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Abstract: Digital signal processing has revolutionized many fields of science and engineering,
but it still shows critical limits, mainly related to the complexity, power consumption, and
limited speed of analogue-to-digital converters. A long-sought solution to overcome these
hurdles is optical analog computing. In this regard, flat optics has been recently unveiled as
a powerful platform to perform data processing in real-time, with low power consumption
and a small footprint. So far, these explorations have been mainly limited to linear optics.
Arguably, significantly more impact may be garnered from pushing this operation towards
nonlinear processing of the incoming signals. In this context, we demonstrate here that nonlinear
phenomena combined with engineered nonlocality in flat optics devices can be leveraged to
synthesize Volterra kernels able to outperform linear optical analog image processing.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optics is an exceptional playground for the development of analog computing, offering unique
advantages over conventional approaches, such as broad bandwidth operation, low cross-talk,
ultrafast speeds, and high power efficiency [1]. However, tailoring and optimizing all these
features in a single device is an open challenge. Early attempts were focused on mimicking
digital processing architectures to replace electronic and opto-electronic switches with all-optical
equivalents [2]. The limitation of this strategy is that all-optical switching requires devices with
high activation power and large volumes. On the other hand, traditional optical techniques based
on lenses and filters, such as the 4f Fourier optics setup, can perform analog image processing
at low power, but they are bulky, sensitive to perturbations, and not compatible with integrated
systems. A paradigm shift in analog image processing has recently emerged thanks to the
advancements of flat-optics photonic nanostructures [3]. Integro-differential operations have
been demonstrated in a variety of nanophotonic configurations [4–14], including rather simple
resonant systems, such as surface plasmons, Mie and grating resonances [15–19].

Until now, investigations on flat-optics image processing have mostly focused on the linear
response of nanophotonic structures. Key ingredients to realize spatial filtering with linear
flat-optics are resonances and dispersion engineering. Indeed, the image processing abilities of
nanophotonic structures stem from the sensitivity to variations of the spatial frequency when
these systems are excited near any kind of photonic resonance [19]. The main limitations of
linear flat-optics are the limited-bandwidth operation, related to the presence of resonances, and
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the restricted complexity and variety of the mathematical operations that can be synthesized.
The use of nonlinear optics for imaging devices has given important results using the nonlinear
scattering of the object to be imaged [20,21]. However the use of nonlinear optics for image
manipulations has been limited to the cases of nonlinear lenses that combine the function of an
ultrathin planar lens with simultaneous frequency conversion [22–24], and to intensity-dependent
imaging from metalenses based on the large Kerr nonlinearity of metallic quantum wells [25].

Here we bring nonlinearities into the field of engineered nonlocality for optical analog
computing. We show that nonlinear flat optics offers a great potential to enable new functionalities
in image processing and adds important degrees of freedom in the design of optical analog
computing devices.

After outlining the general concept of nonlinear flat-optics image processing, we focus on
a particularly illustrative system, consisting of a flat sheet with second-order optical nonlinear
response. We show that even this simple system can lead to edge detection at the second-harmonic
frequency via nonlinear spatial filtering of an image at the fundamental frequency. In the proposed
nonlinear flat-optics solution, the non-resonant nature of the nonlinear interaction involved in this
device allows edge detection for a broadband spectrum of fundamental frequencies, outperforming
analog edge detection systems based on linear optics. We show that the edge-detection abilities,
and the achievable types of nonlinear image processing, are ruled by the shape and symmetry of
the susceptibility tensor, its spatial dispersion and the polarization state of the input light.

2. Nonlinear flat-optics image processing

The concept of image processing with nonlinear flat optics is illustrated in Fig. 1. In the linear
regime (Fig. 1(a)), a flat-optics structure has a transfer function ˆ︁H(1)

ℓm(f) that depends on the
linear susceptibility. Given a bi-dimensional input vector function iω0

m (x), where x = (x, y) is the
coordinate vector in the input plane, m is one of the coordinates of the reference system, the
spatial-frequency content of this input is given by the Fourier transform:

îω0
m (f) =

∫
R2

iω0
m (x) e−j2πf ·x dx. (1)

The input function represents an electric-field vector component of light scattered by some
object at an angular frequency ω0. A linear flat-optics filter (Fig. 1(a)) provides the output:

oℓω0 (x) =
∫
R2

[︂ˆ︁H(1)
ℓm(f) îω0

m (f)
]︂

ej2πf ·x df, (2)

where the inverse Fourier transform has been applied to retrieve the output in real space and
f = (fx, fy) is the transverse spatial-frequency vector. Here, the output function is the polarization
density induced on the flat-optics element. The spatial nonlocality of the flat-optics device, which
is a key element in the design of metasurfaces for analog computing [19,26], is described by the
f-dependence of the transfer function ˆ︁H(1)

ℓm(f), which in turn can be engineered by a proper design
of the effective surface susceptibility tensor [27].

In the nonlinear regime, in addition to the linear term, the flat-optics structure supports a
nonlinear contribution that can be described by a Volterra filter (Fig. 1(b)); limiting ourselves to
second-order optical nonlinear effects, and to sum-frequency processes, this filter is described
by its 2nd order frequency-domain Volterra kernel ˆ︁H(2)

ℓmn(f1, f2). It receives as input two bi-
dimensional vector functions, iω1

m (x) at ω1 and iω2
n (x) at ω2. The two functions represent

electric-field components in the m and n directions of the reference system.
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Fig. 1. Linear (a) vs nonlinear (b) flat-optics imaging. (c) Analog image processing with
nonlinear flat optics.

The nonlinear response is then obtained by applying the Volterra kernel to the inputs, providing
the following output at ω3 = ω1 + ω2:

oℓω3 (x) =
∫
R2

∫
R2

ˆ︁H(2)
ℓmn(f1, f − f1)îω1

m (f1) îω2
n (f − f1) df1 ej2πf ·x df, (3)

where the output function oℓω3 (x) is the second-order nonlinear polarization density induced on
the flat-optics element. The nonlinearity acts like a three-wave mixer, by combining each pair of
waves with different in-plane spatial frequencies in input, say f1 and f − f1, into a new one with
in-plane spatial frequency f = f1 + f − f1. In the most general case, the strength of the nonlinear
interaction may vary as a function of the two input spatial frequencies, leading to engineered
nonlocality (or spatial dispersion) in the nonlinear response of the system. Quite interestingly,
even in the apparently simple case of a homogeneous flat-optics element with constant nonlinear
susceptibility in the (x, y) plane, the nonlinear element shows a nontrivial response, which is the
convolution of the two input functions in the frequency domain.

In the language of image processing, the Volterra kernel operates on two input images: in
the non-degenerate case (iω1

m (x) ≠ iω2
n (x)) one of them may be thought of as the image to be

processed and the other as a reference image; in the degenerate case, (iω1
m (x) = iω2

n (x)=iω0 (x)),
the filter receives at its input the square of the image to be processed. The nonlinear filter is
described by Ĥ(2)

ℓmn(f1, f − f1), a function of four variables which is sampled by the spectrum of
two inputs. Whenever Ĥ(2)

ℓmn(f1, f − f1) is not constant, the system behaves in a nonlocal way and
since ℓ, m, n can be exploited in all possible permutations, the filter is completely described by a
third-rank tensor with 27 elements.

3. Image processing with second-order nonlinear thin films

In the context of nonlinear optics, Eq. (3) describes the relation between the projections of
electric fields at input (iω1,ω2

m,n (x) = Eω1,ω2
m,n (x)) and induced polarization (oω3

ℓ
(x) = P(2)ω3

ℓ
(x))

in a sum-frequency experiment. Noteworthy, the projections of the electric fields at input on
the directions specified by m, n introduces an extra dependence of the Volterra kernel on the
in-plane spatial frequencies. We consider an effective second-order nonlinearity determined
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by the material’s local permittivity (third-rank tensor χ(2)
ℓmn), by the propagation direction and

polarization of the electric fields at input (Eω1,ω2 (x)) [28]. Remarkably, in the context of flat
optics, one may further engineer the Volterra kernel by a proper ad-hoc design of meta-atoms,
metasurfaces, multilayers and gratings. In these structures, several properties of the effective
nonlinearity can be controlled: the tensor shape, the efficiency of the nonlinear interaction, the
spatial-frequency and time-frequency dependence [29,30].

In the degenerate case, in which iω1
m (x)=iω2

n (x)=iω0 (x), we obtain the scenario illustrated in
Fig. 1(c): light at ω0 impinges on a screen where the aperture is the image of interest; the light
diffracted by the aperture feeds a nonlinear device performing second-order Volterra filtering,
producing at the output the induced polarization o2ω0 (x) = P(2) 2ω0

ℓ
(x), which is the source of the

second-harmonic electric field imaged on a screen. As an illustrative example, we are assuming
that the Volterra kernel produces the edges of the image. To illustrate the procedure adopted to
compute the second-harmonic signal on the screen, we refer to a simplified situation as sketched
in Fig. 2.

The setup shown in Fig. 2 is an ideal reference situation for which the nonlinear flat-optics
element has zero thickness, and therefore is concentrated at z = 0. The nonlinear response
of the sheet can be then written as χ(2)

ℓmn(x, y, z) = χ(2)
ℓmn(x, y)δ(z). The second-harmonic light

emitted by this nonlinear sheet can be derived analytically, and the general results can be found
in Supplement 1. Here, for the sake of clarity, we further simplify the discussion considering a
homogeneous (or homogenized [30]) sheet (χ(2)

ℓmn does not depend on x and y); we also assume
that only one of the 27 elements of the second-order nonlinear tensor is different from zero
(χ(2)zzz ), where z is the optical axis of the system (see Fig. 2). This is a scenario that may occur, for
example, at a metal surface [31,32], where the tensor element orthogonal to the surface generates
most of the second-harmonic light [33]; or in multi-quantum well slabs with wells grown in the z
direction [34]; or in properly designed nanolaminates of centrosymmetric materials [35,36] and
metasurfaces [30].

In Fig. 2(a), a plane wave atω0 impinges on the nonlinear sheet with propagation vector parallel
to z. The polarization direction vector ê of the input light is controlled with a polarizer. The
nonlinear sheet is then illuminated with a packet of plane waves, ˆ︁Eω0

0 (f) = ˆ︁Eω0
0 (f) ê, containing a

continuum of directions, corresponding to all the in-plane spatial frequencies f = (fx, fy) excited
by the image defined by the aperture. The nonlinear sheet induces a second-order nonlinear
(surface) polarization that emits second-harmonic light at 2ω0. The efficiency and the radiation
pattern of the generated second-harmonic is a function of the impinging plane wave spectrum at
the fundamental frequency and is modulated by the properties of the susceptibility.

According to Eq. (3), the nonlinear sheet will induce a second-harmonic polarization density

P(2),2ω0
z (x) = ε0 χ(2)zzzF

−1
[︂ˆ︁Eω0

z (f) ∗ ˆ︁Eω0
z (f)

]︂
=

= ε0 χ
(2)
zzz

[︁
Eω0

z (x)
]︁2 ,

(4)

where F −1 is the inverse Fourier transform, ∗ stands for convolution and the z-component
of the electric field is given [37] by ˆ︁Eω0

z (f) = − 1
fz1 [

ˆ︁Eω0
0 (f) ê · f]. Here, f = fxx̂ + fyŷ is the

transverse spatial frequency vector, fz1 =
√︂
λ−2

0 − (f 2
x + f 2

y ) is the spatial frequency component in
the z-direction, and λ0 = 2πc/ω0 is the fundamental-frequency wavelength.

The second-harmonic field produced by this source can be easily calculated enforcing phase
matching at the nonlinear boundary and from the spectral Green’s function of a polarized sheet
emitting in a homogeneous medium. This expression has been reported by Sipe [38] in terms
of p- and s-polarization components of the emitted light. Omitting details that are discussed in

https://doi.org/10.6084/m9.figshare.24535021


Research Article Vol. 14, No. 1 / 1 Jan 2024 / Optical Materials Express 96

Fig. 2. (a) Setup for image processing with a nonlinear flat-optics element. P (polarizer);
A (aperture); M (flat-optics element/metasurface); O (objective); L (lens); C (camera). (b)
Action of a Volterra kernel based on the only χ(2)zzz : the two input vector functions are first
projected into the direction of the two input spatial frequencies and then mixed into the
nonlinear susceptibility block. (c) Amplitude of the electric field of an input image formed
by light at ω0 impinging on a square aperture (A) with side length a = 40λ0. (d) Output
image at 2ω0 collected by the camera (C) when the input light is polarized (P) linearly
in the horizontal direction, as indicated by the horizontal red arrow. (e) Same as (d), for
vertically-polarized input light. (f) Same as (d), for circularly-polarized input light.

Supplement 1, the result in z = 0+ reads:

E2ω0
x (x) = b F −1

[︂
−fxˆ︁Eω0

z (f) ∗ ˆ︁Eω0
z (f)

]︂
(5a)

E2ω0
y (x) = b F −1

[︂
−fyˆ︁Eω0

z (f) ∗ ˆ︁Eω0
z (f)

]︂
(5b)

E2ω0
z (x) = 2b F −1

[︃
f 2

fz2
ˆ︁Eω0

z (f) ∗ ˆ︁Eω0
z (f)

]︃
(5c)

where f 2 = f 2
x + f 2

y , b = j2πχ(2)zzz and fz2 is the z-component of the second-harmonic spatial
frequency.

https://doi.org/10.6084/m9.figshare.24535021
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To clarify the meaning of Eqs. (5), let us consider a scenario in which the field at ω0 impinging
on the aperture is linearly polarized along the x axis (ê = x̂). Eqs. (5) then become:

E2ω0
x = b F −1

[︃
−fx

(︃
fx
fz1

ˆ︁Eω0
0

)︃
∗

(︃
fx
fz1

ˆ︁Eω0
0

)︃]︃
(6a)

E2ω0
y = b F −1

[︃
−fy

(︃
fx
fz1

ˆ︁Eω0
0

)︃
∗

(︃
fx
fz1

ˆ︁Eω0
0

)︃]︃
(6b)

E2ω0
z = 2b F −1

[︃
f 2

fz2

(︃
fx
fz1

ˆ︁Eω0
0

)︃
∗

(︃
fx
fz1

ˆ︁Eω0
0

)︃]︃
. (6c)

where we have omitted the space- and frequency-dependence to simplify the notation. We can
easily recognize that, in the limit of large apertures and, therefore, spatial frequencies with small
angular divergence (fz1 ≈ 1/λ0), the fields contributing to power transfer along the z coordinate
shows the following dependence on the input function, i.e., the electric field amplitude defined by
the aperture:

E2ω0
x (x) ∝ 2

∂Eω0
0 (x, y)
∂x

∂2Eω0
0 (x, y)
∂x2

(7a)

E2ω0
y (x) ∝ ∂

∂y

[︄
∂Eω0

0 (x, y)
∂x

]︄2

. (7b)

It is remarkable that the simple nonlinear sheet with the only χ(2)zzz element features a nonlinear
nonlocal response with an output image that is proportional to derivatives of the input image
along the direction specified by the polarization of the fundamental field illuminating the aperture.
In particular, an x-polarized fundamental-frequency light can be used to detect edges parallel
to the y axis: indeed, the partial derivative along the x direction (parallel to the input-light
linear polarization) peaks along these edges, while the partial derivative along the y direction
(orthogonal to the input-light linear polarization) is vanishing, and therefore edges aligned with
the y axis will induce strong second-harmonic electric fields along the x direction. In general, if
the input light is linearly polarized and aligned along a direction ê, the output image will be bright
along the edges of the input image that are orthogonal to ê. The general action of a Volterra
kernel of type H(2)

zzz and its relation to the susceptibility of the flat-optics element is clarified
in Fig. 2(b). In this system, the two inputs are a pair of spatial frequency components, f1 and
f − f1, originated from an arbitrary input image. The two inputs represent electric field amplitude
distributions with angular frequencies ω1 and ω2 and polarization states ê1 and ê2, respectively.
The two inputs can be written as ˆ︁Eω1

0 (f1) and ˆ︁Eω2
0 (f − f1). The first operation of the Volterra

kernel is a projection of each input along the direction of its in-plane spatial frequency, which
provides the z component of each input. The z components can be written as ˆ︁Eω1

z = ˆ︁Eω1
0 λ1ê1 · f1

and ˆ︁Eω2
z = ˆ︁Eω2

0 λ2ê2 · (f − f1).
Next the χ(2)zzz susceptibility mixes the two z components of the inputs and gives the output

polarization at ω3 = ω1 + ω2. In summary, the overall filtering action of the Volterra kernel is
summarized by the second-order transfer functionˆ︁H(2)

zzz = ε0λ1λ2 ê1 · f1 ê2 · (f − f1) ˆ︁χ(2)zzz (f1, f − f1). (8)

Figures 2(c-f) summarize our findings for an input object given by a rectangular planar aperture
at z = 0. We assume that the rectangular shape of the aperture is given, at z = 0, by the electric

field amplitude distribution E0(x, y) = e−
x6+y6

a6 , where the aperture size is a = 40λ0, shown in
Fig. 2(c). When the input light is x-polarized, the output image shows only edges aligned with the
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y-axis – see Fig. 2(d); the dual effect is visible when the input light is y-polarized – see Fig. 2(e).
All the edges, including the corners of the apertures, are well discernible when the input light is
circularly polarized (ê = (x̂ ± jŷ)/

√
2) – see Fig. 2(f).

Other operations are possible when a different nonlinear tensor element is selected as a Volterra
kernel. Here, we only highlight two examples of kernels that act as differentiators for edge
detection: (i) a homogeneous (or homogenized) film with a χ(2)xzz response; (ii) a homogeneous
(or homogenized) film with a χ(2)xyz response. Using the procedure outlined in Supplement 1 for
large apertures (small angular divergence), it is straightforward to prove that for x-polarized input
light at ω0, the x−component of the 2ω0 field produced by the χ(2)xzz kernel is:

E2ω0
x (x) ∝

[︄
∂Eω0

0 (x, y)
∂x

]︄2

, (9)

while, for circularly-polarized input light, the x−polarized field emitted by the χ(2)xyz kernel at 2ω0
is:

E2ω0
x (x) ∝ Eω0

0 (x, y)

[︄
∂Eω0

0 (x, y)
∂x

+ j
∂Eω0

0 (x, y)
∂y

]︄
(10)

We stress that both the functions reported in Eq. (9) and Eq. (10) transform an edge perpendicular
to the x−direction into a single peak, in contrast to the operation of the χ(2)zzz kernel, which
produces two peaks per edge (Fig. 2(d-f)).

Edge detection is also possible for more complex objects.
As an example, in Fig. 3, we consider the case in which the input function of the χ(2)zzz -kernel is

the gray-scale image obtained from a picture of the Vittoria alata statue in Brescia, Italy. We
assume that circularly-polarized light at ω0 is modulated in amplitude by this object, which we
assume with a size of 900λ0 × 900λ0. The circularly-polarized input allows to detect edges with
arbitrary orientation, as well as corners. The output image at 2ω0 shows the most prominent

Fig. 3. Edge detection with a nonlinear sheet having only the χ(2)zzz tensor element. (a) The
input image is a picture of the statue of Vittoria alata, one of the symbols of the city of
Brescia. The input light is circularly polarized at a fundamental frequency ω0 (wavelength
λ0 = 1µm). (b) The output image at the second harmonic evaluated as the intensity of
the field. The brightest red and green in the color bars correspond to maxima of the field
intensity at ω0 and 2ω0, respectively.

https://doi.org/10.6084/m9.figshare.24535021
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edges of the picture with great contrast. While the resolution of this edge detection is limited
by diffraction since it is solely determined by the Green’s function at 2ω0, the contrast in edge
detection is boosted both by the nonlinearity of the Volterra kernel and by the natural suppression
of the input image provided by second-harmonic generation. More sophisticated designs with
additional degrees of freedom, for example nonlinear metasurfaces, may be able to achieve
enhanced contrast and resolution in a single flat-optics device. It is worth mentioning that while
the derivative operations described in Eqs. (7), (9) and (10) are valid in the small-divergence
approximation, edges from input objects that produce larger angular spectra can still be detected
with good precision by carefully selecting the nonlinear kernel. In Supplement 1, a qualitative
assessment of our edge detection system’s numerical aperture is provided, particularly in scenarios
involving objects of sizes comparable to the wavelength and exhibiting extremely sharp edges.

4. Conclusion

We have shown that nonlocal nonlinear flat optics can realize analog image processing with
previously not accessible functionalities. By exploring the simple scenario of a uniform χ(2)
sheet, we have demonstrated edge detection operation with exciting potential. In particular, in
our proposed nonlinear flat-optics solution, the non-resonant nature of the nonlinear interaction
involved in image processing allows edge detection over a broadband spectrum with ultra–high
contrast. Although we have reported a first step towards the merge of analog computing and
nonlinear optics, our results indicate that Volterra kernels of nonlinear nonlocal flat optics can
open new opportunities in applications such as image processing, item recognition for computer
vision, high-contrast and high-resolution microscopy, implementation of nonlinear functions for
analog deep learning.
Funding. Ministero dell’Istruzione e del Merito (METEOR, PRIN-2020 2020EY2LJT_002); H2020 Future and
Emerging Technologies (FETOPEN-2018-2020 899673, METAFAST); NATO (SPS G5984).

Acknowledgments. The authors acknowledge inspiring discussions with Nicola Adami, Marco Dalai, Giuseppe
Leo, Lorenzo Marrucci, and Mikhail Petrov.

Disclosures. The authors declare no conflicts of interest

Data Availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request

Supplemental document. See Supplement 1 for supporting content.

References
1. D. R. Solli and B. Jalali, “Analog optical computing,” Nat. Photonics 9(11), 704–706 (2015).
2. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).
3. A. Silva, F. Monticone, G. Castaldi, et al., “Performing mathematical operations with metamaterials,” Science

343(6167), 160–163 (2014).
4. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Analog computing using reflective plasmonic metasurfaces,” Nano

Lett. 15(1), 791–797 (2015).
5. D. A. Bykov, L. L. Doskolovich, E. A. Bezus, et al., “Optical computation of the Laplace operator using phase-shifted

Bragg grating,” Opt. Express 22(21), 25084–25092 (2014).
6. N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich, et al., “Spatial optical integrator based on phase-shifted Bragg

gratings,” Opt. Commun. 338, 457–460 (2015).
7. A. Youssefi, F. Zangeneh-Nejad, S. Abdollahramezani, et al., “Analog computing by Brewster effect,” Opt. Lett.

41(15), 3467–3470 (2016).
8. Y. Zhou, H. Zheng, I. I. Kravchenko, et al., “Flat optics for image differentiation,” Nat. Photonics 14(5), 316–323

(2020).
9. A. Chizari, S. Abdollahramezani, M. V. Jamali, et al., “Analog optical computing based on a dielectric meta-reflect

array,” Opt. Lett. 41(15), 3451–3454 (2016). Publisher: Optica Publishing Group.
10. A. Overvig and A. Alù, “Diffractive nonlocal metasurfaces,” Laser Photonics Rev. 16, 2100633 (2022).
11. M. Cotrufo, A. Arora, S. Singh, et al., “Dispersion engineered metasurfaces for broadband, high-na, high-efficiency,

dual-polarization analog image processing,” Nat. Commun. 14(1), 7078 (2023).
12. A. Saba, M. R. Tavakol, P. Karimi-Khoozani, et al., “Two-dimensional edge detection by guided mode resonant

metasurface,” IEEE Photonics Technol. Lett. 30(9), 853–856 (2018).

https://doi.org/10.6084/m9.figshare.24535021
https://doi.org/10.6084/m9.figshare.24535021
https://doi.org/10.1038/nphoton.2015.208
https://doi.org/10.1126/science.1242818
https://doi.org/10.1021/nl5047297
https://doi.org/10.1021/nl5047297
https://doi.org/10.1364/OE.22.025084
https://doi.org/10.1016/j.optcom.2014.11.007
https://doi.org/10.1364/OL.41.003467
https://doi.org/10.1038/s41566-020-0591-3
https://doi.org/10.1364/OL.41.003451
https://doi.org/10.1002/lpor.202100633
https://doi.org/10.1038/s41467-023-42921-z
https://doi.org/10.1109/LPT.2018.2820045


Research Article Vol. 14, No. 1 / 1 Jan 2024 / Optical Materials Express 100

13. J. Zhou, H. Qian, C.-F. Chen, et al., “Optical edge detection based on high-efficiency dielectric metasurface,” Proc.
Natl. Acad. Sci. 116(23), 11137–11140 (2019).

14. O. Y. Long, C. Guo, H. Wang, et al., “Isotropic topological second-order spatial differentiator operating in transmission
mode,” Opt. Lett. 46(13), 3247–3250 (2021).

15. T. Zhu, Y. Zhou, Y. Lou, et al., “Plasmonic computing of spatial differentiation,” Nat. Commun. 8(1), 15391 (2017).
16. A. Komar, R. A. Aoni, L. Xu, et al., “Edge detection with mie-resonant dielectric metasurfaces,” ACS Photonics 8(3),

864–871 (2021).
17. A. Cordaro, B. Edwards, V. Nikkhah, et al., “Solving integral equations in free space with inverse-designed ultrathin

optical metagratings,” Nat. Nanotechnol. 18(4), 365–372 (2023).
18. H. Kwon, A. Cordaro, D. Sounas, et al., “Dual-polarization analog 2d image processing with nonlocal metasurfaces,”

ACS Photonics 7(7), 1799–1805 (2020).
19. H. Kwon, D. Sounas, A. Cordaro, et al., “Nonlocal metasurfaces for optical signal processing,” Phys. Rev. Lett.

121(17), 173004 (2018).
20. H. E. J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
21. G. Sancataldo, O. Barrera, and V. Vetri, Two-Photon Imaging (Springer International Publishing, 2022), pp. 215–241.
22. C. Schlickriede, N. Waterman, B. Reineke, et al., “Imaging through nonlinear metalens using second harmonic

generation,” Adv. Mater. 30, 1703843 (2018).
23. C. Schlickriede, S. S. Kruk, L. Wang, et al., “Nonlinear imaging with all-dielectric metasurfaces,” Nano Lett. 20(6),

4370–4376 (2020).
24. C. Gigli, G. Marino, A. Artioli, et al., “Tensorial phase control in nonlinear meta-optics,” Optica 8(2), 269–276

(2021).
25. J. Zhou, J. Zhao, Q. Wu, et al., “Nonlinear computational edge detection metalens,” Adv. Funct. Mater. 32, 2204734

(2022).
26. K. Shastri and F. Monticone, “Nonlocal flat optics,” Nat. Photonics 17(1), 36–47 (2023).
27. K. Achouri, M. A. Salem, and C. Caloz, “General metasurface synthesis based on susceptibility tensors,” IEEE Trans.

Antennas Propagat. 63(7), 2977–2991 (2015).
28. R. W. Boyd, Nonlinear Optics (Academic Press, 2020).
29. S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of effective susceptibility,” Phys.

Rev. B 70(11), 115106 (2004).
30. J. Lee, M. Tymchenko, C. Argyropoulos, et al., “Giant nonlinear response from plasmonic metasurfaces coupled to

intersubband transitions,” Nature 511(7507), 65–69 (2014).
31. J. E. Sipe, V. C. Y. So, M. Fukui, et al., “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B

21(10), 4389–4402 (1980).
32. M. Scalora, M. A. Vincenti, D. de Ceglia, et al., “Second- and third-harmonic generation in metal-based structures,”

Phys. Rev. A 82(4), 043828 (2010).
33. A. V. Krasavin, P. Ginzburg, and A. V. Zayats, “Free-electron optical nonlinearities in plasmonic nanostructures: A

review of the hydrodynamic description,” Laser Photonics Rev. 12, 1700082 (2018).
34. E. Rosencher, A. Fiore, B. Vinter, et al., “Quantum engineering of optical nonlinearities,” Science 271(5246),

168–173 (1996).
35. F. Abtahi, P. Paul, S. Beer, et al., “Enhanced surface second harmonic generation in nanolaminates,” Opt. Express

31(7), 11354–11362 (2023).
36. L. Alloatti, C. Kieninger, A. Froelich, et al., “Second-order nonlinear optical metamaterials: Abc-type nanolaminates,”

Appl. Phys. Lett. 107(12), 121903 (2015).
37. R. Collin, Antennas and Radiowave Propagation, International student edition (McGraw-Hill, 1985).
38. J. E. Sipe, “New green-function formalism for surface optics,” J. Opt. Soc. Am. B 4(4), 481–489 (1987).

https://doi.org/10.1073/pnas.1820636116
https://doi.org/10.1073/pnas.1820636116
https://doi.org/10.1364/OL.430699
https://doi.org/10.1038/ncomms15391
https://doi.org/10.1021/acsphotonics.0c01874
https://doi.org/10.1038/s41565-022-01297-9
https://doi.org/10.1021/acsphotonics.0c00473
https://doi.org/10.1103/PhysRevLett.121.173004
https://doi.org/10.1038/nphoton.2012.361
https://doi.org/10.1002/adma.201703843
https://doi.org/10.1021/acs.nanolett.0c01105
https://doi.org/10.1364/OPTICA.413329
https://doi.org/10.1002/adfm.202204734
https://doi.org/10.1038/s41566-022-01098-5
https://doi.org/10.1109/TAP.2015.2423700
https://doi.org/10.1109/TAP.2015.2423700
https://doi.org/10.1103/PhysRevB.70.115106
https://doi.org/10.1103/PhysRevB.70.115106
https://doi.org/10.1038/nature13455
https://doi.org/10.1103/PhysRevB.21.4389
https://doi.org/10.1103/PhysRevA.82.043828
https://doi.org/10.1002/lpor.201700082
https://doi.org/10.1126/science.271.5246.168
https://doi.org/10.1364/OE.484893
https://doi.org/10.1063/1.4931492
https://doi.org/10.1364/JOSAB.4.000481

