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Classification of histopathological images is crucial in diagnosis and treat-
ment. Selecting the most helpful image features from thousands of candi-
dates remains a critical challenge to classify these images. In this paper, a
compatible methodology is proposed to identify features by combining lo-
gistic regression with weighted L1-norm. Our study tested our proposed
method and compared it with state-of-the-art methods using publicly avail-
able breast cancer histopathological image datasets. Our results indicate that
our method outperforms three other methods regarding overall classification
accuracy and the number of selected features.

keywords: feature selection; lasso; penalized logistic regression; breast
cancer; histopathological image; Wilcoxon rank sum test.

1 Introduction

According to the World Health Organization (WHO), breast cancer is one of the leading
causes of cancer-related deaths in women worldwide (Singh et al., 2016). However, early
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diagnosis can significantly increase survival rates (Sudarshan et al., 2016). Various non-
invasive imaging methods such as mammography (X-rays), magnetic resonance imaging
(MRI), and ultrasonography, are available (Acharya et al., 2016; Spanhol et al., 2015).
Recently, histopathological image analysis has become a significant research issue in med-
ical imaging in recent times (Vu et al., 2015). Breast cancer diagnosis via histopathology
images is the gold standard, helping to narrow borderline diagnoses from other standard
imaging (Zhang et al., 2013). The use of machine learning has improved the diagnos-
tic accuracy of breast cancer in women when embedded in a computer-aided system
(Belsare et al., 2015). In breast cancer classification, identifying normal and abnormal
cell patterns is crucial for diagnosis and drug discovery (Korkmaz et al., 2014; Zhang
et al., 2015). Improving patient healthcare is crucial, and accurate cancer prediction is
invaluable for treatment (Chen et al., 2016; Mao et al., 2013).
Logistic regression is a commonly used classification method in various fields, partic-

ularly in the classification of medical, commercial, weather, and gene expression data.
(Kahya, 2019; Algamal, 2017a). As the number of features or genes increases, the com-
putational complexity and training time of logistic regression also increase (Algamal,
2017a; Algamal and Lee, 2018). Although logistic regression is advantageous in gene
expression data classification, it cannot handle gene selection automatically (Qasim and
Algamal, 2018; Algamal, 2017b; Kahya et al., 2017). Penalized methods are very ef-
fective embedded gene selection methods connected with many popular classification
methods. In recent years, logistic regression among all the classification methods, those
based on sparseness, received much attention. It combines the logistic regression with
a penalty to simultaneously perform gene selection and classification. With different
penalties, several logistic regression models can be applied, among which are L1-norm,
which is called the least absolute shrinkage and selection operator (lasso) (Tibshirani,
1996), smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic net(Zou
and Hastie, 2005), and adaptive L1-norm(Zou, 2006). Undoubtedly, L1-norm is one
of the most commonly used gene sparsity methods. However, this method results in
inconsistent gene selection due to the same amount of sparseness applied to all genes
(Algamal and Lee, 2015; Zou, 2006). In this study, we propose an efficient method
for selecting informative features and classifying breast cancer histopathological images.
Our approach combines penalized logistic regression with the Wilcoxon rank sum test.
We use the Wilcoxon rank sum test to weigh each feature and assign a weight to each
significant feature based on its test value. This weight reflects the importance of each
feature. We also use a penalized logistic regression with adaptive L1-norm to refine the
feature selection process further. Overall, our method offers an effective way to select
and classify features for breast cancer histopathological images.
Our proposed method is compared to competitor methods using the BreaKHis database,

which consists of microscopic biopsy images of benign and malignant breast tumors
(Spanhol et al., 2015).
The remainder of this paper is structured as follows: Section 2 provides an overview

of penalized logistic regression and feature extraction. Section 3 outlines the proposed
method and related procedures. In Section 4, details of the experimental study are
presented. Section 5 presents the experimental results. Finally, in Section 6, general
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conclusions are drawn.

2 Overview

2.1 Penalized Logistic Regression

Logistic regression is a statistical approach that models a binary classification problem.
The regression function has a non-linear relationship with the linear combination of
genes. In cancer classification, the response variable of the logistic regression takes on
two values: 1 for the tumor class or 0 for the normal class.
Let yi ∈ {0, 1} be a vector of size n×1 of tissues, and let xi is a 1×p vector of features.

The logistic transformation of the vector of probability estimates πi = p(yi = 1 | xi) is
modeled by a linear function, logit transformation:

ln[
πi

1− πi
] = β0 +

p∑
j=1

xT
ijβj, i = 1, 2, ..., n, (1)

where β0 is the intercept and βj is a p× 1 vector of unknown feature coefficients. The
log-likelihood function of Eq.(1) is defined as:

ℓ(β0, β) =

n∑
i=1

{yi ln (πi) + (1− yi) ln(1− πi)}. (2)

Logistic regression offers the advantage of simultaneously estimating the probabilities π
and π − 1 for each class and classifying subjects. The probability of classifying the ith

sample in class 1 is estimated by π̂i = exp(β0 +
∑p

j=1 x
T
ijβj)/(1 + exp(β0 +

∑p
j=1 x

T
ijβj)).

The predicted class is then obtained by I{π̂i > 0.5}, where I(·) is an indicator function.
PLR adds a nonnegative penalty term to Eq.(1), such that the size of the gene coefficients
in high-dimension cancer classification can be controlled. Several penalty terms have
been discussed in the literature (Tibshirani, 1996; Liu et al., 2007; Hoerl and Kennard,
1970).The L1− penalty, proposed by Tibshirani (Tibshirani, 1996) is one of the popular
penalty terms. The L1− penalty performs genes selection and stimation simultaneously
by constraining the log-likelihood function of gene coefficients. The penalized method
for the logistic regression is obtained by adding the penalty term to the negative log-
likelihood function:

PLR = −
n∑

i=1

{yi ln (πi) + (1− yi) ln(1− πi)}+ λP (β). (3)

The estimation of the vector β is obtained by minimizing Eq.(3):

β̂PLR = argmin
β

[
−

n∑
i=1

{yi ln (πi) + (1− yi) ln(1− πi)}+ λP (β)

]
, (4)

where λP (β) ) is the penalty term that penalizes the estimates. The penalty term
depends on the positive tuning parameter λ , which controls the tradeoff between fitting
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the data to the model and the effect of the penalty. In other words, it controls the amount
of shrinkage. For λ = 0 we obtain the MLE solution, while for large values of λ the
influence of the penalty term on the coefficient estimates increases. Choosing the tuning
parameter is an important part of the model fitting. If we interesting in classification,
the tuning parameter should find the right balance between the bias and the variance to
minimize the misclassification error. Without loss of generality, it is assumed that the
genes are standardized,

∑n
i=1 xij = 0 and (−1)

∑n
i=1 x

2
ij = 1 ∀j ∈ {i = 1, 2, ..., p}. As

a result, the intercept β0 is not penalized. The estimation of the vector β using LASSO
(L1−penalty) is defined as:

β̂PLR = argmin
β

− n∑
i=1

{yi ln (πi) + (1− yi) ln(1− πi)}+ λ
P∑

j=1

|β|

 , (5)

where λ is a tuning parameter. It reduces to the MLE estimator when λ = 0. On the
other hand, if λ → ∞, , the penalty forces all the genes to be zeros. In practice, the value
of λ is often chosen by a cross validation procedure. Eq.(5) can be efficiently solved by
using the coordinate descent algorithm (Park and Hastie, 2007; Friedman et al., 2010).

The LASSO has an advantage in that it is computationally feasible in high dimensional
classification data. On the other hand, the LASSO has three main drawbacks. First of
all, if p > n , the LASSO selects at most n genes because of the nature of the convex
optimization problem. In addition, the LASSO cannot handle the effect of grouping.
When the pairwise correlations among a group of genes are very high, then the LASSO
tends to select only one gene from the whole group and does not take into account which
one is selected (Zou and Hastie, 2005; Feng et al., 2012). Lastly, the LASSO lacks the
oracle properties, as stated by Fan and Li (Fan and Li, 2001).

2.2 Features Extraction

Features of breast cancer histopathological images were extracted using Haar discrete
wavelet transform based on 7th-level decomposition (Balaji, 2007; Misiti, 2000; Gonzalez,
2008). Breast cancer histopathology images were initially divided into four equal-sized
sub-images, namely LL1 (approximation coefficients), LH1 (horizontal coefficients), HL1
(vertical coefficient), and HH1 (diagonal coefficient), at the first level of decomposition.
Subsequently, the LL1 (approximation coefficient) sub-image was further decomposed
into four equal-sized sub-images, namely LL2, LH2, HL2, and HH2, at the second level
of decomposition. This process was continued until the seventh level of decomposition
was reached, forming 28 sub-images from every channel (red, green, and blue). Therefore,
28 x 3 sub-images were obtained from the original image.

Next, nine traditional statistical features were calculated, including mean, standard
deviation, skewness, kurtosis, entropy, energy, root mean square, mean absolute devia-
tion, and median absolute deviation. This resulted in the extraction of 756 features for
each breast cancer histopathological image.
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3 Proposed Method

Feature selection plays a vital role in the problem of classifying breast cancer images.
It helps to enhance the accuracy of classification by minimizing the negative impact
of irrelevant image features on the classification process. Therefore, it is important to
carefully select the most relevant features to improve the accuracy of image classification
and correct diagnosis. It is crucial to remove irrelevant and noisy features from the
original feature matrix to efficiently apply classification techniques. Too many features
can negatively impact the classifier’s performance, resulting in overfitting and longer
computational times.
In this paper, we present an efficient feature selection method that addresses the

consistency problem in feature selection. Our approach tackles the issue of inconsistency
that occurs when using PLR with L1-norm. This problem can lead to the selection of
irrelevant features, which reduces the effectiveness of the method. To address the issue,
we employed a combination of PLR and L1-norm techniques along with a Wilcoxon rank
sum test. This test is utilized to evaluate the significance of each feature. Subsequently,
we used PLR with adaptive L1-norm to assign weights to significant features based on
their corresponding Wilcoxon rank sum test values. The weight assigned to each feature
reflects its relative importance.

3.1 Weight Calculation

In practical scenarios, the feature matrix may contain irrelevant or noisy features, re-
sulting in low performance and lower classification accuracy. As a result, it has become
essential to analyze the features in terms of their importance. The Wilcoxon rank sum
test can be used to determine each feature’s weight (Liao et al., 2006) as:

S(j) =
∑
i∈N1

∑
k∈N2

I((x
(j)
i − x

(j)
k ≤ 0), j = 1, 2, ..., p, (6)

where I(·) is the discrimination function and it is defined as:

I(·) =

{
1 if I is true

0 if I is not true
(7)

x
(j)
i is the value of the sample i in the feature j, moreover N1 and N2 are the index sets

of different classes of samples. Eq.(6), S(j) represents the measurement of the difference
between the two classes. The feature j can be considered important when Eq.(6) is close
to 0 or when it is close to the max value of n1 n2 , where n1 = |N1| and n2 = |N2|. Liao,
Li and Luo (Liao et al., 2006) the feature significance by the following feature ranking
criterion:

q(j) = max{S(j), n1 n2 − S(j)}. (8)

Depending on Eq.(8), an important feature, with S(j) closed to 0 or to n1 n2 , will
receive large value of q(j), while an irrelevant feature will receive a small value of q(j).
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To enforce discriminative penalty on each feature according to importance degree in
classification, Park and other (Park et al., 2016) proposed the following weight as below:

wi = 1/[
q(j)
p∑

j=1
q(j)

× p], j = 1, 2, ..., p. (9)

According to Eq.(9),the important feature will receive small amount of weight, while
the irrelevant feature will receive relatively large amount of weight. By this weighting
procedure, the L1−norm can reduce the inconsistent property in feature selection.

3.2 Breast Cancer Classification

The process involves assigning a weight to each feature and then using the adaptive
L1−norm PLR to select the most informative features with high accuracy in classifica-
tion. The Algorithm 1 describes the detailed computation of the adaptive PLR (APLR).
The APLR equation takes on a convex form, which guarantees the existence of a global
maximum point and makes it easy to solve efficiently.

Algorithm 1: The computation of APLR

Step 1: Find wj , j = 1, 2, ..., p.

Step 2: Define x̃i = wjxi

Step 3: Solve the APLR,

β̂APLR = argminβ

{
−

n∑
i=1

{yi ln(πi) + (1− yi) ln(1− πi)}+ λ
p∑

j=1
wj |βj|

}

4 Experimental Study

4.1 Dataset description

The dataset used was The BreaKHis database, it is a comprehensive collection of high-
resolution microscopic images depicting various types of breast tumors, including both
benign and malignant ones. The database is a valuable resource for researchers and
medical professionals working toward the early detection, diagnosis, and treatment of
breast cancer (Spanhol et al., 2015). BreaKHis is a valuable dataset that originates
from the pathological anatomy and cytopathology laboratory of Parana, Brazil. The
dataset consists of 7,909 high-quality microscopic images of breast tumor tissue that
have been carefully selected to be clinically representative. These images have been
obtained from a diverse group of 82 patients and captured at varying magnifications,
including 40X, 100X, 200X, and 400X. The dataset includes 24 benign and 58 malignant
samples, making it a comprehensive resource for breast cancer research. For more details,
refer to Table 1, which provides a detailed dataset summary.
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Table 1: Summary of the BreaKHis database.

Magnification Benign Malignant

40X 625 1370

100X 644 1437

200X 623 1390

400X 588 1232

4.2 Performance Evaluation

To assess the effectiveness of the proposed method, two performance metrics have been
implemented, namely the patient classification rate (PCR) and overall classification ac-
curacy (OCA). The PCR represents the proportion of correctly classified benign and
malignant cases within each patient. It can be defined as follows:

PCR =
ncorrect

ntotal
× 100, (10)

where ncorrect is the number of correctly classified cancer images for the patient j and
ntotal is the number of cancer images of patient j.

The OCA can define as:

OCA =

p∑
j=1

PCRj

npatients
× 100, (11)

where npatients is the number of patients. Generally, the closer value to 1, the better
overall classification performance is.

4.3 Experimental Setting

To demonstrate the effectiveness of the proposed method, we conducted comprehensive
comparative experiments with the PLR-lasso, PLR-SCAD, and the classical LR. To do
this, we randomly partitioned the data matrix into training and test datasets, where
70% of the samples were used for the training dataset and the remaining 30% for the
testing dataset. For a fair comparison and to minimize the impact of the data partition,
all the classification methods used were evaluated for their classification performance
metrics using 10-fold cross-validation, averaged over 50 partitioned times.

Based on the training dataset, the tuning parameter value, lambda, was fixed for each
classification method used as: 0 ≤ λ ≤ 100. As suggested by Fan and Li, the SCAD
penalty constant α was set to 3.7 (Fan and Li, 2001). The R-package ”penalized LR”
contains the necessary implementations for these methods.
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5 Experimental Results

5.1 Classification Performance

Table 2 summarizes, on average, the overall classification accuracy for the training and
testing datasets of applying the APLR, PLR-SCAD, PLR-lasso, and the LR. In addition,
it summarizes the number of the selected features. The number in parenthesis is the
corresponding standard deviation. Beginning with the magnification 40X, regarding the
overall classification accuracy and based on the training dataset, the proposed method,
APLR, achieves 95.71%, defeating PLR-SCAD, PLR-lasso, and the LR by 5.27%, 8.01%,
and 12.95%, respectively. In addition, PLR-SCAD secondly comes with 90.44% and bet-
ter than PLR-lasso and LR. Depending on the testing dataset, the APLR is better than
the others in terms of overall classification accuracy because it achieved 93.98%, which
is 5.52%, 9.52%, and 13.95% better than PLR-SCAD, PLR-lasso, and the LR, respec-
tively. In the magnification 100X, based on the training dataset, the APLR provides
enhancement over the PLR-SCAD and the PLR-lasso by 5.02% and 7.43%, respectively.
Once again, based on the testing dataset, the proposed method beats both PLR-SCAD
and PLR-lasso in terms of overall classification accuracy. Looking at the magnifica-
tion 200X, the overall classification performance of the proposed method is comparable
with PLR-SCAD, PLR-lasso, and LR performing best among them. In terms of overall
classification accuracy, the OCA obtained from the proposed method was 97.58% for
the training dataset and 95.04% for the testing dataset. This indicates the superiority
of the proposed method as compared to PLR-SCAD, PLR-lasso, and LR. At the end,
regarding the magnification 400X, the APLR shows a considerable dominance against
PLR-SCAD, PLR-lasso, and LR. It achieved the higher overall classification accuracy
for both the training and testing datasets. PLR-SCAD and PLR-lasso attain useful
performance as they provide results that are inferior to APLR but better than LR. The
number of features selected by each method is an important factor. Methods selecting
more features tend to overfit the data. Hence, methods with a small number of se-
lected features are preferred. For a comparison of methods in terms of the number of
selected features, the APLR outperformed PLR-SCAD and PLR-lasso. For instance, in
magnification 200X, APLR selected 6 features compared to 13 and 20 features for the
PLR-SCAD and PLR-lasso, respectively.

5.2 Statistical Significance Test

To further confirm the effectiveness of the proposed feature selection method in achieving
high classification performance, a pairwise comparison was made using a two-tailed T-
test between the proposed method and each competitor method. The comparison was
based on the area under the curve of the training dataset. Figure 1 displays the boxplot
of the AUC for the different methods used. It is evident from the graph that the proposed
method’s AUC is comparable to the results obtained from PLR-SCAD and PLR-Lasso.
Table 3 shows the results of paired two-tailed t-tests at a significance level of α = 0.05.
The AUC of the proposed method is statistically significantly better than that of PLR-
SCAD, PLR-lasso, and LR.
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Table 2: Classification performance of the APLR, PLR-SCAD, PLR-lasso and LR.

Magnification Method Training dataset Testing dataset #features

APLR 95.71 (1.109) 93.98 (2.983) 9

40x PLR-SCAD 90.44 (1.457) 88.46 (2.567) 18

PLR-lasso 87.71 (2.911) 84.82 (4.021) 25

LR 82.76 (2.943) 80.03 (3.127) all

APLR 96.25 (1.089) 94.31 (1.754) 8

100x PLR-SCAD 91.23 (1.843) 88.56 (2.585) 14

PLR-lasso 88.82 (2.899) 85.68 (3.832) 22

LR 84.98 (2.132) 81.01 (4.049) all

APLR 97.58 (0.928) 95.04 (1.225) 6

200x PLR-SCAD 92.35 (1.881) 89.85 (2.107) 13

PLR-lasso 89.58 (2.543) 87.20 (4.027) 20

LR 85.23 (2.136) 81.27 (3.854) all

APLR 94.65 (1.832) 92.21 (2.539) 11

400x PLR-SCAD 89.37 (2.019) 87.35 (3.071) 19

PLR-lasso 86.36 (2.811) 83.67 (3.407) 27

LR 81.59 (3.013) 78.97 (4.208) all

Figure 1: Boxplot of the AUC for all data magnifying : 40X, 100X, 200X, and 400X.
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Table 3: P-values for the paired t-test of our proposed method results with competitor
methods.

Magnification APLR vs PLR-SCAD APLR vs PLR-lasso APLR vs PL

40x 0.0022(*) 0.0013(*) 0.0009(*)

100x 0.0041(*) 0.0035(*) 0.0015(*)

200x 0.0047(*) 0.0035(*) 0.0017(*)

400x 0.0009(*) 0.0005(*) 0.0002(*)

(*) means that the methods have significant differences

6 Conclusion

This paper proposes an adaptive penalized logistic regression model that combines the
logistic regression model with the weighted L1-norm to classify breast cancer histopathol-
ogy images. Our proposed method was tested experimentally and compared to other
existing methods. The superior classification performance of our approach was demon-
strated through the overall classification accuracy and the T-test for the AUC. The pro-
posed method showed outstanding performance compared to PLR-SCAD, PLR-lasso,
and LR. Specifically, the OCA achieved a classification accuracy of 97.58% for the train-
ing data and 95.04% for the testing data. These results demonstrate the effectiveness
of the proposed method in achieving high accuracy in overall classification.Additionally,
compared to other methods, the proposed method performs exceptionally well regarding
the number of selected features. For instance, in magnification 200X, APLR selected six
features compared to 13 and 20 for the PLR-SCAD and PLR-lasso, respectively.

Consequently, the results confirm that the proposed method is a promising feature
selection technique for medical image classification. The availability of medical images
in this field is limited, making access difficult and posing significant limitations for study
and other future work.
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