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The time series model is often used for forecasting but is inadequate when
the data series is unbounded and over-dispersed in nature. Moreover, if
the observations are serially dependent, then a Markov-dependent mixture
model, i.e., the Poisson Hidden Markov model, can be used. The objective
of this study was to apply the Poisson Hidden Markov model to forecast
the monthly new endometrial cancer cases. The monthly total number of
registered endometrial cancer cases has been collected from a local cancer
hospital in Odisha from January 2017 to December 2021. In this paper, we
have applied the Poisson hidden Markov model to forecast the number of
endometrial cancer cases for the next 12 months. The three-state Poisson
hidden Markov model was found to be the best-fitted model and was used
to forecast the endometrial cancer cases for the next 12 months. The results
showed that the number of endometrial cancer cases is most likely to be in
state 2 in January and in state 3 for the rest of the months in 2022. The
monthly forecasted mean of endometrial cancer cases varies between 34 [95%
CI: 31.253-37.109] and 38 [95% CI: 34.920-41.032] for the year 2022. Based on
the evidence, this study reveals that the average monthly endometrial cancer
cases will increase in the future. From the findings, it is also suggested that
the three-state hidden Markov model can be used to fit and forecast the
distribution of the number of endometrial cancer cases.
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1 Introduction

Gynaecological cancers are among the most common cancers in women and hence an
important public health issue. Due to the lack of cancer awareness, variable pathology,
and dearth of proper screening facilities in developing countries such as India, most
women report at advanced stages, adversely affecting prognosis and clinical outcomes.
Cancer can affect the uterus which is lined with a special tissue called the endometrium.
When cancer grows in this lining, it is called endometrial cancer (EC). Most uterine
cancers are EC. If left untreated, EC can spread to the bladder or rectum, or it can
spread to the vagina, fallopian tubes, ovaries, and more distant organs. Fortunately,
EC grows slowly and, with regular check-ups, is usually found before spreading too far.
Hence it is very important to detect and treat EC cases in early stages.

In recent years, a high morbidity rate of EC cases has been experienced in Odisha
(Pattnaik et al., 2020). This may be due to the fact that by the time the patients
sought medical condition, the cancer had already reached an advanced stage. It is very
challenging for healthcare providers to treat such a large number of patients when most
of them are suffering at such an advance stage. Therefore, it is very important for
oncologists to have a prior idea of the number of patients they need to serve so as to
provide them with relatively better treatment and equip the infrastructure adequately
and be prepared to handle the patient influx.

A Markov model deals with a stochastic process for randomly changing systems or
values with the assumption that the future states do not depend on its past states. Often,
the change of states in a data sequence may not be known or hidden, but they can be
inferred later. A hidden Markov model (HMM) can be used to reveal these hidden states.
Further HMMs are used to analyze, weakly dependent time series datasets (Laverty et al.,
2002) and are flexible for both univariate and multivariate discrete-valued data series.

An HMM consist of two parts, the first part is an unobserved or hidden finite state of
a Markov chain and the second part is the observed value of a stochastic process. Hence,
an HMM generates the observations, which depends upon the state of an underlying and
unobserved Markov process. When HMM is influenced by a Poisson process, we may
have a mixed effect model known as Poisson hidden Markov model (PHMM) which is
constituted by a discrete Markov model and a Poisson regression model (Zucchini and
MacDonald, 2009). A detailed background for using different models which deals with
discrete valued count data in different situations is given below.

When the data series is unbounded in nature, it is inappropriate to use the standard
time series model i.e., autoregressive moving average (ARMA) model, to describe its
characteristics (Zucchini and MacDonald, 2009). The Poisson distribution can be used
to describe the unbounded count data with a low probability of occurrences and it is
characterized by equal mean and variance. However, this may not always be true in
practice. Sometimes, the distributional variance is greater than its mean, indicating an
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over-dispersed distribution. In such cases, an independent mixture of Poisson model can
be used as it deals with the unobserved heterogeneity in the population (George and
Thomas, 2018).
If the count observations change due to random factors, then the assumption of in-

dependence no longer holds and an independent mixture of Poisson model cannot be
used. In those situations, the Markov dependent mixture model (i.e., PHMM) has been
suggested (Paroli et al., 1994). Thus, PHMMs are extensions of mixture models and are
generally used for modelling data with overdispersion and serial dependence (Zucchini
and MacDonald, 2009). It is worth noting that a Poisson process is the special case of
PHMM when the Markov chain has only one state.
HMMs have applications in various fields such as biomedical signal processing (Cohen,

1998), speech recognition (Juang and Rabiner, 1991; Rabiner, 1989), and DNA sequenc-
ing (Churchill, 1989). Sarvi et al. (2017) predicted the air pollution indicator PM2.5
using HMM. It is also used to study count data applications such as predicting the num-
ber of traffic accident cases (Laverty et al., 2002), death counts (George and Thomas,
2018), and the number of insurance claims (Paroli et al., 1994). Nowadays, HMMs
are commonly used for disease mapping (Green and Richardson, 2012) and studying
infection behavior (Cooper and Lipsitch, 2004).
In this context, the serial dependence may arise through some unobserved disease pro-

gression process, particularly in advanced stages, and the HMM would seem to be more
appropriate for explaining the number of EC patients. Although several applications of
HMMs have been experienced in different areas, they are not yet common in the medical
field, especially for forecasting the number of patients expected to come to the hospital.
Therefore, the main aim of this paper is to demonstrate the use of PHMM to identify

the hidden states and forecast the number of EC cases for the next 12 months based
on the number of EC cases reported on monthly basis from January 2017 to December
2021.
The rest of this paper is organized as follows: Section 2 includes the methodology and

data sources. In Section 3, independent mixtures of Poisson distributions and PHMMs
with different states are fitted, and the performance of each model is evaluated. The
discussion and conclusion are presented in Sections 4 and 5, respectively.

2 Materials and Methods

2.1 Mixture Model (MM)

A mixture distribution consists of several component distributions. Let us consider Yt
be a random variable with the observed number of EC cases (say yt) at different time
t(t = 1, 2, 3, . . . , n). Let δ1, δ2, δ3, . . . , δm (s.t.

∑m
i=1 δi = 1) be the assigned probabilities

of m component distributions with the probability function p1, p2, p3, ..., pm respectively.
Now, if Yt follows a mixture distribution, then it has the probability function as follows;

P (Yt = yt) =
m∑
i=1

δi pi(yt) (1)
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The kth moment of this distribution is as follows:

E(Yt
k) =

m∑
i=1

δi E(Yti
k) (2)

The parameter estimation of the mixture distribution is done by maximum likelihood
method of estimation (MLE). The likelihood function of the mixture model having m
component distributions is given by;

L(θ1, θ2, ..., θm|y1, y2, ..., yn) =
n∏

j=1

m∑
i=1

δi pi(yj , θi) (3)

Where; θ1, θ2, ..., θm are the parameter vectors of the respective component distributions.
Here we consider that each EC patient count is generated by one ofm Poisson distribu-

tions with mean λ1, λ2, ..., λm, where the choice of mean (λi) is selected with probability
δi (i = 1, 2, ...,m). Then the proposed model in Eq. (1) is converted into Poisson
independent mixture model and can be defined as;

P (Yt = yt) =

m∑
i=1

δi
e−λiλyt

i

(yt!)
(4)

Then the likelihood function of Poisson independent mixture model is;

L(λ1, λ2, ..., λm; δ1, δ2, . . . , δm|y1, y2, ..., yn) =
n∏

t=1

m∑
i=1

δi
e−λiλyt

i

(yt!)
(5)

Where; δi, λi > 0 for i = 1, 2, . . . ,m with the constraint
∑m

i=1 δi = 1. Here, each
component specified by one parameter, hence in total 2m-1 independent parameters are
to be estimated.

2.2 Hidden Markov Model (HMM)

The Hidden Markov Model (HMM) is usually considered a type of dependent mixture
model. The distribution in this model generates observations dependent on the state of
an underlaying and unobserved Markov process. Let Yt be the observed number of EC
patients during the time interval (t-1, t] and Ct be the unobserved parameter process
satisfying the Markov property. Then the distribution of Yt depends only on current
state Ct and not on previous states or observations. If Y (t) and C(t) represents the
histories from time 1 to t, then the HMM can be expressed as;

P
(
Ct|C(t−1)

)
= P

(
Ct|Ct−1

)
; where t=2,3, ... (6)

P
(
Yt|Y (t−1), C(t)

)
= P

(
Yt|Ct

)
; where t ∈ N (7)

Where; C(t)=(C1, C2, ..., Ct), C
(t−1)=(C1, C2, ..., Ct−1) and Y (t−1)=(Y1, Y2, ..., Yt−1).

In case when the Markov chain {Ct} has m states then we call {Yt} as the m-state HMM.



768 Swain, Tripathy, Jena

Now, the probability function of Yt given that the Markov chain is in state i at time t
defined as;

pi(yt) = P
(
Yt = y|Ct = i

)
(8)

Let us define ui as the probability that the process is in the state i at time t i.e., ui(t)
= P (Ct = i) for i=1,2,...,n. Then we have;

P (Yt = yt) =

m∑
i=1

P (Ct = i)P (Yt = y|Ct = i)

=

m∑
i=1

ui(t)pi(yt)

=
{
u1(t), u2(t), ..., um(t)

} p1(yt) ... 0

... ... ...

0 ... pm(yt)




1

.

.

1


= u(t) P (yt) 1

′
(9)

Where; P (yt) be the diagonal matrix with ith diagonal element pi(yt), u(t) be the initial
distribution of the Markov chain and 1

′
= (1. . . 1)T .

Introducing the transition probability matrix Γ = (γij) of the Markov chain, we have
the distribution at t + 1 to be u(t + 1) = u(t)Γ ⇒ u(t) = u(1)Γt−1. Then the Eq. (9)
can be rewritten as;

P (Yt = yt) = u(1)Γt−1P (yt)1
1 (10)

The above Eq. (10) holds if the Markov chain is homogeneous but not necessarily
stationary. But, when we assume that the Markov chain is stationary, with its stationary
distribution δ, then δΓt−1 = δ for all t ∈ N and

P (Yt = yt) = δ P (yt)1
′

(11)

Hence the mean and variance can be defined as;

Mean = E(Yt) =

m∑
i=1

P
(
Ct = i

)
E
(
Yt|Ct = i

)
=

m∑
i=1

ui(t) E
(
Yt|Ct = i

)
=

m∑
i=1

δi E
(
Yt|Ct = i

)
(in stationary case) (12)

V ar(Yt) = E(Y 2
t )− (EYt)

2 (13)
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If E(Yt|Ct = i) = λi then E(Yt) =
∑m

i=1 δiλi and E(Y 2
t ) =

∑m
i=1 δi(λ

2
i + λi).

Let y1, y2, y3, . . . .., yn be the sequence of observations generated through a HMM, δ
be the initial distribution of a stationary distribution and Γ be a transition probability
matrix then the likelihood function of the HMM is;

L = δ Γ P (y1) Γ P (y2)...Γ P (yn) 1
′

(14)

The parameter estimation of the HMM can be done by numerical maximization of the
likelihood function.

2.3 Poisson Hidden Markov Model (PHMM)

A Poisson Hidden Markov Model (PHMM) is made up of a mixture of two random
processes i.e., a Poisson process and a Markov process. These kinds of models are suitable
to handle count-based time series data. Generally, in PHMM the k-state Markov process
is hidden at each time step and one doesn’t know exactly about the Markov regime or
the Markov process. Then, the effect of the possible existence of each regime on the
mean value is predicted by the Poisson model.

Let us consider Yt to be a random variable with the observed number of EC cases
(say yt) at different time(s) t (t = 1, 2, 3, . . . , n) obeys a Poisson process. Therefore
Yt (t = 1, 2, . . . , n) are n independent and Poisson distributed random variables each
possibly with different mean λt and the model becomes;

P (Yt = yt) = P (Yt = yt|λt) =
e−λtλyt

t

yt!
(15)

Now, to mix a discrete Markov process into a Poisson process, consider a Markov process
is in a state i (i = 1, 2, . . . ,m). However, we don’t know in which state the Markov
process is at time t, we only assume that it is influenced by the Poisson process. Then,
an expression for the predicted Poisson probability of observing yt at time t, under-laying
Markov process at state i becomes;

P (Yt = yt|λti, Ct = i) =
e−λtiλyt

ti

yt!
(16)

Taking a Poisson probability mass function and assuming an m state Markov process
at each time t; we will get a set of m probabilities of observing yt (each one conditional
upon the Markov process being in state) as follows;

P
(
Yt = yt|λt

)
=

{
P (Yt = yt|λt1, Ct = 1), P (Yt = yt|λt2, Ct = 2), ...

..., P (Yt = yt|λtm, Ct = m)
}

(17)

Hence, using the law of total probability we get the probabilities predicted by the PHMM
of observing yt at time t as follows;
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P (Yt = yt) =

m∑
i=1

P (Ct = i)P (Yt = y|Ct = i) =

m∑
i=1

δti
e−λtiλyt

ti

yt!
(18)

In light of Eq. (9) and (10) we can rewrite Eq. (18) as;

P (Yt = yt) = u(1)Γt−1P (yt)1
′

(19)

Now, assuming that the Markov chain is stationary, with its stationary distribution δ
and δΓt−1 = δ for all t ∈ N, then ;

P (Yt = yt) = δP (yt)1
′

(20)

Thus, the likelihood function of the PHMM becomes;

L = δΓP (y1)ΓP (y2)...ΓP (yn)1
′

(21)

Here, P(yt) is the diagonal matrix with ith diagonal element pi(yt) =
e−λtiλ

yt
ti

yt!
, Γ = (γij)

is the transition probability matrix of the Markov chain, u(1)Γt−1 is the distribution at
time t and 1

′
= (1...1)T .

The parameters of the PHMM viz. δ, λ and Γ can be estimated by numerical max-
imization of the likelihood function (Eq. 21) subject to the constraints; λi, δi, γij ≥0,∑m

i=1 δi = 1 and
∑m

i=1 γij = 1 for all i, j = 1, 2, . . . ,m. Reader may refer to Zucchini and
MacDonald (2009) for the equations of mean and variance of the parameter estimates
of the PHMM.

2.4 Forecasting, Decoding and State prediction

For discrete-valued observations the forecasting distribution can be obtained by using
the following equation;

P
(
TT+h = yT |Y (T ) = y(T )

)
= ϕT Γh P (yt) 1

′
(22)

Where; ϕT = αT /αT 1
′
and αT = αT−1γP (yt).

Generally decoding is of two types i.e., local decoding and global decoding. Local
decoding involves determining the most likely state separately for each time t (t =
1, 2, 3, . . . , T ) by maximizing the following conditional probability function;

P
(
Ct = i|Y (T ) = y(T )

)
=

αt(i) βt(i)

LT

=
P
(
Ct = i, Y (T ) = y(T )

)
P
(
Y (T ) = y(T )

) ; i = 1, 2, ..,m (23)

Where; αt(i) and βt(i) are the vectors of forward and backward probability respectively,
αt(i) βt(i)=P (Ct = i, Y (T ) = y(T )) and LT = P (Y (T ) = y(T )).
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Global decoding involves in determining the most likely sequence of states c1, c2, . . . ,
cT which maximizes the joint probability;

P
(
C(T ), Y (T )

)
= δc1

T∏
t=2

γct−1, ct

T∏
t=1

Pct(yt) (24)

State prediction defined as the conditional distribution of the state Ct for t>T and the
equation for state prediction is given by;

P
(
Ct+h = i|Y (T ) = y(T )

)
=

αTΓ
he

′
i

LT
= ϕTΓ

he
′
i (25)

Where, ϕT = αT /αT 1
′
, αT = αT−1ΓP (yt) and ei = (0, ..., 0, 1, 0, ..., 0) has one in ith

position only. Here, αT is the vector of forward probabilities, in case of discrete state-
dependent distributions, the elements of αT being made up of products of probabilities,
become progressively smaller as t increases, and are eventually rounded to zero.

2.5 Model Selection Criteria

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) values
are calculated for model selection and are defined as;

AIC = 2× p− 2× log(L) (26)

BIC = p× log(n)− 2× log(L) (27)

Where; L is the likelihood value, p is the number of parameters and n is the number
of observations of the fitted model. The model with the lowest AIC and BIC values is
considered as the best fit model.

2.6 Data Source

Total number of registered EC cases has been collected from Acharya Harihar Post Grad-
uate Institute of Cancer (AHPGIC), Cuttack, Odisha, on monthly basis from January
2017 to December 2021. Hence, the data contains the frequency of EC cases for 60 con-
secutive months. AHPGIC is a nodal cancer hospital catering to patients from eastern
India.

3 Analysis and Results

Table 1 shows the monthly series of detected EC cases from January 2017 to December
2021 along with its mean and standard deviations. The maximum number of cases
(i.e., 60) was detected in March and December, 2018 and the minimum number of cases
(i.e., 8) was detected in July, 2020. Figure 1, also illustrates clear fluctuations among
the monthly EC cases. A Relatively lower number of EC cases was reported during the
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Table 1: Monthly EC cases from January 2017 to December 2021

Monthly S.D.

Months 2017 2018 2019 2020 2021 avg. cases(x̄) (σ) x̄ ± σ

January 25 17 47 59 44 38 15 (23, 54)

February 31 48 43 47 53 44 7 (37, 52)

March 48 60 38 42 54 48 8 (40, 56)

April 28 45 34 14 48 34 12 (22, 46)

May 35 42 36 14 21 30 10 (19, 40)

June 28 38 54 28 25 35 11 (24, 45)

July 42 43 43 8 37 35 13 (21, 48)

August 24 39 40 28 44 35 8 (27, 43)

September 35 50 56 31 41 43 9 (33, 52)

October 12 43 48 24 41 34 13 (20, 47)

November 44 29 49 37 41 40 7 (33, 47)

December 48 60 52 35 30 45 11 (34, 56)

Yearly avg.

cases(x̄) 33 43 45 31 40

S.D. (σ) 11 12 7 15 10

x̄ ± σ (22, 44) (31, 55) (38, 52) (16, 45) (30, 50)



Electronic Journal of Applied Statistical Analysis 773

Figure 1: Time series plot of total EC cases in 60 consecutive months (January 2017 to
December 2021)

period from April to July 2020. It might be due to emerging Covid-19 cases and effective
shutdown and lockdown in that period.

For this data, variance = 149.209, is approximately four times larger than its mean =
38.333. This clearly shows a strong over dispersion relative to Poisson distribution. So,
a single Poisson distribution may not be an appropriate choice to represent the data.
Hence, we have tried Poisson independent mixture models to describe the data.

Table 2 shows the output of Poisson Independent Mixture models fitted to the monthly
EC cases. From Table 2, it is noticed that there is a clear improvement in the log-
likelihood values by adding an additional component up to three components in the
model. Adding of fourth component shows little improvement in the log-likelihood value,
rather it is insufficient to justify by looking at its AIC and BIC value. In the Table 2,
the three component (m=3) Poisson independent mixture model fits well for the data
as it has the lowest AIC and BIC value among all other considered models. Also, the
model gives stationary distribution δ=(0.081,0.271,0.647) and the component dependent
mean vector λ=(13.102,29.134,45.361).
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Table 2: Outcome of Poisson Independent Mixture models (MMs) fitted to monthly EC
cases

Number of
components (m) i δi λi - log L AIC BIC Mean Variance

m=1 1 1.000 38.333 251.518 505.036 507.130 38.333 38.333

m=2 1 0.259 22.223 239.713 485.426 491.709 38.333 129.006
2 0.741 43.962

m=3 1 0.081 13.102 231.325 472.651 483.122 38.333 145.067
2 0.271 29.134
3 0.647 45.361

m=4 1 0.080 13.046 231.164 476.3286 490.989 38.333 148.460
2 0.246 28.507
3 0.505 43.223
4 0.170 49.982

Observations 38.333 149.209

Figure 2: Histogram of EC patients compared with mixture of 1, 2, 3 and 4 Poisson
distributions
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Figure 2, shows a histogram of the observed number of EC cases and the four Poisson
independent mixture models fitted to the data. It is clear from the figure that a Pois-
son mixture distribution fits the data much better than a single Poisson distribution.
Visually, the three and four component model seem adequate. The better fit of these
mixture models is also verified by their variances presented in Table 2.

Figure 3: Sample auto-correlation function (ACF) plot for the monthly frequency of EC
patients

The basic limitation of an independent mixture model is that it doesn’t have serial de-
pendance in its observations. However, in Figure 3 the sample auto correlation function
(ACF) plot clearly indicates that the observations in the data set are serially dependent.
Hence, one simple way to allow serial dependence in the observations is to relax the
serially independent assumption of the parameter process. Thus, the resulting model
of the observations becomes Markov switching model or Markov dependence model or
PHMM. Therefore, next we have considered the HMMs and fitted PHMMs with one,
two, three and four states to the data set.

To fit a PHMM, we first need to estimate its different parameters viz. δ,Γ and λ by
using maximum likelihood estimation technique. The estimates of transition probability
matrix Γ for different states were obtained by R-software and are given below in the
Table 3. In Table 3 the transition probability matrix Γ for the 2 state PHMM shows
that, the probability of moving from state 1 to state 2 in a single step is 0.424 and the
reverse probability is 0.181. The probability that state(s) 1 and 2 remain in their original
state(s) are 0.576 and 0.819 respectively. The transition probability matrix Γ for 3 and
4 state PHMM can be understood in a similar way. The corresponding estimates of δ,
λ and AIC, BIC values of all fitted PHMM given in Table 4.
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Table 3: Estimated transition probability matrix Γ for different PHMMs

PHMM PHMM PHMM

(m=2) (m=3) (m=4)

 0.576 0.424

0.181 0.819




0.188 0.462 0.350

0.110 0.636 0.254

0.062 0.130 0.808




0.162 0.000 0.283 0.555

0.072 0.499 0.066 0.363

0.106 0.000 0.894 0.000

0.124 0.876 0.000 0.000



Table 4: Outcome of Poisson Hidden Markov Models (PHMMs) fitted to monthly EC
cases

Number of i δi λi - log L AIC BIC Mean Variance

States (m)

m=1 1 1.000 38.333 290.938 583.877 585.971 38.333 38.333

m=2 1 0.299 23.295 237.672 483.344 491.721 38.113 131.788

2 0.701 44.435

m=3 1 0.088 13.377 227.079 472.159 491.008 37.964 146.145

2 0.323 30.401

3 0.589 45.805

m=4 1 0.160 14.456 223.112 478.224 511.733 37.280 143.551

2 0.106 26.968

3 0.280 37.662

4 0.454 45.967

Observations 38.333 149.209

Table 4 shows the output of PHMMs fitted to the monthly number of EC cases. This
table shows a clear improvement in the likelihood values by adding an additional state.
Adding a fourth state shows little improvement on the likelihood value, but increases
its AIC and BIC values which restricts us from adding an additional state in the model.
Hence, PHMM with three states has the lowest AIC and BIC value(s) among all the
fitted models and can be considered as the best fit model for explaining the number of
EC cases. The model gives stationary distribution δ=(0.088, 0.323, 0.589) and the state
dependent mean vector λ=(13.377, 30.401, 45.805).
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Table 5: Estimated most likely state (local decoding) and sequence of states (global
decoding) of the three state PHMM from the observed data set

Year Decoding Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2017 Local 2 2 3 2 2 2 2 2 2 1 3 3

Global 2 2 3 2 2 2 2 2 2 1 3 3

2018 Local 1 3 3 3 3 3 3 3 3 3 2 3

Global 1 3 3 3 3 3 3 3 3 3 2 3

2019 Local 3 3 3 3 3 3 3 3 3 3 3 3

Global 3 3 3 3 3 3 3 3 3 3 3 3

2020 Local 3 3 3 1 1 2 1 2 2 2 2 2

Global 3 3 3 1 1 2 1 2 2 2 2 2

2021 Local 3 3 3 3 2 2 2 3 3 3 3 2

Global 3 3 3 3 2 2 3 3 3 3 3 2

Table 5 shows, the prediction of most likely, state (local decoding) and sequence of
states (global decoding) given the observed data series of the three state PHMM. These
hidden states are obtained by Viterbi algorithm (Viterbi, 1967) and are very similar in
both local and global decoding. However, they differ only in July 2021. The values of
these decoding(s) help us in identifying the correct states, at the time of substantive
interpretation of the states (Zucchini and MacDonald, 2009).

Table 6: Different states of 3 state PHMM associated with the number of EC cases

Range of EC cases 8 to 17 17 to 20 21 to 31 32 to 42 43 to 60

State(s) of PHMM 1 1 or 2 2 2 or 3 3

After carefully examining the Viterbi outcomes of the different states of a three-state
PHMM in relation to the number of EC cases, we have reached a conclusion regarding
the relationship between the range and state of the PHMM. The results are shown in
Table 6. According to the Table 6, state 1 corresponds to less than 17 EC cases, state 2
corresponds to the EC cases between 21 to 31 and state 3 corresponds to more than 43
EC cases. However, if the number of EC cases is between 17 to 20 it may be labeled as
either state 1 or 2. Similarly, if the number of EC cases is between 32 to 42 it may be
considered as either state 2 or 3.
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Table 7: Forecasted state, mean, variance and 95% CI of EC cases for the next 12 months
using three state PHMM

Jan Feb Mar Apr May Jun

m=1 0.101 0.101 0.096 0.092 0.091 0.090

m=2 0.542 0.438 0.385 0.357 0.341 0.333

m=3 0.357 0.461 0.519 0.551 0.568 0.577

Mean 34.181 35.783 36.761 37.323 37.602 37.757

Variance 133.876 145.479 147.280 146.824 146.908 146.644

95% (31.253, (32.731, (33.691, (34.257, (34.535, (34.693,

CI 37.109) 38.835) 39.833) 40.389) 40.669) 40.822)

Jul Aug Sep Oct Nov Dec

m=1 0.089 0.089 0.089 0.089 0.089 0.088

m=2 0.328 0.326 0.324 0.323 0.323 0.323

m=3 0.583 0.585 0.587 0.588 0.588 0.589

Mean 37.867 37.897 37.928 37.944 37.944 37.976

Variance 146.265 146.309 146.352 146.373 146.373 145.862

95% (34.807, (34.837, (34.867, (34.882, (34.882, (34.920,

CI 40.927) 40.958) 40.989) 41.005) 41.005) 41.032)

Table 7 hows the probability that the markov chain will lie in the specified state (m=1,2
or 3) in the given months of the year 2022. The state prediction result for the next 12
months (i.e., January to December, 2022) shows that the frequency of EC cases will most
likely lie in state 2 (between 21 to 31 cases) with probability 0.542 in january, in state
3 (between 43 to 60 cases) with a probability 0.461 in february and in state 3 (between
43 to 60 cases) for all other months in 2022 with probability >0.5.

The monthly forecast mean varies from 34.181 ≈ 34 to 37.976 ≈ 38 EC cases. The
forecast variance ranges between 133.876 and 147.280 which is less than the observed
variance from the data. The forecasted 95% CI1 for the EC cases in January becomes
(31.253, 37.109), in February becomes (32.731, 38.835) and so on. Overall, 95% CI of
forecasted monthly EC cases varies between 31.235 ≈ 31 and 41.032 ≈ 41.

1CI: Confidence Interval
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Figure 4: The mode forecast distribution curves for the next 12 months for the EC cases
by three state PHMM
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Figure 4 shows the mode forecast distribution curves of EC cases for the 12 months
ahead. According to the forecast distribution curves it is most likely that around 30 EC
cases will be reported in January. Similarly, it is most likely that between 30 to 40 EC
cases will be registered in February. For the other remaining months 40 to 50 EC cases
likely to be registered. These results justify our findings in the Table 7.

4 Discussion

It is very important to have an idea of the number of expected patients in future time to
make a better plan for the diagnosis and course of treatment of their critical condition
and make required infrastructural changes. In the literature review, we found that a
limited number of studies have been conducted on the applications of HMM to forecast
their states and subsequently the number of count cases. To the best of our knowledge,
this is the first type of study which forecasts the number of EC cases for the state
Odisha. Therefore, this study helps to identify the hidden states of the data that follow
PHMM and forecast the number of EC cases. Further, the PHMM captures different
time series components through its modelling of hidden states, transition probabilities,
and emission probabilities.

In this study, we have taken the number of EC cases consecutively 60 for months from
2017 to 2021 to forecast the number of EC cases for the next 12 months. The time
series data set under consideration was found to be an unbounded and over dispersed
sequence. Usually, in such cases, a mixture modelling approach is found to be a good
alternative to ARIMA (Zucchini and MacDonald, 2009). We have fitted the independent
mixture of Poisson model for different components as it takes unobserved heterogeneity
into account. Based on the lowest AIC and BIC value, the three component Poisson
independent mixture model fits well for the data.It has been seen that the state specific
PHMM was able to forecast the number of death counts due to dengue fever (George
and Thomas, 2018), monthly cases of Hepatitis-B (Jose et al., 2020), monthly congenital
hypothyroidism cases by Sadeghifar et al. (2016).

The ACF plot showed the number of EC cases were serially dependent. Hence, we
have considered the Markov dependent mixture model and fitted PHMM with different
states to the number of EC cases. Based on the lowest AIC and BIC value, a three
state PHMM was found to be the best fitted model to explain the distribution of the
number of EC cases. In a similar study conducted by Sadeghifar et al. (2016), con-
genital hypothyroidism cases followed a two state PHMM, and the model further used
for forecasting the number of cases for next 24 months. Azizah et al. (2019), used a
two-state PHMM using the Bayesian approach to study the Seismicity Activity Rates
of earthquakes.

After being assured of the validity of the usage of PHMM in our case, we then used
PHMM to forecast the number of EC cases for next 12 months and the EC cases are
most likely to lie in state 2 for January and in state 3 for rest of the months. The
monthly forecast mean of number of EC cases varies between 34 to 38 for the year 2022.
However, for the first four forecasted months viz. January, February, March and April,



Electronic Journal of Applied Statistical Analysis 781

the EC cases increase approximately by a single unit viz. 34, 35, 36 and 37 respectively.
For the next forecasted months, the number of EC cases are nearly invariant. The
Forecast distribution curves show the increasing pattern of EC cases in future months.
The interval forecast states that the monthly EC cases vary between 31 to 41.

Previous studies stated that using HMM to forecast stock price is explainable and
has solid statistical foundation. Some hybrid systems have been developed using AI
paradigms with HMM to further improve accuracy and efficiency of the forecasts (Hassan
and Nath, 2005). Some studies also applied HMMs for other purposes than forecasting.
In a study conducted by Paroli et al. (2000), PHMMs were used in non-life insurance.
Results suggested that PHMMs are a more general approach compared to the Poisson
distribution and Poisson process to model the claim number in non-life insurances.

As far as the limitation is concerned, in this study we have focused only on the
frequency of registered EC cases per month without considering any other effective
factor. In addition to this, for this study we have taken only 60 data points from a
single cancer hospital. Hence, this study can be generalized more accurately by taking
other effective factors into account and taking a comparatively larger sample.

5 Conclusion

This study reveals that the average EC cases will increase in future months. Based on this
analysis, it is also suggested that, the three-state HMM can be used to fit the distribution
of the EC cases. Apart from potentially giving better fits to data, mechanistic models
can provide insight into underlying processes and allow investigators to make inferences
about key parameters. From the statistical application point of view, we conclude that
the PHMMs are more realistic in practice than the classical Poisson processes, as they
consider the unobservable underlying environmental effect, which affects the counts.

To our knowledge, this represents the first application of Poisson hidden Markov mod-
els to forecast the number of endometrial cancer cases. These estimates can be reliable
if women’s death rate and EC specific death rate are constant for the year 2022. The
outcomes of this study will contribute towards providing better treatment care and pa-
tient management, and in turn reduce the mortality of EC patients. This work may be
extended by considering a PHMM setup with different covariates associated with EC
patents.
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