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A B S T R A C T

We provide analytical solutions for the full stress field of straight sandwich beams with identical skins subject
to linear elastic flexure governed by zigzag warping, where all layers obey Timoshenko’s kinematics. As a main
novelty, we make use of an equilibrium equation for the Cauchy continuum to recover of the through-the-
thickness normal stress component, 𝜎𝑦. The new estimates are accurate for a wide range of relative stiffness
between skins and core and suitable boundary conditions, as it can be demonstrated through the comparison
with detailed finite element simulations where the sandwich is modelled as a two-dimensional continuum.
As a main practical result concerned with the study of delamination, we find that at a core–skin interface
of a cantilever sandwich subjected to a uniformly distributed load, in a region close to the fully-clamped
cross-section, 𝜎𝑦 is a tensile stress of magnitude larger than that of the shear stress. On this basis, we infer
that the availability of good estimates for 𝜎𝑦, along with those for the longitudinal and shear stresses, may be
important for the accurate design of sandwich panels.
1. Introduction

We focus on the model for sandwich beams developed since the
pivotal contributions of Yu [1], Heller [2], and Krajcinovic [3,4],
whose main assumption is that both core and skins obey Timoshenko
kinematics. We call this model the Krajcinovic model because, to the
best of our knowledge, Krajcinovic [3] was the first one to establish a
way to provide general analytical solutions for the case here of interest,
that is the accurate evaluation of the linear elastic flexure of straight
sandwich beams with identical skins.

The Krajcinovic model, here summarised in Section 2, has been
shown to provide good analytical estimates not only in terms of dis-
placements, but also in terms of longitudinal and shear stress fields [5,
6]. This holds for a wide range of relative stiffness between core and
skins, where this parameter mainly depends on the elastic moduli and
the thicknesses of the layers [7]. The range of engineering adequacy
of Krajcinovic model even becomes extremely large if the boundary
conditions are applied in such a way as to avoid as much as possible
stress concentrations. Otherwise, dealing with ‘‘extreme’’ boundary
conditions, in general referring to forces applied on a single skin with
constraints applied on the opposite skins, may easily require more
complex higher-order theories involving soft cores, typically including
the midlayer through-the-thickness deformability [8–13]. Of course,
the more complex the theory the more difficult finding useful analytical
solutions.

E-mail address: lorenzo.bardella@ing.unibs.it.

Analytical solutions not only are very important in the optimal
design, but may also be one of the very few reliable tools under specific
circumstances, where otherwise powerful numerical methods fail. This
is for instance the case of the stress field in the sandwich region next
to a fully-clamped cross-section, where the displacement-based finite
element (FE) method cannot provide good results when modelling the
sandwich as a two-dimensional (2D) continuum [6,14,15].

By focusing on the through-the-thickness normal stress component
𝜎𝑦, this contribution complements our previous efforts [5,6] where we
provided analytical solutions for the longitudinal and shear stresses
within Krajcinovic theory. As presented in Section 3, we obtain 𝜎𝑦
by a double stress recovery. In fact, if one is strictly consistent with
the zigzag warping assumed by the theory, Krajcinovic model delivers
very accurate predictions of the longitudinal stress field only. Obtaining
accurate estimates for the shear stress 𝜏𝑥𝑦 requires one to resort to the
application of a Jourawski-like approach [16] to the longitudinal stress
𝜎𝑥 ensuing from the zigzag kinematics, which is actually equivalent to
integrate, with respect to the transverse axis 𝑦, the equilibrium equation
for the Cauchy continuum

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
𝜕𝑦

= 0 , (1)

along with averaging over the out-of-plane axis 𝑧. This first stress re-
covery has been adopted also in some numerical contributions [17,18],
vailable online 2 December 2023
263-8223/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.compstruct.2023.117754
Received 20 July 2023; Received in revised form 6 November 2023; Accepted 23 N
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ovember 2023

https://www.elsevier.com/locate/compstruct
http://www.elsevier.com/locate/compstruct
mailto:lorenzo.bardella@ing.unibs.it
https://doi.org/10.1016/j.compstruct.2023.117754
https://doi.org/10.1016/j.compstruct.2023.117754
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Composite Structures 329 (2024) 117754L. Bardella

t
𝑀
b
t

𝑀

𝑉

w
t
s
a
L
a

d
s
c
𝑀
B
V

t

𝛼

c

𝜙

𝜙

I
t
s

𝛼

c
g

where one has to take care of the required derivative of 𝜎𝑥 with respect
to the beam axis 𝑥, which leads to higher continuity conditions for the
functions adopted to approximate the primal fields.

In this investigation, we adopt a second stress recovery to determine
the through-the-thickness stress 𝜎𝑦, which is just indeterminate on the
basis of the kinematics assumed by Krajcinovic theory, totally disre-
garding the through-the-thickness normal deformation. To this purpose,
we consider the equilibrium equation for the Cauchy continuum
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

= 0 , (2)

where we plug the shear stress obtained from the first stress recovery.
Hence, this second stress recovery for 𝜎𝑦 relies on a stress field, i.e. 𝜏𝑥𝑦,
that has already been obtained by a recovery procedure. While there
is no problem in our analytical approach, numerical methods using
the foregoing double stress recovery have to deal with high continuity
conditions of the approximating functions, given that 𝜎𝑦 turns out to
depend on 𝜕2𝜎𝑥∕𝜕𝑥2. This numerical issue has been formerly dealt
with by Matsunaga [17] for laminated beams governed by a higher-
order shear deformation theory obtained by power series expansions of
the displacement components. In the case of laminated plates [17,19–
21] the through-the-thickness normal stress field is recovered after
two shear stress fields are obtained by two parallel stress recovery
procedures.

About the role played by 𝜎𝑦 in laminated beams, here we demon-
strate, through the cantilever benchmark of Section 4, that there are
important boundary value problems in which it may not be disre-
garded. In particular, we show that, even by subjecting the sandwich
to a uniform transverse pressure, at the interfaces between core and
skins 𝜎𝑦 may be a tensile stress of much larger magnitude than 𝜏𝑥𝑦,
thus being a possible source of delamination. Among the earlier studies
on the sandwich theory here adopted, Heller [2] already focused on
the interfacial stress, but by restricting attention to the shear stress
only. Very recently, the interfacial normal stress has been considered as
well [22], although in the context of a simpler structural model, where
the skins are rigid in shear, thus behaving as Euler–Bernoulli beams.
Here, we not only adopt the richer Krajcinovic model, but we provide
explicit analytical solutions for 𝜎𝑦 over the whole sandwich.

2. Summary of the Krajcinovic model

We adopt the notation and select the independent structural func-
tions as in [5,6] to describe the Krajcinovic model. The model relies
on the zigzag warping depicted in Fig. 1, where 𝑣(𝑥) is the transverse
displacement (directed as the 𝑦 axis, such as 𝑧 is the neutral axis), 𝑡
and 𝑐 are the thicknesses of skins and core, respectively, 𝜙𝑐 (𝑥) and
𝜙𝑠(𝑥) are the rotations of the core and skin cross-sections, respectively.
Instead of 𝜙𝑐 (𝑥) and 𝜙𝑠(𝑥), for the independent structural variables,
Krajcinovic selected a mean rotation of the whole cross-section and a
warping function associated with null bending moment. This allowed
Krajcinovic to devise a way to analytically integrate the three Euler–
Lagrange equations governing the problem. The description of the
zigzag warping of Fig. 1, which is inspired by the earlier models of
Allen [23], has instead the advantage to turn out to naturally display,
as static quantities, the bending moments related to 𝜙𝑠(𝑥) and 𝜙𝑐 (𝑥),
along with their derivatives with respect to the beam axis, which result
to be the shear forces developed by the skins and the core.

The considered Krajcinovic model disregards the through-the-
thickness strain 𝜀𝑦, such as the stress component 𝜎𝑦 remains indeter-
minate if computed consistently with the assumed kinematics.

In sandwich beams, the ratios

𝜖 = 𝑡
𝑐
, 𝑛 =

𝐸𝑠
𝐸𝑐

, 𝜑 =
𝐺𝑠
𝐺𝑐

(3)

are particularly relevant to select the most appropriate model for a
specific problem [7]. In Eq. (3) 𝐸 and 𝐺 are the longitudinal modulus
and the shear modulus in the 𝑥𝑦 plane, respectively, where the indices
2

F

𝑐 and 𝑠 denote their values assumed in the core and in the skins,
respectively. Differently from other models for sandwich panels [23],
Krajcinovic theory does not impose any particular restriction on the
parameters that define the relative stiffness between skins and core, the
latter governing the sandwich flexure. Therefore, the application of
Krajcinovic theory is not limited to thin skins (i.e. 𝜖 sufficiently close to
zero), nor to antiplane sandwiches (i.e. 𝑛→ ∞).

By following [5] and the warping description of Fig. 1, the balance
equations governing Krajcinovic model read

𝑉 ′(𝑥) = −𝑞(𝑥) , 𝑀 ′
𝑐 (𝑥) = 𝑉𝑐 (𝑥) , 𝑀 ′

𝑠(𝑥) = 𝑉𝑠(𝑥) , (4)

in which ′ denotes the derivative with respect to 𝑥, 𝑞(𝑥) is the dis-
ributed transverse load (acting along the 𝑦 direction) and 𝑀(𝑥) =
𝑠(𝑥) + 𝑀𝑐 (𝑥) and 𝑉 (𝑥) = 𝑉𝑠(𝑥) + 𝑉𝑐 (𝑥) are, respectively, the total

ending moment and the total shear force, whose contributions result
o be defined by the structural constitutive equations

𝑐 = −
𝐸𝑠𝑏𝑡𝑐
2

(𝑐𝜙′
𝑐+𝑡𝜙

′
𝑠)−

𝐸𝑐𝑏𝑐3

12
𝜙′
𝑐 , 𝑀𝑠 = −

𝐸𝑠𝑏𝑡3

6
𝜙′
𝑠−
𝐸𝑠𝑏𝑡2

2
(𝑐𝜙′

𝑐+𝑡𝜙
′
𝑠) ,

(5)

𝑐 = 𝐺𝑐𝑏𝑐(𝑣′ − 𝜙𝑐 ) , 𝑉𝑠 = 2𝐺𝑠𝑏𝑡(𝑣′ − 𝜙𝑠) , (6)

here 𝑏 is the sandwich width. While 𝑉𝑐 and 𝑉𝑠 are the contributions
o the shear force acting in the core and in the skins, respectively, a
imilar connection does not hold for the moments 𝑀𝑐 and 𝑀𝑠, which
re conjugated to the variations of 𝜙𝑐 and 𝜙𝑠.1 The three coupled Euler–
agrange equations governing the theory, to be solved for 𝑣(𝑥), 𝜙𝑐 (𝑥),
nd 𝜙𝑠(𝑥), are obtained by substituting Eqs. (5) and (6) into Eq. (4).

Let us remark that the natural boundary conditions leave the free-
om to separately specify 𝑀𝑠 and 𝑀𝑐 as related to 𝜙𝑠 and 𝜙𝑐 , re-
pectively. Hence, the same bending moment 𝑀 results from any
ombination of 𝑀𝑠 and 𝑀𝑐 such that 𝑀 = 𝑀𝑠 +𝑀𝑐 , each choice of
𝑠 and 𝑀𝑐 corresponding to a different solution in terms of stresses.

ecause of this fundamental reason, this model is not ‘‘à la De Saint
enant’’ [7].

The Krajcinovic solution, as a first step, requires the integration of
he differential equation

d6𝑓 (𝜉)
d𝜉6

− 𝑘2
d4𝑓 (𝜉)

d𝜉4
= −

𝛽2𝐿6

𝛽1𝛼2
𝑞(𝜉) (7)

to determine the auxiliary structural function 𝑓 (𝑥). In Eq. (7), 𝐿 is the
beam length,

𝜉 = 𝑥
𝐿

(8)

is the non-dimensional coordinate along the beam axis, and 𝑘, 𝛽1, 𝛽2,
2 are constant coefficients conveniently provided below.

Once 𝑓 (𝑥) is known, the structural functions can be obtained, by
ombining the relations presented in [3,5], leading to

𝑐 (𝜉) =
(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

)

1
𝐿3

d3𝑓 (𝜉)
d𝜉3

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

1
𝐿

d𝑓 (𝜉)
d𝜉 , (9)

𝑠(𝜉) = −
(

𝑐(1 + 𝑚)
2

+
𝛽1𝛼2
𝛽2𝛼1

)

1
𝐿3

d3𝑓 (𝜉)
d𝜉3

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

1
𝐿

d𝑓 (𝜉)
d𝜉 , (10)

𝑣(𝜉) =
𝛼2
𝛽2

1
𝐿4

d4𝑓 (𝜉)
d𝜉4

−
(

𝛽3+𝛽1
𝛼2
𝛼1

)

1
𝛽2

1
𝐿2

d2𝑓 (𝜉)
d𝜉2

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

𝑓 (𝜉) . (11)

n Eqs. (7), (9), (10), and (11), the coefficients 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛽3, 𝑚, 𝑘
urn out to depend on the heterogeneity coefficients (3) and on other
andwich parameters as

1 =
𝑏𝑐3𝐸𝑐
12

𝜔1 , 𝛼2 =
𝑏𝑐5𝐸𝑐
12

(

2 + 3𝑛𝜖(1 + 𝜔1)
𝑛(3 + 4𝜖)2

+ 𝜖
)

𝜖 ,

1 The variational relation between the moments and the layers’ rotations
an be clearly seen by minimising the Total Potential Energy functional
overning the Krajcinovic theory written in terms of the kinematics in
ig. 1 [5].
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Fig. 1. Zigzag kinematics for a sandwich beam with identical skins. Taken from [6].
w
t
o

r
z
E
𝜏

e
o

𝜎

1 = 𝑏𝑐𝐺𝑐 (1 + 2𝜑𝜖) , 𝛽2 = 𝑏𝑐2𝐺𝑐

(

𝜑𝜔2
𝑛(3 + 4𝜖)

− 𝜖
)

,

𝛽3 = 𝑏𝑐3𝐺𝑐

( 𝜑𝜔2
2

2𝑛2𝜖(3 + 4𝜖)2
+ 𝜖2

)

,

𝑚 =
1 + 𝑛𝜖(3 + 2𝜖)
𝑛𝜖(3 + 4𝜖)

, 𝑘 =

√

(𝛽1𝛽3 − 𝛽22 )𝐿
2

𝛽1𝛼2
, (12)

where

𝜔1 = 1 + 2𝑛𝜖(3 + 6𝜖 + 4𝜖2) , 𝜔2 = 1 + 6𝑛𝜖 + 6𝑛𝜖2.

Let us mention that the coefficient 𝑚 in Eq. (12) enters the warping
shape function deduced by Krajcinovic in order to find a way to
analytically integrate the Euler–Lagrange governing equations [3].

3. The full stress field: analytical expression for the through-the-
thickness normal stress via double stress recovery

In the absence of issues concerned with severe boundary condi-
ions [13] and soft cores [9,11], the normal longitudinal stress is
ccurate if computed consistently with the assumed zigzag kinematics
n Krajcinovic theory [5,6], and reads

𝑥(𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

−𝐸𝑠
[

𝜙′
𝑐 (𝑥)

𝑐
2

sgn(𝑦) + 𝜙′
𝑠(𝑥)

(

𝑦 − 𝑐
2

sgn(𝑦)
)]

if 𝑦 ∈ 𝐴𝑠

−𝐸𝑐𝜙′
𝑐 (𝑥)𝑦 if 𝑦 ∈ 𝐴𝑐

(13)

where 𝐴𝑠 and 𝐴𝑐 are the sandwich domains occupied by the skins and
the core, respectively.
3

For what concerns the other stress components, consistently with
the kinematics, one has the following piecewise uniform shear stress

𝜏uni𝑥𝑦 (𝑥) =
{

𝐺𝑠[𝑣′(𝑥) − 𝜙𝑠(𝑥)] if 𝑦 ∈ 𝐴𝑠
𝐺𝑐 [𝑣′(𝑥) − 𝜙𝑐 (𝑥)] if 𝑦 ∈ 𝐴𝑐

(14)

hich obviously violates equilibrium at the interfaces, whereas the
hrough-the-thickness normal stress 𝜎𝑦 is even indeterminate because
f the assumed rigidity of the cross-section along the 𝑦 axis.

Estimate (14) can be largely improved as proposed in [5], by
esorting to the application of the Jourawski approach [16] to the
igzag kinematics, that is the first the stress recovery discussed about
q. (1). Hence, the average over the beam width 𝑏 of the shear stress
𝑥𝑦(𝑥, 𝑦, 𝑧), relying on the zigzag kinematics, reads [5]

𝜏zz𝑥𝑦 (𝑥, 𝑦)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑠
{

𝜙′′
𝑠 (𝑥)

1
2

[(

|𝑦| − 𝑐
2

)2
− 𝑡2

]

− 𝜙′′
𝑐 (𝑥)

𝑐
2

( 𝑐
2
+ 𝑡 − |𝑦|

)}

if 𝑦 ∈ 𝐴𝑠

𝐸𝑐𝜙′′
𝑐 (𝑥)

1
2

(

𝑦2 − 𝑐2

4

)

−𝐸𝑠
𝑡
2
[𝜙′′
𝑠 (𝑥)𝑡 + 𝜙

′′
𝑐 (𝑥)𝑐]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜏int𝑥𝑦 (𝑥)

if 𝑦 ∈ 𝐴𝑐

(15)

where 𝜏int𝑥𝑦 (𝑥) = 𝜏zz𝑥𝑦 (𝑥, 𝑦 = |𝑐∕2|) is the interfacial shear stress.
As a main novelty of this investigation, we follow a second stress re-

covery procedure to determine 𝜎𝑦 by substituting Eq. (15) into Eq. (2).
By also assuming, for simplicity, that the transverse load 𝑞(𝑥) is applied
ither at 𝑦 = −𝑡−𝑐∕2 or at 𝑦 = 𝑡+𝑐∕2 (or even split in two contributions
n these two external boundaries), one can estimate

rec
𝑦 (𝑥, 𝑦) = 𝜎𝑦(𝑥,−𝑡 − 𝑐∕2) −

𝑦 𝜕𝜏zz𝑥𝑦 (𝑥, 𝑦
∗)

d𝑦∗ . (16)
∫−𝑡−𝑐∕2 𝜕𝑥
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Then, for the three sandwich layers, we obtain

𝜎rec𝑦 (𝑥, 𝑦) = 𝜎𝑦(𝑥,−𝑡 − 𝑐∕2)

+𝐸𝑠
{

𝜙′′′
𝑠 (𝑥) 1

2

[

𝑡2
(

𝑦 + 𝑐
2
+ 2𝑡

3

)

− 1
3

(

𝑦 + 𝑐
2

)3]

+𝜙′′′
𝑐 (𝑥) 𝑐

2

[

𝑦
( 𝑐
2
+ 𝑡 +

𝑦
2

)

+ 1
2

( 𝑐
2
+ 𝑡

)2]}
,

for 𝑦 ∈ [−𝑡 − 𝑐∕2,−𝑐∕2] , (17a)

𝜎rec𝑦 (𝑥, 𝑦) = 𝜎rec𝑦 (𝑥,−𝑐∕2) + 𝐸𝑐𝜙′′′
𝑐 (𝑥) 1

2

( 𝑐2𝑦
4

−
𝑦3

3
+ 𝑐3

12

)

+𝐸𝑠
𝑡
2

(

𝑦 + 𝑐
2

)

[𝜙′′′
𝑠 (𝑥)𝑡 + 𝜙′′′

𝑐 (𝑥)𝑐] ,

for 𝑦 ∈ [−𝑐∕2, 𝑐∕2] , (17b)

𝜎rec𝑦 (𝑥, 𝑦) = 𝜎rec𝑦 (𝑥, 𝑐∕2) + 𝐸𝑠
{

𝜙′′′
𝑠 (𝑥) 1

2

[

𝑡2
(

𝑦 − 𝑐
2

)

− 1
3

(

𝑦 − 𝑐
2

)3]

+𝜙′′′
𝑐 (𝑥) 𝑐

2

[

𝑦
( 𝑐
2
+ 𝑡 −

𝑦
2

)

− 𝑐
2

( 𝑐
4
+ 𝑡

)]}

for 𝑦 ∈ [𝑐∕2, 𝑡 + 𝑐∕2] . (17c)

In the above relations 𝜎𝑦(𝑥,−𝑡 − 𝑐∕2) is a known value, while, by
evaluating (17a) at 𝑦 = −𝑐∕2, (17b) at 𝑦 = 𝑐∕2, and (17c) at 𝑦 = 𝑡+ 𝑐∕2,
t results

rec
𝑦 (𝑥,−𝑐∕2) = 𝜎𝑦(𝑥,−𝑡 − 𝑐∕2) + 𝐸𝑠

(

𝜙′′′
𝑠 (𝑥) 𝑡

3

3
+ 𝜙′′′

𝑐 (𝑥) 𝑐𝑡
2

4

)

, (18)

rec
𝑦 (𝑥, 𝑐∕2) = 𝜎rec𝑦 (𝑥,−𝑐∕2)+𝐸𝑐𝜙′′′

𝑐 (𝑥) 𝑐
3

12
+𝐸𝑠

𝑡𝑐
2
[𝜙′′′
𝑠 (𝑥)𝑡+𝜙′′′

𝑐 (𝑥)𝑐] , (19)

𝜎rec𝑦 (𝑥, 𝑡 + 𝑐∕2) = 𝜎rec𝑦 (𝑥, 𝑐∕2) + 𝐸𝑠
(

𝜙′′′
𝑠 (𝑥) 𝑡

3

3
+ 𝜙′′′

𝑐 (𝑥) 𝑐𝑡
2

4

)

. (20)

Hence, from the equilibrium of the forces along the 𝑦 direction for each
layer, we deduce

𝐸𝑠
(

𝜙′′′
𝑠 (𝑥) 𝑡

3

3
+ 𝜙′′′

𝑐 (𝑥) 𝑐𝑡
2

4

)

= −
𝑉 ′
𝑠

2𝑏
, (21)

𝑐𝜙
′′′
𝑐 (𝑥) 𝑐

3

12
+ 𝐸𝑠

𝑡𝑐
2
[𝜙′′′
𝑠 (𝑥)𝑡 + 𝜙′′′

𝑐 (𝑥)𝑐] = −
𝑉 ′
𝑐
𝑏
, (22)

hich perfectly agree with the expressions that one can obtain by
eriving the second and third relations of Eq. (4) and substituting in the
btained relations the definitions of the bending moments in Eq. (5).
his check shows that the double stress recovery provides interfacial
𝑦 that can be obtained also by imposing the equilibrium on the free-
ody diagram of the layer elements, which delivers balance equations
quivalent to those obtained by minimising the Total Potential Energy
overning the problem [3,5,22]. However, the double stress recovery
rovides the 𝜎𝑦 field all over the sandwich, which is worth to be
xplored. In particular, on the neutral axis we obtain

rec
𝑦 (𝑥, 0) = 𝜎rec𝑦 (𝑥,−𝑐∕2) + 𝐸𝑐𝜙′′′

𝑐 (𝑥) 𝑐
3

24
+ 𝐸𝑠

𝑡𝑐
4
[𝜙′′′
𝑠 (𝑥)𝑡 + 𝜙′′′

𝑐 (𝑥)𝑐] .

By setting 𝑡 = 0, we particularise Eq. (17b) to a homogeneous beam
with rectangular cross-section of height 𝑐, thus obtaining

𝜎rec𝑦 (𝑥, 𝑦) = 𝜎rec𝑦 (𝑥,−𝑐∕2) + 𝐸𝑐𝜙′′′
𝑐 (𝑥) 1

2

( 𝑐2𝑦
4

−
𝑦3

3
+ 𝑐3

12

)

= 𝜎rec𝑦 (𝑥,−𝑐∕2) +
𝑞(𝑥)
𝑏

( 3𝑦
2𝑐

−
2𝑦3

𝑐3
+ 1

2

)

.

his result shows that on the neutral axis the through-the-thickness
tress on the top surface is varied by half of the applied load only.
oreover, if 𝑞(𝑥) is applied as a compressive load on the top surface,

ne has

rec
𝑦 (𝑥, 𝑦) = −

𝑞(𝑥)
𝑏

+
𝑞(𝑥)
𝑏

( 3𝑦
2𝑐

−
2𝑦3

𝑐3
+ 1

2

)

,

hich correctly vanishes at 𝑦 = 𝑐∕2. As expected and well-known in
lassical structural mechanics, this component of stress is negligible
n homogeneous beams, consistently with 𝜎 ∕𝜎 ∼ (𝐿∕𝑐)2. Hence, the
4

𝑥 𝑦
ain point of this investigation is to demonstrate that this may not be
he case in laminated structures. In other words, it would be sufficient
o show that the contribution 𝑉 ′

𝑠 ∕(2𝑏) in Eq. (21) can be large enough
to require the evaluation of 𝜎𝑦 for a thorough analysis of the stress state
in sandwich panels.

In particular, when one has to apply an appropriate criterion to
establish whether delamination may occur, 𝜎𝑦 should be accounted for
if it is on the order of magnitude of the shear stress at the interfaces,
that is the ratio

𝜏int𝑥𝑦 (𝑥)

𝜎rec𝑦 (𝑥,−𝑐∕2)
=

−𝐸𝑠
𝑡
2
[𝜙′′

𝑠 (𝑥)𝑡 + 𝜙
′′
𝑐 (𝑥)𝑐]

𝜎𝑦(𝑥,−𝑡 − 𝑐∕2) −
𝑉 ′
𝑠

2𝑏

=
𝜙′′
𝑠 (𝑥)𝑡 + 𝜙

′′
𝑐 (𝑥)𝑐

2𝑞(𝑥)
𝐸𝑠𝑡𝑏

− 𝜙′′′
𝑠 (𝑥) 2𝑡

2

3
− 𝜙′′′

𝑐 (𝑥) 𝑐𝑡
2

,

btained from Eqs. (15) and (21), should, in modulus, not be much
arger than 1. In Section 4 we will show that this is surely the case,
s 𝜎rec𝑦 (𝑥,−𝑐∕2) may even be a tensile stress significantly larger than
𝜏int𝑥𝑦 (𝑥). This is of course a further interesting effect due to the hetero-
geneity of laminated structures. With this goal in mind, we also provide
general relations for the interfacial shear stress, which can be easily
obtained from the relations presented in [5,6]. Note that, differently
from 𝜎𝑦, in Krajcinovic model the shear stress at the two interfaces is
identical. From Eqs. (15), (9), and (10) we obtain

𝜏int𝑥𝑦 (𝑥) = −𝐸𝑠
𝑡
2

{[

−𝑡
( 𝑐(1 + 𝑚)

2
+
𝛽1𝛼2
𝛽2𝛼1

)

+ 𝑐
(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

)] 1
𝐿5

d5𝑓 (𝜉)
d𝜉5

+ (𝑡 + 𝑐)
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

1
𝐿3

d3𝑓 (𝜉)
d𝜉3

}

. (23)

The evaluation of 𝜎𝑦 at the interfaces basically corresponds to evaluate
𝑉 ′
𝑠 ∕(2𝑏) in Eq. (21). From Eqs. (9) and (10), we obtain

𝜙′′′
𝑐 =

(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

) 1
𝐿6

d6𝑓 (𝜉)
d𝜉6

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

1
𝐿4

d4𝑓 (𝜉)
d𝜉4

, (24)

𝜙′′′
𝑠 = −

( 𝑐(1 + 𝑚)
2

+
𝛽1𝛼2
𝛽2𝛼1

) 1
𝐿6

d6𝑓 (𝜉)
d𝜉6

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

1
𝐿4

d4𝑓 (𝜉)
d𝜉4

, (25)

which, if substituted in Eq. (21), deliver

−
𝑉 ′
𝑠

2𝑏
= 𝐸𝑠𝑡

2
{[

−
𝛽1𝛼2
𝛽2𝛼1

( 𝑡
3
+ 𝑐

4

)

−
𝑐𝑡(1 + 𝑚)

6
+ 𝑐𝑡

4

] 1
𝐿6

d6𝑓 (𝜉)
d𝜉6

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

( 𝑡
3
+ 𝑐

4

) 1
𝐿4

d4𝑓 (𝜉)
d𝜉4

}

. (26)

Before delving into the numerical results, we provide relations that
focus on the important case of a uniform transverse load 𝑞.

3.1. Particularisation to the case of uniform load

For a uniform transverse load 𝑞, the general solution of Krajcinovic
ifferential Eq. (7) reads

(𝜉) = 𝐶1 sinh(𝑘𝜉) + 𝐶2 cosh(𝑘𝜉) + 𝐶0𝜉
4 + 𝐶3𝜉

3 + 𝐶4𝜉
2 + 𝐶5𝜉 + 𝐶6 , (27)

where

𝐶0 =
𝛽2𝑞𝐿4

24(𝛽1𝛽3 − 𝛽22 )
=

𝑞𝐿4

12𝑏𝑐2𝐺𝑐

𝑛𝜖(3 + 4𝜖)[𝜑𝜔2 − 𝑛𝜖(3 + 4𝜖)]
𝜑𝜔2

1

(28)

nd the integration constants 𝐶𝑖 with 𝑖 = 1,… , 6 must be determined by
mposing the essential and natural boundary conditions of the boundary
alue problem considered [4–6].

By substituting Eqs. (27) and (28) into Eqs. (23) and (26), we obtain

𝜏int𝑥𝑦 = −𝐸𝑠
𝑡
2

{

6(𝑡 + 𝑐)
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

𝑘3

𝐿3
[4𝐶0𝜉 + 𝐶3]

+ [𝐶1 cosh(𝑘𝜉) + 𝐶2 sinh(𝑘𝜉)]

×
{[

−𝑡
( 𝑐(1 + 𝑚)

2
+
𝛽1𝛼2
𝛽2𝛼1

)

+ 𝑐
(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

)] 𝑘5

𝐿5

+ (𝑡 + 𝑐)
𝛽1𝛽3 − 𝛽22 𝑘3 }

}

, (29)

𝛼1𝛽2 𝐿3
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𝐶
b

𝑣

T

−

r

𝐷

4

q

𝑛

(

a
s
c

4

A
w
C
t
F
𝑦
a

d
(

−
𝑉 ′
𝑠

2𝑏
=

𝑞
𝛼1

( 𝑡
3
+ 𝑐

4

)

+ [𝐶1 sinh(𝑘𝜉) + 𝐶2 cosh(𝑘𝜉)]

×𝐸𝑠𝑡2
{[

−
𝛽1𝛼2
𝛽2𝛼1

( 𝑡
3
+ 𝑐

4

)

−
𝑐𝑡(1 + 𝑚)

6
+ 𝑐𝑡

4

] 𝑘6

𝐿6

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

( 𝑡
3
+ 𝑐

4

) 𝑘4

𝐿4

}

. (30)

The application of Eqs. (29) and (30) to various benchmarks, corrobo-
rated with the results of accurate FE analyses in which the sandwich
is modelled as a 2D plane-stress continuum, has shown that a very
interesting boundary value problem is that of the cantilever beam,
where 𝜎𝑦 may play a very important role. This does not seem to be
the case, for instance, in the propped-cantilever and simply-supported
beams, although there might be room for different conclusions for
sandwich parameters outside the ranges that we have explored in our
preliminary analyses. In the following we deal with the cantilever case,
while in Appendix A we provide the analytical results for the simply-
supported sandwich beam and skip other boundary value problems for
the sake of brevity.

4. Cantilever sandwich subjected to uniform transverse load

With the fully-clamped section at 𝑥 = 0, the integration constants
𝑖 with 𝑖 = 1,… , 6 in Eq. (27) are obtained by imposing the essential
oundary conditions

(𝜉 = 0) = 0 , 𝜙𝑐 (𝜉 = 0) = 0 , 𝜙𝑠(𝜉 = 0) = 0 ,

along the natural boundary conditions 𝑉 (𝜉 = 1) = 0, 𝑀𝑐 (𝜉 = 1) = 0,
𝑀𝑠(𝜉 = 1) = 0, corresponding to

𝑣′(𝜉 = 1) − 𝜙𝑐 (𝜉 = 1) + 2𝜑𝜖[𝑣′(𝜉 = 1) − 𝜙𝑠(𝜉 = 1)] = 0 ,

𝜙′
𝑐 (𝜉 = 1) = 0 , 𝜙′

𝑠(𝜉 = 1) = 0 .

Solving the system results in the expression for the Krajcinovic auxiliary
function [6]

𝑓 (𝜉) =
24𝐶0

𝑘4
𝑘(e−𝑘(2−𝜉) − e−𝑘𝜉 ) − e−𝑘(1−𝜉) − e−𝑘(1+𝜉)

1 + e−2𝑘

+𝐶0𝜉
4 − 4𝐶0𝜉

3 +
6𝐶0

𝑘2
(𝑘2 + 2)𝜉2

−
24𝐶0

𝑘2
𝜉 + 12𝐶0

(

1
𝑘2

+
𝛼1𝛽3
𝑘2𝛼2𝛽1

+ 2
𝑘4

+
2𝛼1𝛽22
𝑘4𝛼2𝛽21

1 − 𝑘 + (1 + 𝑘)e−2𝑘 − 2e−𝑘

1 + e−2𝑘

)

. (31)

hen, by using Eqs. (23), (26), (28), and (31), we obtain

𝜏int𝑥𝑦 (𝜉) = −𝐸𝑠
𝑡
2

{

{ [

−𝑡
( 𝑐(1 + 𝑚)

2
+
𝛽1𝛼2
𝛽2𝛼1

)

+ 𝑐
(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

)] 𝑘2

𝐿5

+ (𝑡 + 𝑐)
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2𝐿3

} 24𝐶0

𝑘
𝑘(e−𝑘(2−𝜉) + e−𝑘𝜉) − e−𝑘(1−𝜉) + e−𝑘(1+𝜉)

1 + e−2𝑘

+24𝐶0(𝜉 − 1)(𝑡 + 𝑐)
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2𝐿3

}

= −𝑞𝐸𝑠
𝑡
2
𝐿
[ 1 − 𝑚

2𝑘
𝑐𝑡

𝛽2
𝛽1𝛼2

𝑘(e−𝑘(2−𝜉) + e−𝑘𝜉) − e−𝑘(1−𝜉) + e−𝑘(1+𝜉)

1 + e−2𝑘

+
(𝜉 − 1)(𝑡 + 𝑐)

𝛼1

]

, (32)

𝑉 ′
𝑠

2𝑏
= 𝑞𝐸𝑠𝑡

2
{( 𝑡

3
+ 𝑐

4

) 1
𝛼1

+ 𝑡𝑐
2

(

−1 + 𝑚
3

+ 1
2

)

×
𝛽2
𝛽1𝛼2

𝑘(e−𝑘(2−𝜉) − e−𝑘𝜉 ) − e−𝑘(1−𝜉) − e−𝑘(1+𝜉)

1 + e−2𝑘
}

. (33)

Given that the displacement-based FE method in which the sandwich
beam is modelled as a 2D continuum cannot provide reliable results
5

e

at the fully-clamped cross-section [6,14,15], below we provide explicit
analytical expressions for the recovered stresses therein.

4.1. The recovered stresses at the fully-clamped cross-section

Evaluation of the relevant derivatives of Eq. (31) in 𝑥 = 0 gives

d4𝑓 (𝜉)
d𝜉4

|

|

|

|𝜉=0
= 24𝐶0

(

𝑘(e−2𝑘 − 1) − 2e−𝑘

1 + e−2𝑘
+ 1

)

,

d6𝑓 (𝜉)
d𝜉6

|

|

|

|𝜉=0
= 24𝐶0𝑘

2 𝑘(e−2𝑘 − 1) − 2e−𝑘

1 + e−2𝑘
,

such as, from Eqs. (24) and (25), one obtains

𝜙′′′
𝑐 (0) =

24𝐶0

𝐿4

{ 𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

+
𝑘(e−2𝑘 − 1) − 2e−𝑘

1 + e−2𝑘
[ 𝛽1𝛽3 − 𝛽22

𝛼1𝛽2

+
(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

) 𝑘2

𝐿2

]}

, (34)

𝜙′′′
𝑠 (0) =

24𝐶0

𝐿4

{ 𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

+
𝑘(e−2𝑘 − 1) − 2e−𝑘

1 + e−2𝑘

×
[ 𝛽1𝛽3 − 𝛽22

𝛼1𝛽2
−
( 𝛽1𝛼2
𝛽2𝛼1

+
𝑐(1 + 𝑚)

2

) 𝑘2

𝐿2

]}

, (35)

to be substituted in Eq. (17) to obtain 𝜎rec𝑦 (0, 𝑦).
About the recovered shear stress, we report the results in [6],

adopting the notation 𝜏fc𝑥𝑦(𝑦) = 𝜏zz𝑥𝑦 (𝜉 = 0, 𝑦). Hence, the shear stress
eads

𝜏fc𝑥𝑦(𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞𝐿
𝑏𝑐𝐷1

[

𝐷4 + 12𝜃0
|𝑦|
𝑐

+ 12𝐷2

( 𝑦
𝑐

)2
]

if 𝑦 ∈ 𝐴𝑠

𝑞𝐿
𝑏𝑐𝐷1

[

𝐷5 +𝐷3

( 𝑦
𝑐

)2
]

if 𝑦 ∈ 𝐴𝑐

where

𝜃0 = 𝜑𝜔2−𝑛𝜖(3+4𝜖) , 𝐷1 = 4𝜖2(2+3𝑛𝜖)(1+2𝜑𝜖) , 𝐷2 = 3𝑛𝜖(1−2𝜑)−𝜑 ,

3 = 24𝜖2(3𝜑−2) , 𝐷4 = 3(1+2𝜖)[𝐷2+2𝜖(𝜑+𝑛𝜖)] , 𝐷5 = 6𝜖2(2−𝜑+2𝑛𝜖) .

.2. Results and discussion

We consider the following set of parameters, corresponding to a
uite large relative stiffness between skins and core,

= 1000 , 𝜖 = 9∕140 , 𝜈𝑠 = 0. and 𝜈𝑐 = 0.49 ⇒ 𝜑 = 1490 ,

𝑐 + 2𝑡)∕𝐿 = 79∕800 (36)

nd compare the proposed analytical estimates with the results of FE
imulations where the sandwich beam is modelled as a 2D plane-stress
ontinuum. Next, we illustrate this FE model.

.2.1. The FE discretisation of the reference 2D continuum model
The FE model, which is developed within the commercial FE code

BAQUS [24], consists of 1000 columns of bi-quadratic (8-noded) FEs
ith reduced integration (4 Gauss points for each FE), denoted as
PS8R in ABAQUS. In each column, the core is discretised along its
hickness with 70 FEs, and each skin is discretised with 25 FEs. All
Es have the same side along the 𝑥 axis, whereas the sides along the
direction are uniform within each layer, thus being different for core

nd skins. Overall, the mesh consists of 120,000 8-noded FEs.
The fully-clamped cross-section is realised by setting to zero both

isplacement components of all the nodes belonging to the left side
located at 𝑥 = 0) and the uniform load is applied as a pressure to the

xternal surface of the top skin (i.e. at 𝑦 = −𝑡 − 𝑐∕2).
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Fig. 2. Non-dimensional through-the-thickness normal stress (a) and shear stress (b) at different cross-sections: analytical estimates.
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4.2.2. Comparison between analytical and numerical results
For the sake of brevity we disregard the longitudinal stress 𝜎𝑥 as

given by Eq. (13), which is well-known to be very well estimated by
the considered structural theory [5–7].

In Fig. 2 we present the analytical results for the cross-sectional
profiles of 𝜎rec𝑦 and 𝜏zz𝑥𝑦 at three different positions in the clamped
sandwich region, 𝜉 = 0., 0.03, 0.06. While the behaviour of the shear
stress is quite well-known [6], that of the through-the-thickness normal
stress constitutes an interesting novelty: after attaining the assigned
value −𝑞∕𝑏 at 𝑦 = −𝑡 − 𝑐∕2, it experiences a quite large gradient and
assumes a relatively large tensile value at the interface (𝑦 = −𝑐∕2).
Then, it is subject to an opposite gradient all along the core thickness,
such that at the lower interface (𝑦 = 𝑐∕2) it assumes a compressive
alue of magnitude similar to that at the upper interface. Of course, it
inally goes to zero at 𝑦 = 𝑡 + 𝑐∕2. This type of profile for 𝜎𝑦 is due to
he fast variation of 𝜏𝑥𝑦 along the beam axis in the clamped sandwich
egion, where the shear stress rapidly migrates from the core to the
kins [6]. Hence, in this benchmark, at the upper interface (𝑦 = −𝑡−𝑐∕2)
n the clamped region, 𝜎𝑦 counter-intuitively results in a peel stress that
ay prevent the interface from developing its intrinsic shear strength.

The foregoing predictions have been validated against the results
btained with the FE model described in Section 4.2.1. Fig. 3 reports
he deformed shape, which is characterised by a change of curvature
lready observed in [6] for parameters different from those selected
ere, as in Eq. (36). Also, in Fig. 3 we display the contour of 𝜎𝑦, such
ontour being limited in such a way as to give an indication of the
ehaviour over the whole sandwich. By the way, the sandwich region
here the contour turns out to be cut is that next to the fully-clamped

andwich end, in which it is well-known that the adopted displacement-
ased FEs cannot capture some important aspects of the exact linear
lastic solution of this 2D boundary value problem, even if one resorts
o extremely refined meshes. This is because the longitudinal stress,
𝑥, turns out to be unbounded at the corner points of the fully-
lamped cross-section [14,15]. The FE solution is unable to describe
his singularity and, as a consequence, it even does not match the static
oundary conditions on a portion of the unconstrained sides ending in
he corner points of the clamped section. This problem is common to
ther structures modelled as 2D continua and having a fully-clamped
ide with corners, as in axisymmetric functionally-graded plates [25].

Figs. 4 and 5 display the comparison between the analytical and FE
esults. It is interesting to observe that, because of the extremely fine
6

t

E mesh implemented in ABAQUS, the match is already quite good at
= 0.03, that is very close to the encastre. Instead, for the reasons

xplained above, at the fully-clamped cross-section (𝜉 = 0.), the 2D
lane-stress continuum FE model is totally unreliable in terms of all the
hree stress components, for instance providing 𝜏𝑥𝑦(𝑦∕𝐻 = 0.5)𝑏∕𝑞 ≈ 25.
nd 𝜏𝑥𝑦(𝑦∕𝐻 = −0.5)𝑏∕𝑞 ≈ 28., instead of vanishing values. Given the
ood match in Figs. 4 and 5 at 𝜉 = 0.03, we infer that the structural
heory relying on the zig-zag warping with the double stress recovery
rovides useful estimates also at the encastre.

The most important result of this investigation is that we ob-
erve that there are portions of the interfaces where the through-the-
hickness normal stress is comparable to, or even much larger than, the
hear stress, the former remarkably being a tensile stress. Since this may
ause delamination, it should be regarded as of crucial importance for
he analysis and design of sandwich panels. By entering into further
etails of the considered benchmark, at (𝜉, 𝑦) = (0.03,−𝑐∕2) we obtain
𝜏int𝑥𝑦 𝑏∕𝑞 = 6.96941 and 𝜎rec𝑦 𝑏∕𝑞 = 5.7537; at the clamped section, the
zigzag model even predicts much larger 𝜎rec𝑦 (𝜉 = 0, 𝑦 = −𝑐∕2)𝑏∕𝑞 than
𝜏int𝑥𝑦 (𝜉 = 0)𝑏∕𝑞, which are equal to 15.6 and 1.42, respectively.

Fig. 6 displays the two stress components all along the upper
nterface (𝑦 = −𝑐∕2), where 𝜎𝑦 is a tensile stress. Note that the particular
ehaviour of the shear stress is known since [6]: from the free end to
he clamped section it increases almost linearly with the shear force,
ntil the effect of hampering warping at the clamped section requires
sudden decrease of 𝜏𝑥𝑦 in the core, which has then to migrate to the

kins.

. Concluding remarks

In this contribution, we have provided explicit analytical estimates
or the through-the-thickness normal stress component, 𝜎𝑦, of sandwich
eams with identical skins and governed by the Krajcinovic theory,
hich relies on zigzag warping under flexure [3].

The new analytical estimates for 𝜎𝑦 complement those already
stablished for the longitudinal stress 𝜎𝑥 [3,4] and for the shear stress
𝑥𝑦 [5,6] and rely on a double stress recovery procedure, already
ollowed in the literature on numerical schemes for equivalent single
ayer models (ESLMs) of multilayered structures [17,19,20]. In the case
f beams, after 𝜏𝑥𝑦 is obtained from a first Jourawski-like stress recov-
ry [5,16,17], one resorts to the balance equation 𝜕𝜏𝑥𝑦∕𝜕𝑥+ 𝜕𝜎𝑦∕𝜕𝑦 = 0
o obtain 𝜎 . While this procedure gives no problems if one can obtain
𝑦
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Fig. 3. Amplified deformed configuration and contour of the through-the-thickness normal stress for the cantilever sandwich modelled as a plane-stress continuum with the FE
code ABAQUS.
Fig. 4. Non-dimensional through-the-thickness normal stress at 𝜉 = 0.03 (a) and 𝜉 = 0.06 (b): comparison between the results of the FE simulation as a 2D plane-stress continuum
and the stress recovery in the structural theory relying on the zigzag warping.
analytical solutions, it instead requires care in numerical approaches,
where the functions approximating the primal structural variables may
need high continuity conditions.

We have validated the obtained analytical results against finite
element (FE) simulations in which the sandwich beam is modelled
as a two-dimensional (2D) plane-stress continuum. The availability
of reliable analytical expressions for 𝜏𝑥𝑦 and 𝜎𝑦 has allowed us to
efficiently span a wide range of sandwich parameters (both geometrical
and mechanical) for a few selected boundary value problems. The main
practical outcome is that there are cases in which 𝜎𝑦 at the interfaces is
a tensile stress of magnitude larger than 𝜏𝑥𝑦. In this work, we have illus-
trated in detail that this, for instance, happens for a cantilever sandwich
subjected to a uniform transverse pressure, in a region close to the fully-
clamped cross-section. Under these circumstances, 𝜎𝑦 should surely be
accounted for when studying delamination. Note that our analytical
model holds in the linear elastic regime for perfect interfaces, that is
up to incipient delamination (in the absence of other nonlinearities).
Beyond this stage, crack propagation can be studied by resorting to
different models, such as 2D FE models (see, e.g., [26]), or higher-order
theories that are far more complex than that adopted here, as proposed
by Odessa et al. [27], who even aim at capturing crack kinking into
7

the core after interface delamination. However, in comparison to these
models requiring a numerical approach, our analytical solutions are
much more efficient in identifying the most critical interface points
in terms of the sandwich parameters and of any adopted criterion for
delamination, say 𝜓(𝜏𝑥𝑦, 𝜎𝑦) = 0, thus constituting a tool for the design
of sandwich beams.

Alternatively and complementarily to the use of more complex
exact linear elastic solutions for the sandwich panel modelled as a
continuum [28], the proposed analytical solutions could be used to test
various higher-order models for laminated composite panels, with the
purpose of assessing an adopted numerical method, a new proposal
for a warping function, or both. Although here we have focused on
sandwich beams with identical skins, in this regard, let us also mention
the ESLMs, which can be particularised to our layout even if they
are typically developed to deal with structures constituted by several
layers. ESLMs aim at accurate solutions while maintaining the number
of unknown structural variables as limited as possible and independent
of the number of layers, thus opening up to a large number of proposals
in the literature and usually requiring numerical solutions. Within this
realm, we mention both laminated beams [29–33] and laminated plates
(see, e.g., [19–21], dealing with the double stress recovery adopted
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Fig. 5. Non-dimensional shear stress at 𝜉 = 0.03 (a) and 𝜉 = 0.06 (b): comparison between the results of the FE simulation as a 2D plane-stress continuum and the stress recovery
n the structural theory relying on the zigzag warping. Note that, for the sake of graphical clarity, we plot only half of the 𝜏𝑥𝑦(𝑦) profiles even though 𝜏𝑥𝑦 is not perfectly symmetric
ith respect to 𝑦 = 0 in the 2D continuum analysis, because of the load applied at 𝑦 = −𝑡 − 𝑐∕2.
Fig. 6. Non-dimensional through-the-thickness normal stress and shear stress all along
he upper interface (𝑦 = −𝑐∕2): analytical estimates relying on Krajcinovic theory and
tress recovery.

ere, the review [34], the recent contribution [35], and references
therein), in which the test could be accomplished by subjecting the plate
to cylindrical bending (along with substituting, in our equations, 𝐸 with
𝐸∕(1 − 𝜈2) for the longitudinal moduli of the layers).
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Appendix A. Analytical solution at the beam end in a simply-
supported sandwich subjected to uniform transverse load

In this boundary value problem the Krajcinovic auxiliary function
results [5]

𝑓 (𝜉) =
24𝐶0

𝑘4

[

e−𝑘 − 1
1 − e−2𝑘

e𝑘(𝜉−1) − 1
2
(coth 𝑘 − csch 𝑘 + 1)e−𝑘𝜉

]

+𝐶0𝜉
4 − 2𝐶0𝜉

3 +
12𝐶0

𝑘2
𝜉2 + 𝐶0

(

1 − 12
𝑘2

)

𝜉 +
24𝐶0

𝑘4
. (37)

Evaluation of the relevant derivatives of Eq. (37) in 𝑥 = 0 gives

d4𝑓 (𝜉)
d𝜉4

|

|

|

|𝜉=0
= 24𝐶0

(

e−𝑘 − 1
1 − e−2𝑘

e−𝑘 − 1
2
(coth 𝑘 − csch 𝑘 + 1) + 1

)

= 24𝐶0
e−2𝑘

1 − e−2𝑘
, (38)

d6𝑓 (𝜉)
d𝜉6

|

|

|

|𝜉=0
= 24𝐶0𝑘

2
(

e−𝑘 − 1
1 − e−2𝑘

e−𝑘 − 1
2
(coth 𝑘 − csch 𝑘 + 1)

)

= 24𝐶0𝑘
2 2e−2𝑘 − 1
1 − e−2𝑘

. (39)

Therefore, from Eqs. (24) and (25) one has

𝜙′′′(0) =
24𝐶0

{(

𝑡 −
𝛽1𝛼2 ) 𝑘2 2e−2𝑘 − 1 +

𝛽1𝛽3 − 𝛽22 e−2𝑘 }

, (40)
𝑐 𝐿4 𝛽2𝛼1 𝐿2 1 − e−2𝑘 𝛼1𝛽2 1 − e−2𝑘
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T
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s
f

R

𝜙′′′
𝑠 (0) =

24𝐶0

𝐿4

{

−
( 𝛽1𝛼2
𝛽2𝛼1

+
𝑐(1 + 𝑚)

2

) 𝑘2

𝐿2
2e−2𝑘 − 1
1 − e−2𝑘

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

e−2𝑘

1 − e−2𝑘
}

.

(41)

hen, by substituting Eqs. (40) and (41) into Eq. (21), one has
𝑉 ′
𝑠 (0)
2𝑏

=
24𝐶0𝐸𝑠𝑡2

𝐿4(1 − e−2𝑘)

{[

−
( 𝛽1𝛼2
𝛽2𝛼1

+
𝑐(1 + 𝑚)

2

) 𝑘2

𝐿2
(2e−2𝑘 − 1)

+
𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

e−2𝑘
] 𝑡
3

+
[(

𝑡 −
𝛽1𝛼2
𝛽2𝛼1

) 𝑘2

𝐿2
(2e−2𝑘 − 1) +

𝛽1𝛽3 − 𝛽22
𝛼1𝛽2

e−2𝑘
] 𝑐
4

}

nd, by also accounting for Eqs. (12) and (28), we finally obtain
𝑉 ′
𝑠 (0)
2𝑏

=
𝑞𝐸𝑠𝑡2

1 − e−2𝑘
{[( 1

𝛼1
+
𝑐(1 + 𝑚)𝛽2

2𝛽1𝛼2

)

(1 − 2e−2𝑘) + e−2𝑘
𝛼1

] 𝑡
3

+
[( 1
𝛼1

−
𝑡𝛽2
𝛽1𝛼2

)

(1 − 2e−2𝑘) + e−2𝑘
𝛼1

] 𝑐
4

}

, (42)

hich can be studied in order to establish whether, for appropriate
ets of parameters, 𝜎rec𝑦 (𝑥 = 0, 𝑦) can result, in modulus, significantly
arger than |𝑞∕𝑏|. As already mentioned, both our 2D FE analyses of
he sandwich as a plane-stress continuum and the application of the
oregoing formulæ suggest that the simply-supported case is not very
uch interesting as 𝜎𝑦 hardly is ever larger than |𝑞∕𝑏|.

However, this benchmark unexpectedly displays a feature that, in
ur opinion, would deserve to be further studied. It consists in the
act that the 2D FE analysis gives a 𝜎𝑦 profile that is in remarkable
isagreement with that predicted by Eqs. (17) and (42) in a quite large
andwich region at the support, the latter being modelled by setting
o zero the transversal displacement component of all the nodes at
he beam-end side. In this respect, contrary to our experience with
he longitudinal and shear stress components, the comparison between
nalytical estimates and FE results in terms of through-the-thickness
tress is ‘‘more difficult’’ for the simply-supported cross-section than
or the fully-clamped cross-section. In practice, this means that, in the
imply-supported benchmark, in order to observe agreement between
he results of the analytical and FE models we need to select a cross-
ection significantly farther from the beam end than in the case of a
ully-clamped cross-section.
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