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A B S T R A C T

The spectral decomposition of a second-order, symmetric tensor is widely adopted in many fields of Com-
putational Mechanics. As an example, in elasto-plasticity under large strain and rotations, given the Cauchy
deformation tensor, it is a fundamental step to compute the logarithmic strain tensor.

Recently, this approach has also been adopted in small-strain isotropic plasticity to reconstruct the stress
tensor as a function of its eigenvalues, allowing the formulation of predictor–corrector return algorithms in
the invariants space. These algorithms not only reduce the number of unknowns at the constitutive level, but
also allow the correct handling of stress states in which the plastic normals are undefined, thus ensuring a
better convergence with respect to the standard approach.

While the eigenvalues of a symmetric, second-order tensor can be simply computed as a function of
the tensor invariants, the computation of its eigenbasis can be more difficult, especially when two or more
eigenvalues are coincident. Moreover, when a Newton–Raphson algorithm is adopted to solve nonlinear
problems in Computational Mechanics, also the tensorial derivatives of the eigenbasis, whose computation
is still more complicated, are required to assemble the tangent matrix.

A simple and comprehensive method is presented, which can be adopted to compute a closed form
representation of a second-order tensor, as well as their derivatives with respect to the tensor itself, allowing
a simpler and numerically accurate implementation of spectral decomposition of a tensor in Computational
Mechanics applications.
1. Introduction

This paper presents important developments regarding the eigen-
values and eigenvectors of a symmetric second-order tensor and the
determination of the associated basis required for its spectral rep-
resentation. The results here presented apply to situations involving
isotropic scalar-valued functions and isotropic tensor-valued functions
of a symmetric second-order tensor.

For instance, the findings of this article are useful for the integration
of constitutive laws of isotropic materials and in finite deformations
(e.g., to compute the logarithmic strain tensor from the displacement
gradient).

The numerical integration of isotropic elasto-plastic constitutive
laws can be more efficiently carried out by formulating the return
algorithms in terms of eigenvalues of the elastic strain tensor (e.g. Borja
et al., 2003 and de Souza Neto et al., 2008), or in the invariants elastic
strain space (Panteghini and Lagioia, 2018, 2022). Differently from the
standard approach (de Souza Neto et al., 2008), an invariant-based
return algorithm allows the correct handling of stress states in which
the plastic normals are undefined.

E-mail address: andrea.panteghini@unibs.it.

These two integration algorithms require the spectral representation
of the stress, as well as the determination of its derivatives to assem-
ble the stiffness matrix. Unfortunately, their determination using the
approach described in the literature is very cumbersome (see e.g., de
de Souza Neto et al., 2008; Borja et al., 2003), particularly when two
or three eigenvalues coincide. In this case, in fact, the derivative of
the stress spectral representation is usually computed as a limit case,
which requires the employment of the de L’Hôpital rule to be solved
(see, e.g. Ogden, 1984 or de Souza Neto et al., 2008).

These difficulties certainly make these invariant-based integration
algorithms, even if more efficient, less attractive with respect to stan-
dard return algorithms formulated in terms of full tensorial compo-
nents.

About the applications in large strain theories, to avoid the com-
plexity of the standard procedure, commercial codes (e.g. SIMULIA
Abaqus Dassault Systèmes, 2020) often employ approximate formula-
tions to numerically integrate the logarithmic strain in finite deforma-
tion analyses. Some Authors suggest, for specific isotropic functions,
to resort to their numerical approximation based on series expansion
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(e.g. Ortiz et al., 2001; de Souza Neto, 2001; Hudobivnik and Korelc,
2016). However, it should be noted that these series-based procedures,
even if simpler and numerically efficient, can be hardly adopted when
the isotropic functions are not known explicitly (i.e., for instance, in the
case of the integration of the isotropic elastoplastic materials described
above).

The writer has later discovered that Ogden (1984) incidentally
describes, in an exercise contained in his book, a very important result,
which to the best of his knowledge, seems to have been missed by the
vast majority of the research community. He suggests a very simple
method for retrieving a closed-form expression for the basis of the
spectral decomposition of a second-order tensor which does not require
the computation of the originating eigenvectors. This result has later
been reported also by Miehe (1993), who, however, states that ‘‘the
ormulation above is restricted to the case of distinct eigenvalues of the
ensor ’’. Moreover, the same Author (Miehe, 1998) points out that such
n approach requires the inversion of the second-order tensor, which
everely restricts the applicability of the method. de Souza Neto et al.
2008) describe a very cumbersome method to evaluate both the basis
nd their spin. They also state that ‘‘...a methodology similar to that
dopted here was introduced by Miehe (1993, 1998a), where a particularly
ompact representation for the function derivative is used. However, the
ompact representation allows only the computation of the derivative at
nvertible arguments and cannot be used...’’.

In this paper it is mathematically shown that indeed the basis
equired for the spectral representation of a symmetric second-order
ensor can be derived without the computationally expensive evalu-
tion of the associated eigenvectors. It is also shown that this can
lso be directly derived from the secular (or characteristic) equation
f the tensor, without any assumptions about the invertibility of the
econd-order tensor. Most importantly, it is clarified how the result
an be particularized to the case of two and three coinciding eigenval-
es, hence removing the strong limitation of the approach described
y Miehe (1993, 1998) which de facto prevents the application of this
xtremely useful result. This paper also provides the tensor derivatives
f the basis, i.e. its spin. Moreover, it is presented a simple and generic
pproach to compute the spectral representation of isotropic tensor-
alued functions, as well as their derivatives with respect to the tensor
ariable itself. The proposed procedures can be practically adopted
n computational mechanics since all limitations of the procedures
vailable in the literature have been removed (the approach of de Souza
eto et al., 2008 does not have such limitations but is laborious to

mplement). Finally, two applications are presented for isotropic elasto-
lasticity and for the evaluation of the logarithmic strain tensor in finite
eformations.

. Eigenvalues, eigenvectors and spectral representation of a sym-
etric, second-order tensor 𝑻

Given the symmetric, second-order tensor 𝑻 , its (ordered) eigenval-
ues 𝜆𝑖 and their corresponding eigenvectors 𝒏𝑖 are obtained by solving
the eigenvalues–eigenvectors problem (Malvern, 1969):

(𝑻 − 𝜆𝑰)𝒏 = 𝟎 under the condition 𝒏𝑇 𝒏 = 1 (1)

being 𝑰 the second-order identity tensor. The principal components 𝜆𝑖
can be obtained by solving the third-order scalar equation in 𝜆, namely
the secular equation (Malvern, 1969):

𝜆3 − 𝐼1𝜆
2 + 𝐼2𝜆 − 𝐼3 = 0 (2)

The coefficients

𝐼1 = tr (𝑻 ) (3)

𝐼2 =
1
2
(

𝐼21 − 𝑻 ∶ 𝑻 𝑇 ) (4)

𝐼 = det 𝑻 (5)
2

3 ( )
are the invariants of 𝑻 , since their values do not depend on the reference
system in which 𝑻 is expressed. The three ordered solutions of Eq. (2)
are the eigenvalues of the problem described in Eq. (1). As explained
in Malvern (1969), they can be computed in closed form as:

𝜆I =
𝐼1
3

+ 2
√

3

√

𝐽2 sin
(

𝜃 + 2
3
𝜋
)

𝜆II =
𝐼1
3

+ 2
√

3

√

𝐽2 sin (𝜃)

III =
𝐼1
3

+ 2
√

3

√

𝐽2 sin
(

𝜃 − 2
3
𝜋
)

(6)

where

𝐽2 =
1
2
𝒕 ∶ 𝒕 (7)

𝐽3 = det (𝒕)

re the invariants of the second-order, deviatoric symmetric tensor
= 𝑻 − (𝐼1∕3)𝑰 , and the Lode’s angle 𝜃 is defined as

𝜃 = 1
3
arcsin

⎛

⎜

⎜

⎜

⎝

−

√

27
2

𝐽3
√

𝐽 3
2

⎞

⎟

⎟

⎟

⎠

(8)

where −𝜋∕6 ≤ 𝜃 ≤ 𝜋∕6.
It is well known that the second-order symmetric tensor 𝑻 can be

expressed as a function of its eigenvalues 𝜆𝑖 and the corresponding
eigenvectors 𝒏𝑖 by resorting to the spectral theorem1:

𝑻 =
∑

𝜆𝑖𝒏𝑖 ⊗ 𝒏𝑖 = 𝜆𝑖𝑵 𝑖 (9)

where 𝑵 𝑖 is the eigenbasis of 𝑻 related to 𝜆𝑖.
It is well known (see, e.g. Bertram, 2021) that, in closed form, an

equivalent spectral representation of 𝑻 as a function of its 𝑚 distinct
eigenvalues and eigenbasis, i.e.

𝑻 =
𝑚
∑

𝑖=1
𝜆𝑖�̃� 𝑖

can be obtained by resorting to the Sylvester’s formula:

�̃� 𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑚
∏

𝑗=1,𝑗≠𝑖

1
𝜆𝑖 − 𝜆𝑗

(

𝑻 − 𝜆𝑗𝑰
)

if 𝑚 > 1

𝑰 if 𝑚 = 1

. (10)

Let us observe that, if 𝑚 = 3 (no repeated eigenvalues), 𝑵 𝑖 =
̃ 𝑖. The strong limitation of this approach is represented by the non-

differentiability of Eq. (10) in the case of 𝑚 ≠ 3. This is due to the fact
hat a repeated eigenvalue results to be not differentiable. Moreover,
lso in the case of 𝑚 = 3, the differentiation, even if conceptually
ot complicated, is not very easy, resulting in a rather long expression
here, for brevity, the results of this differentiation are not reported.
he Reader may refer to de Souza Neto, 2001).

. A simple, closed-form expression for the eigenbasis of 𝑻

We will consider three cases, as a function of the multiplicity of the
igenvalues 𝜆𝑖:

1. 𝜆I > 𝜆II > 𝜆III
2. 𝜆I > 𝜆II = 𝜆III or 𝜆I = 𝜆II > 𝜆III
3. 𝜆I = 𝜆II = 𝜆III

1 Let us consider that, unless otherwise specified, it is always intended

𝑓𝑖 =
∑

𝑖=I,II,III
𝑓𝑖.
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A general property of the eigenbasis 𝑵 𝑖

We will initially prove that it results:

𝑵 𝑖 = 𝑰 (11)

et us consider that the 𝑖−th eigenvalue and eigenvector of 𝑻 will
satisfy Eq. (1), i.e.

𝑻 𝒏𝑖 = 𝜆i𝒏i (12)

Since 𝒏𝑖 is a unit vector, it results

𝒏𝑇𝑖 𝑻 𝒏𝑖 = 𝑻 ∶
(

𝒏𝑖 ⊗ 𝒏𝑖
)

= 𝜆𝑖
(

𝒏𝑇𝑖 𝒏𝑖
)

= 𝜆𝑖

one can compute the first invariant 𝐼1 in the principal coordinate
system as

𝐼1 = tr (𝑻 ) = 𝑻 ∶ 𝑰 =
∑

𝜆𝑖 = 𝑻 ∶
∑

𝑵 𝑖

From this equation it must result

𝑻 ∶ 𝑰 = 𝑻 ∶
∑

𝑵 𝑖

This condition yields

∑

𝑵 𝑖 = 𝑰

Case (i): 𝜆I > 𝜆II > 𝜆III

Let us observe that it is well known (see, e.g., Ogden, 1984; Bertram,
2021; Vallée et al., 2006, or Itskov, 2015) that the spectral theorem

𝑻 =
∑

𝜆𝑖
(

𝒏𝑖 ⊗ 𝒏𝑖
)

=
∑

𝜆𝑖𝑵 𝑖 (13)

can be written as

𝑻 =
∑

𝜆𝑖
𝑑𝜆𝑖
𝑑𝑻

i.e., that it simply results:

𝑵 𝑖 =
𝑑𝜆𝑖
𝑑𝑻

y considering the symmetry of 𝑻 , the derivatives of the invariants 𝐼1,

2 and 𝐼3, defined by Eq. (3), (4) and (5) with respect to 𝑻 are:

𝑑𝐼1
𝑑𝑻

= 𝑰 (14)

𝑑𝐼2
𝑑𝑻

= 𝐼1𝑰 − 𝑻 (15)

𝑑𝐼3
𝑑𝑻

= 𝐼3𝑻 −1 = adj (𝑻 ) (16)

where adj (𝑻 ) denotes the adjugate matrix of 𝑻 . By substituting the
property (11) and the spectral theorem (13) into Eq. (14) and (15)
respectively, one obtains:

𝑑𝐼1
𝑑𝑻

=
∑

𝑵 𝑖 (17)

𝑑𝐼2 = 𝐼 𝑰 −
∑

𝜆 𝑵 (18)
3

𝑑𝑻 1 𝑖 𝑖
Finally, by resorting to the spectral theorem (13), one can write Eq.
(16) as2

𝑑𝐼3
𝑑𝑻

=
∑

(

𝜆𝑗𝜆𝑘𝑵 𝑖
)

𝑖≠𝑗≠𝑘 (22)

Let us consider now that the values of 𝐼1, 𝐼2 and 𝐼3 are independent
with respect to the reference system, hence one can compute them also
in terms of principal components. It results:

𝐼1 = 𝜆I + 𝜆II + 𝜆III

𝐼2 = 𝜆I𝜆II + 𝜆I𝜆III + 𝜆II𝜆III

𝐼3 = 𝜆I𝜆II𝜆III

The derivatives of the invariants 𝐼1, 𝐼2 and 𝐼3 can also be computed by
differentiating these last three expressions, observing that 𝜆𝑖 = 𝜆𝑖(𝑻 ). It
results:
𝑑𝐼1
𝑑𝑻

=
𝑑𝜆I
𝑑𝑻

+
𝑑𝜆II
𝑑𝑻

+
𝑑𝜆III
𝑑𝑻

=
∑ 𝑑𝜆𝑖

𝑑𝑻
(23)

𝑑𝐼2
𝑑𝑻

= 𝐼1
∑ 𝑑𝜆i

𝑑𝑻
−
∑

𝜆𝑖
𝑑𝜆i
𝑑𝑻

= 𝐼1𝑰 −
∑

𝜆𝑖
𝑑𝜆i
𝑑𝑻

(24)

𝑑𝐼3
𝑑𝑻

= 𝜆II𝜆III
𝑑𝜆I
𝑑𝑻

+ 𝜆I𝜆III
𝑑𝜆II
𝑑𝑻

+ 𝜆I𝜆II
𝑑𝜆III
𝑑𝑻

=
∑

(

𝜆𝑗𝜆𝑘
𝑑𝜆𝑖
𝑑𝑻

)

𝑖≠𝑗≠𝑘
(25)

One can now compute the eigenbasis 𝑵 𝑖 as a function of the
derivatives of the eigenvalues 𝜆𝑖 with respect to 𝑻 by solving the linear
system of equations obtained by equating Eq. (17), (18) and (22) with
Eq. (23), (24) and (25) respectively. One obtains

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

𝑵 𝑖 =
∑ 𝑑𝜆i

𝑑𝑻
∑

𝜆𝑖𝑵 𝑖 =
∑

𝜆𝑖
𝑑𝜆i
𝑑𝑻

∑
(

𝜆𝑗𝜆𝑘𝑵 𝑖
)

𝑖≠𝑗≠𝑘 =
∑

(

𝜆𝑗𝜆𝑘
𝑑𝜆𝑖
𝑑𝑻

)

𝑖≠𝑗≠𝑘

(26)

which, under the assumption 𝜆I > 𝜆II > 𝜆III3 simply gives

𝑖 =
𝑑𝜆𝑖
𝑑𝑻

so that the spectral theorem (13) can be re-written as:

𝑻 =
∑

𝜆𝑖
(

𝒏𝑖 ⊗ 𝒏𝑖
)

=
∑

𝜆𝑖
𝑑𝜆𝑖
𝑑𝑻

2 Let us observe that, by multiplying Eq. (1) by adj (𝑻 ) = 𝐼3𝑻 −1 one obtains

𝐼3𝑻 −1𝑻 𝒏 = 𝜆𝐼3𝑻 −1𝒏

which gives

adj (𝑻 )𝒏 =
𝐼3
𝜆
𝒏 (19)

Hence, the eigenvectors 𝒏 of adj (𝑻 ) and 𝑻 are coincident, whilst the 𝑖th
eigenvalue 𝜇𝑖 of adj (𝑻 ) associated with 𝒏𝑖 can be computed from 𝜆𝑖 as:

𝜇𝑖 =
𝐼3
𝜆𝑖

=
(

𝜆𝑗𝜆𝑘
)

𝑖≠𝑗≠𝑘 (20)

The spectral representation of adj (𝑻 ) is then:

adj (𝑻 ) =
∑

(

𝜆𝑗𝜆𝑘𝑵 𝑖
)

𝑖≠𝑗≠𝑘 (21)

3 Let us observe that the determinant of the matrix of the system (26) reads:

det
⎡

⎢

⎢

⎣

1 1 1
𝜆I 𝜆II 𝜆III

𝜆II𝜆III 𝜆I𝜆III 𝜆I𝜆II

⎤

⎥

⎥

⎦

= −
(

𝜆I − 𝜆II
) (

𝜆I − 𝜆III
) (

𝜆II − 𝜆III
)

It is always nonzero if 𝜆I > 𝜆II > 𝜆III.
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Case (ii): 𝜆I > 𝜆II = 𝜆III or 𝜆I = 𝜆II > 𝜆III
If one or more eigenvalues of 𝑻 are coincident, the linear system

26) will not admit a unique solution. Let �̂� be the non-repeated
igenvalue of 𝑻 and �̂� the correspondent eigenbasis. The first invariant
1 is equal to:

1 = �̂� + 2𝜆II

o that, it results:

II =
1
2
(

𝐼1 − �̂�
)

q. (11) can be rewritten as:

̂ + 2𝑵 II = 𝑰

ence, it results:

II =
1
2
(

𝑰 − �̂�
)

(27)

The spectral theorem can be rewritten as:

𝑻 = �̂��̂� + 1
2
(

𝐼1 − �̂�
) (

𝑰 − �̂�
)

= 3
2

(

�̂� −
𝐼1
3

)

�̂� + 1
2
(

𝐼1 − �̂�
)

𝑰 (28)

Eq. (28) can be further simplified by computing the deviatoric part 𝑙 of
�̂� as 𝑙 = �̂� − 𝐼1∕3. One obtains

𝑻 =
𝐼1
3
𝑰 + 3

2
𝑙
(

�̂� − 1
3
𝑰
)

(29)

his last equation clearly shows that, when two eigenvalues are coin-
ident, the deviatoric part of �̂� , defined as �̂�𝑑 = �̂� − 𝑰∕3, is simply
roportional to the deviatoric part of the tensor 𝑻 , i.e.

̂ 𝑑 = 1
�̂� − 𝜆II

𝒕 = ∓1
𝑞
𝒕 for 𝜃 = ±𝜋

6 (30)

here 𝑞 =
√

3𝐽2. This result is a consequence of the multiplicity
of the deviatoric principal components. When two eigenvalues of 𝑻
oincide, the two coincident deviatoric principal components result to
e minus half of the (only) independent one, since their sum must
anish. Eq. (28) results to be the sum of two independent terms: the
olumetric and the deviatoric parts. The basis of the volumetric part
s obviously proportional to the identity tensor 𝑰 , whilst that of the
eviatoric part can only be proportional to the tensor itself.

=
𝐼1
3
𝑰 + 3

2
𝑙�̂�𝑑

t should be noted that, as in Case (i), it is still possible to demonstrate
hat

̂ = 𝑑�̂�
𝑑𝑻

o prove this result, let us compute the second invariant 𝐽2 of the
eviatoric tensor 𝒕 as a function of the principal component �̂�:

2 =
𝒕 ∶ 𝒕
2

=

(

�̂� − 𝐼1∕3
)2 + 2

(

𝜆II − 𝐼1∕3
)2

2
=

3
(

�̂� − 𝐼1∕3
)2

4
(31)

By differentiating this expression with respect to 𝑻 , one obtains
𝑑𝐽2
𝑑𝑻

= 𝒕 = 𝑻 −
𝐼1
3
𝑰 = 3

2

(

�̂� −
𝐼1
3

)(

𝑑�̂�
𝑑𝑻

− 1
3
𝑰
)

(32)

o that, solving for 𝑻 one obtains:

= 3
2

(

�̂� −
𝐼1
3

)

𝑑�̂�
𝑑𝑻

+ 1
2
(

𝐼1 − �̂�
)

𝑰

By equating this last expression with Eq. (28) and solving for �̂�4 one
obtains:

�̂� = 𝑑�̂�
𝑑𝑻

(33)

4 This can be done under the condition �̂� ≠ 𝐼1∕3 that, observing Eq. (31) is
equivalent to 𝐽 ≠ 0.
4

2

Case (iii): 𝜆I = 𝜆II = 𝜆III
Finally, let us consider the case of three coincident eigenvalues

𝜆 = 𝜆I = 𝜆II = 𝜆III. The tensor 𝑻 is purely volumetric in any reference
system. By observing that it results 𝑙𝑖 = 0 ∀𝑖 and 𝐼1 = 3𝜆, Eq. (29)
simply becomes

𝑻 = 𝜆𝑰 (34)

From Eq. (11) it results

𝑵 I = 𝑵 II = 𝑵 III =
1
3
𝑰

4. Computation the eigenbasis directly from the secular equation

Since the three eigenbasis are equal to the derivatives of its con-
jugate principal components with respect to the tensor 𝑻 , one can
determine them by simply differentiating Eqs. (6) with respect to 𝑻 .
Using the chain rule, one obtains:

𝑵 𝑖 =
𝑑𝜆𝑖
𝑑𝑻

= 1
3
𝑰 +

√

3
3

(

sin 𝛽𝑖
√

𝐽2

𝑑𝐽2
𝑑𝑻

+ 2𝐽2 cos 𝛽𝑖
𝑑𝜃
𝑑𝑻

)

where 𝛽I = 𝜃 + (2∕3)𝜋, 𝛽II = 𝜃, 𝛽III = 𝜃 − (2∕3)𝜋, and5

𝑑𝐽2
𝑑𝑻

= 𝒕

𝑑𝜃
𝑑𝑻

= 1
cos 3𝜃

(

sin 3𝜃
3

𝒕−1 −
√

3
6
√

𝐽2
𝑰 − sin 3𝜃

2𝐽2
𝒕

)

(36)

he computation of the spin of the eigenbasis, i.e. 𝑑𝑵 𝑖∕𝑑𝑻 is even more
iring.

A more elegant and simpler approach can be obtained by working
irectly on the secular Eq. (2). Each of the eigenvalues 𝜆𝑖 will satisfy
q. (2), i.e.

(𝑻 ) = 𝜆3𝑖 − 𝐼1𝜆
2
𝑖 + 𝐼2𝜆𝑖 − 𝐼3 = 0

et us observe that this nonlinear equation can be seen as an implicit
unction of the 𝑖th eigenvalue 𝜆𝑖 with respect to the tensor 𝑻 . Hence,
he derivative of 𝜆𝑖 with respect to 𝑻 can be obtained as the derivative
f the implicit function 𝑓 (𝑻 ). It must result

𝑑𝑓 (𝑻 ) =
[

(

3𝜆2𝑖 − 2𝐼1𝜆𝑖 + 𝐼2
) 𝑑𝜆𝑖
𝑑𝑻

− 𝑰𝜆2𝑖

+
(

𝐼1𝑰 − 𝑻
)

𝜆𝑖 + 𝐼3𝑻 −1] ∶ 𝑑𝑻 = 0 ∀ 𝑑𝑻

his implies the condition:

3𝜆2𝑖 − 2𝐼1𝜆𝑖 + 𝐼2
) 𝑑𝜆𝑖
𝑑𝑻

− 𝑰𝜆2𝑖 +
(

𝐼1𝑰 − 𝑻
)

𝜆𝑖 + 𝐼3𝑻 −1 = 0

The eigenbasis 𝑵 𝑖 can be obtained by simply solving this last equation
for 𝑑𝜆𝑖∕𝑑𝑻 . By observing that 𝐽2 = (1∕3)𝐼21 − 𝐼2, after some simple
algebraic manipulations, one obtains6:

𝑵 𝑖 =
𝑑𝜆𝑖
𝑑𝑻

=
𝜆𝑖

[(

𝜆𝑖 − 𝐼1
)

𝑰 + 𝑻
]

+ 𝐼3𝑻 −1

𝐽2
(

4 sin2 𝛽𝑖 − 1
)

(38)

5 It should be noted that Eq. (36) requires the computation of 𝒕−1. An
expression more suitable for the implementation, being undefined only for
𝐽2 = 0 or 𝜃 = ±𝜋∕6, is

𝑑𝜃
𝑑𝑻

= − 1
cos 3𝜃

⎛

⎜

⎜

⎜

⎝

√

3

2
√

𝐽 3
2

𝑑𝐽3
𝑑𝒕

+

√

3
6
√

𝐽2
𝑰 + sin 3𝜃

2𝐽2
𝒕
⎞

⎟

⎟

⎟

⎠

(35)

here, by using the Cayley–Hamilton theorem (see, e.g., Bertram, 2021):
𝑑𝐽3
𝑑𝒕

= adj (𝒕) = 𝒕𝒕 − 𝐽2𝑰

6 A very compact way to write this derivative is 𝐼3𝑻 −1. However, it should
be noted that this expression is not completely correct from a formal point of
view, since it is undefined when 𝐼3 = 0. The invariant 𝐼3, being defined as
det 𝑻 , is simply the adjugate matrix of 𝑻 , that is always defined. By using the
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The spin of the eigenbasis can be obtained by differentiating Eq. (38)
by the tensor 𝑻 . One obtains

𝑑𝑵 𝑖
𝑑𝑻

=
d2𝜆𝑖

d𝑻 ⊗ d𝑻 = 1
𝐽2

(

4 sin2 𝛽𝑖 − 1
)

[

−4
√

3𝐽2 sin 𝛽𝑖
(

𝑵 𝑖 ⊗𝑵 𝑖
)

+
(

2𝜆𝑖 − 𝐼1
) (

𝑵 𝑖 ⊗ 𝑰 + 𝑰 ⊗𝑵 𝑖
)

+
(

𝑵 𝑖 ⊗ 𝑻 + 𝑻 ⊗𝑵 𝑖
)

+ 𝜆𝑖 ( − 𝑰 ⊗ 𝑰) +
d2𝐼3

d𝑻 ⊗ d𝑻

]

(39)

here  is the fourth-order identity tensor, and (see e.g. Zienkiewicz
nd Taylor, 2013)

𝑑2𝐼3
𝑑𝑻 ⊗ 𝑑𝑻

)

𝑖𝑗𝑘𝑙
= 𝛿𝑗𝑘 (𝑻 )𝑖𝑙 + 𝛿𝑖𝑙 (𝑻 )𝑗𝑘

eing 𝛿𝑖𝑗 the Kroneker delta operator.
It should be noted that, whilst Sylvester’s formula given in Eq. (10)

annot be directly differentiated in the case of two coincident 𝜆𝑖, here,
he spin of the basis associated with the non-repeated eigenvalue �̂� can
till be computed using Eq. (39). It is the only spin required to compute
he derivative of Eq. (29). However, by exploiting the proportionality
etween the deviatoric part of the tensor and the basis itself, it can be
ore easily obtained by means of Eq. (30). As explained in the previous

ection, when all the eigenvalues coincide, the three eigenbasis 𝑵 𝑖 are
imply equal to 𝑰∕3. Their spin is not defined, but, as explained in the
ext section, it is still possible to evaluate the derivative of the spectral
epresentation of the tensor when its invariants are isotropic functions.

. Isotropic functions

In many mechanical applications it is a priori known that two
econd-order, symmetric tensors 𝑺 and 𝑻 share the same principal
irections. Under these conditions, the two tensors are called co-axial.
hese applications usually involve isotropic tensor functions, i.e., the

nvariants of the tensor 𝑻 are function of the those of the tensor 𝑺.
In these applications, once the principal components 𝜂𝑖 of the tensor

are computed as a function of those of 𝑻 , say 𝜆𝑖 it is finally required
o compute the Cartesian components of 𝑺.

Let 𝑺 be a symmetric, second-order tensor, co-axial with 𝑻 . Let us
ssume that the generic eigenvalues 𝜂𝑖(𝜆I, 𝜆II, 𝜆III) of 𝑺 can be computed
s a function of the eigenvalues 𝜆𝑖 of 𝑻 . Since 𝑺 and 𝑻 are co-axial, they
ill share the same eigenbasis 𝑵 𝑖 and it results

=
∑

𝜂𝑖(𝜆I, 𝜆II, 𝜆III)𝑵 𝑖 (40)

he derivative of this expression with respect to the tensor 𝑻 will be

𝑑𝑺
𝑑𝑻

=
3
∑

𝑖=1

(

𝜂𝑖
𝑑𝑵 𝑖
𝑑𝑻

+
3
∑

𝑗=1

𝜕𝜂𝑖
𝜕𝜆𝑗

𝑵 𝑖 ⊗𝑵 𝑗

)

(41)

Let us consider the case in which two eigenvalues 𝜆𝑖 of 𝑻 coincide. As
explained in the section above, under this condition it results that the
deviatoric part of 𝑺, say 𝒔, results to be proportional to the deviatoric
part of 𝑻 , say 𝒕. Hence, one can compute 𝑺 as

𝑺 =
𝐼1𝑆
3

𝑰 +
𝑞𝑆
𝑞𝑇

𝒕 (42)

Cayley–Hamilton theorem (see, e.g., Bertram, 2021), the adjugate matrix of 𝑻
can be expressed as:
𝑑𝐼3
𝑑𝑻

= adj (𝑻 ) = 𝑻 𝑻 − 𝐼1𝑻 + 𝐼2𝑰

q. (38) becomes

𝑖 =
𝑑𝜆𝑖
𝑑𝑻

=
𝜆𝑖
[(

𝜆𝑖 − 𝐼1
)

𝑰 + 𝑻
]

+
𝑑𝐼3
𝑑𝑻

𝐽2
(

4 sin2 𝛽𝑖 − 1
)

(37)
5

where 𝑞𝑇 =
√

(3∕2)𝒕 ∶ 𝒕, 𝐼1𝑆 = tr (𝑺) = 𝐼1𝑆 (𝐼1𝑇 , 𝑞𝑇 ) and 𝑞𝑆 =
√

(3∕2)𝒔 ∶ 𝒔 = 𝑞𝑆 (𝐼1𝑇 , 𝑞𝑇 ), and 𝐼1𝑇 = tr (𝑻 ) is the first invariant of 𝑻 .
Let us compute 𝑑𝑺∕𝑑𝑻 . It should be noted that, when the eigen-

values are repeated, the eigenbasis as well as the eigenvalues are
not differentiable, in spite of the differentiability of 𝑺. The derivative
𝑑𝑺∕𝑑𝑻 , in the case of repeated eigenvalues, is usually computed as
imit of Eq. (41), that require the employment of the de l’Hôpital rule
o be solved (see e.g. Ogden, 1984 and de Souza Neto, 2001). A simpler
rocedure, based on the proportionality between 𝒔 and 𝒕 in this special
ase, is here described. Let us observe that, being 𝒔 and 𝒕 proportional,
t must result

𝑆 = 𝜃𝑇

nd then
𝜕𝜃𝑆
𝜕𝜃𝑇

= 1

oreover, considering that Eq. (47) gives:

𝑆 (𝜃𝑆 ) =
3

√

−27
2

𝐽3𝑆
sin(3𝜃𝑆 )

it results

𝜕𝑞𝑆
𝜕𝜃𝑇

=
𝜕𝑞
𝜕𝜃𝑆

𝜕𝜃𝑆
𝜕𝜃𝑇

=
3 3
√

4
2

𝐽3𝑆 cos(3𝜃𝑆 )
3
√

sin2(3𝜃𝑆 )

3
√

𝐽 2
3𝑆 sin2(3𝜃𝑆 )

= 0 for 𝜃𝑆 = 𝜃𝑇 = ±𝜋
6

Analogously
𝜕𝐼1𝑆
𝜕𝜃𝑇

=
𝜕𝐼1𝑆
𝜕𝜃𝑆

𝜕𝜃𝑆
𝜕𝜃𝑇

= 0 ∀𝜃𝑇

Hence, observing that from Eq. (30) it results that
𝑑𝑞𝑇
𝑑𝑻

= 3
2𝑞𝑇

𝒕 = ∓3
2
�̂�𝑑 for 𝜃𝑇 = ±𝜋

6
(43)

by differentiating Eq. (42) with respect to 𝑻 one obtains:

𝑑𝑺
𝑑𝑻

= 1
3
𝜕𝐼1𝑆
𝜕𝐼1𝑇

𝑰 ⊗ 𝑰 ∓ 1
2
𝜕𝐼1𝑆
𝜕𝑞𝑇

𝑰 ⊗ �̂�𝑑 +
𝑞𝑆
𝑞𝑇

(

 − 1
3
𝑰 ⊗ 𝑰

)

+3
2

(

𝜕𝑞𝑆
𝜕𝑞𝑇

−
𝑞𝑆
𝑞𝑇

)

�̂�𝑑 ⊗ �̂�𝑑 ∓
𝜕𝑞𝑆
𝜕𝐼1𝑇

�̂�𝑑 ⊗ 𝑰 for 𝜃𝑇 = ±𝜋
6

(44)

where  is the fourth-order identity tensor.
Finally, when all the eigenvalues coincide, Eq. (42) reduces to:

𝑺 =
𝐼1𝑆
3

𝑰 (45)

whilst its derivative can be computed by particularizing Eq. (44). By
observing that when 𝒕 → 𝟎, 𝑵 𝑖 → 𝑰∕3, so that its deviatoric part
�̂�𝑑

→ 𝟎. Observing that 𝑞𝑆 → 0 when 𝑞𝑇 → 0, using a Taylor expansion
or 𝑞𝑇 → 0, it will result:

𝑆 (𝐼1𝑇 , 0) ≈
𝜕𝑞𝑆
𝜕𝑞𝑇

𝑞𝑇

o that 𝑞𝑆∕𝑞𝑇 → 𝜕𝑞𝑆∕𝜕𝑞𝑇 , and finally:

𝑑𝑺
𝑑𝑻

= 1
3
𝜕𝐼1𝑆
𝜕𝐼1𝑇

𝑰 ⊗ 𝑰 +
𝜕𝑞𝑆
𝜕𝑞𝑇

(

 − 1
3
𝑰 ⊗ 𝑰

)

(46)

6. Applications

6.1. Isotropic elastoplastic materials under small-strains and displacements

Let us consider a generic elastoplastic isotropic material, in which
the principal directions of the elastic strains and of the stress coincide.

Let us assume a backward Euler integration scheme in which the
solution is computed at discrete times. The increment that any variable
(⋅) takes when the pseudo-time 𝑡 passes from the beginning to the end of
a generic time interval [𝑡𝑛, 𝑡𝑛+1] will be indicated with 𝛥(⋅) = (⋅)𝑛+1−(⋅)𝑛,
whilst all the quantities, if not otherwise indicated, are referred to time

𝑡𝑛+1.
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At the time 𝑡𝑛 all the quantities are known. Let 𝛥𝜺 be the strain
tensor increment applied during the time interval [𝑡𝑛, 𝑡𝑛+1]. The solution
of the problem requires the computation at time 𝑡𝑛+1 of the stress
𝝈, of the plastic deformation tensor 𝜺𝑝, as well as of the constitutive
model’s state variables. In order to achieve quadratic convergence
on the structural Newton’s loop, also the consistent Jacobian Matrix
𝑑𝛥𝝈∕𝑑𝛥𝜺 must be computed.

Let 𝜺∗ = 𝜺𝑒𝑛 + 𝛥𝜺 be the elastic strain predictor, whilst 𝛥𝜺𝑝 is the
plastic strain increment, that can be computed as a function of an
isotropic plastic potential 𝑔(𝑝, 𝑞, 𝜃𝜎 ) as

𝛥𝜺𝑝 =
𝜕𝑔(𝑝, 𝑞, 𝜃𝜎 )

𝜕𝝈
𝛥𝛾

here 𝛥𝛾 is the plastic multiplier. Since 𝑔(𝑝, 𝑞, 𝜃𝜎 ) is an isotropic func-
tion of 𝝈, its derivative with respect to 𝝈 will be co-axial with the
stress (de Souza Neto et al., 2008; Panteghini and Lagioia, 2018). Then,
since the elastic strain 𝜺𝑒 is co-axial with 𝝈 because of the assumption
of isotropy, it results that also

𝜺∗ = 𝜺𝑒 + 𝛥𝜺𝑝

is co-axial with 𝝈. For these reasons, the principal directions of stress
are a priori known, being coincident with those of the predictor 𝜺∗. Let
∗ be the deviatoric part of the elastic predictor 𝜺∗, and

𝜀∗𝑣 = tr
(

𝜺∗
)

𝜀∗𝑞 =
√

2
3
𝒆∗ ∶ 𝒆∗

𝜃∗𝜀 = 1
3
arcsin

(

−4det 𝒆
∗

𝜀∗3𝑞

)

ts invariants, i.e. the volumetric strain predictor, the equivalent von
ises strain predictor, and the strain predictor Lode’s angle.

In general, if a standard return algorithm in the full tensorial space
s employed, numerical problems and convergence difficulties can arise
hen two or more eigenvalues coincide. Instead, the value of the
ydrostatic pressure 𝑝, the equivalent von Mises stress 𝑞, and the stress

Lode’s angle 𝜃𝜎 at the end of the increment , defined as

𝑝 = 1
3

tr (𝝈)

=
√

3
2
𝒔 ∶ 𝒔

𝜎 = 1
3
arcsin

(

−27
2

det 𝒔
𝑞3

)

(47)

can be more easily computed by formulating a return algorithm in the
invariants strain space (Panteghini and Lagioia, 2018). Once 𝑝, 𝑞 and 𝜃𝜎
have been obtained as a function of the strain invariant predictors 𝜀∗𝑣,
𝜀∗𝑞 and 𝜃∗𝜀 , it is necessary to compute the stress tensor 𝝈. Let us observe
that, because of the isotropy, as described above, the stress tensor 𝝈
results to be co-axial with the elastic trial 𝜺∗. Hence, if 𝜀∗𝑞 ≠ 0 and
|𝜃∗𝜀 | ≠ 𝜋∕6, one can compute the stress tensor from its invariants and
from the eigenbasis 𝑵∗

𝑖 of the elastic strain predictor 𝜺∗ by resorting to
the spectral theorem. It results

𝝈 =
∑

[

𝑝(𝜀∗𝑣 , 𝜀
∗
𝑞 , 𝜃

∗
𝜀 ) +

2
3
𝑞(𝜀∗𝑣 , 𝜀

∗
𝑞 , 𝜃

∗
𝜀 ) sin 𝛽𝑖(𝜀

∗
𝑣 , 𝜀

∗
𝑞 , 𝜃

∗
𝜀 )
]

𝑵∗
𝑖

here

𝛽I = 𝜃𝜎 (𝜀∗𝑣 , 𝜀
∗
𝑞 , 𝜃

∗
𝜀 ) +

2
3
𝜋

𝛽II = 𝜃𝜎 (𝜀∗𝑣 , 𝜀
∗
𝑞 , 𝜃

∗
𝜀 )

= 𝜃 (𝜀∗, 𝜀∗, 𝜃∗) − 2𝜋
6

III 𝜎 𝑣 𝑞 𝜀 3
and 𝑵∗
𝑖 is computed from Eq. (37) as a function of the invariants of 𝜺∗

and its principal components. The consistent jacobian matrix7 can be
omputed from Eq. (41) as

𝑑𝛥𝝈
𝑑𝛥𝜺

=
∑

[

𝑝 + 2
3
𝑞 sin 𝛽𝑖

] 𝑑𝑵∗
𝑖

𝑑𝜺∗
+𝑵∗

𝑖

⊗
{[

𝜕𝑝
𝜕𝜀∗𝑣

+ 2
3

(

𝜕𝑞
𝜕𝜀∗𝑣

sin 𝛽𝑖 + 𝑞
𝜕𝜃𝜎
𝜕𝜀∗𝑣

cos 𝛽𝑖

)]

𝑰

+ 2
3𝜀∗𝑞

[

𝜕𝑝
𝜕𝜀∗𝑞

+ 2
3

(

𝜕𝑞
𝜕𝜀∗𝑞

sin 𝛽𝑖 + 𝑞
𝜕𝜃𝜎
𝜕𝜀∗𝑞

cos 𝛽𝑖

)]

𝒆∗

+
[

𝜕𝑝
𝜕𝜃∗𝜀

+ 2
3

(

𝜕𝑞
𝜕𝜃∗𝜀

sin 𝛽𝑖 + 𝑞
𝜕𝜃𝜎
𝜕𝜃∗𝜀

cos 𝛽𝑖

)] 𝜕𝜃∗𝜀
𝜕𝜺∗

}

where the eigenbasis spin 𝑑𝑵∗
𝑖 ∕𝑑𝜺

∗ and 𝜕𝜃∗𝜀∕𝜕𝜺
∗ are computed as a

unction of the invariants and principal components of 𝜺∗ from Eqs. (35)
nd (39) respectively.

If 𝜀∗𝑞 is not nil, at least two eigenvalues of the strain predictor 𝜺∗

re distinct. Specifically, if 𝜃∗𝜀 = ±𝜋∕6, two eigenvalues of 𝜺∗ will be
oincident. In this case, from Eq. (30) it will result that 𝒆∗ will be
roportional to the deviatoric part of the eigenbasis associated with its
on-repeated eigenvalue. Hence, from Eq. (42) one simply obtains:

= 𝑝(𝜀∗𝑣 , 𝜀
∗
𝑞 , 𝜃

∗
𝜀 )𝑰 + 2

3𝜀∗𝑞
𝑞(𝜀∗𝑣 , 𝜀

∗
𝑞 , 𝜃

∗
𝜀 )𝒆

∗

lso the eigenbasis of the deviatoric part of the plastic strain increment
𝒆𝑝 and of the elastic strains will coincide with those of 𝒆∗, and then it
ill result:

𝜺𝑝 =
𝜀𝑝𝑣
3
𝑰 +

𝜀𝑝𝑞
𝜀∗𝑞

𝒆∗

𝜺𝑒 =
𝜀𝑒𝑣
3
𝑰 +

𝜀𝑒𝑞
𝜀∗𝑞

𝒆∗

The jacobian matrix can be obtained by simplifying Eq. (44) using
Eq. (30). It yields:

𝑑𝛥𝝈
𝑑𝛥𝜺

=
𝜕𝑝
𝜕𝜀∗𝑣

𝑰 ⊗ 𝑰 + 2
3𝜀∗𝑞

[

𝜕𝑝
𝜕𝜀∗𝑞

(

𝑰 ⊗ 𝒆∗
)

+
𝜕𝑞
𝜕𝜀∗𝑣

(

𝒆∗ ⊗ 𝑰
)

+ 2
3𝜀∗𝑞

(

𝜕𝑞
𝜕𝜀∗𝑞

−
𝑞
𝜀∗𝑞

)

(

𝒆∗ ⊗ 𝒆∗
)

+ 𝑞
(

 − 1
3
𝑰 ⊗ 𝑰

)

]

If 𝜀∗𝑞 is nil, the strain predictor 𝜺∗ will be a volumetric tensor, since its
pectral decomposition has the same structure of Eq. (34). Moreover,
∗
𝑞 = 0 implies 𝒆∗ = 𝟎. Since the material is isotropic, the eigenbasis

7 This general approach has been recently adopted by the Author in Pan-
eghini and Lagioia (2022), while in his older works (see, e.g., Panteghini and
agioia, 2014, 2018) in order to avoid the computation of the spin of the
igenbasis, the jacobian matrix was obtained by means of a ‘‘simplified’’ pro-
edure based on the inversion of a 6x6 matrix. Unfortunately, this procedure

is model-specific and requires the smoothness in the deviatoric plane of the
yield function and of the plastic potential.

Moreover, by employing the approach described in Panteghini and Lagioia
(2014, 2018), three different full tensorial jacobian matrices must be imple-
mented for a single constitutive model, as a function of the principal stress
multiplicity, with a consequent major complexity and increase in coding time.
The approach here described, instead, can be used for several constitutive
models (not necessarily smooth) in a Finite Element code, formulating the
return algorithm of each model only in the invariants space. Once the
invariants of the stress (and their derivatives, that can be computed a single
time even in the case of different eigenvalues multiplicity) are computed as a
function of the invariants of elastic predictors, one can obtain the stress tensor
and the consistent jacobian matrix by employing the generic subroutines that
compute the spectral representation and its derivatives. These subroutines,
being generic, can be used for several constitutive models, as well as for
computing the logarithmic strain and its derivatives in the case of large strains
framework.
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of 𝝈 and 𝜺∗ will be the same, resulting to be coincident with the
second-order identity tensor 𝑰 . Then, from Eq. (34) it will result

= 𝑝(𝜀∗𝑣)𝑰

The derivative of the eigenbasis is undefined. However, as ex-
lained in the section above, the Jacobian Matrix can be obtained as a
imit case of Eq. (44), i.e., using Eq. (46). Let us observe that, under
urely volumetric conditions, the convexity of the elastic potential
equires (Lagioia and Panteghini, 2019):
𝜕𝑝
𝜕𝜀∗𝑞

=
𝜕𝑞
𝜕𝜀∗𝑣

= 0

t results:
𝑑𝛥𝝈
𝑑𝛥𝜺

=
𝜕𝑝
𝜕𝜀∗𝑣

𝑰 ⊗ 𝑰 + 2
3

𝜕𝑞
𝜕𝜀∗𝑞

(

 − 1
3
𝑰 ⊗ 𝑰

)

6.2. Computation of logarithmic strain tensor from displacement gradient

In the framework of large strains and rotations, let 𝒑 denote the
reference coordinate system. Indicating with 𝒖(𝒑) the vector function
describing the displacement of each material point, it results that its
final position will be (i.g. de Souza Neto et al., 2008)

𝒙 = 𝒑 + 𝒖(𝒑)

The deformation gradient 𝑭 is defined as

𝑭 = ∇𝑝𝒙 = 𝑰 + ∇𝑝𝒖(𝒑)

By applying the polar decomposition (i.g. de Souza Neto et al., 2008) to
the deformation gradient 𝑭 , one obtains:

𝑭 = 𝑽 𝑹

where the orthogonal tensor 𝑹 describes the local rotation, whilst the
symmetric, positive definite tensor 𝑽 is the left stretch tensor, where

𝑽 2 = 𝑩 = 𝑭𝑭 𝑇

𝑩 being the left Cauchy–Green tensor. The logarithmic strain tensor can
be computed as:

𝜺 = ln𝑽 = 1
2
ln𝑩

i.e.,

𝜺 = 1
2
∑

ln
(

𝜆𝐵𝑖
)

𝑵𝐵
𝑖 (48)

where 𝜆𝐵𝑖 and 𝑵𝐵
𝑖 are the 𝑖−th principal component and eigenbasis of

he tensor 𝑩 respectively.
The invariants of 𝑩, 𝐼1𝐵 , 𝐽2𝐵 and 𝜃𝐵 can be computed using Eqs. (3),

7) and (8), whilst the principal components 𝜆𝐵𝑖 can be obtained using
qs. (6).

If 𝜆𝐵𝑖 are distinct, i.e., if 𝐽2𝐵 ≠ 0 and |𝜃𝐵| ≠ 𝜋∕6, all the eigenbasis
𝐵
𝑖 of the left Cauchy–Green tensor can be computed as a function of its

nvariants and its principal components using Eq. (37). The logarithmic
train tensor can be computed using Eq. (48). The jacobian matrix
𝜺∕𝑑𝑩 can be computed by using Eq. (41):

𝑑𝜺
𝑑𝑩

= 1
2
∑

[

ln
(

𝜆𝐵𝑖
) 𝑑𝑵𝐵

𝑖
𝑑𝑩

+ 1
𝜆𝐵𝑖

𝑵𝐵
𝑖 ⊗𝑵𝐵

𝑖

]

here 𝑑𝑵𝐵
𝑖 ∕𝑑𝑩 can be computed using Eq. (39).

When two principal components of 𝑩 are coincident, i.e. if 𝐽2𝐵 ≠ 0
nd |𝜃𝐵| = 𝜋∕6, one can compute 𝜺 by exploiting the proportionality
etween the deviatoric part 𝒃 of 𝑩 and 𝒆. Let us start by computing the
nvariants 𝑞𝜀 =

√

3𝐽2𝜀 and 𝐼1𝜀 of 𝜺 as a function of 𝑞𝐵 =
√

3𝐽2𝐵 and
1𝐵 . Let us observe that it results

= ±
(

𝜆𝐵 − �̂�𝐵
)

for 𝜃 = ±𝜋
7

𝐵 II 𝐵 6
By solving this expression for 𝜆𝐵II one obtains

𝜆𝐵II = �̂�𝐵 ± 𝑞𝐵 for 𝜃𝐵 = ±𝜋
6

(49)

Substituting this result into the definition of 𝐼1𝐵 = �̂�𝐵+2𝜆𝐵II and solving
for �̂�𝐵 gives

�̂�𝐵 =
𝐼1𝐵 ∓ 2𝑞𝐵

3
for 𝜃𝐵 = ±𝜋

6
By substituting this expression into Eq. (49) one obtains

𝜆𝐵II =
𝐼1𝐵 ± 𝑞𝐵

3
for 𝜃𝐵 = ±𝜋

6
One can now compute the invariants of 𝜺 as a function of those of 𝑩.
It results:

𝐼1𝜀 = �̂�𝜀 + 2𝜆𝜀II =
1
2

[

ln
(

𝐼1𝐵 ∓ 2𝑞𝐵
3

)

+ 2 ln
(

𝐼1𝐵 ± 𝑞𝐵
3

)]

,

𝑞𝜀 = ±
(

𝜆𝜀II − �̂�𝜀
)

= ±1
2
(

ln 𝜆𝐵II − ln �̂�𝐵
)

= ±1
2
ln
(

𝐼1𝐵 ± 𝑞𝐵
𝐼1𝐵 ∓ 2𝑞𝐵

)

for 𝜃𝜀 = 𝜃𝐵 = ±𝜋
6

(50)

The logarithmic strain tensor 𝜺 can be finally computed using Eq. (42).
It results:

𝜺 =
𝐼1𝜀
3

𝑰 +
𝑞𝜀
𝑞𝐵

𝒃

Its derivative can be obtained by applying Eq. (44). It results:

𝑑𝜺
𝑑𝑩

= 1
3
𝜕𝐼1𝜀
𝜕𝐼1𝐵

𝑰 ⊗ 𝑰 ∓ 1
2
𝜕𝐼1𝜀
𝜕𝑞𝐵

𝑰 ⊗ �̂�𝑑
𝐵 +

𝑞𝜀
𝑞𝐵

(

 − 1
3
𝑰 ⊗ 𝑰

)

+3
2

(

𝜕𝑞𝜀
𝜕𝑞𝐵

−
𝑞𝜀
𝑞𝐵

)

�̂�𝑑
𝐵 ⊗ �̂�𝑑

𝐵 ∓
𝜕𝑞𝜀
𝜕𝐼1𝐵

�̂�𝑑
𝐵 ⊗ 𝑰 for 𝜃𝜀 = 𝜃𝐵 = ±𝜋

6

where, from Eq. (30):

�̂�𝑑
𝐵 = ∓ 1

𝑞𝐵
𝒃 for 𝜃𝐵 = ±𝜋

6

and, by computing the derivatives of Eq. (50):
𝜕𝐼1𝜀
𝜕𝐼1𝐵

=
3(±𝑞𝐵 − 𝐼1𝐵)

(𝐼1𝐵 ± 𝑞𝐵)(±4𝑞𝐵 − 2𝐼1𝐵)
𝜕𝐼1𝜀
𝜕𝑞𝐵

=
3𝑞𝐵

(±2𝑞𝐵 − 𝐼1𝐵)(𝐼1𝐵 ± 𝑞𝐵)
𝜕𝑞𝜀
𝜕𝐼1𝐵

=
3𝑞𝐵

(𝐼1𝐵 ± 𝑞𝐵)(±4𝑞𝐵 − 2𝐼1𝐵)
𝜕𝑞𝜀
𝜕𝑞𝐵

= −
3𝐼1𝐵

(𝐼1𝐵 ± 𝑞𝐵)(±𝑞𝐵 − 2𝐼1𝐵)

for 𝜃𝜀 = 𝜃𝐵 = ±𝜋
6

(51)

Finally, if 𝐽2𝐵 = 0, then the logarithmic strain will be purely volumetric,
nd it will result 𝜆𝐵𝑖 = 𝜆𝐵 . Eqs. (50) become:

𝐼1𝜀 =
3
2
ln
(

𝐼1𝐵
3

)

= 3
2
ln 𝜆𝐵

𝑞𝜀 = 0
(52)

By applying Eq. (45) it will result:

𝜺 = 1
2
ln 𝜆𝐵𝑰

To compute the derivative of 𝜺 with respect to 𝑩, let us start substitut-
ing Eqs. (52) into Eqs. (51). It results:
𝜕𝐼1𝜀
𝜕𝐼1𝐵

= 3
2𝐼1𝐵

= 1
2𝜆𝐵

𝜕𝐼1𝜀
𝜕𝑞𝐵

=
𝜕𝑞𝜀
𝜕𝐼1𝐵

= 0

𝜕𝑞𝜀
𝜕𝑞𝐵

= 3
2𝐼1𝐵

= 1
2𝜆𝐵

By substituting these expressions into Eq. (46) one obtains:
𝑑𝜺 = 1 

𝑑𝑩 2𝜆𝐵
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7. Some notes about the numerical implementation

Let us observe that the correct determination of the eigenvalues
multiplicity is a key point in the proposed method. In the numerical
implementation, this can be problematic if direct checks of the values of
𝜆𝑖 or of the Lode’s angle 𝜃 are employed. As pointed out by Harari and

lbocher (2023), this issue is caused by an increase of floating point
rror for 𝜃 → ±𝜋∕6 related to the inverse sine function arcsin(𝑥), which

enters in Eq. (8). This function results to be numerically ill conditioned
for 𝑥 → ±1 because its derivative is unbounded.

The eigenvalues multiplicity can be accurately determined by check-
ing the value of 𝐽2 and of the argument of arcsin function in the Lode’s
angle definition (Eq. (8)). Hence:

• 𝜆I > 𝜆II > 𝜆III occurs when 𝐽2 ≠ 0 and −2𝐽2
√

𝐽2 < 3
√

3𝐽3 <
2𝐽2

√

𝐽2 (that is analytically equivalent to the condition 𝜃 ≠
±𝜋∕6);

• 𝜆I > 𝜆II = 𝜆III occurs when 𝐽2 ≠ 0 and 3
√

3𝐽3 = 2𝐽2
√

𝐽2
(equivalent to the condition 𝜃 = −𝜋∕6);

• 𝜆I = 𝜆II > 𝜆III occurs when 𝐽2 ≠ 0 and 3
√

3𝐽3 = −2𝐽2
√

𝐽2
(equivalent to the condition 𝜃 = 𝜋∕6);

• 𝜆I = 𝜆II = 𝜆III occurs when 𝐽2 = 0 (while 𝜃 is undefined).

Finally, it has been found that, in the case of non-repeated eigen-
values, the accuracy of the proposed method for the computation of
the spectral decomposition can be deeply improved by enforcing the
constraint given by Eq. (11) instead of computing the three eigenbasis
independently. In particular:

• if 𝜃 > 𝜋∕9, compute 𝑵 II and 𝑵 III from Eq. (37). Then,

𝑵 I = 𝑰 −𝑵 II −𝑵 III

• if −𝜋∕9 ≤ 𝜃 ≤ 𝜋∕9, compute 𝑵 I and 𝑵 III from Eq. (37). Then,

𝑵 II = 𝑰 −𝑵 I −𝑵 III

• if 𝜃 < −𝜋∕9, compute 𝑵 I and 𝑵 II from Eq. (37). Then,

𝑵 III = 𝑰 −𝑵 I −𝑵 II

Further improvements of the accuracy can be achieved by computing
the deviatoric invariants 𝐽2 and 𝜃, as well as the eigenvalues 𝜆𝑖, using
the more accurate expressions reported by Harari and Albocher (2023)
instead of Eqs. (7), (6) and (8) respectively.

8. A simple numerical benchmark

In order to study the numerical accuracy of the proposed method,
let us consider a simple benchmark. Let us observe that, given a generic
‘‘reference’’ deviatoric tensor 𝒕, one can compute its the eigenbasis and
eigenvalues. Hence, one can reconstruct a tensor �̃� using Eq. (9). Due
to the floating point errors introduced by the spectral decomposition of
𝒕, it results �̃� ≠ 𝒕. The relative error can be estimated as:

𝑒 =
|�̃� − 𝒕|
|𝒕|

n order to evaluate the accuracy of the proposed method in the whole
ange of the admissible values of the Lode’s angle 𝜃𝑇 , a discrete set

of reference deviatoric tensors 𝒕 are computed from their reference
rincipal components, that are functions of a given value of the invari-
nt 𝑞𝑇 and of the set of the Lode’s angle 𝜃𝑇 . Each ’’reference’’ generic

tensor 𝒕 is finally obtained by rotating the diagonal tensor containing
the reference principal components of 𝒕 using a given rotation matrix
𝑹, i.e.,

𝒕 = 𝑹
⎡

⎢

⎢

⎣

�̂�𝑇I 0 0
0 �̂�𝑇II 0
0 0 �̂�𝑇III

⎤

⎥

⎥

⎦

𝑹𝑇

where �̂�𝑇 = (2∕3)𝑞 sin
(

𝛽
)

.

8

𝑖 𝑇 𝑖 d
Fig. 1 shows the error 𝑒 as a function of the Lode’s angle 𝜃𝑇 ,
assuming 𝑞𝑇 = 100. and

𝑹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

1
2

√

2
2

−

√

2
2

√

2
2

0

−1
2

−1
2

√

2
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The Lode’s angle interval [−𝜋∕6, 𝜋∕6] has been subdivided into 105 in-
crements. The relative error has been compared with that obtained em-
ploying the SPRIND subroutine implemented in SIMULIA Abaqus (Das-
sault Systèmes, 2020), that computes the eigenvalues and the eigenvec-
tors of a second-order, symmetric tensor.8

Fig. 1a shows a comparison between the SPRIND subroutine and
the proposed approach, without enforcing the constraint given by
Eq. (11) (i.e., by individually computing each of the eigenbasis 𝑵 𝑖 from
Eq. (37)).

Fig. 1b reports the comparison between the SPRIND subroutine and
the proposed approach, by enforcing the constraint given by Eq. (11)
as described in Section 7. Also the results obtained by computing the
deviatoric invariants and the principal components following Harari
and Albocher (2023) are presented. As pointed out in the previous
section, in the case of non-repeated eigenvalues, the accuracy is deeply
improved by enforcing the constraint given by Eq. (11): the maximum
relative error results to be three orders of magnitude smaller than that
obtained using the SPRIND subroutine. Finally, Fig. 1b shows that,
when Eq. (11) is enforced, the accuracy of the proposed formulation is
almost constant in the whole interval of Lode’s angle 𝜃𝑇 . The SPRIND
subroutine, instead, results to be less accurate when 𝜃𝑇 → ±𝜋∕6.
Further improvements can be achieved by computing the invariants
and the principal components as a function of the discriminant of the
characteristic equation, as proposed by Harari and Albocher (2023).

The run time required to perform the benchmark (105 spectral de-
compositions) using the proposed formulation (and enforcing constraint
(11)) on a 2014 Laptop is equal to 0.02s, without employing any code
optimization or parallel coding. If the approach described in Harari
and Albocher (2023) is employed, the computational time is equal to
0.0216s. For comparison, the same benchmark run using the SPRIND
subroutine requires 0.019s.

9. Conclusions

The spectral representation of a symmetric, second-order tensor is
an important tool in many applications of computational mechanics.

While the computation of the eigenvalues of a symmetric, second-
order tensor is a relatively simple task, obtaining a closed-form ex-
pression for the eigenbasis is more complicate, especially when some
eigenvalue is repeated. Moreover, in many computational mechanics
applications, the derivative of the spectral representation is also re-
quired. The exact closed-form expressions available in the literature for
both the eigenbasis and their derivative are quite hard to implement
(see, e.g., de Souza Neto et al., 2008). For this reason, many Authors
suggest to resort to series expansions, that, however, are available
only for specific functions (see, e.g., de Souza Neto, 2001; Ortiz et al.,
2001) or require automatic differentiation techniques for a generic
function (Hudobivnik and Korelc, 2016).

These approximate techniques are hard to apply when the isotropic
tensor-valued functions are not known explicitly, such as, for instance,
in the numerical integration of elastoplastic isotropic constitutive laws
formulated in invariants space (Borja et al., 2003; Panteghini and
Lagioia, 2018, 2022).

8 Let us observe that this subroutine does not compute any tensorial
erivatives of the eigenvectors.
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Fig. 1. Relative error 𝑒 as a function of the Lode’s angle 𝜃𝑇 .
In this paper, starting from a incidental result reported by Ogden
(1984) working only in the case of not coincident eigenvalues, an exact,
simple and clear approach has been developed. Differently from that
described by Miehe (1993, 1998) no particular requirements about the
invertibility of the tensor, or its eigenvalues multiplicity are necessary.

Two applications have been presented: (i) the computation of stress
tensor and of the stiffness matrix in the case of the numerical inte-
gration of an elastoplastic isotropic material in the invariant stress
space, and (ii) the calculation of the logarithmic strain tensor from the
displacement gradient, as well as its derivative with respect to the left
Cauchy–Green tensor.

Finally, to show the numerical accuracy of the proposed formula-
tion, a simple numerical benchmark has been presented and discussed.
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