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Abstract: Construction is known as one of the most dangerous industries in terms of worker safety.
Collisions due the excessive proximity of workers to moving construction vehicles are one of the
leading causes of fatal and non-fatal accidents on construction sites internationally. Proximity warning
systems (PWS) have been proposed in the literature as a solution to detect the risk for collision and to
alert workers and equipment operators in time to prevent collisions. Although the role of sensing
technologies for situational awareness has been recognised in previous studies, several factors still
need to be considered. This paper describes the design of a prototype sensor-based PWS, aimed
mainly at small and medium-sized construction companies, to collect real-time data directly from
construction sites and to warn workers of a potential risk of collision accidents. It considers, in an
integrated manner, factors such as cost of deployment, the actual nature of a construction site as an
operating environment and data protection. A low-cost, ultra-wideband (UWB)-based proximity
detection system has been developed that can operate with or without fixed anchors. In addition,
the PWS is compliant with the General Data Protection Regulation (GDPR) of the European Union.
A privacy-by-design approach has been adopted and privacy mechanisms have been used for data
protection. Future work could evaluate the PWS in real operational conditions and incorporate
additional factors for its further development, such as studies on the timely interpretation of data.

Keywords: construction safety; proximity warning system; collision accidents; sensing technologies;
ultra-wideband; data privacy; data protection; general data protection regulation

1. Introduction

Safety on construction sites is an issue of constant topicality, as the construction indus-
try is notoriously one of the most dangerous for worker safety [1], as also confirmed by
international statistics. Previous studies have estimated that at least 60,000 construction
workers die each year [2], and in industrialised countries, the construction industry ac-
counts for 25–40 percent of all workplace fatalities, despite representing only 6–10 percent of
the global workforce [3]. According to statistics from the U.S. Bureau of Labor Statistics [4],
in 2021, 986 workers in the private construction industry suffered fatal work injuries in
the United States, accounting for 19 percent of all workplace fatalities. Similar figures can
be found in Europe where, according to statistics published by Eurostat [5], more than a
fifth (i.e., 22.5 percent) of all fatal accidents at work occurred in the construction sector,
which ranks first among the productive sectors causing fatal accidents among the European
working population. Observing the issue on a national scale, according to INAIL (Italian
National Institute for Insurance against Accidents at Work) [6], the construction sector
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is one of the most closely monitored due to the high risk associated with activities that
involve a considerable physical effort (e.g., carrying heavy loads, working in uncomfortable
positions and standing for long periods of time), carried out in uncomfortable environ-
ments and sometimes under adverse climatic conditions (e.g., summer’s high temperatures
that subject workers to great stress). Data about the Italian context show how the sector
ranks first for fatal injuries, with 196 fatalities in 2021, confirming the hazardous nature of
construction [6].

Despite the importance given to construction safety management, traditional method,
and preventive measures—e.g., risk analysis, worker training, site inspections and quality
control checklists—do not always ensure a significant improvement in safety levels [7,8].
Workers tend not to perceive and recognise many of the hazards on construction sites
as potential sources of risk, even when all of the above measures are effectively imple-
mented [8–10]. Maintaining the appropriate level of situation awareness, which is critical
to safety, is therefore a challenge [11]. Within the context just described, collision accidents
involving operators and moving construction vehicles are one of the main safety issues in
construction workplaces, being one of the leading causes of non-fatal accidents and one
of the most frequent causes of death on construction sites internationally [12–16]. The
dynamic characteristics of construction site activities may be the cause of collision acci-
dents, with construction resources often moving in situations of excessive proximity [8].
Inadequate analysis of spatial interferences in the design of construction site layouts often
results in construction site spaces that are, at least temporarily, inadequate for the safe
conduct of operations [17,18]. In addition, other factors can be identified that increase the
likelihood of workers becoming victims of collision accidents: for example, the possible
loss of concentration in performing daily activities due to fatigue and repetitive tasks,
and the reduced visibility of construction vehicle operators due to blind spots [8,12–16].
Statistics, in fact, often highlight how collision fatalities can be caused by the failure of
the operator to check the position of workers in the manoeuvring area, leaving workers
undetected in blind spots or too close to moving vehicles [15]. In addition, inadequate
safety equipment on construction vehicles (e.g., rear-view mirrors and reversing horns)
and inadequate signposting of pedestrian routes in construction site layouts have been
also identified as risk factors for collision accidents [14,15].

In order to support the increasing attention to the role of collision accidents for the
safety of construction workers, the use of sensing technologies and tracking systems is
discussed in the literature as a way to promote continuous safety monitoring for early
risk detection and timely prevention of collision accidents. In this sense, previous studies
have discussed the possibility of providing workers with real-time alerts and warnings
of potential hazards. The development and use of proximity warning systems (PWSs)
has been investigated as a way of identifying hazardous situations on a construction site,
improving worker safety and helping to prevent construction injuries, e.g., [12–14,19].

The main contributions of this paper with the respect to the state of the art are
as follows:

• Analyse the privacy issue raised by a solution used to monitor workers for safety
reasons in construction sites;

• Analyse the practical use cases of security in construction sites with particular focus
on PWS;

• Perform an experimental evaluation of the risk conditions in the interaction between
workers and construction machineries in construction sites;

• Propose a privacy-by-design solution able to satisfy the requirements of GDPR;
• Apply the proposed PWS approach to the identified use cases.

This paper describes the design of a sensor-based PWS, primarily aimed at small and
medium-sized construction companies, for the real-time detection of potential risks to con-
struction workers due to excessive proximity to a moving construction vehicle. It takes into
account several factors mentioned in the previous literature, such as implementation cost,
the actual nature of a construction site as an operating environment and data protection [9].
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The assessment of the proposed technology for an accurate estimation of the proximity
is out of the scope of the current paper. More details about the assessment of the PWS
technology are provided in [20].

The rest of this paper is structured as follows. Section 2 describes the research back-
ground of this study; Section 3 illustrates the application case, the methods and materials
applied, while Section 4 presents the PWS design and preliminary implementations, and
Section 5 concludes the paper with concluding remarks, limitations of this study and future
developments.

2. Research Background
2.1. PWS: Available Technological Solutions

PWSs use real-time positioning systems to identify the location of workers in relation
to potential collision hazards (e.g., proximity to moving construction vehicles). In addition
to risk detection, PWSs alert workers by sending notification signals when their safety is at
risk due to the excessive proximity to a dangerous situation (i.e., to prevent the accident
from occurring). This results in improved situational awareness of the workers, who should
then be able to take appropriate action to avoid risks once they have received the warning
signal [11].

Several research papers have examined technological advancements to monitor the
safety of workers on construction sites and demonstrated the applicability of sensing
technologies for the real-time detection of proximity-related safety hazards. In more detail,
real-time locating and tracking technologies are becoming widely used for the continuous
monitoring of construction resources (workers, materials and equipment) on site [11]. The
aim is to prevent the exposure of workers to hazards and potential accidents, in addition to
increasing their situation awareness [11,21], by detecting and alerting construction workers
and vehicle operators in real time [22,23]. In addition, using a PWS to track the location of
construction site resources in real time also allows the understanding of how long workers
are in a specific location, information which can then be used to assess how much risk an
individual is exposed to [24].

Sensor-based locating technologies (e.g., Global Positioning System (GPS) [25], Radio
Frequency Identification (RFID) [26–29] and ultra-wideband (UWB) [30,31]) and vision-
based sensing technologies [32–34] have been considered as effective methods for the
advancement of construction safety management in this sense [35]. According to Soltan-
mohammadlou et al. [22], who studied applications of Real-Time Locating System (RTLS)
technologies in construction safety management, RFID, vision-based locating technologies
and UWB are the most widely used for safety purposes in construction. Radar-based, WiFi-
based and infrared technologies appear to be the least implemented ones in the literature,
while examples of the application of GPS and Bluetooth low energy (BLE) RTLS are also
available [21,36] (Table 1).

Table 1. Technological solutions for proximity warning systems.

Type Technological Solution References (e.g.,)

Sensor-based locating Global Positioning System (GPS) [25]
Radio Frequency Identification (RFID) [26–29]

GPS and Inertial Measurement Unit (IMU) [19]
Ultra-wideband (UWB) [30,31]

Bluetooth Low Energy RTLS [36]

Vision-based sensing technologies [32–34]

2.2. Introduction to UWB Technology

Narrowing down the scope of the application of sensing technologies to the detection
and prevention of collision accidents, the precise positioning capability of different locating
sensor-based technologies is a key factor to consider [21]. Previous studies demonstrated how
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the adoption of UWB technologies to collect spatial–temporal data about the movement of
construction resources (workers, materials and equipment) could address this need [37–40].

UWB technology is typically used for automatic asset monitoring in indoor environ-
ments (e.g., logistics), but it can also achieve a range of 100 metres in outdoor settings. Ad-
ditionally, it does not require extra hardware, like routers, to run. The UWB communication
protocol uses radio wavers for short-range (up to two hundred metres), high-bandwidth
(at least 500 MHz) and high-data-rate communication, and it is intended to transmit sig-
nals with spectrally dispersive modulation over extremely large bands (i.e., 500 MHz or
more) [41]. Figure 1 depicts a typical UWB RTLS network architecture. Network nodes
can be referred to as anchors, set up at fixed places, and tags, fastened to the moving
objects that need to be tracked [8]. The node in charge of managing transmission timing
between nodes and permitting new nodes to join the network is known as the network
coordinator. Anchors are normally installed at a maximum distance of 25 metres, and
they broadcast radio pulses to initiate the positioning process. Depending on the tech-
nology available, positioning typically has an error of no more than thirty centimetres
and an update rate of every fifty milliseconds. Unless solutions like GPS receivers with
Real Time Kinematic (RTK) support are used, it is difficult to obtain these results using
GPS technology. Moreover, the cost of these solutions would make them unsuitable for
widespread use on construction sites [8]. On the other hand, studies have shown how
the performance of UWB-based PWSs should be evaluated, taking into account aspects
such as the error rate of real-time location tracking and the possible effects of non-line of
sight [40,41]. Limitations can also occur if the environment where the monitoring takes
places goes through significant changes that, for example, prohibit signals from being
received. In addition, this method necessitates manual intervention for anchor positioning
and RTLS system registration for tag trilateration [8,37,38].
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Figure 1. The typical architecture of a UWB RTLS network [8].

UWB technologies have been widely used for this purpose in the construction sector,
allowing the location of workers and the tracking of construction resources (e.g., equipment
and materials) in real-time. This possibility, in fact, supports the continuous monitoring
of the distance between a worker and an approaching construction vehicle [37,38]. UWB
technologies have been adopted for real-time location tracking of resources in cluttered [39]
and harsh [40] construction environments. Studies have also assessed the actual reactivity
of workers in taking action to protect their own safety once they have received an alert [25].
The question has been asked, for example, as to whether the risk of an overabundance
of audible alerts might actually be counterproductive to the safety of workers who, with
an overabundance of information, would find themselves ignoring them. To this end,
Chan et al. [19] incorporated worker awareness in the development of a PWS in order to
reduce redundant alerts by means of GPS, UWB and Inertial Measurement Unit (IMU)
sensors attached to a hard hat to collect the orientation of workers in addition to the real-
time location to generate an alert only if the worker is not looking at hazards within a
hazardous distance. Another aspect to consider is how the adoption of such technology
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integrates with the dynamism typical of construction progresses. Existing solutions usually
require a fixed UWB infrastructure [37–40]. Pittokopiti and Grammenos [13], instead,
discussed the implementation a UWB collision avoidance system that does not require a
fixed infrastructure precisely in order to take into account the need to frequently reconfigure
the layout of a construction site according to the work schedule. The proposed solution
adopted a low-cost approach and a battery-powered system that was able to detect in real
time the risk of collision accidents if combined with a linear regression algorithm. Their
results demonstrated a robust UWB communication link under line-of-sight conditions
and in indoor environments. In these conditions, the system was able to detect hazards
up to 91 m and to guarantee workers the needed time to take appropriate actions for their
safety. However, in this case, a remote-controlled toy car was used to assess the collision
avoidance algorithm instead of real construction vehicles.

2.3. PWS: The Open Issues

Although previous studies have demonstrated sufficient accuracy for the development
and implementation of sensor-based PWSs, a number of issues remain to be addressed [9].
First, the dynamic nature of construction sites needs to be considered. It requires the
continuous reconfiguration of construction areas according to the construction schedule
and the activities that have to take place. A sensor-based PWS must be able to respond to
changing construction site conditions as construction progresses by providing adequate
redundancy or the ability to reconfigure the system if necessary [9,13]. When UWB localisa-
tion and communication systems are adopted, there is the need to consider that they have
to completely surround the monitored construction site area, always taking into account
that they might be sensitive to occlusion and blind spots. In addition, sensor-based PWS
deployment, which in the literature is primarily evaluated in controlled environments,
must take into account the need to properly mount and encase tags and anchors to protect
them from exposure to dust, rain and elevated temperatures in actual construction sites.
Moreover, the timely interpretation of data gained from sensors on construction sites in
real time is a major concern to support decision making.

Finally, concerns about worker privacy and data protection have recently emerged as
one of the issues hindering the use of sensing technologies and, specifically, wearables in the
construction sector [42–44]. The literature reports how data privacy is sometimes ignored
in favour of highlighting the potential to improve construction safety and other aspects,
such as productivity and efficiency, through the use of cutting-edge smart technologies
and digital breakthroughs. However, previous studies investigating users’ intentions to
adopt wearable devices have highlighted that the lack of guaranteed privacy of workers’
personal data has been identified as a significant limitation of modern technologies and
one of the reasons why users are reluctant to adopt them [43,44], along with perceived
utility [45]. Workers resent the concept of being constantly monitored in the workplace, and
they may feel insecure when the data collected, including personal data such as their name
and real-time location, both during working hours and rest time [42,45], could potentially
compromise their privacy and be used by employers to evaluate their performance in terms
of productivity [45].

As wearable devices collect and wirelessly transmit personal data to a receiver (e.g., a
smartphone), data security and encryption have emerged as key challenges in the devel-
opment of wearable technology [44]. In this sense, Xu et al. [42] highlight that in order to
facilitate the adoption of sensing technologies on construction sites, particularly wearable
sensing technologies, it is necessary to separate the management of non-sensitive safety
performance data from privacy data. Moreover, the research has suggested that workers’
willingness to accept tracking technologies may be supported by a deeper understanding
of the real benefits that workers derive from the collection of these data. Among them is
the fact that these data may serve as a reliable resource for the instantaneous identifica-
tion of risks associated with a particular worker or work setting [44]. In such a context,



Sensors 2023, 23, 9770 6 of 18

Rao et al. [9] recommend that research and studies be conducted to determine the best way
to incorporate privacy protections into monitoring systems [9].

The main indication about how to implement such protection comes directly from
Article 25 of EU GDPR [46] as “the controller shall, both at the time of the determination of
the means for processing and at the time of the processing itself, implement appropriate
technical and organisational measures, such as pseudonymisation, which are designed
to implement data-protection principles, such as data minimisation, in an effective man-
ner and to integrate the necessary safeguards into the processing in order to meet the
requirements of this Regulation and protect the rights of data subjects”. At the same
time, “the controller shall implement appropriate technical and organisational measures
for ensuring that, by default, only personal data which are necessary for each specific
purpose of the processing are processed”. Those principles, generally known under the
names of privacy-by-design and privacy-by-default, were already investigated in many
application fields such as electronic identification (eID) [47], electronic health records [48],
and Smart Buildings [49]. Nevertheless, to the best of authors knowledge, no one has
disclosed privacy-by-design insights in applying PWSs to construction site monitoring
and management.

Thus, the aim of the research presented in this paper is to analyse and to provide a
response to two of the open issues in adopting the PWS in construction sites: the dynamic
nature of the construction site (and thus the capability of the PWS to quickly reconfigure
itself in accordance with the activities anticipated in the construction schedule), and the
fundamental role of data privacy and data protection (under the rule of GDPR normative)
as an integral part of the implementation of digital and data-driven processes. Particularly,
this research does not focus on the use of technologies or frameworks to assess GDPR
compliance as in [50] but rather on the design process required to identify the set of
information needed to operate PWSs in construction sites and the system requirements to
implement a proper privacy-preserving system compliant with the EU GDPR.

Furthermore, the need to keep the entire cost of adopting the PWS low in order to en-
courage its adoption by construction Small Medium Enterprises (SMEs) has
been considered.

3. Research Methods and Materials

As mentioned in the previous section, UWB technology is the most promising solution
currently available for the design of a PWS because it provides high precision location
tracking; low power consumption; high data rates; immunity to interference; low latency;
scalability; low cost. However, a full adoption of UWB technology for PWS design still re-
quires further investigations, whose target is to take into account the specific characteristics
of construction site environments.

Research activities were organised in six macro-phases, with some of them overlapping
during the testing in order to proceed with an iterative process of data collection and
analysis (Figure 2).

• Phase 1—Analysis of the use cases regarding the adoption of PWS in construction site
for safety management;

• Phase 2—On-site testing for real-time proximity analysis;
• Phase 3—Design of the system architecture;
• Phase 4—Iterative validation of the system architecture;
• Phase 5—Verification of the compliance with GPDR.

An empirical study was developed involving the direct participation of potential
end-users (e.g., earthmoving machine operators) of the proximity working system, with the
aim of both analysing a potential application case (i.e., the use of a front loader in typical
construction site activities involving the interaction between the construction vehicle and
workers) and obtaining feedback on the proposed technological solution. Social partners
and representatives of management and labour have been involved in regular update
meetings on the development of the research in order to share with them updates on
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the selected technologies and the related possibility of collecting, processing and storing
workers’ position data. Their perspective on the collection of workforce data, which
is necessary to track their position on-site in real time as a necessary condition for the
operation of a PWS, was necessary firstly to understand the hesitations about the adoption
of location tracking tools and secondly to validate the proposed solutions with a view to
their adoption by workers.
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The tests were not conducted on a real construction site but in a controlled environment
using real construction equipment and involving potential operators. In the controlled envi-
ronment, an actual construction site area was simulated, albeit under simplified conditions
in terms of the number of moving construction vehicles, operators, noise, etc. Construction
activities that typically involve the proximity of earthmoving construction vehicles and
workers (e.g., excavation and backfilling of material and ground levelling) were considered
to formulate preliminary assumptions on how the PWS was supposed to work. Two dis-
tinct types of earthmoving construction vehicles were considered for the application case.
They were selected to take into account their different characteristics in terms of geometry
and interaction with workers (Figure 3): (1) a front-end loader (i.e., Takeuchi TL6R) as an
example of a vehicle with a fixed geometry, and (2) an excavator (i.e., Takeuchi TB640) as
an example of a vehicle with variable geometry (i.e., the variable configuration during
movement, with the arm retracted and the arm extended) [8]. Technical specifications of the
selected construction vehicles and the direct experience of the involved end-users formed
the basis on which we devised the initial hypothesis of acceptable vehicle–worker distances
to set the PWS’s operating rules in terms of ensuring safety for workers but at the same
time, the productivity of the construction site (Figure 4). As described in Mastrolembo
Ventura et al. [8], five areas have been identified as a first rough guideline for setting
the PWS:

• Black area, (i.e., the operating radius of the construction vehicle). Within this area,
there is an immediate risk of serious or fatal injury.

• Red area, (i.e., an area of two metres around the operating radius of the construction
vehicles. According to the manufacturer’s instructions, no person may be present
within the red area when the construction vehicle is in motion). In this area, immediate
action is required to avoid permanent injury or fatal accidents.

• Yellow area. Work can be conducted in this area, but caution is advised as the risk can
quickly change to red and black.
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• Green area. Within this area, workers should be notified about the presence of moving
construction vehicles, but they can work safely.

• White area. In this area, risks of collision accidents are not detected.
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Having contextualised the application case, the design of the PWS started. One ele-
ment that was considered from the outset was the potential users of this technology within
the scope of this research: small and medium-sized construction companies. Therefore,
the cost factor guided the initial implementation decisions. To meet this need, a real-time
positioning system was first proposed using commercially available modules. This choice
allowed an optimal trade-off between location accuracy and equipment cost, making it
a suitable solution for accurate distance measurement on construction sites. The reason-
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able cost of the equipment made it possible to widen the pool of potential construction
companies that could adopt such a system, including small and medium-sized ones. The
system was scaled up to support multiple anchors and tags in order to ensure a robust
UWB communication link also under non-line-of-sight (NLOS) conditions.

A second factor considered was the concept of the construction site as a dynamic
operational environment. For this reason, and in order to develop a PWS capable of
supporting the reconfiguration of the construction site based on the progress of planned
construction activities, two configurations of the PWS system were developed. The first
configuration developed envisaged the use of a fixed infrastructure (i.e., stationary UWB
anchors in addition to equipment carried by workers and machines). Subsequently, a
second configuration of the PWS was developed that allows the implementation of an
infrastructure-less system (i.e., without fixed anchors). The infrastructure-less approach
is due to the need to overcome the limitations of using such technologies in a dynamic
operating environment, such as a construction site that changes its layout several times
during the construction process.

Finally, a third factor was crucial in guiding the design and implementation of the
PWS: the adoption of data protection mechanisms. In fact, the ongoing discussion with
the social partners revealed that this issue—even more than the technological one—was a
discriminatory factor in the adoption or non-adoption of a worker location service such
as the one of a PWS. A privacy-by-design approach was adopted to ensure the system’s
compliance with the European GDPR, while data protection is generally neglected in
similar solutions proposed in the literature.

4. System Design and Implementation

The goal of the PWS is to simultaneously detect the position of both construction
vehicles and workers in relation to themselves. The system should be then able to calculate
the level of risk for collision accidents at each position.

4.1. Real-Time Location System

A real-time positioning system has been engineered to achieve an optimal equilibrium
between the precision of location tracking and the cost-effectiveness of the devices involved.
This system, denoted as the “PWS,” leverages the commercially accessible MDEK1001
Kit [51], from Qorvo—Greensboro, NC, USA, primarily designed for the evaluation of the
DWM1001 module and the seamless deployment of a Real-Time Locating System (RTLS).
The DWM1001 module is an amalgamation of critical components, encompassing the
DWM1000 Ultra-Wideband (UWB) Transceiver, from Qorvo—Greensboro, NC, USA, a
nRF52832 microcontroller unit (MCU), from Nordic Semiconductor—Trondheim, Norway,
fortified with Bluetooth Low Energy (BLE) capabilities, and a triaxial accelerometer [52].
Notably, the transceiver adheres to the IEEE802.15.4z [53] UWB physical layer standards.

The architecture of the infrastructure realised through the utilisation of the MDEK1001
module is elucidated in Figure 5. It notably incorporates four distinct node classifications:
(i) anchors, which constitute static nodes serving as benchmarks for the localisation pro-
cess; (ii) tags, denoting mobile nodes that necessitate attachment to objects targeted for
localisation; (iii) bridges, comprising nodes designated as gateways with the potential to
interconnect the RTLS with an Internet Protocol (IP) network; and (iv) external devices,
characterising nodes facilitating direct information exchange with the DWM1001 module
through a Bluetooth Low Energy (BLE) link. For the establishment of a functional RTLS,
it is mandatory that three to four anchors are concurrently within the visibility range
of the tag reserved for localisation. Within this network framework, a single anchor is
specially configured as the “initiator”, assuming the role of network coordinator for the
entire system.
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The DWM1001 module inherently accommodates the Positioning and Networking
Stack (PANS) firmware, which substantiates the implementation of the anchor node net-
work and orchestrates the bilateral ranging exchanges with the tag nodes. Consequent to
this system configuration, each individual tag autonomously computes its precise location
through the utilisation of the PANS firmware, which is pre-installed on the MDEK1001
nodes [51].

4.2. PWS Infrastructure Architecture: Structured Site

A conceptual framework for a proximity detection system, as depicted in Figure 6, has
been realised [20]. The fiscal implications of infrastructure are invariably contingent upon
the quantity of its fixed constituents. Consequently, a judicious selection of three anchors
has been made. These constraints in anchor placement, along with spatial limitations, have
led to the demarcation of a square surveillance area, each side spanning fifteen meters.
Within Figure 6, one anchor has been reserved as the network coordinator and is denoted
as ‘node C’.
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Each worker has been outfitted with a distinct tag, while the allocation of tags to
construction machinery has been attached following the geometric attributes of the ma-
chinery itself. Specifically, a single tag is used for the front-end loader, while the excavator,
characterised by its mutable geometry, necessitates two tags—one affixed to the primary
body and the other appended to the extremity of the arm to monitor its deployed or
retracted state.
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All tags emit UWB signals, which are intercepted by all anchors. These tags establish
connectivity with the worker’s personal device, typically a smartphone, through a Bluetooth
Low Energy (BLE) link. Tag positions are captured at intervals of one hundred milliseconds
by the worker’s device, which subsequently undertakes required calculations to verify
proximity between workers and potential machineries. In the event of necessity, the device
issues a notification signal to notify the worker. Specifics pertaining to the nature of
notification signals have been intentionally omitted within the scope of this paper. The
personal device plays a pivotal role in ensuring safety, as it is imperative that emergency
notifications are locally computed to circumvent complications that may arise due to
communication latency. In addition to its safety functions, the worker’s personal device
serves as the communication channel for the RTLS, transmitting data via the MQTT protocol
over a WiFi network, thereby facilitating the storage of transmitted location data in a
suitable database for subsequent analytics.

The limitation inherent in this system pertains to the reliance on the personal devices
of workers to serve as intermediaries for tag connectivity. This limitation may be rectified
through the utilisation of the BLE beacon mode, thereby taking advantage of personal
devices as a crowd of receivers. Although the feasibility of this approach could not be
empirically assessed due to the incapacity of the DWM1001 to emit BLE beacons, it is
noteworthy that the radio range and data rate characteristics of the devices employed in
the experiments are compatible with the exigencies of BLE beacon implementation, thereby
rendering the proof-of-concept theoretically viable [54].

This implementation furnishes a framework for precise object localisation within the
confines of a construction site, thereby facilitating safety measures, management oversight
and progress evaluation. It is imperative to highlight the susceptibility of UWB technol-
ogy to electromagnetic reflections and obstructions, which may result in potential blind
spots. Meticulous placement and scrupulous management of anchors constitute imperative
considerations, particularly in safety-critical scenarios.

4.3. PWS Architecture: Infrastructure-Less Site

The actual nature of a construction site as an operating environment is the second
factor considered for the development of the PWS. In fact, costs, environment or operational
constraints could impede the deployment of anchors and their consequent management.
In addition to the infrastructure site configuration, an infrastructure-less configuration (i.e.,
without stationary anchors) has been developed to eventually overcome the limitation
related to the adoption of stationary anchors in a dynamic operating environment such as a
construction site. In such cases, it is possible to renounce the absolute localisation of objects
on construction sites—as it is possible to do with the infrastructure configuration—and
narrow down the scope of data collection to the distance between a worker and surrounding
dangers. Figure 7 shows the system architecture in case it is not possible to use fixed anchors
on site.
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Devices and measurement principles are the same as in Sections 4.1 and 4.2. In this
case, tags have been equipped to the construction machinery while workers have been
equipped with anchors. Using the two-ranging method, via the embedded PANS firmware,
tags can identify their location with respect to anchors. It is obvious that, as anchors
are moving freely in the site and the global reference system is moving with them, such
localisation data is useless, but it needs the measure of the distance between any tag and
each anchor to be calculated. As tags are attached to the machinery, it constantly knows the
distance between itself and any detected worker while working.

4.4. Privacy-by-Design Approach for PWS Development

The third factor considered in the development of the PWS is privacy and data protec-
tion. Privacy issues have been considered in the context of the need for greater transparency
in how employee-related data are collected, stored and used in order to promote the adop-
tion of digital innovation to effectively support worker safety [13,42–45]. It should be noted
that the employer cannot have access to the worker’s personal data, including his or her
position on the site, if this could somehow provide additional information about his or her
productivity, due to the potential conflict with the worker’s statute.

It is then necessary to adopt pseudonymisation techniques to make it difficult to
trace back to the identity of the worker, who, in this use case, should not be supervised
in terms of location on the construction site but warned in case of danger to his or her
safety. Attention had to be paid to this point, as it was felt that it might not be sufficient to
adopt a technique of hashing the worker’s name. This data, in fact, although masked by a
seemingly insignificant identifier, could still be matched to the worker based on his or her
possible qualifications (e.g., the ability to manage a particular piece of equipment) or other
factors. In other words, in designing the PWS, the following question was asked: is it still
possible to trace the identity of the worker? If so, it was considered not sufficient to “mask”
his or her name but instead to understand based on what data this was identifiable and
by whom.

To address this aspect, a privacy-by-design approach was adopted for developing the
system architecture of the PWS. The proposed reasoning is valid for both the infrastructure
and the infrastructure-less configurations and the related solutions. However, the scenario
which poses the most critical concerns about data privacy is the infrastructure case. Indeed,
it collects the absolute location of each object monitored—workforce included—with respect
to the whole construction site, allowing complete real-time tracking that can be potentially
used as a surveillance system. On the contrary, the infrastructure-less solution is only able
to indicate the relative position between two entities collecting data only on their mutual
interaction, without a single clue on their actions with respect to the construction site and
thus to workers’ duties and productivity.

For these reasons, the infrastructure site configuration, which shares information with
a central system that manages information at the organisation level and to which data are
transferred for later analysis, has been used as a reference case to evaluate issues about
data privacy. The first step for a privacy analysis is to identify the type of data processed
by the computer system. The following types are considered:

• Relative distance: The value defining the relative distance is calculated from the
network of anchors positioned on the site. Therefore, data are potentially available to
anyone. The information identifying this distance to a type of actor is available to the
personal device of the worker but not to the user of the central system. The latter is
only notified of the presence of vehicles according to the proximity rules identified.

• Operator identity: Nobody is allowed to identify the worker using the PWS during
normal operations. According to the GDPR in force in the European Union, only the
so-called DPO (Data Protection Officer) has the authority to identify and correlate data
originating from an actor (i.e., the worker) with his or her actual person. The PWS has
been designed by implementing this requirement.
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• Machinery identity: Each construction vehicle is classified according to the risk it
introduces to the construction site since the explicit identification of a construction
vehicle could lead back to the identity of the worker who is operating it. A vehicle
class is defined with the couple conventional classification of the vehicle—number of
configurations it can assume (e.g., (excavator—2), (front-end loader—1)).

• Entity definitions: Each entity with which system actors (in this case, workers and
machineries) interact should be defined to be present in the digital representation
(i.e., the data model representing each system actor). Details about the interac-
tion could lead to the identification of the subject who interacts and thus lead to
privacy violations.

• Interaction events: each interaction event identified by the system (as dangerous
proximities, interdicted area crossing, etc.) could lead to a privacy violation depending
on the detail of the information available to whom the event is notified.

The construction vehicle and the worker detect the position of each other. Once the
distance rules have been applied to evaluate the risk, the central system receives the relative
position. The only difference between a construction vehicle and a worker is the computing
power available to the device equipped by the vehicle, which attempts to detect all nearby
actors (workers and other construction vehicles). To ensure a design that protects privacy,
an assessment has been made for each information looking for potential privacy threats to
define suitable specifications. In the particular scenarios investigated in this study, it has
been important to identify, for each type of data considered, the following: (a) the origin
of the data, (b) how it is manipulated, (c) if, how and where it is stored, (d) the kind of
treatments it is subject of, (e) the level of access, (f) information obtained by the data and
(g) information not obtained by the data.

The categories of personal data to be protected that are identified by the GDPR as well
as the expected allowed operations are reported in Table 2. The expected operations not
relevant for the analysed use case have been crossed out.

Table 2. Categories of personal data identified by the GDPR and filtered for the construction site use
case and types of operations allowed.

Categories of Collected Personal Data Types of Operations on Personal Data

1. Direct identification A. Collecting
2. Indirect identification B. Recording
3. Particular categories data C. Organisation and Structuring
4. Health data D. Conservation
5. Genetic data E. Consultation
6. Biometric data F. Use
7. Geolocalisation G. Editing

H. Extraction
I. Fully Automated Decision Processing
J. Profiling
K. Pseudonymisation
L. Anonymisation
M. Communication by transmission
N. Dissemination
O. Comparison or Interconnection
P. Limitation
Q. Deletion
R. Destruction
S. Secure Copy (encrypted backup)
T. Restore
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In Table 3, each data category identified for the considered use case is classified, and
the expected operation is marked using the definitions contained in Table 1.

Table 3. Data use case matched with the relevant categories of personal data and types of operations
(note: x* means that data can be accessed by the data owner (i.e., the worker) and by the DPO).

1 2 3 4 5 6 7 Data Category a b c d e f g h i j k l m n o p q r s t

x x Relative position of
each actor x x x x* x x x

x x Position of the
vehicle x x x x* x x x

x x Definition of Area
Location x x x x x x

x Definition of Alert
Entity x x x x x x

x Definition of access
restriction x x x x x x

x x Access to
Forbidden Area x x x x* x x x

x x Transit in
Forbidden Area x x x x* x x x

x x Stop in Forbidden
Area x x x x* x x x

x Vehicle Digital
Signature x x x x x x x x

x x Vehicle Access
Request x x x x* x x x

The architecture of the system constrains the storage of user-generated data on per-
sonal devices, and only in a second stage does the device attempt to update the remote
system that holds the location of all tags assigned to the construction site. In accordance
with the GPDR’s privacy requirements, the update imposes an anonymisation phase on the
data to be stored. This procedure consists of generating a unique reference each time:

• The app is installed;
• An authorised account is logged in;
• A unique reference is created for each type of data;
• Location and proximity;
• Service status;
• Processing stage.

A dedicated database, with dedicated and different credentials, is also used for each
type of information. To guarantee the integrity of the transmission, the HTTPS protocol has
been used via oAuth2 authentication. Each user will have specific credentials and access
based on a Role-Based Access Control (RBAC) schema.

5. Conclusions

This paper describes the design of a prototypal low-cost, ultra-wideband (UWB)-based
and GDPR-compliant proximity detection system able to work with and without fixed
anchors. The PWS is addressed to small and medium-sized construction companies to
collect real-time data from the construction site to monitor the risk of collision accidents
involving construction vehicles in motion and the workforce. The design of the PWS has
considered, in an integrated manner, factors such as the cost of deployment, the actual
nature of a construction site as an operating environment and data privacy.

Commercially available modules were used. This choice has allowed an optimal trade-
off between location accuracy and device cost, making it a suitable solution for accurate
distance measurement on construction sites. The reasonable cost of the instrumentation
makes it possible to widen the pool of potential construction companies that can adopt
such a system, possibly including small and medium-sized construction companies. From a
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construction management perspective, both an infrastructure (i.e., with fixed anchors) and
an infrastructure-less (i.e., without fixed anchors) scenario were analysed. On the one hand,
the infrastructure scenario should be integrated with the evaluation of the positioning
of UWB fixed anchors in the design of the construction site layout and the schedule of
construction activities.

This would allow construction managers to consider the installation of stationary
anchors to effectively ensure signal coverage which is always consistent with the current
activities. On the other hand, the infrastructure-less scenario has been developed to
consider the actual nature of a construction site as an operating environment by eventually
overcoming the limitation related to the adoption of stationary anchors. In such cases,
instead of detecting the absolute localisation of objects, as done with the infrastructure
configuration, it is possible to narrow the scope of data collection to the distance between a
worker and surrounding dangers (e.g., moving construction vehicles). Finally, by adopting
a privacy-by-design approach, the PWS has been developed in accordance with the GDPR
of the European Union. Categories of personal data and expected operations for the use case
have been identified and managed, including options for data accessibility by employers,
workers or data protection officers.

Future research could assess the PWS under real conditions on construction sites,
which are characterised by common disturbances and noise. Moreover, additional factors
could be integrated for its further development such as the timely interpretation of data that
is required to maintain the user communication loop. This relates to both human–computer
interaction and signal recognition (i.e., the ability of the worker, in this case, to understand
the signal received by the PWS). In addition, if the PWS detects excessive proximity to a
moving construction vehicle, a suitable warning system might be implemented to alert
workers so that they can take the necessary mitigation measures. The noise and disturbance
conditions typical of construction sites, as well as the possibility of worker distraction in
the event of excessive alerts, should be taken into account when developing these warning
systems. Furthermore, cooperation with manufacturers could make it possible to directly
intervene on construction vehicles in order to optimise the technological capabilities of
the PWS.
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