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Abstract: We present a novel digital twin model that implements advanced artificial intelligence
techniques to robustly link news and stock market uncertainty. On the basis of central results
in financial economics, our model efficiently identifies, quantifies, and forecasts the uncertainty
encapsulated in the news by mirroring the human mind’s information processing mechanisms. After
obtaining full statistical descriptions of the timeline and contextual patterns of the appearances of
specific words, the applied data mining techniques lead to the definition of regions of homogeneous
knowledge. The absence of a clear assignment of informative elements to specific knowledge regions
is regarded as uncertainty, which is then measured and quantified using Shannon Entropy. As
compared with standard models, the empirical analyses demonstrate the effectiveness of this approach
in anticipating stock market uncertainty, thus showcasing a meaningful integration of natural language
processing, artificial intelligence, and information theory to comprehend the perception of uncertainty
encapsulated in the news by market agents and its subsequent impact on stock markets.
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1. Introduction

Generally speaking, uncertainty describes a situation that cannot be accurately predicted, and is,
by its nature, a subject difficult to formalize and study. Indeed, the formal analysis of uncertainty
and its consequences did not appear until the 16th-17th centuries, linked to the study of games of
chance [1–3], and progressively moved to other sciences, specially economics and finance. This is the
logical consequence of the pervasive role that uncertainty plays in economic life, which has compelled
economists to develop formal and mathematical tools able to tackle this question and its consequences.
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In fact, strictly speaking, even the interest behind games of chance was an economic interest.
As a result, today, a large part of the central concepts and techniques analyzing uncertainty are

contributions derived from Economics. This is the case of the basic formal construction used to
describe how uncertainty is structured and perceived, the so-called state of nature [4, 5]. Roughly
defined, this state of nature is any of the possible uncertain outcomes, which is a simple concept
that opened the analysis of more complicated issues. For instance, depending on whether or not the
actually existing states of nature can all be identified and their probabilities can be assigned, economics
distinguishes between risk and uncertainty itself [6, 7]. Risk defines a situation in which the states are
all identified and their randomness is expressed in terms of numerical probabilities. On the other
hand, situations where not all the possible states of nature can be identified, as well as those where
probabilities are not or cannot be assigned, are said to involve uncertainty in a strict sense. In addition,
when probabilities are assigned, they can be either subjectively or objectively assessed, which is a
question with far-reaching implications also closely related to the true source of uncertainty. When
the uncertainty/risk framework is the result of non-manageable factors, it is said to be exogenous. On
the contrary, when the uncertain scheme depends on the action itself of inspecting or dealing with the
uncertain situation, the source of uncertainty is endogenous. Both sources can coexist and interact,
as usually happens in a wide variety of natural, social or economic phenomena, especially when the
involved agents present heterogeneous beliefs on the occurrence of the different states of nature and/or
when formal models are used to forecast behaviors [8–11]. Obviously, the presence of uncertainty is an
important negative factor in any task or action, and its prediction and quantification emerge as useful
and crucial when designing decision processes, particularly in economics and finance. However, as a
result of all these dimensions inherent to the nature of uncertainty in asset markets, its identification
and measurement becomes a hard problem, both conceptually and practically. Indeed, to the present
day, there is no completely satisfactory way to identify and quantify stock market uncertainty, and
research in this area continues.

In this respect, our contribution comes from interpreting two basic results of financial economics
through the lens of Ockham’s Razor, thus opening up a simple and operative definition of stock market
uncertainty. The two results provided by economic theory are the efficient market theory (EMT) and
the market selection theory (MST) [12–17], which assert that stock prices are the result of the decisions
of rational agents that correctly select and consider all the relevant information. According to these
theories, the evolution and dynamics of stock market prices are simply the result of the interpretation
of the available information by the human mind; consequently, times of turmoil and uncertainty in
the stock market must correspond to the lack of a certain and sure interpretation of the available
information by the market agents. This opens up the possibility of building a digital twin [18, 19]
of the information processing carried out by the human mind, and of using this digital twin to identify
situations of vague and unclear interpretation of the available information. According to the EMT
and MST, this uncertain reading by the human mind of the available information must correspond to
present or future real episodes of market uncertainty, and therefore, the proposed digital twin model
can be used to forecast and quantify stock market uncertainty.

To illustrate the usefulness of our approach, it suffices to describe the complexities of identifying
and measuring uncertainty in the simplest case, which is that associated with the concept of risk. As
we have mentioned, in financial economics, risk is defined as a situation in which all the possible
states are identified and their numerical probabilities are assigned. As an example, let us consider
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the measurement of the risk associated to the returns of an equity. First, it is necessary to identify
all the possible states of nature, that is, all the possible returns for the considered equity. Then, for
each value of the return (each state), some probability must be assigned. The result is a probability
distribution for the returns, from which we should quantify the associated risk. Under normality of
the distribution for the returns, this measure of risk is provided by the standard deviation, as in the
Markowitz model of portfolio management [20]. Nevertheless, a simple statistical analysis of the
distribution of equity returns indicates that this distribution is usually not normal but skewed and
with heavy tails, as well as being non-stable in time [21]. In this context, and as described by the
consumption-based asset pricing model [22, 23], the quantification of risk involves several complex
tasks. First, it is necessary to correctly identify the set of all possible states of nature describing
the behavior of the considered return, which is complicated when the statistical distributions are not
stationary as usually happens in real financial markets. Second, the assignation of probabilities to
the identified states of nature is also required, wich is a statistical question implying (as the former)
non-trivial economic subjective considerations. Indeed, a trade of assets is only possible if agents have
different beliefs on these probabilities and different perceptions of the underlying risk. In simple words,
although the distribution of the returns of any equity is the same for all the investors in the market, the
quantification of the inherent risk is theoretically only possible through the subjective perception and
valuation of this objective distribution by the specific considered investor. As a result, we can have
subjective measures of the risk implied by the returns volatility, but not an objective one [23–25];
then, some external criterion must be applied to infer some kind of objective quantification of risk.
This complexity for the quantification of risk, which is a relatively simple scheme of uncertainty,
becomes much higher when the environment does not allow the set of possible values of the variables
and/or the associated (subjective) measure functions to be determined, or when the different sources
of uncertainty interact. This is without any doubt the most realistic situation, which, by its nature,
requires alternative approaches to correctly quantify uncertainty. Indeed, given that the identification
of the feasible outcomes and the assessment of the associated (subjective) probabilities are not possible,
suitable methods of objective quantification must use alternative instrumental or indirect evidence of
the presence of uncertainty.

In this regard, to date, most of the existing approaches seek to predict and identify market
uncertainty through the statistical analysis of the historical behavior of asset prices and market indices,
which is an interpretation supported by the EMT and MST. These fundamental theories of finance
state that market agents act rationally in processing the available information. Therefore, asset prices
must reflect all the relevant information, including that concerning future uncertainty. However, the
rather limited success of these price-based models in forecasting uncertainty suggests that this approach
needs to be either expanded or modified. In this light, our approach makes a significant contribution
by reversing the application of the EMT and MST, thus formulating a model that directly identifies
and measures stock market uncertainty by addressing its origin -specifically, the interpretation of the
available information by the market agents- rather than inferring from its consequences. To this end,
our model builds a digital twin of the process conducted by the human mind, thereby associating
market uncertainty with a random, fuzzy, vague, or incomplete comprehension of the available textual
information.

Leaving aside technical issues related to the design of the digital twin model, the first question to
evaluate in greater depth is the suitability and appropriateness of our approach, especially the use of
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textual variables. In this respect, the underlying guiding ideas go from the hypothesis of rationality
and its transposition into the EMT and MST, to the subsequent overcoming of their shortages. As
explained above, in its origins, EMT and MST reduce the forecasting analysis to a mere statistical
study of the historical series of prices. However, although these market-based measures (in any
of its formulations, such as probability, credibility, chance, and uncertain measure functions) have
shown some ability to anticipate future uncertainty [26–31], their performance is very limited, thereby
questioning the use of structured variables alone in providing information on the underlying future
uncertainty [32]. The shortages of this chartist approach were contested by fundamentalists, who
stressed the great importance that information on economic variables, rather than just prices,has on
the market evolution. On this point, the use of unstructured data, particularly news and reports,
emerged as a relevant alternative to quantify and predict uncertainty. Indeed, the empirical evidence
clearly confirms that news and reports constitute market drivers, and therefore that they can be used to
anticipate the future evolution of asset prices [33–38]. Upon these theoretical bases, and facilitated by
the availability of data on the information exchanged in news media on the internet and social networks,
there has been great growth in the formal and quantitative use of news and other textual forms to
explain the future evolution of asset prices and its causes (among them the presence of current textual
elements anticipating uncertainty). From the above quoted initial studies measuring the efficiency of
asset markets’ reactions to news releases, research interests have progressively moved to the design of
models that incorporate news as either a direct or indirect predictive variable for asset prices, and/or
as a variable capturing and forecasting market uncertainty and making the mitigation of the identified
uncertainty possible [39–47].

Our research falls within this line, thus incorporating several new features, both theoretical and
technical. First and as commented before, it focuses on the ultimate origin of the stock market
uncertainty, namely the interpretation of the available information by the market agents. Second,
our model considers textual news as the primary source of information, thus building a digital twin
of the cognitive process undertaken by the human mind. Specifically, to identify market uncertainty,
this model applies artificial intelligence (AI) techniques to associate market uncertainty with a random,
fuzzy, vague, or incomplete comprehension of the available textual information. The result of these
theoretical innovative perspectives is a novel and worthwhile approach integrating neuro-biological
evidence into digital twin modeling, which has yet to be applied to the study of financial markets.
From a technical point of view, the new features are present in practically all the dimensions of the
model. Concerning the text analysis process, we take not only how frequent a particular word is in
the analyzed period, but also how its use is distributed along this period into account, as well as the
particular contexts of its appearances. Then, the contextual and timeline patterns identified by the
implemented statistics procedures are then used as inputs in the classification algorithms, which also
present new features. In particular, to gain efficiency in the objective of quantifying uncertainty, we
sequentially apply a set of data mining techniques without imposing previous target variables, which
is another differential attribute of our approach; this leads to the definition of regions of knowledge.
Defining uncertainty as the absence of a clear assignation of an informative item to a specific region of
knowledge, we propose the use of Shannon entropy to measure the market uncertainty present in the
news. Finally, we evaluate the performance of our method, making use of real data and carrying out a
comparison with the existing procedures to forecast stock market uncertainty.

The rest of the paper is organized as follows. Section 2 provides a general perspective of
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the philosophy behind the proposed digital twin model, the implemented AI techniques, and its
contributions to the objective of quantifying and forecasting market uncertainty. Section 3 explains
the implemented methods in greater depth, paying special attention to their formal aspects and the
clarification of their suitability. Section 4 describes the empirical analysis and explains its peculiarities.
The obtained results are presented and discussed in Section 5. Lastly, Section 6 provides some
concluding commentaries on the findings.

2. Digital twin model: Contributions

It is obvious that news and stock prices are closely related and influence each other in a complex
way. To study these relationships, and given their ability to monitor and handle large amounts of
information, AI techniques are of a great efficacy. In this respect, from neural networks to genetic
programming, these techniques are being progressively implemented to explain how news, sentiments
and opinions affect the stock market behavior, and how they can help to predict its evolution. Logically,
the first objective of these machine learning financial models has been the prediction of market returns
[48–51], with sometimes contradictory results on the effects of infrequent events; this suggests the
need for additional research for these episodes with an unclear and uncertain understanding [52, 53].
Our research moves in this direction by proposing an innovative digital twin model that identifies
situations of uncertainty through the replication of the human mind’s interpretative process of the
available information. In this sense, our model is the natural continuation of existing research in several
fields. On the one hand, although recent results show that a digital twin mirroring the human mental
processes is conceptually possible and feasible [54, 55], its application to study financial markets in
general, and the stock market uncertainty in particular, remains unexplored. On the other hand, the
reversal in the reading of the EMT and MST that we propose opens an operational interpretation
of uncertainty in asset markets, which is compatible with the neurological evidence found by other
authors [56–61] and also not explored to date.

From the technical point of view, our model is a rolling-window system that incorporates the
characteristics of long short-term memory networks [62], which are highly suitable for our purpose
of mirroring the human brain’s information processing mechanisms. Broadly outlined, the replicated
process is as follows. First, assuming that market agents, in their role as investors, pay special attention
to the presence of a set of selected words and terms, we build an ad-hoc dictionary for the whole
temporal horizon. Then, we model the agents’ information interpretative process, which, according to
the historical evidence and the different contexts of appearance of the different terms, is understood to
be a process that learns as time passes. In our model, we achieve this by implementing AI techniques
that seamlessly integrate prediction and learning through rolling windows across the entire considered
period. As a result, at any period t, our digital twin continuously learns from previous data to predict
the subsequent periods from t + 1 to t + n, thus reevaluating the meaning of the different words and
terms according to the past evidence and the current contexts period by period.

To accomplish these tasks, our theoretical digital twin model applies three successive phases: text-
to-number transformation, processing of the obtained statistics, and uncertainty measurement. All
these stages present some specific characteristics that are worthy of being commented and situated
within their general context to properly evaluate our contributions.
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2.1. Text-to-number processing

For computers to interpret the human language, it is previously necessary to transform text
expressions into something that computers can process and analyze. An immediate first option is
the numerical transformation of words into vectors and the subsequent treatment and analysis of the
numbers associated to each specific word. Under the general term of natural language processing
(NLP), this approach, which has been present from the 1980s [63–66], has evolved to pursue the
logical objectives of a higher accuracy in the numerical translation of texts and meanings, and a lower
consumption of time and computer resources [67–71]. Initially, these models merely focused on the
frequency of occurrence of words (bag-of-words models, [72]), later incorporating the analysis of
word order to solve the arising shortages. The complexity of handling word order and not just word
frequency created the necessity of using a higher computational power and more efficient techniques,
thus giving rise to more complex models applying neural networks. These neural network based
models can handle intricate patterns because of their ability to tackle the curse of dimensionality
problem, inherited from NLP; today, they are encompassed within the heading neural network language
processing (NNLP). In parallel, the development of AI, specially machine learning algorithms and the
idea that statistically oriented approaches -such as those present in language acquisition in humans-
can provide machine learning from text, lead to significant improvements of the models.

In our context of NNLP, whose general objectives are the information retrieval from texts and its
subsequent analysis and treatment, the specificities of each model are the consequence of its particular
aims. Regarding our proposal, whose objective is the identification, quantification and prediction of
economic uncertainty, this implies a selection of the appropriate text sources and of the informative
dimensions on uncertainty contained in these texts. Concerning the first question, the natural and
logical option is to consider specialized journals in economics and finance. The determination of the
informative dimensions to be captured and evaluated is more complicated, and requires a reflection on
how economic uncertainty is manifesting itself in texts, and on how the previous approaches can be
improved.

Our contributions regarding text-to-number processing are related to this second aspect. As recent
studies show, the impact of news is directly related not only to its frequency of appearance and lifespan,
but also to the speed of its spreading, its correlation with other events and news, and how it is replaced
by other topics [56–61, 73]. To extract signals on the encapsulated uncertainty from the analyzed
texts, we consider not only the frequency of appearance of specific words, as most models do, but also
temporal and contextual elements captured by its time distribution and the presence of co-occurrences.
As the economic theory shows, a very important characteristic of economic uncertainty is that it
simultaneously affects several variables in different ways and with different temporal patterns [74,75].
These relevant features can be captured through the consideration for each word of its contextual
and temporal attributes, which, together with its history of frequencies, originate a high-dimensional
vector characterizing the meaning of the word at each moment of its appearance, another distinctive
characteristic of our method. On this point, it is worth noting again that our proposal and methods
connect with recent studies on the way the human brain understands the combined meaning of words
in sentences (i.e., the so called supra-word meaning, see [60, 61] and the references therein).

In addition and unlike the existing models, our text transformation method introduces an
unsupervised method for the identification of contexts in a timeline without previous labeling of
the data. The methods to understand or identify contexts (to perform document classification) rely
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on previously classified target variables, therefore losing the capability of identifying hidden not-
contemplated categories, which is an issue solved by our approach. On the other hand, when applied
in NNLP, the unsupervised methods have been designed to transform words into numerical vectors
without looking for the identification of spatial-temporal contexts. Our proposal does consider these
contexts, which in our framework are understood as the contemporaneous (spatial) and the timeline
(temporal) contexts of each word. Finally, from the computational perspective, the wide consideration
of the co-occurrence of words in these two dimensions enabled by our approach results in a faster
training and a higher accuracy.

Once these statistics have been obtained, an artificial neural network, a self-organizing map, and a
hierarchical clustering followed by a gaussian mixture model are implemented to efficiently extract the
relevant information. These contributions will be described and clarified in the following section.

2.2. Processing of the obtained statistics: Mixture model clustering

After applying our text-to-number algorithms, we count on a statistical characterization for each
of the relevant words, which informs us on their frequency of appearance in different contexts and
times. Given their multidimensional nature, these statistical distributions must be properly processed
to extract the relevant information in a manageable way. For this objective, mixture models are the
common practice of processing data points under the assumption of certain underlying probability
distributions [76]. The main property of this approach is that each group has its specific probability
distribution, with all its elements simultaneously belonging to all the groups but with different chances.
Mixture models present the ability of identifying subpopulations alongside unobserved population
heterogeneities [77]. Additionally, they are known for their flexibility in fitting data of different
types, given the possibility they offer of tuning a large number of parameters. Nevertheless, with an
increase of parameters, the attached complexity rises as well. The implementation of mixture models is
typically made by maximum likelihood estimation via an expectation-maximization algorithm [78]. To
implement this algorithm, the practitioner must be aware of unbounded likelihood functions, as well
as facing complex issues related to the number of components, the initialization of the expectation-
maximization procedure, and variance estimation.

To solve this and other issues and to broaden the analytical scope, self-organizing maps (SOM)
have been tested as potential complementary and/or substitutes of typical mixture models [79, 80].
This approach allows for an efficient simplification of the data informative structure. Indeed, in our
work, we used the SOM methodology as a topological reducer of our high-dimensional dataset (in
informative terms). After this topological transformation, and with the aim of clustering text, we
applied a static Gaussian mixture model of hierarchical clustering. This method seems to provide
the best performance for multidimensional data [81–83], which is our case. The application of soft
clustering for information retrieval is essential because, by its nature, information is not specific to a
particular topic or context: An informative piece can simultaneously influence several topics, contexts
and knowledge environments [84]. This is very important in our digital twin model, which is designed
to interpret, predict and identify uncertainty in a manner similar to the human perspective, a perspective
characterized by the existence of regions of knowledge [57–59]. Indeed, one of its abilities is the
recognition of changing movements in the financial markets as signs of uncertainty, as indicated by data
points located in cluster borders, and thus not clearly belonging to a specific region of homogeneous
knowledge.
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2.3. Uncertainty: Concept and measurement

As commented above, the existing financial literature has identified and measured uncertainty
mainly by considering its effects on stock prices and its volatility [26–31, 33–38]. In this respect,
the main feature distinguishing our model from previous approaches is our interpretation of market
uncertainty, paying close attention to its origins and not to its effects. Specifically, on the basis of EMT
and MST, our model assumes that market uncertainty is the consequence of the behavior of agents who
are not completely sure about the meaning of the information they handle, and proposes to measure
uncertainty from this fact.

Our digital twin of the human mind’s information processing mechanisms is the result of this novel
approach. Since the unclear interpretation of information by the human mind is related to the existence
of randomness, fuzziness, vagueness or incomplete knowledge, we develop a model that captures these
dimensions. In this respect, two notable innovations stand out. First and as explained above, the set
of statistical and AI techniques applied to our text dataset allows us to define regions of homogeneous
knowledge/interpretation, and to interpret uncertainty as the absence of a clear assignation of a word to
a specific region of knowledge. As a second contribution, we use the Shannon entropy of the processed
text series for measuring and forecasting the encapsulated uncertainty taking the degrees of allocation
of each daily informative content to the different informative homogeneous regions into account, since
it responds to the concept of informative uncertainty described above. On the suitability of the Shannon
entropy to measure uncertainty, we refer the interested reader to [85–87].

3. Digital twin model: Methods

3.1. Text transformation

As explained in the previous sections, our text-to-number transformation process has been designed
to capture not only the frequency of appearance of the relevant words, but also their contemporaneous
and time line contexts. For this purpose, the process of feature extraction from the considered news
headlines has the following main lines.

Let u denote each word in the collected news headlines. Let N be the total number of days, and un

represent the number of times this word appears at day n, n = 1, 2, . . . ,N. Since we are interested in
characterizing how the appearance of each word u is distributed over time, we compute the skewness
and the kurtosis coefficients of the time distribution for each word, informing on the asymmetry and
tail thickness of these distributions, respectively. For each word u, these normalized measures, denoted
by kru and sku, are as follows:

kru =

∑N
n=1

(un−u)4

N

σ4
u

, sku =

∑N
n=1

(un−u)3

N

σ3
u

,

where u is the daily mean of the occurrence of word u, and σu is the standard deviation of its time
distribution.

For each word, the kurtosis and skewness coefficients provide shape measures of its occurrence over
time. In addition, to improve our knowledge of the time distribution, we consider the specific day at
which each word reaches its 25%, 50%, 75% and 95% percentiles. The selection of the 95% percentile
instead of the 100% obeys the fact that, by their nature, most relevant words are going to appear on

AIMS Mathematics Volume 9, Issue 1, 1683–1717.



1691

the last day, in which case the 100% percentile loses a large part of its informative content. For each
word u, these days will be denoted by qi

u, where i = 25%, 50%, 75%, 95%; obviously, they determine
whether the considered word is more frequent in distant or recent moments, and how this presence
changes over time.

These measures characterize the time distribution of each word in isolation. In addition and as
commented previously, our research seeks to incorporate contextual elements. This is done through
the following two variables. For each day, the first takes the number of times that the word u appears
in the previous T days into account. In this paper, we have focused on the preceding 7 and 30 days: By
fixing T = 7 and T = 30, we assume that weeks and months have a special relevance in determining
temporal contexts, which is a reasonable assumption given the high number of financial reports with a
weekly or monthly periodicity. Let ucn(T ) be this contextual measure for word u, at day n, and for the
T previous days, which is defined as follows:

ucn(T ) =

 ( 1
T−1 )
∑n−1

i=n−T ui − un

un

 × uid f ,

where uid f is the inverse document frequency of the word, given by

uid f = log
N

card{d ∈ N : u ∈ d}
,

where card{d ∈ N : u ∈ d} is the number of days for which the word u is observed. The factor
uid f is boolean-calculated over the word, and aims to normalize the presence of frequent words,
which are less informative. Therefore, for each day n, the contextual variable ucn(T ) captures the
continuity/discontinuity of the word u during the last T days, weighted by the relative informative
importance of this specific word. Note that since this variable is defined for each word and each day in
two different time windows (7 and 30 days), we have a total of 2(N − 30) contextual variables of this
type for each word u.

Contexts are also defined by the coincidence of words. Then, jointly with the former variable ucn(T ),
which defines contexts from a temporal criterion for each isolated word, we build a second contextual
variable to identify those contexts defined by the co-occurrence of words. In terms of information
retrieval, this can be done by computing the co-occurrence matrix for the set of considered words.
In addition, we also take the temporal dimension of this co-occurrence into account. Let m be the
vocabulary length (i.e., the total number of considered words), and let the upper index i, i = 1, 2, . . . ,m,
denote each specific word ui. Let ui j

n (T ), i = 1, 2, . . . ,m, j = 1, 2, . . . ,m, be the number of times the
words ui and u j co-occur during the T days previous to day n. To identify the really important pairs of
words, we compute the following ratio

rui j
n (T ) =

ui j
n (T )

uii
n(T )

,

selecting them when rui j
n (T ) ≥ 0.95. This means that, during the T days preceding day n, the word

ui appears jointly with the word u j in at least 95% of the appearances of ui. From these ratios, the
following co-occurrence matrix Mn(T ) is calculated:
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Mn(T ) =


ru11

n (T ) · · · ru1m
n (T )

...
. . .

...

rum1
n (T ) · · · rumm

n (T )

 .
Since there are two time windows (of 7 and 30 days), it is worth noting again that there is a total of

2(N − 30) co-occurrence matrixes capturing these contexts defined by the simultaneity of topics.
To summarize, after our text transformation process, for each word, we count on the following:

Four variables characterizing its distribution over time; 2(N − 30) variables informing on its temporal
contexts; and 2(N − 30) variables capturing its topical contexts. The last two are common for all the
considered words, the first two being specific for each word. Each of these informative variables is
denoted by br, r, r = 1, 2 . . . ,R, where R is the total number of variables/dimensions.

3.2. Uncertainty quantification

As explained in the former section, to identify and measure uncertainty, we sequentially apply
three data mining algorithms on the numerical variables obtained from the texts, namely a self-
organizing map, followed by a hierarchical clustering and a Gaussian mixture model. The output
of these algorithms is a set of statistical distributions characterizing daily information in terms of
regions of homogeneous knowledge, on which we compute the Shannon entropy to quantify day-by-
day uncertainty. The guidelines of these steps are explained in the following subsections.

3.2.1. Self-organizing map

In order to work with the huge amount of variables resulting from the text-to-number processing,
it is mandatory to reduce the complexity of the obtained output without diminishing its informative
content. The implementation of a self-organizing map (SOM) algorithm constitutes the first step in
this simplification. More specifically, the aim of this SOM technique is to efficiently condense the N
daily multidimensional informative units into a small number of units, the so-called neurons.

Formally speaking, our SOM algorithm is a neural network, trained using unsupervised learning
techniques, which in terms of informative content, allows for the optimal topological placement of
the informative units (i.e., the neurons). The main guidelines of the proposed SOM algorithm are the
following. First, we consider the output generated by the initial text-to-number process. As explained
in the previous section, for each word u, this output consists of R variables. For each word u, let bu be
the R-dimensional vector defined by these informative variables. In a second phase, we compute these
vectors for all the words appearing on each day n, and calculate their average. Let Dn, n = 1, 2, . . . ,N be
these daily average vectors. Since the components of Dn are given by the average of the corresponding
variable for each word observed on day n, and all these word variables have been previously normalized
in terms of their informative content, these daily average vectors Dn summarize the informative content
of the daily production of news, tweets and headlines.

These Dn, n = 1, 2, . . . ,N vectors constitute the input of our SOM, which is run according to the
procedure defined by Kohonen [88–90]. Roughly speaking, this procedure considers each component
in Dn (i.e., each informative variable) as a dimension. In the multidimensional space thus defined, this
algorithm starts by placing an a priori reduced number of neurons, denoted by wk, k = 1, 2, . . . ,K.
Then, these neurons must move and find their optimal positions in the multidimensional information
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space according to the position of the N daily vectors-points Dn and the movement rules established in
the training example. In our case, given a daily Dn informative vector-point, each neuron approaches
this point depending on their distance: closer neurons move to the Dn vector-point more than distant
neurons. After iteratively applying this rule for all the daily Dn points, the process converges and
leads to a final position of the neurons, that is to a final neural network. In their final places, these
neurons can be envisaged as information environments or information attractors, in the sense of sharing
and determining the informative content of the closer days, given by the Dn points. Logically, the
a priori fixed number of neurons -or network size- must be properly chosen while looking for the
highest informative homogeneity inside the cluster defined by each neuron, which is compatible with
the clear existence of different informative environments or neurons. In the literature, this network
size is determined by a simple rule of thumb. Here, we follow a more rigorous method by applying
the silhouette coefficient, which informs on the number of neurons from which the network size tends
to be more ineffective. Basically, the silhouette coefficient measures the homogeneity inside each
informative environment-cluster, defined from the associated neuron. The idea is that as the number
of neurons increases, the average silhouette coefficient score decreases. As a result of the higher
granularity of the map, some daily data points become close to data points assigned to other clusters,
and the assignation of the daily informative points to a neuron tends to be fuzzier. Therefore, to
choose the optimal number of neurons in terms of this trade off between informative homogeneity and
informative difference, we must identify the inflection point in the silhouette coefficient. Once this
network size is optimally determined, these neurons wk, k = 1, 2, . . . ,K, are hierarchically clustered
following Ward’s method, which is justified and explained in the next subsection.

3.2.2. Hierarchical clustering

In terms of topological visualization, the resulting neural network provides a snapshot of the
informative patterns in the collected news. However, we are interested in an interpretation of
uncertainty similar to that arising from the human perspective, characterized by the existence of regions
of knowledge [57–59]. With this aim of reducing the neural network (i.e., the number and relative
position of the neurons) into interpretable informative regions, we apply an additional data mining
technique over the network of neurons, more specifically, a hard clustering process. The proposed
hierarchical clustering algorithm follows Ward’s method, which has proven to be resilient in this type
of task.

In essence, our hierarchical clustering process begins by considering that each neuron is a cluster
itself. Then, the algorithm progressively joins the clusters-neurons wk, giving rise to merged clusters
which look to minimize the variance inside the resulting merged clusters [91]. In our model, this
criterion can be envisaged as pursuing the greatest informative homogeneity for the neurons inside the
cluster, therefore justifying its application. At the end of this clustering phase, all the original neurons
wk -and thus all the original daily input data Dn linked to them- are assigned to a specific cluster Cz,
z = 1, 2, . . . ,Z. As explained in Subsection 4.2.1, the number of clusters is optimally determined in
terms of the trade-off between the operational simplification and the conservation of information.
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3.2.3. Multivariate Gaussian distribution

As explained, the previous phases result in a hard-clustering assignment, where each daily data
point Dn is fully attached to a single cluster. However, keeping the concept and meaning of uncertainty
and its determination in mind, it is necessary to classify each data point according to the probability
of belonging to any of the available cluster representatives. As commented before, each cluster can be
envisaged as a homogeneous and intelligible informative environment. Therefore, by determining the
probability of belonging to each cluster Cz for each daily informative unit Dn, we are characterizing
how confident we are about the right meaning and interpretation of the observed daily information Dn.

To accomplish this task we apply a soft-clustering method, where all the daily points Dn belong
to all the clusters Cz with different probabilities, which are calculated according to the multivariate
Gaussian probability distribution. For each cluster Cz, z = 1, 2, . . . ,Z, let P(Cz) be its probability of
occurrence (in informative terms), given by the following expression:

P(Cz) =
Nz

N
,

where N is the total number of days and Nz is the number of daily informative data Dn assigned to the
cluster after the aforementioned hierarchical clustering process. Let Cz be the cluster mean, given by
the average of the daily informative data Dn assigned to the cluster, and let ΣCz be its covariance matrix.

Then, for any daily informative point Dn, the probability of its occurrence conditional to its
membership to cluster Cz is given by the following expression:

P(Dn | Cz) =
1√

2π |
∑

Cz
|
exp{−

1
2

(Dn −Cz)T Σ−1
Cz

(Dn −Cz)}.

Therefore, the probability of being in the informative environment defined by cluster Cz once the
informative daily data Dn has been observed, is as follows:

P(Cz | Dn) =
P(Dn | Cz)P(Cz)∑Z

z=1 P(Dn | Cz)P(Cz)
.

Once these conditional probabilities have been calculated, we can proceed to the computation of
the Shannon entropy associated to each daily informative unit Dn, which we take as a measure of the
encapsulated uncertainty.

3.2.4. Entropy

One of the novelties of our model is the consideration of the Shannon entropy as a convenient
and reasonable measure of the uncertainty enclosed in the collected news. This interpretation of
uncertainty, which is a consequence of the design of all the previous steps, lies in the modeled
existence of homogenous informative environments (i.e., the clusters Cz) and the different degrees
of membership of each daily informative unit Dn to each of these informative environments. In short,
when a daily information unit is at 99% assigned to a specific cluster, this daily information can be
very accurately identified with a unique single informative environment, and the uncertainty is almost
negligible. However, when the daily news is a source of several topics with no clear assignation to a
particular informative homogeneous environment -in terms of a great similarity of the probabilities of
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membership of the daily informative vector to several clusters-, the uncertainty degree encapsulated
in the daily news is obviously much greater. This is just the quantification provided by the Shannon
entropy of the daily informative units Dn, denoted by H(Dn) and defined as follows:

H(Dn) = −

Z∑
z=1

P(Cz | Dn) log2 P(Cz | Dn).

In summary, our proposal is able to obtain a consistent and coherent quantification of financial
uncertainty by using unstructured data (news, tweets and headlines) as input, which are conveniently
processed to allow the daily Shannon entropy (our proposed measure of the encapsulated uncertainty)
to be computed.

3.2.5. Measuring and forecasting uncertainty

As explained in the previous sections, our model relies on measuring and predicting market
uncertainty by conveniently transforming the information encapsulated in the text news into numerical
variables, thus extracting the relevant information. To do so, these numerical variables are classified
and interpreted by applying AI techniques, thus opening up the possibility of quantifying the
underlying uncertainty through the computation of the Shannon entropy associated to the daily
information. Since uncertainty is associated with periods of turmoil, extreme volatilities and strong
tendency changes in financial literature, we must design a procedure able to identify these periods
from our data of daily Shannon entropy.

Concerning this point, we propose to predict future periods of uncertainty in stock markets
by identifying previous and significant changes in our textual daily informative environments, as
characterized through the computation of their Shannon entropy. This is made in two steps. First,
to capture trend elements in the information flow, we calculate a moving average for the daily Shannon
entropy. Given that 14 natural days (two weeks, 10 working days) is a reasonable length in news
duration (see [73]), we consider the window of the 14 previous natural days for the moving average,
denoted by S E14. Then, to identify changes inside these tendencies, we consider the slope gradient
∇(t) of S E14for each period, calculated as follows:

∇(t) = | max
t−7:t

S E14 −min
t−7:t

S E14 | .

Regarding the length of the period used to identify informative changes, related to the calculation
of ∇(t), we consider the previous seven natural days (i.e., the previous 5 working days). According to
our reasoning, informative uncertainty is associated with the presence of short periods of significant
changes in the type of information and/or increases in information heterogeneity, both leading to
extreme values for ∇ (i.e., to outliers). Following a well established rule to identify outliers, they
appear when ∇(t) ≥ (Q3 + 1.5 × IQR), where IQR is the interquartile range. Assuming a proper
functioning of our model, these outliers should predict the presence of uncertainty in the stock market,
that is, they should advance the future occurrence of periods of turmoil, extreme volatilities and/or
strong tendency changes in stock market prices. This is the model that we test with real data in the
following section.
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4. Experiment

4.1. Data

As explained above, our research makes use of two types of data: Textual data, processed to extract
the uncertainty encapsulated in news by applying AI techniques, and numerical indices of uncertainty,
which are used to validate model predictions. The success of any forecasting model strongly depends
on the quality and quantity of the data sources, which are the characteristics that have guided our
selection of the data sources.

In terms of news, the relevant and trustworthy sources must reach large audiences, since they lead
to more significant impacts and will generate more interest in agents, practitioners and researchers. In
this study, the news source is the Wall Street Journal, which is a daily publication reaching 42 million
digital readers per month, and is the main reference in the world of finance [92]. More specifically,
text data have been retrieved from the public historical dataset stored in the Wall Street Journal archive
from January 01 2007 to December 31 2019. In this dataset, covering 4,748 days, the total amount of
headlines considered as input were 739,726, from which we obtained 3,772,613 words labeled by the
respective article category.

To validate our model, we consider the Chicago Board Options Exchange’s CBOE Volatility Index
(VIX) [93] and the Bears Power (BP) indicator [94] for the same period of time. The VIX index
provides a measure of stock market volatility, and is the most used index for measuring uncertainty.
For its part, the BP indicator allows changes in trends and regimes to be identified.

4.2. Text pre-processing

As referred to above, the data source is the Wall Street Journal Archive from January 01, 2007 to
December 31, 2019. A total of 739,726 headlines were considered, and then screened and processed
according to the methodology of our model. The specific methods and techniques constituting our
contributions to the literature, as well as the logic behind them, have been explained in detail in
the previous sections. Therefore, here we only discuss the operational questions arising from the
particular characteristics of our dataset, which must be ad-hoc designed, and are not related to the
model goal, namely the quantification of uncertainty. All the work was performed within Python® 3.8
with the supercomputer resources provided by the supercomputing center foundation of Castilla and
León (SCAYLE) [95].

From the point of view of the question to be analyzed, real-world data contain features ranging
from irrelevant or redundant to deeply important. The selection of the truly relevant features depends
on the AI techniques to be used in the investigation [96], which determine the type of so-called pre-
processing practices. In our case, our method relies on the quality of the information extracted from the
news headlines and the applied AI techniques are those of NLP; therefore, the ad-hoc pre-processing
tasks must have a mainly semantic nature.

Besides being a finance journal, the WSJ releases news not related to economics and finance, thus
acting as a noise generator; therefore, the first step in preparing the data for our model is the elimination
of these irrelevant headlines and words. As commented on above, we count on 739,726 headlines, that
the WSJ archive has previously labeled by a word defining the related topic. More specifically, the
collected headlines were classified into 5,691 topics, many of them with no interest for our purposes.
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In order to keep only finance-related news, we used the regular expression (regex) patterns in Table 1
for screening the initial 5,961 topics.

Table 1. Headline topics for regex screening.

.*business.* .*market.* .*econom.* .*money.* .*invest.* .*financ.* .*bank.* .*stock.*

After the regex screening of the original 5,961 topics and 739,726 headlines, the resulting dataset is
comprised of 573 topics (9.6% in terms of topics) and 186,001 headlines (25.1% in terms of headlines).

Some of these final headlines contained alphanumeric values. In this respect, we decided to remove
the numerical characters, given that the information provided by numbers is only understandable in
terms of context and we already count on four contextual variables for each word. With the same aim
of avoiding redundancy, lemmatization was implemented to reduce the inflectional forms -which have
only contextual meaning- into a common root.

Another important aspect to consider in the process of information retrieval is the existence of
groups of words with a unique assigned meaning, the so-called n-grams. For example, “United States”
must be considered as a single piece of information, because isolating “United” from “States” generates
both new spurious items and loss of true information. To tackle this issue, we proceeded to detect
the existing n-grams. After the analysis of their informative relevance, we decided to focus only
on those bi-grams appearing more than 30 times, thereby transforming them into single pieces of
information. This is reasonable, since we are dealing with headlines in which n-grams with more
than three words are practically non-existent. Also, when present, all their constituent words provide
relevant information.

After this initial pre-processing phase of the text data and the subsequent noise reduction, we count
on a proper set of vocabulary, which constitutes the input of our model.

4.2.1. Feature selection and number of clusters: Specificities

The data obtained after the screening phase were processed by the vectorization algorithms
described in the methodological section. The results are the daily informative vectors (defined in
Section 3.2.1) Dn, n = 1, 2, . . . , 4748, each of whose components measures an informative dimension.
However, given that our objective is to identify, quantify and predict uncertainty, it is necessary to
remove those informative features that can be predicted. There are two reasons behind this reduction
of the information dimensionality. The first one meets the need to ensure an accurate identification
and quantification of the uncertainty degree, which is the main goal of the model. In this respect, it
is obvious that when an informative dimension in Dn can be systematically explained or forecasted
by any of the others, this dimension does not entail idiosyncratic uncertainty, and must be removed
to avoid a double accounting of a unique and common uncertainty element. As related to the first,
the second reason has an operational nature, since the elimination of redundant dimensions entails a
simplification of calculation and gains of efficiency by avoiding the curse of dimensionality.

In the related literature, dimensionality reduction is mainly carried out by applying principal
component analysis. This method is essentially a technique that identifies the underlying correlations,
thus proposing a change of basis on the data enabling the identification -and removal- of the less
explicative dimensions. Since this method is based on the analysis of the existing correlations, here,
in order to avoid additional manipulations of the data, we decided to apply Pearson’s correlation and
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remove those features or dimensions that could be explained by others (i.e., showing a high correlation
coefficient with any of the others).

Table 2 collects the Pearson correlation coefficients between our informative dimensions. Assuming
that each category of variables (i.e., time distribution, contextual, and cumulative frequency variables)
share the type of informative content, the removal of dimensions/features has been carried out inside
each category. Concerning the word context variables ucn(T ) and Mn(T ), correlations above 0.89 enable
us to drop ucn(30) and Mn(7). Kurtosis kru and skewness sku are able to explain each other, so we kept
kurtosis. Concerning the cumulative approach, we drop variables with a correlation above 0.82.

Table 2. Pearson’s correlation for feature selection.

Pearson’s Correlations
ucn(7) ucn(30) Mn(7) Mn(30) kru sku q25

u q50
u q75

u q95
u

ucn(7) 1.00 0.91 0.98 0.89 -0.22 -0.26 0.35 0.32 0.29 0.24
ucn(30) 0.91 1.00 0.89 0.98 -0.23 -0.27 0.38 0.35 0.32 0.27
Mn(7) 0.98 0.89 1.00 0.92 -0.22 -0.25 0.36 0.33 0.30 0.25
Mn(30) 0.89 0.98 0.92 1.00 -0.23 -0.27 0.39 0.36 0.33 0.27
kru -0.22 -0.23 -0.22 -0.23 1.00 0.97 -0.40 -0.49 -0.41 -0.52
sku -0.26 -0.27 -0.25 -0.27 0.97 1.00 -0.37 -0.46 -0.40 -0.51
q25

u 0.35 0.38 0.36 0.39 -0.40 -0.37 1.00 0.95 0.90 0.82
q50

u 0.32 0.35 0.33 0.36 -0.49 -0.46 0.95 1.00 0.95 0.90
q75

u 0.29 0.32 0.30 0.33 -0.41 -0.40 0.90 0.95 1.00 0.96
q95

u 0.24 0.27 0.25 0.27 -0.52 -0.51 0.82 0.90 0.96 1.00

One of the most relevant steps in the word processing task is the definition of the numbers of neurons
and clusters. As commented in the methods section, these numbers are optimally determined. In this
respect, by computing the silhouette coefficient, we obtain that the optimal number of neurons is 100.
Concerning the number of clusters, we used the Elbow graph to optimally determine the number in
terms of the trade off between the operational simplification and the conservation of information.

The Elbow graph is represented in Figure 1. Although the discussion of the logic behind the
Elbow graph criterion is beyond our sphere of interest, here we briefly describe its foundations and
its relationship with our objective. As explained in the methodological section, clusters in our model
group daily informative units with a similar informative content. The idea is that the distance of a
daily informative unit to the center of a given cluster measures how similar the informative content
of the daily unit is to the information represented by the cluster. The greater this distance, the more
distinct their respective informative contents. In the Elbow graph, the y-axis (inertia) represents the
distances of the daily informative units to their closest cluster center, which can be interpreted as
the informational error in its best assignation. Then, the greater the y-axis value, the greater the
informative discordance between the daily units and their appropriate clusters/informative regions.
Obviously, inertia is at its maximum when there is only one cluster. Moreover, as the number of
clusters increases, the inertia decreases since it is feasible to better allocate each daily informative unit,
with the value of the inertia being zero when each daily unit becomes its own cluster. Our approach
requires not only the preservation of the informative content, but also the construction of informative
homogeneous regions/clusters. Then, from the clustering with total informative content (i.e., zero

AIMS Mathematics Volume 9, Issue 1, 1683–1717.



1699

inertia and each daily unit being its own cluster), we must increase the number of clusters looking for
acceptable increases in the informational errors of the arising assignation. Then, it is clear that the
inflection point in the Elbow graph provides a useful and reasonable criterion to determine the optimal
number of clusters. As Figure 1 shows, the inflection point with our data occurs between three and five
clusters. Therefore, we choose four as the optimal number of clusters to run our hierarchical clustering
algorithm. After these transformations, we proceed to compute the Shannon entropy as explained in
the methods section.

Figure 1. Elbow graph: Determination of the optimal number of clusters.

4.3. Model comparison

In order to test whether or not our proposal constitutes a methodological improvement in identifying
and predicting stock market uncertainty, we compare our approach against the standard algorithms.
Logically, on the basis of the EMT and MSH, the performance of both our model and the alternative
algorithms are evaluated, taking the stock market prices as reference. In this respect, to test the
robustness of the different models, the real presence of uncertainty, as indicated by periods of turmoil
and extreme volatilities and/or strong changes in prices, is identified by applying the usual market
indices, as well as a new one based on the Shannon entropy.

4.3.1. Alternative algorithms

As explained in Section 3, our model predicts stock market uncertainty by transforming the
information encapsulated in the text news into numerical variables. These numerical variables allow
the relevant information to be measured on a daily basis through the calculation of the daily Shannon
entropy. Upon this basis, and given that in the financial literature uncertainty is associated to periods
of turmoil, extreme volatilities and strong changes, we have designed a procedure which is able to
identify and forecast these periods from our data of daily Shannon entropy.

To consistently compare our method, this must also be the procedure to identify and predict
uncertainty for the alternative algorithms. In this respect, the algorithms to be tested are those
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commonly used in the literature: k-means, self-organizing maps, and expectation-maximization (EM).
As explained above, the metric we apply in our model is the daily Shannon entropy, and therefore these
three alternative methods need to be conveniently adapted to ensure a coherent comparative analysis
in terms of this metric. Since K-Means and SOM assign each daily data object to only one of the
considered clusters and the computation of the daily Shannon entropy is no longer possible, we have
decided to compute the Shannon entropy on a monthly basis according to the formula:

H(m) = −

Z∑
z=1

Mz

M
× log2

Mz

M
,

where m is each specific month, Mz is the number of times the corresponding cluster Cz is assigned
during the month (i.e., the number of daily data in the month assigned to the cluster), and M is the total
number of month days.

On the contrary, for the EM algorithm, the evaluation of the daily Shannon entropy is perfectly
feasible through the application of the procedures, as is explained in the methodological Section 3.2.

Once the Shannon entropies have been calculated for the four models (i.e., our proposal, k-means,
SOM and EM), the periods with the highest uncertainty predicted by each model are determined by
applying the common procedure previously detailed.

To implement the k-means algorithm we used the library scikit-learn (v0.21.3) with randomized
initial seeds. The implementation of SOM used the sompy (v1.1) library, with a 2 × 2 map size,
random initialization, iterations equal to 1,000, and hexa lattice. The EM algorithm was implemented
via scikit-learn (v0.21.3) with the module mixture.GaussianMixture, and a maximum number of 1,000
iterations. The interested reader can find exhaustive information on these algorithms in [97–100]. After
applying the Elbow graph, in line with the results in our model, all the algorithms were designed to
produce four final clusters.

4.3.2. Market indices

Based on the EMT and the MSH, we validate our model directly against the market prices. In
the literature, the occurrence of uncertainty in the stock markets is typically identified by strong
inflections in prices, volatilities, crashes, and bullish and bearish behaviours [101, 102]. To evaluate
the performance of our model and of the alternative algorithms against these market measures of
uncertainty, we selected the Chicago Board Options Exchange’s CBOE Volatility Index (VIX) [93]
and the Bear Power (BP) index [94].

As is well known, the VIX index measures market volatility, and is therefore useful to identify
periods of real uncertainty characterized by the presence of high volatility in stock prices. For the VIX
index, with the aim of avoiding data manipulations, we consider that the outliers identifying extreme
volatility appear when

VIX ≥ (Q3 + 1.5 × IQR).

Alternatively, since the BP index is formulated as the difference in a moving average, this index
is appropriate to identify uncertainty caused by changes in cycles and trends. Again, to avoid data
manipulation, we directly consider its value. Taking the fact that bearish markets are related to a
lack of trust and uncertain situations into account, we assume that uncertainty environments are those
showing the lower values for the BP index. Then, for the BP index, relevant outliers are defined as
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follows:
BP ≤ (Q1 − 1.5 × IQR).

Finally, to test robustness, we compare our model against a new index capturing both the evolution
and volatility of market prices, formulated by applying a methodology similar to that considered in our
model. This proposal, denoted as the price entropy index, implies a broad definition of uncertainty,
and makes its quantification possible through the application of the Shannon entropy concept. The
considered stock market prices p are those in the Dow Jones Industrial Average (DJI) [103], from
which we compute the index as follows:

(1) Calculation of the daily closing price variation 4(t) =
pt−pt−1

pt−1
, of its whole range along the N

days, and of the following purposely specific quintiles Q: Q1 = (0,∞), Q2 = (−0.025, 0], Q3 =

(−0.05,−0.025], Q4 = (−0.075,−0.05], Q5 = (−∞,−0.075].

(2) For each day t, the determination of the quintile distribution of 4(t) along the window from (t − 7)
to (t + 7), denoted by Q(t).

(3) Calculation for each day t of the Shannon entropy associated to Q(t).

Since optimism and an absence of uncertainty is associated to increases in stock prices, we have
considered a single quintile for all the positive values of 4(t). The consideration of a window of 14
natural days (i.e., 7 natural days or 5 working days) before and after each day t, (t − 7 : t + 7),
representing 2 natural weeks, is a reasonable period to identify changes in tendencies or extreme
volatilities. The entropy calculation in step 3 was made with the scipy (v1.3.1) library. Once this
Shannon entropy of market prices has been calculated, we apply the same procedure implemented for
our model to detect moments of a higher uncertainty. In the next section, we present and discuss the
results obtained from this comparison experiment.

5. Results

Once the methods explained in the previous sections have been applied, we count on the outliers
generated by our model, the three alternative models (K-Means, SOM and EM-GMM), and the three
market indexes (VIX, BP, and Price Entropy). Since we have to establish how well each of the four
considered models predicts the real uncertainty as it stands in the three market indices, these outliers
constitute the main output to be analyzed. Logically, it is previously necessary to define the applicable
time window of forecasting for the four models, that is, the number of days previous to a real presence
of uncertainty, along which it is considered that a model predicts that actual uncertainty. On this
point, there is no consensus in the literature. Indeed, in studies making use of daily data such as ours,
windows ranging from the 250th to the 30th previous days can be found, with no a clear criterion of
decision [104–107]. Therefore, we have decided to establish a window of 60 days, which is the same
as in Schema Design and Google Trends [73], mainly because that study covers news with a similar
nature to ours, and analyzes their lifespan in the country where the WSJ -our text data source- is based.
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5.1. Comparison of predictive accuracies

The comparative analysis of the performance of the models is carried out by applying the usual
concepts of sensitivity and specificity [108]. These measures of the ability of a predictive method
provide the ex-post probability of the considered model to correctly predict the future presence
(sensitivity) or absence (specificity) of a real uncertainty period. As explained above, our models
identify and predict uncertainty periods through the calculation of outliers. Then, the concept of
sensitivity aims to penalize the inability of the model to identify true outliers within the time range,
while specificity is designed to penalize models showing an over-response and the appearance of
false positives/outliers. Additionally, the predictive capability of the different models is assessed
by computing the area under the receiver operating characteristic (ROC) curve, abbreviated as
AUC. Roughly speaking, for each model, the ROC curve displays the sensitivity (the rate of true
identified outliers) as a function of the rate of falsely identified outliers for all possible threshold
values determining true positives. Thus, the AUC is a robust overall measure of the performance
of the considered model in predicting the presence and absence of outliers/uncertainty, because its
calculation relies on the complete ROC curve and considers all possible prediction thresholds. The
AUC value is within the range [0, 1], where the minimum value represents a totally inaccurate
prediction, 0.5 is associated to a random forecast, and the maximum value corresponds to a perfect
prediction. In general, an AUC value between [0.7, 0.8] is considered acceptable, in the interval
[0.8, 0.9] is considered excellent, and is outstanding above 0.9. The interested reader on AUC can
consult [109–111].

Table 3 displays these three measures for the four considered models and the four different
forecasting scenarios. These scenarios are defined as follows: real uncertainty arising from the VIX, the
BP, and our price entropy indices; and a global fourth scenario for which real uncertainty arises from
at least one of these former three indexes. As this table shows, our proposed model achieves much
better results compared to its counterparts, particularly concerning sensitivity and AUC. Regarding
specificity, although k-means and SOM present higher values and correctly forecast all the absences of
real uncertainty, they are not representative of a good predictive capability. On the contrary, given their
zero or close to zero sensitivity values, their forecast strategy can be envisaged as the continuous and
systematic prediction of uncertainty absence. Indeed, the percentages of total right predictions (i.e.,
those for real presence and real absence of uncertainty, the so called accuracy value) for k-means and
SOM are the lowest among the four considered models, while our model presents the highest accuracy.
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Table 3. Performance of the considered models: Sensitivity, Specificity, Accuracy, and AUC.

Scenario Sensitivity Specificity
Market Index K-Means SOM EM-GMM Model K-Means SOM EM-GMM Model
Price Entropy 0.06108 0 0.31414 0.65969 1 1 0.98195 0.98684
VIX 0.01562 0 0.19271 0.92187 1 1 0.97566 0.98158
BP 0 0 0.18033 0.46721 0.99968 1 0.97813 0.98842
Global 0.056 0 0.304 0.6496 1 1 0.98235 0.99156

Scenario Accuracy AUC
Market Index K-Means SOM EM-GMM Model K-Means SOM EM-GMM Model
Price Entropy 0.82147 0.81033 0.86603 0.94183 0.53054 0.5 0.64944 0.82708
VIX 0.92945 0.9245 0.95421 0.99752 0.50781 0.5 0.58428 0.95583
BP 0.94647 0.94616 0.95297 0.98205 0.49984 0.5 0.57833 0.728435
Global 0.80538 0.79424 0.85303 0.93441 0.528 0.5 0.64432 0.82281

As shown in Table 3, our model successfully predicts real market uncertainty. For the main
measures of predictive quality -namely sensitivity, accuracy and AUC- and for all the considered
scenarios, our proposed model obtains the best results by far. In particular, our model presents a
very high predictive capacity of the real uncertainty periods identified by the VIX market index, and
does so without penalizing its specificity value (i.e., without wrongly predicting the absence of real
uncertainty). Given the popularity and importance of this index, this is an evident advantage of our
model. It is worth noting that our model provides an outstanding AUC value of 0.95583 for this VIX
index, and the AUC values are excellent for the price entropy and global market indexes. The AUC
value of our model for the BP index is 0.72843, which is much higher than those attained by the
K-Means, SOM and EM-GMM models, and is within an acceptable range.

Figures 2–5 show the performance of the considered models for the global scenario, which is the
more general one. In addition, the interactive Figure 6, which is provided in the supplementary section
and is publicly available at GitHub (https://github.com/BeforePublication/Stock-market-uncertainty-
determination-with-news-headlines), allows the distinct model performances for every scenario to be
inspected in more detail. In these figures, for each of the considered models, green denotes a correct
anticipation of a real occurrence of uncertainty (according to the visualized index), and red represents
an anticipated period of uncertainty that does not actually happen. Analogously, for the different market
index graphs, green indicates that the period of (real) uncertainty has been correctly predicted by the
model, whilst red denotes the existence of real market uncertainty not predicted by the considered
model. In this respect and as these figures depict, k-means and SOM closely follow the market
evolution, thus providing valuable insights into market trends. However, due to their conservative
hard clustering approach, they do not provide accurate predictions of real future uncertainty episodes
in terms of sensitivity, and this happens for all of the considered market indexes. Regarding the EM-
GMM model, although it predicts future real market uncertainty better than k-means and SOM, its
sensitivity value is no greater than 0.31414, which is clearly unsuccessful. In comparison with the
k-means and SOM models, this improvement is a consequence of the EM-GMM’s higher ability to
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mimic the market volatility; in any case, this improvement does not allow for a satisfactory prediction
of important uncertainty periods, such as those characterizing the subprime crisis.

Figure 2. Global scenario: Performance of K-Means model.

Figure 3. Global scenario: Performance of SOM model.
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Figure 4. Global scenario: Performance of EM-GMM model.

Figure 5. Global scenario: Performance of the proposed model.

As evident from its sensitivity and specificity values, the superior performance of our proposed
model is also graphically manifested. In particular, Figure 2 shows (in green) how the future real
occurrence of market uncertainty is correctly predicted by our model, especially in the 2008-2018
subprime crisis. Additionally, it is worth noting that most of the errors in predicting uncertainty (in
red) occur in the final periods of the sample, when the Global Financial Crisis was at its end and
the uncertainty episodes were less intense. Indeed, according to the VIX index, there are no market
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uncertainty periods after 2016, which is the reason behind the excellent performance of our model
for this market index. This fact can be interpreted from at least two perspectives. The first suggests
that our methodology is particularly suitable for the prediction of episodes of high uncertainty when
uncertainty is understood as volatility. The second points to the need for further analyses of the proper
definition of real market uncertainty, since this definition determines the accuracy of the distinct models
in forecasting real uncertainty. As commented above, our proposed model is highly suitable when real
uncertainty is related to volatility, which happens for the VIX index. When market uncertainty is
understood as the existence of changes in cycle and trend (as detected by the BP index), our model
again provides the best predictions, although with a lower sensitivity than for the VIX index.

As explained in Section 4.3.2, to tackle these shortcomings arising from the alternative definitions
of real uncertainty, and in order to check the robustness of our model, we have elaborated a more
general market index, the price entropy index. Given its methodology, this index should capture a real
uncertainty arising both from extreme volatility and changes in the cycle and trend. In this respect, the
high similitude for all the considered measures -sensitivity, specificity, accuracy and AUC- and for all
the models between the values obtained for the price entropy and global scenarios, suggests that our
price entropy index correctly identifies periods of real uncertainty characterized by both price volatility
and changes in cycle and tendency. For this market index/scenario, our model again provides the best
forecast results, and presents the highest values for sensitivity, accuracy and AUC. This implies that
our model successfully predicts episodes of real uncertainty defined as periods of high volatility in
stock prices, showing change of cycles and trends in prices, or presenting the co-occurrence of these
features.

5.2. Statistical significance

As is well known, the usual measures of goodness of fit used in regression models can be misleading
in qualitative response models [112–114]. As a result, in the context of binary response models such as
the ones considered here, sensitivity, specificity, accuracy, and AUC are considered as the most suitable
metrics to determine how well a model predicts a binary condition (e.g., the presence or absence
of market uncertainty in our study) [108–111]. According to these measures, and as discussed in
the previous subsection, it is evident that our digital twin provides much better predictions than the
alternative standard models. However, all these measures provide descriptive ex-post probabilities,
but do not offer information on the statistical reliability of this better performance. In this respect,
not only due to the reasons mentioned above but also to its rolling window nature, our model does
not allow for an evaluation of its statistical significance through the calculation of out-of-sample R2

statistics; therefore, alternative methods must be considered. In fact, one of the main characteristics
of our approach is its evolutive nature, which involves a continuous reevaluation of the underlying
parameters that renders out-of-sample prediction nonsensical. At any given time t, the model does not
assume predefined parameter values enabling out-of-sample prediction; rather, these parameter values
are defined through the prediction itself. This lack of a closed and concrete time-invariant specification
for our digital twin model also prevents the direct application of the standard statistical hypothesis tests
(for instance the Clark and West test or the Giacomini and White test) to compare the predictive ability
of the models considered here, since these tests rely on assumptions that are not fulfilled in our digital
twin model.

The distinctive characteristics of our approach compel us to use alternative methods to establish
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the statistical significance of our results regarding sensitivity, specificity, accuracy, and AUC. In this
regard, due to the immediate interpretation of the AUC and its equivalence to the Mann-Whitney U
test and the Wilcoxon test of ranks [108, 115], the AUC is considered the most robust metric for
evaluating and comparing predictive accuracy. After selecting this metric, the statistical significance of
our results can be obtained in two different ways: By using the predicted and the observed series, or by
considering the ROC curves. In the first option, we compute the Handley and McNeil test [116]. The
second alternative requires the implementation of a semiparametric bootstrapping procedure [117]. As
depicted in Table 4, in both cases, the p-values are below 0.05 for all the comparisons. Therefore, we
can conclude that the superior performance of our digital twin is statistically significant.

Table 4. Performance of the considered models: Statistical significance of AUC differences.
Scenario Predicted-observed series ROC curve

Handley-McNeil test Semiparametric bootstrapping
Market Index Model vs K-Means Model vs SOM Model vs EM-GMM Model vs K-Means Model vs SOM Model vs EM-GMM

Price p-value=7.584e-05 p-value=5.595e-05 p-value=0.01859 p-value¡2.2e-16 p-value¡2.2e-16 p-value¡2.2e-16
Entropy [0.04807, 0.14242] [0.04940, 0.14299] [0.00979, 0.10733] [0.30037,∞] [0.32393,∞] [0.17453,∞]

VIX p-value=8.911e-13 p-value=5.34e-13 p-value=1.236e-10 p-value¡2.2e-16 p-value¡2.2e-16 p-value¡2.2e-16
[0.23089, 0.40541] [0.23366, 0.40791] [0.20265, 0.38017] [0.44969,∞] [0.45578,∞] [0.37151,∞]

BP p-value=5.328e-08 p-value=5.197e-08 p-value=0.00048 p-value¡2.2e-16 p-value¡2.2e-16 p-value¡2.2e-16
[0.13369, 0.28429] [0.13386, 0.28445] [0.06001, 0.21343] [0.22858,∞] [0.22842,∞] [0.15955,∞]

Global p-value=2.508e-06 p-value=1.743e-06 p-value=0.00211 p-value¡2.2e-16 p-value¡2.2e-16 p-value¡2.2e-16
[0.06252, 0.15172] [0.06372, 0.15225] [0.02620, 0.11837] [0.29832,∞] [0.31991,∞] [0.17908,∞]

Alternative hypothesis, Handley-McNeil test: AUCs are not equal.
Alternative hypothesis, semiparametric bootstrapping method: Model AUC is higher.
In brackets: 95% confidence interval for the difference in AUCs

6. Conclusions

The analysis of uncertainty, understood as a situation that cannot be accurately predicted, is
a complex question due to the multiple and intricate dimensions involved in its definition and
mathematical consideration. Despite this difficulty, researchers have not renounced to its formal
analysis, mainly because of the pervasive role that uncertainty and its correct anticipation plays in
economic life. As a result, economics has devoted important efforts to design mathematical models able
to identify, quantify and predict uncertainty and its economic consequences. Most of these economic
models rely on obtaining a mathematical characterization of the uncertain behavior of the considered
numerical variables, usually market prices, which are then structured according to the time, space or
categorical criteria. These structured numerical data give rise to alternative measure functions (i.e.,
probability, credibility, chance, and uncertain measure functions), which are used to identify, quantify
and forecast uncertainty. In this respect, although these measures built with structured numerical
market data have shown some ability to anticipate future uncertainty, the evidence shows that their
performance is very limited, thus questioning the use of only these market variables to predict future
uncertainty.

To overcome this shortage, the use of unstructured data, particularly news and reports, has emerged
as an alternative to quantify and predict stock market uncertainty. Indeed, models considering news
and other textual forms are used to confirm the verification of the EMT and MST and to elaborate
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predictions for asset prices, offering results that are promising although not totally satisfactory.
Our research falls within this line. More specifically, we propose a digital twin model that mirrors

the information processing carried out by the market agents, who are, according to the EMT and MST,
ultimately responsible for the behavior of the stock market prices, thus establishing a correspondence
between the absence of a clear and certain interpretation of the available information by the market
agents and the episodes of stock market uncertainty. To this end, we use novel AI approaches
and techniques to link the news and the market uncertainty, and to identify, quantify and forecast
stock market uncertainty. These new features are present at all the stages of the model, and look
for an identification of the uncertainty encapsulated in news similar to that of our mind. To do
so, we consider the presence of words of a particular interest, taking into account their frequency
of appearance, the specific moments at which each world appears, its relationships with the other
words, and, most importantly, whether or not all these textual informative aspects can be clearly
interpreted. These tasks are accomplished by implementing AI techniques at different levels. First,
for each word, the applied algorithms allow a statistical description of the abovementioned timeline
and contextual patterns of its appearances to be obtained, thus constituting an important contribution
of our proposal. Then, at a second level, a set of data mining techniques -namely SOM, hierarchical
clustering, and gaussian mixture clustering- are sequentially applied to define and characterize regions
of homogeneous knowledge/information, which is another interesting novelty. Finally, we propose the
use of Shannon entropy to measure the uncertainty present in the news, in the sense of an absence of
clear assignation of the considered informative elements to a specific environment of homogeneous
knowledge.

The evaluation of our model in predicting stock market uncertainty is clearly successful. To
show the robustness of our proposal, the model predictions are compared against those of the
standard algorithms -SOM, k-means and EM- in four different scenarios, each representing a different
conception of real uncertainty. The comparative analysis of these performances is carried out by
applying the usual concepts of sensitivity, specificity, accuracy and AUC. For these measures of
predictive quality and for all the considered scenarios, our proposed model obtains the best results
by far, specially -but not only- when market uncertainty is understood as price volatility. Indeed, when
the presence of real uncertainty is associated to both price volatility and changes in cycle and tendency,
our model successfully predicts the observed episodes of market uncertainty, predictions which are
much better than the standard models and show excellent values for specificity, accuracy and AUC.

In light of these results, our research contributes to the literature in several aspects. First,
concerning financial economics, our model constitutes a benchmark to assess the fulfillment of the
EMT and MST from a different perspective. These two central theories in economics have mainly
been studied by testing the existence of arbitrage opportunities with series of stock prices (see the
recent studies [118, 119]), but not by determining whether or not stock prices reflect the agents’
rational processing of the available information. Since our digital twin model replicates the way
textual information is interpreted by the human brain, its ability for predicting real episodes of market
uncertainty can be envisaged as an alternative test of the EMT and MST, as well as a novel approach
to continue exploring the bounded rationality research avenue [120].

As a second contribution, our research proves the capability and flexibility of the NLP approach
and AI techniques to numerically characterize and interpret textual data. In this respect, even for
such a complex question as market uncertainty, the joint and adequate combination of NLP, AI and
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IT techniques and concepts has provided a satisfactory measure and prediction of this magnitude.
From this perspective, our methods and techniques can also contribute to the field of computational
neuroscience devoted to the design of language models and to the comprehension of how the
human brain elaborates supra-word meanings, which is the subject of recent interesting studies
(see [60, 61, 121]).

Moreover, our research shows that models built under the umbrella of NLP can be extended to
determine the processes guiding the perception of uncertainty by the agents and its transmission to
the stock markets, thus providing new alternatives to study and predict the appearance of contagions,
bubbles and financial panics. As our study shows, these advances must come from the combination
of quantitative and qualitative improvements in the text data sources, the rigourous discussion of the
processes to be implemented, and the design of the proper testing experiments. For the particular field
of financial uncertainty forecasting, and in light of the empirical results where our model constitutes
a valuable proposal to identify, quantify and predict market uncertainty, it is important to consider
alternative and/or additional information sources, as well as new stock market indexes. In this
respect, given the increasing presence and prominence of fake news and misinformation campaigns,
special attention must be paid to the consideration and valuation of these disturbing elements, which
is a question already pointed out by recent studies (see for instance [122, 123]). Since these new
input data can reproduce different and not contemplated features of uncertainty, the use of different
statistics in the text vectorization phase should also be addressed. Concerning our measure of the
underlying uncertainty through the Shannon entropy concept, the performance of the model can be
further investigated by using different levels of entropy normalization.

Last but by no means least, from a practical standpoint and concerning the investment activity in
the markets and the design of optimal portfolios, our research also makes an interesting contribution.
Anticipating periods of financial uncertainty is crucial for fund managers, thereby helping them to
design hedging tactics to mitigate losses or maximize gains. In this context, our digital twin could
be integrated into algorithmic platforms that automatically manage financial portfolios, known as
robo-advisors, thus providing them with reliable real-time predictions about periods of uncertainty
and turbulence and therefore enabling the possibility of higher profits.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This article was largely completed while PJGD was visiting the Department of Economics of the
European University Institute (EUI) from January 2023 to May 2023. The authors express their
gratitude to the EUI for providing research facilities and access to internal scientific meetings. PJGD
acknowledges financial support from: Spanish Agencia Estatal de Investigación-Ministerio de Ciencia
e Innovación (research project PID2020-113554GB-I00/AEI/10.13039/501100011033); University of
Valladolid Research Group on Dynamic Optimization, Mathematical Finance and Recursive Utility;
and University of Valladolid-Bank of Santander 2023 Mobility Aids for Researchers. This research
has made use, free of cost, of high performance computing resources provided by SCAYLE [95].

AIMS Mathematics Volume 9, Issue 1, 1683–1717.



1710

Professional assistance for manuscript preparation from Alan F. Hydns, B.A. Dip. TEFL, is highly
appreciated.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. G. Cardano, Liber de ludo aleae, In: C. Sponius (ed.), Hieronymi Cardani Mediolanensis Opera
Omnia, Lyons, 1663, 1564.

2. B. Pascal, P. Fermat, Letters, In: Pascal Fermat Correspondence, 1654. Available from:
http://www.york.ac.uk/depts/maths/histstat/pascal.pdf.

3. J. Bernoulli, The art of conjecturing, together with letter to a friend on sets in court
tennis, English translation by Edith Sylla, Baltimore: Johns Hopkins Univ Press, 2005, 1713.
https://doi.org/10.1111/j.1600-0498.2008.00117.x

4. F. P. Ramsey, Truth and probability, In: The Foundations of Mathematics and other Logical Essays,
ed. R. B. Braithwaite, London: Routledge & Kegan Paul Ltd, 1926. https://doi.org/10.1007/978-3-
319-20451-2 3

5. L. J. Savage, The foundations of statistics, New York: John Wiley & Sons, 1954.
https://doi.org/10.1002/nav.3800010316

6. J. M. Keynes, A treatise on probability, Macmillan & Co., 1921. https://doi.org/10.2307/2178916

7. F. H. Knight, Risk, uncertainty and profit, Chicago University Press, 31 (1921).
https://doi.org/10.1017/CBO9780511817410.005

8. M. Kurz, M. Motolese, Endogenous uncertainty and market volatility, Econ. Theory, 17 (2001),
497–544. http://dx.doi.org/10.2139/ssrn.159608

9. M. B. Beck, Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res.,
23 (1987), 1393–1442. https://doi.org/10.1029/WR023i008p01393

10. S. O. Funtowicz, J. R. Ravetz, Uncertainty and quality in science for policy, Springer Science &
Business Media, 1990. http://dx.doi.org/10.1007/978-94-009-0621-1

11. M. B. A. van Asselt, J. Rotmans, Uncertainty in integrated assessment modelling, Climatic Change,
54 (2002), 75–105. https://doi.org/10.1023/A:1015783803445

12. E. F. Fama, The behavior of stock-market prices, J. Bus., 38 (1965), 34–105.
http://dx.doi.org/10.1086/294743

13. A. Alchian, Uncertainty, evolution and economic theory, J. Polit. Econ., 58 (1950), 211–221.
http://dx.doi.org/10.1086/256940

14. A. Sandroni, Do Markets favor agents able to make accurate predictions? Econometrica, 68 (2000),
1303–1341. http://dx.doi.org/10.1111/1468-0262.00163

15. A. Sandroni, Efficient markets and Bayes’ rule, Econ. Theory, 26 (2005) 741–764.
http://dx.doi.org/10.1007/s00199-004-0567-4

AIMS Mathematics Volume 9, Issue 1, 1683–1717.

http://www.york.ac.uk/depts/maths/histstat/pascal.pdf.
http://dx.doi.org/https://doi.org/10.1111/j.1600-0498.2008.00117.x
http://dx.doi.org/https://doi.org/10.1007/978-3-319-20451-2_3
http://dx.doi.org/https://doi.org/10.1007/978-3-319-20451-2_3
http://dx.doi.org/https://doi.org/10.1002/nav.3800010316
http://dx.doi.org/https://doi.org/10.2307/2178916
http://dx.doi.org/https://doi.org/10.1017/CBO9780511817410.005
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.159608
http://dx.doi.org/https://doi.org/10.1029/WR023i008p01393
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-009-0621-1
http://dx.doi.org/https://doi.org/10.1023/A:1015783803445
http://dx.doi.org/http://dx.doi.org/10.1086/294743
http://dx.doi.org/http://dx.doi.org/10.1086/256940
http://dx.doi.org/http://dx.doi.org/10.1111/1468-0262.00163
http://dx.doi.org/http://dx.doi.org/10.1007/s00199-004-0567-4


1711

16. L. Blume, D. Easley, Evolution and market behavior, J. Econ. Theory, 58 (1992), 9–40.
http://dx.doi.org/10.1016/0022-0531(92)90099-4

17. L. Blume, D. Easley, If you’re so smart, why aren’t you rich? Belief selection in complete
and incomplete markets, Econometrica, 74 (2006), 929–966. http://dx.doi.org/10.1111/j.1468-
0262.2006.00691.x

18. O. San, The digital twin revolution, Nat. Comput. Sci., 1 (2021), 307–308.
https://doi.org/10.1038/s43588-021-00077-0

19. G. Caldarelli, E. Arcaute, M. Barthelemy, M. Batty, C. Gershenson, D. Helbing, et al.,
The role of complexity for digital twins of cities, Nat. Comput. Sci., 3 (2023), 374–381.
https://doi.org/10.1038/s43588-023-00431-4

20. H. M. Markowitz, Portfolio selection, J. Financ., 7 (1952) 77–91.
http://dx.doi.org/10.2307/2975974

21. Z. Y. Guo, Heavy-tailed distributions and risk management of equity market tail events, J. Risk
Control, 4 (2017), 31–41. http://dx.doi.org/10.2139/ssrn.3013749

22. R. E. Lucas, Asset prices in an exchange economy, Econometrica, 46 (1978), 1429–1445.
https://doi.org/10.2307/1913837

23. J. H. Cochrane, Asset pricing, Princeton University Press, 2005.
https://doi.org/10.1016/j.jebo.2005.08.001

24. D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econ., 75 (1961), 643–669.
http://dx.doi.org/10.2307/1884324

25. H. R. Varian, Differences of opinion in financial markets, In: C. C. Stone, (eds) Financial Risk:
Theory, Evidence and Implications, Springer, Dordrecht., 1989. https://doi.org/10.1007/978-94-
009-2665-3 1

26. B. Liu, Uncertainty theory, In: Uncertainty Theory, Studies in Fuzziness and Soft Computing,
Berlin: Springer, 154 (2007). https://doi.org/10.1007/978-3-540-73165-8 5

27. B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16.

28. B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), 1–15.
http://dx.doi.org/10.1186/2195-5468-1-1

29. M. Segoviano, C. A. Goodhart, Banking stability measures, International Monetary Fund, 2009.
https://doi.org/10.5089/9781451871517.001

30. L. Liu, T. Zhang, Economic policy uncertainty and stock market volatility, Financ. Res. Lett., 15
(2015), 99–105. https://doi.org/10.1016/j.frl.2015.08.009

31. H. Asgharian, C. Christiansen, A. J. Hou, The effect of uncertainty on stock market volatility and
correlation, J. Bank. Financ., 154 (2023), 106929. https://doi.org/10.1016/j.jbankfin.2023.106929

32. T. Simin, The poor predictive performance of asset pricing models, J. Financ. Quant. Anal., 43
(2008), 355–380. http://dx.doi.org/10.1017/S0022109000003550

33. J. H. Boyd, J. Hu, R. Jagannathan, The stock market’s reaction to unemployment news: Why bad
news is usually good for stocks, J. Financ., 60 (2005), 649–672. http://dx.doi.org/10.1111/j.1540-
6261.2005.00742.x

AIMS Mathematics Volume 9, Issue 1, 1683–1717.

http://dx.doi.org/http://dx.doi.org/10.1016/0022-0531(92)90099-4
http://dx.doi.org/http://dx.doi.org/10.1111/j.1468-0262.2006.00691.x
http://dx.doi.org/http://dx.doi.org/10.1111/j.1468-0262.2006.00691.x
http://dx.doi.org/https://doi.org/10.1038/s43588-021-00077-0
http://dx.doi.org/https://doi.org/10.1038/s43588-023-00431-4
http://dx.doi.org/http://dx.doi.org/10.2307/2975974
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.3013749
http://dx.doi.org/https://doi.org/10.2307/1913837
http://dx.doi.org/https://doi.org/10.1016/j.jebo.2005.08.001
http://dx.doi.org/http://dx.doi.org/10.2307/1884324
http://dx.doi.org/https://doi.org/10.1007/978-94-009-2665-3_1
http://dx.doi.org/https://doi.org/10.1007/978-94-009-2665-3_1
http://dx.doi.org/https://doi.org/10.1007/978-3-540-73165-8_5
http://dx.doi.org/http://dx.doi.org/10.1186/2195-5468-1-1
http://dx.doi.org/https://doi.org/10.5089/9781451871517.001
http://dx.doi.org/https://doi.org/10.1016/j.frl.2015.08.009
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2023.106929
http://dx.doi.org/http://dx.doi.org/10.1017/S0022109000003550
http://dx.doi.org/http://dx.doi.org/10.1111/j.1540-6261.2005.00742.x
http://dx.doi.org/http://dx.doi.org/10.1111/j.1540-6261.2005.00742.x


1712

34. R. P. Schumaker, H. Chen, Textual analysis of stock market prediction using breaking
financial news: The AZFin text system, ACM Trans. Inform. Syst., 27 (2009), 1–19.
https://doi.org/10.1145/1462198.1462204

35. M. T. Suleman, Stock market reaction to good and bad political news, Asian J. Financ. Account., 4
(2012), 299–312. https://doi.org/10.5296/ajfa.v4i1.1705

36. C. O. Cepoi, Asymmetric dependence between stock market returns and news during COVID-19
financial turmoil, Financ. Res. Lett., 36 (2020), 101658. https://doi.org/10.1016/j.frl.2020.101658

37. A. Caruso, Macroeconomic news and market reaction: Surprise indexes meet nowcasting, Int. J.
Forecasting, 35 (2019), 1725–1734. https://doi.org/10.1016/j.ijforecast.2018.12.005

38. E. F. Fama, Efficient capital markets: II, J. Financ., 46 (1991), 1575–1617.
https://doi.org/10.2307/2328565

39. J. D. Thomas, K. Sycara, Integrating genetic algorithms and text learning for financial prediction,
In: Proceedings of GECCO ’00 Workshop on Data Mining with Evolutionary Algorithms, 2000,
72–75.

40. P. C. Tetlock, Giving content to investor sentiment: The role of media in the stock market, J.
Financ. Forthcoming, 62 (2007), 1139–1168. https://dx.doi.org/10.2139/ssrn.685145

41. S. Kogan, D. Levin, B. R. Routledge, J. S. Sagi, N. A. Smith, Predicting risk from financial reports
with regression, In: Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics on - NAACL ’09,
2009, 272–280. http://dx.doi.org/10.3115/1620754.1620794

42. J. L. Rogers, D. J. Skinner, A. Van Buskirk, Earnings guidance and market uncertainty, J. Account.
Econ., 48 (2009), 90–109. https://doi.org/10.1016/j.jacceco.2009.07.001

43. J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for
stock prediction, In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, 2 (2013), 24–29.

44. X. Ding, Y. Zhang, T. Liu, J. Duan, Using structured events to predict stock price movement: An
empirical investigation, In: Proceedings of the 2014 conference on empirical methods in natural
language processing, 2014, 1415–1425. http://dx.doi.org/10.3115/v1/D14-1148

45. W. Y. Wang, Z. Hua, A semiparametric gaussian copula regression model for predicting financial
risks from earnings calls, In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, 1 (2014), 1155–1165. http://dx.doi.org/10.3115/v1/P14-1109

46. R. Luss, A. d’Aspremont, Predicting abnormal returns from news using text classification, Quant.
Financ., 15 (2015), 999–1012. https://doi.org/10.1080/14697688.2012.672762

47. P. K. Narayan, D. Bannigidadmath, Does financial news predict stock returns? New
evidence from Islamic and non-Islamic stocks, Pac.-Basin Financ. J., 42 (2017) 24–45.
https://doi.org/10.1016/j.pacfin.2015.12.009

48. F. Larkin, C. Ryan, Good news: Using news feeds with genetic programming to predict
stock prices, In: European Conference on Genetic Programming, 4971 (2008), 49–60.
https://doi.org/10.1007/978-3-540-78671-9 5

AIMS Mathematics Volume 9, Issue 1, 1683–1717.

http://dx.doi.org/https://doi.org/10.1145/1462198.1462204
http://dx.doi.org/https://doi.org/10.5296/ajfa.v4i1.1705
http://dx.doi.org/https://doi.org/10.1016/j.frl.2020.101658
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2018.12.005
http://dx.doi.org/https://doi.org/10.2307/2328565
http://dx.doi.org/https://dx.doi.org/10.2139/ssrn.685145
http://dx.doi.org/http://dx.doi.org/10.3115/1620754.1620794
http://dx.doi.org/https://doi.org/10.1016/j.jacceco.2009.07.001
http://dx.doi.org/http://dx.doi.org/10.3115/v1/D14-1148
http://dx.doi.org/http://dx.doi.org/10.3115/v1/P14-1109
http://dx.doi.org/https://doi.org/10.1080/14697688.2012.672762
http://dx.doi.org/https://doi.org/10.1016/j.pacfin.2015.12.009
http://dx.doi.org/https://doi.org/10.1007/978-3-540-78671-9_5


1713

49. Y. Kim, S. R. Jeong, I. Ghani, Text opinion mining to analyze news for stock market prediction,
Int. J. Adv. Soft Comput. Appl., 6 (2014), 2074–8523.

50. A. E. Khedr, S. E. Salama, N. Yaseen, Predicting stock market behavior using data mining
technique and news sentiment analysis, Int. J. Adv. Soft Comput. Appl., 9 (2017), 22–30.
https://doi.org/10.5815/ijisa.2017.07.03

51. X. Zhou, H. Zhou, H. Long, Forecasting the equity premium: Do deep neural network models
work? Mod. Financ., 1 (2023), 1–11. https://doi.org/10.61351/mf.v1i1.2

52. X. Dong, Y. Li, D. E. Rapach, G. Zhou, Anomalies and the expected market return, J. Financ., 77
(2022), 639–681. https://doi.org/10.1111/jofi.13099

53. N. Cakici, C. Fieberg, D. Metko, A. Zaremba, Do anomalies really predict market returns? New
data and new evidence, Rev. Financ., 2023, rfad025. https://doi.org/10.1093/rof/rfad025

54. W. Shengli, Is human digital twin possible? Comput. Method. Prog. Biomed. Update, 1 (2021),
100014. https://doi.org/10.1016/j.cmpbup.2021.100014

55. M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, D. Devine, Digital twin: Origin to
future, Appl. Syst. Inno., 4 (2021), 36. https://doi.org/10.3390/asi4020036

56. H. D. Critchley, C. J. Mathias, R. J. Dolan, Neural activity in the human brain relating to uncertainty
and arousal during anticipation, Neuron, 29 (2001), 537–545. https://doi.org/10.1016/s0896-
6273(01)00225-2

57. H. A. Simon, Rational decision-making in business organizations, Am. Econ. Rev., 69 (1979), 493–
513.

58. R. M. Hogarth, N. Karelaia, Regions of rationality: Maps for bounded agents, Decis. Anal., 3
(2006), 124–144. http://dx.doi.org/10.1287/deca.1060.0063

59. Y. Wang, N. Zhang, Uncertainty analysis of knowledge reductions in rough sets, The Scientific
World J., 2014 (2014), 576409. https://doi.org/10.1155/2014/576409

60. K. Erk, Understanding the combined meaning of words, Nat. Comput. Sci., 2 (2022), 701–702.
https://doi.org/10.1038/s43588-022-00338-6

61. M. Toneva, T. M. Mitchell, L. Wehbe, Combining computational controls with natural
text reveals aspects of meaning composition, Nat. Comput. Sci., 2 (2022), 745–757.
https://doi.org/10.1038/s43588-022-00354-6

62. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

63. G. E. Hinton, Distributed representations, Carnegie Mellon University, 1984.

64. D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating
errors, Nature, 323 (1986), 533–536. http://dx.doi.org/10.1038/323533a0

65. J. L. Elman, Finding structure in time, Cognitive Sci., 14 (1990), 179–211.
http://dx.doi.org/10.1207/s15516709cog1402 1

66. Y. Bengio, H. Schwenk, F. Morin, J. L. Gauvain, Neural probabilistic language
models, In: Innovations in Machine Learning: Theory and Applications, 2006, 137–186.
https://doi.org/10.1007/3-540-33486-6 6

AIMS Mathematics Volume 9, Issue 1, 1683–1717.

http://dx.doi.org/https://doi.org/10.5815/ijisa.2017.07.03
http://dx.doi.org/https://doi.org/10.61351/mf.v1i1.2
http://dx.doi.org/https://doi.org/10.1111/jofi.13099
http://dx.doi.org/https://doi.org/10.1093/rof/rfad025
http://dx.doi.org/https://doi.org/10.1016/j.cmpbup.2021.100014
http://dx.doi.org/https://doi.org/10.3390/asi4020036
http://dx.doi.org/https://doi.org/10.1016/s0896-6273(01)00225-2
http://dx.doi.org/https://doi.org/10.1016/s0896-6273(01)00225-2
http://dx.doi.org/http://dx.doi.org/10.1287/deca.1060.0063
http://dx.doi.org/https://doi.org/10.1155/2014/576409
http://dx.doi.org/https://doi.org/10.1038/s43588-022-00338-6
http://dx.doi.org/https://doi.org/10.1038/s43588-022-00354-6
http://dx.doi.org/https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/https://doi.org/10.1007/3-540-33486-6_6


1714

67. R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural
networks with multitask learning, In: Proceedings of the 25th international conference on Machine
learning - ICML ’08, 2008, 160–167. https://doi.org/10.1145/1390156.1390177

68. A. Mnih, G. E. Hinton, A scalable hierarchical distributed language model, Adv. Neural Inform.
Process. Syst., 21 (2008), 1081–1088. https://dl.acm.org/doi/10.5555/2981780.2981915

69. T. Mikolov, J. Kopecky, L. Burget, O. Glembek, J. Cernocky, Neural network based language
models for highly inflective languages, In: 2009 IEEE international conference on acoustics, speech
and signal processing, 2009, 4725–4728. https://doi.org/10.1109/ICASSP.2009.4960686

70. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural
language processing (almost) from scratch, J. Mach. Learn. Res., 12 (2011), 2493–2537.
https://dl.acm.org/doi/10.5555/1953048.2078186

71. E. H. Huang, R. Socher, C. D. Manning, A. Y. Ng, Improving word representations via global
context and multiple word prototypes, In: Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics, 1 (2012), 873–882.

72. Y. Zhang, R. Jin, Z. H. Zhou, Understanding bag-of-words model: a statistical framework, Int. J.
Mach. Learn. Cyb., 1 (2010), 43–52. http://dx.doi.org/10.1007/s13042-010-0001-0

73. The lifespan of news stories, How the news enters (and exits) the public consciousness, Schema
Design and Google Trends, 2019. Available from: https://newslifespan.com/.

74. N. Bloom, Fluctuations in uncertainty, J. Econ. Perspect., 28 (2014), 153–176.
http://dx.doi.org/10.1257/jep.28.2.153

75. S. R. Baker, S. J. Davis, J. A. Levy, State-level economic policy uncertainty, J. Monetary Econ.,
132 (2022), 81–99. http://dx.doi.org/10.1016/j.jmoneco.2022.08.004

76. S. Newcomb, A generalized theory of the combination of observations so as to obtain the best
result, Am. J. Math., 1886, 343–366. http://dx.doi.org/10.2307/2369392
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