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Human–Robot Role Arbitration via
Differential Game Theory
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Abstract— The industry needs controllers that allow smooth
and natural physical Human-Robot Interaction (pHRI) to make
production scenarios more flexible and user-friendly. Within this
context, particularly interesting is Role Arbitration, which is
the mechanism that assigns the role of the leader to either
the human or the robot. This paper investigates Game-Theory
(GT) to model pHRI, and specifically, Cooperative Game The-
ory (CGT) and Non-Cooperative Game Theory (NCGT) are
considered. This work proposes a possible solution to the Role
Arbitration problem and defines a Role Arbitration framework
based on differential game theory to allow pHRI. The proposed
method can allow trajectory deformation according to human
will, avoiding reaching dangerous situations such as collisions
with environmental features, robot joints and workspace limits,
and possibly safety constraints. Three sets of experiments are
proposed to evaluate different situations and compared with
two other standard methods for pHRI, the Impedance Control,
and the Manual Guidance. Experiments show that with our
Role Arbitration method, different situations can be handled
safely and smoothly with a low human effort. In particular, the
performances of the IMP and MG vary according to the task.
In some cases, MG performs well, and IMP does not. In some
others, IMP performs excellently, and MG does not. The proposed
Role Arbitration controller performs well in all the cases, showing
its superiority and generality. The proposed method generally
requires less force and ensures better accuracy in performing all
tasks than standard controllers.

Note to Practitioners—This work presents a method that allows
role arbitration for physical Human-Robot Interaction, motivated
by the need to adjust the role of leader/follower in a shared task
according to the specific phase of the task or the knowledge of one
of the two agents. This method suits applications such as object
co-transportation, which requires final precise positioning but
allows some trajectory deformation on the fly. It can also handle
situations where the carried obstacle occludes human sight, and
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the robot helps the human to avoid possible environmental
obstacles and position the objects at the target pose precisely.
Currently, this method does not consider external contact, which
is likely to arise in many situations. Future studies will investigate
the modeling and detection of external contacts to include them
in the interaction models this work addresses.

Index Terms— Physical human–robot interaction, role arbitra-
tion, differential game theory.

I. INTRODUCTION

HUMAN-ROBOT Interaction (HRI) is the discipline that
studies and allows safe and natural interaction between

humans and robots [1]. HRI has been growing as a research
field in recent years, considering the need for collaborative
manufacturing tasks shared between humans and robots within
modern factories [2], [3]. In particular, in the field of HRI,
Human-Robot Collaboration (HRC) [4] deals with a collabo-
rative approach that allows the robot and the human operator
to perform complex tasks together, with direct interaction
and coordination [5]. When the interaction and collaboration
between humans and robots become physical, we deal with
the physical Human-Robot Interaction (pHRI) [6].

A widely used technique to handle pHRI is Impedance/
Admittance Control [7], [8]. Moreover, many studies aimed at
making the Impedance Control adaptive. Two main methods
exist to make Impedance Control adaptive: (i) modify the
impedance set-point, and (ii) modify the impedance parame-
ters, i.e., the mass, spring, and damper values. An example
of the adaptation of the impedance set-point according to
interaction with a human can be found in [9], where optimal
trajectory deformation is studied, in [10] that uses a Neural
Network to identify the set-point, in [11] with a nonlinear
model reference adaptation, in [12] and [13], where a fuzzy
logic control updates online the set-point, in [14] the reference
trajectory is shaped to ensure it is within the constrained
task space, and in [15] with application to teleoperation.
Adaptation of the mass-spring-damper parameters is exploited
as in [16], [17], [18], and [19]. Recent works aim to mod-
ify both impedance parameters and set-point simultaneously.
In [20], a hybrid controller allows manual guidance for a
robot to assemble an aircraft panel. In [21] and [22], Rein-
forcement Learning updates the parameters online, while [23]
exploits a neural network (NN) to update the desired position
and the impedance parameters to maintain stability. In [24],
a controller that adapts impedance parameters and velocity is
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Fig. 1. The typical large object co-manipulation scenario. On one side,
a lightweight robot is grasping a large object. The robot cannot hold the object
alone because of a limited payload and workspace. Conversely, a human is
grasping the same object, with possibly the same problems. In this situation,
the robot can guide the human to approach with precision a target pose without
exceeding its payload.

proposed, allowing interaction between a human, a robot, and
the environment.

The main drawback of the abovementioned approaches is
that the robot always represents a passive helper to the human.
In contrast, nowadays, many situations require Shared Auton-
omy (SA) and Shared Control (SC) of the task, leading to the
emerging field of deliberative robotics [25]. Reference [26]
presents a brief survey on SA in pHRI. In this situation, the
robot and the human can interact with the controlled system
differently, possibly switching roles. Consider that many tasks
may require the robot to lead the action away from unwanted
situations, taking control over the human in circumstances
such as singularity proximity, joint limits, and robot workspace
boundaries that may not be visible to a human. In this case,
SA relates to Role Arbitration (RA), which can be defined as
the mechanism that assigns the control of a task to either the
human or the robot [27].

Target applications can be co-manipulation of large objects,
such as aeronautical components, as in [20]. In the case of
large object manipulation, the precise positioning at the target
pose is imposed by assembly tolerances. Still, the connecting
trajectory from the picking pose to the target pose can be
adjusted [28], [29]. It may also happen that large objects
can occlude the human operator’s sight, and the robot should
prevent collisions with the environment [30]. Figure 1 shows
a typical large component co-manipulation.

Another application can involve flexible material
co-transportation as in [31] and [32]. Similarly to the
previous case, a precise position for the target pose is
sometimes needed to match the component’s design, such
as in composite material draping precisely. Otherwise,
structural and aesthetic properties drop. Still, the connecting
trajectory can be modified during transportation, with the
constraints imposed by the robot limitations and target
precision requirement. Other target applications involve the
teleoperation of robots, such as in [33], where the human

remotely operates a robotic arm. In that scenario, it is
possible that the human cannot see the scene clearly because
of occlusions, and the robot should take control [34], or the
human guides at a high level and the robot provides trajectory
correction [35].

This work wants to investigate Role Arbitration for pHRI to
solve such applications. In particular, we rely on Impedance
Control. We want to keep the low-level impedance control
parameters constant and consider it a given system on which
humans and robots can interact. Indeed, making Variable
Impedance Control is not always easy and can sometimes be
risky and complex [36], possibly involving a deep analysis of
the variable impedance of the human arm to guarantee stable
controllers [37]. Because Game Theory provides mathematical
models of strategic interaction among players, we also want
to investigate the Game-Theoretical formulation of the human
and the robot interacting with the mass-spring-damper system
given by the Impedance Control. Multiple works propose
different solutions for the games, possibly involving nonlinear
dynamics, that are solved via Reinforcement Learning and
Critic Networks [38], [39]. Despite this, with the formulation
of the problem proposed in this work (i.e., humans and
robots interacting with a virtual linear environment), it is
possible to show how the complex interactive problem can
be reduced to an easier quadratic problem that can be solved
via standard LQR solutions [40] in the cooperative case, and
iterative algorithms [41] in the non-cooperative case. This
makes implementing the proposed method ready for use and
easily solved by standard optimization software.

Therefore, the following subsection is dedicated to the
review of the related works regarding (i) Game-Theoretical
formulation of human behavior, (ii) Game-Theoretical formu-
lation related to the specific pHRI applications, and (iii) Shared
Autonomy and Role Arbitration applications and methods.

A. Related Works

In the following, we present a literature review on
Game-Theoretic modeling and evaluation of human behav-
ior, on using Game-Theoretical methods in the pHRI field,
and applications of Role Arbitration and Shared Autonomy
paradigms, representing our work’s main background topics.

1) Game-Theory for Modeling Human Behavior: First,
we want to review how human behavior can be modeled
using GT formulations and which modes have been studied
to understand how they can be included in the pHRI frame-
work. Game-theoretic modeling of humans interacting with
machines has been increasingly exploited recently. Typical
applications of GT models are used for humans interacting
with a programmed active front steering (AFS) in the shared
driving of vehicles (Non-Cooperative [42], Cooperative [43],
and others [44], [45]). Such works are limited to modeling
interaction and lack experimental data to confirm that GT
models describe interaction with real humans. Experimental
evaluations are presented in [46] and in [47]. The first work
presents results on the behavior of six individuals interacting
with the AFS. Compared with the standard optimal control,
it is shown that their interacting behavior is better described
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by the Non-Cooperative formulation. Similarly, the second
shows that GT-based formulation better describes the driver’s
behavior than the driver’s classic steering control strategy.

Studies on a human-human dyad, rather than human-
machine, allow an understanding of how their behavior
changes according to the interacting situations. In [48],
a human-human dyad performs a shared reference tracking
without the possibility of communicating. It shows that the
non-cooperative model is more descriptive than a model
considering the partner’s action as a system disturbance.
Human-human interaction is also studied in [49] and [50].
These works compare the dyad with a single individual behav-
ior. Individual players tended towards cooperative behavior
to find the solution, whereas two players tended towards
non-cooperation on average. Reasonably, the cooperative solu-
tion is best if the players can communicate and trust each other.
If no agreement exists because there is no communication
and trust, human behavior can be modeled as non-cooperative.
Note that these works put the participants in non-cooperative
situations on purpose (human dyads are not allowed to com-
municate, and the machines the humans are interacting with
are programmed in a non-cooperative way). It has been proven
in [51] that humans understand each other’s intentions while
physically interacting to perform a task, and humans adapt to
Non-Cooperative behavior if the opponent behaves this way.

2) Game-Theory for pHRI: Since GT represents a robust
framework to describe interactions and can describe human
interaction, applications of GT modeling to pHRI control are
arising in the literature. The concept of Nash Equilibrium
(NE) is exploited in [52] and similarly in [53]. The NE
updates the robot cost function based on the interaction
force exchanged with the human. The same differential non-
cooperative game-theoretic modeling is also proposed in [54]
and [55]. These works exploit policy iteration to update
the robot’s cost function similarly compared to the previous
two works presented. An observer to estimate the opponent
control law is presented in [56] for the two-player game and
in [57] for the multiple agents game. These works propose a
universal game-theoretical framework that addresses various
game-theoretical behaviors under specific control parameter
tuning care. Extension to these works is in [58], where the
trajectory tracking problem is addressed in the non-cooperative
scenario. Finally, the authors also investigated the cooperative
scenario in [59], where the weighting factor is variable to allow
the adaptive impedance behavior of the robot.

3) Shared Autonomy and Role Arbitration: Finally, we want
to present the most common and recent advancements in the
RA and SA fields to give a background to the proposed work.
The most common way to describe Shared Autonomy (SA)
and Shared Control (SC) is a linear combination of human and
robot control inputs as h(uh,ur) = α uh +(1−α) ur. In [26],
Shared Autonomy and Shared Control in pHRI are reviewed,
highlighting the differences, pros, and cons. Ultimately, SC is
more specific to the application domain and task. At the same
time, SA approaches provide a favorable autonomy level adap-
tation feature that leverages inference of human intentions.
In [60], authors investigate the objective and subjective effects
of dynamic role allocation for a physical robotic assistant for

a cooperative load transport task. Two dynamic Arbitration
laws are proposed for effort sharing. A continuous first-order
dynamical system governs one with the arbitration parameter
bounded within the interval [−1,1], and the other is discrete.
Results show that the dynamic role allocation is objectively
better than its fixed counterpart. Reference [61] proposes
variable impedance control along with an assistive controller
that gradually decreases to zero when the human user applies
forces to pull the robot away from the predicted goal. In [62],
to help a human, a strategy based on a multi-modal intent
inference of human intention is developed. By looking at
the natural eye-hand cooperation during a natural human
manipulation, it is possible to understand the human intention
of motion. The environment and the estimation introduce
uncertainties, so a confidence index on the identification is
defined. The arbitration weight of the robotic agent is defined
as a combination of confidence in the intent inference and
robotic autonomy. Role arbitration is presented in [52] and [55]
as a Variable Impedance Control, where human intentions are
detected from interaction force. In [63], the robot assumes two
roles, with a control scheme that switches between a teaching
phase (the robot is a passive follower) and an active phase (the
robot is in adaptive admittance control). In [64], a controller
capable of learning human behavior and providing assistive
or resistive force is proposed, but no dynamic role allocation
is proposed. Similarly, [65] propose a switching controller
based on assistive adaptive impedance control. The stiffness
parameter goes from high values to zero. This allows trajectory
tracking and autonomous task execution in the first case and
manual guidance in the second. In [66], a fuzzy controller
introduces a cooperative coefficient according to different
driving intentions, safety, and performance parameters in a
cooperative driving scenario. In [67], the shared autonomy
problem for the human-robot collaboration is introduced into
a Partially Observable Markov Decision Problem. In [68], the
Cooperative problem is addressed for the human-driver assis-
tant problem. Finally, [69] propose a GT formulation of the
problem, allowing switching between the Cooperative and the
Non-Cooperative interaction models for collision avoidance in
a shared human-robot driving scenario. Despite the exciting
problem formulation and arbitration solution, only simulation
results are presented.

4) Limitations and Problems: Based on the presented
review, the following limitations are highlighted:

1) in pHRI, no comprehensive Cooperative
Game-Theoretic implementation is presented in
the literature;

2) Role Arbitration typically relies on Variable Impedance
Control, which makes its modifications risky and
complex;

3) switch between GT models (cooperative and non-
cooperative) for RA is presented only in a simulated
scenario and not related to the pHRI field.

B. Motivation and Contribution

Motivated that humans and robots should cooperate and take
advantage of cooperation, the presented work aims to realize
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a control framework for natural and mutual collaboration.
Given that impedance control is standard when designing
pHRI controllers, this work adopts it as low-level control to
modify the robot’s end-effector pose according to the interac-
tion. According to the literature, many works aim to modify
impedance control parameters online for different purposes.
Adapting the impedance parameters allowing SA and RA
online is generally possible, but this can be a complex and
sometimes risky procedure [36]. Therefore, this work proposes
considering the low-level Impedance Control as a given system
on which the human and the robot can directly interact by
applying forces. In this way, it is possible to consider the
human and the robot as two players acting on the same system,
and a Game-Theoretical formulation of the problem is allowed.
The GT framework is well-suited to describe and manage
conflicting objectives between rational players acting on the
same system, as the literature review proposed proves.

The main contribution presented in this work is defining
a Role Arbitration framework based on differential game
theory to allow pHRI. Many reviewed works deal with sim-
ulated cases only, where the human is considered a rational
game-theoretic player. This work focuses on the real-world
application in the pHRI context, dealing with real situations
and experiments to show the utility of the proposed approach.
Game-theoretic approaches have already been applied in
pHRI. Still, they are typically limited to the Non-Cooperative
case. At the same time, this work also supports the Coop-
erative case in situations where the human is leading and a
switching mechanism between the two models. This allows
better assistance compared to the non-cooperative case.

Compared to the previous work of some of the authors [59],
this work uses the knowledge of the human’s desired tra-
jectory to solve the optimal control problem. Moreover,
a more complex and comprehensive role-arbitration function
is defined. Finally, more experiments are evaluated to show
this approach’s utility in different situations.

This work aims to present a methodology that allows
smooth and safe pHRI for applications requiring the
co-transportation of heavy objects. Typically, there is the
requirement of precise final positioning (e.g., for assembly,
fiber alignment in composite material draping), while the
trajectory to approach that final target pose may be changed
for many reasons (obstacles, ergonomics, preference, etc.).

C. Organization

The paper follows the following structure. Section I intro-
duces the problem, presents a literature review of the main
topics investigated by the proposed work, and identifies the
main contribution concerning the state of the art. Section II
presents the method used to manage Role Arbitration. It first
derives the lower loop Impedance Control. Then, assuming
the Impedance control as a given system, it formulates the
Game-Theoretical problems and solutions. It defines the Role
Arbitration law based on fuzzy logic, and finally, it discusses
safety issues and how they can be handled with the proposed
method. Section III presents the experiments and the perfor-
mance evaluation criteria for comparing the proposed method
with two standard pHRI controllers. Section IV presents

experimental results. Finally, Section V draws conclusions and
possible future works.

1) General Notations: The most relevant Acronyms and
Symbols used throughout the article are listed below

GT Game-Theory, defines the Game-Theoretical frame-
work

RA Role Arbitration, defines the law that assigns the role
of the leader or follower to the robot

IMP the Impedance Control used for comparison
MG the Manual Guidance control used for comparison
NE the Nash Equilibrium, solution of the Non-

Cooperative Game
Ji defines a generic cost function. In the paper, different

cost functions are defined and detailed
Qi, j defines the generic matrix that weights the state
Ri, j defines the generic matrix that weights the control

input
z defines the state of the Mass-Spring-Damper system,

composed by Cartesian positions and velocities
α the RA parameter. In the Cooperative case, α also

represents the solution to the Bargaining problem.
In the Non-Cooperative case, it adjusts the value of
the matrices that weigh the state.

II. METHOD

This section presents a system modeled as a virtual Carte-
sian Impedance subject to two external forces provided by
the human and the robot, respectively. The virtual impedance
produces the robot’s end-effector motion in response to the
measured human wrench and an additional virtual robot
wrench, computed according to the GT models. Two GT
models are presented, the non-cooperative and the cooperative,
respectively, and the solutions of such games are provided.
Finally, an arbitration function based on fuzzy logic is pro-
posed.

A. System Modeling

Denoting with q(t) the vector of joints coordinates, the
standard manipulator dynamics in the joint space is given by

M(q)q̈+C(q, q̇)q̇+G(q) = τ (1)

where M(q)∈Rn×n is the inertia matrix, C(q, q̇)∈Rn×n is the
Coriolis and centrifugal force, G(q) ∈ Rn is the gravitational
force, τ ∈ Rn is the torque control input, and Ja(q) ∈ Rn×n

is the Jacobian matrix. The forward kinematics gives the
end-effector Cartesian pose,

x(t) = f (q(t))

where x(t) denotes the Cartesian position vector and f a
function that maps joint coordinates into Cartesian pose at
the end-effector, and the Cartesian velocity and accelerations
are given by differentiating it as

ẋ(t) = J q(t)

It is then possible to rewrite (1) in the Cartesian space as

Mx(q)ẍ+Cx(q, q̇)ẋ+Gx(q) = Ja(q)−T
τ (2)
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The feedback linearization is realized by imposing the control
input τ as

τ = Ja(q)T [Mx(q)ẍre f +Cx(q, q̇)ẋ+Gx(q)] (3)

leading to ẍ = ẍre f , with ẍre f defines the desired acceleration.
Cartesian Impedance control can be implemented to make

the robot’s behavior responsive and compliant with human
interaction. It represents a virtual mass-spring-damper system,
and the human and the robot can impose forces (measured the
first, virtual the latter) to move it. The impedance model in
the Cartesian space is described as follows:

Mi (ẍ− ẍ0)+Ci (ẋ− ẋ0)+Ki (x− x0) = uh(t)+ur(t) (4)

where Mi, Ci and Ki ∈ R6×6 are the desired inertia, damping,
and stiffness matrices, respectively, ẍ(t), ẋ(t) and x(t)∈R6 are
the Cartesian accelerations, velocities and positions at the end-
effector, x0 is the equilibrium position of the virtual spring,
and uh(t)∈R6 and ur(t)∈R6 represent the human (measured)
and robot (virtual) effort applied to the system. The Cartesian
coordinates in x are defined according to [70], with the vector
x = [pT θ T ]T where pT are the position coordinates and θ T

the set of Euler angles. This choice assumes that the angular
rotation maintains limited values in the target applications.

The equation (4) can be rewritten in a linearized state-space
formulation around the working point as

ż = Az+Bhuh +Brur (5)

where z = [x ẋ]T ∈ R12 is the state space vector, A =[ 06×6 Ja
−M−1

i Ki −M−1
i Ci

]
, B12×6

h = B12×6
r =

[06×6

M−1
i

]
, with 06×6 denoting

a 6×6 zero matrix and Ja the analytical Jacobian matrix,
with the dimensions of the considered Cartesian components.
Kinematic inversion is computed at the velocity level as

q̇re f (t) = J(q)+ẋ(t) (6)

where q̇re f (t) ∈ Rn, where n represents the number of joints,
are the reference velocities in the joint space, J(q)+ is the
pseudoinverse of the analytical Jacobian matrix. Joint positions
are then computed via a simple integration. Assume q̇ ≃
q̇re f , considering that today’s robots have excellent tracking
performance in the frequency range excitable by the operator.

The low-level Impedance Control loop described in (4) can
be seen at a higher level as a given system, with two agents
acting on it, the human and the robot, namely. A schema of the
Impedance Control, assumed to be a system with two players
acting on it, is visible in figure 2.

B. Differential Game Theoretic Modeling

Given the system dynamics (5), defining the players’ objec-
tive is now essential. Usually, agents’ objectives are formulated
as cost functions that must be minimized. The objectives can
be modeled as functions containing just quadratic terms. There
are two main reasons for such a formulation. First, these
differential games are analytically and numerically solvable.
Second, this linear quadratic problem setting appears if the
agents’ objective is to minimize the effect of a perturbation of
their nonlinear optimally controlled environment.

Fig. 2. The schema of the impedance system with the two external
contributions.

Depending on the problem description, three main types
of games are proposed. In the case players do not make
any agreement and seek the optimization of their own cost
without trusting each other for cooperation, we are in a Non-
Cooperative situation. Conversely, in the Cooperative case,
players agree to cooperate because cooperation can improve
the outcome for all players to non cooperate. This situation
requires trust and agreement from the opponents. The third
situation describes the leader-follower case, where the follow-
ers minimize their cost function, and the leader minimizes their
own based on the follower’s choice. The so-called Stackelberg
solutions represent its solutions. This work analyzes only the
first two models, Non-Cooperative and Cooperative, because
they allow easier Role Arbitration and switch from one mode
to another due to intrinsic peer interaction. At the same
time, the leader-follower situation requires subsequent choices.
Moreover, one player always has to anticipate the action of the
other, making the actual implementation challenging.

A final consideration of the human and robot objectives
should be done. In general, one wants to follow a trajectory
during the motion from a pose to a target one. In this paper,
we define as zre f ,h and zre f ,r the desired trajectories that the
human and the robot would follow if they were the only
agent acting on the system (4). In particular, standard motion
planners can compute the robot trajectory, while the human
trajectory must be identified (see Sec. II-C). The objective of
the two presented GT models is, in the end, to let the system
in (4) evolve according to a trajectory that is obtained by a
combination of the two desired trajectories.

1) Differential Non-Cooperative Game Theoretic Interac-
tion: The non-cooperative formulation of the problem involves
competition between players. The objective for each player is
the minimization of their cost function. The non-cooperative
aspect implies that the players are assumed not to collab-
orate to attain this goal. In the following, we formulate
the non-cooperative problem as a two-player, non-zero-sum
game. A complete treatment of non-cooperative game theory
is in [71].

In the non-cooperative case, the human and the robot aim
to minimize their cost functions, subject to the other influence
which are given by

Jh,nc =
∫

∞

0

[
(z− zre f ,h)T Qh (z− zre f ,h)

+uT
h Rh uh +uT

r Rh,r ur
]

dt (7)
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and

Jr,nc =
∫

∞

0

[
(z− zre f ,r)T Qr (z− zre f ,r)

+uT
r Rr ur +uT

h Rr,h uh
]

dt (8)

where zre f ,h and zre f ,r are the human and robot reference
targets, Qh and Qr ∈ R12×12 are weight matrices on the state,
Rh and Rr ∈R6×6 are weight matrices on the player’s control
input and Rh,r and Rr,h ∈ R6×6 are weight matrices on the
opponents’ control input.

The non-cooperative differential game problem can be sum-
marized as

min
uh

Jh(z,uh,ur)

min
ur

Jr(z,uh,ur)

s.t. ż = Az+Bh uh +Br ur

z(t0) = z0 (9)

Definition 1: The so-called Nash equilibrium is the set of
solutions to (9). A Nash equilibrium is a situation where no
player has convenience in changing its control action, formally
defined as

Jh(z,u∗h,u
∗
r ) ≤ Jh(z,u∗h,ur)

Jr(z,u∗h,u
∗
r ) ≤ Jr(z,uh,u∗r ) (10)

and the control actions uh and ur are the Nash equilibrium
policies.
Two types of solutions exist based on the information players
have on the current state of the system: open-loop and feed-
back. We consider only the feedback solutions in this work
since position and force measurements are available online.
In the case of linear systems as (5) and quadratic cost functions
as (7) and (8), the control policies of the players are computed
as

uh =−Kh,nc (z− zre f ,h) (11)

and

ur =−Kr,nc (z− zre f ,r) (12)

The matrices Kh,nc and Kr,nc are the full-state feedback matri-
ces, computed as Kh,nc = R−1

h BT
h Ph and Kr,nc = R−1

r BT
r Pr, where

Ph and Pr are solutions of coupled Riccati equations. For sim-
plicity, define with Si = BiRi,iBT

i and Si, j = BiR−1
i,i R j,iR−1

i,i BT
i ,

with i = {h, r}. The two coupled Riccati equations are

0 = (A−S jPj)T Pi +Pi(A−S jPj)T

−PiSiPi +PjS j,iPj +Qi (13)

which can be solved as in [41]. The block diagram of the
non-cooperative game interaction is in figure 3.

2) Differential Cooperative Game Theoretic Interaction:
The Cooperative formulation of the problem allows agreement
between the players to define a shared objective and work
together toward it. The objective of each player is shared
with the others, and a final, common objective is defined
according to the agreement found. Players trust each other,
and cooperating can improve their outcomes without hurting

Fig. 3. The block diagram of the non-cooperative model. The Kh,nc and Kr,nc
are obtained by the minimization of (9).

others. Each player is generally confronted with a whole set of
possible outcomes from which somehow one outcome (which
generally does not coincide with a player’s overall lowest
cost) is cooperatively selected. In the following, we present
the Cooperative formulation of the two-player game, based
on [40] and [72], with an extension to the agreement of a
shared reference.

In a cooperative framework, the human and the robot can
be seen as two agents, each one to minimize a quadratic cost
function, defined as

Jh,c =
∫

∞

0

[
(z− zre f ,h)T Qh,h (z− zre f ,h)

+(z− zre f ,r)T Qh,r (z− zre f ,r)+uT
h Rh uh

]
dt (14)

and

Jr,c =
∫

∞

0

[
(z− zre f ,h)T Qr,h (z− zre f ,h)

+(z− zre f ,r)T Qr,r (z− zre f ,r)+uT
r Rr ur

]
dt (15)

where Jh,c and Jr,c are the cost that the human and the robot
incur, Qh,h,Qh,r ∈R12×12 and Qr,h,Qr,r ∈R12×12 matrices that
weight the state and references and Rh,Rr ∈ R6×6 weights on
the control input.

By cooperating, a shared objective is defined as

Jc = α Jh +(1−α)Jr =
∫

∞

0

(
z̃T Qc z̃+uT Rc u

)
dt (16)

with z̃ = z− zre f , where zre f , Qc and Rc must be defined, and
α ∈ (0,1) represents the weight each player’s cost has in the
overall cost. Combining (14) and (15) into (16), after some
calculations, can be obtained

Qc = α (Qh,h +Qh,r)+(1−α)(Qr,h +Qr,r) (17)

and

Rc =
[

α R̂h 06×6

06×6 (1−α)Rr

]
(18)

Finally, defining

Qh = α Qh,h +(1−α)Qh,r (19)

and

Qr = α Qr,h +(1−α)Qr,r (20)

the reference zre f is a weighted composition of the human and
robot references that can be expressed as

zre f = Q−1
c (zre f ,h Qh + zre f ,r Qr) (21)

With a further step, the system in (5) becomes

ż = Az+Bu (22)
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Fig. 4. The block diagram of the cooperative model. The K is obtained by
the minimization of (23).

with A ∈ R12×12 defined as before, B ∈ R12×12 = [Bh Br] and
u = [uh ur]T ∈ R12×1.

The Linear Quadratic Differential Game problem can be
finally formulated as a classical LQR problem:

min
u

Jc =
∫

∞

0

(
zT Qc z+uT Rc u

)
dt

s.t. ż = Az+Bu

z(t0) = z0 (23)

The problem in (23) has infinite solutions lying on the Pareto
frontier, depending on the parameter α .

Definition 2: A set of strategies U ∗ = {u∗h, u∗r} is called
Pareto efficient if there not exists another set U = {uh, ur}
such that

Jh(U )≤ Jh(U ∗)
Jr(U )≤ Jr(U ∗) (24)

with at least one strict inequality.
All the solutions of problem (23) are Pareto efficient, and the
choice of one or another opens a new problem, addressed in II-
D. In an LQ-CGT framework, the control action u is defined
as full-state feedback as

u =−Kgt z̃ =−Kgt z+Kgt zre f (25)

with Kgt = R−1
c BT P and matrix P solution of the Algebraic

Riccati Equation (ARE)

0 = AT P+PAT −PBR−1
c BT P+Qc

Note that u = [uh,ur]T . Therefore, the human and robot control
inputs can be extracted by slicing the vector of control inputs.
The block diagram of the cooperative interaction model is
visible in figure 4.

C. Human Reference Trajectory Estimation

The definition of a method for detecting and predicting the
desired human trajectory is out of the scope of this work.
Moreover, many accurate techniques exist in the literature,
as proposed in [73], [74], [75], and [76], so the choice of the
best human trajectory identification techniques is left to the
reader. Despite this, since it is a piece of essential information
to apply the control scheme proposed, it is necessary to
identify a method for the prediction. In the proposed approach,
we decided to implement an easy yet powerful method based
on the direction of the force interaction. The human reference
state is composed of position and velocity vectors as zre f ,h =
[xT

re f ,h ẋT
re f ,h]

T . The velocity component has always had a
minor and typically negligible influence on human behavior,
as they are proven to care only about the position and visual
feedback [77], [78], [79]. Therefore, it can be set to zero

without any loss of generality, as ẋre f ,h = 06×1. This is a typical
choice made by various works addressing human-machine
interaction [44], [46], [48]. On the contrary, the pose is updated
at each cycle by the following:

x+
re f ,h = x−re f ,h +Kp,h uh (26)

with (+) and (−) referring to the updated and previous poses,
respectively, and Kp,h defines a coefficient proportional to the
human exerted force.

D. Role Arbitration Law

As already said, the solution of (23) strictly depends on the
choice of α . In the Cooperative Differential Game Theory, the
Bargaining Problem refers to the problem of choosing the best
appropriate α , and different solutions are available in the liter-
ature (Nash bargaining solution [80], Kalai-Smorodinsky [81],
egalitarian [82]). These methods aim to identify the best com-
promise between players so that everyone has the incentive to
cooperate rather than compete against each other. The solution
found is static, and the game proceeds by minimizing (23).

In the proposed control schema, the value of α is changed
dynamically on the fly according to some defined law, allow-
ing the Role arbitration between the human and the robot.
Indeed, this work aims to make the robot assistive, capable
of following human intentions, assisting humans, and taking
control over humans to avoid undesired situations.

Four main undesired situations are identified:
a) singularities
b) proximity to objects
c) proximity to workspace limits
d) distance to the reference target position
Remark 1: Proximity to joint limits is not directly consid-

ered, as in the computation of the manipulability index, it is
already included, as described below.

To avoid configurations close to singularities, the manipu-
lability index µ is taken into account, defined as in [83]:

µ = P
√

det(J(q)J(q)T ), (27)

with penalty factor P, similar to the one introduced in [84]
used to scale the manipulability to account for joint limits. P
are computed separately for each joint j, as

Pj = 1− e
−k

(q j−qlb
j )(qub

j −q j)

(qub
j −qlb

j )2
, (28)

where k is a scaling factor that can be used to adjust the
behavior near joint limits, q j is the current position of the joint
j, and qub

j and qlb
j are the upper and lower bounds, respectively.

The proximity to objects do is measured as the minimum
distance between any robot link and any object in the environ-
ment, possibly excluding objects that must be manipulated.

do = min(robot−ob jects) (29)

The proximity to workspace limits dws represents the
Euclidean distance between the current Cartesian position of
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Fig. 5. Input membership functions to the Fuzzy Logic System.

the robot TCP and the boundaries specified according to the
application.

dws = ∥xee− xws∥ (30)

with xee and xws denoting the Cartesian positions of the
end-effector and the workspace boundaries, respectively.

The distance to the reference target position dtrg is measured
as the Euclidean distance between the current end-effector
position and the target pose of the task (e.g., pick/place pose).

dtrg =
∥∥xee− xtrg∥∥ (31)

with xtrg denoting the target position of the end-effector.
These four indices allow defining the proper α , allowing for

Role Arbitration. It is defined as a Fuzzy Logic System (FL)
that accepts as inputs the four indices and returns the value of
α . In figure 5, the four membership functions related to the
four indices are visible. The following rules are defined:

if
(
µ is low

)
or

(
do is low

)
or

(
dws is close

)
or

(
dtrg is close

)
then α is low

if
(
µ is low

)
or

(
do is low

)
or

(
dws is f ar

)
or

(
dtrg is close

)
then α is low

if
(
µ is f ine

)
or

(
do is ok

)
or

(
dws is f ine

)
or

(
dtrg is f ar

)
then α is high

if
(
µ is f ine

)
or

(
do is ok

)
or

(
dws is f ine

)
or

(
dtrg is medium

)
then α is shared

(32)

Processing the four membership functions through the above
rules allows defining the proper α , with its membership func-
tion visible in figure 6. Identifying a threshold value of α = αth
makes switching from the Cooperative to the non-cooperative
case possible, allowing Role Arbitration. When α is high, the
cooperative interaction model is selected, and the human can

Fig. 6. Output membership function of the FLS that defines α .

Fig. 7. The block diagram of the arbitration mechanism. The variable α

allows switching between cooperative and non-cooperative models.

fully control the task and move the robot freely, enhanced
by the robot assistance ur. Conversely, when α is low, the
non-cooperative interaction model is selected, and the robot
takes control over the human by applying a virtual force ur to
recover the original safe trajectory. The block diagram of the
arbitration control is in figure 7.

Remark 2: By varying the parameter α , also the matrices
Qh, Qr, Rh and Rr vary. In the Cooperative case, how they
vary is straightforward, and it is described by (17) and (18).
In this case, the parameter α also represents the solution to the
Bargaining problem. In the Non-Cooperative case, the matrices
are computed as (19) and (20). The value of the matrices Rh
and Rr are kept constant.

E. Safety Considerations

The method proposed does not directly address the safety
issues that arise when pHRI is considered. Therefore, some
considerations are given. According to the standard rules
defined by the ISO in [85], [86], and [87], safety depends
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on and is evaluated considering the entire application and not
the single modules such as the robotic platform, its control,
and the other modules alone.

According to the standards, the robot at the end-effector
should not move faster than 250 mm/s to certify the appli-
cation. It should also stop if the external forces and power
exceed a threshold according to the so-called Power Force
Limitation (PFL).

Despite being hard to make sure that the application is
safe according to the standards, the proposed FL arbitration
law can handle such limitations within certain limits. Indeed,
by defining some additional rules, the FL arbitration can
prevent the robot from moving too fast or colliding unsafely
with the human. By preventing such events, robot safety stops
triggered by modules and sensors certified according to the
standards can be reduced.

For example, the proposed fuzzy logic arbitration can handle
the speed limitation. Indeed, the nominal trajectory is com-
puted to comply with the limited speed constraint. The FL
can include monitoring the speed, and the role of the leader
can be assigned to the robot as close as the end-effector speed
approaches the limit if the human tries to move faster.

PFL requires that, in the case of a collision with a human,
the power and force are granted to be below a certain thresh-
old. Such a threshold depends on the type of collision (free
body or pinch) and the body area where it might happen.
To avoid direct collisions with the human body, a camera
system can track the human body position, the human body
can be modeled as an environmental obstacle, and (29) allows
for taking this distance into account. Moreover, a rule that
monitors the robot’s position to the human body parts can
also be added. For example, if it comes too close to the
human head, the FL arbitration should allow the robot to lead
the action far from it. It can be handled by measuring the
height of the robot end-effector or directly by using a skeleton
tracker if available. It is also possible to add danger zones as
described in [88] and include them in the FL arbitration law.
Of course, this approach should not consider the human arm
that is directly in contact with the robot (if no co-manipulated
object is considered). Otherwise, the distance between the
human and the robot will always be obviously zero.

The presented cases do not guarantee the certification of the
collaborative application, which requires the safety stops of the
robot. On the contrary, they can prevent the robot from incur-
ring such situations, allowing it also to reduce safety stops.

III. EXPERIMENTS

Three sets of experiments are designed to test the method’s
validity. In all scenarios, the human and the robot must reach a
target position and return to the starting point. In the first case,
a collision object is added to the scene, but the human does not
know its presence. In the second scenario, the human knows
the presence of an object, while the robot doesn’t. The third
case does not involve collision objects but requires reaching an
intermediate target point that the robot does not know. The test
cases are designed to simulate these three real-world scenarios:

a) the human and the robot are co-manipulating an object,
possibly significant, that may impede the human’s view

of some environmental feature. The robot knows the
obstacle’s presence and helps the human avoid it.
Another situation can happen when the obstacle is
behind the human, and he does not see it;

b) a dynamical collision object is placed in the middle of
the robot’s trajectory, and the human sees it and drives
the robot far from possible collisions;

c) a task is mainly repeatable. Still, some exceptions can
sometimes require an additional operation (e.g., during
object sorting, most objects must be placed in a con-
tainer, but some objects must be redirected for some
additional operation due to poor quality).

The proposed approach is compared with two other con-
troller methodologies typically used to execute such tasks:
standard manual guidance (MG) and a standard impedance
control (IMP). The first controller (MG) represents a stan-
dard when an operator guides the robot, and it acts as a
follower. Typical applications are learning-from-demonstration
or robotic assistance for load reduction. The second controller
(IMP) is typical in pHRI as it allows compliance and a robot
that modifies its trajectory according to external forces.

Remark 3: The same control can obtain the three controller
behavior by switching off the robot contribution for IMP (i.e.,
ur = 0 in (4)), switching off the robot contribution, and setting
null the robot stiffness for MG (i.e., ur = 0, and Ki = 0 in (4)).

Remark 4: The trajectories are precomputed using Moveit!
and then used for all the cases to make the experiments fully
comparable.

A. Evaluation Criteria

The following indexes are defined and evaluated to compare
the three controllers. The interaction force is evaluated as a
measure of the robot’s assistance to the human. The less the
force is, the better the robot assists the human. The interaction
force is measured as

F =
∫ Tend

Tstart

∥ f (t)∥
T

dt (33)

it is normalized over T in which a force greater than a
threshold (1N) is measured.

An index measures the percentage of points in the measured
trajectory in which the robot is closer than 1mm to the obstacle
to measure the obstacle avoidance capability. The index is
defined as

C % =
nc

np
100 (34)

with nc and np indicating the number of points in a collision
(i.e. the robot is closer than 1mm to the obstacle) and the total
number of points in the trajectory, respectively.

An index measures the percentage of points in the measured
trajectory in which the robot’s end-effector violates the safe
workspace boundaries (in this work, it is set to 850mm as from
the UR5 datasheet) to measure the capability in avoiding the
violation of the workspace boundaries. The index is defined
as

W S % =
nws

np
100 (35)
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Fig. 8. Experimental setup during the execution of obstacle avoidance
experiment. The human is driving the robot to avoid the physical obstacle
highlighted by the yellow rectangle in the picture. The nominal robot’s
trajectory is in dashed red. In green is the new trajectory after the human
intervention to avoid the obstacle. In the real setup, the start pose (green
circle), the target pose (red circle), and the obstacle (yellow rectangle) are
indicated by tripods to give the human a reference.

with nws and np indicating the number of points that violate
workspace boundaries (i.e. the robot end-effector is far more
than 850mm from the robot base) and the total number of
points in the trajectory, respectively.

Finally, since the proposed control also allows precise robot
positioning at target points (e.g., pick/place target poses),
an index evaluates the capability to precisely reach a target
pose, defined as (31), measured when the action is considered
concluded.

dtrg =
∥∥xee− xtrg∥∥ (36)

This same index is used to measure the capability of reaching
target points known to the robot and the additional via point
in case (c), which is unknown to the robot.

B. Experimental Setup

A total of 5 participants (age 28 ± 3.5) were involved
in the testing. The participants have different confidence and
previous experience with using robots in general and pHRI
tasks. In particular, one participant had no experience with
robots at all. The participants were instructed to move the robot
tip from start to target pose and were told that the robot could
take control over the human in some situations. Participants
were asked to let the robot lead if they sensed that the robot
was taking control.

The robotic platform is a Universal Robot 5 controlled in
joint velocity at a frame rate of 125 Hz. The interaction force
is measured at 100 Hz with a Robotiq FT300 sensor mounted
at the robot end-effector. A handle is mounted after the sensor,
allowing the human to grasp and interact with the robot. The
robotic setup during the execution of experiments when the
human is leading the robot to avoid an obstacle is visible in
figure 8.

Fig. 9. The end-effector trajectories in the Cartesian space in the first set
of experiments. The GT and IMP controllers can safely avoid the obstacle by
imposing force on the human. The MG controller cannot impose any force,
and it collides.

The parameters used are as follows. Qh,h = diag([1,1,
1,0.0001,0.0001,0.0001]), Qh,r = 06×6 and Rh =
diag([0.0005,0.0005,0.0005]) and Rr = diag([0.0001,0.0001,
0.0001]).1 The values of the impedance parameters in (4)
are set to Mi = diag([10,10,10]), Di = diag([100,100,100])
and Ki = diag([0,0,0]) for the standard manual guidance and
the GT experiments, while Ki = diag([200,200,200]) for the
standard impedance control. For a complete system response
analysis with different parameters tuning, please refer to [89].

The values for the human are computed offline via Inverse
Optimal Control as in [79]. Despite the human cost function
values possibly changing according to the task, the subject,
and the different stages of the task, the choice of using fixed
values can be justified for several reasons. First of all, the role
arbitration mechanism is the fundamental module that changes
the assistance level of the robot, which strictly depends on the
value of α . Both the value of α and the human cost function
influence the game’s outcome. Still, the value of α has a
significantly higher impact with respect to the human cost
function, provided that the values used to describe the human
cost function are reasonable within certain tolerances (we
selected an average value; indeed, such a value can possibly
change, but changes are within a restricted range around the
value we use). Note that it is always possible to implement
online techniques to recover such parameters on the fly and
for different phases of the task, as demonstrated by various
works [90], [91], [92], [93]. The robot’s parameters are set
according to previous studies to assist when required and
provide strong interaction when there is no agreement. Note

1All these values are normalized with respect to Qh,h(1,1). In Optimal
Control problems, the minimization of Ji equals the minimization of λ Ji,
with λ positive value. Therefore, since the parameters Qh,h and Rh come
from Inverse Optimal Control studies, they can be normalized to any arbitrary
value. The small values of Qh,h relative to the velocity components of the
state indicate that humans do not care about the velocity compared with the
tracking error. The small values of Rh indicate that humans prefer to minimize
the tracking error rather than the effort required to track it.
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Fig. 10. Experiment A: in this case, the human does not know the obstacle’s presence.

that this work uses the same parameters for each user. The
performance and the user experience can be further improved
by adding a tuning tailored to each user’s preferences. For a
methodology to tune the parameters according to each subject
preference, please see [94]. The matrices Qh and Qr are
defined as in the cooperative case for all the cases. This
means that, in the cooperative case, Qh and Qr are defined as
in II-B2 following (19) and (20). In the non-cooperative case,
equations (7) and (8) in section II-B1 use Qh and Qr. To let the
Role Arbitration be smooth and continuously variable, we also
update values of Qh and Qr according to the same update used
for the cooperative case, following (19) and (20).

During the experiments, the FL arbitration module is in
charge of selecting the appropriate role for the human and
the robot (i.e., the value of α) according to the current status
of the tasks. Therefore, during each experiment, the value of
α varies. By defining a threshold value of α (αth = 0.5, in this
work), the robot selects the cooperative or the non-cooperative
behavior according to α > αth and α < αth, respectively.

IV. RESULTS

This section presents the results relative to the three sets of
experiments.

A. Experiment With the Object Unknown to the Human

In the first set of experiments, the robot knows the presence
of an obstacle and leads the human away from an object known
to the robot. The goal is to move the robot end-effector from
an initial position to a target position, then, after a slight
pause, move back to the initial position. In the middle of
the trajectory is placed a virtual object. The robot knows the
obstacle’s presence and position, but the human does not. The
robot’s nominal trajectory is computed to be collision-free,
considering the obstacle known to the robot.

Figure 10a shows the arbitration parameter α variation
during the task. In particular, around second 4, the robot
approaches the object, and do is low. Moreover, dws increases,
making α low and the robot close to its nominal trajectory.

This experiment computes the capability of the three con-
trollers to avoid any collision. Figure 10b shows an average
of the index (34) computed for all the subjects. As clearly
visible, in the MG case, because the robot cannot exert any
force, the human is not aware of the robot’s intention and
collides with the virtual obstacle. In the GT and IMP cases,
the human can almost always avoid the obstacle, even if it is
unknown, because the robot pulls the human to its collision-
free trajectory, helping him avoid it. In this case, GT and IMP
behave similarly in proximity to the obstacle.

Figure 9 shows the trajectories followed by the robot
tip with the three controllers and the nominal collision-free
trajectory computed by the motion planner. As visible, the
IMP and GT controllers allow the robot to pull the human and
its tip close to the nominal collision-free trajectory, allowing
the task’s success. On the contrary, in the MG case, no force
can be exerted, and the robot cannot prevent collision with the
obstacle.

B. Experiment With the Object Unknown to the Robot

In this experiment, the human leads the robot away from
an object known only to the human.

In this case, because the human knows precisely where
the obstacle is, it is easier for them to avoid it. Hence, the
index (34) was found to be always zero, and it is not shown
here. Conversely, because the human can move the robot to
avoid the obstacle, this may violate workspace boundaries.
Indeed, during the test with the MG controller, two subjects
exceeded workspace boundaries while avoiding the obstacle
(the robot was straight), leading to swift joint motions of
the elbow joint and finally to the robot’s emergency stop.
Figure 11b shows an average of the workspace boundaries
violation for the three controllers, computed as (35) (the two
occurrences described above are not used for index compu-
tation, and an additional trial was done). The GT controller
is the one that better avoids workspace boundary violation,
allowing safer deformations compared with the other two
controllers.
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Fig. 11. Experiment B: the human deviates from nominal trajectory to avoid an obstacle unknown to the robot.

Fig. 12. Experiment C: trajectory deformation.

As visible from figure 13, in the case of MG and partially
in the IMP, the trajectory modified by the human exceeds the
safe workspace boundaries. The workspace boundaries are,
in this work, designed according to the UR specifications. This
means the robot can exceed it, as happens in this experiment.
Most positions can be reached but with restrictions on the tool
orientation because the robot cannot reach far enough in some
situations.

C. Experiment With Additional Target Point

The third case is presented here. The initial and final points
of the task are the same as in the previous experiment, and
the robot’s nominal trajectories are the same. An additional
target point is in between, and the human is asked to reach
it. Therefore, instead of directly moving toward the target
point, the human has to modify the robot’s nominal trajectory
to reach an intermediate way-point precisely. No obstacles
are involved in the scene, and the robot allows trajectory
deformations as long as the tip is far from the target pose.

The variation of the various indices is visible in figure 12a.
As visible, the only phases where the robot leads happen near

the target pose, granting precise position reach. Instead, during
the task execution, the arbitration parameter lets the human
lead (with an exception at the beginning of the task because
the starting position is close to the WS boundaries), allowing
the robot’s behavior to be comparable to the one of the MG
control. The precision of reaching the intermediate way-point
is measured by (36), and results of the comparison with MG
and IMP are shown in 12b. The robot’s behavior is comparable
to the one of the MG. Therefore, the precision of reaching
the target point is comparable between GT and MG, showing
good performances. On the contrary, the IMP control does
not allow substantial trajectory deformations nor the robot
to slow down/stop at a precise way-point, leading to bad
performances.

Figure 14 shows the trajectory executed with the three
controllers to perform this task. As visible, the target via point
is unreachable in the IMP case. This happens because the
robot prevents the human from reaching it since it does not
adapt to the human’s intentions. Indeed, the IMP controller
aims at following the predefined trajectory, allowing just minor
adjustments given by the interaction, and too high forces are
required to modify the trajectory substantially.
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Fig. 13. The end-effector trajectories in the Cartesian space in the second set
of experiments (humans must avoid an obstacle). The MG and IMP controllers
slightly exceed the workspace boundaries. The RA framework keeps the GT
controller below the dangerous robot’s over-extension. The light green area
represents the allowed workspace.

Fig. 14. The end-effector trajectories in the Cartesian space in the third
set of experiments (humans must reach an additional via point). The IMP
controller does not allow reaching the desired via point because it pulls the
end-effector toward the nominal trajectory far from the via point. The GT
and MG controllers allow for trajectory modification and reach precisely the
additional via point.

D. General Considerations

In this subsection, performances comparable for the three
controllers are analyzed.

Figure 15 shows results for the force index in (33). In gen-
eral, the IMP controller is the one that presents a higher
required force to complete the task for all the cases. This
happens because the controller treats human forces as external
disturbances, and the virtual spring always tends to steer the
system to the reference position.

MG and GT show comparable forces in the case the
human knows the obstacle and moves the robot to avoid it.
Considering the case where the robot knows the obstacle’s

Fig. 15. Forces exerted by the human while performing the task with the three
controllers. P-values are (0.9560, 0.0067, 0.0130, 0.0126, 0.0005, 0.0003). The
null hypothesis is rejected between GT and MG if the human deviates from
the robot. The null hypothesis is rejected between GT and IMP if the robot
deviates from the human trajectory. The null hypothesis is confirmed for the
free robot motion.

Fig. 16. Target position reaching.

presence, the GT case exchanges more force because the robot
must impose a force to attract the robot end-effector on the
safe collision-free nominal trajectory. Such a force represents a
haptic channel of communication that makes the human aware
of the robot wanting to take the lead. In the MG case, the
exchanged force is lower because the robot follows the human
without steering capability. This situation is not applicable
because it leads the system to a collision. Finally, in the
case of additional via point reaching, the MG control requires
additional force if compared with the GT control because it
always requires force to move in the same direction. In the GT
case, the force can be reduced as the robot assists in moving
in the desired direction.

The capacity to reach with precision the final point is in
figure 16. As expected, in the MG case, the capacity to match
the final point is left to human ability, leading to the highest
values for all three experiments. The performances of GT and
IMP are comparable, as the two methods are very similar in
behavior when the arbitration parameter α is low.
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Finally, note that the robot’s nominal paths are precomputed
for each experimental scenario and kept the same for each
experiment. This choice is made to compare each experiment
avoiding dependencies of the various indexes (in particu-
lar (33), (34) and (35)) from different path lengths. This may
raise the reasonable question of how different paths and path
lengths influence the index evaluations. In general, different
values for the indexes are expected with varying path lengths,
as they strictly depend on the interaction time or the percentage
of interaction along the entire path. Despite this, similar results
are expected when comparing the same controllers on the same
path, even if it is shorter or longer with respect to the ones
proposed in this work. For example, consider a longer path for
the experiment presented in section IV-A. For sure, the values
visible in 10b will be different, as the percentage computed
depends on the path length. Despite this, the proposed method
still allows the user to avoid the unknown obstacle better than
the MG and IMP controllers.

V. CONCLUSION

This work proposes applying differential game theory mod-
els for the role arbitration between a human and a robot. Both
Cooperative and Non-Cooperative solutions are addressed and
utilized in the cases more suitable for one or the other. A Fuzzy
Logic System defines an arbitration function capable of con-
sidering various dangerous situations to modify the arbitration
parameter α . This arbitration function is a hybrid controller
that behaves as empowering manual guidance when dangerous
situations are not foreseen while moving to a behavior closer
to impedance control when the robot approaches dangerous
situations. Experiments show that the proposed controller
outperforms the other two in various situations.

Future works will address a Model Predictive Control
formulation of the problem, allowing the robot to foresee
dangerous situations and anticipate the Role Arbitration as
needed. A deeper understanding of the future human trajectory
is needed to do this. Hence, future works will also address
human trajectory prediction over a finite horizon, possibly
exploiting artificial intelligence methods. The code to compute
the GT control inputs is available here: github.
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