄VðtÞRVðt; kÞ;

ð24Þ

where the values of the ratio ZA=ZV used for each of the
ensembles in Table I, are taken from the analysis of
Ref. [16], and reported in Table III.

IV. NUMERICAL RESULTS

In this section we present the numerical results for the
form factors FA and FV at ten evenly spaced values of xγ
(Sec. IVA). We then use these results to calculate the
differential decay rate and branching fraction for the
process Dþ

s → eþνeγ (Sec. IV B).

A. Results for the form factors

In order to determine the form factors, we evaluate the
estimators R̄A;Vðt; kÞ at ten evenly-spaced values of the
dimensionless variable xγ:

xγ ¼
2Eγ

MDs

¼ nΔxγ; Δxγ ¼ 0.1; n∈ f1;…; 10g:

ð25Þ

At finite lattice spacing a, the relations between the twist
angle θt, the photon momentum k⃗ ¼ ð0; 0; kzÞ and xγ are
obtained from Eqs. (12) and (16),

kz ¼ −
2

a
sin

�
aπ
L

θt

�
; xγ ¼

4

aMDs

sinh−1
�
ajkzj
2

�
:

ð26Þ

For each gauge ensemble, we obtain each of the values of
xγ by tuning the twisting angle θt using the relations in
Eq. (26) and the value of aMDs

. The resulting statistical
uncertainty on the values of xγ is negligibly small [typically
below Oð0.1%Þ]. For an illustration of the quality of the
plateaus, we present in Figs. 3 and 4 the estimators
R̄V;Aðt; xγÞ≡ R̄V;Aðt; ð0; 0; kzðxγÞÞ for selected values of
xγ , obtained on the ensembles cB211.072.64 (B64 for
short) and cC211.06.80 (C80 for short) respectively. In
each figure the blue band shows the values of FV;A obtained
from a constant fit in the region where the estimators
R̄A;Vðt; xγÞ display a plateau.5 As is clear from the figures,
we observe a rapid deterioration of the signal for both FV
and FA at large values of xγ ≳ 0.7. In particular the

TABLE II. Values of the bare valence-quark masses μs and μc
in lattice units used for each ETMC ensemble considered in this
work. They have been determined imposing the conditions
in Eq. (18).

Ensemble aμs aμc

cA211.12.48 0.0200 0.2725
cB211.072.64 0.0184 0.2370
cC211.060.80 0.0162 0.2019
cD211.054.96 0.0136 0.1671

TABLE III. The values of ZA=ZV used in the evaluation of
R̄Vðt; kÞ are given for each of the gauge ensembles of Table I.

Ensemble ZA=ZV

cA211.12.48 1.0603 (26)
cB211.072.64 1.05176 (35)
cC211.060.80 1.04535 (22)
cD211.054.96 1.04011 (16)

5We have checked that the results are stable under small shifts,
in both forward and backward direction, of the time intervals
adopted in the constant fit.
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statistical errors on R̄A;Vðt; xγ > 0.8Þ turn out to be very
large at small values of t=a, and then progressively
decrease as t=a increases. The origin of this peculiar
behavior, which is discussed in detail in Appendix A, is
due to the existence of a threshold value of Eγ above which
the intrinsic statistical fluctuations of Rμν

W start to grow
asymptotically with Eγ . As argued in Appendix A, this
threshold value of Eγ is given by the mass MPS

q̄q of the
lightest pseudoscalar meson state ψ̄qγ

5ψq with q ¼ U, D.
The outcome of the analysis is that for Eγ > MPS

q̄q, the
fluctuation σRμν

W
of Rμν

W scales asymptotically as

σRμν
W
ðt; k; 0Þ ¼ BRμν

W

jEγ −MPS
q̄qj

expfðEγ −MPS
q̄qÞðT=2 − tÞg

þ…; ð27Þ
where BRμν

W
is a prefactor and the ellipsis indicate terms that

are subleading in the limit T → ∞. For the Ds meson

MPS
q̄q ¼ Mηss0 ∼ 690 MeV (see footnote 4 for the definition

of ηss0 ) so that the threshold value of xγ ¼ xthγ at which the
error on Rμν

W ðt; k; 0Þ starts to grow asymptotically is given

by xthγ ¼ 2
Mηss0
MDs

∼ 0.7, in agreement with our numerical

results. Notice that in Eq. (27) σRμν
W
ðt; k; 0Þ is finite only

because of the finite temporal extent T of the lattice, and the
signal-to-noise (S/N) ratio problem is thus amplified on
large lattices. In addition, the S/N ratio problem becomes
much more severe for heavy-light mesons with a u or d
valence quark, such as P ¼ D or B mesons, where xthγ is
proportional to the ratio between the pion mass and MP.
Large errors are therefore to be expected even for rather
small values of xγ . A way forward to mitigate this problem
is briefly discussed at the end of Appendix A. We note that
the approach that we propose in Appendix. A to tame the
S/N ratio problem in Eq. (27) has been discussed in great
detail in Ref. [17] where it was called the 3d method. In
Ref. [17] the authors provide a detailed comparison, on a

FIG. 3. The estimators R̄Aðt; xγÞ and R̄Vðt; xγÞ as a function of t=a for selected values of xγ on the ensemble B64. In each figure the
blue band corresponds to the result of a constant fit over the indicated region.
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single coarse ensemble with a ≃ 0.11 fm, T=a ¼ 64, and
Mπ ≃ 340 MeV, of the unwanted exponential contamina-
tion appearing in the 3dmethod and in the approach we use
in the present work, based on the study of the three-point
correlation function in Eq. (8) (in Ref. [17] this approach
goes by the name of the 4d method). On the single
ensemble analyzed, the authors of Ref. [17] find that the
3d method gives a better control over the unwanted
exponentials. Here, we argue that the 3d method can also
be helpful to tame the exponential S=N ratio problem
for Eγ > MPS

q̄q.
The ensembles of Table I all correspond to lattices with a

spatial extent in the range L ≃ 4.4–5.4 fm. While these
volumes are expected to be large enough for the finite-size
effects (FSEs) on FV and FA to be small,6 in order to
estimate the residual FSEs, we have also used a fifth

ensemble, the cB211.072.96 ensemble (B96 for short),
with the same parameters as the B64 ensemble, except that
L is a factor 3=2 larger. We have measured both FV and FA
on the B96 ensemble up to xγ ¼ 0.7 using 100 gauge
configurations.7 As a conservative estimate of the FSEs, we
associate to the values of FWðxγÞ determined on each of the
ensembles of Table I an additional systematic uncertainty
σFSEW ðxγÞ given by8

σFSEW ðxγÞ
FWðxγÞ

¼
				 ΔFL

WðxγÞ
FWðxγ;B64Þ

				erf
�

ΔFL
WðxγÞffiffiffi

2
p

σcomb
W ðxγÞ

�
; ð28Þ

FIG. 4. The estimators R̄Aðt; xγÞ and R̄Vðt; xγÞ as a function of t=a for selected values of xγ on the ensemble C80. In each figure the
blue band corresponds to the result of a constant fit over the indicated region.

6In the electroquenched approximation employed in our
computation, FSEs are expected to be exponentially suppressed
by the spatial size of the lattice.

7Beyond xγ ¼ xthγ ¼ 0.7 the statistical errors on the B96
ensemble are too big for the results to be useful. Indeed, since
on the B96 ensemble T=a ¼ 192, the exponential increase of the
error with the photon energy Eγ described by Eq. (27), is much
faster than the one present on the B64 ensemble.

8For xγ ≥ 0.8 we associate the same relative systematic
uncertainty as determined for xγ ¼ 0.7.
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where the subscript W represents V or A and

ΔFL
WðxγÞ≡ jFWðxγ;B96Þ − FWðxγ;B64Þj;

σcomb
W ðxγÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2;statW ðxγ;B64Þ þ σ2;statW ðxγ;B96Þ

q
; ð29Þ

which is the relative spread between the results obtained on
the B96 and B64 ensembles, weighted by the probability
that the spread is not due to a statistical fluctuation. In
Fig. (5) we compare the two estimators R̄AðxγÞ and R̄VðxγÞ,
at two selected kinematic points xγ ¼ 0.1 and 0.5, deter-
mined on the B64 and B96 ensembles. Reassuringly, we
find that for all values of xγ and for both form factors
σFSEW ðxγÞ is smaller or of a similar size than the correspond-
ing statistical uncertainty, and the difference between the
results on the two volumes are most probably largely due to
statistical fluctuations.
Next we consider cutoff effects. For each value of xγ the

extrapolation to the continuum limit is performed using the
following Ansatz

FWðxγ; aÞ ¼ FWðxγÞð1þDWðxγÞðaΛÞ2 þD2;WðxγÞðaΛÞ4Þ;
W ¼ fV;Ag; ð30Þ

with the parameter Λ chosen to be Λ ¼ MDs
¼

1.968 GeV9 and FWðxγÞ; DWðxγÞ and D2;WðxγÞ are dimen-
sionless fit parameters which depend on xγ and are different

for the two channels W ¼ fV; Ag. The result of the
extrapolation for FA and FV , obtained using the Ansatz
in Eq. (30) with the fit parameter D2 fixed to zero, are
shown in Figs. 6 and 7. In the two figures, the blue bands
correspond to the linear a2 extrapolation, performed omit-
ting the measurement at the coarsest value of the lattice
spacing. In Table IV, we report the values of the parameters
DWðxγÞ obtained from the linear a2 fit to the full dataset
(orange band in Figs. 6 and 7), along with the correspond-
ing reduced χ2, which is always very good, except for FA at
the largest two values of xγ (xγ ¼ 0.9 and 1.0). For most
values of xγ , the fit parameter DW turns out to be of order

FIG. 5. Comparison between the estimators R̄Aðt; xγÞ (left panels) and R̄Vðt; xγÞ (right panels) as determined on the B64 (red) and B96
(blue) ensembles, for two selected values of the dimensionless variable xγ ¼ 0.1 and 0.5. In each of the four figures the colored bands
correspond to the result of a constant fit in the given time interval. The B96 data have been slightly shifted in time for visualization
purposes.

TABLE IV. Values of the fit parameters DWðxγÞ, their uncer-
tainties ΔDW , and the reduced χ2 obtained in the linear fits to FA
and FV for the ten values of xγ considered in this work.

FA FV

xγ DA ΔDA χ2=d:o:f: DV ΔDV χ2=d:o:f:

0.1 −0.189 0.063 0.070 −0.197 0.132 0.656
0.2 −0.262 0.057 0.105 −0.339 0.038 0.786
0.3 −0.325 0.049 0.147 −0.414 0.024 0.396
0.4 −0.382 0.045 0.123 −0.470 0.019 0.089
0.5 −0.430 0.040 0.179 −0.517 0.017 0.488
0.6 −0.480 0.041 0.158 −0.551 0.016 1.597
0.7 −0.531 0.041 0.174 −0.595 0.018 0.946
0.8 −0.594 0.055 0.750 −0.676 0.030 0.510
0.9 −0.726 0.079 1.927 −0.824 0.063 0.756
1.0 −0.940 0.122 2.023 −0.964 0.123 0.241

9With such a choice we find that the DWðxγÞ are of Oð1Þ
(see Table IV).
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Oð1Þ, suggesting the presence of cutoff effects in FV and
FA that are of order Oða2M2

Ds
Þ.

We find that including the D2;WðxγÞðaΛÞ4 terms leads to
overfitting without substantially improving the quality of
the fit. The continuum values obtained using the Ansatz of
Eq. (30) are always consistent within errors with those
obtained from linear fits (i.e. with D2;WðxγÞ set to 0) shown
in Figs. 6 and 7, but have substantially larger statistical
uncertainties. Moreover, the coefficient D2;WðxγÞ turns out
to be always consistent with zero within 1–1.5 standard
deviations, a clear signal of overfitting. Given these
observations we have decided to estimate the systematic
uncertainty due to the continuum extrapolation, using the
two linear extrapolations shown in each of Figs. 6 and 7.

Let fA and fB represent generically the continuum values
of FAðxγÞ or FVðxγÞ at some value of xγ obtained
respectively from the linear fit by including or omitting
the result at the coarsest lattice spacing. We determine the
final central value f̄ through a weighted average of the form

f̄ ¼ wAfA þ wBfB; wA þ wB ¼ 1: ð31Þ

Our estimate of the systematic error, which is added in
quadrature to the combined statistical and finite-volume
uncertainty, is then obtained using

σ2syst ¼
X
i¼A;B

wiðfi − f̄Þ2: ð32Þ

FIG. 6. The extrapolation of FA to the continuum limit for all ten values of xγ considered in this work. The orange and blue bands
correspond respectively to the extrapolation curves obtained including or excluding the data at the coarsest lattice spacing.
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The weights wi, with i ¼ fA; Bg, are chosen according to
the Akaike information criterion [41] (AIC) proposed in
Ref. [42], namely

wi ∝ e−ðχ
2
iþ2NðiÞ

pars−2N
ðiÞ
dataÞ=2; ð33Þ

where χ2i is the total χ
2 obtained in the ith fit, and NðiÞ

pars and

NðiÞ
meas are the corresponding number of fit parameters and

measurements.10

In Fig. 8 we show our final determination of the axial and
vector form factors as a function of xγ . The error bars
include all the systematic uncertainties discussed above.
The results for FA and FV are compared with those of
Ref. [11], in which only the phase space region up to
xγ ≃ 0.4 had been explored. As the figures show, our results
are in good agreement with those of Ref. [11] for both FA
and FV , while the statistical uncertainty of the results is
significantly improved, particularly for FV. In Table V we
collect our final results for the continuum values of FA and
FV , while in Appendix B we present the full correlation
matrix between the form factors evaluated at different
values of xγ , which may be useful for phenomenological
analyses.

FIG. 7. The extrapolation of FV to the continuum limit for all ten values of xγ considered in this work. The orange and blue bands
correspond respectively to the extrapolation curves obtained including or excluding the data at the coarsest lattice spacing.

10We have checked that the use of uniform weights, wA ¼
wB ¼ 1=2, leads to very similar results.
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We have also determined separately the contributions
to the form factors FA;V from the emission of the photon
from the strange quark or the charm quark. In practice, the
strange-quark (charm-quark) contribution to RA;Vðt; kÞ,
indicated in the following by RðsÞ

A;Vðt; kÞ (RðcÞ
A;Vðt; kÞ), is

obtained by setting the electric charge qc ¼ 0 (qs ¼ 0) in
the evaluation of Cμνðt; Eγ; k; pÞ in Eq. (8). The estimators

R̄ðsÞ
V;Aðt; xγÞ and R̄ðcÞ

V;Aðt; xγÞ are obtained using the usual ratio
of RCs ZA=ZV of Table III and the factor Z̄VðtÞ of Eq. (21)
so that

RAðt; kÞ ¼ RðsÞ
A ðt; kÞ þ RðcÞ

A ðt; kÞ;
RVðt; kÞ ¼ RðsÞ

V ðt; kÞ þ RðcÞ
V ðt; kÞ: ð34Þ

In Fig. 9 we show the strange- and charm-quark contribu-
tions to FA and FV , obtained after extrapolating the results

FIG. 8. The form factors FA (top figure) and FV (bottom figure), obtained after the extrapolation to the continuum limit, shown as a
function of the dimensionless variable xγ . In each of the two figures, the red band is the result of a smooth cubic spline interpolation to
our data. The gray data points correspond to the results from Ref. [11] which have been slightly shifted horizontally to facilitate
comparison.

TABLE V. Continuum results for FA and FV for the ten values
of xγ considered in this work. ΔFA and ΔFV are the final errors,
which include all systematic uncertainties. The correlations
between the form factors at different values of xγ are given
in Appendix B.

xγ FA ΔFA FV ΔFV

0.1 0.0813 0.0054 −0.1048 0.0097
0.2 0.0715 0.0041 −0.0819 0.0028
0.3 0.0641 0.0033 −0.0643 0.0013
0.4 0.0582 0.0028 −0.0519 0.0008
0.5 0.0534 0.0021 −0.0431 0.0008
0.6 0.0495 0.0024 −0.0363 0.0008
0.7 0.0463 0.0031 −0.0316 0.0007
0.8 0.0432 0.0032 −0.0291 0.0010
0.9 0.0433 0.0083 −0.0297 0.0056
1.0 0.0489 0.0229 −0.0315 0.0152
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to the continuum limit following the same procedure as
for the sum. It is interesting to note that while FA it is
completely dominated by the strange-quark contribution,
there is a very significant cancellation between the strange
and charm contributions to the vector form factor FV.
The cancellation between the two contributions becomes
more pronounced at large values of xγ . The implications of
this cancellation in the vector form factor will be discussed
in the next section. Finally, as is clear from Fig. 9, at

large values of xγ only the errors on R̄ðsÞ
V;Aðt; xγÞ increase

exponentially, while no degradation of the signal is present

for R̄ðcÞ
V=Aðt; xγÞ, as expected from the analysis presented

in Appendix A.

B. Differential decay rate and branching fraction

From the knowledge of the SD form factors FV and FA,
the differential decay rate dΓðDs → lνγÞ=dxγ can readily
be evaluated. The relevant formulae have been derived e.g.
in Eqs. (1)–(31) of Ref. [12], to which we refer the reader
for a more detailed discussion. However, for the sake of
completeness we briefly summarize them here. The differ-
ential decay rate is expressed as a sum of three different
contributions:

dΓðDs → lνγÞ
dxγ

¼ αem
4π

Γð0Þ
�
dRpt

dxγ
þ dRint

dxγ
þ dRSD

dxγ

�
; ð35Þ

where Γð0Þ is the leptonic decay rate in the absence of
electromagnetism and is given explicitly by

Γð0Þ ¼ G2
FjVcsj2f2Ds

8π
M3

Ds
r2lð1 − r2lÞ2; ð36Þ

and the three quantities dRpt=dxγ , dRint=dxγ, and dRSD=dxγ
correspond respectively to the pointlike, interference,
and SD contribution. The pointlike contribution does not
depend on the SD form factors, while the interference and
the SD contribution depend on FV and FA linearly and
quadratically, respectively. The explicit expression of the
three terms is the following (rl ≡ml=MDs

):

dRpt

dxγ
¼ −

2

ð1 − r2lÞ2
1

xγ

��ð2 − xγÞ2
1 − xγ

− 4r2l

�
ð1 − xγ − r2lÞ

− ½2ð1 − r2lÞð1þ r2l − xγÞ þ x2γ � log
�
1 − xγ
r2l

��
;

ð37Þ

FIG. 9. The strange- and charm-quark contributions to FA (top figure) and FV (bottom figure) as a function of the dimensionless
variable xγ .
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dRint

dxγ
¼ −

2MDs

fDs
ð1 − r2lÞ2

�
FAxγ

�
r4l

1 − xγ
− 1þ xγ þ 2r2l log

�
1 − xγ
r2l

��
þ ðFV − FAÞx2γ

�
r2l

1 − xγ
− 1þ log

�
1 − xγ
r2l

���
; ð38Þ

dRSD

dxγ
¼ M2

Ds

f2Ds

ðF2
V þ F2

AÞ
x3γ

r2lð1 − r2lÞ2

×
ð2þ r2l − 2xγÞð1 − xγ − r2lÞ2

6ð1 − xγÞ2
: ð39Þ

The total decay rate

ΓlðΔEγÞ≡
Z

1−r2l
2ΔEγ
MDs

dxγ
dΓðDs → lνγÞ

dxγ
ð40Þ

can be then evaluated for any desired photon energy cut
ΔEγ using the previous formulas and our determination of
the form factors FV and FA. As Eqs. (37)–(39) indicate, the
pointlike contribution gives rise, in the soft photon limit
ΔEγ → 0, to a logarithmically divergent contribution pro-
portional to log ðΔEγÞ and is therefore the dominant
contribution in ΓlðΔEγÞ for sufficiently small values of
ΔEγ .

11 However, the pointlike contribution is also chirally
suppressed with respect to the SD contribution by the factor

r2l ¼ ðml=MDs
Þ2. Unlike the pointlike contribution, the SD

contribution to dΓðDs → lνγÞ=dxγ is small at small photon
energies, then grows reaching a maximum at some value of
the photon energy which depends on the specific channel
considered, and then decreases to zero at the edge of phase
space, i.e. for xγ ¼ 1 − r2l. Therefore, for a sufficiently
large photon energy cutoff ΔEγ and a small value of rl, the
SD contribution to ΓlðΔEγÞ is the dominant one.
For the radiative leptonic decays of the Ds meson, the

only experimental measurement that is currently available
is the branching fraction for Ds → eνeγ, for which the
BESIII Collaboration has given the upper bound at
90% confidence level [8]

Br½Ds → eνeγ�ðΔEγÞ≡ ΓeðΔEγÞ
Γtot

< 1.3 × 10−4;

Γ−1
tot ¼ ð5.04� 0.04Þ × 10−13 s ½37�;

ð41Þ

including photons with energies Eγ > ΔEγ ¼ 10 MeV.
Because of the small mass of the electron, re ≃ 2.6 ×
10−4 compared to rμ ≃ 5.4 × 10−2 and rτ ≃ 0.9, the elec-
tron channel is the most sensitive to the vector and
axial form factors FV and FA and is therefore the most
interesting one phenomenologically. In Fig. 10 we show

FIG. 10. The branching fraction Br½Ds → eνeγ�ðΔEγÞ for different values of the lower cutoff ΔEγ on the photon energy. The red
vertical dashed line represents the experimental cut-off ΔEγ ¼ 10 MeV imposed in the BESIII experiment. The blue and red bands
correspond respectively to the branching fraction as obtained by employing the spline interpolation of the lattice results for the form
factors or their phenomenological parametrization obtained by fitting the Ansatz of Eq. (43) (see also Sec. V and Table VI for more
details).

11The infrared divergence in the leptonic decay with a real
photon in the final state is canceled by the OðαemÞ virtual photon
contribution to the purely leptonic decay amplitude, through the
Bloch-Nordsieck mechanism [43]. The inclusive leptonic decay
rate P → lνðγÞ is infrared finite.
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our determination of the branching fraction as a function
of the cutoff on the photon energy, starting from the cut
ΔEγ ¼ 10 MeV employed by the BESIII Collaboration in
Ref. [8], which is indicated in the figure by the dashed red
line. For this calculation, we used the following values of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
Vcs and of the Ds decay constant, which we have taken
from the 2021 FLAG review [44]

jVcsj ¼ 0.9741ð65Þ; fDs
¼ 249.9ð0.5Þ MeV

½Nf ¼ 2þ 1þ 1 averages�: ð42Þ

We have computed the branching fraction by using the
form factors FA;V determined either from the spline inter-
polation of our numerical lattice results or by fitting to the
phenomenological parametrization of the form factors
given in Eq. (43) below and discussed in the next section.
The two different determinations of the branching fraction
are represented in Fig. 10 by the blue and red bands
respectively. The phenomenological parametrization of the
form factor leads to a much more precise determination of
the form factors in the kinematical region of high values of
xγ than the spline interpolation of the lattice data. This is
due to the fact that the fit parameters are mainly determined
from the most statistically accurate data points, which are
the ones at low and intermediate values of xγ , while the
spline interpolation is designed to always reproduce the
actual data points with their corresponding error range. As a
consequence, the branching fraction obtained through the
phenomenological parametrization of the form factors is
more precise than the one obtained by using the spline
interpolation, and the difference in the precision increases

as the lower cutoff on the photon energy ΔEγ increases.
On the other hand, results obtained by using the spline
interpolation of the lattice data are less affected by potential
systematic effects due to model dependence and for this
reason we conservatively consider these as our final results.
Note however, that the two determinations of the branching
fraction are always compatible within errors.
From Fig. 10 we see that the results obtained for

Br½Ds → eνeγ�ð10 MeVÞ using either the spline interpola-
tion (Br½Ds → eνeγ�ð10 MeVÞ ¼ 4.4ð3Þ × 10−6) or the
phenomenological parametrization of the form factors
(Br½Ds → eνeγ�ð10 MeVÞ ¼ 4.1ð2Þ× 10−6) are well within
the upper bound at 90% confidence level set by the BESIII
Collaboration (Br½Ds → eνeγ�ð10 MeVÞ < 1.3 × 10−4).
Moreover, they are also much smaller than the quark-
model predictions of Refs. [45,46] which estimate a
branching fraction of order 10−5–10−4, and of the deter-
mination of Ref. [18] where a branching fraction of
order 10−3 is obtained combining perturbative QCD
with the heavy-quark effective theory. We find that, already
for ΔEγ ¼ 10 MeV and even more so for higher-energy
cuts, the decay rate is completely dominated by the SD
term. The pointlike contribution is always below one
percent and the interference contribution is even smaller.
For comparison, adopting the same cut on the photon
energy (ΔEγ ¼ 10 MeV), the corresponding branchings
into muon or τ are respectively 1.86ð3Þ × 10−4 and
1.20ð2Þ × 10−6, and in both cases are dominated by the
pointlike contribution. Finally, in Fig. 11 we provide our
determination of the SD contribution to the differential
branching fraction in the electron channel, which has a
maximum for a value of xγ of about 0.6–0.7. The blue and

FIG. 11. The SD contribution to the differential branching fraction for the decayDs → eνeγ as a function of xγ . The blue and red bands
correspond respectively to the decay rate obtained by employing the spline interpolation of the lattice results for the form factors or their
phenomenological parametrization obtained by fitting the Ansatz of Eq. (43) (see also Sec. V and Table VI for more details).

R. FREZZOTTI et al. PHYS. REV. D 108, 074505 (2023)

074505-16



red bands in Fig. 11 represent respectively the results
obtained by using the spline interpolation of the lattice
results for the form factors or the phenomenological para-
metrization based on their fit to the Ansatz of Eq. (43)
below. As before, in the region of high values of xγ the
results based on the phenomenological parametrization of
the form factors become much more precise than the ones
based on their spline interpolation. However, the two
determinations are always compatible within errors.
Additional branching fractions, with specific cuts on the
photon and/or lepton energies, are available on request
from the authors.

V. PHENOMENOLOGICAL PARAMETRIZATION
OF THE FORM FACTORS

In this section we present a parametrization of the form
factors inspired by single-pole dominance. In this approxi-
mation the form factor is described in terms of the
propagation of the nearest resonance. We find that a good
description of the momentum dependence of our lattice
data is obtained by employing the following Ansatz:

FWðxγÞ ¼
CWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
W þ x2γ

4

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
W þ x2γ

4

q
þ xγ

2
− 1

�þ BW;

W ¼ fA; Vg; ð43Þ

in which the single-pole dominance approximation corre-
sponds to fixing RW ¼ M0=MDs

where M0 is the mass of
the nearest resonance, and setting BW ¼ 0. Here instead
CW , RW and BW are three free parameters to be determined
from the fit. The constant term BW represents the leading,
nonsingular correction in the Laurent expansion of a
function around a pole. We refer the reader to
Appendix C for a more detailed analysis of the different
Ansätze which we have examined.
The Ansatz of Eq. (43) has also been used to fit

separately the contributions from the emission of the
photon from the charm and strange valence quarks.

These are simply obtained by setting the charge of the
other quark to zero. We label these separate contributions

by FðcÞ
A;V and FðsÞ

A;V , where the superscript indicates the quark
from which the photon has been emitted. Interestingly, we
find that including the parameter BW is only required to

obtain an acceptable fit for the separate contributions FðcÞ
V

and FðsÞ
V . For all the other cases [FðcÞ

A , FðsÞ
A , FA, and FV], BW

can be set to 0 without increasing the χ2=d:o:f:, resulting in
good parametrizations of the form factors. The results of
the fits are reported in Table VI, while in Fig. 12 we plot the
resulting fitting functions together with our lattice data. We
see from Fig. 12 and Table VI that the fits provide a very
good representation of our lattice data and low values of
the correlated χ2, even for the most precisely determined
form factors. The remarkably strong,Oð90%Þ, cancellation
between the obtained values of BðcÞ

V and BðsÞ
V in Table VI

explains why BV can be dropped when fitting the total

vector form factor. The degree of cancellation between BðcÞ
V

and BðsÞ
V , and also between the contributions to the form

factor FV from FðcÞ
V and FðsÞ

V in the lower panel of Fig. 9,
depends on both the charges and masses of the two valence
quarks and should therefore be considered to be accidental.
It will be interesting in the future to observe to what extent
these cancellations hold for the decays of the B-meson.
Finally, we observe that the parametrization we provide for
the form factors is more precise than the lattice data points
for kinematics above the threshold value xγ ≃ 0.8. This is
because the fit parameters are mainly determined from the
most statistically accurate data points, which are the ones at
low and intermediate values of xγ .
Single-pole dominance implies that the values of RW and

CW are related, respectively, to the masses of the nearest
internal resonances contributing to the correlator and to
their transition amplitudes to the external states. In the
present case, the resonances are the D�

s for the vector
channel and the Ds1 for the axial one. The values of the
amplitudes CW are therefore related to the couplings gD�

sDsγ

and gDs1Dsγ , i.e. to the D�
s → Dsγ and Ds1 → Dsγ decay

TABLE VI. Values of the parameters CW , RW and BW for the two form factors FA and FV , and for the individual contributions FðcÞ
A;V

and FðsÞ
A;V , obtained by fitting the Ansatz of Eq. (43). For the axial data, and for the total vector form factor, the parameter BW is not

included in the fit and has been set to zero, since it is not necessary to describe the data. Correlations among the fitted parameters are also
reported in this table.

CW RW BW corðCW;RWÞ corðCW;BWÞ corðRW;BWÞ χ2=d:o:f:

FA 0.0518(30) 1.413(30) 0 (fixed) 0.766 � � � � � � 0.41

FðcÞ
A

−0.0135ð10Þ 1.453(59) 0 (fixed) −0.732 � � � � � � 0.23

FðsÞ
A

0.0662(56) 1.423(36) 0 (fixed) 0.975 � � � � � � 0.24

FV −0.01792ð76Þ 1.091(11) 0 (fixed) −0.936 � � � � � � 0.45

FðcÞ
V

0.0624(15) 1.0809(43) 0.0369(14) 0.922 −0.864 −0.819 0.31

FðsÞ
V

−0.0792ð24Þ 1.0794(37) −0.0367ð31Þ −0.911 −0.936 0.831 1.8
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amplitudes respectively. However, for such an interpreta-
tion of the CW to be considered to be physically mean-
ingful, we first need to check that the fitted values are stable
under variations of the fit Ansatz. We perform such an
analysis in detail in Appendix C. The outcome is that the

data in the axial channel, i.e. for FA, F
ðcÞ
A and FðsÞ

A , are well
described by any of the different Ansätze we employed, but
the resulting values for the amplitude CA are very different
depending on the Ansatz which was used. We conclude that
the fitted value of CA is not stable and is not reliable as an
estimate of the coupling gDs1Dsγ . Note that in the axial
channel, there is a second resonance, theDs1ð2536Þ, with a
mass which is only 76 MeV above the nearest resonance,
the Ds1ð2460Þ. Since the difference in the masses is so
small, the fitted residue CA may encode contributions from
both of these internal states, resulting in an unreliable
determination of the coupling gDs1Dsγ . For the vector
channel on the other hand, we found that the value of
CV is very stable under variations of the fit Ansatz,
provided that the corresponding fits result in a low value
of χ2=d:o:f:.
Having established in Appendix C that the value of CV is

stable, we obtain the corresponding value of the coupling
gD�

sDsγ , using the relation,

CV ¼ −
MD�

s
fD�

s
gD�

sDsγ

2MDs
; ð44Þ

where fD�
s
is the decay constant of theD�

s meson, for which
we take the value fD�

s
¼ 268.8ð6.6Þ MeV obtained from

the lattice computation of Ref. [47]. In Table VII, we report
our estimate for the coupling gD�

sDsγ, and for the individual
contributions from the radiation from the strange and charm
quarks. In the quoted uncertainties, we include an estimate
of the systematic error due to the use of single-pole
dominance as a model parametrization of the form factors.
This is obtained in Appendix C from the variation of the
results in Table IX determined using different Ansätze. In
Table VII we also provide a comparison of our results with
the values of the gD�

sDsγ couplings obtained from a direct

FIG. 12. The fit functions corresponding to the Ansatz of Eq. (43) are plotted, along with the lattice data, for the axial channel (top
panels) and for the vector channel (bottom panels). The “single-pole fit” denotes the fit to the data with BW fixed to zero, while “Single
pole plus constant fit” denotes the fit to the data with all the three parameters CW , RW and BW left free.

TABLE VII. Our results for the gD�
sDsγ , gðsÞD�

sDsγ
and gðcÞD�

sDsγ
couplings are presented and compared to the previous compu-
tations of Refs. [21,22], based on lattice simulations and LCSR at
NLO, respectively. Note the indirect nature of our estimate of the
couplings, obtained by using an effective single-pole paramet-
rization of the radiative form factors, as compared to the direct
lattice computation of the D�

s → Dsγ decay amplitude [21].

LCSR [22] HPQCD [21] This paper

gD�
sDsγ [GeV−1] 0.60(19) 0.10(2) 0.118(13)

gðsÞD�
sDsγ

[GeV−1] 1.0 0.50(3) 0.532(15)

gðcÞD�
sDsγ

[GeV−1] −0.4 −0.40ð2Þ −0.415ð16Þ
gðsÞ

gðcÞ
−2.5 −1.25ð10Þ −1.282ð61Þ
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lattice computation of theD�
s → Dsγ decay amplitude [21],

and from the calculation based on LCSR at next-to-leading
order [22]. Our results are in excellent agreement with

those of Ref. [21] and with the value of gðcÞD�
sDsγ

obtained in
the LCSR calculation [22]. However, we find a discrepancy

of a factor of about 2 with the value of gðsÞD�
sDsγ

obtained in
Ref. [22] which, given the strong cancellation between the
strange and charm-quark contributions, is amplified in
the total coupling gD�

sDsγ to a factor of about 5; specifically
the value from the LCSR calculation is about five times
larger than the ones obtained from the lattice computa-
tions.12

The authors of Ref. [23] have also provided the values of
the radiative form factors FA and FV for the Ds meson at a
single kinematic point xγ ¼ 0.846; FAðxγ ¼ 0.846Þ ¼
−0.44 and FVðxγ ¼ 0.846Þ ¼ −0.11. They add that they
refrain from estimating the uncertainties on these values
as they “only aim to provide rough estimates in order to
motivate experimental searches” [23]. Nevertheless, these
estimates are in strong disagreement with the values col-
lected in Table V from our direct lattice computation. In
particular, we notice that, around this specific kinematic
point, the magnitudes of FV differ by approximately a factor
4, while for FA the results differ by an order of magnitude
and have the opposite sign. This raises some questions about
the precision of the approach of Refs. [22,23], based on
LCSR, for describing heavy-meson radiative form factors.

VI. CONCLUSIONS

In this paper we have presented a lattice calculation,
in the electroquenched approximation, of the structure-
dependent axial and vector form factors, FA and FV , which
contribute to the amplitudes for the radiative leptonic
decays Ds → lνlγ. Our results extend and improve the
analysis presented in Ref. [11], and are the first lattice
predictions for these form factors over the whole physical
phase space in the continuum limit.
We have also presented the individual contributions to the

form factors from the emission of the photon from the charm

and strange valence quarks, FðcÞ
V;A and FðsÞ

V;A respectively, with

FV;A ¼ FðcÞ
V;A þ FðsÞ

V;A. A remarkable feature is that FðcÞ
V ðxγÞ≈

−FðsÞ
V ðxγÞ, see the lower panel of Fig. 9, so that there is a

very significant cancellation in the determination of FVðxγÞ.
The axial form factorFA is dominated byFðsÞ

A and there is no
such cancellation, see the upper panel of Fig. 9.
We use our results for the form factors to compute the

differential decay rate for the process Ds → eνeγ as a

function of the photon energy in the meson rest frame,
separating the SD contribution from the pointlike one.
By integrating the differential decay rate, we obtain the
branching ratio for the Ds → eνeγ decay as a function of
the lower cutoff, ΔEγ , on the energy of the photon in the
rest frame of the decaying meson. Our result for the
branching ratio for ΔEγ ¼ 10 MeV is 4.4ð3Þ × 10−6, well
below the upper bound of 1.3 × 10−4 set by the BESIII
Collaboration [8]. Even for as low a value of ΔEγ as
10 MeV, we find that the SD contribution dominates the
branching ratio due to the strong helicity suppression, by a
factor r2e ¼ ðme=MDs

Þ2, of the pointlike term.
Having determined the form factors, we use the results

to investigate the validity and applicability of model-
dependent calculations, such as ones based on single-pole
dominance or light cone sum rules. Such model estimates
are commonly used in the analysis of radiative processes
involving heavy mesons for which lattice calculations are
often not available. We showed that the LCSR computa-
tions at next-to-leading order of Refs. [22,23] fail to
reproduce our results for the form factors of the Ds meson,
and that a pure VMD parametrization does not always
reproduce their momentum behavior. In Eq. (43) and
Table VI we propose a simple parametrization of the
form factors, based on an extension of the single-pole
dominance Ansatz, which reproduces our lattice results
very well and may therefore be useful for future phenom-
enological analyses.
For FVðxγÞ we find that results for the residue of the pole

are very stable, allowing us to interpret the result in terms of
the gDsD�

sγ coupling. The result is presented in Table VII,
where it is also compared to the results from a direct lattice
computation of the rate for the decay D� → Dγ [21] (we
find good agreement) and to the LCSR calculation of
Ref. [22] (we disagree significantly).
A nonperturbative, model-independent theoretical pre-

diction for the amplitudes of real photon emission in
leptonic decays is important for testing the Standard
Model and for searches for new physics. Indeed, such
results are required in order to include OðαemÞ corrections
in the determination of fundamental SM parameters such as
the CKM matrix elements. In addition, the SD contribution
to P → lνlγ decays probes the internal structure of the
decaying meson and by comparing SM results for the form
factors to experimental measurements one can test for
hypothetical new physics effects. This is especially true
for the decays of heavy mesons into an electron and its
neutrino, where the SD contribution dominates the rate
already at low photon energies such as 10 MeV, which
are included in some current experimental studies. First-
principles lattice computations are particularly important
for heavy mesons since chiral perturbation theory does not
apply in that case. For this reason, in the future we plan to
compute the radiative SD form factors also for the D and B
mesons. When applying the strategy that we have presented

12According to Ref. [48] the uncertainty in the gD�
sDsγ coupling

given in Ref. [22] may be an underestimate because of the
significant cancellation between the charm- and the strange-quark
contributions.
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in this work to these mesons however, the presence of a
light valence quark will significantly lower the threshold
value of the photon energy above which statistical fluc-
tuation start to grow exponentially. We have identified the
origin of this issue in Appendix A, where we also briefly
discuss a possible way to mitigate this problem based on
the different lattice approach proposed in Ref. [17], where it
is called the 3d method.
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APPENDIX A: BEHAVIOR OF THE SIGNAL-TO-
NOISE RATIO FOR FV AND FA AT LARGE xγ

In this appendix, we show why the intrinsic statistical
fluctuations of Cμν

W ðt; Eγ; k; pÞ become exponentially large
for small values of t and large values of xγ . For this discussion
we make a certain number of simplifications, but these have
no impact on the main conclusions. We consider only the
case p ¼ 0, i.e. we always work in the decaying hadron’s
reference frame. We shall also use continuum notation
throughout this appendix, and replace lattice sums by definite
integrals. Also, when considering the Euclidean three-point
correlation function in Eq. (8) we only consider the term with
ty < T=2, which is the dominant one in the limit T → ∞.
We discuss the case of an arbitrary pseudoscalar meson
P ¼ Ūγ5D made of an up- and a down-type quark.
We choose the 4-momentum k ¼ ðjkj; kÞ and

p ¼ ðmP; 0Þ, therefore we now denote the correlation
function Cμν

W ðt; k; pÞ in Eq. (8) simply by Cμν
W ðt; kÞ. For

t; ty < T=2 it is given by

Cμν
W ðt; kÞ ¼ −i

Z
T=2

0

dtyeEγtyh0jT̂½jνWðt; 0Þĵμemðty; kÞ

× ϕ̂†
Pð0; 0Þ�j0i; ðA1Þ

where

ϕ̂†
Pðtx; pÞ ¼

Z
d3xϕ†

Pðtx; xÞeip·x;

ĵμemðty; kÞ ¼
Z

d3yjμemðty; yÞe−ik·y ðA2Þ

and Eγ ¼ jkj. We now separate the contribution from the
region with ty < t from that with ty > t,

Cμν
W ðt;kÞ≡Cμν;1

W ðt;kÞ þCμν;2
W ðt;kÞ

¼ −i
Z

t

0

dtyeEγtyh0jjνWðt;0Þĵμemðty;kÞϕ̂†
Pð0;0Þj0i

− i
Z

T=2

t
dtyeEγtyh0jĵμemðty;kÞjνWðt;0Þϕ̂†

Pð0;0Þ�j0i:

ðA3Þ

The time ordering relevant for our discussion is
t < ty < T=2, i.e. with the weak current acting before
the electromagnetic current; this corresponds to the second
contribution to the correlation function, Cμν;2

W ðt; kÞ. We also
distinguish the contributions to Cμν;2

W ðt; kÞ from the emis-
sion of the real photon from the up-type (U) or down-type
(D) valence quark, and define

Cμν;2
W ðt; kÞ≡ Cμν;2

U;Wðt; kÞ þ Cμν;2
D;Wðt; kÞ; ðA4Þ

where

Cμν;2
f;Wðt; kÞ≡ −i

Z
T=2

t
dtyeEγtyh0jĵμf;emðty; kÞjνWðt; 0Þ

× ϕ̂†
Pð0; 0Þ�j0i; f ¼ ðU;DÞ ðA5Þ

in terms of the single-flavor contribution to the current,

ĵμf;emðty; kÞ≡ qf

Z
d3ye−ik·yψ̄fðty; yÞγμψfðty; yÞ: ðA6Þ

Since we aim at understanding the behavior of the error at
small t, we focus on the case in which the weak current jνW
and the interpolating operator ϕ are separated by a time
distance of a few lattice spacings. In this case, we can
interpret the quantity

Oν
WðtÞ≡ jνWðt; 0Þϕ̂†

Pð0; 0Þ ðA7Þ

as a nonlocal interpolating operator for vector states (in
both cases W ¼ V, A), and

Mμν
f;Wðty − t; t; kÞ≡ h0jĵμf;emðty; kÞjνWðt; 0Þϕ̂†

Pð0; 0Þj0i
¼ h0jĵμf;emðty; kÞOν

WðtÞj0i; ðA8Þ
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as a standard two-point correlation function, where vector
states propagate between Euclidean time t and Euclidean
time ty > t. Ignoring finite volume interactions, a standard
application of the Parisi [49] and Lepage [50] argument,
shows that at fixed time t and large-time separations ty − t,
the variance σ2Mμν

f;W
ðty − t; t;kÞ ofMμν

f;Wðty − t; t;kÞ decreases
exponentially as

σ2Mμν
f;W
ðty − t; t; kÞ ∝ e−2M

PS
f̄f
ðty−tÞ; ðA9Þ

with MPS
f̄f

the mass of the lightest pseudoscalar f̄γ5f

state. Instead, the signal Mμν
f;Wðty − t; t; kÞ scales asymp-

totically as

Mμν
f;Wðty − t; t; kÞ ∝ e−EVðkÞðty−tÞ;

Ef;VðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f;V þ jkj2
q

; ðA10Þ

where Mf;V is the mass of the lightest vector state
interpolated by ĵμf;emðty; kÞ. This implies the following
asymptotic scaling of the signal-to-noise (S/N) ratio of
Mμν

f;Wðty − t; t; kÞ

Mμν
f;Wðty − t; t; kÞ

σMμν
f;W
ðty − t; t; kÞ ∼ e−ðEf;VðkÞ−MPS

f̄f
Þðty−tÞ: ðA11Þ

Equations (A9)–(A11) enable us to understand the scaling
of the error as we discuss in the following subsection.
When P ¼ Ds, we have Ms;V ¼ Mϕ ≃ 1 GeV, Mc;V ¼
MJ=Ψ ≃ 3.1 GeV, MPS

s̄s ¼ Mηss0 ≃ 0.69 GeV and MPS
c̄c ¼

Mηc ≃ 2.98 GeV. We underline that Eqs. (A9)–(A11) only
hold for large time separations ty − t.

1. Analysis of the scaling of the signal-to-noise
ratio of Cμν;2

f ;W

We now have all the necessary ingredients to understand
the scaling of the S/N ratio of Cμν;2

f;WðtÞ. To this end, we
define a time, tcut, such that for ty − t > tcut the asymptotic
formulas in Eqs. (A9)–(A11) hold, i.e. both Mμν

f;Wðty −
t; t; kÞ and σ2Mμν

f;W
ðty − t; t; kÞ are dominated by the contri-

butions from the lowest-energy vector and pseudoscalar
intermediate states respectively:

Mμν
f;Wðty − t; t; kÞ≡X

n¼1

Af;ne−Ef;nðkÞðty−tÞ þ Af;0e−Ef;VðkÞðty−tÞ ≃
ty−t>tcut

Af;0e−EVðkÞðty−tÞ ðA12Þ

σ2Mμν
f;W
ðty − t; t; kÞ≡X

n¼1

B2
f;ne

−Mf;nðty−tÞ þ B2
f;0e

−2MPS
f̄f
ðty−tÞ ≃

ty−t>tcut
B2
f;0e

−2MPS
f̄f
ðty−tÞ; ðA13Þ

where Ef;nðkÞ > Ef;VðkÞ and Mf;n > 2MPS
f̄f

for n ≥ 1. We thus have13

Cμν;2
f;Wðt; kÞ ≃ −i

�X
n¼1

Af;neEf;nðkÞt
Z

tcut

t
dtye−ðEf;nðkÞ−EγÞty þ Af;0eEf;VðkÞt

Z
T=2

t
dtye−ðEf;VðkÞ−EγÞty

�
ðA14Þ

σCμν;2
f;W
ðt; kÞ ¼

Z
T=2

t
dtyeEγtyσMμν

f;W
ðty − t; t; kÞ ≃

Z
tcut

t
dty

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n¼0

½B2
f;ne

Mf;nte−ðMf;n−2EγÞty �
r

þ Bf;0e
MPS

f̄f
t
Z

T=2

tcut

dtye
−ðMPS

f̄f
−EγÞty :

ðA15Þ

Since for each value of the photon’s energy, Eγ ¼ jkj,
one has Ef;nðkÞ > Ef;VðkÞ > Eγ, the integral over ty in
Eq. (A14) is always convergent and dominated by the

time region where ty is close to t. Indeed, there are no
intermediate states lighter than the energy of the external
states. However, this is not always the case for the standard
deviation σCμν;2

f;W
ðt; kÞ. When passing the threshold value

Eγ ¼ MPS
f̄f
the leading exponential contribution in Eq. (A15)

(the term proportional to Bf;0) grows asymptotically with ty
and is only regularized by the finite time extent T of the
lattice. In this case, from the leading exponential term in
Eq. (A15) one has that the divergent part of the error for
Eγ > MPS

f̄f
is given by

13In writing Eq. (A15) we are assuming that the values of
Mμν

f;Wðty − t; t; kÞ at different times ty are fully correlated, which
is a fairly good assumption given that the different times are
typically evaluated using the same set of gauge configurations.
However, the main result obtained in this appendix, namely the
exponential growth of the error in Eq. (A16), does not depend
upon this assumption.
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σCμν;2
f;W
ðt;kÞ≃Bf;0e

MPS
f̄f
t
Z

T=2

t
dtye

−ðMPS
f̄f
−EγÞty

¼Bf;0
eEγt

ðEγ −MPS
f̄f
Þ
h
eðEγ−MPS

f̄f
ÞðT=2−tÞ−1

i
: ðA16Þ

The prefactor eEγt in Eq. (A16) is irrelevant since it does not
contribute to Rμν

W [see Eq. (9)] and thus to the hadronic
tensor Hμν

W .
The reason behind the behavior described by

Eqs. (A14)–(A16) is that the kernel function eEγty , account-
ing for the propagation of the photon, weights the different
regions in ty in different ways, giving an exponential
enhancement at large times ty, which are therefore noisier.
For real photon emission, the kernel eEγ ty never gives rise to
a divergent integral in Eq. (A14), since the propagating
vector states have nonzero three-momentum k so that
Ef;VðkÞ > Eγ [see Eq. (A10)]. However, the states propa-
gating in σ2Mμν

f;W
ðty − t; t; kÞ are at rest, and when Eγ > MPS

f̄f
,

the leading exponential contribution proportional toR
dtye

ðEγ−MPS
f̄f
Þty in Eq. (A16) becomes divergent in the

limit T → ∞.

2. Numerical checks

For the Ds meson studied in this paper, the threshold
value of xγ ¼ 2Eγ=MDs

above which the error starts to
grow asymptotically is, according to Eq. (A16), given by

xthγ ¼ 2
Mηss0

MDs

≃ 0.7: ðA17Þ

For xγ > xthγ the error will increase only in the contribution
to Cμν

W ðt; kÞ where the photon is emitted from the strange
quark, because for the emission from the charm quark, one
has MPS

c̄c ¼ Mηcc0 ≃ 3 GeV, and the corresponding thresh-
old value of xγ is well beyond the physical region
explored xγ ≤ 1.
The total error on the strange-quark contribution to

Rμν
W ðt; kÞ≡ Rμν

W ðt; k; 0Þ [see Eq. (16)] for small times t
can be modelled as

σRμν
W
ðt; kÞ ¼ ARμν

W
þ BRμν

W

jEγ −Mηss0 j
eðEγ−Mηss0 ÞðT=2−tÞ; ðA18Þ

where ARμν
W
is a background noise term, which we take as

being independent from Eγ . The contribution ARμν
W
to the

noise arises from the nondivergent contributions to the
noise in Eq. (A14) as well as those coming from the first
time ordering, t > ty, in Eq. (A1). Assuming that at xγ ¼
0.8 the error is large enough such that the term ARμν

W
is

negligible compared to the one proportional to BRμν
W
, we can

directly test Eq. (A18) against our numerical data. This is
shown in Fig. (13) where the error on the strange-quark
contribution to R12

V ðt; xγÞ≡ R12
V ðt; kðxγÞÞ is plotted as a

function of xγ ≥ 0.8 for two different times t=a ¼ 2, 3. As

FIG. 13. The statistical error on the strange- and charm-quark contribution to Rμν
W ðt; kÞ, with μ ¼ 1, ν ¼ 2 and W ¼ V, is plotted as a

function of xγ for two different times t=a ¼ 2, 3. The orange and blue curves correspond to the theoretical prediction of Eq. (A18)
with ARμν

W
¼ 0. Both the theoretical predictions and the numerical data have been rescaled in such a way that at xγ ¼ 0.8 the error is

exactly one.
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it is clear from the figure, the data are in remarkably good
agreement with the theoretical prediction.
We conclude this appendix with a remark concerning the

possibility of extending the calculation of FV and FA to the
decays of Dd and Bu mesons over the full kinematical
range, which is of even greater interest for phenomenology.
In light of the above discussion, for these heavy-light
mesons the threshold value of the photon energy Eγ above
which the errors will start to exhibit the exponential
behavior shown in Eq. (A16), is given by the pion mass
Mπ . This means that intrinsically large statistical fluctua-
tions are to be expected in Cμν

W ðt; kÞ already at very small
values of xγ . In this case, a possible step towards avoiding
the S/N problem, consists in evaluating the integral over ty
in Eq. (A1) on a reduced time interval ty ∈ ½0; tcut�, and then
checking for convergence of the result as a function of tcut.
In this way one can expect to avoid including in the
integration large values of ty which do not contribute

substantially to the signal (which is dominated by the
region of times ty close to t) but which are responsible for
the exponential increase of the error.
However, such approach requires the computation of the

Euclidean three points function

Mμν
W ðty; t; k; pÞ ¼ h0jT̂½jνWðtÞĵμemðty; kÞϕ̂†

Pð0; pÞ�j0i; ðA19Þ

for different values of t and for all values ty. In this way it is
later possible to perform the integral over ty for each value
of t. Computations at several values of t need to be
performed in order to verify that the ground state has been
isolated. This makes the approach more expensive than
computing Cμν

W in Eq. (8) directly, which can be done for all
values of t at the cost of a single sequential propagator.
Whether such an extra cost for heavy-light mesons is offset
by a significant improvement in accuracy remains to be
seen. We plan to investigate this in the future.

APPENDIX B: RESULTS AND CORRELATION MATRICES FOR FAðxγÞ AND FVðxγÞ

FA correlation matrix

xγ FA ΔFA

0.1 0.08129 0.00538

0.2 0.07153 0.00406

0.3 0.06408 0.00330

0.4 0.05824 0.00282

0.5 0.05337 0.00213

0.6 0.04953 0.00243

0.7 0.04626 0.00309

0.8 0.04325 0.00325

0.9 0.04332 0.00827

1.0 0.04893 0.02291

0
BBBBBBBBBBBBBBBBBBBBB@

1.00000 0.93275 0.90319 0.87687 0.83165 0.76844 0.65813 0.39596 0.19820 0.05885

0.93275 1.00000 0.92220 0.91694 0.86874 0.80104 0.65870 0.40917 0.19818 0.06649

0.90319 0.92220 1.00000 0.91785 0.88262 0.82681 0.67405 0.43075 0.20483 0.04460

0.87687 0.91694 0.91785 1.00000 0.89968 0.84780 0.67133 0.42214 0.22359 0.06804

0.83165 0.86874 0.88262 0.89968 1.00000 0.86177 0.70806 0.46356 0.21540 0.04650

0.76844 0.80104 0.82681 0.84780 0.86177 1.00000 0.78497 0.54501 0.27262 0.08763

0.65813 0.65870 0.67405 0.67133 0.70806 0.78497 1.00000 0.65900 0.36929 0.16734

0.39596 0.40917 0.43075 0.42214 0.46356 0.54501 0.65900 1.00000 0.60339 0.35453

0.19820 0.19818 0.20483 0.22359 0.21540 0.27262 0.36929 0.60339 1.00000 0.59821

0.05885 0.06649 0.04460 0.06804 0.04650 0.08763 0.16734 0.35453 0.59821 1.00000

1
CCCCCCCCCCCCCCCCCCCCCA

FV correlation matrix

xγ FV ΔFV

0.1 −0.10483 0.00966

0.2 −0.08188 0.00284

0.3 −0.06428 0.00131

0.4 −0.05187 0.00085

0.5 −0.04307 0.00080

0.6 −0.03632 0.00078

0.7 −0.03157 0.00071

0.8 −0.02913 0.00101

0.9 −0.02966 0.00559

1.0 −0.03147 0.01521

0
BBBBBBBBBBBBBBBBBBBBB@

1.00000 0.88397 0.76281 0.62931 0.41384 0.24756 0.20298 0.08518 −0.01028 −0.02871
0.88397 1.00000 0.92314 0.76805 0.49098 0.31933 0.19618 0.08374 0.01045 −0.02545
0.76281 0.92314 1.00000 0.88045 0.59188 0.43306 0.23283 0.09787 0.03337 −0.01943
0.62931 0.76805 0.88045 1.00000 0.82870 0.61088 0.44651 0.20618 0.08193 0.02915

0.41384 0.49098 0.59188 0.82870 1.00000 0.68718 0.59022 0.29135 0.13671 0.08414

0.24756 0.31933 0.43306 0.61088 0.68718 1.00000 0.61811 0.38090 0.21946 0.14966

0.20298 0.19618 0.23283 0.44651 0.59022 0.61811 1.00000 0.69088 0.45154 0.29618

0.08518 0.08374 0.09787 0.20618 0.29135 0.38090 0.69088 1.00000 0.79170 0.56277

−0.01028 0.01045 0.03337 0.08193 0.13671 0.21946 0.45154 0.79170 1.00000 0.75941

−0.02871 −0.02545 −0.01943 0.02915 0.08414 0.14966 0.29618 0.56277 0.75941 1.00000

1
CCCCCCCCCCCCCCCCCCCCCA

APPENDIX C: ANALYSIS OF SINGLE-POLE PARAMETRIZATIONS FOR FAðxγÞ AND FVðxγÞ
Single-pole dominance, sometimes called vector-meson dominance (VMD) in the literature, is a model used to describe

the momentum behavior of form factors, as determined by the propagation of the nearest internal resonance contributing to
the amplitude. In this appendix we fit the data from our nonperturbative lattice computation of FAðxγÞ and FVðxγÞ, to check
the validity of such a parametrization. After demonstrating that a pure VMDAnsatz is not consistent with our results for the
form factors, we propose a simple extension of the parametrization that can fit our data with good precision over the whole
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kinematical range. This parametrization provides a simple
and practical description of our data which can be used in
future phenomenological analyses. We also check the
stability of the fitted values of the residues of the singular
pole terms in the parametrization [i.e. the CW in Eq. (43)].
This is a necessary test in order to assess the validity of
relating the fitted CW to the D�

s → Dsγ and Ds1 → Dsγ
decay amplitudes for the vector and axial channels respec-
tively, as predicted by single-pole dominance.
VMD predictions are obtained by inserting a sum over

intermediate states between the two operators in the
correlation function defining Hμν

W ðk; pÞ in Eq. (1) and
approximating this sum by the contribution from the
nearest state. This approximation is also appropriately
called single-pole dominance. For the vector and axial
components of the weak current the nearest internal states
are the D�

s and Ds1 mesons respectively, contributing to the
time-ordering in which the electromagnetic current acts on
the initial mesonDs at an earlier time than that at which the
weak current is inserted, i.e. ty < 0 in Eq. (8). Thus, by
assuming single-pole dominance, we obtain the following
parametrization for the momentum behavior of the form
factors14:

FAðkÞ ¼
C0
A

EDs1
ðkÞðEDs1

ðkÞ þ Eγ − EÞ

¼ C0
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Ds1

þ jkj2
q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Ds1

þ jkj2
q

þ jkj −MDs

� ;

ðC1Þ

FVðkÞ ¼
C0
V

ED�
s
ðkÞðED�

s
ðkÞ þ Eγ − EÞ

¼ C0
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
D�

s
þ jkj2

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D�
s
þ jkj2

q
þ jkj −MDs

� ;

ðC2Þ

where MDs1
and MD�

s
are the masses of the Ds1 and D�

s

mesons respectively and C0
A and C0

V are constant coef-
ficients with the dimension of energy squared. By dividing
both the numerator and denominator of Eqs. (C1) and (C2)

byM2
Ds

and expressing jkj in terms of xγ as jkj ¼ xγMDs
2

, we
obtain

FAðxγÞ ¼
CAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
Ds1

þ x2γ
4

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
Ds1

þ x2γ
4

q
þ xγ

2
− 1

� ; ðC3Þ

FVðxγÞ ¼
CVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
D�

s
þ x2γ

4

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
D�

s
þ x2γ

4

q
þ xγ

2
− 1

� ; ðC4Þ

where CfA;Vg ¼
C0
fA;Vg
M2

Ds

and RfDs1;D�
sg ¼

MfDs1 ;D
�
s g

MDs
are now

dimensionless parameters. By inserting the values MDs1
¼

2460 MeV, MD�
s
¼ 2112 MeV and MDs

¼ 1968 MeV,
taken from the PDG [51], we obtain the ratios RDs1

¼
1.25 and RD�

s
¼ 1.073. Thus, Eqs. (C3) and (C4) describe

the momentum dependence, as predicted by VMD, for the
axial and vector form factors, and also for the contributions
corresponding to the emission of the photon from the charm
and strange quarks separately. In order to check the validity
of the VMD prediction, we fit our lattice results to the
parametrization of Eqs. (C3) and (C4), with CA and CV
taken as free parameters to be determined from the fit.15

The results of these fits are shown in the plots in Fig. 14. It
is clear from the figure, and confirmed by the correspond-
ing high values of χ2=d:o:f:, that the results of the fit are in
general very poor. The only exception is the VMD fit for
the total vector form factor FVðxγÞ, which proves to be a
good fit of our data.
Since the pure VMD fit, with only one free parameter,

fails to describe our lattice results for the form factors, we
now introduce a more general Ansatz; one that represents
the Laurent expansion of a function around a pole:

FWðxγÞ ¼
CWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
W þ x2γ

4

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
W þ x2γ

4

q
þ xγ

2
− 1

�þBW þDWxγ;

ðC5Þ

where we have included corrections up to linear terms in xγ ,
with CW , RW , BW , and DW being free parameters to be
determined from the fit. In Eq. (C5), the difference of the
parameters RW from the VMD values RDs1

¼ 1.25 and
RD�

s
¼ 1.073, partially accounts for the contributions from

heavier internal states. The free parameters BW and DW ,
that describe the first two nonsingular terms of the Laurent
expansion of a function around a pole, are also expected to
encode non-negligible contributions that are not included
in the pure VMD description. In order to check for the
stability of the residues CA and CV , and hence their
interpretation in terms of the Ds1 → Dsγ and D�

s → Dsγ
decay amplitudes, we have performed several fits of our
data, based on the Ansatz of Eq. (C5), fixing on each
occasion some of its parameters to their VMD values.16

Specifically, the CR fit is performed by fixing

14Here and in the following, we employ the reference frame in
which the initial Ds meson is at rest.

15All the fits of this analysis have been performed by
minimizing the correlated χ2.

16With the limited number of points for which we have results,
it is not possible to perform fits with all four parameters left free
to be determined by the fits as this results in overfitting.
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BW ¼ DW ¼ 0, while the CRB fit is performed by setting
onlyDW ¼ 0. The CB fit is obtained by fixingDW ¼ 0 and
RW ¼ RD�

s
for the vector channel and RW ¼ RDs1

for the
axial one. Finally the CBD fit, obtained by setting RW ¼
RD�

s
for the vector channel and RW ¼ RDs1

for the axial one,
with the remaining three parameters determined by the fits.
The results of these fits, for each form factor and for their
individual charm and strange contributions, are reported in
Table VIII.
From the table, we see that all the different Ansätze

provide an adequate fit to our data for the axial channel,
but we notice that the fitted values for the residue of the
singular term, CA, obtained from the CR fit are very
different from those obtained from the fits with BA as a
free parameter. Although all three fits with BA as a free
parameter give consistent results for CA, we avoid relating
these results to the Ds1 → Dsγ decay amplitude for two
reasons. Firstly, because the value of CA obtained from the
CR fit, which is also a good fit to our data, is very different.
Secondly, because of the presence in the axial channel, of
another resonance, namely the Ds1ð2536Þ meson, with a
mass which is only slightly above the nearest resonance,
i.e. the Ds1ð2460Þ meson. Since the 76 MeV difference
between the masses of the two resonances is so small, the
fitted amplitude CA could encode contributions coming
from both of these internal states, resulting in an unreliable
determination of the coupling gDs1Dsγ.
In the vector channel, we note that when fitting our

results for FðsÞ
V and FðcÞ

V we need to include the presence of

the constant terms BðsÞ
V and BðsÞ

V to obtain low values of
χ2=d:o:f:. However, we find that in the sum of the charm
and strange-quark contributions to FV , the individual

nonsingular terms cancel almost exactly, i.e. BðcÞ
V ≃−BðsÞ

V .
As a result, the simple single-pole Ansatz, with BV and DV
fixed to zero, already provides a good fit of the data for the
total vector form factor FV. In the fits with a low value of

χ2=d:o:f:, i.e. all the fits except the CR fit to FðsÞ
V and FðcÞ

V ,
the value of RV is remarkably close to that from the pure
VMD Ansatz, i.e. RD�

s
¼ 1.073, differing by less than 3%,

and the values of CV are all very similar. The similarities
between the values of RV and RD�

s
, and the stability of the

values of the CV parameter allow us to relate the fitted value
for the residue of the pole term, CV , to the D�

s → Dγ decay
amplitude, and to its characteristic coupling gD�

sDsγ , using
the pole-dominance relation

CV ¼ −
MD�

s
fD�

s
gD�

sDsγ

2MDs
: ðC6Þ

In order to determine gD�
sDsγ and its individual strange

and charm-quark contributions, we use the values of CV

from the fits with low values of χ2=d:o:f: and take the value
fD�

s
¼ 268.8ð6.6Þ MeV from the lattice calculation of

Ref. [47]. The corresponding estimates of the couplings
are reported in Table VII. Averaging the values of the
couplings reported in the table, we obtain our final
estimates

FIG. 14. The fit functions, corresponding to the pure VMD Ansatz of Eqs. (C3)–(C4), are plotted, along with the lattice data, for the
axial channel (top panels), and for the vector channel (bottom panels).
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TABLE VIII. Values of the fit parameters for each form factor, and for their individual charm and strange-quark
contributions, as determined from the different fits based on the Ansatz of Eq. (C5).

FA fitted parameters

CA RA BA DA χ2=d:o:f:

CR fit 0.0518(30) 1.413(30) 0 (fixed) 0 (fixed) 0.41
CRB fit 0.0229(76) 1.242(59) 0.0185(67) 0 (fixed) 0.04
CB fit 0.0239(20) 1.25 (fixed) 0.0176(18) 0 (fixed) 0.03
CBD fit 0.0246(51) 1.25 (fixed) 0.016(11) 0.002(10) 0.04

FðcÞ
A fitted parameters

CA RA BA DA χ2=d:o:f:

CR fit −0.0135ð10Þ 1.453(59) 0 (fixed) 0 (fixed) 0.23
CRB fit −0.0075ð26Þ 1.27(11) −0.0025ð14Þ 0 (fixed) 0.08
CB fit −0.00696ð88Þ 1.25 (fixed) −0.00280ð47Þ 0 (fixed) 0.07
CBD fit −0.0068ð23Þ 1.25 (fixed) −0.0030ð37Þ 0.0002(22) 0.08

FðsÞ
A fitted parameters

CA RA BA DA χ2=d:o:f:

CR fit 0.0662(56) 1.423(36) 0 (fixed) 0 (fixed) 0.24
CRB fit 0.031(17) 1.26(10) 0.021(13) 0 (fixed) 0.09
CB fit 0.0298(18) 1.25 (fixed) 0.0215(31) 0 (fixed) 0.08
CBD fit 0.0309(87) 1.25 (fixed) 0.018(22) 0.003(18) 0.08

FV fitted parameters

CV RV BV DV χ2=d:o:f:

CR fit −0.01792ð76Þ 1.091(11) 0 (fixed) 0 (fixed) 0.45
CRB fit −0.0193ð23Þ 1.100(19) 0.0018(28) 0 (fixed) 0.47
CB fit −0.01619ð58Þ 1.073 (fixed) −0.0017ð16Þ 0 (fixed) 0.66
CBD fit −0.0153ð16Þ 1.073 (fixed) −0.0064ð77Þ 0.0045(71) 0.75

FðcÞ
V fitted parameters

CV RV BV DV χ2=d:o:f:

CR fit 0.1144(13) 1.2001(41) 0 (fixed) 0 (fixed) 53
CRB fit 0.0624(15) 1.0809(43) 0.0369(14) 0 (fixed) 0.31
CB fit 0.05971(55) 1.073 (fixed) 0.03886(82) 0 (fixed) 0.76
CBD fit 0.0579(13) 1.073 (fixed) 0.0466(45) −0.0055ð33Þ 0.43

FðsÞ
V fitted parameters

CV RV BV DV χ2=d:o:f:

CR fit −0.1099ð11Þ 1.1245(29) 0 (fixed) 0 (fixed) 11
CRB fit −0.0792ð24Þ 1.0794(37) −0.0367ð31Þ 0 (fixed) 1.8
CB fit −0.07571ð96Þ 1.073 (fixed) −0.0410ð17Þ 0 (fixed) 1.8
CBD fit −0.0759ð16Þ 1.073 (fixed) −0.0399ð69Þ −0.0011ð67Þ 2.1
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gD�
sDsγ ¼ 0.1177� 0.0048stat � 0.012syst GeV−1; ðC7Þ

gðsÞD�
sDsγ

¼ 0.532� 0.010stat � 0.011syst GeV−1; ðC8Þ

gðcÞD�
sDsγ

¼ −0.4150� 0.0073stat � 0.014syst GeV−1; ðC9Þ

where we include half of the maximum dispersion among
the values obtained from the different fits as the systematic
uncertainty. In Sec. V, we compare these results to two
previous estimates of the same quantities, obtained either
through a direct lattice computation [21] or by using LCSR
at next-to-leading order [22].

[1] M. Bychkov et al., New Precise Measurement of the Pion
Weak Form Factors in piþ → eþνγ Decay, Phys. Rev. Lett.
103, 051802 (2009).

[2] S. Adler et al.E787 Collaboration, Measurement of Struc-
ture Dependent Kþ → μþνμγ Decay, Phys. Rev. Lett. 85,
2256 (2000).

[3] F. Ambrosino et al.KLOE Collaboration, Precise measure-
ment of ΓðK → eνðγÞÞ=ΓðK → μνðγÞÞ and study of
K → eνγ, Eur. Phys. J. C 64, 627 (2009).

[4] V. I. Kravtsov et al.OKACollaboration, Measurement of the
Kþ → μþνμγ decay form factors in the OKA experiment,
Eur. Phys. J. C 79, 635 (2019).

[5] V. A. Duk et al.ISTRA+ Collaboration, Extraction of kaon
formfactors from K− → μ−νμγ decay at ISTRAþ setup,
Phys. Lett. B 695, 59 (2011).

[6] J-PARC E36 Collaboration, Measurement of structure
dependent radiative Kþ → eþνγ decays using stopped
positive kaons, Phys. Lett. B 826, 136913 (2022).

[7] M. Ablikim et al.BESIII Collaboration, Search for the
radiative leptonic decay Dþ → γeþνe, Phys. Rev. D 95,
071102 (2017).

[8] M. Ablikim et al.BESIII Collaboration, Search for the decay
Dþ

s → γeþνe, Phys. Rev. D 99, 072002 (2019).
[9] A. Heller et al.Belle Collaboration, Search for Bþ → lþνlγ

decays with hadronic tagging using the full Belle data
sample, Phys. Rev. D 91, 112009 (2015).

[10] M. Gelb et al.Belle Collaboration, Search for the rare decay
of Bþ → lþνlγ with improved hadronic tagging, Phys. Rev.
D 98, 112016 (2018).

[11] A. Desiderio et al., First lattice calculation of radiative
leptonic decay rates of pseudoscalar mesons, Phys. Rev. D
103, 014502 (2021).

[12] R. Frezzotti, M. Garofalo, V. Lubicz, G. Martinelli, C. T.
Sachrajda, F. Sanfilippo, S. Simula, and N. Tantaloet al.,

Comparison of lattice QCDþ QED predictions for radiative
leptonic decays of light mesons with experimental data,
Phys. Rev. D 103, 053005 (2021).

[13] C. Alexandrou et al., Simulating twisted mass fermions at
physical light, strange and charm quark masses, Phys. Rev.
D 98, 054518 (2018).

[14] C. Alexandrou et al.Extended Twisted Mass Collaboration,
Ratio of kaon and pion leptonic decay constants with Nf ¼
2þ 1þ 1 Wilson-clover twisted-mass fermions, Phys. Rev.
D 104, 074520 (2021).

[15] C. Alexandrou et al.Extended Twisted Mass Collaboration,
Quark masses using twisted-mass fermion gauge ensembles,
Phys. Rev. D 104, 074515 (2021).

[16] C. Alexandrou et al., Lattice calculation of the short and
intermediate time-distance hadronic vacuum polarization
contributions to the muon magnetic moment using twisted-
mass fermions, Phys. Rev. D 107, 074506 (2023).

[17] D. Giusti, C. F. Kane, C. Lehner, S. Meinel, and A. Soni,
High-precision determination of radiative-leptonic-decay
form factors using lattice QCD: A study of methods, Phys.
Rev. D 107, 074507 (2023).

[18] G. P. Korchemsky, D. Pirjol, and T.-M. Yan, Radiative
leptonic decays of B mesons in QCD, Phys. Rev. D 61,
114510 (2000).

[19] D. Atwood, G. Eilam, and A. Soni, Pure leptonic radiative
decays B�, Ds → lνγ and the annihilation graph, Mod.
Phys. Lett. A 11, 1061 (1996).

[20] J.-C. Yang and M.-Z. Yang, Radiative leptonic decays of the
charged B and D mesons including long-distance contri-
bution, Mod. Phys. Lett. A 27, 1250120 (2012).

[21] G. C. Donald, C. T. H. Davies, J. Koponen, and G. P.
LepageHPQCD Collaboration, Prediction of theD�

s Width
from a Calculation of its Radiative Decay in Full Lattice
QCD, Phys. Rev. Lett. 112, 212002 (2014).

TABLE IX. Predictions for the gD�
sDsγ coupling, and for its individual charm and strange contributions, as obtained

from our various fits, based on the Ansatz of Eq. (C5). Only results from fits with a low value of χ2=d:o:f: have been
included.

CR fit CRB fit CB fit CBD fit

gD�
sDsγ [GeV−1] 0.1223(51) 0.130(14) 0.1123(49) 0.106(11)

gðsÞD�
sDsγ

[GeV−1] � � � 0.546(20) 0.525(15) 0.526(17)

gðcÞD�
sDsγ

[GeV−1] � � � −0.429ð14Þ −0.414ð11Þ −0.402ð13Þ

LATTICE CALCULATION OF THE Ds MESON RADIATIVE … PHYS. REV. D 108, 074505 (2023)

074505-27

https://doi.org/10.1103/PhysRevLett.103.051802
https://doi.org/10.1103/PhysRevLett.103.051802
https://doi.org/10.1103/PhysRevLett.85.2256
https://doi.org/10.1103/PhysRevLett.85.2256
https://doi.org/10.1140/epjc/s10052-009-1177-x
https://doi.org/10.1140/epjc/s10052-019-7145-1
https://doi.org/10.1016/j.physletb.2010.10.043
https://doi.org/10.1016/j.physletb.2022.136913
https://doi.org/10.1103/PhysRevD.95.071102
https://doi.org/10.1103/PhysRevD.95.071102
https://doi.org/10.1103/PhysRevD.99.072002
https://doi.org/10.1103/PhysRevD.91.112009
https://doi.org/10.1103/PhysRevD.98.112016
https://doi.org/10.1103/PhysRevD.98.112016
https://doi.org/10.1103/PhysRevD.103.014502
https://doi.org/10.1103/PhysRevD.103.014502
https://doi.org/10.1103/PhysRevD.103.053005
https://doi.org/10.1103/PhysRevD.98.054518
https://doi.org/10.1103/PhysRevD.98.054518
https://doi.org/10.1103/PhysRevD.104.074520
https://doi.org/10.1103/PhysRevD.104.074520
https://doi.org/10.1103/PhysRevD.104.074515
https://doi.org/10.1103/PhysRevD.107.074506
https://doi.org/10.1103/PhysRevD.107.074507
https://doi.org/10.1103/PhysRevD.107.074507
https://doi.org/10.1103/PhysRevD.61.114510
https://doi.org/10.1103/PhysRevD.61.114510
https://doi.org/10.1142/S0217732396001090
https://doi.org/10.1142/S0217732396001090
https://doi.org/10.1142/S0217732312501209
https://doi.org/10.1103/PhysRevLett.112.212002


[22] B. Pullin and R. Zwicky, Radiative decays of heavy-light
mesons and the fðTÞH;H�;H1

decay constants, J. High Energy
Phys. 09 (2021) 023.

[23] J. Lyon and R. Zwicky, ACP½D0;þ
ðsÞ → Vγ� from large O8,

Phys. Rev. D 106, 053001 (2022).
[24] D. Guadagnoli, C. Normand, S. Simula, and L. Vittorio,

From Ds → γ in lattice QCD to Bs → μμγ at high q2,
J. High Energy Phys. 07 (2023) 112.

[25] N. Carrasco, V. Lubicz, G. Martinelli, C. T. Sachrajda, N.
Tantalo, C. Tarantino, and M. Testa, QED corrections to
hadronic processes in lattice QCD, Phys. Rev. D 91, 074506
(2015).

[26] J. Bijnens, G. Ecker, and J. Gasser, Radiative semileptonic
kaon decays, Nucl. Phys. B396, 81 (1993).

[27] G. Gagliardi, F. Sanfilippo, S. Simula, V. Lubicz, F.
Mazzetti, G. Martinelli, C. T. Sachrajda, and N. Tantalo,
Virtual photon emission in leptonic decays of charged
pseudoscalar mesons, Phys. Rev. D 105, 114507 (2022).

[28] C. T. Sachrajda and G. Villadoro, Twisted boundary
conditions in lattice simulations, Phys. Lett. B 609, 73 (2005).

[29] J. M. Flynn, A. Juttner, C. T. Sachrajda, P. A. Boyle, and
J. M. Zanotti, Hadronic form factors in lattice QCD at small
and vanishing momentum transfer, J. High Energy Phys. 05
(2007) 016.

[30] Y. Iwasaki, Renormalization group analysis of lattice theories
and improved lattice action: Two-dimensional nonlinear
OðNÞ sigma model, Nucl. Phys. B258, 141 (1985).

[31] Alpha Collaboration, Lattice QCD with a chirally twisted
mass term, J. High Energy Phys. 08 (2001) 058.

[32] R. Frezzotti and G. C. Rossi, Chirally improving Wilson
fermions. 1. O(a) improvement, J. High Energy Phys. 08
(2004) 007.

[33] R. Frezzotti and G. C. Rossi, Chirally improving Wilson
fermions. II. Four-quark operators, J. High Energy Phys. 10
(2004) 070.

[34] C. PatrignaniParticle Data Group, Review of particle phys-
ics, Chin. Phys. C 40, 100001 (2016).

[35] K. Osterwalder and E. Seiler, Gauge field theories on the
lattice, Ann. Phys. (N.Y.) 110, 440 (1978).

[36] S. Borsanyi et al., Leading hadronic contribution to the
muon magnetic moment from lattice QCD, Nature (London)
593, 51 (2021).

[37] Particle Data Group, Review of particle physics, Prog.
Theor. Exp. Phys. 2020, 083C01 (2020).

[38] HPQCD Collaboration, Charmonium properties from lattice
QCDþ QED: Hyperfine splitting, J=ψ leptonic width,
charm quark mass, and acμ, Phys. Rev. D 102, 054511
(2020).

[39] R. Zhang, W. Sun, F. Chen, Y. Chen, M. Gong, X. Jiang, and
Z. Liu, Annihilation diagram contribution to charmonium
masses, Chin. Phys. C 46, 043102 (2022).

[40] N. Carrasco et al., D0 − D̄0 mixing in the Standard Model
and beyond from Nf ¼ 2 twisted mass QCD, Phys. Rev. D
90, 014502 (2014).

[41] H. Akaike, A new look at the statistical model identification,
IEEE Trans. Autom. Control 19, 716 (1974).

[42] E. T. Neil and J. W. Sitison, Improved information criteria
for Bayesian model averaging in lattice field theory, arXiv:
2208.14983.

[43] F. Bloch and A. Nordsieck, Note on the radiation field of the
electron, Phys. Rev. 52, 54 (1937).

[44] Y. Aoki et al.Flavour Lattice Averaging Group (FLAG)
Collaboration, FLAG review 2021, Eur. Phys. J. C 82, 869
(2022).

[45] C. Q. Geng, C. C. Lih, and W.-M. Zhang, Study of radiative
leptonic D meson decays, Mod. Phys. Lett. A 15, 2087
(2000).

[46] C.-D. Lu and G.-L. Song, Radiative leptonic decays of D�
s

and D� mesons, Phys. Lett. B 562, 75 (2003).
[47] ETM Collaboration, Masses and decay constants ofD�

ðsÞ and
B�
ðsÞ mesons with Nf ¼ 2þ 1þ 1 twisted mass fermions,

Phys. Rev. D 96, 034524 (2017).
[48] R. Zwicky (private communication).
[49] G. Parisi, The strategy for computing the hadronic mass

spectrum, Phys. Rep. 103, 203 (1984).
[50] G. P. Lepage, The analysis of algorithms for lattice field

theory, in From Actions to Answers: Proceedings of the
1989 Theoretical Advanced Study Institute in Elementary
Particle Physics (1989), http://inspirehep.net/record/
287173.

[51] K Agashe et al.Particle Data Group, Review of particle
physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

R. FREZZOTTI et al. PHYS. REV. D 108, 074505 (2023)

074505-28

https://doi.org/10.1007/JHEP09(2021)023
https://doi.org/10.1007/JHEP09(2021)023
https://doi.org/10.1103/PhysRevD.106.053001
https://doi.org/10.1007/JHEP07(2023)112
https://doi.org/10.1103/PhysRevD.91.074506
https://doi.org/10.1103/PhysRevD.91.074506
https://doi.org/10.1016/0550-3213(93)90259-R
https://doi.org/10.1103/PhysRevD.105.114507
https://doi.org/10.1016/j.physletb.2005.01.033
https://doi.org/10.1088/1126-6708/2007/05/016
https://doi.org/10.1088/1126-6708/2007/05/016
https://doi.org/10.1016/0550-3213(85)90606-6
https://doi.org/10.1088/1126-6708/2001/08/058
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/10/070
https://doi.org/10.1088/1126-6708/2004/10/070
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.102.054511
https://doi.org/10.1103/PhysRevD.102.054511
https://doi.org/10.1088/1674-1137/ac3d8c
https://doi.org/10.1103/PhysRevD.90.014502
https://doi.org/10.1103/PhysRevD.90.014502
https://doi.org/10.1109/TAC.1974.1100705
https://arXiv.org/abs/2208.14983
https://arXiv.org/abs/2208.14983
https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1142/S021773230000267X
https://doi.org/10.1142/S021773230000267X
https://doi.org/10.1016/S0370-2693(03)00549-5
https://doi.org/10.1103/PhysRevD.96.034524
https://doi.org/10.1016/0370-1573(84)90081-4
http://inspirehep.net/record/287173
http://inspirehep.net/record/287173
http://inspirehep.net/record/287173
https://doi.org/10.1093/ptep/ptac097

