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Optimal Motor Unit Subset Selection for
Accurate Motor Intention Decoding: Towards

Dexterous Real-Time Interfacing
Dennis Yeung , Francesco Negro , and Ivan Vujaklija , Member, IEEE

Abstract— Objective: Motor unit (MU) discharge timings
encode human motor intentions to the finest degree. Whilst
tapping into such information can bring significant gains to
a range of applications, current approaches to MU decod-
ing from surface signals do not scale well with the demands
of dexterous human-machine interfacing (HMI). To opti-
mize the forward estimation accuracy and time-efficiency
of such systems, we propose the inclusion of task-wise
initialization and MU subset selection. Methods: Offline
analyses were conducted on data recorded from 11 non-
disabled subjects. Task-wise decomposition was applied
to identify MUs from high-density surface electromyog-
raphy (HD-sEMG) pertaining to 18 wrist/forearm motor
tasks. The activities of a selected subset of MUs were
extracted from test data and used for forward estimation
of intended motor tasks and joint kinematics. To that
end, various combinations of subset selection and estima-
tion algorithms (both regression and classification-based)
were tested for a range of subset sizes. Results: The
mutual information-based minimum Redundancy Maximum
Relevance (mRMR-MI) criterion retained MUs with the high-
est predicative power. When the portion of tracked MUs
was reduced down to 25%, the regression performance
decreased only by 3% (R2=0.79) while classification accu-
racy dropped by 2.7% (accuracy = 74%) when kernel-based
estimators were considered. Conclusion and Significance:
Careful selection of tracked MUs can optimize the effi-
ciency of MU-driven interfacing. In particular, prioritization
of MUs exhibiting strong nonlinear relationships with tar-
get motions is best leveraged by kernel-based estimators.
Hence, this frees resources for more robust and adaptive
MU decoding techniques to be implemented in future.

Index Terms— EMG decomposition, feature subset selec-
tion, human–machine interfacing, motor units.
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I. INTRODUCTION

SURFACE electromyography (sEMG) is one of the most
prominent means for noninvasively accessing user inten-

tion in human-machine interfacing (HMI). Specifically, in the
control of upper-limb prosthetics, sEMG-operated or myoelec-
tric systems remain the only class of powered devices that are
clinically available. Here, state-of-the-art approaches have typ-
ically relied on pattern recognition and regression algorithms
to decode user intention from the time-domain features of
multiple recorded channels [1], [2]. While suitable for devices
offering basic functionality, the maximal throughput using
such global features is limited by the poor specificity of the
sEMG signal [3]. As sEMG is an interferent signal comprised
of superimposed action potentials originating from spatially
distributed sources inside the muscle [4], the effects of spatial
filtering (eg. volume conductor) and amplitude cancellation
can confound the relationship between global amplitude char-
acteristics of the signal and the underlying neural drive [5], [6],
[7], [8]. Conversely, knowledge on the firing times of motor
neurons innervating these muscles would provide access to the
most basic unit of neural drive responsible for instigating force
generation, potentially facilitating more intuitive and dexterous
interfacing [9], [10].

While the discharge times of individual MUs can be
automatically obtained via spike sorting of intramuscular
recordings [11], [12], the invasive nature of the signal
acquisition presents an added obstacle to clinical feasibility.
Alternatively, the use of high-density sEMG (HD-sEMG)
recordings in conjunction with convolutive blind source
separation (BSS) [12], [13], [14] have been shown to accu-
rately extract MU activity during voluntary contractions.
Such decomposition methods applied to HD-sEMG record-
ings are capable of identifying larger populations of active
MUs [10] and are applicable to a variety of musculatures
with components that serve both shared and specific motor
functions [15], [16].

Online extensions of such decompositions techniques have
since been developed to operate in real-time, extracting MU
activity from smaller time windows of HD-sEMG (50-250 ms)
[17], [18], [19], [20], [21]. The majority of such methods
share a common process in the pre-identification of MUs and
their respective separation vectors (MU filters) from training
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data via batch (offline) decomposition. Here, MU filters refer
to spatiotemporal projections that compensate for the action
potentials of the identified MUs. Their direct application in
decomposing newly acquired HD-sEMG has received some
validation regarding isometric contractions [19], [22], [23].
More recently, the incorporation of deep learning has also been
proposed [24], [25]. Coined as hybrid approaches [10], BSS-
based decomposition is still relied upon for initial extraction of
MU activities subsequently used in the training of a deep net-
work. Such an approach has been shown to be more robust in
online decomposition [25]. For addressing the non-stationary
conditions of non-isometric contractions, means of adapting
the MU filters in real-time have also been proposed [17], [20].

In the context of HMI, online decomposition is used to
extract motoneuronal activity to support the estimation of
motor intention. In [18], real-time control of a hand pros-
theses over 4 motion classes was demonstrated using the
decomposed activity of five MUs. In [21], control over two
degrees-of-freedom (DoFs) driven by MU activity extracted
from the forearm was shown to outperform interfacing with
conventional global sEMG features. Online experimentation
has also shown subjects to be capable of learning novel MU
recruitment orders given appropriate feedback, expanding the
potential control bandwidth that one muscle can support [26].

To facilitate HMIs with greater functionality, it is beneficial
to track large populations of MUs. However, a single decom-
position step to process HD-sEMG comprised of multiple
motor tasks tends to identify inadequate sources for accu-
rate estimation of motor intention. Thus, recent studies have
highlighted the need to perform decomposition in a task-wise
manner where segments of the HD-sEMG signal pertaining
to distinct motor tasks are decomposed separately [27], [28].
To address the redundancy of identifying a single MU multiple
times, sources that share a significant portion of discharges
(20-30%) over the full repertoire of training motions are
deemed to be equal. The removal of duplicate MU extractions,
however, does not ensure optimal efficiency. Given that the
hardware capabilities of wearable HMIs tend to be more
constrictive than the machines employed in laboratory-based
interfacing experiments, it is practical to consider the prioriti-
zation of MUs that benefit estimation performance the most.

To that end, feature selection algorithms may be considered.
These have typically been used to improve the efficiency of
machine learning in applications involving high data dimen-
sionality and can be categorized as either wrapper, embedded,
or filter-based methods [29], [30], [31]. Whereas wrapper
and embedded methods require the output of the learned
model to inform the search of features, filter methods are
model-agnostic and rely on the ranking of candidates based
on some measure of dependency with the target variable.
The simplest measures of dependency include Pearson’s or
Spearman’s correlation coefficients [32]. Here, since the target
kinematics are multivariate, Canonical Correlation Analysis
(CCA) can be utilized instead [33], [34]. Another popular
measure is mutual information (MI) which is capable of
detecting nonlinear dependencies [35], [36], [37]. The union
of the most informative features, however, does not yield the
most informative subset [38]. Thus, the goal to maximize

joint dependency through an exhaustive search of all possible
feature combinations is computationally intractable for most
cases. Therefore, various forward-searching algorithms have
been developed [32], [39], [40], amongst which the minimal
Redundancy Maximal Relevance (mRMR) framework [41],
[42] has received widespread usage [36], [43], [44], [45].

This work, therefore, investigates the use of feature selec-
tion techniques in finding the optimal MU subsets to be
tracked. In the context of wearable HMIs, limited compu-
tational resources have to be shared between the tasks of
online decomposition and motor intention estimation. Given
that the machine learning algorithms employed to accom-
plish the latter can have wildly varying complexities, it is
worthwhile to also investigate compromising the quantity of
tracked MUs in order to accommodate more computationally
expensive estimation algorithms. The incorporation of subset
selection to an MU-driven estimation pipeline was analyzed in
cross-validation format using HD-sEMG from 18 motor tasks
pertaining to the single and pair-wise combined activations
of three wrist/forearm DoFs. From the train data set, MUs
were identified via task-wise batch decomposition and the
subsequent MU subset selection step was performed with
different selection criteria. The mRMR scheme was employed
using CCA and MI as measures of dependency (mRMR-CCA
and mRMR-MI, respectively). For comparison, their Maximal
Relavance counterparts (MR-CCA and MR-MI, respectively)
along with two arbitrary selection schemes based on random
selection and maximal MU activity were also tested. Assess-
ment of the selection criterion was made based on the changes
to open-loop accuracy with different estimation algorithms as
MU subset sizes were reduced. The estimation algorithms were
driven by the spiking activities of the subset MUs, extracted
using an online decomposition approach applied to the test
set data. Results using three regression algorithms: linear
regression (LR), multilayer perceptron (MLP) and kernel ridge
regression (KRR), and three classification algorithms: linear
discriminate analysis (LDA), k-Nearest Neighbors, (kNN) and
kernel support vector machine (KSVM) were obtained.

II. METHODS

A. Subjects
Eleven healthy subjects, seven male and four female, all

right-handed, aged 26-34, participated in the experiment. The
study was approved by the local ethical board of Aalto
University. In accordance with the Declaration of Helsinki,
all participants gave their written informed consent prior to
the experiments.

B. Experimental Protocol
HD-sEMG was recorded from each subject’s dominant side

with three 8 × 8 electrode matrices spaced evenly around
the bulk of the forearm. All 192 channels were sampled
at 2048 Hz by a benchtop bioamplifier (OT Bioelettronica, IT).
Wrist joint angles, along with pronation and supination, were
recorded at 80 Hz with three wireless Inertial Measurement
Units (IMUs) (Xsens Technologies B.V, NL) attached to the
posterior sides of the upper-arm, mid-forearm and hand.
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Throughout the experiment, subjects were seated upright
with their recorded limb relaxed by their side. Three
repetitions of single-DoF motions pertaining to wrist flex-
ion/extension (FL/EX), radial/ulnar deviation (RD/UD) and
forearm pronation/supination (PR/SU) were recorded. Each
repetition followed a trapezoidal activation profile of 2 s ramp
time and 10 s plateau time. In addition, three repetitions of
each pair-wise combination of the previously recorded motions
were obtained, resulting in a dataset of 18 individual motor
tasks. The recordings and subsequent processing were carried
out using a custom Matlab R2021b (MathWorks Inc, MA,
USA) framework.

Three-fold cross-validation was conducted where 2 repe-
titions from each motor task were aggregated to form the
training data from which MUs were initially identified, subset
selection was conducted, and estimators were trained. For
estimators with tunable hyper-parameters, an inner two-fold
optimization step was conducted within the training set. The
remaining repetition from each motor task formed the test
set used to perform simulated real-time decoding where the
HD-sEMG was processed in sliding windows of 100 ms length
which advanced in increments of 50 ms.

C. Decomposition Algorithms
1) sEMG Mixture Model: The decomposition methodology

employed in this work is based on a convolutive mixture model
for sEMG generation shown in (1) [12]:

z(k) =

L−1∑
l=0

A(l)τ (k − l) + ε(k) (1)

where z(k) is the column vector of M multichannel HD-sEMG
measurements (observations) at sample k, τ (k−l), the column
vector of delta train values from N identifiable sources and
ε(k), additive noise which also encompasses signal contribu-
tions from non-identifiable sources. A(l) is the matrix of action
potentials where each column encodes the action potential of
a MU at l samples after an impulse.

While Equation (1) describes a convolutive mixture of
finite-length impulse response filters, the observation vector
can be artificially extended with its time-delayed versions. This
transforms the de-mixing problem to that of instantaneous spa-
tiotemporal filters. Accounting for this extension, the mixture
model becomes:

z̃(k) = Ãτ̃ (k) + ε̃(k) (2)

where the tilde accent indicates extension by a factor of E
such that z̃(k) is now a column of M · E elements while Ã
now encompasses MU action potentials up to a duration of E
samples.

2) Initialization With Task-Wise Batch Decomposition: To
enable the estimation of MU activities in real-time, ini-
tial batch decomposition of training data is necessary for
pre-identification of active sources and their corresponding
MU filters. First, the HD-sEMG signals allocated for system
training are partitioned by motor task such that separate batch
decomposition steps can be conducted on each data block, Zc.
This has been shown to maximize the number of task-specific

MUs [27]. Here, variables derived from a specific motor task
are denoted by subscript c ∈ {1, . . . , C} with C = 18 in this
work.

The batch decomposition algorithm employed follows that
described in [12]. Here, a brief overview is provided while
the interested reader is referred to the original publication for
further exposition. The algorithm can split into the Sphering,
Extraction, Refinement and Acceptance steps. In the Sphering
step, the HD-sEMGs signals are extended, zero-meaned and a
zero-phase component analysis (ZCA) whitening transform is
calculated such that transformed observations will be decor-
related. This preprocessing creates the necessary conditioning
for the following steps to converge to valid MU filters and
sources. Candidate MU filters are first sequentially identified
by execution of Extraction and Refinement steps while the
final set of filters are chosen in the Acceptance step. In the
Extraction step, a separation vector is obtained by iterating a
fixed-point algorithm which optimizes source signal sparsity.
These iterations are interlaced with Gram-Schmidt orthogo-
nalization against past solutions to prevent convergence to the
same sources. The second Refinement step iteratively improves
the quality of the projection and source signal in terms of a
silhouette measure (SIL) which is a measure of accuracy of the
separation [12]. Previous studies have shown that sources with
a relatively high SIL value are often physiologically accurate
in both isometric and isotonic conditions [46]. To convert
the continuous source signal to a delta train, the signal is
first rectified by element-wise power of 2 and peak detection
algorithm is applied. Resultant peaks are then clustered by
the kmeans++ algorithm to differentiate MU spikes from
noise peaks. Finally, the Acceptance step validates sources that
satisfy a minimum SIL threshold (0.90 as per [12]), discarding
duplicate sources that have been repeatedly extracted as time-
shifted versions. These are identified as sources with over
30% common discharges (±0.5 ms timing tolerance) and the
version with the lowest coefficient of variance in inter-spike
intervals (COVisi) is retained. The accepted MU filters, Bc =[
bc1 , bc2 , . . . , bcNc

]
, where Nc is the number of MUs extracted

from motor task c, are stored for subsequent online extraction
of source signals. For online spike detection, the spike and
noise centroids for each source, hicn and locn , respectively,
are also stored: 8c = {(hicn , locn ), n = 1, . . . , Nc}. Prepro-
cessing transforms, such as the subtractive observation means,
E[z̃c(k)], and whitening matrix, Wc, are also retained for
online application.

3) Online Decomposition Algorithm: The online decomposi-
tion algorithm, which is based on the main Extraction step of
[12], as recently implemented by [18], operates on far smaller
windows of HD-sEMG, under strict time constraints. By reap-
plying preprocessing transforms and MU filters retained from
batch decomposition (Section II-C.2), MU activities can be
more efficiently estimated:

Sc(t) = B⊺
c Wc

(
Z̃win(t) − E[z̃c(k)]1⊺

)
(3)

where Z̃win(t) is the t th window of extended HD-sEMG sig-
nals, Sc(t) = [sc1(t), sc2(t), . . . , scNc

(t)]⊺ is the corresponding
matrix of estimated activities for MUs identified from motor
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Fig. 1. (a) Schematic for batch and online decomposition techniques
showing the parameters that are transferred. (b) Initialization process of
the proposed MU-based interfacing.

task c and 1 is a vector of ones of appropriate length.
Fig. 1A gives an overview of how these retained preprocessing
transforms and MU filters support the online algorithm when
executed on a newly acquired window of HD-sEMG.

Spike detection is then performed on each of the recti-
fied source signals where detected peaks are classified as
either spikes or noise based on distances from the stored
centroids. If the SIL of the spike train meets the minimum
threshold of 0.93, the decomposition quality is deemed to
be satisfactory and the spike events are accepted, otherwise,
all of that source’s spike events within the process window
are discarded. The output of the online algorithm is a vec-
tor of non-negative integers representing decomposed spike
counts, xc(t) =

[
xc1(t), xc2(t), . . . , xcNc

(t)
]⊺. Each element

corresponds to the number of discharges detected for a MU
(identified from the cth motor task) within the observations
stored in Z̃win(t). The decomposed spike count feature has
been used in past studies linking MU discharge patterns and
motor intention estimation [28], [47].

D. MU Subset Selection
A full feature matrix is first constructed by extracting the

activities of all identified MUs over the full training data
set. This is achieved by applying the online decomposition
method such that the activities of MUs initially identified from
individual motor tasks are extracted over the entire repertoire
of training movements (Fig. 1(b)).

For formulating the subset selection methods,
it is convenient to treat the full collection of MUs
as a set of random variables, F = {xi , i =

1, . . . , N | xi is an element of [x1(t)⊺, x2(t)⊺, . . . , xC (t)⊺]⊺},
which can be paired with recorded kinematics or class labels.
Here, the notation of ‘(t)’ has been omitted from xi for
convenience.

The subset selection step now identifies a subset, S, based
on some optimality criterion or selection scheme where the
cardinality of the subset is bounded, |S| ≤ ξ |F|, 0 ≤ ξ ≤

1. Future deployment of the online decomposition algorithm
would then only need to extract the activities of MUs within
S. In this study, ξ = 1, 0.5 and 0.25 was tested.

1) Canonical Correlation Analysis: A basic approach is to
prioritize MUs whose activities exhibit the strongest depen-
dency with the recorded kinematics, defined as a random
vector y =

[
y1, . . . , yD

]⊺, where D is the number of DoFs to
be estimated. Given two random vectors q and v with Q and
V elements, respectively, CCA finds respective projections α

and β such that the Pearson correlation between the projected
samples (canoncical variables) are maximized:

ρCCA (q;v) = max
α∈RQ , β∈RV

α⊺6qvβ√
α⊺6qqα

√
β⊺6vvβ

(4)

where 6qv is the cross-covariance matrix of q and v while 6qq
and 6vv are their respective auto-covariance matrices [33]. The
optimal subset under the MR-CCA criterion is thus found by
satisfying the following condition:

max
S⊆F

∑
xi ∈S

ρCCA (xi ; y) s.t. |S| ≤ ξ |F|, 0 ≤ ξ ≤ 1. (5)

2) Mutual Information: An alternative criterion is to consider
the mutual information between the individual MU activities
and the class label, ℓ, which annotates the motion type
at a particular time and takes values from {0, 1, 2, . . . , C}.
Given paired discrete random variables, q and v, with values
occupying Q and V , respectively, their mutual information is
calculated as the reduction in uncertainty that knowledge of
one affords to the value of the other:

I(q; v) = H(v) − H(v|q)

=

∑
qi ∈Q

∑
v j ∈V

p
(
qi , v j

)
log2

p
(
qi , v j

)
p (qi ) p

(
v j

) (6)
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Fig. 2. Example of subset MU activity extracted over unseen HD-sEMG data pertaining to all 18 motor tasks which include single and combined
DoF activations. The subset was identified via mRMR-MI with a size of 25%. The corresponding estimated kinematics obtained using KRR are
shown at the bottom. Estimated DoFs pertaining to wrist flexion/extension, radial/ulnar deviation and forearm pronation/supination are shown as
solid blue, red and yellow lines, respectively. The recorded ground-truth kinematics are shown as dotted lines. This particular example has an R2

of 0.86.

where H(·) is the Shannon entropy of the argument variable
and p(·) is the event probability. For this work, the marginal
and joint distributions can be exactly represented by his-
tograms with integer-centered bins. The optimal subset under
the MR-MI criterion is thus found by satisfying (7) [41]:

max
S⊆F

∑
xi ∈S

I (xi ; ℓ) s.t. |S| ≤ ξ |F|, 0 ≤ ξ ≤ 1. (7)

3) Maximal Relevance and Minimal Redundancy: To reduce
the redundancy within S, an incremental approach can be taken
where, at each step, candidate MUs are also penalized by
their degree of dependency with the MUs already selected.
Incorporating this, the step-wise optimization criterion for
mRMR-CCA and mRMR-MI are expressed as (8) and (9),
respectively,

max
xi ∈F−S

ρCCA (xi ; y)

ρCCA (xi ; S)
(8)

max
xi ∈F−S

I(xi ; ℓ)

1
|S|

∑
s∈S I(xi ; s)

. (9)

Here, (9) is equivalent the Mutual Information Quotient (MIQ)
scheme presented in [42] while (8) is the variant which
considers relevancy and redundancy in terms of CCA [34].

4) Selection by Random and by Maximum Activity: For com-
parative purposes, two naïve selection schemes were also
tested. One selects MUs by random while the other method
prioritized MUs that had the highest spike counts during the
training movements.

E. Motor Intention Estimation Algorithms
Three regression-based kinematics estimation methods (LR,

MLP, KRR) and three classification-based motor-task estima-
tion methods (LDA, kNN, KSVM) were tested. Prior to being
passed to the estimation algorithms, the decomposed spike

counts of selected MUs were smoothened by a 4th order
moving average filter. Estimated joint angles from regression
algorithms were further smoothened by a 6th order moving
average filter.

1) Regression: In LR, a linear least squares mapping
between y and the smoothed neural signals of MUs in S is
established by the Moore-Penrose pseudoinverse method [48].

For MLP-based estimation, single hidden-layer feedforward
networks using the tanh activation function are trained via the
Levenberg-Marquardt backpropagation algorithm. Similar to
[49], each DoF is estimated by a dedicated network while
the optimal hidden-layer node counts are obtained via grid
search. To compensate for randomized initialization, training
processes are rerun 10 times and the model with the lowest
train error is used.

With KRR, a mapping is formed by the inner products
between samples projected to a higher dimensional kernel
feature space. The radial basis function (also referred to as the
Gaussian kernel) is employed. Two hyperparameters, the ridge
regularization scale and the spread of the Gaussian kernel, are
optimized via grid search.

2) Classification: In LDA-based classification, the predicted
class is given by the maximum likelihood estimate (MLE)
where classes-conditional densities are assumed as Gaussians
with equal covariance matrices. Despite the simplistic mod-
elling, the method has been found to yield practical results
in past studies and is often used as a benchmarking tool for
gauging more sophisticated techniques [2], [50].

kNN incorporates all training samples as the classification
model. Given a queried input, the majority class amongst
proximal (by Euclidean distance) training samples is given
as the estimate. The optimal numbers of proximal training
samples to consider are found via grid search.

KSVM forms a decision boundary between two clusters
by maximizing the region between two marginal hyperplanes
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TABLE I
NUMBER OF DECOMPOSED MUS FROM EACH MOTOR TASK

identified by support vectors. As KSVM is strictly a binary
classifier, extending its use to a multi-class scenario can be
done via a One vs. One topology where C(C − 1)/2 clas-
sifiers are formed, one for each pairwise comparison, and
the estimated class is given by majority vote. As with KRR,
the Gaussian kernel is used to permit nonlinear decision
boundaries. Two hyperparameters, the penalization weight of
training misclassifications, and the spread of the Gaussian
kernel, are optimized by grid search.

F. Performance Metrics and Statistical Analyses
The performance of regression-based estimation algorithms

were measured in terms of the R2 metric [49] while categor-
ical prediction of motor tasks was gauged by classification
accuracy. To detect significant differences between the use of
full MU sets and subsets of various sizes and composition,
repeated-measures ANOVA (RM-ANOVA) was conducted.
Data from each estimation algorithm was analyzed sepa-
rately with samples taken from the averaged cross-validation
results of each subject. Normality of datasets were verified
by Shapiro-Wilks tests. Detection of statistically significant
differences was followed by Bonferroni-corrected pairwise
comparisons. For direct comparisons between subset selec-
tion schemes, focused RM-ANOVA was also conducted at
each subset size. Similarly, detection of significant effects
were followed by Bonferroni-corrected pairwise comparisons.
Statistical analyses were conducted with SPSS Statistics 28
(IBM, Armonk, NY, USA) with significance thresholds set at
P < 0.01.

III. RESULTS

The number of MUs decomposed from each motor task
is given in Table I. On average, 20.3 ± 8.8 viable MUs
were extracted via batch decomposition from two training
repetitions of each motor task. On the other hand, application
of the batch decomposition algorithm on HD-sEMG data
encompassing all motor tasks yielded only 4.8 ± 2.8 MUs
which is insufficient for prediction of all recorded motor tasks.
Table II gives the total number of MUs extracted from each
subject in each cross-validation fold. On average, 365.9±103.0
MUs were extracted. This also corresponds to the average size
of F.

Fig. 3(a-d) shows the baseline estimation performances
from using the full sets of extracted MUs. A weak positive
correlation between the number of MUs in F and performance
is shown by linear regression analyses that give R-squared

Fig. 3. Baseline performances from using the full sets of extracted MUs.
(a) Kinematics estimation performances plotted against the number of
MUs in F. Results from all estimators are aggregated and displayed
with each cross representing the result from one cross-validation fold.
The mean result from each subject is shown as a circle. Horizontal and
vertical error bars indicate one standard deviations in total MU count
and R2, respectively. The line-of-best fit is shown as a gray dashed
line. (b) Classification accuracy displayed in the same format. (c) The
average R2 across each DoF. (d) The average classification accuracy
across each motor task.

TABLE II
TOTAL NUMBER OF MUS DECOMPOSED PER CROSS-VALIDATION

FOLD FROM EACH SUBJECT

values of 0.329 and 0.275 for regression and classification-
based estimators, respectively. The cross-validation average
R2 values for each DoF are 0.79 ± 0.08, 0.72 ± 0.08 and
0.76±0.09 for DoF 1, 2 and 3, respectively. On average, the
motor task with the highest classification accuracy is FL+UD
(0.90±0.08) while the lowest is RD (0.62±0.18).

Estimation performances from different subset selection
criteria and subset size combinations are displayed in Fig. 4(a).
Shapiro-Wilk’s tests confirmed the normality of all results.
Statistically significant differences were detected amongst the
subset size/selection criteria combinations for all estimation
algorithms. From the pair-wise comparisons, dependency-
based selection criteria (MR/mRMR-CCA/MI) prevented
statistically significant performance drops at 50% subset size
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TABLE III
REGRESSION-BASED ESTIMATION PERFORMANCE (R2 ) WITH FULL

SET OF MUS AND 25% SUBSET SIZE. (RELATIVE DROP

SHOWN IN BRACKETS)

TABLE IV
CLASSIFICATION ACCURACY WITH FULL SET OF MUS AND 25%

SUBSET SIZE. (RELATIVE DROP SHOWN IN BRACKETS)

across all estimation algorithms except LR. At 25% subset
size, only the MI-based selection schemes (MR/mRMR-MI)
prevented significant performance reductions with the same
estimation algorithms. From the focused RM-ANOVA, signif-
icant differences between the selection criteria were detected
at every subset size across all estimators. Fig. 4(b) shows the
results from the Bonferonni-corrected pairwise comparisons.
Across the 12 separate analyses, no significant differences
were detected amongst the dependency-based selection cri-
teria. However, mRMR-MI accrued the highest counts of
statistically significant performance gains over the naïve
selection schemes of maximum activity (8/12) and random
selection (12/12).

The average R2 and classification accuracies obtained at
25% subset sizes are shown in Tables III and IV, respectively.
Overall, subsets selected by mRMR-MI provided the lowest
reduction in performance (−3.5% R2 and −2.1% classification
accuracy) while randomized selection performed the worst
(−14.8% R2 and −11.6% classification accuracy). On average,
consideration of redundancy (mRMR) improved upon MR,
while MI, as a measure of dependency, proved to be more
appropriate than CCA for this application.

IV. DISCUSSION

In this work, we have proposed an approach to MU-based
HMI designed to scale efficiently with the number of
supported target functions. The main components of the
method are the initial task-wise extraction of MUs and the

subset selection step. Pseudo-online testing was conducted to
gauge the feasibility of the approach and to identify an ideal
selection criterion based on the responses of various estimation
algorithms to the different subset compositions.

A. Motor Task-Wise MU Identification
The task-wise batch decomposition scheme employed here

is similar to the ‘segment-wise decomposition’ scheme in [27].
There, the approach was verified, on both synthetic and exper-
imental data, to extract more MUs from HD-sEMG activity
pertaining to multiple motor tasks. This is in agreement with
the results obtained here. However, a number of past studies
on MU-based interfacing [18], [21], [47] utilize a different
approach. Namely, the entire population of MUs used for
motion estimation were extracted from a single decomposition
process conducted on the full aggregation of training motions.
Of note is that the number of supported motions in such
studies were relatively low, not exceeding four motion classes.
Indeed, decomposition of multi-task signals tend to yield less
sources which limits the performance of motor estimation [27].
Conversely, in [28] and [51], separate decompositions were
conducted to extract MUs from different motions. In both
cases, the rationale for decomposing MUs from each task
separately was to maximize the number of identified MUs. The
former study extracted MUs from the antagonistic activations
of three DoFs (6 motor tasks) while the latter extracted MUs
from single and combined finger flexions (10 motor tasks).
Here, we further extend the application of this approach by
identifying and tracking MUs from 18 motor tasks which can
be used to facilitate to a highly dexterous HMI.

B. MU Subset Selection
By identifying an optimal subset of MUs, the computational

demand of online decomposition is reduced as the activities
of redundant MUs are no longer tracked. Moreover, the model
complexity of the downstream estimation algorithms are also
reduced due to the lower input feature dimensionality. In that
regard, it is important to distinguish the suitability of feature
selection over dimensionality reduction techniques as the latter
operates by learning projections to subspaces which would still
require the extraction of the full set of MU activities.

The mRMR criterion was shown to be effective in selecting
the best MUs given the large performance disparities compared
to the naïve selection methods. This difference became even
more pronounced at smaller subset sizes (Fig. 4(a)). The use of
MI as a measure of dependency was also shown to outperform
CCA in almost all cases (Table III and Table IV). This may be
attributed to the capability of MI in capturing both linear and
nonlinear relationships. As such, nonlinear kernelized CCA
may then offer improved feature ranking over CCA [33], [45].
While the subset portions tested here are arbitrary, subset sizes
in real-world use cases would be informed by computation
resource constraints.

One by-product of the task-wise decomposition scheme
is that the same MU can be identified multiple times from
the separate decomposition processes. This is expected as
many motor tasks supported by MU-based interfacing share
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Fig. 4. (a) Violin plots of estimation performance with different estimation algorithms, subset selection criteria and subset sizes. Each dot represents
one sample (subject average). Light shaded areas represent probability density functions estimated by kernel density estimation while darker shaded
blocks show the 1st-3rd quartile range and medians are indicated by black notches. Statistically significant differences with corresponding full set is
indicated by asterisks. (b) Pairwise-comparisons focused at each subset selection size. The color shading of each off-diagonal cell corresponds to
performance differences calculated as the subtraction of the column scheme from the row scheme. Significant differences are marked by asterisks.

recruitment of the same muscles. In other works, duplicate
extractions have been identified by either shared spike events
or similarity in action potential profiles [27], [28], [51]. Here,
the consideration of redundancy inherently remedies repeated
MU extractions as duplicate source activities will exhibit high
dependencies with one another. Hence, the mRMR criterion
automatically addresses the issue of duplicate extractions
while also ensuring that the optimal copy of the MU filter
for the application is preserved.

C. MU-Driven Estimation Algorithms
In this study, the proposed initialization pipeline for

MU-based HMI was paired with six different estimation
algorithms from two myocontrol paradigms: classification and

regression-based control. The latter natively supports ‘Simul-
taneous and Proportional Control’ which is considered a more
intuitive mode of interfacing as it permits fluid translation
between motor tasks and activation intensities [52]. Regard-
less, recent studies in MU-driven interfacing have incorporated
estimators from both paradigms. For instance, [18], [53], [54]
utilized linear SVM while [16] used LDA, [21], [51] used
LR and in [28], MLPs with two hidden layers were used.
Of note is that kernel methods have not been employed
despite their favorable performance in conventional myocon-
trol studies [49].

Here, we directly compare these estimation algorithms,
where again, kernel-based methods (KRR and KSVM) yielded
the highest baseline estimation accuracies. One major draw-
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back of kernel methods is that they require calculation of
the kernel function between the input and all training data
points. This can be computationally cumbersome and hard to
execute under the strict time constraints for HMI applications.
Hence, MU subset selection may be used to make the deploy-
ment of these estimation algorithms more feasible as online
decomposition and kernel function overheads are reduced.
The results show this is indeed worthwhile as KRR trained
with 25% of MUs selected by mRMR-MI outperformed LDA
and MLP when those algorithms had access to the full set
of MUs (Table III). Likewise, KSVM trained with 25% of
MUs selected by mRMR-MI performed equally with LDA
and outperformed kNN when trained with the full set of MUs
(Table IV).

D. Limitations and Future Work
In this work, only pseudo-online analyses was conducted

though it is well known that the relative real-time control
performances between estimation algorithms can differ from
their open-loop accuracies [50], [55]. This is largely due to
feedback-enabled user adaptation. Thus, one may expect the
relative performances between algorithms to change. More-
over, it is still unknown if an interaction exists between
user-learning and different MU subset compositions and sizes.

Batch and online decomposition algorithms were applied to
HD-sEMG recorded over dynamic contractions even though
the decomposition algorithms rely upon an assumption of
stationarity. While past works have similarly applied such
methods over dynamic contraction data [51], no quantitative
data regarding the decomposition accuracy of such cases cur-
rently exist. Here, a higher SIL threshold (0.93) was employed
in the acceptance of spikes to compensate for the greater
variances between the data used for initialization of MU
filters and the data presented in subsequent testing phases.
Meanwhile, recent works have focused on adaptive MU filters
that can compensate for the changes in action potentials due to
dynamic contractions [20]. Given that any MU filter adaptation
increases the complexity of online decomposition, the MU
subset optimization work here becomes more relevant.

V. CONCLUSION

We have further demonstrated the feasibility of MU-based
HMI by extending the task-wise decomposition scheme to
extract MUs that facilitate estimation of 18 motor tasks.
Given the strict time constraints of HMI applications and
the limited computational capabilities available on wearable
devices, optimization of the online decomposition and motor
estimation steps is warranted. To that end, mRMR-MI was
shown to be a highly effective criterion for the selection of MU
subsets that exhibit a high collective predictive power. In turn,
the activities of these MU subsets were best leveraged by
kernel-based algorithms for the estimation of motor intention.
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